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Abstract—Decomposition-based evolutionary multi-objective
optimization algorithms decompose a multi-objective optimiza-
tion problem into subproblems using a set of predefined refer-
ence points. The convergence is guaranteed by optimizing the
single-objective or simplified multi-objective subproblems while
the diversity is handled by the evenly distributed reference
points. Nevertheless, studies have shown that the performance
of decomposition-based algorithms is strongly dependent on
the Pareto front shapes due to unadaptable reference points
and subproblem formulation. In this paper, we investigate the
causes from three aspects and propose a learning-to-decompose
paradigm consisting of a learning module and an optimization
module to address these issues. Specifically, given the current
non-dominated solutions from the optimization module, which
can be any decomposition-based multi-objective optimizer, the
learning module learns an analytical model that characterizes
the estimated PF. Thereafter, useful information are extracted
from the learned model to guide the decomposition in the
optimization module. In particular, we utilize the learned model
to sample reference points compliant to the PF and formulate
subproblems with appropriate contours and search directions
according to the current status. We integrate the learning-to-
decompose paradigm with two most popular decomposition-
based evolutionary optimizers, i.e., MOEA/D and NSGA-III, and
compare them with several state-of-the-art adaptive methods.
The comprehensive experiments validate the effectiveness and
robustness of the proposed paradigm on 14 test problems with
various Pareto front shapes.

I. INTRODUCTION

This paper considers a multi-objective optimization problem
(MOP) formulated as:

minimize F(x) = (f1(x), · · · , fm(x))T

subject to x ∈ Ω
, (1)

where x = (x1, · · · , xn)T is an n-dimensional decision vector
and F(x) is an m-dimensional objective vector. Ω is the
feasible set in the decision space Rn and F : Ω → Rm is
the corresponding attainable set in the objective space Rm.
Given two solutions x1,x2 ∈ Ω, x1 is said to dominate x2

if and only if fi(x1) ≤ fi(x
2) for all i ∈ {1, · · · ,m} and

F(x1) 6= F(x2). A solution x ∈ Ω is said to be Pareto-optimal
if and only if there is no solution x′ ∈ Ω that dominates it.
The set of all Pareto-optimal solutions is called the Pareto-
optimal set (PS) and their corresponding objective vectors
form the Pareto front (PF). Accordingly, the ideal point is
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defined as zid = (zid1 , · · · , zidm)T , where zidi = min
x∈PS

fi(x)

for all i ∈ {1, · · · ,m}, and the nadir point is defined as
znd = (znd1 , · · · , zndm )T , where zndi = max

x∈PS
fi(x).

Evolutionary algorithm (EA), which is able to approximate
the whole PF/PS in a single run due to its population-based
property, has been widely accepted as a major approach for
multi-objective optimization. It is well-known that the balance
between convergence and diversity is the cornerstone of evo-
lutionary multi-objective optimization (EMO) [1]. According
to the ways of achieving this balance, the current EMO
algorithms are generally classified into three major categories,
i.e., Pareto- [2]–[4], indicator- [5]–[7] and decomposition-
based algorithms [8]–[10]. In particular, the decomposition-
based algorithm, especially since the development of multi-
objective EA based on decomposition (MOEA/D) [8], has
become an increasingly popular choice for posterior multi-
objective optimization. Generally speaking, the basic idea of
MOEA/D is to decompose the original MOP into a set of
subproblems, either in the form of single-objective optimiza-
tion problem [8] or simlified MOP [11], [12] and optimize
them in a collaborative manner. It provides a natural way to
achieve the balance between convergence and diversity, where
the convergence is guaranteed by the optimization of each
subproblem while the diversity is implicitly controlled by a
predefined set of evenly distributed reference points1. The
reference points and the subproblem formulation constitute
two key components of the decomposition.

As reported in a recent study [13], the performance of
decomposition-based EMO algorithms strongly depends on the
PF shapes. In particular, MOEA/D and its variants work well
on problems with regular PF shapes, especially when they
are in line with the unit simplex from which the the evenly
distributed reference points are sampled; otherwise it performs
poorly, e.g., PFs with disparate scales, discontinuous segments
or other complex shapes. This can be generally attributed to an
inappropriate decomposition, e.g., the distribution of reference
points is not compliant with the PF shape, or the search
direction and contours induced by the adopted subproblem
formulation are not adaptable to various problem landscapes.
In recent years, researchers have proposed methods to achieve
appropriate decomposition mainly in two aspects:
• A natural idea to achieve better decomposition is to adapt

the distribution of reference points to be compliant with
the PF shape. For example, Jiang et al. [14] proposed to

1In this paper, we use the term reference point without loss of generality,
although some other literatures, e.g., the original MOEA/D [8], also use the
term weight vector interchangeably.
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use non-dominated solutions stored in an external archive
to fit an estimated PF in the form of

∑m
i=1 f

p
i = 1. There-

after, reference points are sampled from the estimated PF
so that the Hypervolume (HV) [15] is expected to be
maximized. Unfortunately, this method fails to estimate
complex PFs; and using the HV as the selection criterion
is highly sensitive to the choice of the worst point [16].
Gu et al. [17] proposed to use an equidistant interpolation
to estimate the PF. The reference points are periodically
updated according to the mean of several interpolation
points. However, since the piecewise linear interpola-
tion may fail to estimate highly nonlinear PFs and can
easily cause overfitting, the estimation will be largely
impaired by some outliers, which is not uncommon at
the early stage of the optimization. Recently, Gu and
Cheung [18] have developed a reference point generation
method based on self-organizing map (SOM) [19]. It
uses the objective vectors of recent solutions to train
a SOM network periodically. The reference points are
directly set as the weights of the neurons. However, this
method is computationally expensive since the training
of a SOM network requires to maintain a large external
archive (data intensive). In [20], Qi et al. proposed
to dynamically adjust the reference points at the late
stage of the optimization. Specifically, it maintains an
external population to estimate the density of solutions
with respect to each reference point. Reference points
in the most crowded regions are periodically removed
while new reference points are generated in the most
sparse regions by using objective vectors chosen from the
external population. In [21], Wang et al. developed a co-
evolutionary framework which co-evolves the population
and the reference points simultaneously. Although this
method improves the population diversity to a certain
extent, it can hardly maintain evenly distributed solutions.

• From another aspect, some researchers proposed to im-
prove the decomposition by adapting the existing sub-
problem formulations or developing new ones that are
suitable to the underlying problem landscapes. For ex-
ample, Wang et al. [22] analyzed the properties of a
family of frequently used subproblem formulations, i.e.,
Lp method, and proposed a Pareto adaptive scalarizing
approximation to approximate the optimal p value adap-
tively. In [23], Yang et al. investigated the influence
of the penalty factor θ of the penalty-based boundary
intersection (PBI), a popular subproblem formulation in
MOEA/D. They suggested two adaptive penalty schemes
to enhance its search ability. Note that even though
these parameter adaptation methods seem to be intuitive,
they may not always generate appropriate contours. In
addition, the search direction is restricted by the corre-
sponding subproblem formulation. More recently, Jiang
et al. [24] developed two new subproblem formulations
that are self-adaptive according to the dynamics of the
optimization process. Although these newly developed
subproblem formulations are able to generate more con-
trollable contours to a certain extent, they do not take the
PF shape into consideration.

In this paper, we analyze the issues of inappropriate de-
composition from three aspects and propose a learning-to-
decompose (LTD) paradigm for to address these issues. The
LTD paradigm consists of two modules, i.e., the optimization
module that can be any decomposition-based EMO algorithm
and the learning module that periodically learns an analytical
module characterizing the estimated PF. More specifically,
by using the current non-dominated solutions from the op-
timization module as the training data, the learning module
employs Gaussian process (GP) regression [25] to learn the
model of the estimated PF, from which, useful information are
extracted to: 1) sample effective reference points compliant
to the estimated PF shape; and 2) formulate subproblems,
single-objective in particular, by which the population can
be guided toward to the true PF. Note that the reference
points and the subproblem formulation, derived from the LTD
paradigm, can be readily used in any decomposition-based
EMO algorithm. Comprehensive experiments on a series of
benchmark problems with various PF shapes fully demonstrate
the effectiveness of our proposed LTD paradigm.

The remainder of this paper is organized as follows. Sec-
tion II and Section III describes the motivation and technical
details of our proposed LTD paradigm step by step. Section IV
provides the setup of the experiments, and the performance
of our proposed method is then validated and discussed
in Section V. Finally, Section VI concludes the paper and
discusses the future work.

II. MOTIVATIONS

This section develops our motivations of the LTD paradigm
by analyzing difficulties encountered by MOEA/D, a repre-
sentative decomposition-based EMO algorithm, when solving
problems with various characteristics.

In the past decade, we have witnessed the significantly
growing interests in the development of MOEA/Ds, given their
promising results on a variety of problems, e.g., problems with
complicated PS [26] and many objectives [9], combinatorial
optimization problems [27], and applications like antenna
design [28], electrical power production [29] and commu-
nity detection in networks [30]. However, more and more
researchers have noticed that MOEA/D becomes less effective
or even completely fails when solving problems with complex
PF shapes [13]. Generally speaking, this can be attributed to
three major reasons.
• Firstly, the reference points, which are evenly sampled

on a unit simplex by default, play an essential role
in MOEA/D. As shown in Fig. 1(a), each reference
point corresponds to a reference vector originated from
the ideal point. The optimum of each subproblem (i.e.,
a Pareto-optimal solution), with respect to a reference
point, is expected to be located at the intersection between
the corresponding reference vector and the PF. Note that
the evenly sampled reference points work well when the
PF shape is perfectly in line with the unit simplex like
PF1 shown in Fig. 1(a); otherwise, the distribution of
the obtained solutions might become unsatisfactory. For
example, we can observe an undesirable concentration of
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Fig. 1: (a) Intersections between the reference vectors and PFs of different shapes; (b) Contours of TCH and PBI with θ = 5;
(c) Contours of PBI with θ = 1 and its variant.

the expected Pareto-optimal solutions in the knee region
of PF2, which has a sharp convex shape. As for PF3,
which consists of two disconnected segments, some of
the reference points have no intersection between the
corresponding reference vectors and the PF, thus might
not end up with desirable Pareto-optimal solutions.

• Secondly, as discussed in [31], the search dynamics of
MOEA/D is affected by the shape of the contours induced
by the corresponding subproblem formulation. Fig. 1(b)
presents the contours of two widely used subproblem
formulations [8], i.e., Tchebycheff (TCH) and PBI, with
respect to two different reference points. As shown in
this figure, a contour divides the objective space into two
subspaces, where objective vectors lying in the subspace
covering zid are superior to those in the other subspace in
terms of their function values of the corresponding sub-
problem. Therefore, the shape of the contours determines
the superiority between different solutions. In particular,
the opening angle of the contours of TCH is π/2; while
for PBI, it is controlled by its penalty factor θ, where we
use θ = 5 as recommended in [8]. Since these are fixed
beforehand without considering the PF shape, it might
lead to an inappropriate comparison between solutions.
For example, as shown in Fig. 1(b), objective vectors z3

and z4 are closer to the PF than z1 and z2, but z3 is
inferior to z1 in terms of the TCH function value and z4

is inferior to z2 in terms of the PBI function value.
• Last but not the least, the subproblem formulation also

determines the search direction of the corresponding
subproblem. For example, as shown in Fig. 1(b), the
search directions of both TCH and PBI are opposite to the
corresponding reference vectors, denoted by λ1 and λ2.
Let us consider another example shown in Fig. 1(c) where
the blue solid line represents the contour of PBI functions
with θ = 1, which provides a larger opening of the
contour. It has been discussed in [32] that a larger opening
angle of the contours contributes to better convergence
but may be harmful to the population diversity. For the
given reference point in Fig. 1(c), it is desirable that
the corresponding subproblem finds the Pareto-optimal
solution z5, i.e., the intersecting point between w2 and

the PF. However, according to the contour, we find that
z6, which is away from w2, has a better PBI function
value than z5. In this case, more than one subproblem
may have a risk to end up with the same superior solution,
thus damaging the population diversity. But if we change
the search direction to be normal to the PF at z5, denoted
by λ3, while keeping the shape of the contour the same
as before (the red dashed line shown in Fig. 1(c)), the
optimal solution of this subproblem will still be z5. In
this paper, we argue that the search direction normal to
the PF is optimal for subproblem formulation.

According to the above discussions, to make MOEA/D
adaptable to problems with various characteristics, a natural
idea is to learn the characteristics of the estimated PF pro-
gressively during the optimization process. In the next section,
we will develop the LTD paradigm, based on which we are
expected to have: 1) a set of reference points compliant to the
PF shapes; and 2) a subproblem formulation with appropriate
contours and search direction normal to the PF.

III. PARETO-DRIVEN EVOLUTION ALGORITHM

The general framework of our proposed LTD paradigm is
given in Fig. 2. It consists of two interdependent modules:
optimization and learning. Specifically, the optimization mod-
ule is a decomposition-based EMO algorithm. The learning
module aims to characterize the PF via an analytical model.
Depending on the requirements of the optimization module,
useful information can be extracted from this analytical model
to guide the decomposition. In this paper, we start with
MOEA/D as the optimization module, and generalize the
applicability of the proposed LTD paradigm to NSGA-III later.
In particular, given MOEA/D as the optimization module, we
use the learned model to: 1) sample effective reference points
that are compliant with the shape of the estimated PF, and
2) formulate subproblems whose contours are suitable for the
problem landscapes and search directions are normal to the
estimated PF. In the following paragraphs, we will describe
each part step by step.
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Fig. 3: Illustration of GP regression process.

A. Modeling: PF Learning via Gaussian Process Regression

The major purpose of the learning module is to build a
model that characterizes the estimated PF. From this model,
useful information, e.g., normal vectors and curvatures of
the estimated PF, can be derived and used to guide the
optimization process. Specifically, this modeling process is
treated as a regression problem where the non-dominated
solutions in the current population are used as the training
data. Inspired by [33], we choose Gaussian process (GP) [25]
to build the regression model. There are two major reasons for
choosing GP: 1) it has the ability to quantify the variances of
the predicted outputs. In particular, these variances are used to
detect the discontinuous regions of the estimated PF; and 2) if
the mean and covariance functions are appropriately chosen,
we can derive the first and second derivatives of the predicted
mean which are finally used for calculating the normal vector
and curvature of the estimated PF.

As shown in Fig. 3, for each non-dominated solution
x, its m − 1 objective function values constitute the input
vector, denoted as zI = (f1(x), · · · , fm−1(x))T , while the
remaining objective function value serves the target, denoted
as zO = fm(x). Note that the mapping learned from this
model is one-to-one, given that there does not exist two non-
dominated solutions x1 and x2 whose m−1 objective function
values are identical whereas the remaining ones are not. To
keep the input space and output space in the same scale,
each element of zI and zO is normalized by the currently
estimated ideal and nadir points. Given a set of training data
D = {(ziI , ziO)|i = 1, · · · ,M}, GP regression aims to learn
a latent function g(zI) by assuming ziO = g(ziI) + ε, where
ε ∼ N (0, σ2

n) is an independently and identically distributed
Gaussian noise. For each testing input vector z∗I ∈ [0, 1]m−1,
the mean and variance of the target g(z∗I) are predicted as:

g(z∗I) = m(z∗I) + k∗T (K + σ2
nI)−1(zO −m(ZI))

V[g(z∗I)] = k(z∗I , z
∗
I)− k∗T (K + σ2

nI)−1k∗
, (2)

where ZI = (z1I , · · · , zMI )T and zO = (z1O, · · · , zMO )T .
m(ZI) is the mean vector of ZI , k∗ is the covariance vector

between ZI and z∗I , and K is the covariance matrix of ZI . The
predicted mean g(z∗I) is directly used as the prediction of z∗O,
and the prediction variance V[g∗] quantifies the uncertainty.
All in all, a sample on the estimated PF is represented as
z∗ = (z∗I , g(z∗I))

T .
A GP is specified by a mean function and a covariance

function. A prior knowledge of the mean function eases the
training of the hyperparameters and leads to better regression
results. Inspired by [22], we consider using the following
general assumption about the PF:

∑m
i=1 cifi(x)ai = 1

subject to ai > 0, ci > 0, i = 1 · · · ,m , (3)

where fi(x) is the i-th normalized objective function of a
Pareto-optimal solution. Accordingly, we set the mean function
as:

m(zO) = (
1−∑m−1

i=1 ciz
ai
I,i

cm
)

1
am . (4)

By letting a = ai and c = 1/ci where i = 1, · · · ,m, (4) is
further simplified as:

m(zO) = (c−
∑m−1
i=1 zaI,i)

1
a

subject to a > 0, c > 0
. (5)

This simplified mean function significantly reduces the number
of hyperparameters that need to be learned for GP regres-
sion, especially when having many objectives. Note that even
though this mean function might fail to accurately represent
some PFs with irregular shapes, the covariance function of
the GP can make it up. As recommended in [25], we use
the popular rational quadratic covariance function in this
paper. The hyperparameters are learned by maximizing the
log marginal likelihood:

log p(zO|ZI)

=− 1

2
(zO −m(ZI))

T (K + σ2
nI)−1(zO −m(ZI))

− 1

2
log |K + σ2

nI| −
M

2
log 2π.

(6)

From the learned model of the estimated PF, we can extract
useful information to guide the optimization process. In this
paper, we are particularly interested in the first and second
derivatives of the predicted mean, which can be used to obtain
the normal vector and curvature of a sample z∗ with respect
to the manifold of the estimated PF, i.e., zO − g(zI) = 0.
Specifically, the unit normal vector is computed as:

n∗ =(−
∂g(z∗

I )
∂zI,1√

1 +
∑m−1
i=1 (

∂g(z∗
I )

∂zI,i
)2
, · · · ,

−
∂g(z∗

I )
∂zI,m−1√

1 +
∑m−1
i=1 (

∂g(z∗
I )

∂zI,i
)2
,

1√
1 +

∑m−1
i=1 (

∂g(z∗
I )

∂zI,i
)2

)T

(7)
Note that the computation of the curvature depends on the
dimension of the estimated PF. In particular, the estimated
PF is a curve when m = 2, of which the curvature at z∗ is
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computed as:

κ∗ = −
d2g(z∗I )

dz2I

(1 + (
dg(z∗I )

dzI
)2)

3
2

. (8)

When m > 2, the estimated PF is a manifold, which has infi-
nite number of curvatures at z∗ in principle. Here we are only
interested in the principal curvatures, i.e., the maximum and
minimum curvatures. Let r(zI) = (zI,1, . . . , zI,m−1, g(zI))

T

be a regular parametrization of the manifold. Its second
fundamental form is written as:

II =




∂2r(zI)
∂zI,1∂zI,1

· n · · · ∂2r(zI)
∂zI,1∂zI,m−1

· n
...

. . .
...

∂2r(zI)
∂zI,m−1∂zI,1

· n · · · ∂2r(zI)
∂zI,m−1∂zI,m−1

· n


 . (9)

The principal curvatures at z∗ are the eigenvalues of II(z∗I).
Details of the computation of the normal vectors and curva-
tures can be found in [34].

B. Reference Point Sampling

As discussed in Section II, the originally evenly distributed
reference points along a unit simplex may lead to some
side effects for MOEA/D, especially when tackling problems
with irregular PFs. To address this issue, by using the PF
model learned in Section III-A, we develop a reference point
sampling method that is able to generate a set of reference
points widely distributed on the estimated PF. Specifically,
the reference points are sampled according to the following
three-step process:
• Step 1: Randomly generate 20N test input vectors in

[0, 1]m−1; and another 20N test input vectors within the
neighborhood of the training input vectors ZI , where N
is the population size. All these 40N test input vectors
together with ZI constitute Z∗I . We use (2) to predict their
corresponding targets z∗O. Afterwards, Z∗I and z∗O are
combined to form a set of samples Z∗ on the estimated
PF.

• Step 2: Remove dominated samples and those whose
prediction variances are higher than a threshold 1.5 ×
max{

√
V[g(z∗I)]|z∗I ∈ Z∗I }. This helps remove samples

in the discontinuous regions or beyond the PF.
• Step 3: Trim the remaining samples in Z∗ by repeatedly

removing the one that has the highest density until the
size of Z∗ equals N . In particular, the density of a sample
z∗,i, i ∈ {1, · · · , |Z∗|}, is computed as:

density(z∗,i) =

|Z∗|∑

j=1,j 6=i

1

dist(z∗,i, z∗,j)
, (10)

where dist(z∗,i, z∗,j) is the Euclidean distance between
z∗,i and z∗,j . We choose this density estimation due to
its high efficiency to deal with a large set.

C. Subproblem Formulation

Subproblem formulation, which usually aggregates multiple
objectives into a scalar value function, is one of the most

important ingredients in MOEA/D. It determines the way
of fitness assignment for each solution and thus the search
direction of the optimization process. By utilizing useful in-
formation (normal vector and curvature in particular) extracted
from the learned model of the estimated PF, we formulate
the subproblem with respect to a reference point z∗ generated
in Section III-B as follows:

minimize y(x|n∗, z∗) = h(F(x)|n∗, z∗) = d1 + θ1d
2
2 + θ2d

4
2,

(11)
where

d1 = (F(x)− z∗)Tn∗

d2 = ||F(x)− z∗ − d1n∗||
. (12)

d1 is the signed Euclidean distance between z∗ and the projec-
tion of a normalized objective vector F(x) on n∗ calculated
by (7). d2 is the Euclidean distance between F(x) and its
projection. θ1 > 0 and θ2 > 0 are two parameters that control
the shape and distribution of the contours of h(F(x)|n∗, z∗).
The search direction of this subproblem is normal to the
estimated PF at z∗, as shown in Fig. 4. Accordingly, we expect
that the optimal solution to a subproblem is at the intersection
between the corresponding search direction and the PF.

Fig. 4 presents the contours of h(F(x)|n∗, z∗) = 0 under
different settings of θ1 and θ2, where the black curve is
the estimated PF and λ∗ represents the search direction of
the subproblem with respect to z∗. From this figure, we
can see that a contour is tangent to the estimated PF and
divides the objective space into two subspaces. In particular,
objective vectors in the subspace toward the search direction
λ∗ are superior to those in the other subspace in terms of the
subproblem formulation function. From Fig. 4(a) and Fig. 4(b),
we can observe that both θ1 and θ2 control the opening of
a contour. In particular, a smaller value of θ1 or θ2 will
lead to a wider opening. As discussed in Section II, a overly
wide opening might be harmful to the population diversity
since other solutions may have better values than the Pareto-
optimal solution at the intersection in terms of the subproblem
formulation function. Even worse, different subproblems can
share the same optimal solution. On the other hand, the
opening of a contour will be very narrow if θ1 or θ2 is set too
small. This reduces the search region of the corresponding
subproblem and may slow down the convergence progress.
Furthermore, from Fig. 4(a), it is worth noting that θ1 not
only controls the opening of the contour, but also the curvature
of the contour at the vertex. Thus, θ1 helps to fine-tune the
contour close to the vertex. In contrast, as shown in Fig. 4(b),
θ2 does not have any effect on the curvature of the contour at
the vertex.

From the above discussions, we see that θ1 and θ2 determine
the search behaviors of the corresponding subproblem. To
avoid a notorious parameter configuration by trial and error, we
develop the following method that automatically sets θ1 and
θ2, which takes the estimated PF shape into consideration:
• Firstly, θ1 is determined by letting the curvature of

the contour h(F(x)|n∗, z∗) = 0 at z∗ just larger
than the curvature (or principal curvatures) of the esti-
mated PF. In such a way, the better region covered by
h(F(x)|n∗, z∗) = 0 is widen without any overlapping
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Fig. 4: Contours of h(F(x)|n∗, z∗) = 0 under (a) different settings of θ1 when θ2 = 0; (b) different settings of θ2 when
θ1 = 0; (c) the adaptively determined θ1 and θ2 for z∗,1; (d) the adaptively determined θ1 and θ2 for z∗,2.

with the current estimated PF. As the curvature (or
principal curvatures) of the contour κ∗h = 2θ1 at z∗ (see
Appendix I), we set θ1 = max(κ

∗

2 , 0) + 0.1, where the
second term is added for the sake of estimation error.

• Given θ1, θ2 is determined by maximizing the opening
of the contour h(F(x)|n∗, z∗) = 0 constrained by no
overlapping with the current estimated PF except at
z∗. In other words, all other samples on the estimated
PF have worse function values than z∗ on h(z|n∗, z∗).
Accordingly, we set θ2 = max(min{θ2|h(z|n∗, z∗) >
0,∀z ∈ Z∗\z∗}, 0) + 0.1.

Fig. 4(c) and Fig. 4(d) demonstrate the contours of
h(F(x)|n∗, z∗) = 0 under the adaptively determined θ1 and
θ2 for z∗,1 and z∗,2. By doing so, we expect to formulate the
most appropriate subproblem according to the current status.

D. Incorporation with MOEA/D

Algorithm 1 presents the pseudo-code of MOEA/D-LTD,
which uses MOEA/D as the optimization module in the LTD
paradigm. At the beginning (line 1 to 3) of Algorithm 1), we
initialize the set of reference points Z∗ = {z∗,1, · · · , z∗,N}
using the Das and Dennis’s method [35] and obtain their
neighborhood structure B as described in [8]. Then, the
initial population S = {x1, · · · ,xN} are randomly sampled
from Ω and assigned to each subproblem with respect to
a reference point. During each iteration of the main while
loop, we firstly produce N offspring by parents selected
either within the neighborhood of each subproblem or from
the whole population controlled by a parameter δ, and add
all offspring into the set S together with and solutions in
S (line 6 to 13 of Algorithm 1). Thereafter, in line 19 of
Algorithm 1, an environmental selection mechanism is used
to select N elite solutions out of S and assign them to each
subproblem. In this paper, we adopt the stable matching-based
selection [10] to select surviving solutions to S. The learning
module in LTD paradigm lies between line 14 to line 18
of Algorithm 1. In the learning module, the PF model is
learned using all non-dominated objective vectors in S, from
which the reference points Z∗ are sampled together with their
unit normal vectors N∗ = {n∗,1, · · · , n∗,N} and curvatures

Algorithm 1: MOEA/D–LTD
Input: algorithm parameters
Output: final population S

1 Z∗ ← Generate N initial reference points;
2 B ← Compute the neighborhood structure of Z∗;
3 S ← Randomly generate N solutions and associate them

to each reference point;
4 generation← 0;
5 while generation < maxGen do
6 S ← ∅;
7 for each i ∈ {1, · · · , N} do
8 if uniform(0, 1) < δ then
9 E ← {xj |j ∈ B(i)};

10 else
11 E ← S;

12 Randomly select mating solutions from E to
generate an offspring x, Q← S ∪ {x};

13 S ← S ∪ S;
14 if ψb < generation/maxGen < ψe and

mod(generation, τ) == 0 then
15 Learn the PF model using all non-dominated

objective vectors in S;
16 (Z∗, N∗,K∗)←Sample N reference points

according to Section III-B, compute their unit
normal vectors and curvature;

17 Determine θ1 and θ2 for each subproblem
formulation according to Section III-C;

18 B ← Compute the neighborhood structure of Z∗;

19 S ←Select elite N solutions out of S and associate
them to each reference point;

20 generation++;

21 return S;

K∗ = {κ∗,1, · · · , κ∗,N}. Accordingly, the parameters θ1 and
θ2 for each subproblem formulation are determined and the
neighborhood structure B are recomputed. On the one hand,
to ensure there are enough meaningful training solutions, the
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learning module is activated after ψb of the maximum gener-
ations, denoted by maxGen. On the other hand, as frequent
adjustments of the reference points and search directions may
slow down the convergence rate [21], the learning procedure
is performed every τ generations and is deactivated after
ψe×maxGen generations. Note that the environmental selec-
tion in line 19 of Algorithm 1 employs different subproblem
formulations before and after the activation of the learning
module, i.e., TCH and the subproblem formulation proposed
in Section III-C, respectively. The algorithm terminates when
the maximum number of generations is met.

E. Incorporation with NSGA-III

NSGA-III [11] is another decomposition-based EMO algo-
rithm that formulates a subproblem as a simpler MOP with
respect to each reference point. Similar to MOEA/D, each
reference point in NSGA-III constructs a reference vector
originated from the ideal point, the opposite of which is
the search direction of this subproblem. Therefore, NSGA-
III also suffers from the first and third issues discussed in
Section II. To remedy these issues, we integrate the proposed
LTD paradigm with NSGA-III as the optimization module,
denoted by NSGA-III-LTD. In this case, the learning module
is used for sampling reference points and formulate the (multi-
objective) subproblems with corresponding reference vectors
that are normal to the estimated PF. Specifically, in the
association operation [36] of NSGA-III-LTD, the distance
between a solution and a subproblem is calculated as d2 in
(12). Same to MOEA/D-LTD, the learning module of NSGA-
III-LTD is performed every τ generations between ψb and ψe
of maxGen.

IV. EXPERIMENTAL SETTINGS

In this section, we describe the settings of our experimental
studies, including the algorithms in comparison, test problems,
parameter settings and performance indicators.

A. Test Algorithms

In the experimental studies, we compare MOEA/D-LTD
and NSGA-III-LTD with four state-of-the-art decomposition-
based EMO algorithms, including MOEA/D [8], MOEA/D-
PaS [22], RVEA∗ [37] and A-NSGA-III [36]. In particular,
MOEA/D-PaS is a variant of MOEA/D with Pareto-adaptive
subproblem formulation. RVEA∗ and A-NSGA-III are the
variants of RVEA [37] and NSGA-III with adaptive reference
points adjustment. The LTD paradigm is implemented based
on the GPLM toolbox [25]. For the test algorithms, we use the
published codes of MOEA/D by Zhang et al. [8], MOEA/D-
PaS by Wang et al. [22], RVEA∗ and A-NSGA-III by Tian et
al. [38]. All algorithms are implemented in Matlab.

B. Test Problems

To investigate the effectiveness of our proposed LTD
paradigm especially on problems with irregular PF shapes,
totally 14 test problems with different PF shapes are selected
from the WFG4x [21], DTLZ [39], WFG−1 [13] test suites,

TABLE I: Settings of Population Size and Maximum Number
of Generations.

Test Problem m N maxGen

WFG41 to WFG48 2 100 250

WFG41 to WFG48 3 91 400

WFG41 to WFG48 5 210 750

DTLZ5, DTLZ7 3 91 300

WFG1−1 to WFG4−1 3 91 250

WFG1−1 to WFG4−1 5 210 400

i.e., WFG41 to WFG48, DTLZ5, DTLZ7 and WFG1−1 to
WFG4−1. Different from [21], the i-th objective of WFG41
to WFG48 is scaled by i like the WFG test problems in [40].
For problems from WFG4 and WFG−1 test suites, the number
of decision variables n = k + l is set with k = 2 × (m − 1)
and l = 20 as suggested in [40], where m is the number of
objectives. For DTLZ test problems, n = m+r−1 is set with
r = 10 for DTLZ5 and r = 20 for DTLZ7 as suggested in
[39].

C. Parameter Settings

Referring to [11] and [21], the population size N and max-
imum number of generations maxGen of all six algorithms
are set according to Table I. The specific parameter settings
of MOEA/D-LTD of NSGA-III-LTD are listed as follows:
• Reproduction operators: The simulated binary crossover

(SBX) [41] and polynomial mutation [42] are adopted
for offspring reproduction. For the SBX operator, we set
the crossover probability pc = 1, the distribution index
ηc of MOEA/D-LTD and NSGA-III-LTD to be 20 and
30, respectively. For the polynomial mutation, we set
the mutation probability pm = 1

n and distribution index
ηm = 20.

• Neighborhood size for MOEA/D-LTD: T = 20.
• Probability of mating selection in the neighborhood for

MOEA/D-LTD: δ = 0.9.
• The beginning percentage of LTD procedure: ψb = 50%;
• The end percentage of LTD procedure: ψe = 80%;
• The interval to perform LTD procedure: τ = 20;
For fair comparisons, the common parameters of MOEA/D

and MOEA/D-PaS share the same settings with the MOEA/D-
LTD. Note that MOEA/D adopts PBI subproblem formulation.
Other settings of the algorithms in comparisons are kept the
same as in their original papers.

D. Performance Metrics

The inverted generational distance (IGD) [43] and HV
metrics are chosen to assess the performance of the algorithms.
Both the IGD and HV metrics evaluate the convergence and
diversity of a solution set simultaneously. A smaller IGD
or a larger HV typically indicates better convergence and
diversity. In particular, the IGD metric requires a reference
set of points evenly spread on the PF, whereas the HV metric
requires to specify a worse point, which is dominated by the
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nadir point. On the one hand, the HV metric is shown to be
sensitive to the specification of the worse point, especially for
irregular PF shapes [16]. On the other hand, as discussed in
[44], the IGD metric tends to favor a set of solutions with a
similar distribution to the reference set, which gets worse when
the number of objectives increases. Therefore, we generate
the reference set for each 2- or 3-objective test problem by
selecting 1,000 points from 1,000,000 randomly generated
samples on the normalized PF using the method introduced in
Section III-B. For 5-objective test problems, we set the worse
point to be (1.1, · · · , 1.1)T . Before calculating the IGD and
HV, the solution set obtained by each algorithm are normalized
by the same scales that normalize the PF into [0, 1]m. In the
experimental studies, each algorithm is run 31 times on each
test problem. The medians and interquartile ranges (IQRs) of
the IGDs and HVs are calculated and shown in the tables,
where the results of the best two algorithms are highlighted
in bold with dark and light gray backgrounds, respectively.
Meanwhile, the Wilcoxon’s rank sum test at a significant level
of 5% is performed to investigate whether the differences are
significant or not.

V. EXPERIMENTAL STUDIES

A. Performance Comparisons on Multiobjective Test Problems

The medians and IQRs of the IGD results on bi-objective
WFG41 to WFG48 test problems are presented in Table II.
As shown in the table, the proposed MOEA/D-LTD achieves
the best median IGDs on 7 out of 8 test problems, where
it also significantly outperforms all other algorithms ex-
cept for NSGA-III-LTD according to Wilcoxon rank sum
test. MOEA/D-LTD is beaten by RVEA∗ and A-NSGA-
III on WFG47 test problem. The IQR of IGDs obtained
by MOEA/D-LTD is smaller in 36 out of 40 comparisons,
suggesting that the leading performance of MOEA/D-LTD is
stable over different test problems. NSGA-III-LTD remains the
second best algorithms on 6 test problems and is only beaten
by MOEA/D, RVEA∗ and A-NSGA-III once.

The final solution set with the best IGDs obtained by
different algorithms on bi-objective WFG41 to WFG48 test
problems are shown in Fig. 5 and Fig. 6. As can be seen
from the figures, the PFs of WFG41 to WFG48 test problems
have difference characteristics. WFG41 test problem has a
classic concave PF shape, which is the most common PF
shape in the popular test suites, including DTLZ and WFG test
suites. Obviously, MOEA/D-LTD and NSGA-III-LTD obtains
the best solution setd in terms of both the convergence and
diversity. RVEA∗ and A-NSGA-III, which also dynamically
adjust the reference points, struggle to maintain evenly dis-
tributed solutions along the PF. MOEA/D with fixed reference
vectors suffers from the different scales of the objectives. In
addition, the final solution set obtained by MOEA/D are not as
close to the PF as the former mentioned four algorithms due to
the small opening of the contours induced by PBI subproblem
formulation. The final solution set found by MOEA/D-PaS
fails to cover the entire PF. On WFG42 test problem, which
has a convex PF, almost all algorithms tends to find solution
sets that concentrate on the center part of the PF except

for MOEA/D-LTD and NSGA-III-LTD. WFG43 and WFG44
have sharp concave and convex PFs, which lead to further
degeneration of the algorithms in caparisons and highlights
the strength of the proposed LTD paradigm. The reason why
MOEA/D-LTD is still able to maintain solutions widely spread
along the PF could be due to the widely spread reference points
together with the search directions normal to the estimated
PF. In contrast, the non-dominated sorting-based selection
of NSGA-III-LTD may weaken its ability to find solutions
in difficult regions of the PF [10]. In the case of WFG45
test problem with a PF of mixed shape and WFG46 test
problem with a linear PF, the leading performance of the
proposed MOEA/D-LTD and NSGA-III-LTD remain in terms
of both the convergence and diversity. WFG47 and WFG48
test problems have discontinuous PFs with three segments.
Note that MOEA/D-LTD is beaten by RVEA∗, A-NSGA-
III and NSGA-III-LTD on WFG47 test problem due to the
missing part on the third segment. We infer from the final
solution set obtained by MOEA/D-LTD that the subproblems
with respect to the reference points on the missing part are
assigned solutions on the tail of the second segment, which
are too close to the search directions. The performance pf
MOEA/D-LTD on WFG48 test problem is not affected. It is
worth noting that dominated solutions at the discontinuous
regions of the PFs are maintained by MOEA/D due to the
small opening of the contours.

The IGD results on 3-objective test problems are provided
in Table III. On WFG4x test suite, the median IGDs obtained
by MOEA/D-LTD and NSGA-III-LTD are the best on all 8
test problems except for WFG43 and WFG47, where RVEA∗

and A-NSGA-III obtains the second best median IGDs, re-
spectively. The IGD results on DTLZ5, DTLZ7 and WFG1−1

to WFG4−1 test problems are even better. MOEA/D-LTD
and NSGA-III-LTD show the lowest median IGDs and are
significantly better than any other algorithm in comparisons
except on DTLZ7 test problem, RVEA∗ obtains comparable
results. This strength of MOEA/D-LTD and NSGA-III-LTD
is owe to the LTD paradigm that adapts the decomposition
to the PF shapes in terms of both the reference points
and the subproblem formulation. Even though MOEA/D-PaS
adopts the Pareto-adaptive subproblem formulation, RVEA∗

and A-NSGA-III adjust the reference points dynamically, they
seem to be less effective on these test problems. Comparing
MOEA/D-LTD and NSGA-III-LTD, we find that the overall
performance of MOEA/D-LTD is better than NSGA-III-LTD,
where MOEA/D-LTD is significantly better on 7 out of 13 test
problems while NSGA-III-LTD wins on 4 test problems.

The final solution sets with the best IGDs obtained by the
six algorithms on 3-objective test problems are demonstrated
in Fig. 7 to Fig. 10. We can observe from Fig. 7 and Fig. 8
that when the PF of the test problem is convex or has convex
parts, e.g., WFG42, WFG44 and WFG48 test problems, the
performance of the MOEA/D, MOEA/D-PaS, RVEA∗ and
A-NSGA-III deteriorate significantly. Even on WFG41 and
WFG46, which has simpler PFs, these four algorithms struggle
to maintain evenly spread and well-converged solution sets.
While RVEA∗ maintains solutions that are moderately evenly
distributed upon the PFs of WFG41 and WFG43 test problems,
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TABLE II: IGD Results on Bi-Objective Test Problems.

Problem MOEA/D MOEA/D-PaS RVEA∗ A-NSGA-III MOEA/D-LTD NSGA-III-LTD

WFG41 1.499e-2(1.696e-3)↓− 2.137e-2(2.943e-3)↓− 6.256e-3(6.420e-4)↓− 7.838e-3(1.088e-3)↓− 4.825e-3(2.966e-4)+ 5.647e-3(5.594e-4)
WFG42 5.326e-2(6.397e-3)↓− 2.003e-2(3.455e-3)↓− 1.438e-2(1.074e-3)↓− 1.330e-2(2.679e-3)↓− 5.153e-3(4.183e-4)+ 6.635e-3(6.860e-4)
WFG43 1.605e-2(2.104e-3)↓+ 9.111e-2(1.500e-2)↓− 3.204e-2(5.502e-3)↓− 2.941e-2(7.422e-3)↓− 5.852e-3(1.184e-3)+ 2.435e-2(1.018e-2)
WFG44 1.790e-1(6.585e-3)↓− 6.817e-2(2.476e-2)↓− 6.475e-2(1.100e-2)↓− 8.918e-2(4.652e-2)↓− 4.147e-2(1.778e-2)≈ 4.151e-2(2.023e-2)
WFG45 1.329e-2(1.319e-3)↓− 2.527e-2(3.097e-3)↓− 6.832e-3(5.601e-4)↓− 7.673e-3(7.846e-4)↓− 4.861e-3(3.206e-4)+ 5.906e-3(1.206e-3)
WFG46 1.288e-2(2.610e-3)↓− 2.060e-2(2.979e-3)↓− 7.017e-3(1.170e-3)↓− 8.475e-3(1.411e-3)↓− 4.639e-3(3.511e-4)+ 6.227e-3(9.106e-4)
WFG47 2.851e-1(8.392e-3)↓− 1.215e-1(8.041e-2)↓− 6.172e-3(1.005e-3)↑+ 6.035e-3(1.269e-3)↑+ 8.970e-3(2.356e-3)− 6.836e-3(1.810e-3)
WFG48 1.210e-1(3.626e-1)↓− 3.494e-2(1.091e-2)↓− 1.099e-2(9.894e-4)↓− 8.038e-3(1.094e-3)↓− 6.033e-3(6.978e-4)+ 6.567e-3(1.191e-3)

According to Wilcoxon rank sum test, ↑, ↓ and ‖ indicate that the corresponding algorithm is significantly better than, worse than or similar to MOEA/D-
LTD, while +, − and ≈ indicate that the corresponding algorithm is significantly better than, worse than or similar to NSGA-III-LTD.
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Fig. 5: Final solution sets obtained by 6 algorithms with the best IGDs on bi-objective WFG41 to WFG44 test problems.

MOEA/D-LTD and NSGA-III-LTD tend to prefer solutions on
the boundaries of the PFs, which is good for exploring the
entire PFs, e.g., on DTLZ7 and WFG4−1 test problems. If we
give more credit to RVEA∗ in terms of population diversity, the
better IGD results of MOEA/D-LTD presented in Fig. 7 could
indicate better convergence and robustness. The PF of DTLZ5

test problem is degenerated to a curve, where the algorithms
that dynamic adjust or sample reference points according to
the estimated PF present obvious good performance since
the reference points are rearranged to the objective space
where the PF exists. Similar phenomena can be seen on
WFG47, WFG48 and DTLZ7 test problems whose PFs are
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Fig. 6: Final solution sets obtained by 6 algorithms with the best IGDs on bi-objective WFG45 to WFG48 test problems.

TABLE III: IGD Results on 3-Objective Test Problems.

Problem MOEA/D MOEA/D-PaS RVEA∗ A-NSGA-III MOEA/D-LTD NSGA-III-LTD

WFG41 6.866e-2(2.221e-3)↓− 1.051e-1(5.644e-3)↓− 6.144e-2(3.026e-3)↓− 6.725e-2(2.319e-3)↓− 5.408e-2(5.270e-4)+ 5.534e-2(6.888e-4)
WFG42 1.379e-1(4.901e-3)↓− 6.866e-2(7.779e-3)↓− 6.451e-2(8.170e-3)↓− 6.016e-2(1.377e-2)↓− 3.626e-2(1.232e-3)− 3.491e-2(1.506e-3)

WFG43 8.011e-2(7.047e-4)↓≈ 2.306e-1(2.597e-2)↓− 7.670e-2(5.255e-3)‖+ 8.103e-2(4.447e-3)↓≈ 7.462e-2(8.813e-3)+ 8.243e-2(7.661e-3)
WFG44 2.599e-1(3.753e-3)↓− 9.978e-2(1.682e-2)↓− 1.461e-1(3.665e-2)↓− 1.716e-1(3.004e-2)↓− 6.826e-2(1.249e-2)≈ 7.089e-2(1.712e-2)
WFG45 6.386e-2(1.508e-3)↓− 1.017e-1(3.551e-3)↓− 5.902e-2(1.607e-3)↓− 6.510e-2(4.888e-3)↓− 5.100e-2(6.467e-4)+ 5.239e-2(6.301e-4)
WFG46 5.365e-2(1.519e-3)↓− 7.149e-2(4.835e-3)↓− 5.231e-2(2.386e-3)↓− 6.028e-2(3.441e-3)↓− 4.141e-2(4.405e-4)+ 4.553e-2(1.293e-3)
WFG47 4.548e-1(3.861e-1)↓− 1.340e-1(8.357e-3)↓− 5.271e-2(1.846e-3)↑− 5.225e-2(2.221e-3)↑− 6.643e-2(1.121e-2)− 4.736e-2(2.792e-3)
WFG48 4.939e-1(4.451e-1)↓− 1.357e-1(1.841e-2)↓− 7.642e-2(1.073e-2)↓− 7.322e-2(1.069e-2)↓− 4.757e-2(7.144e-3)− 4.437e-2(1.915e-3)

DTLZ5 4.129e-2(5.991e-5)↓− 2.219e-2(1.112e-3)↓− 7.991e-3(6.487e-4)↓− 1.340e-2(1.810e-3)↓− 5.858e-3(3.983e-4)+ 6.946e-3(1.730e-3)

DTLZ7 8.047e-2(3.962e-4)↓− 2.994e-1(5.428e-2)↓− 4.030e-2(2.876e-1)‖≈ 4.620e-2(1.352e-3)↓− 4.011e-2(2.426e-3)≈ 3.936e-3(2.120e-3)

WFG1−1 1.202e-1(2.722e-1)↓− 4.555e-1(4.173e-2)↓− 1.378e-1(1.612e-1)↓− 4.839e-2(1.817e-3)↓− 3.863e-2(2.794e-4)− 3.691e-3(9.429e-4)
WFG2−1 7.451e-2(5.309e-4)↓− 8.439e-1(5.767e-2)↓− 5.797e-2(1.631e-3)↓− 9.555e-2(1.674e-2)↓− 5.261e-2(9.220e-4)≈ 5.271e-2(6.286e-4)
WFG3−1 6.479e-2(1.975e-4)↓− 4.737e-1(2.344e-2)↓− 4.594e-2(3.017e-3)↓− 5.336e-2(1.275e-3)↓− 4.046e-2(4.464e-4)+ 4.082e-2(5.687e-4)
WFG4−1 1.077e-1(3.313e-3)↓− 7.886e-1(7.087e-2)↓− 7.023e-2(6.462e-3)↓− 9.283e-2(9.550e-3)↓− 5.448e-2(1.114e-3)+ 5.496e-2(5.640e-4)

According to Wilcoxon rank sum test, ↑, ↓ and ‖ indicate that the corresponding algorithm is significantly better than, worse than or similar to MOEA/D-
LTD, while +, − and ≈ indicate that the corresponding algorithm is significantly better than, worse than or similar to NSGA-III-LTD.
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Fig. 7: Final solution sets obtained by 6 algorithms with the best IGDs on 3-objective WFG41 to WFG44 test problems.

discontinuous. WFG1−1 to WFG4−1 have PF shapes that
differ quite much from commonly used test problems, chal-
lenging both the reference points and subproblem formulation.
From Fig. 10, we can see that MOEA/D-PaS with so-called
Pareto adaptive subproblem formulation totally fail to find
solutions covering the PF. MOEA/D, RVEA∗ and A-NSGA-
III perform moderately better but struggle to maintain widely
spread solutions. In contrast, MOEA/D-LTD and NSGA-III-
LTD keep their good performance on these irregular PFs.

B. Performance Comparisons on 5-objective Test Problems
The HV results of the 6 algorithms on 5-objective test

problems are given in Table IV. For the WFG4x test suite,
MOEA/D-LTD achieves the highest median HVs on 6 out
of 8 test problems, where all four existing algorithms in
comparisons are significantly outperformed by MOEA/D-LTD
according to the Wilcoxon rank sum test. On test problems
where MOEA/D-LTD does not perform the best, i.e., WFG43
and WFG47, the proposed NSGA-III-LTD becomes the best
algorithm. It is worth noting that A-NSGA-III never beats

or achieves comparable results to NSGA-III-LTD on WFG4x
test problems, which shows the universal effectiveness of the
LTD paradigm even without specially designed subproblem
formulation. As for WFG−1 test problems, MOEA/D-LTD and
NSGA-III-LTD remain the best two algorithms on WFG1−1
to WFG3−1 test problems. Whereas, RVEA∗ and MOEA/D
achieves the best HV results on WFG4−1 test problem.

Fig. 11 to Fig. 13 demonstrate the final solution sets
obtained by the 6 algorithms with the best HVs on WFG41 to
WFG48 and WFG1−1 to WFG4−1 test problems. The ideal
and nadir points of WFG4x test problems are (0, · · · , 0)T

and (2, · · · , 2 ×m)T . From the objective value paths shown
in Fig. 11 and Fig. 12, we observe that MOEA/D-LTD and
NSGA-III-LTD are able to maintain widely spread solutions
on most of the test problems. Although their final solution
sets fail to cover the entire PF on WFG44 test problem,
the other algorithms perform even worse. MOEA/D, RVEA∗

and A-NSGA-III also obtain solutions that are widely spread
on the PFs of some WFG4x test problems. However, the
distribution of their final solution sets on some test problems,
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Fig. 8: Final solution sets obtained by 6 algorithms with the best IGDs on 3-objective WFG45 to WFG48 test problems.
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Fig. 9: Final solution sets obtained by 6 algorithms with the best IGDs on 3-objective DTLZ5 and DTLZ7 test problems.
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Fig. 10: Final solution sets obtained by 6 algorithms with the best IGDs on 3-objective WFG1−1 to WFG4−1 test problems.

TABLE IV: HV Results on 5-Objective Test Problems.

Problem MOEA/D MOEA/D-PaS RVEA∗ A-NSGA-III MOEA/D-LTD NSGA-III-LTD

WFG41 1.151e+0(3.654e-2)↓− 8.614e-1(1.248e-1)↓− 1.159e+0(1.800e-2)↓− 1.193e+0(1.664e-2)↓− 1.285e+0(6.470e-3)+ 1.231e+0(1.292e-2)
WFG42 1.553e+0(8.391e-3)↓− 1.585e+0(1.815e-2)↓− 1.563e+0(7.860e-3)↓− 1.552e+0(1.327e-2)↓− 1.607e+0(6.442e-4)+ 1.586e+0(3.592e-3)

WFG43 7.073e-1(5.194e-2)↓− 6.617e-1(5.461e-2)↓− 7.910e-1(1.164e-2)↓− 7.786e-1(1.416e-1)‖− 8.168e-1(1.562e-2)− 8.342e-1(1.825e-2)
WFG44 1.588e+0(3.012e-3)↓− 1.609e+0(1.038e-3)↓+ 1.592e+0(3.744e-3)↓− 1.588e+0(5.000e-3)↓− 1.610e+0(1.750e-4)+ 1.603e+0(1.923e-3)
WFG45 1.325e+0(1.399e-2)↓− 9.065e-1(5.460e-2)↓− 1.252e+0(1.517e-2)↓− 1.286e+0(1.622e-2)↓− 1.359e+0(9.294e-3)− 1.318e+0(1.278e-2)
WFG46 1.510e+0(7.133e-3)↓− 1.386e+0(1.053e-1)↓− 1.473e+0(8.151e-3)↓− 1.501e+0(1.034e-2)↓− 1.562e+0(2.162e-3)+ 1.518e+0(7.663e-3)

WFG47 8.895e-1(4.420e-1)↓− 8.302e-1(1.176e-1)↓− 1.254e+0(1.119e-2)↓− 1.310e+0(1.445e-2)‖− 1.303e+0(1.099e-1)≈ 1.334e+0(9.970e-3)
WFG48 1.541e+0(6.513e-1)↓− 1.564e+0(1.669e-2)↓− 1.552e+0(8.322e-3)↓≈ 1.551e+0(1.073e-2)↓− 1.604e+0(7.246e-4)− 1.557e+0(1.584e-2)

WFG1−1 8.631e-4(4.237e-4)↓− 0.000e+0(0.000e+0)↓− 2.283e-3(6.192e-4)↓− 2.352e-3(3.643e-4)↓− 3.646e-3(1.588e-4)≈ 3.644e-3(8.947e-5)
WFG2−1 3.719e-3(2.745e-3)↓− 0.000e+0(0.000e+0)↓− 8.175e-3(1.853e-4)↓− 8.919e-3(7.409e-4)↓− 1.236e-2(1.461e-3)+ 1.108e-2(1.516e-3)
WFG3−1 3.412e-3(2.663e-4)↓− 1.204e-3(3.329e-4)↓− 8.794e-3(7.907e-4)↓− 1.118e-2(9.254e-4)↓− 1.584e-2(1.775e-3)+ 1.328e-2(4.538e-4)
WFG4−1 1.340e-1(1.333e-2)↑+ 0.000e+0(2.545e-8)↓− 1.803e-1(8.635e-3)↑+ 1.082e-1(4.742e-2)↑+ 4.343e-2(6.051e-3)− 5.607e-2(9.745e-3)

According to Wilcoxon rank sum test, ↑, ↓ and ‖ indicate that the corresponding algorithm is significantly better than, worse than or similar to MOEA/D-
LTD, while +, − and ≈ indicate that the corresponding algorithm is significantly better than, worse than or similar to NSGA-III-LTD.

e.g., WFG42, WFG44, WFG46 and WFG48, can be very
poor. Besides, MOEA/D struggles to maintain all extreme so-

lutions. Even though MOEA/D-PaS performs better in finding
the extreme solutions, its population diversity is the worst
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Fig. 11: Final solution sets obtained by 6 algorithms with the best HVs on 5-objective WFG41 to WFG44 test problems.

among all 6 algorithms. When it comes to WFG−1 test
problems whose ideal point is (−1, · · · , 1 − 2 × m)T and
nadir points is (−1, · · · ,−1)T , the algorithms with dynamic
reference points adjustment or LTD procedure, which samples
reference points on the estimated PF, show clearly better
performance than MOEA/D and MOEA/D-PaS. MOEA/D-PaS
even cannot obtain well-converged solutions. Nevertheless, the
population diversity of RVEA∗ and A-NSGA-III are not as
good as MOEA/D-LTD and NSGA-III-LTD according to the
objective value paths shown in Fig. 13. Note that MOEA/D-
LTD performs the best on WFG46−1 test problem best as
demonstrated in Fig. 13 in terms of both the population
diversity and maintenance of extreme solutions. Thus, we
doubt that the worst point (1.1, · · · , 1.1)T used to calculate
the HVs are suitable for this discontinuous PF, which shows
MOEA/D and RVEA∗ are better than MOEA/D-LTD.

C. Parameter Studies of LTD Procedure

We setup three experiments to investigate the sensitivities
of the parameters in LTD procedure, i.e., the beginning per-
centage ψb, the end percentage ψe and the LTD interval τ .

MOEA/D-LTD is run on each bi-/3-objective test problem 21
times with different settings.

• The first experiment is on the beginning percentage ψb.
Given the settings of ψe = 90% and τ = 20, ψb
is set to be 10%, 20%, 30%, 40%, 50%, 60%, 70%,
80%, and 90%, respectively. Note that the setting of
ψb = ψe = 90% indicates that the LTD procedure
is never activated in the whole run. The median IGD
values of different ψb settings are given in Fig. 14.
As shown in the figure, the performance of MOEA/D-
LTD is insensitive to ψb on most of the test problems
as long as the LTD procedure is activated during the
optimization. It is worth noting that the IGD performance
on 3-objective WFG44 test problem is improved as ψb
increases. The reason could be that the non-dominated
solutions in the early stage of the optimization process
are not good enough to estimate the PF, thus misleading
the decomposition. However, when LTD procedure is
totally gone, the overall performance of MOEA/D-LTD
deteriorates significantly. The only exceptions are bi-
objective WFG47 test problem, where the subproblem
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Fig. 12: Final solution sets obtained by 6 algorithms with the best HVs on 5-objective WFG45 to WFG48 test problems.

formulation of MOEA/D-LTD misses some part the PF.
• The second experiment is on the end percentage ψe.

Given the settings of ψb = 50% and τ = 20, ψe is
set to be 60%, 70%, 80%, and 90%, respectively. The
median IGD values of different ψe settings are shown
in Fig. 15. Similarly, the performance of MOEA/D-LTD
is not that sensitive to ψe. Particularly, on test problems
where MOEA/D-LTD does not perform very well, the
variances of the median IGDs tend to be higher. It is
worth noting that the median IGD on 3-objective WFG48
test problem decreases significantly when ψe goes from
60% to 70% and keeps low as ψe increases. That is
because LTD procedure is deactivated before the PF
estimation is mature and the reference points are not
updated any longer.

• The second experiment is on the LTD interval τ . Given
the settings of ψb = 50% and ψe = 80%, ψe is set to
be 5, 10, 15, 20, 30 and 40, respectively. We present the
results of the median IGD values of different τ settings
in Fig. 16. As can be seen from the figure, the perfor-
mance of MOEA/D-LTD on most of the test problems

are not sensitive to the LTD interval τ despite some
special cases. In particular, bi-/3-objective WFG44 and
3-objective WFG47 test problems prefer more frequent
update, while 3-objective WFG43 test problem is easier
to be solved with a relatively larger LTD interval.

D. Discussions

The comprehensive experimental studies verify the effec-
tiveness and robustness of the proposed LTD paradigm on
test problems with various PF shapes. MOEA/D-LTD and
NSGA-III-LTD achieves significantly better results than their
predecessors. Nevertheless, we find that there may be two fac-
tors that restricts further improvements of the LTD paradigm,
which are related to how we select N reference points from
the large number of samples on the estimated PF described in
Section III-B.
• Firstly, the selection method uses the Euclidean distance

rather than geodesic distance as the distance measure for
the distance measure. When the PF is nonlinear and the
curvatures vary, reference points with equal Euclidean
distance in between will have different geodesic distance
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Fig. 13: Final solution sets obtained by 6 algorithms with the best HVs on 5-objective WFG1−1 to WFG4−1 test problems.
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Fig. 14: Parameter studies of the beginning percentage ψb to perform LTD procedure. (ψe = 90%, τ = 20)

on the PF, which affects the distribution of the expected
Pareto-optimal solutions. However, as long as N is not
too small or the curvatures do not vary too fast, the
performance will not degrade much.

• Secondly, the density estimation of (10) prefers reference
points at the boundaries of the estimated PF. We demon-
strate the training data, samples on the estimated PF and
selected reference points after the last LTD procedure in

the best run of MOEA/D-LTD on 3-objective WFG45
and DTLZ7 test problems in Fig. 17 as an example.
This explains why the final solution sets obtained by
MOEA/D-LTD and NSGA-III-LTD have more solutions
at the boundaries of the PFs as shown in Fig. 7 to Fig. 10.
However, this could also be the reason why MOEA/D-
LTD and NSGA-III-LTD show better performance on
exploring the entire PFs.
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Fig. 15: Parameter studies of the end percentage ψe to perform LTD procedure. (ψb = 50%, τ = 20)
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Fig. 16: Parameter studies of the interval τ to perform LTD procedure. (ψb = 50%, ψe = 80%)
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Fig. 17: Training data, samples on the estimated PF and
selected reference points after the last LTD procedure in the
best run of MOEA/D-LTD on 3-objective WFG45 and DTLZ7
test problems.

VI. CONCLUSION AND FUTURE DIRECTIONS

In recent years, decomposition-based EMO algorithms have
become the most popular EMO algorithms thanks to their
strengthened convergence pressure by optimizing the sub-
problems and well-maintained population diversity by the
predefined reference points. Nevertheless, when the PFs are
not in line with the unit simplex, on which the reference
points are evenly distributed, e.g., PFs with disparate scales,
discontinuous segments or other complex shapes, they suffer
from inappropriate decomposition due to unadaptable refer-
ence points and subproblem formulation. In this paper, we
discuss the causes from three aspects and propose a LTD
paradigm to overcome these issues. The LTD paradigm con-

tains two parts, i.e., the optimization module that can be
any decomposition-based optimizer and the learning module
that periodically learns an analytical model of the estimated
PF, from which useful information are extracted to guide
the decomposition in the optimization module. In particular,
the learned model can be used to sample reference points
compliant to the estimated PF and formulate subproblems
which have appropriate contours and search directions normal
to the current estimated PF. Compared with several state-of-
the-art adaptive methods, the performance of the proposed
LTD paradigm is validated on a variety of test problems with
MOEA/D and NSGA-III as the optimization modules.

LTD paradigm addressing all the three issues discussed in
this paper is the first work that adapts the reference points,
the contours and search directions of the subproblems for
decomposition-based EMO algorithms at the same time. Nev-
ertheless, the performance of the LTD paradigm is restricted by
the selection of the reference points, which uses the Euclidean
distance instead of geodesic distance as the distance measure
and tends to select samples at the boundaries the PF. Future
work could be investigating other efficient methods to select
reference points evenly distributed on the estimated PF.

APPENDIX
CURVATURES OF THE PROPOSED SUBPROBLEM

FORMULATION

We consider the case of the 2-objective MOPs at first. Let
h(z|n∗, z∗) = d1 + θ1d

2
2 + θ2d

4
2 = 0 be a contour of (11),
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where

d1 = (z1 − z∗1)n∗1 + (z2 − z∗2)n∗2

d2 =
√

(z1 − z∗1 − d1n∗1)2 + (z2 − z∗2 − d2n∗2)2
. (13)

Since the curvature of the contour does not depend on n∗

and z∗, we substitute n∗ = (1, 0)T and z∗ = (0, 0)T into
h(z|n∗, z∗) = 0 and get a contour:

z1 = −θ1z22 − θ2z42 . (14)

The curvature of (14) at z∗ = (0, 0)T can be calculated as
2θ1. Therefore, the curvature of contours of the proposed
subproblem formulation at its vertex κ∗h = 2θ1.

For MOPs with m > 2 objectives, we substitute n∗ =
(1, 0, · · · , 0)T and z∗ = (0, · · · , 0)T into h(z|n∗, z∗) = 0
and get an m-dimensional manifold:

z1 = −θ1
m∑

i=2

z2i − θ2(

m∑

i=2

z2i )2, (15)

whose unit normal vector is (1, 0, · · · , 0)T . Therefore, (14) is
a normal curve of (15), of which the curvature at the vertex is
2θ1. It can be easily proofed that the vertex (0, · · · , 0)T of the
manifold (15) is an umbilical point, where the all curvatures
are equal. Therefore, the principal curvatures of contours of
the subproblem formulation at its vertex κ∗h,1 = κ∗h,2 = 2θ1.
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