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Abstract. In [SIAM J. Sci. Comput., 36 (2014), pp. A693--A713] the authors present a new
coarse propagator for the parareal method applied to oscillatory PDEs that exhibit time-scale separa-
tion and show, under certain regularity constraints, superlinear convergence which leads to significant
parallel speedups over standard parareal methods. The error bound depends on the degree of time-
scale separation, \epsilon , and the coarse time step, \Delta T , and relies on a bound that holds only in the limit
of small \epsilon . The main result of the present paper is a generalization of this error bound that also
holds for finite values of \epsilon , which can be important for applications in the absence of scale separation.
The new error bound is found to depend on an additional parameter, \eta , the averaging window used
in the nonlinear term of the coarse propagator. The new proof gives insight into how the parareal
method can converge even for finite values of \epsilon . It is also a significant technical advance over the
proof presented in [SIAM J. Sci. Comput., 36 (2014), pp. A693--A713]; it requires the introduction of
a stiffness regulator function that allows us to control the oscillatory stiffness in the nonlinear term.
The new convergence concepts developed in the new proof are confirmed using numerical simulations.
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1. Introduction. In this paper we are interested in the convergence of the
asymptotic parallel-in-time (APinT) [14] parareal method [21, 22] for oscillatory sys-
tems of equations with the following form:

du

dt
+

1

\varepsilon 
Lu+\scrN (u) = 0,(1.1)

u(t)| t=0 = u0.(1.2)

Here, u is the vector of unknowns, L is a skew-Hermitian matrix with purely imaginary
eigenvalues, and \scrN (\cdot ) is a nonlinear operator. The linear term induces temporal
oscillations on an \scrO (\varepsilon ) time scale, which can require the use of prohibitively small time
steps for standard numerical integrators if \varepsilon is small and if the temporal oscillations of
u(t) are significant (e.g., Lu(t) is not small). In addition, convergence of the parareal
method for such highly oscillatory problems can require a time step that scales like
\scrO (\varepsilon ) [12]. Our motivation for studying (1.1) comes from the development of efficient
time-stepping schemes for solving spatially discretized PDEs that arise in geophysical
fluid applications (see [19]), where it is important that the time step \Delta T can be chosen
on a time scale that is independent of \varepsilon . The analysis in the current paper assumes
that PDEs can be written as a system of ODEs as in (1.1).
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In order to understand how the concepts in this paper differ from those proposed
in [14], we will first sketch the mathematical ideas of the coarse propagator, pointing
readers to sections in the paper where more details will be described later. We also
assume the reader has a basic knowledge of the parareal method, but we provide a
short section 2 where the basic concepts and notation are described.

The coarse solver studied in this paper is based on two key steps. The first step
is to approximate (1.1) by using a coordinate transformation,

u(t) \approx e - 
1
\epsilon Lt v(t),(1.3)

dv

dt
(t) + e

1
\epsilon Lt\scrN (e - 

1
\epsilon Ltv(t)) = 0,(1.4)

v(t)| t=0 = u0,(1.5)

which removes the stiff linear term. However, taking another time derivative of (1.4)
shows that there are still some oscillations remaining. Therefore, to regularize (1.4)
further, a time average is applied. This produces the \epsilon -dependent equation that is
used as an approximate coarse solver in the APinT parareal method,

u(t) \approx e - 
1
\epsilon Lt v(t),(1.6)

dv

dt
(t) +

1

\eta 

\int \eta 

0

e
1
\epsilon Ls\scrN (e - 

1
\epsilon Lsv(t))ds = 0,(1.7)

v(t)| t=0 = u0.(1.8)

The averaging in (1.7) introduces a new parameter, \eta , whose effect on the convergence
of the method must be included to understand the convergence of the APinT method.
Also notice that the integral is over s, a parameter that appears only in the matrix
exponentials. The approximation (1.6)--(1.7) is based on an analysis of PDEs [6, 18,
26] which provides an error bound in the limit of \epsilon \rightarrow 0 and will be discussed in
more depth in section 3.1. The second step in constructing the coarse solver is the
numerical approximation of (1.7) which introduces another key parameter, the coarse
time step, \Delta T .

To summarize, the key parameters of the error bound for APinT are (1) the
degree of time-scale separation, \epsilon , (2) the coarse time step, \Delta T , and (3) the averaging
window, \eta . We are now in a position to discuss the assumptions made in [14] and the
significance of the approach taken in this paper to extend the range of applicability
of the error bound. Readers who wish to understand more details before examining
the main concepts can find a short discussion of the parareal method in section 2 and
more details about how we treat the coarse solver mathematically in section 1.2, with
the details of the proof finally given in section 4.

We now discuss one of the assumptions used in the error estimate for the conver-
gence of APinT in [14]. In particular, the error bound is a function of \epsilon and \Delta T , with
no dependency on the averaging window, \eta . This is because the authors used an im-
portant relationship between the time-scale separation, \epsilon , and the averaging window,
\eta , based on analysis in [6, 18, 26, 8] which holds only in the limit of \epsilon \rightarrow 0, and which
will be discussed in more detail in section 3.1. For the purposes of the introduction
we describe this relationship in words: in the limit as \epsilon \rightarrow 0 and \eta \rightarrow \infty , the error
between the solution of (1.1) and its approximation (1.6)--(1.7) is o (1). This approx-
imation is valid as long as \epsilon is small enough to be considered within the asymptotic
limit.

However, developing error bounds for finite \epsilon , which range from \epsilon \ll 1 to \epsilon =
\scrO (1), is important for physical applications. In fact, some physical phenomena, such
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Fig. 1.1. Left: The number of iterations required for convergence of the APinT method for
the two-dimensional rotating shallow water equations across three values of time-scale separation, \varepsilon 
(cf. section 1). Note that towards the small-\varepsilon limit, shown by the line represented by triangles, the
convergence improves with an increase in the size of the averaging window, as is consistent with the
asymptotic theory. Note, however, that a clear minimum is visible outside of this limit, especially
for \varepsilon = 1, which marks a departure from the asymptotic theory. This makes clear both that the
convergence of the method depends on the degree of scale separation, \varepsilon , and that the width of the
averaging window, shown here proportional to the coarse time step, may be chosen to control it. We
shall rigorously explain this in section 4. Right: A graph of the error bounds found in section 4.
The wide dash represents the error estimate due to averaging the nonlinearity. The dotted line
represents the error from the time-stepping. The solid line represents their sum, which is the total
error using the APinT coarse propagator. This can be compared to the graph on the left, which
shows a minimum in the convergence of parareal using the APinT coarse propagator.

as those occurring in numerical weather prediction, have finite frequencies inherent
in the problem; e.g., Earth's rotation rate is finite. Because of this issue, some nu-
merical weather prediction codes no longer use the simpler reduced equations derived
from small nondimensional parameters, choosing to use the full set of equations even
though they contain ``fast"" motions [7]. Furthermore, even if the value of \epsilon is small
enough to be considered to be within the asymptotic limit, it may not remain so as
the simulation unfolds. This is because small nondimensional parameters are con-
structed using characteristic velocity, length, and time scales that change as solutions
evolve. As an example of this behavior for a case relevant to the numerical simula-
tions in section 5, see [24], where the authors discuss how regimes which start out
with small Froude number, a small parameter related to oscillations due to the force
of gravitation, grow to O(1) as the flow adjusts with time.

We now demonstrate the effect of \eta and \epsilon on the convergence of parareal through
numerical evidence for APinT solutions of the rotating shallow water equations on the
left side of Figure 1.1. The figure's vertical axis shows the total number of iterations
required for the APinT method to converge to a specific error tolerance for three
different orders of magnitude of \epsilon . When \epsilon is small, the oscillations are fast, and when
\epsilon is large, the oscillations are slower. The horizontal axis represents a time-averaging
interval, \eta . This averaging interval is an important part of regularizing the effects
of oscillations on the nonlinearity and will be discussed in detail in section 3. For
now \eta can be interpreted as the degree to which the oscillations have been smoothed.
That is, when \eta = 0, there is no averaging and all the oscillations are present in the
solution. When \eta \rightarrow \infty , this is the asymptotic case when \epsilon \rightarrow 0 and the nonlinear
effects of oscillations on the solution have been averaged away. This asymptotic
limiting behavior is demonstrated by the case when \epsilon = .01 (represented by \blacktriangle on the
graph). In this case, as \eta increases, the number of iterations not only decreases, but
approaches a minimal plateau. Beyond this point, increasing the averaging window
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has no effect on convergence because the effect of the oscillations has already been
averaged out. For the other two cases, for \epsilon = .1 (\blacksquare on the graph) and \epsilon = 1 (\bullet on
the graph), it can be seen that as \eta increases, the number of parareal iterations to
converge decreases until it reaches a minimum. Rather than reaching a plateau, as in
the asymptotic case, we see that the number of iterations to converge increases. This
indicates there is a value of \eta for which there is at least one minimum.

It is the goal of this paper to provide the understanding required to explain the
minimum in Figure 1.1 found for finite values of \epsilon by deriving a new error estimate for
the coarse propagator. This result extends the work of [14], which was valid for the
case when \epsilon \rightarrow 0. The proof differs significantly from that of [14] because the error
bounds connecting the coarse time step \Delta T , the time-averaging window \eta , and the
parameter \epsilon are valid even in the absence of scale separation (see sections 3 and 4).

The remainder of this introduction is separated into two subsections. In subsec-
tion 1.1 we will discuss related efforts in the parareal literature to solve problems of
type (1.1). Then in subsection 1.2 we will sketch the key numerical concepts, unique
to the APinT coarse propagator studied in this paper, that will be used to derive the
new error estimate. The latter subsection will act as a guide to understanding the
plan of the paper.

1.1. Related work. Examples of applications of the parareal algorithm being
applied to parabolic PDEs include simulations of financial markets (i.e., the Black--
Scholes equation for an American put [4]) and a nonlinear parabolic evolution equation
via the finite element method [16]. Hyperbolic systems solved with parareal include
simulation of molecular dynamics [3], fluid/structure interaction [9], solution of the
Navier--Stokes equations [10], and reservoir modelling [13]. In all of these applica-
tions, the degree of oscillatory stiffness was not sufficient to impede convergence, but
oscillatory stiffness is known (cf. [12, 1]) to be an important issue standing in the way
of fast convergence rates for the parareal method.

There have been several modifications to the parareal method which apply to
highly oscillatory systems and which assume that a system may be separated into
fast and slow variables. In terms of ODEs, the authors of [20] have proposed a multi-
scale method for singularly perturbed ODEs where the fast dynamics are dissipative.
In 2016, Ariel, Kim, and Tsai [1] proposed a method for highly oscillatory ODEs which
is multiscale in nature but does not require explicit knowledge of the fast and slow
variables. In 2014, Gander and Hairer [11] suggested parareal methods for Hamilton-
ian dynamics. Approaches using symplectic integrators with applications to molecular
dynamics are presented in, for example, [2] and [5]. The method of [14], also for oscil-
latory PDEs, is motivated by the analysis of fast singular limits of nonlinear PDEs.
It is the coarse propagator of [14] which we examine closely in this paper and discuss
conceptually in the next section. Finally, we discuss the relationship of this work to
the paper of Gander and Vandewalle [12], which studies the convergence of parareal
and gives examples for two classic linear PDEs: linear advection, which has imaginary
eigenvalues (oscillatory), and the heat equation, which has negative real eigenvalues
(dissipative). Relevant to this paper is the case of linear advection, which is a much
simpler PDE than the one studied in this paper, for which it is shown that even if the
parareal method converges, it may not do so quickly. The key aspects of this paper
that differentiate it from the linear advection case studied in [12] is that first, we
focus on nonlinear problems, and second, we assume we can rotate the solution into
the space of the oscillations through a coordinate transformation described in section
1.2. This coordinate transformation, through the matrix exponential, is a challenging
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problem in its own right. An example of a parallelizable method of computing this
operator in the context of the method proposed in this paper was discussed in [15].

1.2. Key concepts of the coarse propagator. The goal of this paper is to
provide a new understanding of the convergence of the APinT parareal method for
finite \epsilon , depicted on the left side of Figure 1.1, through a new analysis of the coarse
propagator. To that end, we sketch the key concepts required to identify the two
main sources of error in the coarse propagator. At the end of this section, we will use
these concepts to outline the plan of the paper.

First we introduce a coordinate transformation

(1.9) u = e - Lt/\epsilon v.

Then, defining

(1.10) \scrN (s,x) = esL\scrN 
\bigl( 
e - sLx

\bigr) 
,

equation (1.1) can be written as

(1.11)
dv

dt
(t) = \scrN 

\biggl( 
t

\varepsilon 
,v (t)

\biggr) 
.

Comparing (1.9)--(1.11) with (1.1) shows that the mapping (1.9) removes the stiff
linear term from the evolution equation. However, though the stiff linear term is
gone, taking another derivative of (1.11) shows there will still be oscillations present.
To make further progress, the second step in the construction of the coarse propagator
is to introduce a ``fast-wave-average"" into the evolution equation described by (1.11),

(1.12)
dv

dt
(t) = \scrN \eta 

\biggl( 
t

\varepsilon 
,v (t)

\biggr) 
.

Here the operator \scrN \eta (t/\varepsilon ,v (t)) is defined by averaging over the fast variable t/\varepsilon 
with respect to a smooth bump function \rho :

(1.13) \scrN \eta 

\biggl( 
t

\varepsilon 
,v (t)

\biggr) 
=

1

\eta 

\int \eta 

0

\rho 

\biggl( 
t+ s

\eta 

\biggr) 
\scrN 
\biggl( 
t+ s

\varepsilon 
,v (t)

\biggr) 
ds.

We next consider the main sources of error in approximating the exact solution
(1.11) with the numerical approximation of its average, (1.12). As mentioned earlier,
throughout this paper we will assume that the mapping (1.9) is exact and that we
can discretize PDEs into the form (1.1) in order to use the notation and concepts of
ODE analysis. Let x(t) represent the exact solution at time t, let y\eta (t) represent the
averaged approximation to the exact equation based on a time-averaging interval of
\eta , and let y\eta 

\Delta t represent the time discretization of the average y\eta (t) with time step
\Delta t. Then we can write, using the triangle inequality,

| | x(t) - y\eta 
\Delta t| | = | | x(t) - y\eta (t) + y\eta (t) - y\eta 

\Delta T (t)| | (1.14)

\leq | | x(t) - y\eta (t)| | \underbrace{}  \underbrace{}  
averaging error

+ | | y\eta (t) - y\eta 
\Delta t(t)| | \underbrace{}  \underbrace{}  

time-stepping error

.

This error estimate indicates there are two main sources of error: the error due
to the time-averaging and the error due to the numerical approximation of the time-
averaged evolution equation.
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To guide the reader on how the proof will proceed, we visually sketch the outcome
of the error analysis of the coarse solver on the right side of Figure 1.1; this will be
discussed in sections 3 and 4. The error due to time-averaging is sketched by the
dotted line, while the error due to time-stepping the averaged equation is sketched by
the dashed line. We can then examine the total error, the solid line, in which we find
a ``sweet spot"" where the addition of the two sources of error reaches a minimum. The
similarity between the parareal performance we observed in our example calculation
and our error bounds can be seen by comparing the two sides of Figure 1.1.

In the next section we give a short overview of the parareal method to set the
context of the work and define our notation. In section 3 we discuss the coarse
propagator and introduce the details of the nonlinear averaging. It is in this section
that we briefly introduce the concept of resonant sets for constructing error bounds in
the average, nonlinear operator for finite \epsilon . With that in mind, we proceed in section 4
to prove the error bounds and therefore the convergence of the APinT method for
finite \epsilon . Finally, in section 5 we give an example for the shallow water equations, where
we discuss the concrete form of the coarse solution and the role played by ordered
resonant sets. We also present numerical experiments for the one-dimensional rotating
shallow water equations that demonstrate the concepts used in the error bound.

2. The parareal algorithm. In this paper we assume the reader has a basic
understanding of the parareal method [21, 22]. We include this section to sketch the
main concepts and define our notation. The basic approach of the parareal method
is to take large time steps \Delta T in serial using a coarse integrator of (1.1), and to
iteratively refine the solutions in parallel using small time steps \Delta t and a more accu-
rate integrator. This can result in significant speedup in real (wall-clock) time if the
parareal iterations converge rapidly, and either the ratio \Delta T/\Delta t of coarse and fine
step sizes is large, or the cost of the coarse solver is much cheaper than that of the
fine solver.

For all the discussions in this paper we assume that we are interested in solving
(1.1) on the interval t \in [0, 1]. To set notation, let \varphi tn - 1,tn (u0) and \varphi tn - 1,tn (u0)
denote the solutions of the original ODE (1.11) and the time-averaged ODE (1.12) at
time tn = n\Delta T , respectively, starting from the initial condition u0 at tn = (n - 1)\Delta T .
Similarly, let \~\varphi tn - 1,tn (u0) denote a numerical approximation to the solution at time
tn = n\Delta T of the time-averaged ODE, starting from the initial condition u0 at tn - 1 =
(n - 1)\Delta T , where the approximate solution is obtained via a one-step time-stepping
method.

We divide the time domain into N finite subintervals, [n\Delta T, (n + 1)\Delta T ], where
n = 0, . . . , N - 1. The parareal algorithm begins with a coarse solve and then proceeds
by computing approximations to the solution, vk

n, iteratively, as follows:

(2.1) vk
n = \~\varphi tn - 1,tn

\bigl( 
vk
n - 1

\bigr) 
+
\bigl( 
\varphi tn - 1,tn

\bigl( 
vk - 1
n - 1

\bigr) 
 - \~\varphi tn - 1,tn

\bigl( 
vk - 1
n - 1

\bigr) \bigr) 
.

Here, since the quantities vk - 1
n - 1 in the difference \varphi \Delta T (v

k - 1
n - 1)  - \~\varphi \Delta T (v

k - 1
n - 1) are

already computed at iteration k, the difference can be computed in parallel for all n.
Since the computation of \varphi \Delta T (v

k
n - 1) is cheap, the overall parallel computation cost

will be cheap provided the iterates converge quickly.

3. The coarse propagator. In this section we complete the mathematical de-
scription of the coarse propagator that we introduced in section 1.2. These concepts
are the underpinning ideas required to understand the error bounds of section 4.

This section is organized as follows. First, in section 3.1 we sketch the relevant
results from the theory of fast singular limits to provide the motivation for the approx-
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imation used for the coarse propagator. An additional motivation for examining this
limiting case is to allow a description of what we expect in the limit of \epsilon \rightarrow 0. Follow-
ing this, in section 3.2, we will complete the details of the mathematical description
of the coarse propagator; in particular we shall describe the fast-wave-averaging of
the nonlinear term.

3.1. Relation of the coarse propagator to fast singular limits in PDEs.
The coarse propagator used in this paper has its roots in the mathematics of fast
singular limits as applied to (1.1) in the limit as \epsilon \rightarrow 0 [6, 18, 26, 8]. The analysis
begins by separating time into two scales, a slow time scale, t, and a fast time scale,
\tau . Then the time derivative and its corresponding asymptotic expansion are

(3.1)
\partial 

\partial t
\rightarrow \partial 

\partial t
+

1

\epsilon 

\partial 

\partial \tau 
, u = u0(t, \tau ) + \epsilon u1(t, \tau ) + O

\bigl( 
\epsilon 2
\bigr) 
.

The leading order solution is

u0(t, \tau ) = e - \tau Lu(t) + o(1),(3.2)

with

\partial u(t)

\partial t
+ lim

\tau \rightarrow \infty 

1

\tau 

\int \tau 

0

esL\scrN (e - sLu(t)) ds = 0,(3.3)

u(t)| t=0 = u0.(3.4)

Equation (3.3) provides the definition for the solution u(t) as an average over the
variable s of the nonlinear combination of the matrix exponential operators. One
of the conclusions of this theory is that the leading order solution given in (3.2)
contains both slow and fast components of the solution because the matrix exponential
itself, comprising the eigenfrequencies and eigenfunctions of the skew-Hermitian linear
operator, contains all the frequencies, including low frequencies and sometimes zero
frequencies, of the system of equations.

3.2. Nonlinear averaging in the coarse propagator. In this section we
consider an approximation, similar to the one made in the last section, for when \epsilon is
finite rather than infinite. This implies an average over a finite time interval, \eta , rather
than an infinite one. From a numerical point of view, the finite time interval can be
thought of as a technique for regularizing the nonlinear equation over the interval of
the coarse time step.

We remind the reader that in section 1.2 we presented the two main sources
of error in the numerical approximation of the APinT coarse propagator. The first
step uses the matrix exponential of the skew-Hermitian linear operator to map the
unknowns of (1.1), denoted as the vector v, into a new coordinate vector u, arriving
at equations (1.11). Though it may be tempting to think of v as the fast coordinate
and u as the slow coordinate, the mapping described by (1.9) will contain all the
frequencies of the system, which will also include low-frequency modes which make
important contributions to the solution over the interval of the coarse time step, as
well as possible zero-frequency modes. It is therefore more advantageous to think of
the matrix exponential as mapping the unknowns of the evolution equation into the
space of the oscillations. The second step approximates the exact mapped solution
described by (1.11) by a new equation that describes a smoothed, time-averaged
solution, (1.12). The solution to (1.12) is the definition of the averaged solution v.
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To understand the behavior of this averaging operator, we assume that \scrN (s,x)
can be written as a phase expansion in the form

(3.5) \scrN (s,x) =
\sum 

n

ei\omega ns\scrN n (x) , \omega n \in \BbbR ,

where \omega 0 = 0 and \omega n \not = 0 for n \not = 0. The i\omega ns in (3.5) depend on the form of the
nonlinear term. In geophysical fluid applications with quadratic nonlinearity,

\scrN (s,x) = esL\scrB 
\bigl( 
e - sLx, e - sLx

\bigr) 
,

where \scrB is a bilinear form and L is a skew-Hermitian matrix; the functional form (3.5)
that arises from decomposing x in terms of eigenvectors wn of L with corresponding
eigenvalues i\lambda n is given by

(3.6) \scrN (s,x) =
\sum 

n3

\sum 

n1,n2

ei(\lambda n3 - \lambda n2 - \lambda n1)san1,n2,n3
(x \cdot wn1

) (x \cdot wn2
)wn3

,

where an1,n2,n3
= \scrB (wn1

,wn2
) \cdot wn3

. In this case, the frequencies of (3.5) are a
combination of the frequencies of the linear operator L,

(3.7) \omega n3
= \lambda n3

 - \lambda n2
 - \lambda n1

.

Examining (3.6), it is seen that three fast frequencies can be combined to produce a
total frequency, \omega n3, that is small, leading to a low-frequency solution. Because it is
the combination of fast frequencies that leads to low-frequency dynamics, we point
out that numerical methods that cause errors in these frequencies could have a further
effect of also causing errors in the low-frequency component of the nonlinear solution.
A concrete example of (3.6) will be given in section 5. In addition, the function \scrN 0 (x)
governing the slow time behavior in the decomposition (3.5) is given by all linear
combinations of terms an1,n2,n3

(x \cdot wn1
) (x \cdot wn2

)wn3
for which \lambda n3

 - \lambda n2
 - \lambda n1

= 0.
From (3.5),

(3.8)
dv

dt
(t) =

\sum 

n

ei\omega nt/\varepsilon 

\biggl( \int 1

0

\rho (s) ei\omega n\eta s/\varepsilon ds

\biggr) 
\scrN n (v (t)) .

Choosing, e.g., \rho (s) = \rho 0 exp ( - 1/ (s (1 - s))), it turns out (see [17]) that there are
constants a0 and a1 for which

(3.9)

\bigm| \bigm| \bigm| \bigm| 
\int 1

0

\rho (s) ei\omega n\eta s/\varepsilon ds

\bigm| \bigm| \bigm| \bigm| \lesssim a0

\bigm| \bigm| \bigm| e - a1

\surd 
\omega n\eta /\varepsilon 

\bigm| \bigm| \bigm| .

Note that when \eta \gg \varepsilon /min\omega n \not =0 | \omega n| ,

dv

dt
(t) \approx \scrN 0 (v (t)) ,

and the above identity is exact in the limit of \eta \rightarrow \infty .
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Fig. 4.1. A schematic depiction of the time-smoothing properties of the time-averaging kernel
\rho (\cdot ).

4. Error bounds.

4.1. Basic ideas behind the error bounds and a scaling result. The basic
idea behind the time-stepping error bounds is that the time-stepping error for an
order p time-stepping method scales like

\| v (tn) - vn\| \sim \Delta T p

\bigm\| \bigm\| \bigm\| \bigm\| 
\biggl( 

d

dt

\biggr) p+1

v (t)

\bigm\| \bigm\| \bigm\| \bigm\| (4.1)

\sim max
\omega 0\leq \omega 

\bigm| \bigm| \bigm| \bigm| 
\Bigl( \omega 
\varepsilon 

\Bigr) p+1
\int 1

0

\rho (s) ei\omega \eta s/\varepsilon ds

\bigm| \bigm| \bigm| \bigm| (4.2)

\sim a0 max
\omega 0\leq \omega 

\Bigl( \omega 
\varepsilon 

\Bigr) p+1

e - a1

\surd 
\omega n\eta /\varepsilon ,(4.3)

where vn denotes the numerical approximation to v (tn) and we used the decompo-
sition (3.5) and the bound (3.9). The qualitative behavior for the time-smoothing
properties of

max
\omega 0\leq \omega 

\bigm| \bigm| \bigm| \bigm| 
\Bigl( \omega 
\varepsilon 

\Bigr) p+1
\int 1

0

\rho (s) ei\omega \eta s/\varepsilon ds

\bigm| \bigm| \bigm| \bigm| 

as a function of \omega is displayed in Figure 4.1.
Also, it can be shown (see Corollary 4.1) that the difference between v (tn) and

v (tn) scales like

(4.4) \| v (tn) - v (tn)\| \sim C\eta \varepsilon .

Since \| v (tn)  - vn\| \leq \| v (tn) - v (tn)\| + \| v (tn)  - vn\| , combining (4.3) and (4.4)
suggests that each parareal iteration attenuates the error by a factor of

(4.5)
C\eta \varepsilon 

\Delta T
+\Delta T pa0 max

\omega 0\leq \omega 

\Bigl( \omega 
\varepsilon 

\Bigr) p
e - a1

\surd 
\omega n\eta /\varepsilon ,

which represents a balance between errors from the time homogenization and the
time-stepping errors. This heuristic argument is formalized in Theorem 4.2.

Given the general form (4.5) for the error attenuation, the goal is to choose a
time-averaging window \eta = \eta (\varepsilon ,\Delta T ) that yields fast convergence, where the coarse
time step \Delta T is only constrained by the slow time scales (if \varepsilon \ll 1). To show that
such a choice for \eta exists, write \eta (\varepsilon ,\Delta T ) = \varepsilon s\Delta T 2/\omega min, where 0 < s < 1. Looking
at

\eta (\varepsilon ,\Delta T ) \varepsilon 

\Delta T
+ (\Delta T | \omega max| )p+1

\biggl( 
1

\varepsilon 

\biggr) p+1 \bigm| \bigm| \bigm| e - C0

\surd 
\Delta T/\varepsilon 1 - s

\bigm| \bigm| \bigm| ,
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we need the quantity

(4.6) \varepsilon 1+s\Delta T/\omega min + | \omega max| (\Delta T | \omega max| )p+1

\biggl( 
1

\varepsilon 

\biggr) p+1 \bigm| \bigm| \bigm| e - C0

\surd 
\Delta T/\varepsilon 1 - s

\bigm| \bigm| \bigm| 

to be small. Notice that, since 1 - s > 0, the second term in (4.6),

(\Delta T | \omega max| )p+1

\biggl( 
1

\varepsilon 

\biggr) p+1 \bigm| \bigm| \bigm| e - C0

\surd 
\Delta T/\varepsilon 1 - s

\bigm| \bigm| \bigm| ,

goes to zero superexponentially fast as \varepsilon \rightarrow 0, and is bounded for all values of \varepsilon given
a fixed coarse time step \Delta T . Also, since s > 0, the time window \eta over which the
averaging is performed goes to zero as \varepsilon \rightarrow 0.

To connect the form of the error attenuation (4.6) to the discretization of geo-
physically relevant PDEs (e.g., the shallow water equations), note that the size of
\omega min and \omega max will scale with the grid spacing N - 1 in some way, e.g., \omega min \sim N - 1

and | \omega max| \sim N . This requires choosing a coarse time step \Delta T \lesssim N - 1 in order for
the error (4.6) to be small. Importantly, this choice for the coarse time step \Delta T is
independent of \varepsilon , as desired.

4.2. Statement and proof of error bounds. We now derive error bounds for
the parareal iteration. Our error bounds rely on the following result, which follows
from Proposition A.1 in the appendix and the change of variables \tau = t/\varepsilon . We note
that Proposition A.1 is a slight modification of the proof of Lemma 3.2.9 in [25]. For
notational simplicity, throughout the proof we let C denote a generic constant that
implicitly depends on the constants \lambda , M , and C0 in Corollary 4.1. The key point is
that the constant C is not expected to grow as \varepsilon \rightarrow 0.

Corollary 4.1. Consider

dv

dt
(t) = \scrN 

\biggl( 
t

\varepsilon 
,v (t)

\biggr) 
, 0 \leq t \leq 1,

and its averaged version

dv

dt
(t) = \scrN \eta 

\biggl( 
t

\varepsilon 
,v (t)

\biggr) 
, 0 \leq t \leq 1,

where

\scrN \eta 

\biggl( 
t

\varepsilon 
,v (t)

\biggr) 
=

1

\eta 

\int \eta 

0

\rho 

\biggl( 
t+ s

\eta 

\biggr) 
\scrN 
\biggl( 
t+ s

\varepsilon 
,v (t)

\biggr) 
ds.

Assume that there are constants \lambda and M such that

max
0\leq t,t1,t2\leq 1

\bigm\| \bigm\| \bigm\| \scrN 
\Bigl( \tau 0
\varepsilon 
,v (\tau 1)

\Bigr) 
 - \scrN 

\Bigl( \tau 0
\varepsilon 
,v (\tau 2)

\Bigr) \bigm\| \bigm\| \bigm\| \leq \lambda \| v (\tau 1) - v (\tau 2)\| 

and

(4.7) M = max
0\leq \tau \leq 1

\bigm\| \bigm\| \bigm\| \scrN 
\Bigl( \tau 
\varepsilon 
,v (\tau )

\Bigr) \bigm\| \bigm\| \bigm\| < \infty , C0 =

\int 1

0

\rho (s) sds.

Then
\| v (t) - v (t)\| = C0 (1 + \lambda )M\eta \varepsilon e\varepsilon \lambda t, 0 \leq t \leq 1.

Proof. Use the change of variables \tau = t/\varepsilon and Proposition A.1.
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Before stating the hypothesis on the propagation operators \varphi tn - 1,tn (v0),
\varphi tn - 1,tn (v0), and \~\varphi tn - 1,tn (v0), we consider forward Euler as a motivating example
(recall that the propagation operators are defined in section 2). For forward Euler,
the local truncation error from time-stepping on the time-averaged equation (1.12)
satisfies

\varphi tn - 1,tn (v) - \~\varphi tn - 1,tn (v) =
1

2

\biggl[ 
d2vj
dt2

\bigl( 
\tau nj
\bigr) \biggr] 

j

\Delta T 2, tn - 1 \leq \tau nj \leq tn.

Now, defining

\kappa (\varepsilon , \eta , \omega ) =

\int 1

0

\rho (s) ei\omega \eta s/\varepsilon ds

and
\scrN (1)

m1,m2
(v (t)) = J\scrN m1

(v (t))\scrN m2
(v (t)) ,

a direct calculation from (3.8) yields

\biggl( 
d

dt

\biggr) 2

v (t) =
\sum 

m

ei\omega mt/\varepsilon 

\biggl( 
i\omega m

\varepsilon 

\biggr) 
\kappa (\varepsilon , \eta , \omega m)\scrN m (v (t))

+
\sum 

m1,m2

ei(\omega m1
+\omega m2)t/\varepsilon \kappa (\varepsilon , \eta , \omega m1)\kappa (\varepsilon , \eta , \omega m2)\scrN (1)

m1,m2
(v (t)) .

Using the fact that | \kappa (\varepsilon , \eta , \omega m1)| \leq 1, there are smooth functions \scrM 0(v, \varepsilon , \eta ,\Delta T )
and \scrM 0 (v) such that

\varphi tn - 1,tn (v) - \~\varphi tn - 1,tn (v) = \scrM 0 (v; \varepsilon , \eta ,\Delta T )

and
\| \scrM 0 (v, \varepsilon , \eta ,\Delta T )\| \leq C\Delta T 2 max

\omega 0\leq \omega 

\Bigl\{ \bigm| \bigm| \bigm| \omega 
\varepsilon 

\bigm| \bigm| \bigm| \kappa (\varepsilon , \eta , \omega )
\Bigr\} 
\| \scrM 0 (v)\| .

More generally, for a general order p one-step time-stepping scheme, a calculation
analogous to the one above shows that there are smooth functions \scrM 0 (v, \varepsilon , \eta ,\Delta T )
and \scrM 0 (v) such that the local truncation error from time-stepping on (1.12) satisfies

(4.8) \varphi tn - 1,tn (v) - \~\varphi tn - 1,tn (v) = \scrM 0 (v, \varepsilon , \eta ,\Delta T ) ,

where

(4.9) \| \scrM 0 (v; \varepsilon , \eta )\| \leq C\Delta T p+1 max
\omega 0\leq \omega 

\Bigl\{ \bigm| \bigm| \bigm| \omega 
\varepsilon 

\bigm| \bigm| \bigm| 
p

\kappa (\varepsilon , \eta , \omega )
\Bigr\} 
\| \scrM 0 (v)\| .

We also note that, from Corollary 4.1, there are smooth functions \scrM 1 (v, \varepsilon , \eta ,\Delta T )
and \scrM 1 (v) such that

(4.10) \varphi tn - 1,tn (v) - \varphi tn - 1,tn (v) \leq \scrM 1 (v, \varepsilon , \eta ,\Delta T )

and

(4.11) \| \scrM 1 (v, \varepsilon , \eta ,\Delta T ) \| \leq C\eta \varepsilon \| \scrM 1 (v) \| .

We introduce the main assumptions on the propagation operators \varphi tn - 1,tn (v0),
\varphi tn - 1,tn (v0), and \~\varphi tn - 1,tn (v0). To do so, it will be convenient to introduce the

operators \scrE tn - 1,tn (\cdot ) and \~\scrE tn - 1,tn (\cdot ):

\scrE tn - 1,tn (v) = \varphi tn - 1,tn (v) - \varphi tn - 1,tn (v)
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and
\~\scrE tn - 1,tn (v) = \varphi tn - 1,tn (v) - \~\varphi tn - 1,tn (v) .

Using (4.8), (4.9), (4.10), and (4.11), we see that
(4.12)\bigm\| \bigm\| \bigm\| \~\scrE tn - 1,tn (v1) - \~\scrE tn - 1,tn (v2)

\bigm\| \bigm\| \bigm\| \leq C\Delta T p+1 max
\omega 0\leq \omega 

\Bigl\{ \bigm| \bigm| \bigm| \omega 
\varepsilon 

\bigm| \bigm| \bigm| 
p

\kappa (\varepsilon , \eta , \omega )
\Bigr\} 
\| \scrM 0 (v1) - \scrM 0 (v2)\| 

and

(4.13)
\bigm\| \bigm\| \scrE tn - 1,tn (v1) - \scrE tn - 1,tn (v2)

\bigm\| \bigm\| \leq C\eta \varepsilon \| \scrM 1 (v1) - \scrM 1 (v2)\| .

Finally, we assume that the propagation operator \~\varphi tn - 1,tn (\cdot ) associated with perform-
ing the time-stepping method on the time-averaged equation satisfies

(4.14)
\bigm\| \bigm\| \~\varphi tn - 1,tn (v1) - \~\varphi tn - 1,tn (v2)

\bigm\| \bigm\| \leq (1 + C\Delta T ) \| v1  - v2\| .

From the decomposition (3.5), we expect the above bound to hold for all standard
time-stepping methods, and with a constant C that doesn't scale with \varepsilon .

We can finally state the main theoretical result of the paper.

Theorem 4.2. Let v (tn) denote the solution to the ODE (1.11) at time tn =
n\Delta T , and let vk

n denote the approximation to v (tn) obtained after k parareal itera-
tions, where the coarse parareal integrator corresponds to applying an order p time-
stepping method to the time-averaged equation (1.12). Then, defining

\kappa p (\varepsilon , \eta ) = max
\omega 0\leq \omega 

\Bigl( \omega 
\varepsilon 

\Bigr) p \int 1

0

\rho (s) ei\omega \eta s/\varepsilon ds,

the error v (tn) - vk
n after the kth parareal iteration satisfies

(4.15)
\bigm\| \bigm\| v (tn) - vk

n

\bigm\| \bigm\| \leq Ck+1

(k + 1)!
eC (\varepsilon \eta + \kappa p (\varepsilon , \eta )\Delta T p)

\Bigl( \eta \varepsilon 

\Delta T
+ \kappa p (\varepsilon , \eta )\Delta T p

\Bigr) k
,

where the constant C implicitly depends on \lambda , M , and C0 in Corollary 4.1.

Proof. The proof follows along the same lines as Theorem 1 in [11].
First consider when k = 0. Since the local truncation error satisfies

\bigm\| \bigm\| \bigm\| \varphi tn - 1,tn (v0) - \~\varphi tn - 1,tn (v0)
\bigm\| \bigm\| \bigm\| \leq C\Delta T p+1\kappa p (\varepsilon , \eta ) \| v0\| ,

the standard proof for one-step time-stepping methods shows that

\bigm\| \bigm\| v (tn) - v0
n

\bigm\| \bigm\| \leq C\kappa p (\varepsilon , \eta )\Delta T p \| v0\| .

Also, from Proposition A.1,

\| v (tn) - v (tn)\| \leq C\varepsilon \eta .

Therefore,

\bigm\| \bigm\| v (tn) - v0
n

\bigm\| \bigm\| \leq \| v (tn) - v (tn)\| +
\bigm\| \bigm\| v (tn) - v0

n

\bigm\| \bigm\| 
\leq C\varepsilon \eta + C\kappa p (\varepsilon , \eta )\Delta T p.
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Now consider some k \geq 1. Recall that the parareal scheme can be written as

vk
n = \~\varphi tn - 1,tn

\bigl( 
vk
n - 1

\bigr) 
+
\bigl( 
\varphi tn - 1,tn

\bigl( 
vk - 1
n - 1

\bigr) 
 - \~\varphi tn - 1,tn

\bigl( 
vk - 1
n - 1

\bigr) \bigr) 
.

We can rewrite this as
\bigm\| \bigm\| v (tn) - vk

n

\bigm\| \bigm\| =
\bigl( 
\~\varphi tn - 1,tn (v (tn - 1)) - \~\varphi tn - 1,tn

\bigl( 
vk
n - 1

\bigr) \bigr) 

+
\bigl( 
\scrE tn - 1,tn (v (tn - 1)) - \scrE tn - 1,tn

\bigl( 
vk - 1
n - 1

\bigr) \bigr) 

+
\Bigl( 
\~\scrE tn - 1,tn (v (tn - 1)) - \~\scrE tn - 1,tn

\bigl( 
vk - 1
n - 1

\bigr) \Bigr) 
.

From the bounds (4.12), (4.13), and (4.14) and the assumed smoothness of the oper-
ators \scrM 0 (\cdot ) and \scrM 1 (\cdot ),

\bigm\| \bigm\| \~\varphi tn - 1,tn (v (tn - 1)) - \~\varphi tn - 1,tn

\bigl( 
vk
n - 1

\bigr) \bigm\| \bigm\| \leq (1 + C\Delta T )
\bigm\| \bigm\| v (Tn - 1) - vk

n - 1

\bigm\| \bigm\| ,
\bigm\| \bigm\| \scrE tn - 1,tn (v (tn - 1)) - \scrE tn - 1,tn

\bigl( 
vk - 1
n - 1

\bigr) \bigm\| \bigm\| \leq C\eta \varepsilon 
\bigm\| \bigm\| v (Tn - 1) - vk - 1

n - 1

\bigm\| \bigm\| ,
and
\bigm\| \bigm\| \bigm\| \~\scrE tn - 1,tn (v (tn - 1)) - \~\scrE tn - 1,tn

\bigl( 
vk - 1
n - 1

\bigr) \bigm\| \bigm\| \bigm\| \leq C\kappa p (\varepsilon , \eta )\Delta T p+1
\bigm\| \bigm\| v (tn - 1) - vk - 1

n - 1

\bigm\| \bigm\| .

Therefore,
\bigm\| \bigm\| v (Tn) - vk

n

\bigm\| \bigm\| \leq (1 + C\Delta T )
\bigm\| \bigm\| v (Tn - 1) - vk

n - 1

\bigm\| \bigm\| 
+ C

\bigl( 
\eta \varepsilon + \kappa p (\varepsilon , \eta )\Delta T p+1

\bigr) \bigm\| \bigm\| v (tn - 1) - vk - 1
n - 1

\bigm\| \bigm\| .

Finally, following the same steps as in Theorem 1 in [11],

\bigm\| \bigm\| v (tn) - vk
n

\bigm\| \bigm\| \leq C (\varepsilon \eta + \kappa p (\varepsilon , \eta )\Delta T p)

\bigl( 
C
\bigl( 
\eta \varepsilon + \kappa p (\varepsilon , \eta )\Delta T p+1

\bigr) \bigr) k

(k + 1)!
(1 + C\Delta T )

n - k - 1
nk

\leq Ck

(k + 1)!
eC(tn - tk+1) (\varepsilon \eta + \kappa p (\varepsilon , \eta )\Delta T p) (\Delta Tn)

k
(\eta \varepsilon /\Delta T + \kappa p (\varepsilon , \eta )\Delta T p)

k

\leq Ck+1

(k + 1)!
eC (\varepsilon \eta + \kappa p (\varepsilon , \eta )\Delta T p)

\Bigl( \eta \varepsilon 

\Delta T
+ \kappa p (\varepsilon , \eta )\Delta T p

\Bigr) k
,

where we used the fact that n\Delta T \leq 1 and (tn  - tk+1) \leq 1 in the last step.

5. The one-dimensional rotating shallow water equations. In this section
we present an example of the method applied to the one-dimensional rotating shallow
water equations [14], which has quadratic nonlinearity. We first discuss the spectral
decomposition, including concrete definitions of the resonant sets, then show numeri-
cal verification of the bound proved in Corollary 4.1 and Theorem 4.2 of section 4. Let
(1.1) exist in the one-dimensional 2\pi -periodic domain, and let the vector of unknowns
be

(5.1) u(t, x) = (v1(t, x), v2(t, x), h(t, x))
T
.

We then write the linear and nonlinear operators in (1.1) as

(5.2) L =

\left( 
 

0  - 1 F - 1/2\partial x
1 0 0

F - 1/2\partial x 0 0

\right) 
 , \scrN (u) =

\left( 
 

v1(v1)x
v1(v2)x
(hv1)x

\right) 
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for some constant F \in \BbbR . The corresponding purely imaginary eigenvalues are

(5.3) \lambda \alpha 
k = \alpha \lambda 0, \lambda 0 =

\sqrt{} 
1 + F - 1k2, \alpha =  - 1, 0,+1,

where k = (k1, k2) is the wave number, \alpha indicates whether the mode is slow (\alpha = 0)
or fast (\alpha = \pm 1), and r\alpha \bfk are the eigenvectors,

(5.4)

r - 1
k r0k r+1

k

\left( 
  

1\surd 
2

 - i\surd 
2\lambda 0

F - 1/2k\surd 
2\lambda 0

\right) 
  

\left( 
  

0
F - 1/2ik

\lambda 0
1
\lambda 0

\right) 
  

\left( 
  

 - 1\surd 
2

 - i\surd 
2\lambda 0

F - 1/2k\surd 
2\lambda 0

\right) 
  

and

r - 1
0 r00 r+1

0

\left( 
 

i\surd 
2
1\surd 
2

0

\right) 
 

\left( 
 
0
0
1

\right) 
 

\left( 
 

 - i\surd 
2
1\surd 
2

0

\right) 
 .

The left three eigenfunctions correspond to the case when k \not = 0, and the right three
eigenfunctions are for the case when k = 0. We can then write the concrete form of
the fast-wave-average equation (1.12) as

d\sigma \alpha 
\bfk (t)

dt
+

1

\eta 

\int \eta 

0

\sum 

\bfk \in \BbbZ 2

1\sum 

\alpha = - 1

\Biggl( \sum 

\bfk 1,\bfk 2,\alpha 1,\alpha 2\in \scrS 
\epsilon \beta 
\bfk ,\alpha 

\sigma \alpha 1

\bfk 1
(t)\sigma \alpha 2

\bfk 2
(t)(5.5)

\times C\alpha ,\alpha 1\alpha 2

\bfk ,\bfk 1,\bfk 2
ei(\bfk \cdot \bfx ) - i\omega 

\alpha ,\alpha 1,\alpha 2
\bfk ,\bfk 1,\bfk 2

s/\varepsilon 

\Biggr) 
r\alpha \bfk ds = 0,

where \omega \alpha ,\alpha 1,\alpha 2

\bfk ,\bfk 1,\bfk 2 = \lambda \alpha 1

\bfk 1
+ \lambda \alpha 2

\bfk 2
 - \lambda \alpha 

\bfk and C\alpha 1,\alpha 2,\alpha 
\bfk 1,\bfk 2,\bfk 

is an interaction coefficient that can
be found in [23], i.e.,

C\alpha 1,\alpha 2,\alpha 
\bfk 1,\bfk 2,\bfk 

=
i

2

\biggl[ 
(k\bftwo \cdot v\bfH 

\alpha 1

k1
)\langle r\alpha 2

k2
, r\alpha k \rangle + (k\bfone \cdot v\bfH 

\alpha 2

k2
)\langle r\alpha 1

k1
, r\alpha k \rangle (5.6)

+ (k\bfone \cdot v\bfH 
\alpha 1

k1
)r\alpha 2

k2
[3]r\alpha k [3] + (k\bftwo \cdot v\bfH 

\alpha 2

k2
)r\alpha 1

k1
[3]r\alpha k [3]

\biggr] 
,

where we've used the notation k = (k, 0) is a wave vector with only one component
and v\bfH 

\alpha 
k = (r\alpha k [1], r

\alpha 
k [2]). The ordered resonant sets are, for this special case of

quadratic nonlinearity, the following:

(5.7) \scrS \epsilon \beta 
\bfk ,\alpha =

\biggl\{ 
(k1,k2, \alpha 1, \alpha 2) : k = k1 + k2, \epsilon \beta  - 1 <

1

\varepsilon 
| \lambda \alpha 

\bfk  - \lambda \alpha 1

\bfk 1
+ \lambda \alpha 2

\bfk 2
| \leq \epsilon \beta 

\biggr\} 
,

where \epsilon 0 = 0 by definition. Because the ordered set (5.7) involves linear combina-
tions of three wave vectors and three frequencies of the linear operator, it is also used
to indicate ordered ``triad"" interactions. Compare the exponential part of the phase
expansion in (3.6) with (5.5), where the role of the resonant sets is more concretely
defined. Specifically, when the integral in (5.5) over s is close to \epsilon , the oscillatory
term makes low-frequency contributions to the solution because the phase is nearly
constant. Beyond the low-frequency contributions, the oscillations cancel themselves
out, making almost no contribution because they have been averaged away. There-
fore, the extent to which the ordered resonant sets are retained and rejected by the
averaging procedure is fundamental for accuracy of the method.

In Figure 5.1 we show numerical solutions to illustrate the coarse solver's solution
relative to the fine solver's solution. The numerical simulations are for the one-
dimensional shallow water equations described in this section with an initial condition
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Fig. 5.1. A comparison of the solution derived from the averaging method with the ``true""
solution. All three plots show spatio-temporal oscillations in the height field of the one-dimensional
rotating shallow water equations with the time coordinate on the horizontal axis and the spatial
coordinate on the vertical axis. The top plot shows the fast-wave-averaged approximation of the
height field (the third component of u). The time-stepping is performed over this slower quantity
with decreased oscillatory stiffness and therefore an increase in time step. The middle plot is the
transformation of this quantity back into normal space by application of the matrix exponential,
e - t/\varepsilon L. This is the coarse solution which is used after the first coarse solve. The quality of this
when compared to the solution computed with the fine solver shown in the last plot (to which the
APinT algorithm converges) is what allows rapid convergence of parareal. In this example, \varepsilon = 0.01
and the averaging window \eta = 1.0.

of a Gaussian height field. A second-order Strang splitting method was used for both
the coarse and fine solves. The figure shows an amplitude versus time plot of the low-
frequency solution seen by the coarse propagator (upper panel) and its relation to that
of the fine solution, which contains all the fast oscillations (bottom panel) for the stiff
case where \varepsilon = 0.01. The middle panel shows the coarse solution of (1.12) transformed
into the original coordinates by the matrix exponential e - t/\varepsilon L. Comparing the middle
panel and the bottom panel shows numerical evidence that the coarse solver solution
is close to the full solution (bottom panel). It also demonstrates that the averaged
solution (top panel) lacks the rapid oscillations of the fine solution and thus allows
large time steps to be taken by the coarse solver. We refer the reader to the figure's
caption for more details.

We next present convergence results for three different values of \epsilon as an illustra-
tive example of Theorem 4.2. Figure 5.2 shows the norm of the coarse error, i.e.,
\| x(t) - y\eta 

\bfDelta \bfT (t)\| 2, computed relative to the fine time step versus the width of the av-
eraging window, \eta , where 0 \leq t \leq 1, \delta t = 2e - 4, and the spatial resolution is N = 64.
For the smallest \varepsilon we can identify the qualities we expect of the asymptotic solution:
when we choose \eta \rightarrow \infty as \varepsilon \rightarrow 0, the error between the full solution and the coarse
(slow) solution reaches a minimum, and no further increases in accuracy are available.
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Fig. 5.2. Computed coarse error for \Delta T = 0.1. This is a numerical estimate of the error cor-
responding to \| x(t) - y\eta 

\Delta T (t)\| , computed by brute-force comparison of the averaged coarse solution
to a finely computed reference solution. Note the clear existence of an optimal averaging window
for the case where \varepsilon = 1.0, and the tendency towards the asymptotic theory, i.e., the error becoming
inversely proportional to the averaging window length, \eta , as \varepsilon \rightarrow 0.
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Fig. 5.3. Iterative error in APinT with one-dimensional rotating shallow water equations
after three iterations for \Delta T = 0.1. Whereas Figure 5.2 showed the measured total (i.e., time-
stepping plus averaging) error in the coarse time-stepping, this figure shows the iterative error for
a full parareal solve of the rotating shallow water equations after three iterations for the same
computational conditions. The behavior with respect to variation of the averaging window, and
particularly the location of the optimal window length, is well predicted by the brute-force computation
of the coarse time-stepping error.

However, for larger \varepsilon such as the two cases shown, there is a clear optimal size for
the averaging window; i.e., a minimum is present predicted by Theorem 4.2. This
demonstrates that the behavior in this example is consistent with the error bounds
derived in this paper. Figure 5.3 shows the iterative error in the APinT method after
three iterations for the same parameters as in Figure 5.2. Comparing the two figures
shows the direct computation of the coarse time-stepping error provides good qualita-
tive agreement with direct computation. This is also in agreement with the estimates
in Theorem 4.2.

6. Conclusion. We have investigated the convergence of a parareal method us-
ing the APinT coarse solver, which provides a technique by which oscillatory-stiff
equations may be solved with the parareal method. The convergence of this method
is due to the averaging applied to the nonlinear terms of the coarse solution, which
filters the fast waves and mitigates the oscillatory stiffness present in many of the
equations of mathematical physics. This averaging must be performed over the en-
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tirety of the nonlinear operator due to the role the resonances play in the oscillatory
stiffness of the system.

By describing the error of the coarse solver in terms of the interplay between the
average over the rapid oscillations and the time-stepping, we show that the method
converges for finite scale separation, significantly extending the domain of applicability
for this method.

We have shown here that this method is convergent across a wide range of scale
separation, which is an improvement on the prior result [14] which held only in the
small-\varepsilon limit.

Appendix A. Proof of the error bounds for the time-averaged equation.
We now prove the following proposition (see also Lemma 3.2.9 in [25]).

Proposition A.1. Consider

dv

d\tau 
(\tau ) = \varepsilon \scrN (\tau ,v (\tau )) , 0 \leq \tau \leq 1

\varepsilon 
,

and its averaged version

dv

dt
(t) = \varepsilon \scrN \eta (\tau ,v (\tau )) , 0 \leq \tau \leq 1

\varepsilon 
,

where

(A.1) \scrN \eta (\tau ,v (\tau )) =
1

\eta 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) 
\scrN (\tau + s,v (\tau )) ds.

Assume there is a constant \lambda such that

(A.2) max
0\leq t,t1,t2\leq \varepsilon  - 1

\| \scrN (\tau 0,v (\tau 1)) - \scrN (\tau 0,v (\tau 2))\| \leq \lambda \| v (\tau 1) - v (\tau 2)\| ,

and define

(A.3) M = max
0\leq \tau \leq \varepsilon  - 1

\| \scrN (\tau ,v (\tau ))\| , C0 =

\int 1

0

\rho (s) sds.

Then

\| v (\tau ) - v (\tau )\| = C0 (1 + \lambda )M\eta \varepsilon e\varepsilon \lambda \tau , 0 \leq \tau \leq 1

\varepsilon 
.

We now prove Proposition A.1. We first need the following lemma.

Lemma A.2. Suppose that \bfitphi (t) is Lipschitz-continuous with Lipschitz constant
\lambda :

\| \bfitphi (t) - \bfitphi (s+ t)\| \leq \lambda s for all s, t \geq 0.

Then \bigm\| \bigm\| \bfitphi (t) - \bfitphi \eta (t)
\bigm\| \bigm\| \leq C0\lambda \eta ,

where

(A.4) C0 =

\int 1

0

\rho (s) sds.

Proof. Using that

1

\eta 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) 
ds =

\int 1

0

\rho (s) ds = 1,
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we have that

\bigm\| \bigm\| \bfitphi (t) - \bfitphi \eta (t)
\bigm\| \bigm\| =

\bigm\| \bigm\| \bigm\| \bigm\| \bfitphi (t) - 1

\eta 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) 
\bfitphi (s+ t) ds

\bigm\| \bigm\| \bigm\| \bigm\| 

=
1

\eta 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) 
\| \bfitphi (t) - \bfitphi (s+ t)\| ds

\leq 1

\eta 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) 
s\lambda ds

= \eta \lambda 

\int 1

0

\rho (s) sds.

Lemma A.3. Consider

dv

dt
(t) = \varepsilon \scrN (t,v (t)) , 0 \leq t \leq \varepsilon  - 1,

with \scrN continuous in each argument. Define

(A.5) \bfitphi (t) =

\int t

0

\scrN (\tau ,v (\tau )) d\tau ,

\scrN \eta (t,x) =
1

\eta 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) 
\scrN (t+ s,x) ds,

and

\bfitphi \eta (t) =
1

\eta 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) 
\bfitphi (s+ t) ds.

Then \bigm\| \bigm\| \bigm\| \bigm\| \bfitphi \eta (t) - 
\int t

0

\scrN \eta (\tau ,v (\tau )) d\tau 

\bigm\| \bigm\| \bigm\| \bigm\| \leq C0 (1 + \lambda )M\eta .

Here \scrN \eta (\tau ,v (\tau )) is defined via (A.1), C0 is defined by (A.4), and \lambda and M are
defined by (A.2) and (A.3).

Proof. We calculate that

\bfitphi \eta (t) =
1

\eta 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) 
\bfitphi (s+ t) ds

=
1

\eta 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) \biggl( \int t+s

0

\scrN (\tau ,v (\tau )) d\tau 

\biggr) 
ds

=
1

\eta 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) \biggl( \int t+s

s

\scrN (\tau ,v (\tau )) d\tau 

\biggr) 
ds+R1

=
1

\eta 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) \biggl( \int t

0

\scrN (\tau + s,v (\tau + s)) d\tau 

\biggr) 
ds+R1

=
1

\eta 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) \biggl( \int t

0

\scrN (\tau + s,v (\tau )) d\tau 

\biggr) 
ds+R1 +R2

=

\int t

0

\biggl( 
1

\eta 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) 
\scrN (\tau + s,v (\tau )) ds

\biggr) 
d\tau +R1 +R2

=

\int t

0

\scrN \eta (\tau ,v (\tau )) d\tau +R1 +R2.
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Here the remainder term R1,

R1 =
1

\eta 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) \biggl( \int s

0

\scrN (\tau ,v (\tau )) d\tau 

\biggr) 
ds,

is bounded as follows:

\| R1\| =
1

\eta 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) \int s

0

\| \scrN (\tau ,v (\tau ))\| d\tau ds

\leq 1

\eta 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) \int s

0

Md\tau ds

= M
1

\eta 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) 
sds

= M\eta 

\int 1

0

\rho (s) sds

= C0M\eta .

Similarly, the remainder term R2,

R2 (t) =
1

\eta 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) \int t

0

(\scrN (\tau + s,v (\tau + s)) - \scrN (\tau + s,v (\tau ))) d\tau ds,

is bounded by

\| R2\| =
1

\eta 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) \int t

0

\| \scrN (\tau + s,v (\tau + s)) - \scrN (\tau + s,v (\tau ))\| d\tau ds

\leq 1

\eta 
\lambda 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) \int t

0

\| v (\tau + s) - v (\tau )\| d\tau ds

=
1

\eta 
\lambda 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) \int t

0

\bigm\| \bigm\| \bigm\| \bigm\| 
\int s+\tau 

\tau 

dv

d\sigma 
(\sigma ) d\sigma 

\bigm\| \bigm\| \bigm\| \bigm\| d\tau ds

=
1

\eta 
\lambda 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) \int t

0

\bigm\| \bigm\| \bigm\| \bigm\| 
\int s+\tau 

\tau 

\varepsilon \scrN (\sigma ,v (\sigma )) d\sigma 

\bigm\| \bigm\| \bigm\| \bigm\| d\tau ds

\leq 1

\eta 
\varepsilon \lambda 

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) \int t

0

\int s+\tau 

\tau 

\| \scrN (\sigma ,v (\sigma ))\| d\sigma d\tau ds

\leq 1

\eta 
\varepsilon \lambda M

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) \int t

0

\biggl( \biggl( \int s+\tau 

\tau 

d\sigma 

\biggr) 
d\tau 

\biggr) 
ds

=
1

\eta 
\varepsilon \lambda M

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) 
s

\biggl( \int t

0

d\tau 

\biggr) 
ds

=
1

\eta 
\varepsilon \lambda Mt

\int \eta 

0

\rho 

\biggl( 
s

\eta 

\biggr) 
sds

= (C0\lambda M\eta ) (\varepsilon t)

\leq C0\lambda M\eta .

The second inequality uses the Lipschitz bound (A.2), the fourth inequality uses the
bound (A.3), the last equality uses the definition (A.4) for C0, and the last inequality
uses that 0 \leq t \leq \varepsilon  - 1.
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We now prove Proposition A.1.

Proof. First note that

\int t

0

\scrN (\tau ,v (\tau )) d\tau =

\int t

0

\scrN \eta (\tau ,v (\tau )) d\tau + E0,

where

(A.6) \| E0\| \leq C0 (1 + \lambda )M\eta .

The bound (A.6) follows from the definition (A.5) for \bfitphi (t) and the inequality

\bigm\| \bigm\| \bigm\| \bigm\| 
\int t

0

\scrN (\tau ,v (\tau )) d\tau  - 
\int t

0

\scrN \eta (\tau ,v (\tau )) d\tau 

\bigm\| \bigm\| \bigm\| \bigm\| 

=

\bigm\| \bigm\| \bigm\| \bigm\| \bfitphi (t) - 
\int t

0

\scrN \eta (\tau ,v (\tau )) d\tau 

\bigm\| \bigm\| \bigm\| \bigm\| 

\leq 
\bigm\| \bigm\| \bfitphi (t) - \bfitphi \eta (t)

\bigm\| \bigm\| +
\bigm\| \bigm\| \bigm\| \bigm\| \bfitphi \eta (t) - 

\int t

0

\scrN \eta (\tau ,v (\tau )) d\tau 

\bigm\| \bigm\| \bigm\| \bigm\| .

Therefore,

v (t) = v (0) + \varepsilon 

\int t

0

\scrN (\tau ,v (\tau )) d\tau 

= v (0) + \varepsilon 

\int t

0

\scrN \eta (\tau ,v (\tau )) d\tau + \varepsilon E0.(A.7)

Using (A.7) and

v (t) = v (0) + \varepsilon 

\int t

0

\scrN \eta (\tau ,v (t)) d\tau ,

we have the bound

\| v (t) - v (t)\| \leq \varepsilon 

\int t

0

\| \scrN \eta (\tau ,v (\tau )) - \scrN \eta (\tau ,v (t))\| d\tau + \| \varepsilon E0\| 

\leq \varepsilon \lambda 

\int t

0

\| v (\tau ) - v (t)\| d\tau + C0 (1 + \lambda )M\eta \varepsilon ,

where we used the bound (A.6) for \| \varepsilon E0\| . Finally, by Gronwall's inequality,

\| v (t) - v (t)\| \leq C0 (1 + \lambda )M\eta \varepsilon e\varepsilon \lambda \tau .
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