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Enhancement of low-temperature thermometry by strong coupling
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We consider the problem of estimating the temperature T of a very cold equilibrium sample. The temperature
estimates are drawn from measurements performed on a quantum Brownian probe strongly coupled to it. We
model this scenario by resorting to the canonical Caldeira-Leggett Hamiltonian and find analytically the exact
stationary state of the probe for arbitrary coupling strength. In general, the probe does not reach thermal
equilibrium with the sample, due to their nonperturbative interaction. We argue that this is advantageous for
low-temperature thermometry, as we show in our model that (i) the thermometric precision at low T can be
significantly enhanced by strengthening the probe-sampling coupling, (ii) the variance of a suitable quadrature of
our Brownian thermometer can yield temperature estimates with nearly minimal statistical uncertainty, and (iii) the
spectral density of the probe-sample coupling may be engineered to further improve thermometric performance.
These observations may find applications in practical nanoscale thermometry at low temperatures—a regime
which is particularly relevant to quantum technologies.
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I. INTRODUCTION

The development of nanoscale temperature sensing tech-
niques [1] has attracted increasing interest over the last
few years due to their potential applications to microelec-
tronics [2–4], biochemistry, or even to disease diagnosis
[5–8]. In particular, thermometer miniaturization may be
taken to the extreme of devising individual quantum ther-
mometers [6,9–15]. Using small thermometers, or probes,
has the advantage of leaving the sample mostly unper-
turbed. In contrast, the direct manipulation of the sam-
ple, such as, e.g., time-of-flight measurements of ultracold
trapped atoms, is generally destructive and thus, potentially
problematic.

The problem of measuring the temperature T of an
equilibrium sample can thus be naturally tackled by thermally
coupling it to a probe. After equilibration of the probe, one
can estimate T by monitoring some temperature-dependent
feature of the probe via a suitable measurement and data
analysis scheme. Provided that the heat capacity of the probe
is low, one usually assumes that the back-action on the sample
can be neglected, and that the probe ends up in a Gibbs
state at the sample temperature. Such a simple picture runs
into trouble if the sample is too cold, especially when using
an individual quantum thermometer: The seemingly natural
assumption of the probe reaching equilibrium at the sample
temperature might break down at low T . In this limit, the
two parties can build up enough correlations to eventually
keep the probe from thermalizing [16–19]. Furthermore, if the
probe is too small, boundary effects become relevant and need
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to be taken into account to properly describe equilibration
and thermalization [19–22]. As a result, thermometry with
nonequilibrium quantum probes inescapably demands some
knowledge about the internal structure of the sample, and the
probe-sample coupling scheme.

One could still assume thermalization in the standard sense,
owing to a vanishing probe-sample coupling. However, in
this limit, the “thermal sensitivity” of the probe, which is
proportional to its heat capacity [23–26], drops quickly as
the temperature decreases [27]—this is an inherent problem
of low-temperature thermometry [28]. The main aim of this
article is to show how to fight such a fundamental limitation.

Here, we extend quantum thermometry to the strong
coupling regime, by adopting a fully rigorous description
of the probe’s dynamics. To that end, we make use of the
Caldeira-Leggett Hamiltonian, one of the most paradigmatic
dissipation models (see, e.g., [40]. The equilibrium sample
is thus represented by a bosonic reservoir [29,30] which is
dissipatively coupled to a single harmonic oscillator, playing
the role of the thermometer. We calculate the steady state
of the probe exactly and analytically, and show that its low-T
sensitivity is significantly enhanced by increasing the coupling
strength.

In order to quantify the maximum sensitivity attainable
by our quantum thermometer, we make use of the quantum
Fisher information (QFI) FT [31,32]. Essentially, FT sets
a lower bound on the “error bars” δT � 1/

√
MFT of any

estimate of the temperature of the sample processed from the
outcomes of M independent measurements on the probe [33].
Although energy measurements are optimal for thermometry
with a probe in thermal equilibrium [34], we will see that these
do not harness the potential improvement allowed by strong
coupling.
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It is important to stress that we are not limited by any of
the simplifying assumptions usually adopted when dealing
with open quantum systems, such as the Born-Markov or
secular approximations, nor rely on perturbative expansions
in the “dissipation strength” [35]. In fact, our methods are
totally general and thus, not limited to a specific probe-sample
coupling scheme. In particular, we show that our results apply
to both Ohmic and super-Ohmic spectra.

We shall now motivate our analysis by illustrating the inher-
ent difficulty of measuring low temperatures in the simplest
case. Let us start by considering a quantum probe weakly
coupled to a thermal sample, so that its steady state can be
written as ρT = e−βHp/Z , where Hp is the Hamiltonian of
the probe and 1/β = T is the temperature of the sample (in
all what follows kB = h̄ = 1, and Z stands for the partition
function). FT can be formally defined as [31]

FT := −2 limδ→0 ∂2F(ρT ,ρT +δ)/∂δ2. (1)

Here, F(ρ,σ ) := (tr
√√

ρσ
√

ρ)2 stands for the Uhlmann
fidelity between states ρ and σ [36,37], which is a measure
of distinguishability between quantum states [38]. Hence,
intuitively, FT gauges the responsiveness of the state of the
probe to infinitesimal perturbations of the global temperature.

The QFI for a single-mode equilibrium thermometer eval-
uates to

F (eq)
T (ω) = ω2

4T 4
csch2

( ω

2T

)
, (2)

which decays exponentially at low T , as can be inferred by
expanding it as

F (eq)
T (ω) = ω2

2T 4
e−ω/T + O(e−2ω/T ) (3)

for T/ω � 1. This is not specific to harmonic probes, but
generally applicable to, e.g., optimized finite-dimensional
equilibrium thermometers [34]. That is, even an estimate
based on the most informative measurements on an optimized
equilibrium probe has an exponentially vanishing precision as
T/ω → 0. Due to this inherent limitation, devising practical
strategies to enhance low-temperature sensitivity becomes ever
more relevant, even if these cannot resolve the adverse scaling
of FT .

In what follows, we will show that the QFI can improve
as the probe-sample coupling increases, and the correlations
built up among the two eventually allow the probe to sense
a “larger” portion of the sample. First, we obtain the exact
analytical (nonequilibrium) steady state of a harmonic probe
as a function of its coupling strength with a sample in thermal
equilibrium, to then compute its QFI (see also Ref. [39]).

II. THE MODEL AND ITS EXACT SOLUTION

Specifically, the Hamiltonian of our probe is just

Hp = 1
2ω2

0x
2 + 1

2p2, (4)

(where the mass of the probe is m = 1), whereas the sample is
described as an infinite collection of noninteracting harmonic

oscillators,

Hs =
∑

μ

1

2
ω2

μmμx2
μ + 1

2mμ

p2
μ. (5)

The probe-sample coupling is realized by a linear term of the
form,

Hp–s = x
∑

μ

gμxμ. (6)

In order to compensate exactly for the “distortion” caused on
the probe by the coupling to the sample, one should replace

ω2
0 with ω2

0 + ω2
R in Hp [29,40], where ω2

R := ∑
μ

g2
μ

mμω2
μ

(cf.

Appendix A).
The coupling strengths between the probe and each of the

sample modes are determined by the “spectral density”:

J (ω) := π
∑

μ

g2
μ

2mμωμ
δ(ω − ωμ), (7)

which is given a phenomenological analytical form. In the
first part of this paper, we shall work with an Ohmic spectral
density with Lorentz-Drude cutoff,

J (ω) = 2γω ω2
c/

(
ω2 + ω2

c

)
. (8)

The dissipation strength γ carries the order of magnitude of
the couplings gμ, and ωc denotes the cutoff frequency, required
to ensure convergence.

The following quantum Langevin equation [40,41] can be
obtained from the Heisenberg equations for x, p, xμ, and pμ:

ẍ(t) + (
ω2

0 + ω2
R

)
x(t) − x(t) ∗ χ (t) = F (t). (9)

The first two terms in the left-hand side of Eq. (9) correspond
to the coherent dynamics of a free harmonic oscillator of
squared frequency ω2

0 + ω2
R (the dots denote time derivative),

while the incoherent superposition of all environmental modes,
encompassed in F (t), plays the role of a driving force with
〈F (t)〉 = 0 (see Appendix B). The convolution,

x(t) ∗ χ (t) :=
∫ ∞

−∞
ds χ (t − s)x(s), (10)

brings memory effects into the dissipative dynamics. Here,

χ (t) := 2

π
�(t)

∫ ∞

0
dω J (ω) sin ωt, (11)

where �(t) stands for the step function.
It is important to remark that Eq. (9) is exact. The only

assumption that we make when solving it is that probe
and sample start uncorrelated at t0 → −∞, i.e., in ρ ⊗ σT ,
where σT is the Gibbs state of the sample at temperature
T . The initial state of the probe ρ is arbitrary. However,
since the Hamiltonian H is overall quadratic in positions and
momenta, its stationary state is Gaussian, and thus, completely
determined by its first- and second-order moments: 〈Ri(t)〉 and

σij (t ′,t ′′) := 1
2 〈{Ri(t

′),Rj (t ′′)}〉, (12)

where R = (x,p) [41]. The notation 〈· · · 〉 stands here for
average on the initial state and {·,·} denotes anticommutator.
Since 〈F (t)〉 = 0, the stationary first-order moments vanish
(see Appendix C).
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One may now take the Fourier transform (f̃ (ω) :=∫ ∞
−∞ dt f (t)eiωt ) in Eq. (9), and solve for x̃(ω), which yields

x̃(ω) = α(ω)

F̃ (ω)
, (13)

where α(ω) := ω2
0 + ω2

R − ω2 − χ̃(ω). The position correlator
σ11(t ′,t ′′) can be thus cast as

σ11 =
∫∫ ∞

−∞

dω′dω′′

8π2
e−i(ω′t ′+ω′′t ′′) 〈{x̃(ω′),x̃(ω′′)}〉, (14)

whereas σ22 may be calculated similarly by noticing that
〈{p̃(ω′),p̃(ω′′)}〉 = −ω′ω′′〈{x̃(ω′),x̃(ω′′)}〉. The remaining co-
variances are σ12 = σ21 = 0 (cf. Appendixes C and E).

Hence, all we need to know is the power spectrum of
the noise 〈{F̃ (ω′),F̃ (ω′′)}〉 and the Fourier transform of the
dissipation kernel χ̃ (ω). Since the sample was prepared in
a Gibbs state, one can show that the noise is connected
to the dissipation kernel through the following fluctuation-
dissipation relation (cf. Appendix C 1),

〈{F̃ (ω′),F̃ (ω′′)}〉 = 4π δ(ω′ + ω′′) coth

(
ω′

2T

)
Im χ̃ (ω′).

(15)
For our spectral density, we obtain χ̃(ω) = 2γω2

c/(ωc − iω)
(cf. Appendix C 1).

Putting together the pieces from the above paragraphs,
we can compute the steady-state covariances σij (t,t) [42,43]
(recall that t0 → −∞). Importantly, our choice of J (ω)
makes it possible to evaluate the covariances analytically
(see Appendix E 1). These may be collected into the 2 × 2
matrix σ , which provides a full description of the (Gaussian)
nonequilibrium asymptotic state [44].

III. ENHANCED THERMOMETRY AT LOW T

A. Dissipation-driven thermometric enhancement

We can now calculate FT from Eq. (1), using the fact that
the Uhlmann fidelity between two single-mode Gaussian states
with covariance matrices σ 1 and σ 2 is given by

F(σ 1,σ 2) = 2 (
√

 + � −
√

�)−1, (16)

where  := 4 det (σ 1 + σ 2) and � := (4 det σ 1 −
1)(4 det σ 2 − 1) [45]. In Fig. 1(a) we plot the the best-case
relative error δT /T = 1/(T

√
FT ) (disregarding the factor

1/
√

M) versus the temperature of the sample, for different
dissipation strengths γ . We see how, at low T , the performance
of our thermometer is significantly improved by strengthening
its coupling to the sample. However, the QFI does not increase
monotonically with γ , as illustrated in Fig. 1(b). Instead,
only at cold enough T is the performance of the probe
monotonically enhanced by sufficiently strengthening the
probe-sample interaction. In the limiting case of approaching
zero temperature, such dissipation-assisted enhancement can
be attained at arbitrarily low probe-sample coupling.

It is necessary to specify what we mean by “cold enough”
and “sufficiently strong” in this context. The central energy
scale of our problem is set by the frequency of the probe
ω0. We say that the sample is “cold” whenever T/ω0 � 1
so that the probe has a very low thermal population. On the

(a)

(b)

FIG. 1. (a) Log-log plot of the best-case relative error δT /T =
1/(T

√
FT ) vs the sample temperature T for different dissipation

strengths γ ; namely, γ /ω0 = 0.1 (solid black), γ /ω0 = 1 (dashed
black), and γ /ω0 = 5 (dotted black). The relative error of a single-
mode probe at thermal equilibrium (dot-dashed red) has been super-
imposed for comparison. δT /T diverges as T → 0; while for the
thermal mode it would diverge exponentially, our exact solution
yields δT /T ∼ T −2 at low T . Whenever T/ω0 � 1, increasing the
dissipation strength results in a significant reduction of the minimum
δT /T . On the contrary, at larger temperatures, the best-case relative
error need not be monotonically decreasing with γ . This is shown
in the inset, which zooms into the bottom-right corner of the plot.
(b) Log-log plot of FT as a function of γ for T = 1 (solid), T = 0.1
(dashed), and T = 0.01 (dotted). It becomes again clear that, while
not strictly monotonic in γ , the QFI always grows with the dissipation
strength for γ /ω0 � 1 at T/ω0 � 1. Furthermore, as T/ω0 → 0, we
observe such a sensitivity enhancement at arbitrarily weak probe-
sample coupling. In both cases ωc = 100 ω0 and h̄ = kB = ω0 = 1.

other hand, we say that the coupling is “strong” whenever it is
nonperturbative; that is, when γ /ω0 � 1. In this situation, the
probe will certainly end up in a nonequilibrium steady state
[41]. Thus going back to Fig. 1(b), we see that, provided that
T/ω0 � 1 and γ /ω0 � 1, FT increases monotonically with
the dissipation strength. Hence, the probe-sample coupling can
be thought of as a relevant control parameter in practical low-
temperature quantum thermometry. This is our main result.

It is worth stressing that even though, in the above, we have
resorted to an Ohmic spectral density with algebraic high-
frequency cutoff, the exact same qualitative behavior follows
from a spectral density with exponential cutoff Js(ω) :=
π
2 γωsω1−s

c e−ω/ωc and a tunable “Ohmicity” parameter s. In
particular, in Appendix D, we give full details on how to solve
the ubiquitous super-Ohmic case s > 1.

B. How to exploit strong dissipation in practice

Thus far, we have shown how strong coupling may
improve the ultimate bounds on thermometric precision
at low temperatures. However, we have not yet discussed
how to saturate those bounds in practice. We therefore
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FIG. 2. Log-log plot of the QFI FT (solid black on all panels),
thermal sensitivity of the energy of the probe FT (Hp) (dashed
black on the left-hand panels), and FT (x2) (dashed black on the
right-hand panels), for different values of the dissipation strength:
γ /ω0 = 5 × 10−3 (top), γ /ω0 = 5 × 10−2 (middle), and γ /ω0 =
0.5 (bottom). Note that the thermal sensitivity Hp is deterred as
the dissipation strength grows, while x2 becomes a quasioptimal
temperature estimator. As in Fig. 1, ωc = 100 and h̄ = kB = ω0 = 1.

need to find observables capable of producing temperature
estimates that approach closely the precision bound set by the
QFI.

In general, a temperature estimate based on M independent
measurements of some observable O on the steady state of
the probe has uncertainty δT � 1/

√
M FT (O), where FT (O)

stands for the “classical Fisher information” of O [32]. This
may be lower bounded by the “thermal sensitivity,”

FT (O) := |∂T 〈O〉|2
(O)2

� FT (O) � FT ≡ sup
O

FT (O) (17)

[31,46]. Here, O :=
√

〈O2〉 − 〈O〉2 denotes standard de-
viation on the stationary state of the probe. The observable
for which FT (O) is maximized (i.e., FT (O) = FT (O) =
FT ) commutes with the so-called “symmetric logarithmic
derivative” (SLD) L, which satisfies ∂T ρ = 1

2 (Lρ + ρL). For
instance, in the case of an equilibrium probe, i.e., ρT ∝
exp (−Hp/T ), one has [L,Hp] = 0. Consequently, a complete
projective measurement on the energy basis renders the best
temperature estimate. However, as shown in Fig. 2, when
the strength of the interaction with the sample increases,
energy measurements become less and less informative about
the temperature of the sample—the larger the dissipation
strength γ , the smaller FT (Hp)/FT . Estimates based on energy
measurements seem thus incapable of exploiting the extra
low-temperature sensitivity enabled by the strong dissipation.

In searching for a more suitable measurement scheme, one
can look at the SLD: Since ρT is an undisplaced Gaussian,

L will be a quadratic form of x2 and p2 [47]. Due to our
choice for the probe-sample coupling (x

∑
μ gμxμ), the steady

state ρT becomes squeezed in the position quadrature at
T/ω0 � 1 and γ /ω0 � 1 [41,48]. Interestingly, we observe
that 〈x2〉 is much more sensitive to temperature changes in
this regime than 〈p2〉. We thus take O = x2 as an ansatz
for a quasioptimal temperature estimator. FT (x2) is also
plotted in Fig. 2, where we can see how it does approach
closely the ultimate bound FT as γ grows (at T/ω0 � 1).
This numerical observation can be confirmed by taking the
low-temperature limit on the analytic stationary covariances
(see Appendix E 1 a).

Measuring the variance of the most relevant quadrature of a
Brownian thermometer is therefore a practical means to exploit
the thermometric advantage provided by strong dissipation at
low temperatures. Putting forward an experimental proposal to
demonstrate this dissipation-driven improvement is, however,
beyond the scope of this paper. It is worth mentioning that
quadratures of trapped particles are either directly measurable
[49] or accessible via state tomography [50,51], and that
systems such as an impurity in a BEC may admit a Caldeira-
Leggett description [48].

IV. DISCUSSION AND CONCLUSIONS

We shall now give an intuition about the origin of the
observed dissipation-driven enhancement. To that end, let
us consider not just the marginal of the probe but the
global state of probe and sample. For simplicity we can
model them as a finite N -mode “star system,” comprising
a central harmonic oscillator (playing the role of the probe),
linearly coupled to N − 1 independent peripheral oscillators
with arbitrary frequencies (representing the sample). Let us
further prepare the N -mode composite in a Gibbs state at
the sample temperature T . Indeed, when such system is at
thermal equilibrium, and provided that the number of modes
N is large enough, the marginal of the central oscillator
approximates well the actual steady state of the probe [17]
(cf. Appendix F).

As we show in Appendix F, the frequencies of the lower-
most normal modes of the global star system always decrease
monotonically as the overall magnitude of the coupling
strengths increases. If the temperature T was so low that not
even the first harmonic could get thermally populated, the
sensitivity of the entire system and, by extension, also that of
the central probe, would vanish. However, one could populate
the first few normal modes by strengthening the couplings, as
their frequencies would then decrease [cf. Fig. 1(b)]. It is this
effect which ultimately enables temperature sensing at low T .
The magnitude of the enhancement is dictated by the specific
frequency distribution of the probe-sample couplings which,
in turn, determines the spectrum of the normal modes of the
global system.

From the above reasoning it follows that the shape of
the spectral density J (ω) could, in principle, be tailored to
render more precise low-temperature probes. To see that this
is indeed the case, we shall adopt a generic spectral density
of the form Js(ω) := π

2 γωsω1−s
c e−ω/ωc . We can thus compare

the performance of a single-mode thermometer coupled to the
sample through an Ohmic (s = 1) and a super-Ohmic (s > 1)
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FIG. 3. Log-log plot of the QFI FT as a function of temperature
for Ohmic (solid) and super-Ohmic (dashed) spectral density Js(ω)
with exponential high-frequency cutoff (s = 1 and s = 2, respec-
tively). In the inset, both spectral densities are compared. Note that
the Ohmic form largely outperforms the super-Ohmic one at low
temperatures (γ /ω0 = 0.1, ωc = 100ω0, and h̄ = kB = ω0 = 1).

spectral density. Importantly, the dissipation kernel χ̃ (ω) needs
to be recalculated due to the change in spectral density [43] (see
Appendix D). Note as well that now ω2

R = γωc�(s), where
�(z) := ∫ ∞

0 dt tz−1e−t is Euler’s Gamma function. In Fig. 3
we can see how the Ohmic spectral density offers a clear
advantage over the super-Ohmic one at low temperatures.
This is in line with our qualitative argument explaining the
dissipation-driven enhancement in precision: A thermometer
coupled more strongly to the lower frequency modes of the
sample (i.e., the only ones substantially populated at low T )
should perform better.

As a final remark, we note that, since the equilibrium state of
the probe corresponds to the marginal of a global thermal state
[17], we can think of our results as an instance of thermometry
on a macroscopic sample through local measurements, as
studied in [28]. While local thermometry in translationally
invariant gapped systems is exponentially inefficient at low
temperatures [52], our exact results display a polynomial decay
FT ∼ T −2 as T → 0. Such an exponential advantage can be
related to the fact that the Caldeira-Leggett model maps into a
gapless harmonic chain [52]. This polynomial behavior holds
for both Ohmic and super-Ohmic spectra.

The aim of this study has been threefold: (i) We have shown
that the thermal sensitivity of a single-mode bosonic probe can
be boosted by increasing the strength of its dissipative coupling
to the sample under study, (ii) we have provided a concrete and
feasible measurement scheme capable of producing nearly
optimal temperature estimates in the relevant regime and,
finally, (iii) we have suggested that the spectral density of
the probe-sample coupling can be set to play an active role in
enhanced low-temperature quantum thermometry. It is worth
emphasizing that all our results are exact, irrespective of
the relative ordering of the various time scales involved in
the problem. In particular, observation (iii) calls for a more
in-depth analysis of the potential role of reservoir engineering
techniques [53,54] or even dynamical control [55] in enhanced
low-T quantum thermometry and will be the subject of further
investigation.
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APPENDIX A: SOME REMARKS ON
THE PROBE-SAMPLE COUPLING

Let us start by briefly commenting on the renormalization
of the frequency of the probe. Splitting the Hamiltonian
into a potential and a kinetic term H = U (x,xμ) + K(p,pμ),
one can see that effective potential felt by the probe is
given by U (x,x�

μ), where x�
μ = − gμx

mμω2
μ

(i.e., ∂xμ
U = 0 at

x�
μ). This is U (x,x�

μ) = 1
2 (ω2

0 − ω2
R)x2. As a result, the

high-temperature limit of the reduced steady state of the
probe obtained from the bare model H = Hp + Hs + Hp–s

is trs ρ ∝ exp ( − 1
2T

(ω2 − ω2
R)x2 − 1

2T
p2), which may differ

significantly from the corresponding thermal state ρT =
Z−1 exp (−Hp/T ) if the couplings gμ are strong. To correct
this, one must introduce the frequency shift ω2

R in Hp ad hoc.
On the other hand, the need to introduce the cutoff

frequency ωc, mentioned in the main text, is related to the fact
that even if very large (as compared to the probe), the sample is
finite and thus, it has a maximum energy. The nonequilibrium
steady state of the central oscillator will unavoidably depend
on the choice of ωc but, as long as ωc � ω0, this dependence
should be weak and not change its qualitative features [42]. In
particular, note that ω2

R := 2
π

∫ ∞
0 dω J (ω)

ω
= 2γωc.

APPENDIX B: FROM THE HEISENBERG
EQUATIONS TO THE QLE

We can write down the Heisenberg equations of motion
( d
dt

A(t) = i[H,A(t)] + ∂tA(t)) for all degrees of freedom
{x,p,xμ,pμ} of the total system H = Hp + Hs + Hp–s. These
read

ẋ = p, (B1a)

ṗ = −(
ω2

0 + ω2
R

)
x −

∑
μ

gμxμ, (B1b)

ẋμ = pμ

mμ

, (B1c)

ṗμ = −mμω2
μxμ − gμx. (B1d)

Differentiating Eq. (B1c) and inserting in it Eq. (B1d) yields
ẍμ + ω2

μxμ = − gμ

mμ
x, which results in

xμ(t) = xμ(t0) cos ωμ(t − t0) + pμ(t0)

mμωμ

sin ωμ(t − t0)

− gμ

mμωμ

∫ t

t0

ds sin ωμ(t − s) x(s). (B2)

Similarly, one can differentiate Eq. (B1a) and use
Eqs. (B1b) and (B2) to eliminate ṗ and xμ. This results in
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the following integro-differential equation:

ẍ + (
ω2

0 + ω2
R

)
x −

∫ t

t0

ds
∑

μ

g2
μ

mμωμ

sin ωμ(t − s) x(s) = −
∑

μ
gμ

(
xμ(t0) cos ωμ(t − t0) + pμ(t0)

mμωμ

sin ωμ(t − t0)

)
. (B3)

This is the quantum Langevin equation (QLE) for our probe. Since we are interested in the steady state of the central oscillator,
we may let t0 → −∞ without loss of generality. Defining the stochastic quantum force,

F (t) := −
∑

μ
gμ

(
xμ(t0) cos ωμ(t − t0) + pμ(t0)

mμωμ

sin ωμ(t − t0)

)
, (B4)

and the dissipation kernel,

χ (t) :=
∑

μ

g2
μ

mμωμ

sin ωμt �(t) = 2

π

∫ ∞

0
dωJ (ω) sin ωt�(t), (B5)

one may rewrite the QLE as

ẍ(t) + (
ω2

0 + ω2
R

)
x(t) − x(t) ∗ χ (t) = F (t), (B6)

where ∗ denotes convolution. Note that, so far, the initial state of the sample has not been specified and is thus completely general.
In Sec. C 1 below we shall adopt a thermal equilibrium preparation.

APPENDIX C: STEADY-STATE SOLUTION OF THE QLE

As explained in the main text, any Gaussian state (such as the steady state of the probe) is fully characterized by its first- and
second-order moments. In the case of a single-mode Gaussian state, these latter can be arranged in the 2 × 2 real and symmetric
covariance matrix σ . We therefore must be able to compute objects like 〈{x(t ′),x(t ′′)}〉, 〈{p(t ′),p(t ′′)}〉, and 〈{x(t ′),p(t ′′)}〉 from
Eq. (B6). Let us start by taking its Fourier transform, which gives

− ω2x̃ + (
ω2

0 + ω2
R

)
x̃ + x̃ χ̃ = F̃ ⇒ x̃(ω) = F̃ (ω)

ω2
0 + ω2

R − ω2 − χ̃ (ω)
:= α(ω)−1F̃ (ω). (C1)

Note that

1

2
〈{x(t ′),x(t ′′)}〉 = 1

2

∫ ∞

−∞

dω′

2π
e−iω′t ′

∫ ∞

−∞

dω′′

2π
e−iω′′t ′′ 〈{x̃(ω′),x̃(ω′′)}〉

= 1

2

∫ ∞

−∞

dω′

2π
e−iω′t ′

∫ ∞

−∞

dω′′

2π
e−iω′′t ′′ α(ω′)−1α(ω′′)−1〈{F̃ (ω′),F̃ (ω′′)}〉T . (C2)

Therefore, all that is left is to find the analytical expression of the power spectrum of the sample 2−1〈{F̃ (ω′),F̃ (ω′′)}〉T and of the
Fourier transform of the susceptibility χ̃ (ω), which appears in α(ω). Note that the Fourier transform of all first-order moments
will be proportional to 〈F̃ (ω)〉T which is identically zero [cf. Eq. (B4)]. Hence, the steady states of the central oscillator will be
undisplaced Gaussians. With the subscript in 〈· · · 〉T , we emphasize that the average is taken over the initial Gibbs state of the
sample.

1. The fluctuation-dissipation relation

Let us start by computing 1
2 〈{F̃ (ω′),F̃ (ω′′)}〉T = Re 〈F̃ (ω′)F̃ (ω′′)〉T from Eq. (B4). Taking into account that 〈xμ(t0)x ′

μ(t0)〉T =
δμμ′(2mμωμ)−1[1 + 2nμ(T )], 〈pμ(t0)p′

μ(t0)〉T = δμμ′ 1
2mμωμ[1 + 2nμ(T )], and 〈xμ(t0)pμ(t0)〉T = 〈pμ(t0)xμ(t0)〉∗T = i/2, one

has

1

2
〈{F̃ (t ′),F̃ (t ′′)}〉T = 1

π

∑
μ

πg2
μ

2mμωμ

[1 + 2nμ(T )][cos ωμ(t ′ − t0) cos ωμ(t ′′ − t0) + sin ωμ(t ′ − t0) sin ωμ(t ′′ − t0)]

= 1

π

∫ ∞

0
dω J (ω) coth

ω

2T
cos ω(t ′ − t ′′), (C3)

where we have used 2nμ(T ) + 1 = coth (ωμ/2T ), which follows from the definition of the bosonic
thermal occupation number nμ(T ) := [exp (ω/2T ) − 1]−1. Now, taking the Fourier transform of Eq. (C3)
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yields

1

2
〈{F̃ (ω′),F̃ (ω′′)}〉T = 2π

∫ ∞

−∞

dt ′

2π
eiω′t ′

∫ ∞

−∞

dt ′′

2π
eiω′′t ′′

∫ ∞

0
dω J (ω) coth

ω

2T
(eiω(t ′−t ′′) + e−iω(t ′−t ′′))

= 2π

∫ ∞

−∞

dt ′

2π

∫ ∞

−∞

dt ′′

2π

∫ ∞

0
dω J (ω) coth

ω

2π
(eit ′(ω+ω′)eit ′′(ω′′−ω) + eit ′(ω′−ω)eit ′′(ω′′+ω))

= 2π

∫ ∞

0
dω J (ω) coth

ω

2T
[δ(ω + ω′)δ(ω′′ − ω) + δ(ω′ − ω)δ(ω′′ + ω)]

= 2π δ(ω′ + ω′′) coth
ω′

2T
[J (ω′) �(ω′) − J (−ω′) �(−ω′)], (C4)

where we have used the identity
∫ ∞
−∞ dt eiωt = 2π δ(ω). On the other hand, we may find Im χ̃ (ω) from Eq. (B5). Note that

Im χ̃(ω) = Im
∑

μ

g2
μ

mμωμ

∫ ∞

−∞
dt eiωt �(t) sin ωμt =

∑
μ

g2
μ

mμωμ

∫ ∞

0
dt sin ωt sin ωμt

= −1

4

∑
μ

g2
μ

mμωμ

∫ ∞

0
dt [ei(ω+ωμ)t − ei(ω−ωμ)t − ei(−ω+ωμ)t + e−i(ω+ωμ)t ]

= −1

4

∑
μ

g2
μ

mμωμ

(∫ ∞

−∞
dt ei(ω+ωμ)t −

∫ ∞

−∞
dt ei(ω−ωμ)t

)

= π

2

∑
μ

g2
μ

mμωμ

[δ(ω − ωμ) − δ(ω + ωμ)] =
∫ ∞

0
dω′ J (ω′)[δ(ω − ω′) − δ(ω + ω′)]

= J (ω) �(ω) − J (−ω) �(−ω). (C5)

Hence the fluctuation-dissipation relation 〈{F̃ (ω′),F̃ (ω′′)}〉 = 4π δ(ω′ + ω′′) coth (ω′/2T ) Im χ̃(ω′). When it comes to its real
part, the calculation is not so straightforward. Recall from Eq. (B5) that the response function χ (t) is causal due to the
accompanying Heaviside step function. Causal response functions have analytic Fourier transform in the upper half of the
complex plane and therefore, the Kramers-Kronig relations hold [40]. In particular,

Re χ̃ (ω) = 1

π
P

∫ ∞

−∞
dω′ Im χ̃ (ω′)

ω′ − ω
:= H Im χ̃(ω), (C6)

where we have introduced the Hilbert transform g(y) = H f (x) := π−1 P
∫ ∞
−∞ dx f (x)/(x − y) [56], and P denotes Cauchy

principal value.

APPENDIX D: DISSIPATION KERNEL FOR OHMIC AND SUPER-OHMIC SPECTRAL
DENSITIES WITH EXPONENTIAL CUTOFF

We will now obtain Re χ̃ (ω) for two instances of the family of spectral densities Js(ω) := π
2 γωsω1−s

c e−ω/ωc , namely s = 1
(Ohmic case) and s = 2 (super-Ohmic case) [43]. To begin with, let us list four useful properties of the Hilbert transform that we
shall use in what follows:

f (−ax)
H�→ − g(−ay)a > 0, (D1a)

xf (x)
H�→ y g(y) + 1

π

∫ ∞

−∞
dx f (x), (D1b)

exp (−a|x|) H�→ 1

π
sgn y [ea|y| Ei(−a|y|) − e−a|y| Ei(a|y|)], a > 0, (D1c)

sgn x exp (−a|x|) H�→ − 1

π
[exp (a|y|) Ei(−a|y|) + exp (−a|y|) Ei(a|y|)], a > 0, (D1d)

where Ei(x) := − ∫ ∞
−x

dt t−1e−t is the exponential integral, and Ei(x) denotes its principal value.
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1. Ohmic case (s = 1)

According to Eqs. (C6) and (C5), one has

Re χ̃ (ω) = πγ

2
{H [�(ω′) ω′ exp (−ω′/ωc)](ω) − H [−�(−ω′) ω′ exp (ω′/ωc)](ω)}. (D2)

Using Eqs. (D1a) and (D1b), this rewrites as

Re χ̃ (ω) = πγ

2
{H [�(ω′) ω′ exp (−ω′/ωc)](ω) + H [�(ω′) ω′ exp (−ω′/ωc)](−ω)}

= πγ

2

{
ω H [�(ω′) exp (−ω′/ωc)](ω) − ω H [�(ω′) exp (−ω′/ωc)](−ω) + 2ωc

π

}
. (D3)

Now, using first Eq. (D1a) again, and then Eq. (D1c), one finds

Re χ̃(ω) = γωc + πγ

2
ω H [exp (−|ω′|/ωc)](ω) = γωc − γ

2
ω [exp (−ω/ωc) Ei(ω/ωc) − exp (ω/ωc) Ei(−ω/ωc)], (D4)

which can also be expressed in terms of the incomplete Euler’s Gamma function �(0,x) = −Ei(−x).

2. Super-Ohmic case (s = 2)

Using the properties of Eq. (D1) it is also straightforward to obtain Re χ̃(ω) in the case of s = 2:

Re χ̃(ω) = πγ

2ωc

{H [�(ω′) ω′2 exp (−ω′/ωc)](ω) − H [�(−ω′) ω′2 exp (ω′/ωc)](ω)}

= πγ

2ωc

{H [�(ω′) ω′2 exp (−ω′/ωc)](ω) + H [�(ω′) ω′2 exp (−ω′/ωc)](−ω)}

= πγ

2ωc

{
ω H [�(ω′) ω′ exp (−ω′/ωc)](ω) − ω H [�(ω′) ω′ exp (−ω′/ωc)](−ω) + 2ω2

c

π

}

= γωc + πγ

2ωc

{ω2 H [�(ω′) exp (−ω′/ωc)](ω) + ω2 H [�(ω′) exp (−ω′/ωc)](−ω)}

= γωc + πγ

2ωc

ω2 H [sgn ω exp (−|ω′|/ωc)](ω)

= γωc − γ

2ωc

ω2 [exp (−ω/ωc) Ei(ω/ωc) + exp (ω/ωc) Ei(−ω/ωc)]. (D5)

APPENDIX E: CALCULATION OF THE STEADY-STATE COVARIANCES

Now we have all the ingredients to compute the steady-state covariances of the central oscillator. Note that

1

2
〈{x(t ′),x(t ′′)}〉 = 1

2

∫ ∞

−∞

dω′

2π
e−iω′t ′

∫ ∞

−∞

dω′′

2π
e−iω′′t ′′α(ω′)−1α(ω′′)−1〈{F̃ (ω′),F̃ (ω′′)}〉T (E1)

=
∫ ∞

−∞

dω′

2π
e−iω′t ′

∫ ∞

−∞
dω′′ e−iω′′t ′′α(ω′)−1α(ω′′)−1[J (ω′)�(ω′) − J (−ω′)�(−ω′)] coth

ω′

2T
δ(ω′ + ω′′)

(E2)

=
∫ ∞

−∞

dω′

2π
e−iω′(t ′−t ′′)α(ω′)−1α(−ω′)−1[J (ω′)�(ω′) − J (−ω′)�(−ω′)] coth

ω′

2T
. (E3)

This gives a closed expression for the position-position covariance. Note that, since p̃(ω) = −iω x̃(ω), one has
2−1〈{p̃(ω′),x̃(ω′′)}〉 = 0 and

1

2
〈{p(t ′),p(t ′′)}〉 =

∫ ∞

−∞

dω′

2π
e−iω′(t ′−t ′′) ω′2 α(ω′)−1α(−ω′)−1[J (ω′)�(ω′) − J (−ω′)�(−ω′)] coth

ω′

2T
. (E4)

Therefore, we have fully characterized the steady state of a single harmonic oscillator in a bosonic bath. Note that the only
underlying assumption is that the sample was prepared in an equilibrium state at temperature T . Specifically, this was required
when evaluating the correlators 〈{xμ(t0),xμ(t0)}〉T and 〈{pμ(t0),pμ(t0)}〉T in Eq. (C3). Otherwise, our calculation is completely
general. For a nonequilibrium sample, one would only need to recalculate Eqs. (C3) and (C4).
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1. Explicit calculation for Ohmic spectral density with Lorentz-Drude cutoff

The integrals in Eqs. (E3) and (E4) are easy to evaluate numerically. However, when dealing with the simple Ohmic spectral
density with Lorentz-Drude cutoff introduced in the main text as J (ω) = 2γω2

cω/(ω2 + ω2
c ), it is possible to calculate the

covariances analytically. This will allow us to get some insight into the temperature dependence of the covariances at very low
T and about the squeezing in the position quadrature described in the main text.

Let us start calculating 〈x2〉. For our choice of spectral density Eq. (E3) reads

〈x2〉 = γω2
c

π

∫ ∞

∞
dω

ω
ω2+ω2

c
coth ω

2T(
ω2

0 − ω2 + 2γωc − 2γω2
c

ωc−iω

)(
ω2

0 − ω2 + 2γωc − 2γω2
c

ωc+iω

) , (E5)

which can be rewritten as

〈x2〉 = 2T γω2
c

π

( ∞∑
n=1

∫ ∞

−∞
dω

ω2

h4(ω)h4(−ω)
+

∫ ∞

−∞

dω

h3(ω)h3(−ω)

)
, (E6)

where h4(ω) := (ω − iνn)[(ω2
0 − ω2 + 2γωc)(ωc + iω) − 2γω2

c ], h3(ω) = (ω2
0 − ω2 + 2γωc)(ωc + iω) − 2γω2

c , and owing to
the identity coth ω

2T
= 2

∑∞
n=1

2T ω
ν2
n+ω2 + 2T

ω
, where νn := 2πT n are the Matsubara frequencies.

Integrals such as those in Eq. (E6) can be evaluated using the following formula [57]:∫ ∞

−∞
dx

gn(x)

hn(x)hn(−x)
= iπ

a0

det Mn

det n

, (E7)

where gn(x) := b0x
2n−2 + b1x

2n−4 + · · · + bn−1 and hn(x) := a0x
n + a1x

n−1 + · · · + an and the matrices n and Mn are defined
as

n :=

⎛
⎜⎜⎜⎜⎝

a1 a3 · · · 0
a0 a2 · · · 0
0 a1 · · · 0
...

...
. . .

...
0 0 · · · an

⎞
⎟⎟⎟⎟⎠, Mn :=

⎛
⎜⎜⎜⎜⎝

b0 b1 · · · bn−1

a0 a2 · · · 0
0 a1 · · · 0
...

...
. . .

...
0 0 · · · an

⎞
⎟⎟⎟⎟⎠. (E8)

For (E7) to be valid, hn(x) must have all its roots in the upper half of the complex plane, which is the case for us. The covariance
〈x2〉 thus rewrites as

〈x2〉 = 2
∞∑

n=1

T (νn + ωc)

νn

(
ν2

n + ω2
0

) + (
ν2

n + 2γ νn + ω2
0

)
ωc

+ 1

2ω2
0

. (E9)

To proceed further, we shall resort to the digamma function ψ(z), defined as the logarithmic derivative of Euler’s gamma
function [58]; that is, ψ(z) := d

dz
ln �(z), where �(z) := ∫ ∞

0 dt tz−1e−t . The digamma function satisfies the following identity
[58]:

∞∑
n=1

G(n)

H (n)
=

∞∑
n=0

G(n + 1)

H (n + 1)
=

∞∑
n=0

N∑
m=1

cm

n − dm

= −
N∑

m=1

cmψ(−dm), (E10)

where G(n) and H (n) are polynomials in n, dm are the N roots (assumed to be simple) of H (n + 1), and cm are the coefficients
of the simple-fraction decomposition of G(n + 1)/H (n + 1) (

∑N
m=1 cm = 0). In our specific case, the cm evaluate to

cm = 1

2π

ν1(dm + 1) + ωc

ω2
0 + 2γωc + ν1(dm + 1) + ν1(dm + 1)[3ν1(dm + 1) + 2ωc]

, (E11)

and the dm are the three solutions to

ν3
1 (d + 1)3 + ν2

1 (d + 1)2ωc + ν1(d + 1)
(
ω2

0 + 2γωc

) + ω2
0ωc = 0. (E12)

Therefore, the covariance 〈x2〉 is

〈x2〉 = 1

2ω2
0

− 2
3∑

m=1

cmψ(−dm). (E13)

Similarly, the momentum covariance can be found to be

〈p2〉 = 1

2
− 2

3∑
m=1

c′
mψm(−dm), (E14)
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where the coefficients c′
m are now given by

c′
m = ν1

π

ω2
0ωc + ν1(dm + 1)

(
ω2

0 + 2γωc

)
ω2

0 + 2γωc + ν1(dm + 1)[3ν1(dm + 1) + 2ωc]
. (E15)

It must be noted that Eqs. (E13) and (E14) are exact, though not very informative. In the next section we will try to simplify
their expressions by taking the low-temperature limit.

a. Low T and large ωc limit

Let us consider again Eq. (E12). To begin with, let us assume that γ /ωc ≪ 1 so that dm � d (0)
m + γ

ωc
d (1)

m . One thus has

d1,2 = −
(

1 + γω2
c

ν1
(
ω2

0 + ω2
c

)
)

± i
ω0

ν1

ω2
0 + ωc(γ + ωc)

ω2
0 + ω2

c

+ O

(
γ

ωc

)2

,

d3 = −
(

1 + ωc

ν1

)
+ 2γω2

c

ν1
(
ω2

0 + ω2
c

) + O

(
γ

ωc

)2

. (E16)

Notice that the roots diverge as T → 0 due to the ν1 appearing in the denominators. It is thus possible to replace the digamma
by the first term in its asymptotic expansion ψ(z) ∼ ln z.

Equations (E13) and (E14) can be further simplified by retaining terms only up to first order in ω0/ωc and T/ω0. When
expanding the expressions above, care must be taken with the divergence of terms proportional to ln ωc

ω0
. One eventually arrives

at the following approximate covariances:

〈x2〉 � 1

2ω0
− 1

2ω0

(
2γ

πω0
+ 2T

ω0
+ 4γω0

πω2
c

ln
ωc

ω0

)
, (E17a)

〈p2〉 � ω0

2
+ ω0

2

[
4γ

πω0
ln

ωc

ω0
+ 3γ

ωc

−
(

2T

ω0
+ 2γ

πω0

)]
. (E17b)

From Eq. (E17a) we can see how the variance in the position quadrature is reduced below its thermal equilibrium value of
〈x2〉T = (2ω0)−1 coth ω0

2T
∼ (2ω0)−1, as noted in the main text. On the other hand, the “quantum correction” over 〈p2〉T [i.e.,

the bracketed term in Eq. (E17b)] is dominated by the nonperturbative logarithmic divergence, and will therefore be positive.
In particular, for strong dissipation, i.e., γ /ω0 � 1, 〈p2〉 � 〈p2〉T + 2γ

π
ln ωc

ω0
and hence ∂T 〈p2〉 � 0. On the contrary, there is no

reason to drop the temperature dependence of 〈x2〉 in the strong dissipation regime. This intuitively justifies our observation that
the dispersion in the position quadrature exhibits a quasioptimal thermal sensitivity in the ultracold strongly coupled regime,
while the dispersion in momentum performs very poorly as a temperature estimator.

Unfortunately, Eq. (E17) are unsuitable to derive a qualitatively accurate and equally simple analytical expression for the
low-temperature QFI. One should proceed instead directly from Eqs. (E13) and (E14) and expand the resulting expression again
to first order in the small parameters γ /ωc, ω0/ωc, and T/ω0. Although this is in principle straightforward, the algebra quickly
becomes unmanageable.

APPENDIX F: DEPENDENCE OF THE NORMAL-MODE FREQUENCIES ON
THE COUPLING STRENGTH IN A “STAR SYSTEM”

Let us consider a finite star system with N modes. As already explained in the main text, this will comprise a central harmonic
oscillator of bare frequency ω0 (playing the role of the probe), dissipatively coupled to N − 1 independent peripheral oscillators
with arbitrary frequencies ωμ∈{1,··· ,N−1} (representing the sample). We will choose linear probe-sample couplings of the form
x G

∑N−1
μ=1 gμxμ. Therefore, adjusting G simply amounts to rescaling the probe-sample interaction without changing the overall

frequency distribution of the couplings. This is exactly what happens when the dissipation strength γ is tuned in the spectral
density J (ω) of the continuous Caldeira-Leggett model from the main text. Note that we also allow for an arbitrary frequency
distribution of the coupling constants gμ.

Hence, the total N -particle Hamiltonian may be written as Ĥ = 1
2 x̄ tVx̄ + 1

2 |p̄|2. Here, the N -dimensional vectors x̄ and p̄ are
x̄ = (x,x1, . . . ,xN−1) and p̄ = (p,p1, . . . ,pN−1). For simplicity, we will take unit mass for all particles. The N × N interaction
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matrix V may thus be written as

V = G

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

G−1�2
0 g1 g2 · · · gN−2 gN−1

g1 G−1ω2
1 0 · · · 0 0

g2 0 ω2
2 · · · 0 0

...
...

...
. . .

...
...

gN−2 0 0 · · · G−1ω2
N−2 0

gN−1 0 0 · · · 0 G−1ω2
N−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (F1)

The frequencies of the normal modes of the system are given by the square root of the N solutions λi of PN (λi) = |V − λi1| = 0.
Note that we have shifted the frequency of the central oscillator ω2

0 → �2
0 := ω2

0 + ∑
μ g2

μ/ω2
μ to ensure that all λi > 0.

While it is hard to obtain closed expressions for λi , one may easily see the following: The frequencies of the modes above
�0 increase with the coupling strength, whereas those of the modes below �0 decrease with G (i.e., ∂Gλi > 0 for λi > �2

0 and
∂Gλi < 0 for λi < �2

0). Indeed, expanding PN (λ) by minors along the last row, yields the recurrence relation,

PN (λ) = (
ω2

N−1 − λ
)
PN−1(λ) − G2 g2

N−1�
N−2
k=1

(
ω2

k − λ
)
, (F2)

which allows one to rewrite the condition PN (λi) = 0 as

�2
0 − λi = 1∏N−1

l=1 ω2
l − λi

N−1∑
k=1

G2g2
k

N−1∏
l=1

ω2
l − λi

ω2
k − λi

=
N−1∑
k=1

G2g2
k

ω2
k − λi

. (F3)

Consequently, the derivative of any eigenvalue λi with respect to the coupling strength G evaluates to

∂Gλi = − 2G
∑N−1

k=1 g2
k

(
ω2

k − λi

)−1

1 + ∑N−1
k=1 G2g2

k

(
ω2

k − λi

)−2 . (F4)

Comparing Eqs. (F3) and (F4) we can see that ∂Gλi > 0 for λi > �2
0, and that, on the contrary, ∂Gλi < 0 for λi < �2

0.
Now consider the situation in which the star system is prepared in a Gibbs state at temperature T . Paraphrasing the line of

reasoning of the main text, if T happens to be so low that not even the fundamental mode is significantly populated, the thermal
sensitivity of the entire system, and also that of the central temperature probe, vanishes. However, if we were to increase the
coupling strength G, the frequencies of the lowest normal modes would decrease monotonically. As a result, the first few modes
could get thermally populated thus enabling temperature sensing.

This intuition can be made more precise by explicitly writing the total QFI of the star system F (star)
T . Its global thermal state

can be expressed as ρT ∝ exp (−H/T ) = ⊗N
i=1 ρ

(i)
T , where ρ

(i)
T stands for the Gibbs state of the normal mode at frequency

√
λi .

Since the QFI is additive with respect to tensor products, one has F (star)
T = ∑N

i=1 F
(eq)
T (

√
λi), where the QFI for temperature

estimation in a thermal mode F (eq)
T was defined in the main text.

If the temperature T is low enough, only the terms corresponding to the lowest-frequency normal modes will contribute
significantly to the sum in F (star)

T . Crucially, F (eq)
T (ω) also increases monotonically as ω → 0 which, in turn, entails a monotonic

increase of F (star)
T with G at low T . If, on the contrary, the temperature were large enough to thermally populate modes above

�0, the situation would become less clear: The global QFI could either increase or decrease with G. Due to its central position,
the QFI of the reduced state of the probe qualitatively follows F (star)

T (although FT � F (star)
T ).
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