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Impedance-Balancing Rule for Op-Amps
This note by David Gibson, demonstrates a rule that aids circuit design by allowing the
component values around multi-input summing amplifiers or comparators to be easily calculated.
The rule states: “The gain from any input of a summing amplifier is simply the feedback
impedance divided by that input impedance, provided that the sum of the admittances connected
to the inverting input of the op-amp is equal to the sum of the admittances connected to the non-
inverting input. Given this condition, amplifier bias currents will not contribute an error”.

This note was first published 27 years ago in 1991 [1] and again
in 1993 [2], in two relatively obscure journals. Now, in 2018, I have
scanned and re-formatted the original text, because I still think that
it describes a useful tool for the electronic circuit designer.A new and simple rule aids circuit design by allowing thecomponent values around multi-input summing amplifiers orcomparators to be easily calculated. It can be applied where anop-amp sums two or more signals using both its inputs, or wherea bias voltage is applied to either terminal. I have not seen thisrule quoted previously and venture to suggest that it is novel – itis, at any rate, extremely useful.Calculating component values can be difficult or tedious,especially where the signal channels require different gains andhave complex impedance. Figure 1 is an example of a ‘difficult’design where three signals need to be summed and filtered. Onlythe first step, calculating the input resistor for UB, is easy;calculating the remaining component values is tedious and error-prone, because the voltage at the positive input terminal needs tobe calculated as part of the process. The rule states …

The gain from any input of a summing amplifier is the feedback
impedance divided by that input impedance, provided that the
sum of the admittances connected to the inverting input of the
amplifier is equal to the sum of the admittances connected to the
non-inverting input. Given this condition, amplifier bias currents
will not contribute an error.This rule should perhaps be called the admittance balancingrule, but admittance is simply the reciprocal of impedance. Theimpedances do not have to be resistive, but must (of course) takeinto account the signal source impedance. Feedback admittance istreated as just another admittance connected to the inverting input.Applying the rule to Figure 1 is simple. The input resistancesare immediately known (Figure 2), and all that remains is to‘balance’ the impedance at each input by connecting a capacitor

CBAL from the positive input to ground, and a resistor RBAL from thenegative input to ground. Ground is treated as just another input,but being at 0V it contributes nothing to the output. The valuesrequired are therefore CBAL = CF = 10 nF and RBAL = 3.33 kΩ.Notice that there are no unique values for RBAL and CBAL – acombination of a 5 kΩ resistor from the positive input to ground,and a 2 kΩ resistor from the negative input to ground wouldprovide a clearer representation of the required condition.
Effect of Unbalancing: It may not always be possible tobalance the impedances, and this condition can be stated as …
If the impedances are not balanced then the gains of all the
channels connected to the positive input is greater by a factor
equal to the ratio of the sum of the admittances connected to the
inverting input of the op-amp divided by the sum of the
admittances connected to the non-inverting input, provided that
the amplifier input currents (bias and offset) are negligible.The easiest way to achieve a balance is to make sure that thesame values of component are connected to both inputs. If this isnot possible then some compromise in component values may

need to be made. Additionally, it may be decided to omit a highvalue balancing component that would give rise to a low error.
Bias Currents: A consequence of the rule is that the op-amp’sinput currents flow in equal impedances and thus contribute theminimum to offset voltage. Applying the rule to a single inputamplifier (Figure 3) leads, by an unfamiliar route, to the familiarconfiguration for minimum effect of bias current, which is that R3

Figure 1 – A "difficult" design of amplifier
In the block diagram, above, three signals need to be summed and filtered.

In the op-amp implementation, only the first step, calculating the input
resistor for UB, is easy. Calculating the remaining component values is

tedious and error-prone.

Figure 2 – A practical implementation of Fig.1
Components RBAL and CBAL are included to balance the impedances and lead

to the correct gains from each input.

Figure 3 – Eliminating the effect of bias current
The Impedance Balancing Rule leads to the familiar requirement for the

elimination of bias current effects, namely that R3 = R1||R2
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is equal to the combination of R1 and R2 in parallel. Note that, inthis case, the gain of the non-inverting amplifier is – according tothe impedance balancing rule – equal to R1/R3.
AnalysisThe analysis is straightforward. Referring to Figure 4, theinput currents are denoted by IA, IB; the input voltages andimpedances for the non-inverting input by UAn, ZAn; those for theinverting input as UBn, ZBn; and the voltage at the amplifier inputterminals (usual ‘ideal’ assumptions) by UX. The currents at eachop-amp input are summed, as follows.
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Re-arranging to obtain UX we have
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UX can now be eliminated from (3) and (4), and UOUT written as
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The rule requires K to be 1. Equation (6) shows that thecondition for this is that the sum of the admittances connected tothe inverting and non-inverting inputs are equal. In addition, IAmust be equal to IB. For bias currents this is true by definition, soapart from the contribution from offset current, and provided thatthe impedance balancing condition is met, the amplifier inputcurrents do not contribute to gain errors. The gain can thus bewritten as (5) with K=1.If the circuit is unbalanced, then (5) still describes the rule,but with the weighting factor, K, defined as in (6); and in thedefinition given in the text, above.
Example of UseIn an article in the magazine Electronics World, [back in the1990s] an author claimed to have designed a filter “similar inarrangement to a Sallen & Key filter, [using] four componentsinstead of six”. This statement immediately strikes one as‘dubious’ because the Sallen & Key design is a filter topology, not atype of filter response; and furthermore, can be implemented withfour components quite satisfactorily.A quick analysis of the author’s circuit is possible using theimpedance balancing rule, and it is easily shown that he ismistaken. The circuit in question is shown in Figure 5, where theauthor claimed, additionally, that swapping the Rs and Cs wouldresult in a high-pass instead of a low-pass filter.

Analysis of Filter Circuit: A full algebraic analysis of thecircuit would be straightforward but tedious. It can be simplified,somewhat, by assuming that R1 = R3 and C2 = C4; and then reducedto a trivial problem by using the impedance balancing rule. Withthis condition, the impedance ‘seen’ by the inverting input of the

amplifier is equal to the impedance ‘seen’ by the non-invertinginput. In other words, the sums of the admittances connected tothe two inputs are the same. The gain from each ‘input’ is nowsimply the feedback impedance divided by the impedanceconnected to that input, so we have
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from which we can immediately write (with X = 1/sC),
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which, whatever else it might be, is not a second-order low passfilter “similar to a Sallen & Key filter”. In fact, it is a first order lowpass filter combined with a first-order all-pass phase shiftnetwork, i.e.
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Swapping the Rs and Cs results in a filter which is a first-orderhigh-pass in conjunction with an all-pass network, i.e.
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The impedance balancing rule thus provides a very quickmethod of analysing such a circuit. In this case it shows that it wasnot what the author stated, although exactly what he meant by“similar to a Sallen & Key filter” is not known.   
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Figure 4 – The Impedance Balancing Rule
The gain from each input is given by ZF divided by the input impedance

provided that the balancing condition is met, as described in the text.

Figure 5 – Analysing an unknown circuit function
It was claimed that this published circuit was a second-order low-pass filter.
However, an analysis (made easier by using the impedance balancing rule)

swiftly shows this not to be the case.


