
Generating Hard Instances for Robust
Combinatorial Optimization

Marc Goerigk∗1 and Stephen J. Maher2

1Network and Data Science Management, University of Siegen, Germany
2Department of Management Science, Lancaster University, United Kingdom

Abstract

While research in robust optimization has attracted considerable interest over the last decades,
its algorithmic development has been hindered by several factors. One of them is a missing
set of benchmark instances that make algorithm performance better comparable, and makes
reproducing instances unnecessary. Such a benchmark set should contain hard instances in
particular, but so far, the standard approach to produce instances has been to sample values
randomly from a uniform distribution.

In this paper we introduce a new method to produce hard instances for min-max combinatorial
optimization problems, which is based on an optimization model itself. Our approach does not
make any assumptions on the problem structure and can thus be applied to any combinatorial
problem. Using the Selection and Traveling Salesman problems as examples, we show that
it is possible to produce instances which are up to 500 times harder to solve for a mixed-integer
programming solver than the current state-of-the-art instances.
Keywords: robustness and sensitivity analysis; robust optimization; problem benchmarking;

problem generation; combinatorial optimization

1. Introduction

We consider (nominal) combinatorial optimization problems of the form

min
xxx∈X

cccxxx

where X ⊆ {0, 1}n denotes the set of feasible solutions, and ccc ∈ Rn
+ is a cost vector. For the

case that the cost coefficients ccc are not known exactly, robust optimization approaches have
been developed. In the most basic form, we assume a discrete set U = {ccc1, . . . , cccN} of possible
costs to be given, the so-called uncertainty set. Depending on the problem application, U may
be found by sampling from a distribution, or by using past observations of data. The robust
(min-max) problem is then to solve

min
xxx∈X

max
ccc∈U

cccxxx

This type of problem was first introduced in [KY97], and several surveys are now available,
see [ABV09,GS16,KZ16]. The robust problem turns out to be NP-hard for all relevant problems
that have been considered so far, even for N = 2. This is also the case if the nominal problem

∗Corresponding author. Email: marc.goerigk@uni-siegen.de

1

is solvable in polynomial time, for example the Shortest Path or the Assignment problem
[KZ16].

However, practical experience tells us that an NP-hard problem can sometimes still be solved
sufficiently fast for relevant problem sizes. In fact, where NP-hardness proofs typically rely
on constructing problem instances with specific properties, nothing is known about hardness
of randomly generated instances, or smoothed analysis, in robust optimization. Where the
related min-max regret problem has sparked research into specialized solution algorithms (see,
e.g., [CLSN11, PA11, KMZ12]), little such research exists for the min-max problem, as simply
using an off-the-shelf mixed-integer programming solver, such as CPLEX, can already lead to
satisfactory results.

Faced with a similar situation for nominal knapsack problems, [Pis05] asked: “Where are
the hard knapsack problems?” The related aim of this paper is to construct computationally
challenging robust optimization problems. To this end, we consider the Selection problem,
where X = {xxx ∈ {0, 1}n :

∑n
k=1 xk = p}, and the Traveling Salesman problem (TSP) as

examples. The nominal problem of the former can be solved in polynomial time, while it is
NP-hard for the latter. However, the proposed methods are general and can be applied to any
robust combinatorial problem.

Looking into other fields of optimization problems, instance libraries have been a main driver
of algorithm development [MHS10]. Examples include MIPLIB [KAA+11] for mixed-integer
programs, road networks from the DIMACS challenge for Shortest Path problems [DGJ09]
or the Solomon instances for the vehicle routing problem with time windows [Sol87]. There is
a clear gap in robust optimization, where instance generators often need to be re-implemented
to reproduce previous results. Our research is intended as a first step towards a library of hard
instances to guide future research. Both our benchmark set of instances and the code to generate
them are published on a website dedicated to this purpose, www.robust-optimization.com.

As there is no free lunch in optimization, we cannot hope to construct instances that are
hard for all possible optimization algorithms. We therefore avoid constructing instances that
are hard for a particular solution method (e.g., using CPLEX), but rather aim at maximizing
hypothetical measures of hardness. Whether or not they actually correspond to harder instances
for the solver is then a matter of computational experiments.

Our focus is to find an uncertainty set such that the optimal objective value of the resulting
robust problem is as large as possible (Section 2). To solve the resulting optimization problem,
Section 3 considers several exact and heuristic solution methods. We briefly discuss our software
package for instance generation in Section 4, before comparing solution approaches and the
hardness of the resulting instances in Section 5. We find that it is possible to construct instances
that are considerably harder to solve than i.i.d. uniformly sampled problems—the current
standard approach. Section 6 concludes the paper and points out further avenues for research.

2. An Optimization Model for Maximizing the Robust
Objective Value

This paper proposes the use of an optimization problem to construct hard problem instances.
Throughout this section the proposed model is presented along with a number of different
solution techniques. In the presentation of the model and related discussions, the vectors and
matrices are written in bold font, for example xxx = (x1, . . . , xn), and for sets {1, . . . , n} the
shorthand notation [n] is used.

Let some problem instance with N scenarios be given, represented through the scenario objec-
tive coefficient vectors c̃cc1, . . . , c̃ccN , with c̃cci ∈ Rn

+. From this initial instance, the goal is to modify
the inputs in such a way that the resulting robust problem is harder to solve. The approach
that is used in this paper is to modify the values of the cost vectors in each of the scenarios.
However, the base problem is to be modified, and not completely changed, so a limit on the
magnitude of the change for each cost value is imposed.

Consider a scenario i ∈ [N], which is a vector of cost coefficients denoted by c̃cci. The mod-

2

ification of the problem involves the selection of cost coefficients from the set of all possible
candidate values, which is denoted by Ui. In the approach proposed in this paper, the set Ui is
defined as

Ui =

ccc ∈ Rn
+ : ck ∈ [cik, c

i
k] ∀k ∈ [n],

∑
k∈[n]

ck =
∑
k∈[n]

c̃ik

where cik and cik denote the lower and upper bounds, respectively, on the cost coefficient k.
Additionally, Ui imposes the constraint that the sum of coefficients for this scenario remains the
same, but any feasible sum that respects the upper and lower bounds is permitted as a scenario
vector. We will use cik = max{c̃ik − b, 0} and cik = min{c̃ik + b, C} with a budget parameter b
and a global maximum cost coefficient C.

Our approach aims at finding scenarios ccci ∈ Ui for all i ∈ [N], so that the objective value
of the optimal solution to the corresponding robust optimization problem is increased. This
approach can be formulated as the following optimization problem

max
ccci∈Ui∀i∈[N]

min
xxx∈X

max
j∈[N]

cccjxxx (MRO)

where MRO stands for “maximize robust objective”. The intuition behind the proposed op-
timization problem for generating difficult robust problem instances is the following: For each
xxx ∈ X , the objective maxj∈[N] ccc

jxxx is a piecewise linear, convex function in ccc1, . . . , cccN . By maxi-
mizing the smallest value of the objective over all xxx, we spread out the solution costs, balancing
the objective values of the best solutions in X . This way, finding and proving optimality of
the best xxx becomes a more difficult task for an optimization algorithm. Naturally, whether
the instances produced using the proposed method are actually more difficult to solve than the
original problem c̃cc1, . . . , c̃ccN can only be tested computationally.

As an example, consider a robust variant of the Selection problem where the task is to
choose two out of four items such that the maximum costs over two scenarios are as small as
possible. The cost vectors for these two scenarios are

item
1 2 3 4

ccc1 4 1 9 2
ccc2 4 7 4 4

In this small example there are
(
4
2

)
= 6 possible solutions. For this particular instance of the

robust selection problem there is only one optimal solution to this problem, which is to choose
items 1 and 4 with a robust objective value 8. The sorted vector of the corresponding six robust
objective values is

(8, 11, 11, 11, 11, 13)

Now let us assume that ccc1 ∈ U1 and ccc2 ∈ U2 and the budget is given by b = 1. Thus, two
alternative cost vectors ĉcc1 ∈ U1 and ĉcc2 ∈ U2 are

item
1 2 3 4

ĉcc1 3 2 10 1

ĉcc2 5 6 3 5

Given these cost vectors, the objective value of the optimal robust solution increases to 10.
The optimal solution still remains as the selection of 1 and 4, but the sorted vector of robust
objective values has become

(10, 11, 11, 11, 12, 13)

An important observation is that the difference between the best and second-best solutions has
reduced. This can have the effect of increasing the difficulty of proving optimality. As mentioned
previously, the difficulty of the instance can only be evaluated computationally. Using CPLEX
to solve the min-max robust selection problem given by this small example, the first instance
takes 0.013 ticks of the deterministic clock, whereas the second instances is solved in 0.209
deterministic ticks—more than 16 times as long.

3

3. Solution Approaches

A clear drawback of MRO is that the inner problem is the robust optimization problem that
we are attempting to make hard. Therefore, constructing a hard problem is at least as hard as
actually solving it. Due to this fact we primarily focus on producing hard, but relatively small
instances. This is an alternative to the trivial approach to producing hard instances, which is to
produce larger ones. In the last part of this section we shift our focus to the generation of large
and hard robust optimization instances. This is achieved through the use of heuristic methods
to solve the MRO.

Note that even evaluating the objective value of some fixed scenario variables ccc1, . . . , cccN is NP-
hard for all commonly considered combinatorial problems (see [KZ16]), as they are equivalent
to solving a robust counterpart. Indeed, in Appendix A we show that MRO is Σp

2-complete
when scenarios can be chose from polyhedral sets.

In the outer maximization problem, we determine N vectors, and choose one of these vectors
in the inner maximization problem. Formally, this is similar to the K-adaptability approach in
robust optimization (see [BK17]), which uses a min-max-min structure. Whereas their combi-
natorial part is in the outer minimization, the combinatorial part is in the inner minimization
in our problem.

To address the difficulty of MRO, different solution approaches are developed. Each of the
solution approaches aim to reduce the difficulty of solving MRO through alternative techniques.
These approaches are:

• Iterative method (Section 3.1): an exact approach that exploits the multi-level structure
of MRO.

• Alternating heuristic (Section 3.2): a heuristic applied to a reformulation of MRO.

• Replacing the inner subproblem with a heuristic (Section 3.3): a method for larger MRO
problems.

A description of each of the solution approaches is presented in the following sections. The
experimental results in Section 5 then demonstrate the value of each approach in a comparison
with two different methods: column generation and linear decision rules, both explained in
Appendices B and C.

3.1. Iterative Solution

Given the multi-level structure, it is difficult to solve MRO directly using general purpose
solvers. However, decomposition techniques can be used to exploit this structure and to develop
an effective solution approach.

Note that we can write the inner maximization problem for given ccci, i ∈ [N], and xxx ∈ X by
introducing a variable vector λλλ representing the choice of scenario:

max
j∈[N]

cccjxxx = max

∑
i∈[N]

λiccc
ixxx :

∑
i∈[N]

λi = 1, λi ∈ {0, 1} ∀i ∈ [N]

Let us now assume that some set {xxx1, . . . ,xxxK} ⊆ X of candidate solutions are already known.

Then, the restricted MRO problem on this set can be written as

max t

s.t. t ≤ (
∑
i∈[N]

λjiccc
i)xxxj ∀j ∈ [K]

∑
i∈[N]

λji = 1 ∀j ∈ [K]

ccci ∈ Ui ∀i ∈ [N]

λji ∈ {0, 1} ∀i ∈ [N], j ∈ [K]

(1)

4

where the variables λλλj for each j ∈ [K] are used to determine the scenario ccc that is assigned to
each candidate xxxj . We refer to this problem also as the master problem.

Note that problem (1) is nonlinear through the product of λλλ and ccc variables, which can be
linearized using variables dijk = λji c

i
k. The resulting model is then given as

max t

s.t. t ≤
∑
i∈[N]

∑
k∈[n]

dijkx
j
k ∀j ∈ [K]

∑
i∈[N]

λji = 1 ∀j ∈ [K]

dijk ≤ cik ∀i ∈ [N], j ∈ [K], k ∈ [n]

dijk ≤ cikλ
j
i ∀i ∈ [N], j ∈ [K], k ∈ [n]

ccci ∈ Ui ∀i ∈ [N]

λji ∈ {0, 1} ∀i ∈ [N], j ∈ [K]

(2)

Once the master problem is solved for a fixed set of candidate solutions, we have determined
an upper bound on the MRO problem. By solving the resulting robust optimization problem
for xxx, we also construct a lower bound. If both bounds are not equal, we add the current
robust solution xxx to the set of candidate solutions and repeat the process by solving the master
problem. This iterative approach will converge after a finite number of steps, as X contains a
finite number of solutions. It is therefore an exact solution approach to MRO.

An interesting question is whether the master problem is solvable in polynomial time. Note
that for N scenarios and K solutions, there are NK possibilities to assign solutions to scenarios.
For each assignment, constructing optimal scenarios ccc can be done in polynomial time by solving
a linear program. This means that if K is constant, the master problem can be solved in
polynomial time as well.

If K is unbounded, however, the problem becomes hard, as the following theorem shows.

Theorem 1. The master problem is NP-hard, if K is part of the input.

Proof. We use a reduction from Hitting Set, see [GJ79]: Given a ground set [E], a collection
of sets S1, . . . , ST ⊆ [E], and some integer L ≤ E. Is there a subset C ⊆ [E] with |C| ≤ L such
that |C| ∩ Si 6= ∅ for all i ∈ [T]?

Let an instance of Hitting Set be given. We set n = E, N = L and K = T . We further set
b = C = 1, and c̃k = 1/n for each k ∈ [n] (i.e., we get ck = 0 and ck = 1 for all k ∈ [n]). Finally,
we set xik = 1 if k ∈ Si and xik = 0 otherwise.

We now claim that Hitting Set is a yes-instance if and only if there is a solution to MRO
with objective value at least 1.

To prove this claim, let us first assume Hitting Set is a yes-instance. Let C = {e1, . . . , eL}
be a corresponding subset of [E] (w.l.o.g. we assume that |C| = L). Then we build a solution to
MRO in the following way. For each e` ∈ C, set c`e` = 1 and c`k = 0 for all k 6= e`. For each Si,
choose one e` ∈ Si ∩ C and set λi` = 1 and all other λik = 0. Thus we obtain a feasible solution
to MRO with objective value at least 1.

We illustrate this process with a small example. Let E = {1, . . . , 7}, S1 = {1, 2, 3}, S2 =
{3, 4, 5}, S3 = {6, 7}, and L = 2. Our MRO instance has the following values of xxx1,xxx2,xxx3 and
c̃cc1 and c̃cc2:

xxx1 1 1 1 0 0 0 0
xxx2 0 0 1 1 1 0 0
xxx3 0 0 0 0 0 1 1

c̃cc1 1/7 1/7 1/7 1/7 1/7 1/7 1/7

c̃cc2 1/7 1/7 1/7 1/7 1/7 1/7 1/7
ccc1 0 0 1 0 0 0 0
ccc2 0 0 0 0 0 1 0

5

In the same table, we also show an optimal solution for ccc1 and ccc2. The λλλ variables are chosen
such that xxx1 and xxx2 are assigned to ccc1, and xxx3 is assigned to ccc2.

Now let us assume that for some Hitting Set instance, we construct our MRO problem
as detailed above and find an objective value of at least 1. We show that Hitting Set is a
yes-instance. To this end, we first show that there exists an optimal solution to MRO where all
cccik-variables are either 0 or 1. Consider any ccci, and let xxxi1 , . . . ,xxxip be all xxx-solutions assigned to
scenario i. We distinguish two cases:

1. There exists some s ∈ [n] such that x
ij
s = 1 for all j ∈ [p]. In this case, we can set cis = 1.

2. There is no such s ∈ [n], i.e., there are xik and xi` with k, ` ∈ [p] that choose disjoint sets
of items. As

∑
k∈[n] c

i
k = 1, at least one of them must have an objective value strictly less

than 1, which contradicts our assumptions.

We can thus set C by including all elements k ∈ [n] for which there is i ∈ [N] with cik = 1. By
construction, C is a hitting set with cardinality at most L.

While the iterative algorithm is an exact solution approach, there are limitations to its use.
Specifically, solving the master problem can become a bottleneck to the solution process as
the number of solutions K increases. In each iteration of the algorithm, the addition of a
new candidate xxx results in an additional 2 + 2Nn constraints. Computationally, the additional
constraints have a significant negative impact between consecutive iterations. Two different so-
lution methods will be presented to address the issue in solving the master problem. We descibe
an alternating heuristic in Section 3.2, and discuss a Dantzig-Wolfe decomposition approach in
Appendix B.

3.2. Alternating Heuristic

As an alternative to the relaxation and decomposition approach presented in Section B, an
alternating heuristic has been developed to solve the master problem (2) of the iterative ap-
proach. The alternating heuristic is motivated by the observation that for a given assignment of
scenarios i ∈ [N] to solutions j ∈ [K], selecting the cost coefficients to maximize the minimum
objective becomes a simple task. Similarly, for a fixed set of cost coefficients for each scenario,
the difficulty in assigning scenarios to solutions is greatly reduced. As such, the alternating
heuristic iterates between fixing either the scenario assignment or the scenario cost coefficients.

To formally present the alternating heuristic, first reconsider the master problem from the
iterative method

max t

s.t. t ≤ (
∑
i∈[N]

λjiccc
i)xxxj ∀j ∈ [K]

∑
i∈[N]

λji = 1 ∀j ∈ [K]

ccci ∈ Ui ∀i ∈ [N]

λji ∈ {0, 1} ∀i ∈ [N], j ∈ [K]

for a subset {xxx1, . . . ,xxxK} ⊆ X of solutions. Let us assume the variables ccci are all fixed. In
that case, an optimal solution to the remaining λλλ variables can be found through the following
procedure: For each j ∈ [K], choose one i ∈ [N] such that cccixxxj is not smaller than ccc`xxxj for
all ` 6= i. Then, set λji = 1 and all other λj` = 0. To determine which ccci is a maximizer of
the objective value for some xxxj , we can simply calculate all N possible objective values. Thus,
finding optimal λλλ values is possible in O(nNK) time. Now let us assume that all λλλ variables are
fixed. In this case, the remaining variables are continuous. Under the assumption that the Ui
are polyhedra, the resulting problem can then be solved in polynomial time as well. This leads
to the alternating heuristic described in Algorithm 1.

6

Algorithm 1 Alternating heuristic to solve (1)

Input: set of solutions xxx, set of scenarios Ui, an initial set of cost coefficients c̃cc
Output: Cost coefficients ĉcci for each scenario i ∈ [N]
1: Let ĉcc← c̃cc, t← −1, zt ← 0
2: repeat
3: t← t+ 1
4: fix the value of ccc to ĉcc and solve (1) for λλλ
5: set λ̂λλ← λλλ
6: fix the value of λλλ to λ̂λλ and solve (1) for ccc
7: set ĉcc← ccc
8: set zt to the current objective value of (1)
9: until zt−1 ≥ zt

3.3. Heuristics for Large Instances

A limitation of the previously presented approaches is that the exact solution of the resulting
robust optimization subproblem is required. Therefore, it is not possible to find instances
that take longer to solve than the generation time. This is especially true for the iterative
methods, where it is likely that the robust optimization problem will be solved multiple times.
While generating hard instances to small robust optimization problems is appropriate for most
benchmarking purposes, this limitation prohibits the generation of hard large instances.

Fortunately, with only a small modification the MRO is still possible to generate hard in-
stances to large robust optimization problems. Instead of solving the MRO

max
ccci∈Ui∀i∈[N]

min
xxx∈X

max
j∈[N]

cccjxxx

exactly, we can use any heuristic to solve the robust problem minxxx∈X maxj∈[N] ccc
jxxx. Given

the nature of the MRO and the iterative solution approaches, any approximation of heuristic
approach for finding a solution that is a proxy for the optimum—such as solving the linear
relaxation of the robust problem and then rounding the solution—can be used. The solution to
the robust optimization problem generated by the heuristic algorithm need not belong to X .

Algorithmically, we can use the iterative method, the column generation approach, and the
alternating heuristic in combination with the heuristic by just replacing any robust optimization
subproblem.

4. Software

The approaches developed in Section 3 have been implemented within the Hiro (Hard Instances
for Robust Optimization) C++ software library. This library has been designed to facilitate the
generation of hard instances to any robust optimization problem.

The Hiro software library provides a virtual function, solve ip(), within the HIRO class so
that the user can specify the solution methods of an inner optimization problem when creating
a problem specific derived class. In the examples presented in this paper, the inner optimization
problems of Selection and TSP have been defined as integer programs that are solved using
CPLEX. However, it is also possible to use combinatorial or heuristic algorithms to solve the
inner problem. The parameters of solve ip() are the number of elements in the cost vector(such
as the number of items in Selection or the number of edges in the TSP), the number of
scenarios and a two-dimensional vector containing the cost vectors for each scenario. The
provided set of cost vectors define the current hard robust optimization instance. After solving
the robust optimization problem, the user must create a HIROSolution object that is returned
to the Hiro core. The HIROSolution object comprises a solution vector and the upper bound
of that solution.

7

The Hiro software library is publicly available and can be found on GitHub1 in the repository
stephenjmaher/HIRO. The two optimization problems investigated in this paper, Selection
and TSP, are included as examples in the software repository. Extensive instructions for adding
new examples are also provided.

5. Experiments

The ultimate goal of this paper is to develop general purpose methods for generating hard
instances for min-max robust optimization problems. To this end, we proposed the MRO
model and different solution methods. While the theoretical basis of the proposed optimization
problem is expected to produce min-max robust optimization instances harder than randomly
generated instances, verifying this is only possibly through empirical studies.

In this paper, the hardness of an instance is primarily measured as the run time required to
solve it using CPLEX. Due to the empirical nature of this work, it is not immediately obvious
what the most effective method for generating hard instances is. Further, it is not possible to
determine a priori which of the proposed algorithms will produce the most difficult instance. As
such, it is necessary to evaluate the performance of the algorithms presented in Section 3 with
respect to instance generation time and generated instance hardness.

5.1. Setup

The approaches presented in Section 3 are general methods that can be applied to the generation
of hard instances for any min-max robust optimization problem. The alternative methods that
have been developed focus specifically on the computation of cost coefficients for each scenario,
which is the master problem in the proposed iterative methods. As such, the inner problem—
the subproblem—can be set to any min-max robust optimization problem. To demonstrate the
potential of the methods from Section 3, robust variants of the Selection problem and TSP
are used as the inner problem. The Selection problem is used for its simplicity, meaning that
the impact of the instance generation is more easily observed. We also consider the TSP to
demonstrate the potential of using MRO to generate hard instances for a computationally more
challenging optimization problem. We used the standard subtour elimination formulation for
the TSP, with lazy generation of subtour elimination constraints.

The current state-of-the-art for robust optimization instance generation is to randomly sample
scenarios. Thus, the baseline for comparison is a set of instances where the scenario coefficients
are sampled randomly uniform i.i.d. with cik ∈ {0, . . . , 100 = C}. This method of instance
generation will be labeled as RU. In the following results, the proposed methods will be labeled
as follows:

• MRO-Ex: The exact method from Section 3.1.

• MRO-Heu: The alternating heuristic from Section 3.2.

• MRO-LSHeu: The approach from Section 3.3, where we round the fractional solution
found by solving the linear relaxation of the subproblem (in case of TSP without using
subtour elimination constraints).

• MRO-CG: A column generation method that is applied to the relaxation of MRO as
described in Appendix B.

• MRO-LDR: A linear decision rules approach explained in Appendix C.

We consider four different computational experiments: In the first, we use relatively small
Selection problems, where the robust subproblem is solved to optimality (i.e., the methods
from Sections 3.1 to C). Three problem sizes are used: The number of items n is set to 20, 30,
and 40. In each case we set the number of items to be selected p to n/2 and the total number
of scenarios N is set to n. For each problem size, we generate 100 instances using RU. The

1https://github.com/

8

scenarios from these random instances are then used as the initial scenarios for the iterative
methods described above. To evaluate the effect of the uncertainty set budget b on the run
times of the iterative methods and the hardness of the generated instances, budgets of 1, 2 and
5 are used. The total number of randomly generated instances is 3 · 100 = 300. Since these
instances are used as an input to each of the iterative methods, a further 3 · 3 · 4 · 100 = 3600
hard instances are generated. For the second experiment, we considered larger problems with
n ranging from 20 to 70, and a budget b = 20. In this experiment we only compare RU with
MRO-LSHeu.

A maximum run time of 3600 seconds is given to each of the iterative methods. This run time
limit is only enforced between the iterations of the algorithm, as such it is possible for this time
limit to be exceeded.

Experiments three and four repeat experiments one and two for the TSP. In this setting,
n is the number of edges in the complete graph, and hence

√
n is the number of nodes. We

first produce random instances with 100, 144, and 196 edges and in experiment three apply
the MRO and associated solution approaches to generate hard instances for these smaller-scale
problems. In experiment four, large problem instances are considered with the number of edges,
n, ranging from 100 to 400. For both experiments three and four, the number of scenarios is set
to N =

√
n.

The hardness of the instances is evaluated by using CPLEX to solve the resulting min-max
robust optimization problem. All experiments were conducted using one core of a computer
with an Intel Xeon E5-2670 processor, running at 2.60 GHz with 20MB cache, with Ubuntu
12.04 and CPLEX v12.6.

5.2. Hard Instance Generation for Selection

n = N
Budget Method 20 30 40

1

MRO-Ex 0.04 0.61 7.83
MRO-CG 0.04 0.45 6.79
MRO-Heu 0.04 0.43 6.91

MRO-LDR 0.03 0.17 2.20

2

MRO-Ex 0.06 0.92 7.49
MRO-CG 0.05 0.62 9.34
MRO-Heu 0.06 0.85 15.36

MRO-LDR 0.03 0.25 3.07

5

MRO-Ex 0.08 0.77 10.59
MRO-CG 0.06 0.78 11.92
MRO-Heu 0.08 4.29 22.00

MRO-LDR 0.04 0.46 8.21

RU 0.03 0.13 1.43

Table 1: Selection: Average CPU time in seconds when solving the generated problems.

The ability of the MRO to produce robust optimization instances harder than randomly
generated instances for Selection is clearly demonstrated in Table 1. Interestingly, as the
budget b increases, the dominance of MRO-Heu emerges. In fact, with b = 5 and n = 40
MRO-Heu produces instances that are more than twice as hard, on average, as those produced
by MRO-Ex.

The results from Table 1 are complemented by Table 2, which shows that average and max-
imum increase in hardness of all instances (i.e., the ratio between the computation time of the

9

n = N
Budget Method 20 30 40

1

MRO-Ex 1.7 (3.7) 4.7 (9.9) 6.9 (15.5)
MRO-CG 1.7 (3.4) 3.6 (8.1) 5.2 (10.6)
MRO-Heu 1.7 (5.1) 3.5 (7.4) 5.3 (14.8)

MRO-LDR 1.1 (2.3) 1.4 (2.4) 1.7 (5.8)

2

MRO-Ex 2.4 (4.2) 8.2 (23.9) 6.7 (40.8)
MRO-CG 2.0 (5.0) 5.0 (13.6) 7.9 (46.3)
MRO-Heu 2.2 (4.0) 6.5 (19.4) 12.8 (59.5)

MRO-LDR 1.2 (2.5) 2.1 (6.8) 2.4 (8.2)

5

MRO-Ex 4.0 (11.3) 7.2 (23.0) 10.0 (49.3)
MRO-CG 2.4 (5.0) 6.8 (21.7) 10.6 (53.0)
MRO-Heu 3.6 (13.3) 37.6 (179.4) 23.6 (152.9)

MRO-LDR 1.5 (3.3) 4.1 (12.2) 7.8 (49.4)

Table 2: Selection: Average (maximum) time increase relative to RU for each set of instances.

hardened and the original instance). We observe that for n = 40, method MRO-Heu produces
instances that take on average 23 times longer to solve, and up to over 150 times in some cases.

n = N
Budget Method 20 30 40

1

MRO-Ex 1.7 207.0 3005.8
MRO-CG 1.0 16.1 253.4
MRO-Heu 0.2 4.6 151.9

MRO-LDR 2.1 31.3 232.1

2

MRO-Ex 49.3 3238.1 3796.0
MRO-CG 2.9 56.3 707.5
MRO-Heu 0.6 24.2 947.9

MRO-LDR 2.2 33.8 297.3

5

MRO-Ex 3677.9 4305.1 4081.9
MRO-CG 11.5 200.1 2035.6
MRO-Heu 3.1 998.7 3614.6

MRO-LDR 2.7 40.3 439.7

Table 3: Selection: Average CPU time in seconds to generate instances, using (lenient) 3600
seconds time limit.

The inferior results of MRO-Ex are explained by Table 3, which shows a significant reduction
in the run time for all methods compared to MRO-Ex. In most cases, MRO-Ex cannot complete
within the lime limit. The best performing approach when b = 1 is MRO-Heu, with an average
run time that is 5% of that for MRO-Ex when n = 40. This remains the case when b = 5,
where MRO-LDR outperforms all other methods. While the decomposition approach MRO-CG
does not dominate any of the other approaches, it exhibits its best performance compared to
MRO-Heu as b and n increases.

Comparing Table 1 with the average generation times in Table 3, it is observed that while
MRO-LDR is the fastest method for solving MRO, it is the worst method for producing hard
robust optimization instances. Also, the approximation methods of MRO-CG and MRO-Heu,

10

while faster than MRO-Ex, are able to produce hard robust optimization instances. This demon-
strates a clear advantage to the iterative methods of the MRO, in particular the use of relaxation
and heuristic methods.

Considering the iterative methods, MRO-Ex, MRO-CG and MRO-Heu, the exact approach
generates the hardest instances when it is capable of solving MRO to optimality. When MRO-
Ex can not solve MRO to optimality, then MRO-Heu produces the most difficult instances.
Interestingly, when n = 40 and b = 2, 5 the average run times of the instances generated by
MRO-Heu is twice as large as those generated by MRO-Ex. While MRO-CG does not produce
instances harder than MRO-Heu, they are harder than those produced by MRO-Ex when MRO
is not solved to optimality.

Figure 1 gives a more detailed box plot comparison for the case n = N = 40 and b = 5, i.e.,
for the hardest instances. Note the logarithmic vertical axis. The highest observed computation
time for RU was 6.59 seconds, while MRO-Heu achieved a maximum of 61.03 seconds. The
Wilcoxon signed-rank test confirms that MRO-Heu produces harder instances than RU with
p < 0.001.

 0.1

 1

 10

 100

RU MRO-Ex MRO-CG MRO-Heu MRO-LDR

Figure 1: Selection: Box plot of solution times (in seconds) for instances generated with b = 5
and n = N = 40.

5.3. Large-Scale Instance Generation for Selection

The ability of the MRO, especially the iterative methods, is demonstrated in Section 5.2 to
produce instances significantly harder than randomly generated instances. However, Table 3
shows that the generation time is a major limitation to the proposed approaches. Specifically,
as the instance size grows, the ability of MRO-Ex and MRO-Heu to solve the MRO decreases.
Thus, it is necessary to employ alternative methods when generating hard robust optimization
instances for larger problems.

Using the approach proposed in Section 3.3—solving the inner robust optimization problem
heuristically—hard instances to larger Selection problems can be generated. In particular, we
use a heuristic to solve the robust Selection problem within the alternating heuristic, labeled
as MRO-LSHeu. The results from using MRO-LSHeu, compared to RU, for different numbers
of items n are presented in Table 4. We show the average time for the instances that were
solved to optimality and the number of instances which can be solved within the time limit of
one hour.

An initial observation from Table 4 is that MRO-LSHeu is able to produce instances that
are an order of magnitude harder than RU, even for the smallest instances. Comparing these
results with Section 5.2, it is clear that solving the robust optimization problem heuristically

11

n RU MRO-LSHeu

20 0.02 (100) 0.06 (100)
30 0.16 (100) 1.21 (100)
40 1.72 (100) 25.45 (100)
50 17.83 (100) 699.46 (100)
60 163.65 (100) 1749.20 (17)
70 1220.19 (86) - (0)

Table 4: Selection: Average CPU solving time in seconds for instances that were solved to opti-
mality (number of instances that were solved to optimality).

has advantages for the MRO as opposed to solving it exactly in MRO-Heu. Table 4 also
demonstrates that as the size of the instances increases, many more of the instances produced
by MRO-LSHeu cannot be solved within one hour decreases, compared to those produced by RU.
Specifically, when n = 60, only 17 of the instances generated by MRO-LSHeu could be solved
compared to 100 for the randomly generated instances. This drops to 0 for the MRO-LSHeu
instances when n is increased to 70.

10
1

10
2

10
3

10
4

10
5

10
6

10
1

10
2

10
3

10
4

10
5

10
6

T
im

e
 M

R
O

-L
S

H
e
u

Time RU

Figure 2: Selection: Comparison of solution times per instance for n = 20 to n = 50.

To better visualize this result, Figure 2 compares the run times required to solve the instances
generated by RU (horizontal axis) and MRO-LSHeu (vertical axis). Note that in this figure the
axes are scaled logarithmically. Every point corresponds to one instance for n = 20 to n = 50
(problem sizes where all instances were solved to optimality). A point on the diagonal means
that a randomly generated instance remained as hard after applying MRO-LSHeu to increase
its difficulty. The clusters of dots are related to the values of n and appear to display a linear
relationship as n increases. Since this figure is displayed using double logarithmic axes, this
linear relationship represents an exponential increase in the run times after applying MRO-
LSHeu to produce hard instances. Thus, MRO-LSHeu is capable of achieving significantly
harder instances that RU for large problem sizes of Selection.

We complement these observations with Table 5, where the average increase in solution time
of MRO-LSHeu instances over the original RU is shown. For n = 60 and n = 70, the true
computation time is not always known. In these cases, we used 3600 seconds, but the actual
increase will be higher than the numbers indicate. We see that with increasing instance size, our

12

instance generation approach becomes more powerful, with an increase in hardness by a factor
of up to 440.

n Avg Max

20 2.8 12.9
30 9.9 45.6
40 23.1 195.9
50 73.8 440.7
60 > 46.1 > 406.5
70 > 4.75 > 44.3

Table 5: Selection: Average and maximum time increase for each instance using MRO-LSHeu.
When not solved to optimality, counted as time limit.

Finally, we also present the time to generate these instances in Table 6. On average, it takes
less than 20 seconds to generate hard instances for n = 70, which is a small fraction of the time
needed to solve the resulting problems. This demonstrates that the proposed heuristic is an
efficient tool to generate larger and harder instances, overcoming the limitations of the exact
approach, and scaling well beyond n = 70.

n 20 30 40 50 60 70

Time 0.1 0.3 0.9 2.0 4.4 19.4

Table 6: Selection: Average time to generate instances using MRO-LSHeu.

5.4. Hard Instance Generation for TSP

We turn our attention to the TSP for the next set of experimental results to assess whether the
proposed methods can be applied to generate hard instances to more computationally difficult
robust problems. Given the dominance of the MRO-Heu approach for the Selection problem,
these experiments will only evaluate RU, MRO-Ex and MRO-Heu. Also, for the larger problem
sizes, the experiments will compare the difficulty of the instances generated by RU and MRO-
LSHeu.

The results of the first experiment, generating hard instances by MRO-Ex and MRO-Heu with
different values of n = N2 and b, are presented in Table 7. Similar to the results in Section 5.2,
both MRO-Ex and MRO-Heu produce instances that are significantly harder than RU. Also, of
the considered algorithms MRO-Heu is shown to generate the hardest instances.

n = N2

Budget Method 100 144 196

2
MRO-Ex 0.4 5.0 43.7

MRO-Heu 0.5 6.7 78.1

5
MRO-Ex 1.4 10.7 52.2

MRO-Heu 1.5 14.6 103.0

RU 0.2 1.1 9.0

Table 7: TSP: Average CPU time in second when solving the generated instances.

13

We find that with a larger budget, it is possible to increase the hardness considerably. While
randomly generated instances for the 14-city TSP take 9 seconds on average to solve, the
instances hardened by using MRO-Heu take on average 103 seconds to solve. The increase in
hardness is further demonstrated by Table 8, which shows the relative increase in computation
time, averaged over all instances. We find the instances generated by MRO-Heu exhibit a factor
of 25 for n = 196 longer than the randomly generated instances on average. Further, MRO-Heu
generates instances that take up to 230 times longer to solve than those originally produced by
RU.

n = N2

Budget Method 100 144 196

2
MRO-Ex 2.8 (5.3) 5.3 (9.6) 6.8 (25.8)

MRO-Heu 3.0 (6.1) 6.8 (11.7) 11.9 (28.1)

5
MRO-Ex 10.0 (24.1) 14.2 (65.5) 12.1 (169.0)

MRO-Heu 11.0 (27.2) 22.2 (118.0) 25.0 (232.7)

Table 8: TSP: Average (maximum) time increase relative to RU for each set of instances.

Similar to the results for Selection, the generation of hard instances for the TSP is time
consuming. Table 9 shows that as budget b and the number of edges n increases, the run time
required to generate hard instance also increases. In fact, it is difficult to solve the MRO to
optimality for any problems with more than 14 nodes in the underlying graph. While the increase
in difficulty for these smaller instances should be sufficient, if hard instances to larger problems
are desired, then Table 9 highlights that MRO-Ex and MRO-Heu are not satisfactory algorithms.
This shows the need for heuristic approaches for solving the inner robust optimization problem
of the MRO, as proposed in Section 3.3.

The ability of MRO-LSHeu to generate hard instances for larger problem sizes of the TSP is
shown in Table 10. In these experiments, instances were found for problems formulated with up
to 20 nodes. Also, in order to generate harder instances the budget b was increased to 20.

The results presented in Table 10 show that MRO-LSHeu produces instances that are sig-
nificantly harder than randomly generated instances. When increasing the number of nodes to
16, it is the first time that an instance generated by MRO-LSHeu is unable to be solved within
one hour. Further increasing the number of nodes to 18 results in a significant increase in the
run times to solve the hard robust optimization instances—only two instances can be solved
within one hour. These results further demonstrate the ability of MRO-LSHeu to produce hard
instances for large robust optimization problems.

The relative increase in difficulty for the MRO-LSHeu instances over the RU instance is
presented in Table 11. While these numbers are lower than for our previous methods for n ≤ 196
(compare to Table 8), the heuristic approach is shown to scale better for larger instances sizes.
It can be observed that MRO-LSHeu can produce instances that are a factor of up to 500 times

n = N2

Budget Method 100 144 196

2
MRO-Ex 6.3 149.1 1327.9

MRO-Heu 4.6 134.2 2028.4

5
MRO-Ex 954.6 3170.0 3475.6

MRO-Heu 143.1 2365.1 3507.0

Table 9: TSP: Average CPU time in seconds to generate instances, using (lenient) 3600 seconds
time limit.

14

n RU MRO-LSHeu

100 0.2 (100) 0.4 (100)
144 1.1 (100) 3.5 (100)
196 9.3 (100) 66.0 (100)
256 67.4 (100) 1040.7 (99)
324 442.1 (100) 2512.8 (2)
400 1624.2 (60) - (0)

Table 10: TSP: Average CPU solving time in seconds for instances that were solved to optimality
(number of instances that were solved to optimality).

more difficult to solve that the original randomly generated instance. Since with n ≥ 256 many
of the generated instances could not be solved to optimality, this decreases the factor increase.
Thus, it is expected that MRO-LSHeu is able to produce instances that are more than a factor
of 500 times more difficulty than the RU instances as the problem size increases.

n Avg Max

100 3.1 11.1
144 4.9 40.7
196 14.8 151.8
256 > 41.8 > 504.3
324 > 15.6 > 267.6
400 > 2.7 > 20.5

Table 11: TSP: Average and maximum time increase for each instance using MRO-LSHeu. When
not solved to optimality, counted as time limit.

To finally highlight the potential of the MRO-LSHeu method, the instance generation times
are presented in Table 12. For these results, the generation time limit was greatly restricted to
600 seconds. Comparing Tables 9 and 12 it is clear that MRO-LSHeu is capable of generating
harder instance than MRO-Heu in much shorter run times. This is a significant benefit to the
approach heuristic approach for solving the MRO, since it enables the use of this technique to
generate hard instances for difficult robust optimization problems.

n 100 144 196 256 324 400

Time 0.1 24.4 392.7 504.2 552.2 570.2

Table 12: TSP: Average time to generate instances using MRO-LSHeu (600s limit).

6. Conclusions

All relevant min-max robust combinatorial optimization problems are known to be NP-hard.
But this theoretical complexity class does not necessarily indicate practical hardness. Indeed,
randomly generated instances are usually not too challenging to solve with current off-the-shelf
MIP solvers. Furthermore, algorithmic papers need to re-create such random instances every
time, resulting not only in additional work for computational experiments, but also in another
source of errors and incomparability of results.

15

The aim of this paper is to address these problems by introducing a way to generate problem
instances which are considerably harder to solve than random instances. We first present exact
and heuristic approaches for solving an optimization problem to generate hard robust problem
instances. While these approaches require much computational effort to find hard instances,
they are effective at increasing the difficulty over the randomly generated instances. To address
the computational issues in generating hard robust instances, we propose the use of heuristic
methods to solve the inner robust optimization problem within iterative solution algorithms.
This latter approach is demonstrated to produce the most difficult instances within very short
generation times.

Our methods have been illustrated using the Selection problem and TSP as examples,
but they are widely applicable to other combinatorial problems. In further work, the foun-
dation that is laid through these instances will be extended to a more comprehensive online
problem library for robust optimization. All current instances are already available under
www.robust-optimization.com. Also, the code used to generate the instances has been made
available and can be easily extended to other underlying mathematical programming problems.

Three more approaches were tested, but not described in this paper. The first approach is
based on constructing instances where the midpoint heuristic, a cornerstone of exact solution
methods, performs badly. While an increase in hardness could be observed, results were not
as promising as for MRO. Details on this setting and some computational results are provided
in Appendix D. The second approach was based on the linear program developed in [GH18]
to construct a solution with small approximation guarantee for a given problem instance. We
constructed instances by maximizing this approximation guarantee. The third approach was to
train a neural network on a set of problem instance-solution time observations to predict hard
instances. However, both approaches were not able to produce instances that were significantly
harder than random instances. However, machine learning models seem to be a promising
avenue for future research once hard instances have been generated by other models and thus
become available for the training data.

Acknowledgments

Stephen J. Maher is supported by the Engineering and Physical Sciences Research Council (EP-
SRC) grant EP/P003060/1. We thank the anonymous reviewers for the constructive comments
that helped improving this paper.

References

[ABV09] H. Aissi, C. Bazgan, and D. Vanderpooten. Min–max and min–max regret versions
of combinatorial optimization problems: A survey. European Journal of Opera-
tional Research, 197(2):427 – 438, 2009.

[BK17] C. Buchheim and J. Kurtz. Min–max–min robust combinatorial optimization.
Mathematical Programming, 163(1-2):1–23, 2017.

[BTGGN04] A. Ben-Tal, A. Goryashko, E. Guslitzer, and A. Nemirovski. Adjustable robust
solutions of uncertain linear programs. Mathematical Programming, 99(2):351–376,
2004.

[CG15] A. Chassein and M. Goerigk. A new bound for the midpoint solution in min-
max regret optimization with an application to the robust shortest path problem.
European Journal of Operational Research, 244(3):739–747, 2015.

[CG18] A. Chassein and M. Goerigk. On scenario aggregation to approximate robust com-
binatorial optimization problems. Optimization Letters, 12(7):1523–1533, 2018.

[CLSN11] D. Catanzaro, M. Labbé, and M. Salazar-Neumann. Reduction approaches for
robust shortest path problems. Computers & operations research, 38(11):1610–
1619, 2011.

16

[DGJ09] C. Demetrescu, A. V. Goldberg, and D. S. Johnson. The Shortest Path Problem:
Ninth DIMACS Implementation Challenge, volume 74. American Mathematical
Soc., 2009.

[GH18] M. Goerigk and M. Hughes. Representative scenario construction and preprocess-
ing for robust combinatorial optimization problems. Optimization Letters, Oct
2018. To appear, online first.

[GJ79] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory
of NP-Completeness. Freeman, San Francisco, CA, 1979.

[GS16] M. Goerigk and A. Schöbel. Algorithm engineering in robust optimization. In
Algorithm engineering, pages 245–279. Springer International Publishing, 2016.

[KAA+11] T. Koch, T. Achterberg, E. Andersen, O. Bastert, T. Berthold, R. E. Bixby,
E. Danna, G. Gamrath, A. M. Gleixner, S. Heinz, et al. Miplib 2010. Mathe-
matical Programming Computation, 3(2):103, 2011.

[KMZ12] A. Kasperski, M. Makuchowski, and P. Zieliński. A tabu search algorithm for the
minmax regret minimum spanning tree problem with interval data. Journal of
Heuristics, 18(4):593–625, 2012.

[KY97] P. Kouvelis and G. Yu. Robust Discrete Optimization and Its Applications. Kluwer
Academic Publishers, 1997.

[KZ16] A. Kasperski and P. Zieliński. Robust discrete optimization under discrete and
interval uncertainty: A survey. In Robustness Analysis in Decision Aiding, Opti-
mization, and Analytics, pages 113–143. Springer, 2016.

[MHS10] M. Müller-Hannemann and S. Schirra. Algorithm engineering: bridging the gap
between algorithm theory and practice, volume 5971. Springer, 2010.

[PA11] J. Pereira and I. Averbakh. Exact and heuristic algorithms for the interval data
robust assignment problem. Computers & Operations Research, 38(8):1153–1163,
2011.

[Pis05] D. Pisinger. Where are the hard knapsack problems? Computers & Operations
Research, 32(9):2271–2284, 2005.

[Sol87] M. M. Solomon. Algorithms for the vehicle routing and scheduling problems with
time window constraints. Operations Research, 35(2):254–265, 1987.

[Sto76] Larry J Stockmeyer. The polynomial-time hierarchy. Theoretical Computer Sci-
ence, 3(1):1–22, 1976.

17

A. Complexity of MRO

Theorem 2. The problem
max

(ccc1,...,cccN)∈U
min
xxx∈X

max
j∈[N]

cccjxxx (MRO)

with a polyhedron U ⊆ Rn×N is Σp
2-complete.

Proof. We first note that (MRO) is in class Σp
2, as for fixed (ccc1, . . . , cccN), the resulting robust

optimization problem is in NP. We use a reduction from 2-Quantified 3-Dnf-Sat, which is
known to be Σp

2-complete [Sto76]: Given a Boolean formula φ(ααα,βββ) in DNF, where every clause
consists of exactly three literals, is there a value for ααα = (α1, . . . , αs) ∈ {0, 1}s such that for all
βββ = (β1, . . . , βt) ∈ {0, 1}t, the formula φ(ααα,βββ) is true?

We build an instance of (MRO) using the Representative Selection problem [KZ16] to
define the underlying combinatorial problem. In this problem, we are given a partition of the
items ∪`∈[k]T` = [n] and a cost vector ccc ∈ Rn. The task is to choose exactly one item of each
T`, such that the overall costs are minimized.

Our problem instance is built in the following way. Let xi ∈ {0, 1} be the variable correspond-
ing to variable αi, and let y1i , y

2
i ∈ {0, 1}, correspond to βi. Note that n = s+ 2t. We partition

the items through sets T` for each ` ∈ [s], where T` = {x`} (i.e., each xi must be equal to one),
and T ′` for each ` ∈ [t] with T ′` = {y1` , y2`} (i.e, exactly one of y1` and y2` must be equal to one).
Let us denote a clause of φ by

Ci = (ai1α1 ∧ ai2α2 ∧ . . . ∧ aisαs ∧ bi1β1 ∧ bi2βi ∧ . . . ∧ bitβt)

where aik,bik denote the signs of the variables in {−1, 0, 1} (exactly three signs are non-zero).
Let N clauses be given. We build a scenario for each clause. The corresponding polyhedron of
possible scenarios is given as:

U =
{

(ccc1, . . . , cccN) : ci(xj) = aijdj ∀i ∈ [N], j ∈ [s]

dj ∈ [−1, 1] ∀j ∈ [n]

ci(y1j) = bij ∀i ∈ [N], j ∈ [t]

ci(y2j) = −bij ∀i ∈ [N], j ∈ [t]
}

where

(ccc1, . . . , cccN) =

c1(x1) c2(x1) . . . cN (x1)
c1(x2) c2(x2) . . . cN (x2)

...
...

. . .
...

c1(xs) c2(xs) . . . cN (xs)
c1(y11) c2(y11) . . . cN (y11)
c1(y12) c2(y12) . . . cN (y12)

...
...

. . .
...

c1(y1t) c2(y2t) . . . cN (y2t)
c1(y21) c2(y21) . . . cN (y21)
c1(y22) c2(y22) . . . cN (y22)

...
...

. . .
...

c1(y2t) c2(y2t) . . . cN (y2t)

Note that the projection of U onto Rn×N is indeed a polyhedron. We claim that there exists
an optimal solution to our MRO instance with objective value at least 3 if and only if the
2-Quantified 3-Dnf-Sat instance is true. Let us first assume that there exists ααα such that
φ(ααα,βββ) is true for all βββ. We construct N scenarios by setting di = 1 if αi is true, and di = −1
otherwise. Then the resulting robust problem becomes

min z

18

s.t. z ≥
∑
j∈[s]

aijdj +
∑
j∈[t]

bij(y
1
j − y2j) ∀i ∈ [N]

y1j + y2j = 1 ∀j ∈ [t]

y1j , y
2
j ∈ {0, 1} ∀j ∈ [t]

By construction, it follows that for every feasible solution (yyy1, yyy2), the optimal value of z is 3.
Let us now assume that the objective value of the (MRO) is at least 3. Note that in this case,
the objective value is exactly three, and we can assume that dj ∈ {−1, 1} for all i ∈ [s]. Set αj

as true if and only if dj = 1. Then, it follows that for every possible value βββ, the formula φ is
true, as the robust problem aims at finding values for (yyy1, yyy2) such that all clauses are false.

B. Column Generation for MRO

Dantzig-Wolfe reformulation is applied to (2) to decompose the problem into K disjoint subsys-
tems (one for each candidate solution x). A column p corresponds to a feasible assignment of
a cost vector ccci ∈ Ui to the solution vector xxxj . For a given column p ∈ P j , the parameter dikp
is the contribution of cikx

j
k to the objective of the inner minimization problem given the assign-

ment of ccci to solution vector xxxj . The variables αp equal 1 if the cost vector assignment given
by column p is selected and 0 otherwise. Finally, the variables cik are introduced to map the
solution of the outer maximization problem to the set of cost vectors for the inner minimization
problem.

The formulation of the column generation master problem is given by

max t

s.t. t ≤
∑
p∈P j

∑
i∈[N]

∑
k∈[n]

dikpαp ∀j ∈ [K] (γj)

∑
p∈P j

∑
p∈P j

αp = 1 ∀j ∈ [K] (δj)∑
p∈P j

dikpαp ≤ cik ∀i ∈ [N], j ∈ [K], k ∈ [n] (πijk)

ccci ∈ Ui ∀i ∈ [N]

αp ∈ Z+ ∀j ∈ [K], p ∈ P j

(3)

Initially, the master problem is formulated with only a subset of columns P̄ j ⊆ P j . The
corresponding problem is described as the restricted master problem (RMP). For each j ∈ [K],
a single initial column is included in P̄ j , which is formed by assigning ck to xjk. The variables
γj , δj and πijk represent the dual variables corresponding to the constraints in (3).

A complicating aspect of the RMP is the set of linking constraints given by the uncertainty
sets Ui. This complication arises from the fact that the constraints do not explicitly link the
αp variables, but an implicit linking of the αp variables is through the third set of constraints
in (3). While the uncertainty set linking constraints ensure that exactly one cost vector is
selected from each scenario, this requirement could be overly restrictive in our contexts. As
such, a relaxation of (2) is formed by replacing Ui with U j

i , where U j
i = Ui,∀j ∈ [K], so that

a different cost vector from scenario i could be selected for each solution j ∈ [K]. Applying
this relaxation eliminates the linking constraints from the uncertainty sets Ui and transfers the
additional relaxed constraints to the column generation subproblems.

A column generation subproblem is formed for each solution j ∈ [K]. Given the optimal dual
solution to the RMP, each column generation subproblem is solved to find a feasible cost vector
assignment that has a positive reduced cost. The dual variables are denoted by γj , δj and πijk
respectively for the constraints of the RMP. Using an optimal dual solution, the reduced cost

of a column for solution j is given by d
j

=
∑

i∈[N]

∑
k∈[n] dijkx

j
kγj − dijkπijk − δj . A feasible

19

assignment of ccci ∈ Uj
i to solution xxxj forms an improving column for the RMP if the reduced

costs are positive. By solving an optimization subproblem, we find the feasible cost vector
assignment that forms a column with the most positive reduced cost. Since only a relaxation
of (2) is solved by this approach, the objective function value will be greater than that found
by the iterative approach (Section 3.1). However, in the proposed approach for generating hard
instances, maximizing the minimum robust objective value is used only as a proxy for hardness.
As such, it is expected that even solving the relaxation of (2) will provide instances that are of
comparative hardness to the exact approach in Section 3.1.

C. Linear Decision Rules for MRO

A common reformulation of robust optimization problems involves the application of decision
rules [BTGGN04]. This approach involves introducing the adjustable variables λi : {0, 1}n →
[0, 1] which map solutions xxx to the worst-case scenario. In the context of MRO, such a mapping
would result in setting λi(xxx) = 1 if scenario ccci is a worst-case scenario for solution xxx, and 0
otherwise.

Considering the MRO, the use of a decision rule results in an equivalent formulation given
by

max t

s.t. t ≤
∑
k∈[n]

∑
i∈[N]

λi(xxx)cikxk ∀xxx ∈ X

∑
i∈[N]

λi(xxx) ≤ 1 ∀xxx ∈ X

λi : {0, 1}n → [0, 1] ∀i ∈ [N]

ccci ∈ Ui ∀i ∈ [N]

(4)

The optimal decision rule can only be found through the solution to the original robust
optimization problem. As such, it is common to apply approximations of the decision rules
to find a closed form of the reformulated problem. First-order or linear decision rules involve
defining the vector mapping λi(xxx) as an affine linear function, such as

λi(xxx) := λi0 +
∑
k∈[n]

λikxk.

This introduces the new variables λi0, λik for all k ∈ [n]. An approximation of MRO is given by
substituting the linear function mapping in (4), resulting in the reformulation given by

max t (5)

s.t. t ≤
∑
k∈[n]

∑
i∈[N]

(λi0 +
∑
`∈[n]

λi`x`)c
i
kxk ∀xxx ∈ X (6)

∑
i∈[N]

(λi0 +
∑
k∈[n]

λikxk) ≤ 1 ∀xxx ∈ X (7)

λi0 +
∑
k∈[n]

λikxk ≥ 0 ∀i ∈ [N],xxx ∈ X (8)

λi0 +
∑
k∈[n]

λikxk ≤ 1 ∀i ∈ [N],xxx ∈ X (9)

ccci ∈ Ui ∀i ∈ [N] (10)

Note that it is possible to remove constraints (9) since they are implied by constraints (7) and
(8).

20

It can be observed that the reformulated problem has an exponential number of constraints,
resulting from a set of constraints for each solution contained in X . As such, problem (5)–(10)
is intractable in its current form. Using the following linear relaxation assumption, a further
reformulation can be performed to address the intractability of problem (5)–(10)

Assumption 3. There exists a suitable polyhedron

X ′ = {xxx ∈ Rn
+ : AAAxxx ≤ bbb,xxx ≤ 111}

with AAA ∈ Rm×n, bbb ∈ Rm, such that for any cost vector ccc ∈ Rn, we have

min
xxx∈X

cccxxx = min
xxx∈X ′

cccxxx.

To apply Assumption 3, each set of constraints in (6)–(8) are examined in turn to construct
a polyhedral description of linear constraints. For each set of constraints, the bounding limit is
found by minimizing (maximizing) the activity for greater (less) than constraints. Assumption 3
is given for a wide range of commonly considered robust combinatorial optimization problems,
such as Selection, Spanning Tree, and Assignment (see also [KZ16]).

For ease of presentation, we describe the reformulation using Selection as an example.
Consider Constraint (6), which is equivalent to

t ≤ min
xxx∈X

∑
k∈[n]

(
∑
i∈[N]

λi0c
i
k)xk +

∑
k∈[n]

∑
`∈[n]

(
∑
i∈[N]

λi`c
i
k)x`xk

First the product x`xk is linearized by introducing a new variable ykl. Then the resulting
problem can be relaxed to form

min
∑
k∈[n]

(
∑
i∈[N]

λi0c
i
k)xk +

∑
`∈[n]

(
∑
i∈[N]

λi`c
i
k)yk`

2yk` ≤ x` + xk ∀`, k ∈ [n]

xk + x` ≤ yk` + 1 ∀`, k ∈ [n]

yk` ≥ 0 ∀`, k ∈ [n]∑
i∈[n]

xi = p

xk ≤ 1 ∀k ∈ [n]

xk ≥ 0 ∀k ∈ [n]

Note that this will give a conservative approximation to Constraint (6), as the minimum in the
right-hand side is underestimated. Also, the right-hand side of (6) is ignored when applying
Assumption 3, since it will be enforced in the reformulation of MRO. By dualizing the problem,
we find

max −
∑
k∈[n]

∑
`∈[n]

ζk` + pη −
∑
k∈[n]

θk

s.t.
∑
`∈[n]

(ξk` + ξ`k − ζk` − ζ`k) + η − θk ≤
∑
i∈[N]

λi0c
i
k ∀k ∈ [n]

− 2ξk` + ζk` ≤
∑
i∈[N]

λi`c
i
k ∀k, ` ∈ [n]

ξ, ζ, θ ≥ 0

η ≷ 0

By strong duality, this model can be substituted for Constraint (6).

21

By applying this approach also to the other constraints, the linear decision rule approach to
MRO is given through the following optimization problem:

max pη −
∑
k∈[n]

∑
`∈[n]

ζk` −
∑
k∈[n]

θk (11)

s.t.
∑
`∈[n]

(ξk` + ξ`k − ζk` − ζ`k)

+ η − θk ≤
∑
i∈[N]

λi0c
i
k ∀k ∈ [n] (12)

− 2ξk` + ζk` ≤
∑
i∈[N]

λi`c
i
k ∀k, ` ∈ [n] (13)

∑
i∈[N]

λi0 + pπ +
∑
k∈[n]

ρk ≤ 1 (14)

π + ρk ≥
∑
i∈[N]

λik ∀k ∈ [n] (15)

λi0 + pαi −
∑
k∈[n]

βi
k ≥ 0 ∀i ∈ [N] (16)

αi − βi
k ≤ λik ∀k ∈ [n], i ∈ [N] (17)

ξ, ζ, θ ≥ 0 (18)

η ≷ 0 (19)

π ≷ 0 (20)

ρk ≥ 0 ∀k ∈ [n] (21)

αi ≷ 0 ∀i ∈ [N] (22)

βi
k ≥ 0 ∀k ∈ [n], i ∈ [N] (23)

λik ≷ 0 ∀i ∈ [N], k ∈ [n] ∪ {0} (24)

ccci ∈ Ui ∀i ∈ [N] (25)

The reformulation of constraint (6) is given by the objective (11) and constraints (12)–(13). For
constraint (7), the reformulation is given by (14)–(15). Note that the right-hand side of (7) is
the right-hand side of (14). Finally, the reformulation of (8) is given by (16)–(17). Similarly,
the left-hand side of (8) is the left-hand side of (16).

There is still a nonlinearity between variables λi` and cik, with λi` being unbounded. We solve
the optimization problem heuristically, using an alternating approach similar to Section 3.2. By
fixing either variables λλλ, π, ρρρ, ααα, βββ or variables ccc, we increase the current objective value in each
iteration, until a local optimum has been reached.

Note that while we described the reformulation for the special case of Selection, the same
method can be used for any problem with Assumption 3.

D. Maximizing the Midpoint Objective Value

We now explore a different view on problem hardness. Instead of maximizing the objective
value of the resulting optimal solution, which, as the discussion in Section 2 has shown, is a
complex optimization problem, we use the objective value of the midpoint solution as a proxy.
The midpoint method is one of the most popular heuristics for min-max robust combinatorial
optimization. It aggregates all scenarios into one average scenario and solves the resulting single-
scenario problem, which is possible in polynomial time for some combinatorial problems (see
Assumption 3). It is known to give an N -approximation to the robust problem [ABV09], and
has been the best known general method until recently [CG18]. Due to its simplicity, it is also
a popular submethod for exact branch-and-bound approaches [CG15].

22

The optimization problem to generate hard instances we consider here is therefore given as

max
ccc1,...,cccN

max
i∈[N]

cccix̂xx

 1

N

∑
`∈[N]

ccc`

 (MID)

where x̂xx(ccc) denotes an optimal solution to scenario ccc.
To enable the use of general purpose mixed integer programming solvers, a reformulation of

problem (MID) is performed. A common reformulation involves applying a linearization if the
nominal problem can be written as a linear program under Assumption 3, which is the case
for Selection. In the following, we present a reformulation of (MID) when Selection is
the nominal robust optimization problem. To apply this linearization, we enforce that xxx is an
optimal solution to the midpoint scenario 1

N

∑
`∈[N] ccc

` by requiring the corresponding primal
and dual objective values to be equal. The resulting optimization problem is then

max
∑
i∈[N]

tiλi (26)

s.t. ti =
∑
k∈[n]

cikxk ∀i ∈ [N] (27)

∑
i∈[N]

λi = 1 (28)

∑
i∈[N]

∑
k∈[n]

cikxk = pα−
∑
k∈[n]

βk (29)

∑
k∈[n]

xk = p (30)

α− βk ≤
∑
i∈[N]

cik ∀k ∈ [n] (31)

λi ∈ {0, 1} ∀i ∈ [N] (32)

ccci ∈ U i ∀i ∈ [N] (33)

ti ≥ 0 ∀i ∈ [N] (34)

xk ∈ {0, 1} ∀k ∈ [n] (35)

α ≥ 0 (36)

βk ≥ 0 ∀k ∈ [n] (37)

Here, ti denotes the objective value of the midpoint solution in scenario ccci (see Constraint (27)).
The optimization problem maximizes the largest ti by choice variables λi (see Objective (26)
and Constraint (28)). Constraints (29-31) ensure that xxx is indeed the midpoint solution by
enforcing primal and dual feasibility, and equality of primal and dual objective values.

There are still nonlinearities between tiλi and cikxk. We linearize the first product using
qi = tiλi with qi ≤ ti and qi ≤ Miλi, where Mi =

∑
k∈[n] c

i
k suffices. The second product is

linearized using rik = cikxk with rik ≤ cik and rik ≤ cikxk.
We now compare this approach to MRO-Ex with a similar experimental setup as before. For

ease of exposition, the evaluation of the efficacy of the exact solution methods will be performed
using Selection only. We refer to the results using the midpoint method as Mid.

The average run times of the instances generated from MRO-Ex and Mid are presented in
Table 13. For comparison, the average run times to solve the randomly generated instances is
also presented.

The results presented in Table 13 show that while Mid produces instances that are more
difficult than random instances, the increase in difficulty is less than that achieved by MRO-
Ex. Given that Mid is a more complex algorithm for generating problem instances than a
random generator, the results presented in Table 13 suggest that Mid is not a satisfactory

23

n = N
Budget Method 20 30 40

1
MRO-Ex 0.04 0.61 7.83

Mid 0.03 0.15 1.62

2
MRO-Ex 0.06 0.92 7.49

Mid 0.03 0.16 1.74

5
MRO-Ex 0.08 0.77 10.59

Mid 0.03 0.23 2.90

RU 0.03 0.13 1.43

Table 13: Average CPU time in seconds when solving the random instances and the instances
generated using the exact iterative method and the midpoint method.

method for instance generation. This is further highlighted by the average computation times
of Mid presented in Table 14. These results demonstrate that maximizing the minimum solution
objective is a better proxy for instance hardness than maximizing the midpoint objective.

n = N
Budget Method 20 30 40

1
MRO-Ex 1.7 207.0 3005.8

Mid 1.1 15.2 49.2

2
MRO-Ex 49.3 3238.1 3796.0

Mid 2.2 28.3 148.5

5
MRO-Ex 3677.9 4305.1 4081.9

Mid 6.0 1047.4 1807.2

Table 14: Average CPU time in seconds to produce instances using the exact iterative method and
the midpoint method. A (lenient) time limit of 3600 seconds was used.

24

