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NUFFT for the eflicient spectral domain
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Abstract—In this paper the Method of Moments (MoM) in the
spectral domain is used for the analysis of multilayered structures
containing periodic arrays of either patches or apertures. The
patches and apertures may have many different geometries
including complex surfaces limited by two parallel lines and
two arbitrary curves, circular and elliptic rings, circular and
elliptic arcs, and circular and elliptic sectors. Basis functions
accounting for edge singularities are used in the approximation
of the electric/magnetic current density on the patches/apertures,
which enables a fast convergence of MoM with respect to the
number of basis functions. Since the 2-D Fourier transforms
of the basis functions cannot be obtained in closed-form, these
Fourier transforms are efficiently computed by means of the
Nonuniform Fast Fourier Transform (NUFFT) algorithm. Results
have been obtained for frequency selective surfaces, and for the
elements used in the design of both reflectarray and metasurface
antennas. The results obtained indicate that the software based on
the NUFFT is only 15% slower than the standard spectral domain
MoM software used for structures in which the 2-D Fourier
transform of the basis functions is analytical, and between 50
and 80 times faster than CST.

Index Terms—Multilayered media, moment methods, periodic
structures, Fourier transforms.

1. INTRODUCTION

HE efficient analysis of multilayered periodic structures

is of key importance for the design of microwave de-
vices ranging from frequency selective surfaces (FSSs) to re-
flectarray/transmitarray antennas and metasurface leaky-wave
antennas. FSSs paved the way by enabling the control of
the transmission/reflection properties of very thin screens that
work as band-pass or band-reject filters when made of aper-
tures or patches respectively [1], [2]. Although these structures
were strictly periodic, researchers were able to extend the
methods developed for the analysis of FSSs to the analysis
of non-periodic structures with a spatially smooth variation,
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thanks to the use of the local periodicity assumption (LPA).
One example is the design of reflectarray antennas, which are
made of periodic arrangements of printed patches of different
dimensions on a grounded dielectric, usually illuminated by a
horn antenna [3]. By optimizing the geometry of each element
in the antenna, one can compensate for the phase difference
encountered between the waves scattered by the different
elements. If the geometry of the elements varies slowly along
the antenna, then the LPA allows for the analysis of each
element as if it was surrounded by a periodic environment [3].
The LPA was validated experimentally, and was an enabling
breakthrough for the fast and accurate design of reflectarray
antennas [4]. More recently, the LPA has also been applied for
the design of printed patch holographic or metasurface (MTS)
antennas, based on the leaky-wave phenomena [5], [6]. These
antennas are made of very sub-wavelength printed patches on
a thin grounded substrate, which are treated through equivalent
surface impedance concepts [7]. The very-subwavelength pat-
terning of the surface also allows for a reliable use of the LPA.
When the equivalent surface impedance is properly modulated
along the surface of the antenna, one can achieve a largely
controllable conversion between surface and space waves [5]—
[7], whose radiation can be spatially-tailored to obtain the
desired radiation diagram.

One of the numerical methods most frequently used for the
analysis of multilayered periodic structures is the Method of
Moments (MoM) in the spectral domain, which was introduced
by Mittra and his co-workers [2]. The spectral domain MoM
is very efficient provided that the 2-D Fourier transform of
the basis functions used to approximate the magnetic current
density on the apertures, or the electric current density on the
patches, can be obtained in closed form. Two types of basis
functions have been customarily used in the application of the
spectral domain MoM: subsectional basis functions (such as
rooftops, piecewise sinusoidal, etc.) and entire domain basis
functions. Subsectional basis functions have the capability to
be adaptable to a large variety of geometries, but their main
drawback is that they lead to large MoM matrices to be
inverted. Chan and Mittra developed a fast Fourier transform
(FFT) approach for the efficient computation of the spectral
domain MoM matrix entries when subsectional basis functions
are used, but this approach is restricted to cases where the
patches or apertures fit into a uniform rectangular grid limited
by the contour of the periodic unit cell [8]. Entire domain basis
functions accounting for the edge singularity condition are
specially suitable for the application of MoM to multilayered



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. XX, NO. YY, MARCH 2019 2

periodic structures because they ensure a fast convergence
of MoM with respect to the number of basis functions, and
therefore, lead to small MoM matrices that can be easily
inverted [9]-[11]. The nice properties of the edge singularity
basis functions are due to the fact that they constitute a
complete orthonormal set for the kernel of the integral equa-
tions to be solved as pointed out by Lerer and Schuchinsky
[12]. Edge singularity basis functions have been proposed for
simple canonical geometries such as rectangles [10], [12],
parallelograms [12], circles [7], [13] and ellipses [7]. However,
they have also been extended to more sophisticated shapes
such as rings [14], split rings [11] or even more general
surfaces limited by two parallel lines and two arbitrary curves
[15]. The problem is that the 2-D Fourier transform of the
edge singularity basis functions can be only obtained for the
simplest geometries (rectangles, parallelograms, circles, and
ellipses) [12], which prevents the use of these basis functions
in the spectral domain MoM analysis of periodic structures
with more complex shapes unless sophisticated mathematical
tricks are used for each particular shape [11], [14].

In this paper the authors present a novel implementation
of the spectral domain MoM for the analysis of multilayered
periodic structures in which the Fourier transforms of the basis
functions are numerically computed by means of the nonuni-
form fast Fourier transform (NUFFT) algorithm [16], [17].
This novel implementation has the relevant advantage that it
can deal with edge singularity basis functions for which the 2-
D Fourier transforms of the basis functions cannot be obtained
in closed-form, and therefore, it enables the efficient MoM
analysis of a large class of multilayered periodic structures.
Also, the analysis of all these structures is carried out within
a CPU time which is only slightly larger than that required
in the cases where the 2-D Fourier transforms of the basis
functions are available in closed-form. In previous papers,
specially tailored mathematical tricks (interpolations in terms
of Chebyshev polynomials, truncation of infinite series based
on the properties of Bessel functions, etc.) have been used for
the spectral domain MoM analysis of some particular periodic
structures with edge-singularity basis functions for which 2-D
Fourier transforms are not available in closed-form [11], [14].
The uniqueness of the spectral domain MoM with NUFFT
as proposed in this paper is that this latter approach can be
efficiently applied to a wide variety of different geometries
with similar success. In particular, in this paper the new
approach is applied to the analysis of periodic structures where
the patches/apertures are surfaces limited by two parallel lines
and two arbitrary curves [15], and to the cases where the
patches/apertures are circular or elliptic rings [14], circular
or elliptic arcs [11], and circular or elliptic sectors. The use
of the NUFFT has made it possible to cover all these different
cases since it does not require an equispaced grid for the
computation of the samples used in the determination of the
Fourier transform. This is in contrast to the standard FFT,
which requires an equispaced uniform grid for the computation
of the samples, and therefore, is more limited in terms of the
number of different geometries that can be handled [8]. In
this paper the spectral domain MoM with NUFFT has been
applied to the determination of the transmission properties of
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Fig. 1. Side (a) and top (b) views of a periodic array of patches printed on
a two-layered substrate backed by a conducting plane. Side (c) and top (d)
views of a periodic array of apertures embedded in a two-layered substrate.
In both cases, a plane wave impinges on the periodic structures.

FSSs made of apertures, to the determination of the phase
curves of periodic structures used in the design of linearly and
circularly polarized reflectarray antennas under the LPA, and
finally, to the determination of the iso-frequency dispersion
curves and the equivalent surface reactance of patches used
in MTS antennas. The results obtained have been compared
with previously published results and with results provided by
the commercial software CST, and good agreement has been
found in all cases. Our spectral domain MoM with NUFFT
software has proven to be between 50 and 80 times faster
than CST.

II. NUMERICAL PROCEDURE

Figs. 1(a) and (b) show a periodic array of patches printed
on a two-layered substrate backed by a conducting plane.
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Fig. 2. Patches or apertures appearing in the unit cells of the periodic
structures of Fig. 1. (a) Surface limited by two lines parallel to the x” axis, and
by two arbitrary curves x” = [;(y’) and x" = [}(y’). Circular (b) and elliptic
(c) rings. Circular (d) and elliptic (e) arcs. Circular (f) and elliptic (g) sectors.

Similarly, Figs. 1(c) and (d) show a periodic array of apertures
in a conducting screen, embedded in a two-layered substrate.
The patches, the backing conducting plane and the conducting
screen containing the apertures are assumed to be perfect
electric conductors (PEC) of negligible thickness. Each of
the two layers of the substrate of both periodic structures
has a thickness h; (i = 1,2), a complex permittivity & =

go&ri(1 —jtand;) (i = 1,2), and a permeability po. Note that
although the results presented in this paper are for periodic
structures on one- or two-layered substrates, the derivations
carried out in the rest of this Section for the structures of
Figs. 1(a) to (d) can be easily extended to deal with general
substrates containing an arbitrary number of layers. This only
requires one to use adequate spectral domain dyadic Green’s
functions, which can be obtained for generic multilayered
substrates by means of the recurrent algorithm described in
[18]. Also, while the periodic structure of Figs. 1(c) and (d)
acts as a bandpass FSS, the structure of Figs. 1(a) and (b)
cannot be used as a reject band FSS unless the conducting
plane is substituted by an interface with a semi-infinite region
of free space [1], [2]. This latter possibility can also be easily
contemplated in the formulation provided below by simply
changing the spectral domain dyadic Green’s function of the
problem.

We will assume that the periodic unit cell of the periodic
structures of Figs. [(a) to (d) may have either N, patches (N, =
2 in Fig. 1(b)) or N, apertures (N, = 2 in Fig. 1(d)). The
possible shapes for these patches and apertures are shown in
Figs.2(a) to (g), and include surfaces limited by two parallel
lines and two arbitrary curves (these surfaces encompass many
different types of polygons, the barrel shape, the diabolo shape,
etc.) of the type shown in Figs. 2(a), circular and elliptic rings
(Figs. 2(b) and (c))), circular and elliptic arcs (Figs. 2(d) and
(e)), and circular and elliptic sectors (Figs. 2(f) and (g)).

A plane wave is assumed to obliquely impinge on the two
periodic structures of Figs. 1(a) to (d), its incidence direction
being given by the angular spherical coordinates i, and ¢,
In the following, a time dependence of the type e/’ will be
assumed and suppressed throughout.

A. MoM in the spectral domain

In this subsection we describe the spectral domain MoM
solution of the scattering problems posed in Figs. 1(a) to (d).
Also, we briefly indicate how the solution of these scattering
problems is used in the design of FSSs, reflectarray antennas
and MTS antennas.

In order to determine the fields scattered by the periodic
structure of Figs.1(a) and (b), we need to determine the surface
electric current density excited on the patches of the metallized
interface z = 0, J(x,y), by the impinging plane wave. This
electric current density is the solution of the following electric
field integral equation (EFIE):

E*(x,y,z=0) + i io:f
P

m=—oo p=—00 mn

Z X

—EJ
G, (x- xX,y=y,z2=0,7 =0)- J(x’,y’)dx'dy'} =0 )
(x,y) € Poo

where P, (m,n = ...,—1,0,1,...) is the metallized portion
of the z = O plane within the mn-th periodic unit cell,
E®(x,y,z) is the electric field that would be generated in
all space by the plane wave impinging on the multilayered
structure of Figs. 1(a) and (b) in the absence of the patches, and
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Egj(x—x', y—=y',z=0,7 = 0) is a 2X2 matrix representing the
dyadic Green’s function that links the transverse (to z) electric
field at the plane z = 0, E,(x, y, z = 0), with the electric current
density J(x’,y’) that originates this electric field.

Also, in order to determine the fields scattered by the
periodic structure of Figs. 1(c) and (d), we need to determine
the magnetic current density excited on the apertures of the
conducting screen located at z = 0, M(x, y), by the impinging
plane wave. This magnetic current density is the solution of
the following integral equation:

T4 y) + Z Zf

0,7 =0)-M(',y)dx'dy’ =0 2)
(x,¥) € Ago

Ga (-x_-x’y_y’Z:

where A, is the set of apertures existing in the z = 0 plane
within the mn-th unit cell, J*(x,y) is the surface electric
current density that would be induced at the conducting plane

= 0 of Figs. 1(c) and (d) by the impinging wave if the
apertures were not present, and Ea (x=x",y=y,z2=0,2 =0)
is a 2 X 2 matrix representing the dyadic Green’s function that
links the surface electric current density (discontinuity in the
tangential magnetic field) existing at the z = 0 plane with the
magnetic current density M(x’,y’) that originates this electric
current density.

Since J(x,y) and M(x, y) are Floquet-periodic functions of x
and y, in order to solve the integral equations of (1) and (2), we
only need to determine J(x, y) and M(x, y) within one periodic
unit cell, e.g., the domain Cypy = {0<x<a;0<y<b}
Looking for a solution of the integral equations, we expand
J(x,y) and M(x,y) in Py and Ag respectively in terms of
known basis functions as shown below

Ne 2 Nig Ny

Jouy) =Y >0 > > kI y) (3)
p=1 g=1 r=1 s=1
N. 2 Nig Ny

M(xy) =D D30 APl (x,y). )

p=1 g=1 r=1 s=1

In (3)/(4) the superindex p (p = 1,...,N.) indicates the
number of the patch/aperture in Pyy/ Ago for a total of N,
patches/apertures in Fig. 1(b)/Fig. 1(d). The superindex g (¢ =
1,2) indicates the component of J(x, y)/M(x y) which is being
approximated by the basis function J&(x,y)/ME(x,y). And
since J(x,y)/M(x,y) depends on two coordmates (which can
be cartesian coordinates, polar coordinates [7], [11], [14] or
stretched polar coordinates suitable for patches and apertures
with elliptical shape [7], [12]), the subindex r (r = 1,...,Nig)
is swept to fit the dependence of J(x, y)/M(x,y) on one of the
coordinates, while the subindex s (s =1,..., Ny,) is swept to
fit the dependence of J(x,y)/M(x,y) on the other coordinate.
Thus, the total number of basis functions per patch (aperture)
turns out to be N, = Ny 1Ny + N2 Noo.

When (3) and (4) are substituted in (1) and (2), and
Galerkin’s version of MoM is applied, the following systems

of equations are obtained for the unknown coefficients ¢%; and

dl! of (3) and (4)

Ne 2 Nig Ny

P IDIP NN s)

p=1 g=1 r=1 s=1

(i=1,....Ne; j=1,2s k=1,...,Nyjs [ =1,...,No;)
N. 2 Nig Ny

» Z Ayl = ©
p=1 g=1 r=1

i=1,. ..,Ne, =12 k=1,...,Nij [=1,...,Ny)).

If we invoke Parseval’s identity for 2-D Fourier transforms,
the MoM matrix entries 1";’1’; 7 and A” P4 of (5) and (6) can be
expressed in the spectral domain as double infinite summations

given by [2]

riipa
DI (¢

m=—00 p=—00

lj d xm, kyn))*]t

—~FEJc

G, (ke = kg ky = k2= 0,7 = 0) - I Uy ky) (7

p
ljd xma n))]

AP
GEDIPN

~JM.
‘G (kx = ks ky = kyn»Z =0,7 = =0)- Mln]d(kxmy k»n) (3

a

where k., = kosinbiccos ¢, +2mm/a (kg = wA/eogpo =
21/ o) and ky, = ko sin Ginc sin ;. +27n/b.

—~EJc
In (7) and (8) the 2 x 2 matrices G, (ky,ky,z =0,z = 0)
~JMc
and G, (k,ky,z = 0,z = 0) stand for the continuous 2-D

Fourier transforms of Efj(x, v,z=0,7Z =0) and a:M(x, y,Z=
0,7z = 0). It can be easily shown that

~JMc
Ga (kkay’z = 09 Z’ = 0)

—~EJc

-1
=|Ga (kx,ky,z=0,z’=o>} ((1) _01) )

—~EJc
where G, (ky, ky,z =0,z = 0) is the continuous 2-D Fourier
transform of the dyadic Green’s function relating the trans-

verse (to z) electric field and the electric current density at the

z = 0 plane of Fig. 1(c). The matrix G, (ks ky,z=0,2/ =0)

—~EJc
is not to be confused with G (ky, ky,z = 0,27 = 0) since
z = 0 in Fig. 1(c) is in between the two layers and the two-
layered medium is limited by two semi-infinite half-spaces up
and down, while z = 0 in Fig. I(a) is above the two layers
and the two-layered medium is limited by one semi-infinite

half—space up and by a conductm; plane down. Both matrices

Ea (kx,k),z—Oz =0)and G, (k..ky,z=0,2’ = 0) can be

obtained in closed-form as explamed in [18].

The spectral domain basis functions jﬁ?‘d(kxm,k)rn) and
M Ky key) (p = 1, ,Nes g = 1,23 r = 1,...,Nyy; s =
I,...,Nyy) of (7) and (8) stand for the discrete 2-D Fourier
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transforms of J&/(x,y) and MZE/(x,y) respectively, and are

given by
1

T2 ey beyn) = —~ f J29(x, y) eIk had) gy (10)
Poo

— 1 y o i

Mngd(kxm’kyn) = f 1\/‘[/]\/(\ _\") € J(kmx+ky"})dxdy. (11)
ab Aoo

Finally, the coefficients ez and f]g of the two systems of

equations (5) and (6) can be obtained in the spectral domain

as

i = b (T ko) | B9 20

% e—jk()(sin Bine COSP; X+8in Gipe SINQ; | V) ( 12)
ij ~ijd L LA
1= —ab| (M (k. ko)) | - J2(x, )

% e—jk()(sin Oinc COSEQ;  x+8in Oine SN, v) ( 1 3)

where the factor e Jo(sinbin cos@y x+sinbine sing,,.¥) hag been ex-
plicitly included in (12) and (13) to absorb the dependence
of E®(x,y,z = 0) and J*(x,y) on x and y. Note that both
E*®(x,y,z = 0) and J**(x,y) include a phase factor of the
type e *iko(sin fin COS@y x+sin bhne singe ) (non-vanishing for oblique
incidence, i. e., 6, # 0), which has to be removed in
(12) and (13) by means of the annihilating phase factolj
g TKo(sin fine oSy, xsin fine singye¥) gince the coefficients c;// and f/'/
are not dependent on x and y.

As mentioned above, the periodic structure of Figs. 1(c) and
(d) is a bandpass FSS. Once the integral equation (2) is solved
by means of MoM and M(x, y) is obtained, the reflection and
transmission coefficients of the mn-th Floquet harmonic of the
FSS, R, and T,,, can be obtained in terms of M(x,y) as
explained elsewhere (e. g., see [2, Eqns. (75)-(78)] and [19,
Eqns. (24)-27))).

As commented in Section I of the paper, the design of
reflectarray antennas is customarily carried out by means of the
LPA. In the frame of the LPA, the phase shift in each reflec-
tarray element is computed as if the element were surrounded
by a periodic environment. In this sense, the configurations
of Figs. 1(a) and (b) represent the typical periodic structures
that are used for the characterization of the elements of a
reflectarray. Let us assume that one of these periodic structures
contains the element used in the design of a linearly polarized
antenna, and let us assume that the value of the operating
frequency does not allow the excitation of grating lobes when
the plane wave impinges on the periodic structure (which
implies that max(a,b) < Ao/(l + sin6,) [1]). Under these
conditions, the reflectarray element surrounded by a periodic
environment can be characterized by means of a 2 X 2 linear
polarization reflection matrix, ﬁLp, defined as [20]

[ o me (2 )= R )
=Rip- = N et
E;ef Ryx Ry ET¢

where E™ and E;,“C are the complex amplitudes of the trans-
verse (to z) components of the electric field of the impinging
plane wave, and E' and Ej' are the complex amplitudes of
the transverse (to z) components of the electric field of the

reflected m = n = 0 Floquet harmonic (the only reflected
propagating harmonic in the absence of grating lobes). Once

inc
E x

E;nc ) (14)

the integral equation (1) is solved, the quantities Ei*' and E*!
can be readily obtained in terms of J(x,y). In reflectarray
antenna design, the phases of the matrix coefficients R,
and R,, of (14) are crucial for the determination of the
element dimensions that provide the adequate phase shift for
a prescribed radiation pattern, and the magnitudes of R,, and
Ry, are useful to give an estimation of the cross-polarization
level introduced by the element.

If the reflectarray to be designed is a circularly polarized
antenna, in the absence of grating lobes each reflectarray
element has to be characterized by means of a 2 X 2 circular
polarization reflection matrix, icp, which can be defined as
[11]

ref inc
Egyer | = Rep - Egyice
Ere CP Enc

LHCP LHCP

_ [ RrucpruCP  RRHCPLHCP EQhicr 15
R R : Elnc ( )
LHCPRHCP  RLuCPLHCP LHCP

where ER< . and E%S., are the complex amplitudes of the
right hand circular polarization (RHCP) and left hand circu-
lar polarization (LHCP) components of the electric field of
the impinging wave, and Efflf{CP and Elrjflcp are the RHCP
and LHCP components of the electric field of the reflected
m = n = 0 Floquet harmonic. These latter components can be
readily obtained in terms of J(x,y) once the integral equation
(1) is solved. As in the case of linear polarization antennas, the
phases of the matrix coefficients Rryycp rucp and Ry ycp Lacp Of
(15) are the key parameters that make it possible to adjust the
dimensions of each reflectarray element to obtain the required
phase shift.

The periodic structures of Figs. 1(a) and (c) may support
bound (non-leaky) surface wave modes that are attenuated
along the z direction (for these modes, the phase constant
is larger than kp). In order to obtain the propagation con-
stant, kpsw, of the fundamental homogeneous Floquet mode
m = n = 0 that propagates in a direction making an angle @
with the positive x axis, we have to redefine k, and k,, in
(7) and (8) as

(16)
a7)

kxn = kpsw cosa +2m/a
kyn, = kpsw sina +2nn/b.

With this definition of k, and ky,, the values of kpsw for
fixed values of @ and ko (i.c., for fixed values of frequency)
can be found as the solutions of the transcendental equations
(71, [21]

det [T (kpgw. v, ko) = 0 (18)
det [AZ" (kpew. . ko)| = 0 (19)

where F;(’Zi' ? and A;{JZ‘Z ? are the MoM matrices (7) and (8) of
the linear systems of equations (5) and (6) respectively.

In practical applications in which the periodic structures of
Figs. 1(a) and (c) act as impedance surfaces or MTS made of
sub-wavelength elements [7], [22], focus is concentrated on
the isofrequency dispersion curves of the fundamental Floquet
mode m = n = 0. In these dispersion curves, kpsy = kpsw(@) is
represented in polar coordinates for fixed values of frequency
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[7], [22]. The dispersion curves also provide important infor-
mation about the phase and group velocities of the surface
wave under study.

The design of aperture MTS antennas is done through
the concept of impenetrable equivalent surface reactance. By
spatially modulating such reactance, one can achieve leakage
from the aforementioned surface waves. The implementation
of the optimal modulation requires the knowledge of the
dependence of the reactance values on a pair of geometrical
parameters of the element in the unit cell such as size, angle
of rotation, eccentricity in the case of an elliptic element, etc.
This dependence is usually represented as a colormap that
provides the design curves from which one can extract the
desired values of the modulated reactance [6], [7]. The equiv-
alent impenetrable reactance of the MTS periodic structure is
defined in terms of kpsw as [7]

k%wz
p‘)—1 (20)

Xs=§0 ( kO

where {y = +/uo/&p is the free-space impedance.

B. Basis functions for the electric and magnetic current den-
sities

The choice of basis functions for J(x,y)/M(x,y) in the
patches/apertures of Figs. 1(a) to (d) is crucial for an efficient
implementation of the spectral domain MoM of Subsection
IILA. As commented in Section I, the basis functions ac-
counting for edge singularities ensure a fast convergence of
MoM with respect to the number of basis functions, and
therefore, lead to an efficient implementation of MoM since
the size of the MoM matrices to be inverted (i.e., the coefficient
matrices appearing in the linear systems of equations (5) an
(6)) turns out to be small. In this subsection we define the
edge singularity basis functions for all the geometries shown
in Figs.2(a) to (g). It can be verified that the components of the
basis functions parallel to the edges of the patches/apertures
become singular at the points of these edges. Also, the
components of the basis functions that are normal to the
edges of the patches/apertures become zero at the points of
these edges, their derivative along the normal direction being
singular at these points. These are physical constraints to be
expected for the electric/magnetic current densities existing on
the patches/apertures. The results presented in Section III will
confirm that the edge singularity basis functions chosen for the
geometries of Figs. 2(a) to (g) all lead to a fast convergence
of MoM with respect to the number of these basis functions.

Let BZ/(x,y) represent any of the two basis functions
JP(x,y) and MZ!(x,y). Let {x',y’,7’} be a shifted system of
coordinates centered at the point (x = Xoc, Y = Yoc, 2 = 0) of
the domain Cyy of Figs. 1(b) and (d) (see the new system of
coordinates {x’,y’,z’} in Figs. 2(a) to (g)). The relation be-
tween the new cartesian coordinates and the original cartesian
coordinates of Figs. 1(b) and (d) is given by

X =X — Xoc 2n
y/ =Y = Yoc (22)
7 =z (23)

For patches and apertures which fit the geometrical shape
shown in Fig. 2(a), we propose to use the following edge
singularity basis functions introduced in [15]

X —a,(y’ )
()

Tr—l (

L") | _(

B. (xX',y) = Ym—»

X' —ay(y’ )
ING)

{[X’ —ap() dlp(y )

X ) — +
L,O" dy
0,0 <x' <L) -L <y<+Lp)

(r— 1,...,N11, s = 1,...,N21)

oot ()
1,(y) 1,y

X ————=X ([, x4, (y'); =L, <y'<+Ly)

} 24)

1
Bp2 /, N — _Ur—
rs (x y ) Lp 1

(25)

Ny s=1,...,N»)

where T,_1(-) (Ts—1(-)) and U,_{(-) (Us—i(:)) are Chebyshev
polynomials of first and second kind respectively. The func-
tions a,(y’) and [,(y’) of (24) and (25) are given by

L)+ 1)

ap(y') = 7 5 £ (26)
L) =10

() = T 27)

where x” and y’ can be obtained in terms of x and y as shown in
(21) and (22), and where x = l (') and x = l FO) (—Lp<y' <+

L,) are the equations of the two curves that hmlt the left side
and the right side of the patch/aperture of Fig.2(a).

Let us now introduce polar coordinates p’ and ¢’ for the
shifted system of coordinates {x’,y’, z’}. According to (21) and
(22), these coordinates are related to the cartesian coordinates
of Figs. 1(b) and (d) by means of

(28)
(29)

P cos ¢'=x — Xoe

P sin¢’'=y = yo.

For the circular ring of Fig. 2(b), we propose the use of the
edge singularity basis functions [14], [23]

2 ;PP
T (pz,,—pl,, [p -3 '])

B (0. ¢') = -
1— 2 o _p2p+plp
pzp—plp

. N +l
x el )l (—sin ¢’ X+ cos ¢’ §)
(P1p<p'<P2p; 0< ¢'< 27)
(r: 1,...,N11; S = 1,

(30)

,Na1; Nop odd)
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Pap + P
B0 ¢) = U,_l( = “’])

ol
p2p_plp 2

2
< 1_( 2 [p'-p”’”’“']) S5
pr_plp 2

X (cos ¢’ X +sin ¢’ §) (P1p < p' < Pap; 0< ¢'<2m) (31)
(r: 1,...,N12; s = 1,...,N22; N22 Odd).

For the case of the elliptical ring of Fig.2(c), we will assume
that by,/ay, = bip/a1, = n < 1 (ie., we will assume that
the axial ratios between the minor semi-axis and the major
semi-axis are the same for the two ellipses limiting the rings).
Under this assumption, we are going to define stretched polar
coordinates o’ and B’ for the shifted system of coordinates
{x’,y’,7’}, which are related to the coordinates x and y of
Figs. 1(b) and (d) by means of

(32)
(33)

@ cosf = x — Xoc
na’ sinf’ =y — yoc.
The edge singularity basis functions By chosen for the

elliptical ring of Fig.2(c) can be written in terms of o’ and S’
as

2 , _ Q2ptaip
T (azp—ﬂlp [a 2 ])

2
\/1 _ ( 2 [CZ’ _a2p+alﬁ])
axp—dip 2

B (¢, B) =

x ells=(Z= ) (—sinB'% +ncosB'Y) (34)
(a1p <@’ < agp; 0<B’ < 2m)
(r = 1,...,N11; S = 1,.. .,N21; N21 Odd)
D + D
B2, = U,_l( | —M])
axp —Aaip 2
2
y \/1 _( 2 [a’ _dpt al,,]) ej[s_(dz%ﬁ)]ﬁ/
axp —Aalp 2
X (ncosB'K +sinB'y) (a1p< @ <azp; 0<B’ <2m) (35)

(I': 1,...,N12; s = 1,...,N22; N22 Odd)

In the case of the elliptical arc of Fig.2(e), we will assume
that by,/a, = byp/ai1, =n < 1 as in the case of the elliptical
ring of Fig. 2(c). Under that assumption, the edge singularity
basis functions we have chosen for the elliptical arc are

2 y _ Gaptaip
Tr (a2p_alp [a 2 ])

2
\/1 _( 2 [Q/' _az,,+a1p])
axp—dip 2

r :82p +B1p )
)2

=
Bop —B1p 2
X\/l_( 2 [ﬁ,_ﬁzp+ﬁ1p

BZp_ﬂlp 2
X (=sinf'X+ncosf'y) (ai,<a’'<azy; Pi,<BPBay)
(r=1,...,Ni1; s=1,...,No)

B (¢/.8) =

X Us—l(

(36)

[Cl' azp + aip
azp —Lllp 2

el =
1- a’ -
azp — aip 2

2 ’_ BaptBip
T‘Y_l (BZp‘ﬁlp I:ﬁ 2 ])

B/ (@, B) = U,_l(

|

(ncosB'X +sinB'y) (37)
\/1 ~ ( g - an+ﬁ1p])2
Bap=Pp 2
(CllpS o =azp; ,Blp <ﬁ’ <ﬁ2p)
(r: 1,...,N12; s = 1,...,N22)
where
tan ¢,
Bip = arctan(ﬁ) (38)
n
tan ¢,,
Bap = arctan(—zl) » (39)
n

and where ¢, and ¢,, are the angles defined in Fig.2(e). The
coordinates «’ and 8’ of (36) and (37) are the stretched polar
coordinates defined in (32) and (33).

The basis functions for the circular arc of Fig. 2(d) can be
obtained as a particular case of (36) and (37) when n = 1,
aip =Pi1p, A2p =P2p, ﬁlp =P1p, ﬁZp =P2p, a/zp/ and ,B/ =90/
(where p” and ¢’ are the polar coordinates defined in (28) and
(29)).

In the case of the elliptical sector of Fig. 2(g), the basis
functions proposed are

Tr—l (%l;)
’ 2
1-(£)

B (o, B) =

o (=55 ]
(&)

aop

1 S s ’ ﬁZ,D +ﬁ1p
X sin 7+,32p—,31p( _ > )}
2
" \/1_(ﬁ2p Eﬁlp [ﬁ R ) (=sinf'&+ncos B§) (40)

(O <a'< aop; ,Blpgﬂ’gﬁZp)
(I': 1,...,N11; s = 1,...,N21)

’ ,\2 , ﬁ _1
w2 -] )

Op aop aop

s s y _ BoptBip
cos [ > T Bpny (ﬁ 5 )]

\/1_(/3sz51,, [ﬂ’ — ﬁzv;ﬂlp])z

X (ncosB'X + sinB'y) (0 <@ <agp; Bip <P <P2p) (41)
(}’: 1,...,N12; S = 1,...,N22)

X

where the coordinates o’ and 8’ have been defined in (32) and
(33), and where B, and B,, have been defined in (38) and
(39).

As in the case of Fig. 2(d) in relation with (36) and (37),
the basis functions for the circular sector of Fig. 2(f) can be
obtained as a particular case of (40) and (41) when n = 1,

aop =Pop, Bip =P1p, Bop =P2p, @'=p’ and B’ =¢’ (p’ and ¢’ are



IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. XX, NO. YY, MARCH 2019 8

the polar coordinates defined in (28) and (29)). In the particular

_m )

case of the circular sector, the factor (a’ /aop) Pap~Pip and
N . ;. Butbiy

the sinusoidal functions of [ + sz—ﬁlp (B > )] have

been included in (40) and (41) to accommodate the behavior of
the current density (electric and magnetic) far from the edges
of the circular sector in accordance with the magnetic wall
model of a microstrip circular sector proposed in [24], just as
it was done in [13] for a circular microstrip patch.

C. NUFFT of the basis functions

Eqns. (7) and (8) show that the computation of the MoM
matrix entries in the spectral domain requires the knowledge
of the 2-D discrete Fourier transforms J’,’f’d(kxm,kyn) and
MP4 e, kyn). The Fourier transforms of the edge singularity
basis functions introduced in (24), (25), (30), (31), (34) to (37),
(40) and (41) cannot be obtained in closed-form, and this is
an important drawback since the spectral domain MoM loses
all its efficiency when the 2-D Fourier transforms of the basis
functions are not available in closed-form. In this subsection
we show how the 2-D discrete Fourier transforms of all the
edge singularity basis functions introduced in Subsection II.B
can be numerically obtained in an efficient way by means of
the NUFFT algorithm.

Let FPl(x,y) represent any of the two components of
JP(x,y) and M%{(x,y). In the case of the basis functions for
the patch/aperture of Fig.2(a), the discrete Fourier transform
of Fl(x,y), Fﬁ?’d(kxm,ky,,), would be given by (see (10) and
(1)

— eI kotthore) J(kwxmkw)oc +Ly [ P00 o
Fr‘ (kxm, k}n) - Frx ()C sy )

x ¢ I(ko¥ +hov) e_J{m[M]M[M]}dX']dy’. (42)

In order to numerically carry out the integral of (42), we
are going to sample the integrand in the values of x’ and y’
given by

/

Vp
Vp==Lp+t 5E Ay (=0, N,= 1) (43)
AI
Up—l(y)+—+Axlp] (44)
(i=0,....,Ny—1; j=0,....Ny— 1)

where Ay), = 2L,/N, and Axl’.p = 2l,,(ylfp)/Nx (Ip(y") was de-
fined in (27)). Then, the integral of (42) can be approximately
computed by means of the equation

k=35 ¢

i=0 j=0

—i{m 2”(le+“’°)
pa (ka0 +03,)
X Fr{(x; 0 vip) €710 0% 00

— d _J(kAOXOC +kx0yoc)
/ ’
Frg ——Ax, Ay,

b

+nlm}} (45)

In practice, the numerical computation of 1"“’ 7 and A;’l’r’ 7

requires to truncate the infinite summations of (7) and (8)

within the interval —M/2 < m,n < +M/2. For these particular
values of m and n, (45) can be rewritten as

NT—l
Fmny ~ 37 ype ) (—M/2<m, n<+M/2) (46)
k=0
where
e J (kx0Xoe +Ky0Yoc ) -
Yk(i.j) =TAX Ay, Fri (X35 Yip)
x edkosythot) k=0, Np—1) (@47
2m(x.,  + Xoc
Fikii ) —¥ (k=0,....Nyr - 1) (48)
27 (¥}, + Yoc)
Vi, j) ZT (kZO,...,NT— 1) (49)
and where k(i, j) = i+N,j(i=0 Ny—1; j=0,...,N.—1),

and Ny = N,N,.

The expression (46) is ready for the use of the NUFFT of
type 1 as it appears in [17, Eqn. (1)], which can be efficiently
implemented by means of the algorithm shown in [17, page
448]. A FORTRAN code for this algorithm is available at the
internet link [25].

In the case of the patches/apertures of Figs. 2(b), (d) and
(), F?4* (Kym» ky) would be given by

e_j(k;()xoc+kyo)7oc) f ;nax,p [f
ab o

7
min,p Spmin,p

e s
Frs™ (K, kyn) = Fri (o', ¢)
% e—j(kxop’ cos @’ +kyop” sin 1,0’)

S {m[ (o i) ]+n[ (0 sing ) ]}

X e ¢’ ]p' dp' (50)
where (pmmp mdxp) = (P1p,P2p) in the case of Figs. 2(b)
and (d), (,Dmmp,pnmlx ») = (0,p0p) in the case of Fig. 2(f),
#inp Paxpy) = (0,2m) in the case of Fig. 2(b), and
(cp;nm,p,gq’nax!p) = (®1p, ¥2p) in the case of Figs.2(d) and (f).

If the variables p’ and ¢’ of the integrand of (50) are
sampled, it is possible to obtain an approximate expression
for (50) of the type shown in (46). The expressions of y, p
and v, would be in this case

e J (kxoXoe+hy0¥o0c )

Yk, j) =TP Ap, A, F}, (P,p,‘P]p)

X e~ ( ;()P,pcosso +k\oP,p sm‘PH,) (k — 0, o ,NT _ 1) (51)
2m(p;, cos ¢’ +Xoc
Uiiij) = ( L - 2 ) k=0,....,Nr—1) (52)
2 (P sin ¢, +Yoc
ViGi) = i — ) (k=0,....Nr—1) (53)
where
’ ’ p . .
,in=,0min!p +T+Ap[)l (l=0,...,Np—1) (54)
@ = Oninp +T”+A<,o;,j (j=0,....Np—1) (55
with AP (pmaxp - mmp)/Np’ A(,D ( maxp - ‘p;nin,p)/NQD’

and NT = NpN()p
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Finally, in the case of the patches/apertures of Figs.2(c), ()
and (), F7&(kym, kyn) would be given by

=pg.d e_j(kx()xoc+kx()}’0c) w;nax,p ﬁl/mx,p g , ,
Fre (kxm,kyn) = —bf f Fry (a 9ﬁ)
a . B
in,p ‘min,p

> e—j (kw@’ cos B’ +kyona’ sin ")

Zilm 2n(a’ cos B’ +xo0c) " 2r (e’ sinB’ +yoc)
X e J{ [ @ ]+ [ b ]}dﬁ’]q o dad (56)
where (a;ninp,a;naxyp) = (aip,asp) in the case of Figs. 2(c)
and (e), (a;nin’p,al’naxyp) = (0,a0p) in the case of Fig. 2(g),
(B;nin,p’ﬁ;nax,p) = (0,2m) in the case of Fig. 2(c), and

(ﬁmin,p’ﬁ;nax,p) = (B1p,B2p) in the case of Figs.2(e) and (g).

If the variables o’ and f’ of the integrand of (56) are
sampled, it is possible to obtain an approximate expression
of (56) in terms of these samples of the type shown in (46).
In this particular case, the expressions for vy, 4 and v, would
be

e_j (kx()xoc +ky0Yoc )

Yk, j) =TU 0/,",7 AOI; Aﬁ;ng(@fp,ﬁ;p)
x @ikl oy skanal, simy) (=0, Np 1) (57)
2m (@), cosf’; + Xoc
Higijy = (%, — ) (k=0,....Nr—1) (58
2m(n @, sinf’ + yoc
Vi) = ( b - 2 ) (k=0,....,Nr—1) (59)
where
@}, = Umin,p +Tp+Aa/pi i=0,...,Ny—1) (60)
/ / ﬁ;’ YA .
By Bioinp + == +AB,j  (j=0.....Ng—1) (61)

2

with A @)= (@ p

and NT = NaNB

- a:nin,p)/Nal’ Aﬁ; = (ﬂl/nax,p _ﬁ:nin,p)/Nﬁ’

III. NUMERICAL RESULTS AND VALIDATIONS

In all the results presented in this Section we have used
M = 100, which means that 10000 terms have been retained
in the computation of the double infinite summations of (7)
and (8). Also, the number of samples employed for an accurate
determination of the NUFFT has been roughly Ny = 10000
(around 100 samples per coordinate). Finally, the number of
basis functions used per patch/aperture for the convergence of
the results ranges from N, = 4 to N, = 18. This implies that
small MoM matrices have to be inverted, and therefore, clearly
shows the advantage gained when using edge singularity basis
functions in the application of the spectral domain MoM.

Fig.3(a) shows results for the transmission through bandpass
FSSs made of arrays of apertures with bow-tie or barrel shape.
In this case the transmission refers to the ratio between the
total power transmitted and the incident power, even in the
presence of grating lobes, which means that

Transmission = Z Z Tpn
m n

In Fig. 3(a) the results obtained with the spectral domain
MoM described in Section II are compared with the results

(62)

I <k

published in Fig. 4 of [15], and with results obtained with
the commercial software CST. Excellent agreement is found
among the three sets of results when four basis functions of the
type shown in (24) and (25) are used in the approximation of
the magnetic current density on the apertures. We can confirm
that our MoM software is around 80 times faster than CST
in a laptop computer with an Intel Core i7-4790 processor
at 3.6 GHz, four cores and 32 GB of RAM. Fig. 3(b) shows
the convergence of the results of Fig. 3(a) as we increase the
number of basis functions used in the application of MoM.
The results obtained with three basis functions are nearly
coincident with those obtained for four basis functions, which
indicates the fast convergence provided by the edge singularity
basis functions.

0 ==
2 7§l
= 5
=5r K
£ -104 1
7]
= —MoM (NUFFT)
e x CST
-157 + Schuchinsky 2006 1
4 6 8 10 12 14
Frequency (GHz)
(@
0
)
=
= -
o
‘B
.2 ,
g 104 =N =N =l
g
< xN =1;N_=2
= . 1 21
_15 _I‘\IIIZI;N‘ZIZ:S ]

4 6 8 10 12
Frequency (GHz)

14

(®)

Fig. 3. (a) Transmission (dB) through two free-standing bandpass FSSs made
of apertures with bow-tie shape and barrel shape. Our results (solid lines)
are compared with the results presented in [15, Fig. 4] (+), and with results
provided by CST (X). (b) Convergence of the results shown in (a) with respect
to the number of basis functions of the type shown in (24) when applying
the spectral domain MoM with NUFFT. Parameters: a = 14.4 mm; b = 17.26
mm; 2L = 14.96 mm; d; = 3c¢; = 1.92 mm (bow-tie); ¢ = 3f] = 1.92 mm
(barrel); hy = hy = 0; bine = 45°; @;.= 90°; magnetic field of the incident
wave along the y direction (TM polarization); Nj; = 1 and Na; = 3 in (a);
N2 = Ny = 11n (a) and (b).
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Fig. 4(a) shows our spectral domain MoM-NUFFT results
for the transmission of the fundamental Floquet harmonic
m = n = 0 through a bandpass FSS consisting of a periodic
array of circular ring apertures. In the generation of these
MoM-NUFFT results we have used the basis functions of
(30) and (31) to approximate the magnetic current density on
the rings. In Fig. 4(a) our MoM-NUFFT results are compared
with the results plotted in Fig. 2. of [26], and with results
provided by CST. Excellent agreement is noticed between our
results and CST results. Good agreement is found between
our results and those of [26] for frequencies below the first
Wood’s anomaly (occurring for (fb)/c = 1), but the results of
[26] are far from the MoM-NUFFT results and the CST results
when (fb)/c > 1.1. This is to be expected since only one basis
function without edge singularity was used in [26] to model
the magnetic current density on the aperture (which justifies
why the results of [26] do not match those of CST, even
when (fb)/c < 1.1), and this single basis function is unable
to approximate the variations of the magnetic current density
when (fb)/c > 1.1, i. e., at frequencies for which the ring is
several wavelengths long. This is better explained in Fig. 4(b)
where we plot the convergence of the transmission through
the FSS with respect to the number of basis functions used in
the approximation of the magnetic current density. Note that
three basis functions suffice to provide excellent results for the
transmission when (fb)/c < 1.1, but this is not the case when
(fb)/c > 1.1, where the results obtained with just three basis
functions for the azimuthal component of the magnetic current
density are not correct. Better results are obtained when the
number of basis functions for the azimuthal component of
the magnetic current density is increased up to 11, but three
additional basis functions for the radial component of the
magnetic current density are required to achieve complete
convergence. When 14 basis functions are used, we have
noticed that our MoM software is around 50 times faster than
CST in the laptop computer mentioned above.

In Fig. 5 we plot the phase of R,, (see (14)) for a linear
polarization reflectarray element consisting of three parallel
dipoles. Our MoM-NUFFT results are compared with CST
results presented in Fig. 3 of [9], and excellent agreement is
found. The edge singularity basis functions of (24) and (25)
have been used in the approximation of the electric current
density on the dipoles, and we have found that four basis
functions per dipole suffice to achieve convergent results in
the values of /Ry,, which is in agreement with the results
shown in the convergence plots of Fig. 2.a of [9]. It turns
out that for this particular case, the discrete 2-D Fourier
transforms (see (10) and (11)) of the basis functions (24)
and (25) can be obtained in closed-form in terms of Bessel
functions [12]. So, we have implemented two codes for the
spectral domain MoM of (1), (3), (5), (7) and (12), one in
which the 2-D Fourier transforms are computed in closed
form, and another one in which the 2-D Fourier transforms
are computed by means of the NUFFT. When generating
the results of Fig. 5, we have found that the code based on
closed-form Fourier transforms is only 15% faster than the
code based on the NUFFT. In order to explain this small
difference, we have to realize that the code based on closed-

1 ;
—MoM (NUFFT)
x CST
0.8F ; U |- -Rodriguez-Ulibarri 2017 Fig 2b (O)

0.75 1

0.25 1.25
(fb)ec
(@)
1 ==N;;=1; Ny =3; Nj7=Ny,=0
=+ N, =15 Ny =115 Nj,=Np,=0
08, N e
—0.67
—04r P21 :Il
|
w2 O 3
’ TE Pu \
0 R
0.25 0.5 0.75 1 1.25
(fb)c

(®)

Fig. 4. (a) Transmission (|S 12| = \/T_oo) in natural units through a bandpass
FSSs made of an array of circular ring apertures on a dielectric substrate. Our
results (solid line) are compared with the results presented in [26, Fig. 2.b,
0] (dashed line), and with results provided by CST (X). (b) Convergence of
the results shown in (a) with respect to the number of basis functions of the
type shown in (30) and (31) when applying the spectral domain MoM with
NUFFT. Parameters: a = 1.5 mm; b = 3 mm; p;;= 0.5 mm; p,;= 0.65 mm ;
hy =04 mm; g, =5; tand; = 0; hy = 0 mm; Gy = 0°; electric field of the
incident wave along the y direction; N1 = 1, No; =11, Njp =1 and Nyp =7
in (a).

form Fourier transforms computes the Fourier transforms in
a sequential way, and that the computation of all the Bessel
functions needed in (7) is lengthy. However, the code based
on the NUFFT provides all the required Fourier transforms
of (7) in just one shot. So, the computational efficiency of the
NUFFT algorithm counterbalances the mathematical efficiency
introduced by the availability of analytical Fourier transforms.
This statement implies that the spectral domain MoM-NUFFT
code is competitive with the traditional spectral domain MoM
of [2] in the cases where the Fourier transforms of the basis
functions are available in closed-form.

In Flg 6 the phases of RRHCP,RHCP and RLHCP,LHCP (see
(15)) are plotted for a circular polarization reflectarray element
consisting of two concentric split rings. These phases are used
in [11] to design a dual-band circular polarization reflectarray.
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100 ‘ ‘ ‘ ‘
- -10.7 GHz MoM-NUFFT]
0r —10.4 GHz MoM-NUFFT]|
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Fig. 5. Phase of Ry, for a reflectarray element made of three parallel dipoles
on a two-layered substrate. The phase is plotted as a function of the length
of the longer dipole 2L;. Our results (solid and dashed lines) are compared
with the CST results shown in [9, Fig. 3] (+, *, X). Parameters: a = b = 16.5
mm; L; = 0.7Ly; s 45 mm; w = 1 mm; Ay = 3 mm; &, = 1.067;
tand; = 0.0002; hy 0.508 mm; &, = 3.38; tand, = 0.005; 6 = 0°;

A comparison is carried out between our MoM-NUFFT results
and the CST results published in Fig. 7.b of [11], and excellent
agreement is found. Our MoM-NUFFT results have been
obtained with the circular arc version (7 = 1) of the basis
functions of (36) and (37) in the approximation of the electric
current density on the arcs. Convergence results have been
obtained with just four basis functions per circular arc, which
is in agreement with the results shown in Fig. 7.b of [11]. As
an additional proof of the efficiency of the spectral domain
MoM-NUFFT approach of Section II, we have compared the
CPU time required by this approach to generate the results of
Fig. 6 with the CPU time required by the Hankel transform
approach introduced in [11] (which proved to be around 16
times faster than CST for the structure analyzed in Fig. 6,
according to the results of Table I of [11]). The comparison
indicates the MoM-NUFFT approach is around 5 times faster
than the Hankel transform approach. Also, whereas the Hankel
transform approach of [11] is especially tailored for the
analysis of periodic structures in which the unit cell only
contains concentric circular arcs, the MoM-NUFFT approach
can be applied to a much wider variety of geometries as shown
in Fig.2.

Fig. 7 shows the isofrequency dispersion contours of a
periodic array of square patches with tilted slices. The unit cell
of this periodic structure was used in [27] to design a printed
patch tensor holographic impedance surface. In Fig. 7 our
MoM-NUFFT results are compared with the full-wave simu-
lation results appearing in Fig. 7 of [22]. Excellent agreement
is found between both sets of results at all frequencies. The
basis functions of (24) and (25) have been used to approximate
the electric current density on each of the two trapezoids
comprising the square patch with tilted slice. In order to obtain
convergent results in the application of the MoM-NUFFT, 18
basis functions per trapezoid were used.

In Fig.8 a color map is shown for the equivalent impenetra-
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Fig. 6. Phase of Rrucp.rucp and Ryncp,Lucp for a reflectarray element made
of two concentric split rings on a one-layered substrate. The phase is plotted
as the rotation angle of the inner ring «;. The plane y’ — 7' is a mirror
symmetry plane for the outer rings. Our results (solid and dashed lines) are
compared with the CST results shown in [11, Fig. 7.b] (+, X). Parameters:
a=>b=>5mm; p;;=p;,= 1.2 mm; py;=pyy= 1.4 mm; p;3=p4= 1.85 mm;
P23=pp4= 2.05 mm; @y — @11=0yn — P12=Pa3 ~ P13=Pa — P14= 150.4°;
h1 =0.787 mm; g, = 2.2; tand; = 0.0009; hy = 0 mm; Gjpe = 30°; ;.= 0°;
f =29.75 GHZ; N11 = 1, N21 = 3, N12 = N22 =1.
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Fig. 7. Isofrequency dispersion contour for a periodic array of square
patches with tilted slices on a one-layered substrate (kya = kpsw cosa a and
kya = kpsw sina a). Our results (solid lines) are compared with the full-wave
simulations of [22, Fig. 7.b] (x). Parameters: a = b = 3 mm; 2L = 2.8 mm;
¢y = 048 mm; d; = 2.09 mm; s = 0.2 mm; ~; = 1.27 mm; &, = 10.2;
tand; = 0; hp = 0 mm; Ny; = Nay = Nig = Nyp =3.
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ble reactance of a periodic array containting two half-elliptic
patches separated by a slot in the unit cell. This is the scalar
equivalent impenetrable reactance seen from the external side
by a surface wave propagating along the positive x direction of
Fig. 1(b) [7]. In Fig. 8 the results for the reactance are plotted
as a function of the axial ratio between the minor semi-axis
and the major semi-axis of the half-ellipses, and as a function
of the tilting angle of the slot. A similar element based on
a circular patch with a tilted slice was used in [6] to design
a circularly polarized MTS antenna. In fact, impedance color
maps similar to that of Fig. 8 are shown in Fig. 12 of [6]
where the impedance is plotted as a function of the radius of
the sliced circular patches, and as a function of the tilting
angle of the slices. Another similar MTS antenna element
consisting of a tilted elliptic patch is studied in [7] where the
impedance is plotted as a function of the ellipses axial ratio,
and as a function of the ellipses tilting angle (see Fig. 13 of
[7]). The slotted elliptic patch studied in Fig. 8 can be viewed
as a hybrid between the sliced circular patch of [6] and the
elliptic patch of [7], and it is proposed here as an alternative
element for the design of MTS antennas. In order to obtain the
results of Fig. 8, the basis functions of (40) and (41) have been
used in the approximation of the current density on the half-
ellipses where ¢,; — ¢;;= 180° (i. e., the half ellipses have
been treated as elliptic sectors). We have checked that seven
basis functions per half-ellipse suffice to achieve convergence
in the application of the spectral domain MoM-NUFFT. The
generation of the results of Fig. 8 has required the computation
of 20000 different MoM matrices, and this has required around
10 hours of CPU time in the laptop computer mentioned above.
This indicates the spectral domain MoM-NUFFT can be used
as a powerful numerical tool for the design of MTS antennas.

180
220
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180 ~
160 =
140
120
100

¥ (deg)

by /ag,

Fig. 8. Color map representing the equivalent impenetrable reactance X of
(20) for a periodic array of half-ellipses separated by a slot on a one-layered
substrate. X, is represented as a function of the axial ratio of the ellipses and
its rotation angle ¥. The direction of wave propagation is a= 0°. Parameters:
a=>b=3mm; ay = ap = 1.3 mm; by = bpy; s = 0.2 mm; h; = 3
mm; &, = 9.8; tand; = 0; hp = 0 mm; f = 11 GHz; Nij = 2; Nyy = 3;
Nip =Np =1

IV. CoNcLUSION

In this paper the authors introduce an efficient spectral
domain MoM approach for the analysis of a wide variety of

multilayered periodic arrays of patches and apertures. The unit
cell of these periodic arrays may contain either patches or aper-
tures with the shape of a surface limited by two parallel lines
and two arbitrary curves, with the shape of circular or elliptic
rings, circular or elliptic arcs, and circular or elliptic sectors.
Basis functions accounting for edge singularities are proposed
for the approximation of the electric/magnetic current density
on the patches/apertures of the periodic structures since these
basis functions ensure a fast convergence of MoM with respect
to the number of basis functions, and therefore, an efficient
implementation of MoM. Since the 2-D Fourier transforms of
these basis functions is not available in closed- form and is
needed in the application of the spectral domain MoM, these
2-D Fourier transforms are numerically computed by means of
the NUFFT algorithm in a fast and accurate way. The spectral
domain MoM-NUFFT approach proposed is applied to the
analysis of FSSs, and to the characterization of reflectarray
antenna elements and MTS antenna elements. Comparison is
carried out with results previously published in the literature
and with results provided by commercial software CST, and
good agreement is found in all cases. The combined use of
the edge-singularity basis functions and the NUFFT in the
application of the spectral domain MoM has made it possible
to implement a code which is between 50 and 80 times faster
than CST, and which is only 15% slower than the standard
spectral domain MoM approach used for multilayered periodic
structures in which the 2-D Fourier transform of the basis
functions for the current density can be obtained in closed-
form.
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