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The unknown temperature of a sample can be estimated with minimal disturbance by putting it in
thermal contact with an individual quantum probe. If the interaction time is sufficiently long so that the
probe thermalizes, the temperature can be read-out directly from its steady state. Here we prove that the
optimal quantum probe, acting as a thermometer with maximal thermal sensitivity, is an effective two-level
atom with a maximally degenerate excited state. When the total interaction time is insufficient to produce
full thermalization, we optimize the estimation protocol by breaking it down into sequential stages of probe
preparation, thermal contact, and measurement. We observe that frequently interrogated probes initialized
in the ground state achieve the best performance. For both fully and partly thermalized thermometers, the
sensitivity grows significantly with the number of levels, though optimization over their energy spectrum
remains always crucial.
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Introduction.—With the advent of quantum technolo-
gies, the study of the thermodynamics of quantum devices
has attracted considerable attention [1,2]. In particular,
there is a growing interest in obtaining accurate tempera-
ture readings with nanometric spatial resolution [3–5],
which would pave the way towards many groundbreaking
applications in medicine, biology, or material science. This
motivates the development of precise quantum thermomet-
ric techniques.
Recent progress in the manipulation of individual quan-

tum systems has made it possible to use them as temperature
probes, thus minimizing the undesired disturbance on the
sample. Fluorescent thermometry may be implemented, for
instance, on a single quantum dot to accurately estimate the
temperature of fermionic [6,7] and bosonic [8,9] reservoirs.
Similarly, the ground state of color centers in nanodiamonds
has already been used as a fluorescent thermometer
[3–5], achieving precisions down to the millikelvin scale,
and a spatial resolution of few hundreds of nanometers.
Thermometry applied to micromechanical resonators
[10–12] and nuclear spins [13] has also been a subject of
investigation. Other studies have focused on more funda-
mental questions such as the scaling of the precision of
temperature estimation with the number of quantum probes
[14], and the potential role played by coherence and
entanglement in simple thermometric tasks [15].
In this Letter, we investigate the fundamental limitations

on temperature estimation with individual quantum probes.
Two complementary scenarios are considered. In the first
one, we assume that the thermometer reaches thermal equi-
librium with the sample. We then determine which are the
optimal probes that maximize the attainable precision in
the estimation of the temperature. Alternatively, we also

consider the situation in which the probe does not thermal-
ize completely due to some constraint on the total estima-
tion time (e.g., the sample may be unstable). In this second
scenario, we analyze the dissipative time evolution of the
probe in order to optimize the thermometric protocol. We
model it as a sequence of steps of preparation, thermal
contact, and read-out.
Our main results are the following. First, we show that a

N-dimensional equilibrium probe with maximum heat
capacity is optimal for thermometry. This is an effective
two-level probe with ðN − 1Þ degeneracy in the excited
state at some optimal gap. The maximum achievable
precision grows with the dimension of the probe, yet the
range of temperatures for which it operates efficiently as a
thermometer becomes narrower. In contrast, a less sensitive
probe with an equispaced energy spectrum, such as a
quantum harmonic oscillator, features wider operation
ranges. On the other hand, when the estimation time is
limited, we find that a frequently measured probe initialized
in its ground state achieves the largest thermal sensitivity.
In this case, the overall precision still scales with the
dimension of the probe, even though the temperature range
for efficient operation is dimension independent.
Our results contribute not only to the theoretical advance

of temperature estimation in the quantum regime, but also
have potential technological impact for the development of
high precision thermometry at the nanoscale.
Fully thermalized thermometers.—In standard thermom-

etry, a (sufficiently small) thermometer is simply allowed
to equilibrate with the sample to be probed, so that the
temperature of the latter is inferred from the state of the
probe. In a quantum scenario, the same procedure can be
applied. A first approximation to the sample temperature
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can be obtained by performing a suitable measurement on
the steady state of the thermalized probe. If a large number
ν of such independent experiments is carried out, one can
refine the estimate T of the sample temperature. Its
corresponding uncertainty ΔT is bounded from below by
a geometric quantity F ðϱ̂TÞ, known as the quantum Fisher
information (QFI) [16], via the quantum Cramér-Rao
inequality [17,18]

ΔT ≥ ½νF ðϱ̂TÞ�−1=2: ð1Þ
In the present context of temperature estimation, the QFI
can be interpreted as the infinitesimal distance, according to
the Bures metric, between a thermal state at temperature T,
and a thermal state at temperature T þ δ [18]. Intuitively,
the more such a distance, the more the initial probe state is
sensitive to a small variation of temperature. Formally,

F ðϱ̂TÞ ¼ −2lim
δ→0

∂2Fðϱ̂T; ϱ̂TþδÞ=∂δ2; ð2Þ

where Fðϱ̂1; ϱ̂2Þ≡ ðtr
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϱ̂1

p
ϱ̂2

ffiffiffiffiffi
ϱ̂1

pp
Þ2 is the Uhlmann

fidelity between states ϱ̂1 and ϱ̂2, which defines
their respective Bures distance via dBuresðϱ̂1; ϱ̂2Þ ¼
2ð1 − ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Fðϱ̂1; ϱ̂2Þ
p Þ [18]. Further to the intuitive meaning

of the QFI, we note that there exists an optimal estimator
(i.e., an optimal measurement procedure on the final
thermalized state) for which the bound in Eq. (1) becomes
tight for an asymptotically large number of measurements
(ν ≫ 1), and can be indeed saturated by means of adaptive
metrological schemes [16]. Therefore, the inverse of the
QFI equivalently defines the minimum achievable variance
in the estimation of T. We will then refer to F ðϱTÞ as
“thermal sensitivity” and consider it as a benchmark for
optimality in the following analysis [8–11,14,19].
We write the Hamiltonian of our probe as Ĥ ¼P
nϵnjϵnihϵnj. A thermalization process leads to stationary

states of the form ϱ̂T ¼ P
npnjϵnihϵnj, where the popula-

tions are pn ≡ Z−1e−ϵn=kBT and the partition function is
given by Z≡ tre−Ĥ=kBT. In what follows we set ℏ ¼ kB ¼ 1.
In the energy eigenbasis, Eq. (2) rewrites as [20]

F ðϱ̂TÞ ¼ 4
X
m;n

pm
jhϵmj∂T ϱ̂T jϵnij2
ðpm þ pnÞ2

¼ ΔĤ2

T4
; ð3Þ

were ΔĤ2 ≡ hĤ2i − hĤi2. In this last step, we have
used the identity hĤi ¼ T2∂T lnZ. Interestingly, in the
single shot scenario of ν ¼ 1, one can combine Eqs. (1)
and (3) to get the thermodynamic uncertainty relation
ðΔT=T2ÞΔĤ ≥ 1. Also, note that ΔĤ2=T2 ¼ dhĤi=dT ≡
CðTÞ which, in the present case, may be referred to as the
“heat capacity” of the probe. It thus follows that the signal-
to-noise ratio T=ΔT is upper bounded as ðT=ΔTÞ2 ≤ CðTÞ
[21]. Note as well that, since ϱ̂T is a thermal state, the
most informative measurement saturating Eq. (1) is just a
projection onto the energy eigenbasis.
In light of Eq. (3), the maximization of the thermal

sensitivity of a probe translates into finding the energy

spectrum with the largest possible energy variance at
thermal equilibrium, or equivalently, the N-dimensional
probe with the largest heat capacity. Note that the heat
capacity of the sample must be much larger, anyway, than
that of the probe so as to minimize any disturbance arising
from the estimation procedure.
For a generalN-level probe, the energy variance writes as

ΔĤ2 ¼ Z−1P
n ϵ

2
ne−ϵi=T − ðZ−1 P

n ϵne
−ϵn=TÞ2. The vari-

ance is bounded. In order to identify its maximum, we
impose ∂ϵnΔH

2 ¼ 0, which results in a set of N transcen-
dental equations. Subtracting themth equation from the nth
one (∂ϵnΔĤ

2−∂ϵmΔĤ
2¼0), we arrive at the condition ðϵn−

ϵmÞ½ϵnþϵm−2ðhĤiþTÞ�¼0 (see Ref. [22] for details). That
is, any two energy eigenvalues ϵn and ϵm must be either
equal, or sum up to the same value at the stationary points of
ΔĤ2. This may only happen if the energy spectrum is that of
an effective two-level atomwith energies fϵ−; ϵþg and some
ground and excited-state degeneracies given by N0 and
N − N0, respectively. Without loss of generality, we may
always shift the energy spectrum so that ϵ− ¼ 0 and the
optimal gap becomes x�N;N0

≡Ω�=T ¼ ðϵþ þ ϵ−Þ=T ¼
2ð1þ hĤi=TÞ > 2, since now hĤi > 0. This optimal gap
may be conveniently rewritten as ex

�
N;N0 ¼ ½ðN − N0Þ=N0�×

½ðx�N;N0
þ 2Þ=ðx�N;N0

− 2Þ�. Observing that the difference

ΔĤ2ðx�N;N0−1;N;N0−1Þ−ΔĤ2ðx�N;N0
;N;N0Þ¼ 1

4
ðx�2N;N0−1−

x�2N;N0
Þ is always positive, one can conclude that the excited-

state degeneracy must be the largest possible (i.e., N0 ¼ 1)
so as to maximize the energy variance.
Finally, to ensure that ΔĤ2 reaches a maximum

at x�N;N0
, we must check that the Hessian matrix (Hij≡

∂2ΔĤ2=∂ϵi∂ϵj) is negative definite in that configuration.
After a tedious but otherwise straightforward calculation,
we can see that it has N − 2 identical eigenvalues
λ1 ¼ − 1

2
½ðx�N;1 − 2Þ=ðN − 1Þ�, plus two nondegenerate

ones: λ2 ¼ − 1
8
½ðx�2N;1 − 4Þ=ðN − 1Þ� and λ3 ¼ 0. Since

x�N;1 > 2, both λ1 and λ2 are negative. The single vanishing

eigenvalue λ3 simply reflects the symmetry of ΔĤ2 with
respect to a global shift of all energy levels. Hence, one may
rigorously conclude that the effective two-level configuration
described above indeed maximizes the energy variance. See
Ref. [23] for an alternative derivation.
Here is the final expression for the corresponding QFI:

FN ¼ x4ex

Ω2

N − 1

ðN − 1þ exÞ2 ; ð4Þ

which is indeed maximal at x ¼ x�N;1. In Fig. 1, we
plot Eq. (4) for different values of N. The precision in
temperature estimation improves significantly by increas-
ing the dimensionality N of the probe, albeit at the
expense of reducing the specified temperature range for
efficient operation of the probe as a thermometer (see inset
of Fig. 1).
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So far, we have seen that the best thermometers are
effective two-level atoms with a highly degenerate excited
state and a specific temperature-dependent gap. However,
these may be very hard to prepare in practice, especially
due to the fact that the sample temperature must be known
precisely. For this reason we now consider more versatile
suboptimal probes with a richer spectrum, such as a single
thermalized harmonic oscillator. In this case, the corre-
sponding QFI can be easily computed from the 2 × 2
steady-state covariance matrix [24,25] of a thermal state
σT ¼ cothðΩ=2TÞ12 as in Eq. (2). Using the fact that the
Uhlmann fidelity between two single-mode Gaussian states
σ1 and σ2 is given by Fðσ1; σ2Þ ¼ 2ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

Δþ Λ
p

−
ffiffiffiffi
Λ

p Þ−1
[26], where Δ≡ detðσ1 þ σ2Þ and Λ≡ detðσ1 − 1Þ×
detðσ2 − 1Þ, one arrives at F ho¼ðΩ2=4T4Þcsch2ðΩ=2TÞ.
This is represented in Fig. 1 with a dashed blue line. For ease
of comparison we take the oscillator frequency Ω to be
ϵþ − ϵ−. As we can see, a harmonic probe features a thermal
sensitivity similar to that of a two-level probe. Even if
harmonic thermometers are outperformed bymost optimized
N-level probes, they are endowed with a much broader
specified temperature range for efficient operation, making
them a choice of practical interest. This can be understood by
observing that the thermal sensitivity of a probewith a single
energy gap may only peak at one characteristic frequency,
while with an equispaced, unbounded spectrum there will
always be some transition close to resonance.
Partly thermalized thermometers.—All of the previous

analysis holds regardless of the probe-sample interactions
or the spectral properties of the sample, as long as
thermalization takes place. In practice, however, one
may have to read-out the temperature before attaining full
thermalization. This would be the case, for instance, if the
sample was unstable and existed only for times comparable
to the dissipation time scale. In this alternative scenario, we
ask ourselves about the optimal breakup of the total running
time of the estimation procedure (ts) into sequential stages

of probe preparation, thermal contact (during time Δt), and
measurement, so as to optimize the achievable precision in
Eq. (1). Note that the number of interrogations is now
limited to ν ¼ ts=Δt, so that the figure of merit to be
maximized is the ratio F ðΔtÞ=Δt [27,28].
Since we must monitor the time evolution of the probe, it

is necessary now to specify the sample and its coupling
with the thermometer. We shall model the sample as a
bosonic heat bath, linearly coupled to an arbitrary probe.
The total Hamiltonian writes as Ĥtot ¼ Ĥ þP

μωμb̂
†
μb̂μþ

X̂ ⊗
P

μgμðb̂μ þ b̂†μÞ, where b̂μ is the annihilation operator
of mode ωμ in the sample. We choose the probe-sample
coupling constants to be gμ ¼ ðγωμÞ1=2, implying flat
spectral density JðωÞ ∼P

μðg2μ=ωμÞδðω − ωμÞ ¼ γ [29].
This sets the time scale τD ∼ γ−1 over which ϱ̂ðtÞ varies
appreciably. Tracing out the sample from the overall unitary
dynamics and assuming a thermal state χ̂T for it, leads to an
effective equation of motion of the Lindblad-Gorini-
Kossakovski-Sudashan (LGKS) type [30,31], that follows
from _̂ϱ ¼ trSðd=dtÞfe−iĤtottϱ̂ð0Þ ⊗ χ̂TeiĤtottg, after sequen-
tially performing the Born, Markov, and rotating-wave
approximations (see Ref. [32] for a detailed derivation).
Note that the Born approximation implies that no corre-
lations are ever created between the probe and sample, so
the latter remains undisturbed throughout the estimation
procedure. Note also that, for consistency with the Markov
approximation, the temperature of the sample may be not
arbitrarily low, as the thermal fluctuations must remain fast
compared with τD.
In the interaction picture, the master equation can be

cast as

_̂ϱ ¼ ΓΩ;T

�
ÂΩϱ̂Â−Ω −½fÂ−ΩÂΩ; ϱ̂gþ

�

þ e−Ω=TΓΩ;T

�
Â−Ωϱ̂ÂΩ −½fÂΩÂ−Ω; ϱ̂gþ

�
; ð5Þ

where Â�Ω stands for the relaxation and excitation operator
associated with the decay channel at frequency Ω. These
follow from the decomposition of X̂ ¼ P

ωÂω as a sum of
eigenoperators of the probe Hamiltonian (i.e., such that
½Ĥ; ÂΩ� ¼ −ΩÂΩ). It is easy to show that the thermal state
ϱ̂ ¼ Z−1e−Ĥ=T is a fixed point of Eq. (5) and, choosing a
suitable coupling operator X̂, the open dynamics may also
be ergodic, thus eventually bringing any initial state to
thermal equilibrium [32].
For a two-level thermometer with Hamiltonian

Ĥ ¼ ðΩ=2Þσ̂z, we can take, for instance, X̂ ¼ σ̂x from
which ÂΩ ¼ j−Ω=2ihΩ=2j, while Â−Ω ¼ Â†

Ω. Here,
j�Ω=2i are the corresponding energy eigenstates.
Generalizing to the case of an N-level probe with eigen-
states fjϵiig, a coupling term like X̂ ¼ P

i≠1jϵ1ihϵij þ
jϵiihϵ1j would also thermalize any preparation, where we
have labeled the ground state by jϵ1i. The resulting
relaxation operators are Âϵi−ϵ1 ¼ jϵ1ihϵij. In particular, to

FIG. 1 (color online). QFI versus sample temperature for opti-
mized N-dimensional probes (orange) with N ¼ f2; 4; 6; 8; 10g.
The dashed blue line represents the QFI of a harmonic probe
and the shaded blue area is the domain reachable by finite-
dimensional probes with an equispaced spectrum. In the inset, the
normalized sensitivities of two probes with N ¼ 2 (dashed green)
and N ¼ 10 (solid orange) are compared. The arrows indicate the
width of the specified temperature range. Temperature and QFI
are both expressed in arbitrary units and Ω ¼ 1.
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account for our effective two-level systems with excited-
state degeneracy we can take the limit ϵi → ðΩ=2Þ for i ≠ 1
and set ϵ1 ¼ −ðΩ=2Þ to get the desired thermalization
process. Let us finally comment on the decay rates
ΓΩ;T , which follow from the power spectrum of the bath
autocorrelation function hŜðtÞŜð0ÞiT ≡ trfŜðtÞŜð0Þχ̂Tg,
where Ŝ≡P

μgμðb̂μ þ b̂†μÞ. In the specific case of a
quantum probe coupled through dipole interaction to the
quantized electromagnetic field in three dimensions, one
obtains ΓΩ;T ¼ γΩ3ð1 − e−Ω=TÞ−1 [32].
The problem boils down to solving Eq. (5), transforming

the time-evolved state ϱ̂ðtÞ back into the Schrödinger
picture (i.e. ϱ̂↦e−iĤtϱ̂eiĤt), and computing the QFI accord-
ing to Eq. (2) [27,33–36]. Note that besides comparing the
performance of different types of probes, we must now
optimize over their initial state too. We start by considering
the simplest case of two-level thermometers. Extensive
numerical analysis over different initial states shows that
ground-state preparations display maximal thermal sensi-
tivity. This indicates that the presence of initial quantum
coherence does not provide any significant advantage for
thermometry in this setting.
Thus, by choosing ϱ̂ð0Þ ¼ j−Ω=2ih−Ω=2j we can com-

bine Eqs. (5) and (3) to compute F 2ðΔtÞ as a function of the
interrogation timeΔt, starting fromaground state preparation:

F 2ðΔtÞ ¼
x2½exðeΔt=τ − 1Þ þ ð1þ exÞ Δt

2τ csch
x
2
�2

ð1þ exÞ2ðeΔt=τ − 1Þð1þ exeΔt=τÞT2
; ð6Þ

where τ−1 ≡ γΩ3 cothðx=2Þ. Equation (6) shows that the
details of the thermal fluctuations of the sample, encoded in
ΓΩ;T , only enter into the dynamics through the scaling factor τ.
Hence, even if our choice of a flat spectral densitymight seem
pretty restrictive at first, changing the probe-sample coupling
would just amount to a suitable rescaling of time.
In Fig. 2 we plot F 2ðΔtÞ=Δt for different preparations.

As we can see, the sensitivity of a cold thermal probe peaks
at some optimal readout time, after which it must be
quickly cooled down to start over another relaxation stage
in the estimation protocol. In the limiting case of a
ground-state preparation, the overall maximum sensitivity
is approached as Δt → 0.
Equation (6) can be generalized to any of our highly

degenerate effective two-level probes prepared in the
ground state. As before, their maximum precision follows
from the limit

lim
Δt→0

FNðΔtÞ
Δt

¼ γTðN − 1Þx5e2x
ðex − 1Þ3 : ð7Þ

We now search for the optimal frequency-to-temperature
ratio ~x that sets an ultimate upper bound on the thermal
sensitivity in Eq. (7). This can be expressed implicitly
as e~x ¼ ð5þ 2~xÞ=ð5 − ~xÞ, which is independent of N.
Interestingly, the specified temperature range for efficient
operation does not scale with N, at variance with the fully
thermalized case.

For completeness, we examine again here the perfor-
mance of harmonic probes. Going back to Eq. (5), we will
set Ĥ ¼ Ωâ†â and X̂ ¼ âþ â†, whose corresponding
relaxation and excitation operators are trivially ÂΩ ¼ â
and Â−Ω ¼ â†. The total Hamiltonian is thus quadratic in
positions and momenta and therefore, any Gaussian prepa-
ration will preserve its Gaussianity in time [24]. Provided
that the initial state also has vanishing first order moments
(hx̂i ¼ hp̂i ¼ 0), its covariance matrix σðtÞ alone will be
enough for a full description.
In this case, the dynamics may be obtained by expli-

citly solving the quantum master equation in phase space,
to yield σðtÞ ¼ e−ΓΩ;T tσð0Þ þ ð1 − e−ΓΩ;T tÞσT [24,37].
Computing the transient QFI is thus straightforward by
resorting to Eq. (2). In what follows, we shall consider
general (undisplaced) single-mode Gaussian states as initial
preparations; these can be written as rotated, squeezed
thermal states [24,25]. As it could be expected, ground-
state initialization (ϱ̂ð0Þ ¼ j0ih0j) provides once again the
largest thermal sensitivity. One can ignore the temperature
dependence of ΓΩ;T in the solution to the master equation
and still get a good approximation to limΔt→0F hoðΔtÞ=Δt.
Surprisingly, we recover Eq. (7) with N ¼ 2. Indeed, this
equivalence of two-level probes and harmonic thermom-
eters extends generally beyond the limits Δt → 0 and
ϱ̂ð0Þ ¼ j0ih0j. Therefore, at variance with the fully ther-
malized scenario, the specified temperature range of both
oscillators and N-level probes in an effective two-level
configuration is virtually the same, regardless of N.
Conclusions.—We have analyzed the performance and

ultimate limitations of individual quantum probes for
precise thermometry on a sample. Our study is based on
techniques of parameter estimation [16,18], and makes use
of the quantum Fisher information as an indicator of
optimal thermal sensitivity.
First, we have considered a general N-dimensional

quantum probe that fully thermalizes with the sample.
We have linked the quantum Fisher information with the
heat capacity of the probe, and proven that the best

FIG. 2 (color online). Log-log plot of F=Δt as a function of Δt
for different preparations and probe dimensionalities. The con-
tinuous orange lines stand for FN for probes with N ¼ f2; 4; 10g
initialized in the ground state. The dashed and dotted orange
curves stand for a two-level probe initialized in a thermal state at
temperature 0.8 and 0.9, respectively. The dot-dashed blue curve
corresponds to a two-level probe prepared in the maximally
coherent state ϱ̂ð0Þ ¼ jþihþj (Ω=T ¼ ~x, γ ¼ 10−3, and T ¼ 1, in
arbitrary units).
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quantum thermometer is an effective two-level atom with a
maximally degenerate excited state at a specific energy gap,
depending nontrivially on the sample temperature. There
exists a complementary trade-off between the maximum
achievable estimation precision, which grows with N, and
the specified temperature range in which the estimation is
efficient, which shrinks with N.
We have also considered the scenario in which, e.g., due

to the short lifetime of the sample, full thermalization may
not take place. Frequently interrogated probes prepared in
their ground state then provide the largest thermal sensi-
tivity. While the maximum achievable precision scales
again with N, the specified temperature range is dimen-
sion-independent in this case. These results were obtained
by considering a large bosonic sample in thermal equilib-
rium, weakly coupled to the probe through a linear
interaction term, ensuring ergodicity. It would be interest-
ing to discuss to what extent can the estimation precision be
enhanced with a suitably engineered thermal coupling, e.g.,
by externally controlling the scattering length in a cold
atomic gas [38]. In principle, this would allow the experi-
menter to directly manipulate the scaling factor τ in Eq. (6).
Finally, it is worth mentioning that even though quantum

coherence in the initial state of the probe may not be directly
linked to the overall maximization of the precision, the pot-
ential role played by quantumness in thermometry remains
an open problem [13,15] that deserves a study on its own.
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