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Measuring the temperature of cold many-body quantum systems
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Precise low-temperature thermometry is a key requirement for virtually any quantum technological application.
Unfortunately, as the temperature T decreases, the errors in its estimation diverge very quickly. In this paper,
we determine exactly how quickly this may be. We rigorously prove that the “conventional wisdom” of low-T
thermometry being exponentially inefficient is limited to local thermometry on translationally invariant systems
with short-range interactions, featuring a nonzero gap above the ground state. This result applies very generally
to spin and harmonic lattices. On the other hand, we show that a power-law-like scaling is the hallmark of local
thermometry on gapless systems. Focusing on thermometry on one node of a harmonic lattice, we obtain valuable
physical insight into the switching between the two types of scaling. In particular, we map the problem to an
equivalent setup, consisting of a Brownian thermometer coupled to an equilibrium reservoir. This mapping allows
us to prove that, surprisingly, the relative error of local thermometry on gapless harmonic lattices does not diverge
as T → 0; rather, it saturates to a constant. As a useful by-product, we prove that the low-T sensitivity of a
harmonic probe arbitrarily strongly coupled to a bosonic reservoir by means of a generic Ohmic interaction,
always scales as T 2 for T → 0. Our results thus identify the energy gap between the ground and first excited
states of the global system as the key parameter in local thermometry, and ultimately provide clues to devising
practical thermometric strategies deep in the ultracold regime.
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I. INTRODUCTION

Submicron thermometry has developed into an experimen-
tally mature discipline, thus enabling high-resolution tempera-
ture measurements with nanometer-sized probes [1], and even
individual quantum thermometers [2,3]. Although measuring
low temperatures with high precision is notoriously hard [4–8],
the quest to produce accurate quantum thermometers fit for use
in the ultracold regime is strongly driven by their potential
applications in, e.g., quantum information processing [9].
Understanding the origin of the severe fundamental limita-
tions that hinder precise low-temperature thermometry is thus
essential for future technological developments.

The temperature T of an equilibrium quantum system can
be accurately calculated from a large collection of energy
measurements. Indeed, knowing its spectrum and assuming
that the populations in the energy basis follow a Boltzmann
distribution allows to build a maximum likelihood estimator
for T [10]. As it turns out, such strategy is optimal, in the
sense that it achieves the smallest possible mean-squared
error on the estimated temperature [5,11,12]. Indeed, energy
measurements allow to saturate the quantum Cramér-Rao
inequality (δT )2 � 1/(MFT ) [13] for temperature estimation
on any equilibrium system. In other words, the inverse of the
mean-squared error of the final estimate (normalized by the
length M of data set of measurement outcomes) converges
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to the so-called quantum Fisher information (QFI) FT
M→∞=

(δT )−2/M , which is, in our case, a quantifier of “thermal
sensitivity.”

In turn, the QFI relates to the heat capacity
C(T ) := d〈H 〉/dT of the equilibrium system, as
FT = C(T )/T 2 [5,14]. Here, H is the system Hamiltonian,
〈. . . 〉 denotes thermal averaging, and we have adopted units
in which h̄ = kB = 1. Very generally, the heat capacity
of a finite-size quantum system at equilibrium decays
exponentially fast to zero [15] in the limit T → 0, i.e.,
C(T ) ∼ O(e−�/T ), where � stands for the energy gap
between ground and first excited states. Hence, thermometry
on a finite equilibrium quantum system becomes exponentially
inefficient at low temperatures [5,16].

As the system scales up in size, its heat capacity and,
hence, also its thermal sensitivity, grows extensively (see
Appendix A). However, benefiting from size scaling would
require making generally unfeasible global multiparticle mea-
surements, while strongly perturbing the system. Although
thermometrically useful nondemolition global measurements
can sometimes be implemented [6,17–19], these schemes
rely on measurements of additive quantities and thus cannot
be optimal for strongly interacting systems. This motivates
the development of minimally invasive “local” thermometric
strategies, aimed at inferring the global temperature from mea-
surements on an accessible small fraction of the system [7,20].

The marginal state of the accessible part may deviate signifi-
cantly from thermal equilibrium when it interacts strongly with
the rest of the system. This is due to the large correlations built
up between the two, especially at low temperatures. As a result,
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the internal interaction strength may be used to achieve some
quantitative improvement over the local equilibrium situation.
Nonetheless, whenever the global system is gapped, transla-
tionally invariant, short-range interacting, and noncritical, the
exponential scaling at low temperatures is inescapable, as we
will prove in Sec. II A.

Alternatively, one may adopt an open-system perspective
to gain additional insight into the problem of local ther-
mometry [16] since the dissipative dynamics of an individual
quantum probe coupled to an initially thermal and large
sample converges to a global equilibrium state [21]. In this
sense, “probe” and “sample” match the “accessible” and
“inaccessible” parts of the many-body system in the setting
outlined above. In particular, linear open quantum systems are
especially interesting, as the reduced steady state of the probe
can be found exactly [21,22].

Following this approach, we have been able to establish in
Ref. [16] that FT ∼ T 2 in the limit T → 0, for the simplest
model of Brownian motion, i.e., a single harmonic thermome-
ter coupled to an initially thermal bosonic reservoir [23–25].
Our results followed from the exact analytical steady-state
solution, and indicated that such power-law-like scaling holds
for various instances of Ohmic and super-Ohmic spectral
densities. In Sec. II B and Appendix C, we will rigorously
prove that a power-law-like scaling is indeed a signature of
the ubiquitous Ohmic dissipation scheme: on probes with finite
bare trapping frequency ω0 > 0 we find a quadratic asymptotic
scaling FT ∼ T 2, while the diverging behavior FT ∼ 1/T 2 is
indicative of thermometers for which ω0 → 0.

This exact result seems to be in stark contradiction with
the discussion above: How can a (tiny) subsystem display a
power-law-like thermal sensitivity if global thermometry on
the whole should be exponentially inefficient? The answer is
that this model is gapless, and hence fundamentally different
from gapped systems. Namely, gapless systems are necessarily
infinite, i.e., large enough to justify taking the thermodynamic
limit. In addition, they do not have a parameter akin to the
spectral gap �, that would set an energy scale.

In order to gain physical insight, we turn to quantum har-
monic systems. Specifically, we will consider one-dimensional
(1D) translationally invariant harmonic chains (TIHCs) with
linear (but not necessarily short-range) interactions, prepared
in thermal equilibrium. It is easy to verify that local ther-
mometry, on a single node of a gapped instance of the chain,
is exponentially inefficient, while power-law-like behavior
shows up when a vanishing gap is enforced. We then try to
look at such TIHCs from an open-system perspective: We
diagonalize the inaccessible part so as to bring the problem into
an equivalent open-system-like “star” configuration, where
the probe is surrounded by noninteracting peripheral sample
modes.

Crucially, we find that gapped chains map into open systems
with unusual spectral densities, where the low-frequency
sample modes appear decoupled from the probe. On the other
hand, gapless chains give rise to standard Ohmic spectral
densities. Hence, a gapless TIHC maps into the paradigmatic
Caldeira-Leggett model (CLM) [23] in the thermodynamic
limit. Conversely, we show that thermometry on the CLM
is equivalent to local temperature measurements on a gapless
TIHC. Quite intuitively, this open-system viewpoint indicates

that the ability of the probe to detect near-ground-state tem-
perature fluctuations critically depends on whether or not it
is effectively coupled to the lowermost normal modes of the
sample, which, in turn, are the only ones that may be thermally
populated at very low T [7,16].

Our findings imply that engineering the probe-sample
coupling to guarantee a good thermal contact with the low-
frequency modes is the key to precise low-temperature quan-
tum thermometry. In this sense, reservoir engineering and
dynamical control [26] could come to play a major role in
practical technological applications.

II. RESULTS

A. Exponential inefficiency of local quantum thermometry in
gapped lattice systems

Here, we shall consider the problem of local thermometry on
an equilibrium lattice of identical harmonic oscillators or spins
at temperature T . To be precise, we will look at arbitrarily large
translationally invariant gapped lattices featuring arbitrarily
strong but finite-range interactions. We are interested in the
low-temperature regime, therefore, even if the parameters of
the Hamiltonian are such that the lattice undergoes a (classical)
second-order phase transition at some nonzero temperature
Tcrit, we consider only T �= Tcrit. This does not limit the
generality of our low-temperature results as they clearly apply
for all T < Tcrit.

Our task will be to infer the global temperature T from
local observations on the (nonequilibrium) marginal state of
a finite-size subsystem S. Two conflicting factors are at play
here: On the minus side, the temperatures are low and S is
of finite size, which makes us expect exponentially inefficient
thermometry. However, S is strongly correlated with the rest
of the lattice which, due to its size, has an overall large
heat capacity. We will show that the first factor nevertheless
prevails and the local thermal sensitivity decays exponentially,
namely as

FT � O(1)e−β� (for β� � 1), (1)

where the QFI FT is adopted as the figure of merit and β :=
1/T . The QFI can be formally defined as

FT = −2 lim
δ→0

∂2F(ρT ,ρT +δ)

∂δ2
, (2)

where ρθ denotes the marginal of S when the global lattice
is at temperature θ and F(ρ,σ ) := (tr

√√
ρσ

√
ρ)2 is the

Uhlmann fidelity [27] between states ρ and σ . Note how,
already from its definition, it is intuitively clear that FT gauges
the responsiveness of the probe to small fluctuations in the
sample temperature. For convenience, we shall cast FT in the
equivalent form (cf. Appendix B)

FT = 4 lim
δ→0

1 − F(ρT ,ρT +δ)

δ2
, (3)

so that F(ρT ,ρT +δ) = 1 − 1
4FT δ2 + O(δ3) and, hence, the Bu-

res distance d2
B(ρT ,ρT +δ) := 2(1 − √

F(ρT ,ρT +δ)) becomes

d2
B(ρT ,ρT +δ) = 1

4FT δ2 + O(δ3). (4)
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FIG. 1. Schematic diagram of a 2D translationally invariant lat-
tice. The system S and the boundary B (of length L) appear depicted
in orange and red, respectively. Although not shown, the nodes (gray
dots) of the lattice are are connected by short-ranged interactions. It
is also assumed that the many-body system is away from criticality.

In what follows, we will use general arguments on locality of
temperature [28–30] to bound the left-hand side of Eq. (4) from
above and, thus, extract the low-T scaling of FT .

Let us denote the number of sites, i.e., the “size” of the
system, by LS and introduce a boundary region around it, of
size L (see Fig. 1). Also, let τT (LS + L) be a thermal state at
temperature T defined from the local Hamiltonian of “system
+ boundary” and ρT (L) := trB τ (LS + L), the reduction of

τT (LS + L) within S. By definition, one thus has ρT (L)
L→∞=

ρT . From the triangle inequality, it follows that

dB(ρT ,ρT +δ) � dB(ρT (L),ρT +δ(L)) + dB(ρT ,ρT (L))

+dB(ρT +δ,ρT +δ(L)). (5)

We can now use the data-processing inequality for the Bures
distance [31] to bound the first term of the right-hand side
as dB(ρT (L),ρT +δ(L)) � dB(τT (LS + L),τT +δ(LS + L)). Ac-
cording to Eq. (4), the latter can be cast as 1

2

√
FT (LS + L)δ +

O(δ2) and, since τT (LS + L) is a thermal state, we may
additionally exploit the relation FT (LS + L) = CS+B(T )/T 2,
where CS+B(T ) is the heat capacity of the “system + bound-
ary” composite. Hence, we finally arrive at

dB(ρT ,ρT +δ) �
√

CS+B (T )

2T
δ + dB(ρT ,ρT (L))

+ dB (ρT +δ,ρT +δ(L)) + O(δ2). (6)

Focusing now on the locally finite case (i.e., each node has a
finite-dimensional Hilbert state space) and, given that we work
with finite-range interacting systems away from criticality, we
may approximate ρT = ρT (∞) by ρT (L) for finite but large
boundary [28–30]. It has been shown in Ref. [30] that, for
such systems in 1D,

F(ρT (L),ρT ) = 1 − O(1)e−L/ξ (T ), (7)

where ξ (T ) is a monotonic function of the correlation length of
the infinite chain, and, since the system is away from criticality,
ξ (T ) is also a regular function of T , even when T → 0. In terms

of Bures distance, we can thus write

dB(ρT (L),ρT ) = O(1)e− L
2ξ (T ) . (8)

Let us define ξ := max{ξ (T ),ξ (T + δ)}, so that Eq. (6) can be
cast as

dB(ρT ,ρT +δ) �
√

CS+B(T )

2T
δ + O(1)e− L

2ξ + O(δ2). (9)

In Appendix A, we argue that the heat capacity of gapped
locally finite translationally invariant lattices with nearest-
neighbor interactions, and that of harmonic, translationally
invariant, and not necessarily short-range interacting N -body
systems, scales as

CS+B(T ) = O(Ne−β�), (10)

which leads us to

dB(ρT ,ρT +δ) �O(1)
[√

LS + Le− β�

2 δ + e
− L

2ξ + δ2
]
. (11)

Furthermore, in Appendix A, the scaling in Eq. (10) is illus-
trated in the quantum Ising model.

Since we are interested in the low-temperature regime, we
shall take the limit β� → ∞. Therefore, we must ensure that
δ is much smaller than T (so that our Taylor expansions above
make sense). Let us thus choose δ = �e−β�, which, as needed,
satisfies δ/T = (β�)e−β� 
 1. Furthermore, let L = 4ξβ�

[so that L � 1, as it was necessary for Eq. (8)]. Substituting
these into (11), we arrive at

dB(ρT ,ρT +δ) � O(1)
(
e− 3

2 β� + δ2
) = O(1)e− 3

2 β�, (12)

which, due to Eq. (4), leaves us with Eq. (1). We have thus
shown that, very generally, local thermometry is exponentially
inefficient at low temperatures in arbitrarily strongly but finite-
range interacting lattices. This is one of our main results.
We note that the proof can be readily extended to the cases
when the interaction is not strictly of finite range but decays
exponentially at large distances.

Although our proof is rigorous only in 1D, we expect Eq. (1)
to be widely applicable also in higher dimensions. Indeed,
except for Eq. (7), all the steps in the proof hold in any spatial
dimension. When it comes to Eq. (7), it should generically
apply to lattices with locally finite-dimensional Hilbert spaces,
that are away from criticality, irrespective of spatial dimen-
sion [29]. Furthermore, results about approximating ρT (∞)
with ρT (L) [32], about the relation between the spectral gap
and exponential decay of correlations in generic harmonic
lattices [33], and our Appendix A, strongly suggest that Eq. (1)
should also be applicable in generic harmonic lattice systems
in any dimension.

B. Power-law-like sensitivity of a Brownian thermometer
coupled to a sample through an Ohmic interaction

In this section, we will consider the low-temperature scal-
ing of the sensitivity of a Brownian quantum particle. To
that end, we shall adopt the quintessential Caldeira-Leggett
model [22,23], consisting of a quantum harmonic thermometer
of bare frequency ω0, linearly coupled to a bosonic reser-
voir (playing the role of the “sample”) through an Ohmic
interaction scheme. The sample will be initially prepared in
thermal equilibrium at some unknown temperature T (to be
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measured). The probe, on the other hand, may be initialized
in an arbitrary state, so long as it starts uncorrelated from the
sample. The dissipative dynamics following from the thermal
contact between probe and sample will bring the composite to
a global equilibrium state [21] at temperature T .

The Caldeira-Leggett Hamiltonian HCL reads as

HCL = p2
0

2
+ 1

2

(
ω2

0 + ω2
R

)q2
0

2
+ q0

∑
μ

gμqμ

+
∑

μ

(
p2

μ

2
+ q2

μω2
μ

2

)
, (13)

where (q0,p0) are the position and momentum quadratures
of the probe, (qμ,pμ) are those of mode ωμ in the sample,
and the gμ stand for the probe-sample coupling strengths.
The term ω2

R := ∑
μ g2

μ/ω2
μ needs to be added “by hand”

in order to ensure that HCL is positive definite. One neat
way to understand the role of ωR is to write the effective
potential “felt” by the Brownian particle [22]. Notice that
the choice qμ = qμ,min := −q0gμ/ω2

μ minimizes the poten-
tial energy contribution to Eq. (13), V (q0,{qμ}); that is,
∂qμ

V (q0,{qμ})|qμ=qμ, min = 0. Hence, the effective potential for
the particle Veff(q0) = V (q0,{qμ, min}) writes as

Veff(q0) = 1

2
q2

0

(
ω2

0 + ω2
R −

∑
μ

g2
μ

ω2
μ

)
. (14)

We thus see that the frequency renormalization exactly cancels
the distortion on the potential of the particle due to its
interaction with the sample. In particular, no matter how strong
the probe-sample coupling might be, Veff (q0) would never
become inverted. As a result, in order to model the situation
ω0 = 0, what needs to be coupled to the sample is a Brownian
particle trapped at frequency ωR > 0 (cf. Appendix C 3).

Since the CLM Hamiltonian HCL is quadratic, the steady
state of the probe will be Gaussian and, thus, completely
described by its covariances [σT ]ij := 1

2 〈{Ri,Rj }+〉, where
�RT = (q0,p0) and {·,·}+ denotes anticommutator. Note that

the first moments vanish (i.e., 〈q0〉 = 〈p0〉 = 0).
The central quantity describing the probe-sample interac-

tion is the spectral density

J (ω) = π
∑

μ

g2
μ

ωμ

δ(ω − ωμ). (15)

Some popular profiles for J (ω) are the Ohmic spectrum
with Lorentz-Drude cutoff, i.e., J (ω) = 2γωω2

c/(ω2 + ω2
c ),

which makes it particularly easy to obtain explicit analytical
formulas for the steady state of the probe [16,34] or the case
of variable “Ohmicity” s and exponential cutoff [35], i.e.,
Js(ω) = γπ

2 (ωs/ωs−1
c )e−ω/ωc . Whenever s > 1 we talk about

super-Ohmic spectra, whereas the choice s < 1 corresponds to
the sub-Ohmic case. The most general Ohmic spectral density
(s = 1) should be of the form

J (ω) = γωf (ω/ωc), (16)

where γ is the so-called dissipation rate and f (x) > 0 is a
dimensionless function that starts to decay rapidly to 0 as soon
as x > 1, and that is smooth around x = 0, with f (0) = 1. The

cutoff ωc places a cap on the frequency of the modes from the
(infinite) sample that are effectively coupled to the probe.

Remarkably, general closed-form analytical expressions
can be derived for the steady-state covariance matrix [22]

[σT ]11 = 1

π

∫ ∞

0
dω

J (ω)

|α(ω)|2 coth
ω

2T
, (17a)

[σT ]22 = 1

π

∫ ∞

0
dω

ω2J (ω)

|α(ω)|2 coth
ω

2T
, (17b)

while [σT ]12 = [σT ]21 = 0. The susceptibility α(ω) is

α(ω) := ω2
0 + ω2

R − ω2 − χ (ω) − iJ (ω), (18)

where χ (ω) := 1
π

P
∫ ∞
−∞ dω′ J (ω′)

ω′−ω
is the Hilbert transform [36]

of the spectral density, extended as an odd function for negative
frequencies, i.e., J (ω) 
→ J (ω)�(ω) − J (−ω)�(−ω). Here,
�(ω) is the Heaviside step function, and P denotes the Cauchy
principal value of the integral.

Using the definition of FT in Eq. (2) in combination with
the formula for the Uhlmann fidelity between two single-mode
Gaussian states in terms of their 2 × 2 covariance matrices σ

and σ ′ [37]:

F(σ,σ ′) = 2√
� + � − √

�
, with

� := (4 det σ − 1)(4 det σ ′ − 1),

� := 4 det(σ + σ ′), (19)

and Eqs. (17a) and (18), we can rigorously prove the following
asymptotic behaviors for the QFI under the generic Ohmic
spectral density of Eq. (16):

F(T ) ∼ T 2 for ω0 > 0 and T 
 ω0, (20a)

F(T ) ∼ 1/T 2 for ω0 = 0 and T 
 ωc. (20b)

This is our second main result. While all details are deferred to
Appendix C, here we illustrate Eqs. (20) in Fig. 2. Note that, in
contrast with the results for gapped lattices, the low-T scaling
of FT is not exponential, but power-law-like. As already
advanced, the scaling (20a) had been established by us for
exponential and Lorentzian cutoff functions [16]. Interestingly,
the same T 2 scaling was recently reported also in a gapless
fermionic tight-binding chain in 1D [38].

Note as well that the best-case relative error δT
T

∼ 1
T

√
MFT

diverges [16] as T → 0 in the case of a Brownian thermometer
with ω0 > 0. However, in Fig. 2(b) we see that it may be kept
constant over a wide range of arbitrarily low temperatures,
by choosing ω0 → 0. The idea of “freezing” δT

T
by means

of reducing the energy gap of the probe alongside the tem-
perature is intuitive when thinking of fully thermalized finite-
dimensional systems [8]. However, such direct temperature-
dependent tuning seems very artificial.

Luckily, however, the sensitivity of a probe with a finite and
fixed energy gap may be substantially increased at arbitrarily
low temperatures by driving it periodically [26]. This would
open dissipative decay channels at frequencies corresponding
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FIG. 2. (a) Log-log plog of the QFI as a function of the inverse
temperature β = 1/T (open circles) for a probe with bare frequency
ω0 > 0. The low-temperature asymptotic behavior FT ∼ T 2 appears
superimposed in red. (b) Same as in (a) but for a free probe (ω0 →
0). In this case, the low-T scaling is FT ∼ 1/T 2 (red). In (a) ω0 =
1, while in (b), ω0 = 10−3. (Inset) Best-case relative error δT /T =
1/T

√
MFT for M = 1 as a function of T for the same parameters

as in (b). In the two panels, we chose γ = 0.1 and ωc = 100. Note
that, in both cases, the power-law-like scalings are maintained well
beyond the bounds in Eqs. (20).

to the “Floquet harmonics” of the dynamically controlled
system [39]. In particular, very low-frequency harmonics can
become the dominant contribution to the total FT under a
suitable driving protocol, thus endowing the system with
large thermal sensitivity at low temperatures. Whether or
not this simple picture continues to hold beyond the key
underlying assumption of weak probe-sample coupling re-
mains an interesting open problem with obvious practical
implications.

We have thus proven in full generality that any thermometric
scheme well approximated by a harmonic probe undergoing
Ohmic dissipation would display a distinct power-law-like
scaling in its low-T thermal sensitivity. At the same time, the
Caldeira-Leggett model is arguably a good first approximation
to many experimental situations of interest in quantum optics,
NMR physics, and solid-state physics [22,23,40]. For instance,
it can describe well the interaction of a nanomechanical
oscillator with the radiation field [41,42] or the dynamics of
an impurity immersed in a Bose-Einstein condensate [43].

Finally, it is worth noting that the exponential scaling
FT ∼ e−ω0/T that one would expect from a probe at thermal
equilibrium [5] cannot be recovered from the exact treatment.
Even if the Gibbs state is the stationary point of the commonly
used weak coupling Gorini-Kossakowski-Lindblad-Sudarshan
quantum master equation [40], the underpinning Born-Markov
approximation breaks down unless the dissipation rate γ goes
to zero at least linearly with T . Therefore, for any finite
probe-sample coupling, there will always be a temperature

below which the actual state of the probe deviates significantly
from strict thermalization [44,45].

III. DISCUSSION

In what follows, we will search for a physical intuition
connecting our two main results. Our focus will be on 1D
harmonic chains, which are frequently used to model crystal
lattices in solid-state physics [46]. We will identify the key
factor whereby the performance of local thermometry on a
harmonic chain scales exponentially or as a power law, when
T → 0, namely, whether or not its spectral gap vanishes.

A. Local thermometry on gapped and gapless harmonic chains

Our workhorse will be a 1D chain of 2N + 1 identical
harmonic oscillators of frequency �, i.e., a TIHC, prepared
at temperature T (the reason for choosing 2N + 1 nodes will
become clear below). Let its Hamiltonian be

HC =
2N+1∑
i=1

(
P 2

i

2
+ �2

2
Q2

i

)
+ 1

2

∑
i �=k

GikQiQk

= 1

2
�P T �P + 1

2
�QT VC

�Q, (21)

where (Qi,Pi) are the quadratures of each oscillator [col-
lected in the (2N + 1)-dimensional vectors �Q and �P ],
and Gik are their mutual couplings. We will assume that
these depend only on the “distance” between nodes, i.e.,
Gij = G|i−j | and will impose periodic boundary conditions
Gn = G2N+1−n for 1 � n � 2N , which results in a circu-
lant [47] interaction matrix VC , the first row of which is
(�2,G1, . . . ,GN,GN,GN−1, . . . ,G1). The eigenvalues of the
interaction matrix (i.e., the squared normal-mode frequencies
of the system) are

�2
a = �2 + 2

N∑
k=1

Gk cos
2πka

2N + 1
, for a = 0, . . . ,2N, (22)

where we notice that the frequencies �N+1, . . . ,�2N coincide
with �N, . . . ,�1, respectively.

In the next section, we will comment further on the choice
of the internode couplings. For now, we will just assume that
their strength decreases with the distance, i.e., Gi > Gj > 0
for i < j . In this case, the fundamental mode of the system has
squared frequency �2 such that

�2 = �2
N = �2 + 2

N∑
k=1

Gk cos
2πkN

2N + 1
. (23)

Therefore, for the system’s spectrum to be bounded from
below, one must have

�2 � −2
N∑

k=1

Gk cos
2πkN

2N + 1
. (24)

The strict inequality gives rise to a gapped TIHC, whereas its
saturation yields a gapless system.

We will now evaluate the QFI of a single node of the
chain (say node #1, as they are all equivalent) both in the
gapped and the gapless cases. To that end, we need to compute
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FIG. 3. (a) Log plot of the QFI as a function of the inverse
temperature β (open circles) for a gapped translationally invariant
harmonic chain with gap � = 0.01. The exponential asymptotic
scaling FT ∼ e−�/T has been superimposed in red. In this case,
N = 100 and the interactions have been chosen as Gn = G/nt , with
G = 1 and t = 2.5. For these parameters, the corresponding bare
oscillator frequency is �2 � 1.734 25. (b) Log-log plot of the QFI
versus the inverse temperature β. All parameters are the same as
in (a) except for �2 � 1.734 35, chosen so that the TIHC is gapless.
The power-law-like divergenceFT ∼ 1/T 2 (or constant relative error√

MδT/T ) of Eq. (20b) has been plotted in red.

the elements of its reduced covariance matrix, i.e., [σT ]11 =
〈Q2

1〉 and [σT ]22 = 〈P 2
1 〉 ([σT ]12 = [σT ]21 = 1

2 〈{Q1,P1}+〉 =
0). Letting �qC = OC

�Q be the normal-mode quadratures, these
write as

[σT ]11 =
2N+1∑
j=1

[
OT

C

]2
1j

1

2�j−1
coth

�j−1

2T
, (25a)

[σT ]22 =
2N+1∑
j=1

[
OT

C

]2
1j

�j−1

2
coth

�j−1

2T
. (25b)

From Eqs. (2), (19), and (25), one can calculate the cor-
responding local QFI. In Fig. 3, we work out a 100-node
example: As it can be seen, when the chain is gapped, the low-T
sensitivity decays exponentially, as expected [see Fig. 3(a)].
Note that the result in Sec. II A does not directly apply here
as the interactions (and correlations) do not decay exponen-
tially. This shows that the exponential inefficiency of local
thermometry holds for a wider class of gapped systems than
those with finite-range or exponentially decaying interactions.
However, when the system is in the vicinity of its quantum
critical point [48], namely, when it is tuned to be gapless, it
exhibits a power-law-like divergence of the type FT ∼ 1/T 2

[see Fig. 3(b)]. In view of the results about Ohmic Brownian
thermometers, this observation could be the “smoking gun” of
a deeper connection between local thermometry on many-body
lattices and open-system models. We will now follow this lead

by characterizing the open-system-like analog of a single node
within gapped and gapless TIHCs.

B. Mapping a translationally invariant harmonic chain into a
“star” model and back

1. From a harmonic chain to a star model

We shall start by splitting the Hamiltonian HC of the TIHC
in Eq. (21) into its accessible (i.e., node #1) and inaccessible
parts (i.e., all other nodes), and the interactions between the
two. That is,

HC = 1

2

(
P 2

1 + �2Q2
1

) + Q1

∑
i>1

G1iQi

+ 1

2

∑
i>1

(
P 2

i + �2Q2
i

) + 1

2

∑
i �=k

i,k>1

Qi[V1|C]ikQk, (26)

where the 2N × 2N matrix V1|C results from removing the first
row and column from VC . Note that V1|C is thus not circulant
(G2N−1 = G2 �= G1) but a symmetric Toeplitz matrix [47].

Let us denote �QT
1|C := (Q2, . . . ,Q2N+1). Provided that

the real orthogonal matrix O1|C diagonalizes V1|C (i.e.,
O1|CV1|COT

1|C = diag{ω2
1, . . . ,ω

2
2N }), we define the sample

degrees of freedom from the normal-mode coordinates of
the inaccessible nodes �q1|C := O1|C �Q1|C . Equation (26) thus
rewrites as

HC = 1

2

(
P 2

1 + �2Q2
1

) + Q1

∑
i>1

giq
1|C
i

+ 1

2

∑
i>1

[(
p

1|C
i

)2 + ω2
i

(
q

1|C
i

)2]
. (27)

The transition between the chainlike model of Eq. (26) and the
starlike configuration of Eq. (27) is depicted in Fig. 4.

Note that the transformed coupling constants are given by
gi = [O1|C]ijG1j . Due to the existing symmetries, the probe
interacts only with half of the sample modes. Therefore, we
shall keep only the N relevant ones and define the effective
spectral density as J (ω) = π

∑N
i=1(g2

i /ωi)δ(ω − ωi), which
will be the central object of interest in what follows.

As illustrated in Fig. 5, whenever Gn decays as n−1 or faster,
the spectral density is approximately linear around its minimal
frequency, which is nonzero. Hence, gapped TIHCs are not
capable of reproducing the canonical Ohmic form of Eq. (16)
in their residual spectra. In any case, they are endowed with a
high-frequency cutoff.

In the limit of large N , the chain is gapless for �2 �
2

∑∞
n=1(−1)n−1Gn as follows from the saturation of Eq. (24)

(see Appendix D for a discussion on the error bars of this
approximation), and the effective spectral density becomes
truly Ohmic (see Fig. 5). We note that a closing gap also implies
�2 = ω2

R , where ωR is the Caldeira-Leggett renormalization
frequency.

These facts leave us with the following picture: Whenever
the internal couplings in a gapless TIHC decay at least as fast as
the inverse of the distance between the nodes, the interaction of
every node with the rest of the chain is described by an Ohmic
Brownian motion model, in which the probe has vanishing bare
frequency ω0 = 0. This means that Eq. (20b) can be directly
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FIG. 4. (a) Sketch of a translationally invariant harmonic chain with periodic boundary conditions and 2N + 1 nodes of frequency �. Node
#1 appears highlighted as the probe P . This corresponds to Eq. (21). (b) Equivalent “star” system, described by Eq. (27), where node #1 couples
to N of the twofold-degenerate normal modes of the inaccessible part of the chain, with frequencies ωi .

applied when the temperature of cold TIHC is to be estimated
by measuring a single node. In turn, this is consistent with our
observations in Fig. 3(b).

Limiting ourselves to short-range interacting nodes is
mostly a technical requirement that allows us to circumvent
potential problems derived from the superextensive scaling of
the energy [49]. Nonetheless, we have numerically explored a
large range of TIHCs: In addition to the standard choices of
algebraic (i.e.,Gn ∝ n−t for t > 1, as in Fig. 3) and exponential
(Gn ∝ e−cn for c > 0) interactions, we have run tests using
ordered lists of random numbers as coupling constants. In all
cases, the results were qualitatively the same, which makes us
confident that they hold in general.

2. From a star model to a harmonic chain

Let us consider the reverse problem, i.e., finding a TIHC
that corresponds to a given (discretized) CLM. At the most
basic level, one wants to ensure that there exists a TIHC with
the same set of normal modes as the linear open system at hand.
However, the probe in the CLM will not correspond, in general,
to one of the nodes of its associated TIHC. Rather, it will be

FIG. 5. Effective spectral densities after partitioning an N = 100
TIHC as “node #1” versus the rest. The interactions Gn are the same
as in Fig. 3. We plot both the gapless (solid black line) and the gapped
case (dashed red line), with gap � = 0.5 (i.e., �2 � 1.984 25). Note
that in both situations J (ω) shows an approximately linear growth for
low ωn and features a cutoff. In the gapped case, however, the lowest
sample mode coupled to the probe has a finite frequency and hence,
the resulting spectral density is not Ohmic.

delocalized over some (or all) of its nodes. This is due to the fact
that the canonical transformations diagonalizing both systems
are generally different. It is thus interesting to determine how
does local thermometry on a CLM look from the perspective
of its TIHC analog.

Let us recall from the preceding sections that all but
one (namely, the largest, �0) of the normal modes of a
(2N + 1)-node TIHC are doubly degenerate. We can de-
fine the (N + 1)-dimensional vectors ��T := (�2

0,�
2
1, . . . ,�

2
N )

and �GT := (�2,2G1, . . . ,2GN ), containing the nonrepeated
normal-mode squared frequencies, and the squared “physical”
frequency and interaction strengths, respectively. Hence, we
may rewrite Eq. (22) in compact form as �� = A �G, where
[A]jk = cos ( 2πjk

2N+1 ), for j,k = 0, . . . ,N .
Proceeding from the other end, we may calculate the

normal-mode frequencies of the (N + 1)-particle CLM under
consideration and arrange them in decreasing order in the
vector �ωT := (ω2

0, . . . ,ω
2
N ). All we have to do is to invert the

above relation, i.e., �G = A−1 �ω, so that the resulting �G fully
characterizes the TIHC matching our CLM.

In order to put the above into practice, we need to discretize
a CLM. We start by setting a cap on the sample frequencies
ωmax > ωc and distributing our frequencies uniformly over the
allowed range. In order to obtain the coupling gn for any given
ωn, one may use the relation

g2
n = ωn

π

∫
�ω

dωJ (ω), (28)

which follows from Eq. (15) whenever the frequency interval
�ω is chosen around ωn so that neither of the neighboring
sample node frequencies ωn±1 are contained in it. In order to
make sure that the discrete model represents its continuous
counterpart faithfully, it is sufficient to require

ω2
R = 2

π

∫ ∞

0
dω

J (ω)

ω
�

N∑
n=1

g2
n

ω2
n

. (29)

We discuss this point in Appendix E, for the Ohmic spectral
density with Lorentz-Drude cutoff (introduced above), and
show that a choice of parameters such that N � ωmax/ωc � 1
guarantees a good agreement.
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FIG. 6. (a) Log-log plot of the coupling constants Gn (open
circles) corresponding to a discretized Caldeira-Leggett model with
Ohmic spectral density and Lorentz-Drude cutoff, as a function of the
internode distance n. In particular, the spectral density is characterized
by γ = 0.1 and ωc = 2. A total of N = 2000 frequencies were
uniformly picked within the interval ωn ∈ (0,ωmax), with ωmax = 100.
The frequency of the probe was chosen as ω0 = 0.2. A linear fit Gn ∼
n−c with c � 1.994 69 (red) has been added for comparison (see text
for further details). (b) Coefficients of the expansion q0 = ∑

a daQa

of the position of the probe in the CLM as a linear combination of the
positions of the oscillators in the corresponding TIHC. All parameters
are the same as in (a).

In Fig. 6(a) we illustrate this calculation for N = 2000,
ω0 = 0.2, γ = 0.1, ωc = 2, and ωmax = 100, for which∑

n g2
n/ωn � 0.195 853 � ω2

R = 0.2. The nodes of the TIHC
corresponding to these parameters can be found to have
frequency � � 57.7278, while the couplings decay as a power
law Gn ∝ n−c with almost constant c. Until around n = 500,
c � 2. For 500 � n � 1000, c becomes slightly smaller (i.e.,
c ≈ 1.77), although it remains approximately constant. Finally,
for n � 1000, the decay of interactions becomes slower and
non-power-law-like. Considering different values ofN , we find
the above change of behavior to occur around N/2. We are thus
dealing with a finite-size effect which does not appear in the
thermodynamic limit. In other words, in the thermodynamic
limit, the TIHC corresponding to an Ohmic CLM [16] becomes
a gapless chain with interactions decaying as the square of the
distance.

We know from Eq. (20a) that the QFI scales as FT ∼ T 2 at
low temperatures in this model. However, we also know that
optimal local thermometry on a gapless TIHC should give rise
to the diverging low-T behavior FT ∼ 1/T 2. The reason for
this discrepancy is that, a local measurement on the central
oscillator of the CLM does not map into a local measurement
on one node of the corresponding TIHC: it rather maps into
a complex measurement which turns out to be suboptimal, in
spite of spreading over the whole chain. We will conclude this
discussion showing that this is indeed the case.

Now, let the Caldeira-Leggett Hamiltonian in Eq. (13) be
written as HCL = 1

2 ( �P CL)T �P CL + 1
2 ( �QCL)TVCL �QCL, and its

N + 1 normal-mode coordinates as �qCL = OCL �QCL. On the
other hand, let �qC contain the 2N + 1 TIHC normal-mode
quadratures �qC = OC

�QC . We assume that these are ordered in
such a way that the first N + 1 elements of �qC correspond to
the nondegenerate frequencies {�0,�1, . . . ,�N }. One can thus
connect the original CL coordinates with those of the TIHC via
�QCL = (OT

CL ⊕ 1N )OC
�QC . In particular, the matrix elements

da := [(OT
CL ⊕ 1N )OC]1a are the coefficients in the expansion

of the position of the probe in terms of the positions of the
oscillators in the chain, i.e. q0 = ∑

a daQa .
We plot the coefficients da in Fig. 6(b) for the same

parameters of Fig. 6(a). We can see that q0 spreads all over the
chain and, hence, local manipulations of the probe on the CLM
map into complex global measurements on the corresponding
TIHC. Notice, however, that the resulting low-temperature
scaling of the QFI (i.e., FT ∼ T 2) is far worse that what could
be achieved by interrogating locally a single node of the chain
[cf. Eq. (20b)]. We thus see how local thermometry on a simple
linear system can turn into a surprisingly rich problem.

IV. CONCLUSIONS

In this paper, we have focused on local thermometry on
quantum many-body systems, deep into the low-temperature
regime. First, we proved that the accuracy of local thermometry
is exponentially suppressed for any gapped, translationally in-
variant, noncritical and short-range-interacting lattice system.
This result is very general and applies to locally finite as well
as harmonic many-body systems.

Furthermore, in order to explore the gapless regime, we
adopted an open-system approach, and established that ther-
mometry on a harmonic probe coupled to an Ohmic sample is
characterized by a distinctive power-law-like low-temperature
scaling. Namely, Brownian particles with finite bare frequency
(i.e., ω0 �= 0) can sense the temperature of a much larger
equilibrium sample with a precision scaling as ∼T 2 for T → 0.
On the contrary, a probe with ω0 → 0 displays a remarkable di-
verging low-T scaling of ∼1/T 2 for a wide range, extending to
arbitrarily low temperatures. Most importantly, we showed that
the decisive factor when switching between exponential and
subexponentially inefficient quantum thermometry is whether
or not the energy spectrum of the global many-body system
exhibits a finite gap.

In order to gain further insights into the problem, we
studied a simple 1D chain of identical harmonic oscillators
with arbitrary interactions and periodic boundary conditions.
Our main finding was that the open-system formulation of local
thermometry on a single node of a gapped instance of such
chain gives rise to a nonstandard dissipative model in which
the probe is effectively decoupled from the lower-frequency
modes of the sample. For the probe to be able to interact with
all the sample modes in the open-system description, the 1D
chain must be initially gapless. It is intuitively clear that, at
sufficiently cold temperatures, those neglected low-frequency
modes become dominant. In turn, this explains the exponential
suppression of thermal sensitivity in gapped systems.

Remarkably, we demonstrated that local thermometry on
a node of a translationally invariant gapless harmonic chain,
with interactions of arbitrary strength and range (provided they
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decay at least as fast as the inverse of the distance between
the nodes), can be mapped to the problem of estimating the
temperature of an Ohmic sample with a harmonic probe at
ω0 = 0.

Additionally, we discussed how to discretize and map a
continuous open-system model of the Caldeira-Leggett type
into a translationally invariant harmonic chain. We were thus
able to show that the resulting chain exhibits interactions that
decay quadratically with the internode distance. Finally, we
illustrated how, in spite of the necessary existence of a formal
open-system-to-chain mapping, the individual Brownian probe
needs not correspond to a single node in the chain. Instead,
local manipulations of the probe generally look like complex
global manipulations on the corresponding chain.

Our results thus shed light on the technologically rele-
vant problem of sensing ultracold temperatures from var-
ious different angles. Even though we make fundamental
statements about the ultimate low-temperature limitations on
the precision of temperature measurements, our results have
also clear practical implications. Note for instance that the
scaling FT ∼ 1/T 2 of the sensitivity of a Brownian particle
with vanishing bare frequency implies that the relative error
δT /T = (T

√
FT )−1 can be kept constant for arbitrarily low

T , by simply tuning the trapping frequency of the thermometer
to be sufficiently low. This observation is intimately connected
with a recent proposal on low-T thermometry exploiting
dynamical control [26].

Let us also point out that since the state of the locally
measured probes is the reduction of a global thermal state, we
might invoke typicality arguments to extrapolate our results to a
coherent superposition of eigenstates of the global Hamiltonian
in a small energy window [50–52], or sometimes even a
single such eigenstate [53]. Note, however, that care must
be taken when applying such typicality results in the low-T
limit [54,55].

Our setting is also well suited for tackling other interesting
situations, such as local thermometry on gapped long-range-
interacting systems. In fact, the chain-to-open-system mapping
could potentially be exploited to solve such problem exactly
once the corresponding effective spectral density has been
worked out. Moreover, since most second-order classical
phase transitions take place at rather low temperatures, our
methods can be useful also in the problem of local ther-
mometry in critical systems. There, the thermal sensitivity is
expected to be increased due to the presence of long-range
correlations [12,18,56]. These issues are worthy of further
investigation and will be considered elsewhere.

Note added. Recently, we became aware of the closely
related work by Hofer et al. [38]. In it, the authors argue that
gapless spectra allow for subexponential low-T scaling of FT

and work out several examples, including local thermometry
in a 1D tight-binding fermionic chain, which also leads to the
scaling FT ∼ T 2.
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APPENDIX A: HEAT CAPACITY OF LOCAL
HAMILTONIANS

In this first appendix, we shall argue that the large-size
and low-temperature scaling of the heat capacity of gapped
translationally invariant lattices with finite-range two-body
interactions is

CN (T ) � O(Ne−β�). (A1)

For harmonic and free-fermion lattices in arbitrary spatial
dimensions, we prove this in full generality. Although the ex-
tensivity is trivial to show also for general lattices with locally
finite Hilbert space dimension, the exponential temperature
dependence is far more challenging to prove. However, by
force of example, we expect Eq. (A1) to hold also in this case.

1. Extensivity

In short-range interacting, translationally invariant lattice
systems with finite local Hilbert space dimension, extensivity
of the heat capacity, i.e., that limN→∞ CN/N exists and is
finite, is a trivial consequence of the fact [57,58] that, for the
partition function of a translationally invariant system, the limit
limN→∞ N−1 ln ZN exists and is regular. Indeed, this means
that, for N � 1, ln ZN = O(N ), and the extensivity of CN

follows from the identity C = β2∂2
β ln Z.

More intuitively, and, most importantly, also applicable to
harmonic lattices, the extensivity can be understood as follows.
By representing the lattice by a graph (VN,EN ), where VN is
the set of all sites serving as vertices, and the edges EN are the
interacting pairs, we write the Hamiltonian as

HN =
∑
v∈VN

Hv +
∑
e∈EN

he, (A2)

where Hv are the onsite Hamiltonians, and he are the interac-
tions. Since we consider only regular lattices and interactions
of finite range, there is only a finite set of edges connected to
each vertex. We denote it by Ev and rewrite HN as

HN =
∑
v∈VN

(
Hv +

∑
e∈Ev

he/2

)
≡

∑
v∈VN

H̃Ev
, (A3)

where H̃Ev
“lives” in the joint Hilbert space of the vertices at

the ends of the edges in Ev . Due to translational invariance,
the operators H̃Ev

and the corresponding marginal states ρ
(N)
Ev

(note the dependence of the local state on the global system
size), are the same for any v, in spite of “residing” in different
Hilbert spaces. Hence, for the energy of the lattice, we have

EN = N tr
(
HE1ρ

(N)
E1

)
. (A4)

Finally, by the very definition of the problem, the global
state converges when N → ∞ (see also [57,58]), and therefore
we may formally write ρ

(N)
E1

= ρ
(∞)
E1

+ o(1). And since ρ
(∞)
E1

is
either a finite-component bosonic Gaussian state or a finite-
dimensional positive operator of trace 1, tr(HE1ρ

(N)
E1

) = e(T ) +
o(1), where e(T ), away from criticality, is a regular function of
T and is O(1). Hence, we conclude that EN = Ne(T ) + o(N ),
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which thus proves the extensivity of CN = dEN/dT . This al-
lows us to define the specific heat c(T ) := limN→∞ CN (T )/N ,
which we shall study below.

2. Specific heat at low temperatures

Let us first prove Eq. (A1) for harmonic and free-fermion
systems. These are widely used to describe a large variety
of physical objects, from quantum fields to superconductors
(see, e.g., [59]), and are described by Hamiltonians that are
bilinear in suitably defined bosonic or fermionic creation and
annihilation operators. Due to their bilinearity, such Hamil-
tonians can always be canonically decomposed as “normal
modes,” i.e.,

∑N
n=1 εna

†
nan, where a

†
n and an are the (bosonic

or fermionic) creation and annihilation operators, εn are the
normal-mode frequencies, and N is the number of lattice sites.
For convenience, we shall arrange the set {ε1 � ε2 � . . .} in
order of increasing energy.

In both bosonic and fermionic cases, the spectral gap � of
the whole system will be equal to ε1. Furthermore, since the
normal modes do not interact with each other, when the global
system is in a thermal state, each of the modes is thermal. The
heat capacity of a single mode is

Cn = (βεn)2e−βεn

(1 ∓ e−βεn )2
, (A5)

where the minus (plus) sign should be used for a bosonic
(fermionic) mode.

The low-temperature regime is defined as T 
 �. Thus,
βεn � 1 for all n’s. On the other hand, for large βεn, the
function in Eq. (A5) is decreasing. Hence, for sufficiently low
temperatures (β� � 4 would be sufficient), we have

CN � N
(β�)2e−β�

(1 ± e−β�)2
. (A6)

In particular, this implies that

c(T ) � (β�)2e−β�O(1), (A7)

which proves Eq. (A1). Moreover, it points to the fact that one
can add a (β�)b multiplier to Eq. (A1) in order to sharpen
the asymptotics. Here, b would be some system-dependent
number. For example, in Appendix A 3, we carefully calculate
the specific heat for the quantum Ising model and show that,
at low temperatures, it scales as (β�)3/2e−β�.

In fact, an identical analysis shows that this scaling holds for
any system that can be decomposed into noninteracting parts,
so that the dispersion relation is quadratic [60]. Furthermore,
the scaling (β�)3/2e−β� was demonstrated for the 1D spin- 1

2
XYZ model [61], which is not of the free-fermion type. In
general, it is “folklore” in solid-state physics that the specific
heat in gapped systems decays as (β�)be−c(β�) (c > 0) [60,62–
66] (see also [67] for a similar discussion).

3. Low-T specific heat of gapped quantum Ising model

Let us illustrate the above result on the simple example
of quantum Ising model in a transverse field [68]. This is
described by the Hamiltonian

HI = J

2

∑
i

σ i
x ⊗ σ i+1

x − h

2

∑
i

σ i
z , (A8)

which, in the free-fermion representation [48], takes the form

HI =
N∑

k=1

εk(c†kck − 1/2), (A9)

where c
†
k and ck are the creation and annihilation operators of

the kth fermionic mode, and

εk = 2
√

J 2 + h2 − 2hJ cos (2πk/N), (A10)

for k ∈ {−�N
2 �, . . . ,�N

2 � − 1}. The smallest gap among the
two-level systems and, hence, the spectral gap of the total
system is � = 2|h − J |. Incorporating this to the notation,
one may rewrite the energies εk as

εk = �

√
1 + 16hJ

�2
sin2

(
πk

N

)
. (A11)

Since the spin chain has been mapped into a collection of
noninteracting two-level systems, the total heat capacity is
nothing but the sum of their individual heat capacities, i.e.,
CN (T ) = ∑

k C(εk,T ), where

C(εk,T ) = (βεk)2e−βεk

(1 + e−βεk )2
. (A12)

Let us now define

km :=
⌊

N
3
√

β�

⌋

 N (A13)

and write the heat capacity as

CN =
km∑

k=−km

C(εk,T ) +
∑

|k|>km

C(εk,T ). (A14)

Noticing that the second sum is upper bounded by (N −
2km)C(εkm

,T ), and keeping in mind that we are interested in
the regime where β� � 1, we get

CN =
km∑

k=−km

C(εk,T ) + O(Ne−βεkm ). (A15)

Furthermore, since km/N 
 1, for k � km, we have

εk = � + 8π2hJ

�

k2

N2
+ O[(k/N)4]. (A16)

Further noticing that (β�)k4
m/N4 = (β�)−1/3 
 1 and

denoting f := 8π2hJ
�N2 , we obtain

CN = (β�)2e−β�

km∑
k=−km

(
1 + 2f

�
k2 + O[(k/N)4]

)
e−βf k2

+O(Ne−βεkm ). (A17)

Finally, noticing that βf k2
m = O( 3

√
β�) � 1, one can write

the Euler-Maclaurin formula [69]

km∑
k=−km

e−βf k2 =
∫ km

−km

dx e−βf x2 + O(e− 3√β�). (A18)
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Splitting the integral as
∫ km

−km
= ∫ ∞

−∞ − ∫ ∞
km

− ∫ −km

−∞ and notic-

ing that the latter are O(e− 3√β�), we obtain that

km∑
k=−km

e−βf k2 = π (βf )−1/2 + O(e− 3√β�). (A19)

Deriving the both sides of Eq. (A19) with respect to (βf )
once and twice to find, respectively,

∑km

k=−km
k2e−βf k2

and∑km

k=−km
k4e−βf k2

, and substituting in Eq. (A17) yields

CN = N (β�)3/2e−β�

√
�2

8hJ

[
1 + O

(
1

β�

)]
, (A20)

which, we emphasize, is correct only for N � 1 and β� � 1.

APPENDIX B: GETTING EQ. (3) FROM EQ. (2)

Equation (3) amounts to

F(ρT ,ρT +δ) = 1 − 1

4
FT δ2 + O(δ3)

= 1 + 1

2

(
lim
δ→0

∂2F(ρT ,ρT +δ)

∂δ2

)
δ2 + O(δ3),

(B1)

which holds provided that F(ρT ,ρT +δ) = O(δ2). To see that
this is the case, let us introduce the operator x := ∂ρT

∂T
δ +

O(δ2), so that ρT +δ = ρT + x. The Uhlmann fidelity would
thus rewrite as F(ρT ,ρT +δ) = [ tr

√√
ρT (ρT + x)

√
ρT ]2 =

( tr
√

ρ2
T + √

ρT x
√

ρT )2 := [tr (ρT + y)]2 = (1 + tr y).
Squaring the definition of this newly introduced operator y,

we see that

y2 + ρT y + y ρT = √
ρT x

√
ρT . (B2)

Since x = O(δ), it is also clear that y = O(δ). We can now
multiply from left and right by (

√
ρT )−1, which yields

(
√

ρT )−1y
√

ρT + √
ρT y(

√
ρT )−1 = ∂ρT

∂T
δ + O(δ2). (B3)

Note that the invertibility is not an issue here, even if ρT is not
full rank, since all O(δ) terms in Eq. (B3) appear multiplied by√

ρT . Taking now the trace of Eq. (B3) one immediately sees
that tr y = O(δ2) and, hence, F(ρT ,ρT +δ) = 1 + O(δ2), as we
wanted to verify.

APPENDIX C: LOW-TEMPERATURE SCALING
OF THE QFI IN THE CLM

1. Preliminaries

In this appendix, we will rigorously prove Eq. (20). Recall
that this refers to the low-temperature scaling of FT for a
harmonic probe coupled to an equilibrium sample through
an Ohmic spectral density with an arbitrary high-frequency
cutoff function, as introduced in Eq. (16). Essentially, we shall
perform an asymptotic analysis on the definition of the QFI
through Eqs. (2) and (19), where we will insert the closed-form
expressions for the covariances given in Eqs. (17) and (18).

Let us start by writing the Taylor expansions

[σT +δ]11 = [σT ]11 + a1δT + b1δ
2 + O(δ3), (C1a)

[σT +δ]22 = [σT ]22 + a2δ + b2δ
2 + O(δ3). (C1b)

The Uhlmann fidelity between σT and σT +δ is thus

F(σT ,σT +δ)=1− a1a2 + 2[σT ]2
11a

2
2 + 2[σT ]2

22a
2
1

16[σT ]2
11[σT ]2

22 − 1
δ2+O(δ3),

which leads to

FT = 4
a1a2 + 2[σT ]2

11a
2
2 + 2[σT ]2

22a
2
1

16[σT ]2
11[σT ]2

22 − 1
. (C2)

This is a very convenient expression, as it does not involve
the second-order coefficients in Eqs. (C1). The problem of
finding the low-T scaling FT is thus reduced to calculating
the low-temperature expansions of [σT ]ii [from where ai(T ) =
d[σT ]ii/dT ]. We will need to adopt two different strategies for
the proof, for the cases ω0 �= 0 (cf. Appendix C 2) and ω0 = 0
(cf. Appendix C 3), respectively.

2. Probe with bare frequency ω0 > 0

Let us start with [σT ]11, which is given by (17a). Using the
identity coth (x/2) = 1 + 2/(ex − 1), this covariance can be
rewritten as

[σT ]11 = σ1 + 2

π

∫ ∞

0
dω

J (ω)

|α(ω)|2
1

eβω − 1
, (C3)

where we have defined

σ1 := 1

π

∫ ∞

0
dω

J (ω)

|α(ω)|2 . (C4)

For convenience, we shall switch to the dimensionless
parameters ω̃ := ω/ωc and T̃ := T/ωc, normalized by the
cutoff frequency ωc. For a generic spectral density (as that
of Fig. 5), ωc can be fixed from the maximization of J (ω).
After the transformation, Eq. (C3) turns into

σ11 = σ1 + 2ωc

π

∫ ∞

0
dω̃

J (ω̃ωc)

|α(ω̃ωc)|2
1

eω̃/T̃ − 1
. (C5)

Hereafter, we shall drop the subscript T and the brackets in σ

for simplicity of notation. We may split the integral in Eq. (C5)
as

∫ ∞
0 → ∫ ξ

0 + ∫ ∞
ξ

, which leads us to

σ11 = σ1 + 2ωc

π

∫ ξ

0
dω̃

J (ω̃ωc)

|α(ω̃ωc)|2
1

eω̃/T̃ − 1
+ σ1O(e−ξ/T̃ ),

(C6)

where the last term encapsulates the fact that∫ ∞
ξ

dω̃ J (ω̃ωc)
|α(ω̃ωc)|2

1
eω̃/T̃ −1

< 1
eξ/T̃ −1

σ1. We can always choose

ξ to be small but scale with temperature so that O(e−ξ/T̃ ) → 0
exponentially when T̃ → 0 (e.g., ξ = T̃ 1/2 
 1), which
entails that, in order to study the low-T scaling of σ11, it
suffices to expand the integrand of Eq. (C6) around ω̃ = 0.
To do so, recall that α(ω) := ω2

0 + ω2
R − ω2 − χ (ω) − iJ (ω)

and that χ (ω) := 1
π

P
∫ ∞
−∞ dω′J̃ (ω′)/(ω′ − ω). Evaluating the

045101-11



KAREN V. HOVHANNISYAN AND LUIS A. CORREA PHYSICAL REVIEW B 98, 045101 (2018)

principal value in this latter definition yields

πχ (ω̃ωc) =
∫ ∞

0
dω̃′ J (ω̃′ωc)

ω̃′ + ω̃
+ lim

ε→0

[∫ ω̃−ε

0
dω̃′ J (ω̃′ωc)

ω̃′ − ω̃

+
∫ ∞

ω̃+ε

dω̃′ J (ω̃′ωc)

ω̃′ − ω̃

]
. (C7)

Note that, in the first integral, we have used the fact that
J (ω) extends to negative frequencies as an odd function [cf.
remark below Eq. (18)]. Let us work with the dimensionless
spectral density J̃ (ω̃) := J (ωcω̃)/(γωc) which, in the notation
of Eq. (16), would amount to J̃ (ω̃) = ω̃f (ω̃) = O(ω̃) 
 1.
This brings Eq. (C7) into the form

πχ (ω̃ωc)

γωc

=
∫ ∞

ω̃

dx

x
J̃ (x − ω̃) + lim

ε→0

[∫ ∞

ε

dx

x
J̃ (ω + x)

−
∫ ω

ε

dx

x
J̃ (ω − x)

]
. (C8)

We can further split the first integral (C8) as
∫ ω

ε
+ ∫ ∞

ω
to get

πχ (ω̃ωc)

γωc

=
∫ ∞

ω̃

dx

x
[J̃ (x + ω̃) + J̃ (x − ω̃)]

+ lim
ε→0

∫ ω̃

ε

dx

x
[J̃ (x + ω̃) − J̃ (x − ω)]. (C9)

Notice that, since ω̃ 
 1, the second line of Eq. (C9) can
be evaluated by expanding the spectral density around x =
0 as J̃ (ω̃ + x) = J̃ (ω̃) + J̃ ′(ω̃)x + O(x2), where the primes
denote derivatives. In particular, we have

lim
ε→0

∫ ω̃

ε

dx

x
[J̃ (x + ω̃) − J̃ (x − ω̃)] = 2ω̃ + O(ω̃2) (C10)

since J̃ ′(ω̃) = J̃ ′(0) + O(ω̃) and J̃ ′(0) = f (0) = 1. When it
comes to the first term of Eq. (C9), we may proceed similarly;
Taylor-expanding the integrand around ω̃ = 0 this time yields∫ ∞

ω̃

dx

x
[J̃ (x + ω̃) + J̃ (x − ω̃)]

= 2
∫ ∞

ω̃

dx

x
J̃ (x) + O

(
ω̃2

∫ ∞

ω̃

dx

x
J̃ ′′(x)

)
. (C11)

In turn, the first integral in Eq. (C11) can be cast as∫ ∞

ω̃

dx

x
J̃ (x) =

∫ ∞

0

dx

x
J̃ (x) −

∫ ω̃

0

dx

x
J̃ (x)

= π

2

ω2
R

γωc

− ω̃ + O(ω̃2), (C12)

where we have used J̃ (x) = J̃ ′(0)x + O(x2). To analyze the
second term in Eq. (C11), we observe that∫ ∞

ω̃

dx

x
J̃ ′′(x) =

∫ 1

ω̃

dx

x
J̃ ′′(x) +

∫ ∞

1

dx

x
J̃ ′′(x)

=
∫ 1

ω̃

dx

x
J̃ ′′(x) + O(1). (C13)

The fact that the second integral is O(1) follows from J̃ ′′(x) =
2f ′(x) + xf ′′(x) and the requirement that f (x) should be a

well-behaved function of x decaying rapidly for x > 1. Due to
the shape of an Ohmic spectral density, we may also write∫ 1

ω̃

dx
J̃ ′′(x)

x
� −O(1) ln ω̃, (C14)

where � signifies the fact that the left-hand side either scales
as ln ω̃ or slower. Indeed, whenever f (x) = f (0) + O(x) [e.g.,
when f (x) = e−x], the left-hand side in Eq. (C14) scales as
ln ω̃, whereas if f (x) = f (0) + O(x2) [e.g., when f (x) =
1/(1 + x2)], it becomes O(1).

Combining Eqs. (C9)–(C14) finally leads to

χ (ω̃ωc) = ω2
R + γωcO(ω̃2 ln ω̃), (C15)

which allows to cast α(ω̃ωc) in Eq. (18) as

α(ω̃ωc) = ω2
0 − ω̃2ω2

c + γωcO(ω̃2 ln ω̃) − iγ ωcO(ω̃).

(C16)

Working under the physically relevant assumption that γ �
O(ω0), we thus have

|α(ω̃ωc)|2 = ω4
0 + ω4

cO(�(ω̃)), (C17)

where

�(ω̃) = ω̃4 + ω̃2
0ω̃

2 + γ̃ ω̃2
0ω̃

2 ln ω̃ + γ̃ ω̃4 ln ω̃ (C18)

and ω̃0 := ω0/ωc and γ̃ := γ /ωc. Note that �(ω̃) 
 ω̃4
0 when-

ever ω̃ 
 ω̃0.
Substituting Eq. (C17) into Eq. (C5), up to exponentially

small terms [cf. Eq. (C6)], we get

σ11 = σ1 + 2γω2
c

πω4
0

∫ √
T̃

0

dω̃

eω̃/T̃ − 1

J̃ (ω̃)

1 + O(�(ω̃))
ω̃4

0

. (C19)

Since ω̃ is small on the whole interval of integration, we can use
J̃ (ω̃) = ω̃[1 + O(ω̃)]. Furthermore, changing the integration
parameter in Eq. (C19) to A := ω̃/T̃ , we obtain

σ11 = σ1 + 2γ T 2

πω4
0

∫ 1/
√

T̃

0
dA

A

eA − 1

1 + O(AT̃ )

1 + O(�(AT̃ ))
ω̃4

0

. (C20)

Let us now study σ11 in the T 
 ω0 (T̃ 
 ω̃0) limit.
The analysis is slightly different for ω̃0 = O(1) and ω̃0 
 1.
In the first case, T̃ 
 ω̃0 implies

√
T̃ 
 ω̃0, which means

that O(�(AT̃ )) 
 ω̃4
0. Hence, given that

∫ ∞
0 dA A

eA−1 = π2

6 ,
Eq. (C20) yields

σ11 = σ1 + πγ

3ω4
0

T 2[1 + o(1)], (C21a)

a1 = 2πγ

3ω4
0

T [1 + o(1)]. (C21b)

In the second case (namely, when ω̃0 
 1),
√

T̃ is not
necessarily much smaller than ω̃0. Note, however, that ω0 

ωc might be considered somewhat “exotic” as it would allow
very large-frequency environmental modes to be effectively
coupled to the sample. ωc → ∞ would also entail a diverging
renormalization frequency (e.g., ω2

R = γωc for an Ohmic-
Lorentzian spectral density). On the contrary, the example
of Fig. 5 shows that the condition ω0 � ωc [i.e., ω̃0 = O(1)]
appears naturally even in large generic physical systems.
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Of course, whenever
√

T̃ 
 ω̃0, we revert to Eq. (C21a).
Otherwise, we must note that since T̃ /ω̃0 
 1, one also has that
T̃ /ω̃0 


√
T̃ /ω̃0 
 1. Hence, defining Am := √

ω0/T � 1,
we see that AmT̃ 
 ω̃0. It is thus convenient to split the

integral Eq. (C20) as
∫ Am

0 + ∫ T̃ −1/2

Am
. The first part evaluates

to π2

6 [1 + o(1)], whereas the second is O(e−√
ω0/T ), thereby

showing that Eq. (C21a) holds for any ω0, provided that
T 
 ω0.

Conducting an identical analysis for the variance of the
momentum σ22 yields

σ22 = σ2 + 2π3γ

15ω4
0

T 4[1 + o(1)], (C22a)

a2 = 8π3γ

15ω4
0

T 3[1 + o(1)], (C22b)

where

σ2 := 1

π

∫ ∞

0
dω

ω2J (ω)

|α(ω)|2 . (C23)

Finally, substituting everything back into Eq. (C2) gives us

F(T ) = 32π2

144σ 2
1 σ 2

2 − 9

σ 2
2 γ 2

ω8
0

T 2[1 + o(1)] ∝ T 2. (C24)

3. Probe with bare frequency ω0 = 0

The analysis in the previous subsection does not entirely
apply to this case since, whenever ω0 = 0, the integrals
defining σ1 and σ2 diverge. In order to calculate the QFI, we
thus need to regularize these divergences. We can do so by
noticing that for any finite sample (no matter how large) there
always exists a minimal frequency ωmin > 0 (i.e., an “infrared
cutoff”). This entails that the integrals in Eqs. (17) should start
from ωmin. The infrared cutoff should be sent to 0 before taking
any other limit (e.g., ω0/T 
 1), which is equivalent to taking
the thermodynamic limit. Hence, in order to calculate F(T ),
we should fix T and evaluate limωmin→0 F(T ,ωmin).

Note from Eq. (C16), that the leading term in |α(ω̃ωc)| for
ω 
 1 and ω0 = 0 is

|α(ω̃ωc)|2 = ω2
cγ

2ω̃2O(1). (C25)

For convenience, let us write the O(1) above as W−1 + o(1),
with W being some T -independent dimensionless constant,
potentially depending on γ and ωc. This W will absorb all
other constants in what follows. We shall introduce as well
0 < ε 
 1 (e.g., ε = T̃ 2), and make the following splitting:

σ11 = γω2
c

π

[∫ ε

ω̃min

+
∫ ∞

ε

]
dω̃

J̃ (ω̃)

|α(ω̃ωc)|2
eω̃/T̃ + 1

eω̃/T̃ − 1
. (C26)

The second integral is nonsingular and hence is O(1) with
respect to the limit ω̃min → 0. In turn, the first integral may be
rearranged as

1

πγ

∫ ε

ω̃min

dω̃

ω̃

1 + O(ω̃)

W−1 + o(1)

2 + O(ω̃/T̃ )

ω̃/T̃ [1 + O(ω̃/T̃ )]
.

Noting that ω̃/T̃ � ε/T̃ � T̃ 
 1 and absorbing the numeri-
cal constants into W , brings us to

σ11 = T W

γωc

∫ ε

ω̃min

dω̃
1 + o(1)

ω̃2
= T W

γωmin
[1 + o(1)], (C27a)

a1 = W

γωmin
[1 + o(1)]. (C27b)

We now turn to σ22, and define g(ω̃) := |α(ω̃ωc)|2
γ 2ω2

c ω̃
2 , so that we

can write it as [see Eq. (17b)]

σ22 = ω2
c

πγ

∫ ∞

0
dω̃

ω̃f (ω̃)

g(ω̃)
+ 2ω2

c

πγ

∫ ∞

0
dω̃

ω̃f (ω̃)

g(ω̃)

1

eω̃/T̃ − 1
.

(C28)

Noticing that g(0) > 0 and keeping in mind that ω̃f (ω̃) is a
rapidly decaying function of ω̃ for ω̃ > 1, we conclude that the
first integral converges. As before, we denote it σ2. Coming to
the second integral in Eq. (C28), let us change the integration
variable to A = ω̃/T̃ and split the resulting integral as

∫ ∞
0 =∫ 1/

√
T̃

0 + ∫ ∞
1/

√
T̃

. It is straightforward to see that the second part

is O(e−1/
√

T̃ ). Hence,

σ22 = σ2 + 2T 2

πγ

∫ 1/
√

T̃

0
dA

f (AT̃ )

g(AT̃ )

A

eA − 1
+ O(e−1/

√
T̃ ).

(C29)

Now, since the argument of the functions f and g does not
exceed

√
T̃ on the interval of the integration, we can employ

the Taylor expansion to observe that f (AT̃ )
g(AT̃ )

= f (0)
g(0) + o(1).

Noticing furthermore that A
eA−1 is finite at A = 0, we conclude

that

σ22 = σ2 + T 2

γ
W ′[1 + o(1)], (C30)

where W ′ = f (0)
g(0)

∫ ∞
0 dA A

eA−1 = π2

6
1

g(0) is a dimensionless and
temperature-independent constant [recall that f (0) = 1; in
fact, it it easy to see that g(0) = f (0)2 = 1]. The coefficient a2

is thus

a2 = 2
T

γ
W ′[1 + o(1)]. (C31)

It is important to note that here o(1) is with respect to T̃ .
The expression for the quantum Fisher information, (C2),

thus leads to

FT = 1
2 lim

ωmin→0
(T −2[1 + o(1)]) = 1

2T −2[1 + o(1)]. (C32)

Interestingly, this scales as the QFI of a free particle. Indeed,
taking εn → 0 limit in Eq. (A5), we see that the heat capacity of
a free particle Cfree = 1 and hence its QFI is Ffree(T ) = T −2.
Equation (C32) thus means that, although the probe itself is
not free when ω0 = 0 (recall that ωR > 0), it is coupled very
efficiently to the zero-frequency mode.

For the error bar of the temperature measurements δT , we
thus have

δT

T
� 1√

M
, (C33)
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where M is the number of independent trials. In other words, if
one makes measurements on a single node of a gapless TIHC,
the error bar δT will scale as T .

APPENDIX D: SPECTRUM OF 1D HARMONIC CHAIN

In the limit of large N , the gap of a TIHC is given by
�2 = �2

N = �2 − 2
∑∞

n=1(−1)n−1Gn + �(s), which follows
immediately from Eq. (22). In this appendix, we will study the
size scaling of the error �(s). Namely, we will show that

�(s) =
⎧⎨
⎩

O(N−2), s > 2
O(N−2 ln N ), s = 2
O(N−s), s < 2.

(D1)

We shall start by manipulating Eq. (22) so as to bring it into a
convenient form

�2 = �2 + 2
N∑

n=1

Gn cos
2πnN

2N + 1

= �2 − 2
N∑

n=1

(−1)n−1Gn cos
πn

2N + 1

= �2 − 2
N∑

n=1

(−1)n−1Gn + 4
N∑

n=1

(−1)n−1 sin2 πn

4N + 2

= �2 − 2
∞∑

n=1

(−1)n−1Gn + �(s),

where

�(s) = 4
N∑

n=1

(−1)n−1 sin2 πn

4N + 2
+ 2

∞∑
n=N+1

(−1)n−1Gn.

(D2)

Recall that Gn = G/ns and, hence, the explicit s dependence
of the error. For the second sum, we have that∣∣∣∣∣

∞∑
n=N+1

(−1)n−1Gn

∣∣∣∣∣
=

∣∣∣∣∣GN+1 −
∞∑

n=N+2

(Gn − Gn+1)

∣∣∣∣∣ � GN+1 = O(N−s).

We will now turn our attention to the first sum in Eq. (D2)
and rewrite it using

∑N
n=1(−1)n−1Xn = ∑N/2

n=1(X2n−1 − X2n).
For odd N , the upper limit would be �N/2� and the “surplus”
term XN = O(N−s) would be grouped with the second sum.
We thus ignore this subtlety in what follows. Using the relation
sin2 x − sin2 y = sin (x − y) sin (x + y) yields

�(s) = 4
N/2∑
n=1

(G2n−1 − G2n) sin2 π (2n − 1)

4N + 2

− 4
N/2∑
n=1

G2n sin
π

4N + 2
sin

π (4n − 1)

4N + 2
+ O(N−s).

(D3)

The first term in the right-hand side of Eq. (D4) can be upper
bounded by

4π2
N/2∑
n=1

(G2n−1 − G2n) n2

(2N + 1)2
= O(N−2)

N/2∑
n=1

O(n1−s), (D4)

where we have used that sin x � x and (G2n−1 − G2n) =
O(n−s−1). The size scaling of the sum in the right-hand side
of Eq. (D5) depends on the value of s as

N/2∑
n=1

O(n1−s) =
⎧⎨
⎩

O(1), s > 2
O(ln N ), s = 2
O(N2−s), s < 2.

(D5)

This can be seen by noticing that
∑N

n=2

∫ n+1
n

dx x−a �∑N
n=2 n−a � ∑N−1

n=1

∫ n+1
n

dx x−a . Looking at the size scaling
of both bounds when a > 1, a = 1, and a < 1, respectively,
leads to Eq. (D6), from which Eq. (D1) follows immediately.

Let us also mention that the maximal normal frequency
corresponds to a = 0 in Eq. (22), and is given by

�2
max = �2 + 2

N∑
n=1

Gn. (D6)

It thus scales as N1−s when 0 < s < 1 and as ln N when s = 1
whereas, for Gn decaying faster than n−1, �max is of the same
order of magnitude as �.

Finally, our simulations indicate that, for any s � 1, the
coupling constants in the corresponding CLM scale with N as

gn ∼ nN−3/2, (D7)

including the cases in which n/N = O(1).

APPENDIX E: CONSISTENT DISCRETIZATION OF A
CONTINUOUS CLM

As advanced in Sec. III B 2, we may discretize the reservoir
in a Caldeira-Leggett model by putting a cap on the environ-
mental frequencies ω < ωmax and sampling a large number
N of discrete modes ωn = ωmax/N from the range (0,ωmax).
In this appendix, we will elaborate on how large does the
maximum frequency and the number of environmental modes
need to be in order to ensure that the discretized model
represents the original system faithfully. In particular, we shall
consider a CLM with the Ohmic-Lorentzian spectral density
J (ω) = 2γω2

cω/(ω2 + ω2
c ).

In particular, we will require the renormalization frequency
to be well approximated in the discretized model. That is,

ω2
R =

N∑
n=1

g2
n

ω2
n

�
∫ ∞

0
dω

J (ω)

πω
. (E1)

Let us start by rewriting Eq. (28) as

1

γωc

g2
n

ω2
n

= ωcN

ωmax π n

∫ ωmax
N

(n+1/2)

ωmax
N

(n−1/2)
dω J (ω), (E2)

which evaluates to

1

γωc

g2
n

ω2
n

= ωcN

ωmax π n
ln

(
ωmax
ωcN

)2(
n + 1

2

)2 + 1(
ωmax
ωcN

)2(
n − 1

2

)2 + 1
. (E3)
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Let us introduce the parameter a := ωmax
Nωc

, which becomes small
in the continuous limit, and rewrite Eq. (E3) as

1

γωc

g2
n

ω2
n

= 1

πan
ln

⎡
⎣1 + 2a2n

1 + a2n2

(
1 − a2

(
n − 1

4

)
1 + a2n2

)−1
⎤
⎦.

(E4)

We shall also define x := 2a2n/(1 + a2n2) and y := a2(n −
1
4 )/(1 + a2n2). Noticing that n/(1 + a2n2) � (2a)−1, we con-
clude that both x and y are �O(a) 
 1, and that, e.g.,O(x2) =
O(y2) = xO(y) = yO(x). In particular, x(1 − y)−1 = x +
xO(y) = x + O(x2) 
 1, which justifies the use of the Taylor
expansions ln(1 + z) = z − (1/2) z2 + O(z3) and (1 − z)−1 =
1 + z + O(z2) in Eq. (E4), which then becomes

ln [1 + x(1 − y)−1] = x + xy − 1
2 (x + xy)2 + O(x3).

(E5)

This leads to

1

γωc

g2
n

ω2
n

= 2a

π

1

1 + a2n2
− 1

2π

a3

(1 + a2n2)2

+O
(

n2a5

(1 + a2n2)3

)
,

which, by noticing that n2a5

(1+a2n2)3 � a3

(1+a2n2)2 , can be
written as

ω2
R

γωc

= 2a

π

N∑
n=1

[
1

1 + a2n2
+ O

(
a3

(1 + a2n2)2

)]
. (E6)

Back to Eq. (E6), we may cast the first sum as

N∑
n=1

1

1 + a2n2
=

∞∑
n=1

1

1 + a2n2
−

∞∑
n=N+1

1

1 + a2n2
, (E7)

and exploit the identity
∑∞

n=1(1 + a2n2)−1 = π
2a

coth π
a

− 1
2

for the first part. Note that, since a 
 1, we have coth π
a

=
1 + O(e−π/a). In turn, the second term of Eq. (E7) can be

approximated by means of the Euler-Maclaurin formula as

∞∑
n=N+1

1

a2n2 + 1
= 1

a

(
π

2
− arctan

ωmax

ωc

)
+ O

(
ω2

c

ω2
max

)
.

We shall now take ωmax � ωc and make use of the expan-
sion arctan x = π/2 − x−1 + O(x−2) for x � 1. This gives∑∞

n=N+1(a2n2 + 1)−1 = O(ω2
cN/ω2

max) and hence

N∑
n=1

2a/π

a2n2 + 1
= 1 − a

π
+ O

(
ωc

ωmax

)
+ O

(
a e− π

a

)
. (E8)

Only the second term in Eq. (E6) remains unevaluated. We
may proceed as follows:

N∑
n=1

O
(

a3

(1 + a2n2)2

)
� C

N∑
n=1

a3

(1 + a2n2)2

� C

∫ N

0

a3dx

(1 + a2x2)2
= Ca2

∫ Na

0

dx

(1 + x2)2
= a2O(1),

(E9)

where C is some constant and
∫ Na

0 dx 1
(1+x2)2 = π/2 + O( 1

Na
)

(recall that Na = ωc/ωmax 
 1). Substituting Eqs. (E8)
and (E9) into Eq. (E6), we finally arrive at

ω2
R = γωc

[
1 − ωmax

πNωc

+ O
(

ω2
max

N2ω2
c

)
O

(
ωc

ωmax

)]
, (E10)

which coincides with the continuous-limit value ω2
R = γωc

only when the conditions

N � ωmax

ωc

� 1 (E11)

are satisfied. This shows that one must require not only that
�ω = ωmax

N

 ωc, but also that ωmax be much larger than

ωc. Note that if any of these relations are broken, ω2
R can

significantly differ from its actual value; it is thus essential
to take this subtlety into account when discretizing a CLM
with an Ohmic-Lorentzian spectral density.
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