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Particulate Organic Carbon (POC) plays a vital role in the ocean carbon cycle. Though

relatively small compared with other carbon pools, the POC pool is responsible for large

fluxes and is linked to many important ocean biogeochemical processes. The satellite

ocean-color signal is influenced by particle composition, size, and concentration and

provides a way to observe variability in the POC pool at a range of temporal and spatial

scales. To provide accurate estimates of POC concentration from satellite ocean color

data requires algorithms that are well validated, with uncertainties characterized. Here,

a number of algorithms to derive POC using different optical variables are applied to

merged satellite ocean color data provided by the Ocean Color Climate Change Initiative

(OC-CCI) and validated against the largest database of in situ POC measurements

currently available. The results of this validation exercise indicate satisfactory levels

of performance from several algorithms (highest performance was observed from the

algorithms of Loisel et al., 2002; Stramski et al., 2008) and uncertainties that are within the

requirements of the user community. Estimates of the standing stock of the POC can be

made by applying these algorithms, and yield an estimated mixed-layer integrated global

stock of POC between 0.77 and 1.3 Pg C of carbon. Performance of the algorithms vary

regionally, suggesting that blending of region-specific algorithms may provide the best

way forward for generating global POC products.
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FIGURE 12 | Covariance between POC and [Chl] extracted from the OC-CCI matchups with the in situ database for (A) in situ POC data, (B) POC estimated using

Stramski et al. (2008) (Rrs), (C) POC estimated using Stramski et al. (2008) (bbp), (D) POC estimated using Loisel et al. (2002), (E) POC estimated using Gardner et al.

(2006), (F) POC estimated using Kostadinov et al. (2016).

(Algorithm D ) also uses a two-step approach, exploiting the
relationship between the beam attenuation coefficient (cp) and
POC. This relationship was shown to be strong, when in situ
POC was compared with transmissometer profiles. Although no
fully-validated algorithm exists for routine derivation of cp from
satellite ocean color measurements, Gardner et al. (2006) showed
in situ cp was strongly correlated with [Chl] (r = 0.845–0.897)
and Kd(490)) (r = 0.846-0.878) derived from SeaWIFS data over
different oceanic regions.

Algorithm E, by Kostadinov et al. (2016), addresses some
sources of variability between optical properties and POC, such
as the influence of the particle size distribution, which was
also identified as being important by Stramski et al. (2008).
The method of Kostadinov et al. (2016) uses spectral values
of bbp to derive a PSD, which is then converted to POC (and
phytoplankton carbon) using allometric relationships. The focus
of the Kostadinov et al. (2016) paper was on phytoplankton
carbon, computed as 1/3 of POC. Relationships between the

phytoplankton carbon estimated from in situ PSDmeasurements
and direct analytical determinations, showed r values between
0.5 and 0.714, depending on the limits of integration of the
PSD, with wider limits resulting in the lower r. As discussed
by Stramski et al. (2008), Kostadinov et al. (2016) also notes
the impact of uncertainties in retrieved backscattering arising
from both measurement and theory. In particular, assumptions
of sphericity and homogeneity used in Mie theory are likely to
be violated in real seawater particle assemblages, particularly for
backscattering and in coastal and more productive areas (which
are included in the database used here). For a more detailed
discussion of the sphericity and homogeneity assumption, see
Kostadinov et al. (2009) and refs. therein. Future work needs
to focus on developing and more widely adopting bio-optical
models that relax the Mie assumptions (e.g., Quirantes and
Bernard, 2004, 2006; Clavano et al., 2007; Matthews and
Bernard, 2013; Robertson Lain et al., 2017). Understanding
of PSD variability, how it relates to backscattering, and how
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FIGURE 13 | Summary of (A) POC to [Chl] relationships including the in situ POC data collated in this study and the extracted OC-CCI [Chl (gray dots)] and the

relationships proposed by Morel (1988) (green line), Stramska and Stramski (2005) (red line), Legendre and Michaud (1999) (blue line), and Sathyendranath et al.

(2009) (pink line), a best fit line for the in situ data vs. the OC-CCI chlorophyll (dashed line), and the estimated POC using Stramski et al. (2008) (cyan dots) are

provided for context, (B) estimated POC from the previously listed approaches, plotted against the Rrs (443) to Rrs(555) to show relationship to this ratio commonly

used in algorithms to derive [Chl].

particle composition affects scattering over broad marine regions
are required to develop further such detailed mechanistic
approaches.

General sources of error associated with any ocean-color
product include differences introduced by choice of sensor,
sensor calibration, and the atmospheric correction procedure
used to retrieve Rrs. In addition to these, a further consideration,
particularly in the cases where algorithms use IOPs, is the
methods used to derive the IOP product from the Rrs data.
The OC-CCI processing uses the Quasi-Analytical Algorithm
(QAA) of Lee et al. (2002) to calculate IOPs, including the bbp
values used in this study. The original study by Kostadinov et al.
(2016) used the method of Loisel and Stramski (2000) to estimate
bbp. Stramski et al. (2008) also used different formulations to
calculate bbp from Rrs, finding a corrected version of QAA
produced a better estimate of bbp, and a strong relationship
with POC (r = 0.933). The effect of the choice of method to
derive bbp on the POC estimates requires further consideration,
which goes beyond the scope of this study, as this IOP is
particularly poorly understood and validated (Lee et al., 2002).
The differences in algorithm performance across the different
water classes indicate that regional variability in performance
of the different algorithms can be expected. This is confirmed
in the mapped regional distribution of uncertainties (Figures 9,
10). These results suggest that algorithms either need to be
selected carefully for applications in different regions, or that
a selection of optimal algorithms may have to be blended for
a global product (as done in Jackson et al., in press). This
point is also raised in Stramski et al. (2008), where different
formulations are provided for global application, and excluding
upwelling data. Uncertainties in the underlying satellite data
may also be responsible for a portion of this variability: for
example, an IOP model may be more or less suitable to derive
backscattering. It should also be noted that there can also
be uncertainties in the in situ data and the validation process

that can affect the assessment of uncertainties in algorithm
performance. Ideally, multiple replicates will be taken to quantify
uncertainties in the in situ measurement, and instruments will
have a well-characterized calibration history, and be processed
with community endorsed methodologies. For POC, the issue
of blank correction was already highlighted in Section 2.1.
Uncertainties resulting from variable methods used for the
in situ data collated for this study may influence the results
presented here, particularly at low POC concentrations. In
terms of comparison to matchups, further uncertainties can be
introduced by comparing values at different scales, i.e., point
measurements may not represent the average over a pixel (in this
case of 4 km in size). These uncertainties will limit the ultimate
accuracy to which any satellite based product can be derived and
validated. However, issues of spatial mismatch are beginning to
be addressed with the use of underway systems (for example,
Brewin et al., 2016).

Despite the difficulties highlighted above, the overall
performance of the algorithms studied here is encouraging.
Percentage error estimates based on the OC-CCI methodology
show how well these algorithms can generate products suitable
for the needs of the scientific community. For example, the
percentage errors associated with the Stramski et al. (2008) Rrs
algorithm applied to OC-CCI data in May 2005 (Figure 11),
show that a majority of pixels fall within an error range that is
widely accepted by the ocean color community for [Chl] (30%;
GCOS, 2011).

4.2. Variability in the Ratio of Particulate
Organic Carbon to Chlorophyll-a
Further perspective on the performance of the different
algorithms can be gained by considering the covariance between
POC and [Chl]. The relationship between the in situ POC data
and satellite [Chl] is shown in Figure 12A, where the color
indicates the associated dominant optical water class. These data
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then forms the background for each of the subsequent panels
of Figure 12, which show the relationship between the POC
estimated by each algorithm, and the satellite [Chl]. Algorithm
A shares a commonality in method with the algorithms used
to derive satellite [Chl], in that the same reflectance ratios
are used to derive POC, and [Chl] (at lower concentrations);
hence it shows a very constrained relationship in this domain
of the parameter space (Figure 12B). Other algorithms capture
the scatter in the POC:[Chl] relationship to a greater or lesser
degree, though offsets can be seen, associated with the behavior
identified in the validation exercise, i.e., overestimation of POC
relative to lower [Chl] in the case of Algorithm B (Figure 12C),
and underestimation of the ratio at low [Chl] using POC from
Algorithm C (Figure 12D—though it should also be noted that
this algorithm is also dependent on [Chl] to derive POC). As
with Algorithm A, Algorithm D shows a relatively constrained
relationship between POC and [Chl]. Algorithm E produces
similar variability between POC and [Chl] as seen in the in situ
data, in terms of shape and scatter of the curve, but the bias of
this algorithm toward lower estimates of satellite derived POC is
clear (Figure 12D).

The ratio of POC to [Chl] is important in the context of the
discussion here for two reasons. Firstly, this ratio is important
in the context of biogeochemical modeling, and the ecological
and physiological processes that influence this ratio. Secondly,
empirical relationships between POC and chlorophyll have been
developed, which can be applied to satellite derived estimates
of [Chl]. As mentioned above, these algorithms are typically
similar to those employing blue:green reflectance ratios (e.g.,
Algorithm A from Stramski et al., 2008), and as such were
not initially considered in the algorithm intercomparison here.
Figure 13A shows a number of these empirical relationships,
against a background of the same in situ POC and [Chl] data
as shown in Figure 12. Figure 13B shows POC estimated using
these [Chl]-based algorithms on OC-CCI [Chl] as a function of
the blue-green Rrs reflectance ratio. The same reflectance ratio is
employed by Stramski et al. (2008) to derive POC, and is also used
in a number of empirical [Chl] algorithms. A linear regression of
the in situ POC concentrations, against the satellite derived [Chl],
results in an r2 value of 0.70. Using the various relationships
shown in Figure 13A to estimate POC based on the satellite
[Chl] returns r2 values between 0.63 and 0.69, lower than those
returned for all the other algorithms assessed. The [Chl] based
approaches show in Figure 13 produce RMSD values (between
0.27 and 0.47) and bias (between −0.03 and 0.117) in the same
range as the other algorithms.

Even though to first order Chl and POC are positively
correlated in the global ocean, a residual scatter in the
relationship remains (e.g., in satellite observations—Figure 12A,
and in situ observations as well—e.g., Kostadinov et al., 2012).
Ideally, a POC algorithm should be able to retrieve POC
independently of [Chl] and capture the variable POC/[Chl] ratio
correctly. Note that this ratio can vary due to both variability
in the fraction of living phytoplankton carbon in the total
POC pool, due to the physiology and photoacclimation of the
phytoplankton component of POC (Geider, 1987; Geider et al.,
1998; Behrenfeld et al., 2005), and species specific differences

among phytoplankton themselves (Stramski, 1999). Therefore,
independent knowledge of total POC, living phytoplankton
carbon, and [Chl a] should be the goal of future bio-optical
algorithm development.

4.3. Estimates of Total Pools of Carbon
The OC-CCI archive can be used to estimate total pools of
POC in the mixed layer, taking into account interannual and
regional variability, which is well captured by this merged
dataset. Algorithms A-D were applied to the monthly OC-CCI
version 2 data, and the values integrated over the mixed-layer
depth (derived from MIMOC, Schmidtko et al., 2013), assuming
homogeneity over the mixed layer. These were then averaged
over all the months and for all the years of the OC-CCI version
2 (1998-2012) to provide estimates of the average standing pool
of POC as follows: Algorithm A: 0.86 Pg C, Algorithm B: 1.3
Pg C, Algorithm C: 0.87 Pg C, Algorithm D: 0.77 Pg C. These
are larger than the estimate of Gardner et al. (2006) and smaller
than the estimate of Stramska (2009). Comparison of these
estimates with those of phytoplankton carbon pools estimated in
a parallel study (Martinez-Vicente et al., in review), indicates that
phytoplankton carbon represents between 17 and 48% of the total
POC pool. Whilst this ratio shows considerable variability, the
often assumed value of 1/3 for phytoplankton carbon:POC falls
within this range. High levels of variability in the phytoplankton
carbon to POC ratio were also observed in situ by Graff et al.
(2015). Satellite based estimates calculated by Kostadinov et al.
(2016) (using a different set of mixed layer depth values) suggest
a phytoplankton carbon standing stock of around 0.24 Pg C,
implying a corresponding POC stock of around 0.72 Pg C when
using the 1/3 assumption. Kostadinov et al. (2016) showed the
estimated phytoplankton standing stock to be similar to estimates
derived from the application of both the Stramski et al. (2008) bbp
based algorithm, combined again with a 1/3 assumption and the
method of Behrenfeld et al. (2005) to SeaWIFS data, and tomodel
estimates from the Coupled Model Intercomparison Project 5
(CMIP5). The estimate of phytoplankton carbon standing stock
from Kostadinov et al. (2016) is similar to that estimated by other
size class based approaches, such as that of Roy et al. (2017)
which used size classes derived from absorption to estimate a
total phytoplankton carbon stock of 0.26 Pg C. Though the global
estimates of POC from the different approaches assessed here are
quite similar to each other, the differences are more pronounced
at smaller scales, as can be seen in Figure 8F.

5. CONCLUSIONS

A variety of POC algorithms were applied to matchup pixels
extracted from the satellite OC-CCI ocean color data, and
validated against in situ data. The database used here represents
the largest collection of in situ POC data available, to the author’s
knowledge. The five algorithms showed strong predictive
capacity for estimating POC, with Algorithm A (based on
Rrs—Stramski et al., 2008) and C (based on Loisel et al., 2002)
performing well across the broad range of the in situ dataset.
Algorithms A and C performed consistently across different
water types as defined in the OC-CCI data. From the water class
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based validation, errors can be estimated per pixel. For Algorithm
A and C, the errors were mostly within the range requested by
the user community. These results suggest a maturity in POC
algorithms and their suitability for production of long term time
series for climate related studies. However, several key points
of development are highlighted from the inter comparison
of the different algorithms and the various studies reviewed
here. Greater knowledge of the composition of the particulate
pool, and how it affects the IOPs of the oceans, may allow
increased accuracy of POC algorithms (within the constraints
of the sensitivities of current satellite ocean color radiometry),
as well as providing further information on different types of
particles, many of which play important roles in water quality
and ocean biogeochemistry. To support this aim, further in situ
data should be collected, including additional measurements
to provide detail on phytoplankton community size structure,
physiology, and photoacclimation. Further, it is recommended
that future work seeks to use consistent methodology for blank
correction of POC measurements, and clarify any trends in the
low POC region which may be influenced by these uncertainties.
Further understanding of the sources of variability between
POC and optical parameters can then be incorporated in
to future, semi-analytical algorithms. New understanding
of these relationships may also inform future sensor
development (e.g., hyperspectral sensors) and optical modeling
techniques.

AUTHOR CONTRIBUTIONS

HE: All the calculations, preparation of figures, lead on writing
the manuscript. VM: Project manager for Pools of Carbon
project; development of matchup processing and statistical
analysis. RB: Provision of code for statistical analysis based
on OC-CCI methodology. GD: Provision of in situ data,
content on bbp uncertainties and impact of particle sizing.
AH: Perspectives on community requirements, particularly for
ecosystem modeling. TJ: Provision of code for calculation
of per optical water class uncertainties, based on the OC-
CCI methodology. HK: Collation of the in situ database. TK:
Algorithm provider, content on algorithm performance relating
to particle size distributions. HL: Algorithm provider, content
on regional variability in algorithm performance. SR: Input on
statistical analysis and relative contributions of phytoplankton

to the POC pool. RR: Collation of the in situ database. ST: Data

contribution and guidance on POC data for the Southern Ocean.
DS: Algorithm provider, content on history of POC algorithm
development, and interpretation of comparative analysis of
different algorithms. TP: Project leader, scientific advice. SS:
Development of the concept and work plan, guidance of
HEK, review and rewriting of various sections of manuscript.
All authors reviewed and provided comments on the draft
manuscript.

FUNDING

The POCO project is funded by the European Space Agency
(ESA) under the program of Science Exploitation of Operational
Missions (SEOM) following Contract: 4000113692/15/I-LG. This
study is a contribution to the Ocean Color Climate Change
Initiative of the European Space Agency, and to the activities
of the National Center for Earth Observations (NCEO) of
the Natural Environmental Research Council (NERC) of UK.
This study is also a contribution to the international IMBER
project and was supported by the UK Natural Environment
Research Council National Capability funding to Plymouth
Marine Laboratory and the National Oceanography Center,
Southampton. AMT data were supported by the UK Natural
Environment Research Council National Capability funding to
Plymouth Marine Laboratory and the National Oceanography
Center, Southampton. This is contribution number 309 of
the AMT programme. TK was supported on NASA grant
#NNX13AC92G and by the Division of Hydrologic Sciences,
Desert Research Institute. The contribution of HL was funded
by the CNES/TOSCA program in the frame of the COYOTE
project.

ACKNOWLEDGMENTS

The authors would like to thank Peter Regner for his support and
management of the POCO project.We would like to thankOliver
Fisher for his contributions to the project during his student
internship. The authors would like to thank the participants
of the Color and Light in the ocean from Earth Observation
(CLEO) workshop, for their valuable discussions on POC, which
contributed substantially to refining the approaches presented
in this work. The authors would also like to thank the two
reviewers who provided detailed and constructive comments
which substantially improved this manuscript.

REFERENCES

Allison, D. B., Stramski, D., and Mitchell, B. G. (2010). Empirical ocean

color algorithms for estimating particulate organic carbon in the

Southern Ocean. J. Geophys. Res. 115, C10044. doi: 10.1029/2009JC

006040

Behrenfeld, M. J., Boss, E., Siegel, D. A., and Shea, D. M. (2005).

Carbon-based ocean productivity and phytoplankton physiology from

space. Glob. Biogeochem. Cycles 19:GB1006. doi: 10.1029/2004GB0

02299

Bishop, J. (1999). Transmissometer measurement of poc. Deep Sea Res. I 46,

353–369. doi: 10.1016/S0967-0637(98)00069-7

Bohren, C. F., and Huffman, D. (1983). Absorption and Scattering of Light by Small

Particles. New York, NY: Wiley.

Boss, E., and Pegau, W. S. (2001). Relationship of light scattering at an angle in the

backward direction to the backscattering coefficient. Appl. Opt. 40, 5503–5507.

doi: 10.1364/AO.40.005503

Boyd, P., and Newton, P. (1995). Evidence of the potential influence of planktonic

community structure on the interannual variability of particulate organic

carbon flux. Deep-Sea Res. I 42, 619–639. doi: 10.1016/0967-0637(95)00017-Z

Brewin, R. J. W., Dall’Olmo, G., Pardo, S., van Dongen-Vogels, V., and Boss,

E. S. (2016). Underway spectrophotometry along the Atlantic Meridional

Transect reveals high performance in satellite chlorophyll retrievals. Remote

Sens. Environ. 183, 82–97. doi: 10.1016/j.rse.2016.05.005

Frontiers in Marine Science | www.frontiersin.org 18 August 2017 | Volume 4 | Article 251

https://doi.org/10.1029/2009JC006040
https://doi.org/10.1029/2004GB002299
https://doi.org/10.1016/S0967-0637(98)00069-7
https://doi.org/10.1364/AO.40.005503
https://doi.org/10.1016/0967-0637(95)00017-Z
https://doi.org/10.1016/j.rse.2016.05.005
http://www.frontiersin.org/Marine_Science
http://www.frontiersin.org
http://www.frontiersin.org/Marine_Science/archive


Evers-King et al. Estimating POC from Ocean Color

Brewin, R. J. W., Sathyendranath, S., Müller, D., Brockmann, C., Deschamps, P.-Y.,

Devred, E., et al. (2015). The ocean colour climate change initiative: Iii. a round-

robin comparison on in-water bio-optical algorithms. Remote Sens. Environ.

162, 271–294. doi: 10.1016/j.rse.2013.09.016

Buiteveld, H., Hakvoort, J. H. M., and Donze, M. (1994). “Optical properties

of pure water,” in Proc. SPIE, 2258, Ocean Optics XII, ed J. S. Jaffe (Bergen:

International Society for Optics and Photonics), 174–185.
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