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28 Abstract

29 Micro-phytoplankton is the >20m component of the phytoplankton community and plays a 

30 major role in the global ocean carbon pump, through the sequestering of anthropogenic CO2 

31 and export of organic carbon to the deep ocean. To evaluate the global impact of the marine 

32 carbon cycle, quantification of micro-phytoplankton primary production is paramount. In this 

33 paper we use both in situ data and a satellite model to estimate the contribution of micro-

34 phytoplankton to total primary production (PP) in the Atlantic Ocean. From 1995 to 2013, 

35 940 measurements of primary production were made at 258 sites on 23 Atlantic Meridional 

36 Transect Cruises from the United Kingdom to the South African or Patagonian Shelf. Micro-

37 phytoplankton primary production was highest in the South Subtropical Convergence 

38 (SSTC~409 ± 720 mg C m-2 d-1), where it contributed between 38 % of the total PP, and was 

39 lowest in the North Atlantic Gyre province (NATL ~37 ± 27 mg C m-2 d-1), where it 

40 represented 18 % of the total PP.

41 Size-fractionated photosynthesis-irradiance (PE) parameters measured on AMT22 

42 and 23 showed that micro-phytoplankton had the highest maximum photosynthetic rate (Pm
B) 

43 (~5 mg C (mg Chl a)-1 h-1) followed by nano- (~4 mg C (mg Chl a)-1 h-1) and pico- (~2 mg C 

44 (mg Chl a)-1 h-1). The highest Pm
B was recorded in the NATL and lowest in the North Atlantic 

45 Drift Region (NADR) and South Atlantic Gyre (SATL). The PE parameters were used to 

46 parameterise a remote sensing model of size-fractionated PP, which explained 84% of the 

47 micro-phytoplankton in situ PP variability with a regression slope close to 1. The model was 

48 applied to the SeaWiFS time series from 1998 - 2010, which illustrated that micro-

49 phytoplankton PP remained constant in the NADR, NATL, Canary Current Coastal 

50 upwelling (CNRY), Eastern Tropical Atlantic (ETRA), Western Tropical Atlantic (WTRA) 

51 and SATL, but showed a gradual increase in the Benguela Upwelling zone (BENG) and 
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52 South Subtropical Convergence (SSTC). The mean annual carbon fixation of micro-

53 phytoplankton was highest in the CNRY (~140 g C m-2 yr-1), and lowest in the SATL (27 g C 

54 m-2 yr-1). A Thorium-234 based export production (ThExP) algorithm and applied it to 

55 estimates of total PP in each province. There was a strong coupling between micro-

56 phytoplankton PP and ThExP in the NADR and SSTC where between 23 and 39 % of micro-

57 phytoplankton PP contributed to ThExP. The lowest contribution by micro-phytoplankton to 

58 ThExP was in the ETRA and WTRA which were 15 and 21 % respectively. The results 

59 suggest that micro-phytoplankton PP in the SSTC is the most efficient export system and the 

60 ETRA is the least efficient in the Atlantic Ocean.
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61 1. Introduction

62 Phytoplankton primary production (PP) is the principal engine of the biological pump that 

63 determines the magnitude of CO2 draw down from the atmosphere and export of fixed carbon 

64 in the euphotic zone to the deep ocean. The efficiency of the biological pump and the fate of 

65 fixed CO2 remaining in or sedimenting out of the euphotic zone, depends on the physico-

66 chemical properties of the epipelagic system and its modification by the dominant trophic 

67 food web in the ecosystem (Jochem & Zeitzschel, 1993). The size structure and taxonomic 

68 composition of the phytoplankton community in the open ocean are important factors in 

69 regulating sedimentation of algal cells and carbon export (Bienfang, 1981). 

70 The smallest phytoplankton, known as the pico-phytoplankton (0.2 - 2 m in size) are 

71 a major component of the phytoplankton community and present in all oceanic systems, 

72 dominating the low Chlorophyll-a (Chl a) biomass areas of sub-tropical and tropical regions 

73 (Veldhuis, Timmermans, Croot & van der Wagt, 2005), both in terms of phytoplankton 

74 biomass (Partensky, Hess & Vaulot, 1999) and PP (Bell & Kalff, 2001). Pico-phytoplankton 

75 is efficient at fixing carbon, but this becomes limited by the availability of dissolved organic 

76 nutrients in oligotrophic regions (Biller, Berube, Lindell & Chisholm, 2015; Grob, Jardillier, 

77 Hartmann, Ostrowski, Zubkov et al., 2015). The trophic pathway of pico-phytoplankton, is 

78 through an efficient microbial loop which recycles organic carbon within lower trophic 

79 groups (heterotrophic bacteria, nano-flagellates, ciliates, heterotrophic dinoflagellates) so that 

80 little is available for export (Azam, 1998; Kiorboe, 1993). By contrast, the micro-

81 phytoplankton which inhabit nutrient replete waters can act as ballast for transporting 

82 atmospheric CO2 to the deep ocean (Cho & Azam, 1988; Eppley & Peterson, 1979; 

83 Falkowski, Barber & Smetacek, 1998). According to Stoke's Law, the micro-phytoplankton, 

84 (>20m) are expected to sink fast and represent a major vertical flux of carbon in epipelagic 

85 systems to the deep ocean (Cushing, 1989; Dugdale & Goering, 1967; Legendre & Lefevre, 
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86 1989). This can occur as spectacular episodic, seasonal events in aggregates or flocs such as 

87 marine snow. Sedimentation rates of pico-phytoplankton  and to a lesser extent the nano-

88 phytoplankton (2-20 m in size), except coccolithophorids, are considered to be negligible 

89 (Sarthou, Timmermans, Blain & Treguer, 2005) since much of this biomass is recycled in the 

90 photic zone (Chisholm, 1992; Kiorboe, 1993; Raven, 1998). Micro-phytoplankton is 

91 comprised of diatoms, dinoflagellates and colony forming cyanobacteria such as 

92 Trichodesmium spp.. Diatoms are one of the predominant contributors to global carbon 

93 fixation and export, accounting for 40% of the total PP in the Global Ocean  (Mann, 1999; 

94 Smetacek, 1999; Treguer & Pondaven, 2000), and make a significant contribution to the 

95 biogeochemical cycling of nitrogen, phosphorus, and silicon (Nelson, Treguer, Brzezinski, 

96 Leynaert & Queguiner, 1995; Treguer, Nelson, Vanbennekom, Demaster, Leynaert et al., 

97 1995). Within the micro-phytoplankton, the diatoms are believed to make the largest 

98 contribution to export production (ExP), potentially acting as a vector for POC export due to 

99 their ballasted armoury and palatability to higher trophic levels (Treguer & Pondaven, 2000).

100 Dinoflagellates are ubiquitous in the global ocean (Beardall & Raven, 2004), as either 

101 autotrophic life forms, that contribute directly to the biological carbon pump, or as 

102 heterotrophs that graze other phytoplankton. Species such as Ceratium spp. has a 

103 comprehensive biogeographic distribution from the warmest waters of the tropics to the 

104 coldest waters of the Polar Regions (Dodge & Marshall, 1994). Blooms of Ceratium spp. 

105 form a major component of both the total biomass and PP (Dodge & Marshall, 1994) and 

106 have expanded northwards in the Atlantic Ocean as a result of global warming (Hays, 

107 Richardson & Robinson, 2005).  Some dinoflagellates enhance the degradation of faecal 

108 pellets in the euphotic zone, thus reducing the potential for ExP (Svensen, Morata & 

109 Reigstad, 2014).  
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110 The colonial marine cyanobacterium Trichodesmium spp. is found throughout the 

111 subtropical and tropical gyres of the Atlantic Ocean (Capone, Burns, Montoya, 

112 Subramaniam, Mahaffey et al., 2005) and has the ability to fix nitrogen from the atmosphere  

113 having a major impact on nitrogen cycling in the ocean (Grosskopf, Mohr, Baustian, 

114 Schunck, Gill et al., 2012; Olson, McGillicuddy, Flierl, Davis, Dyhrman et al., 2015).  

115 In the Atlantic Ocean, the highest phytoplankton biomass and productivity occurs in 

116 the upwelling zones of the CNRY and BENG when micro-phytoplankton dominate the 

117 phytoplankton community under nutrient replete conditions. Rates of carbon fixation are 

118 reported to be between 500 and 6000 mg C m-2 d-1 (Tilstone, Smyth, Poulton & Hutson, 

119 2009). Micro-phytoplankton and nano-phytoplankton dominate the NADR during bloom 

120 conditions when PP is reported to be between 500-800 mg C m-2 d-1. Outside of these events, 

121 the pico-phytoplankton account for 78-90% of chlorophyll and 83-98% of primary 

122 production, when Synechococcus spp. dominate the community (Jochem & Zeitzschel, 1993). 

123 Similarly in the NATL, pico-phytoplankton make the highest contribution to Chl a 

124 and PP (Maranon, Holligan, Varela, Mourino & Bale, 2000; Zubkov, Sleigh & Burkill, 

125 2000), though a significant proportion of the total PP is attributed to nano- and micro-

126 phytoplankton (Maranon, Holligan, Barciela, Gonzalez, Mourino et al., 2001; Maranon et al., 

127 2000), which is determined by changes in nutrient supply to the euphotic zone (Maranon, 

128 Behrenfeld, Gonzalez, Mourino & Zubkov, 2003). 

129 In the equatorial provinces of the Western and Eastern Tropical Atlantic (ETRA & 

130 WTRA), elevated phytoplankton biomass and primary productivity can occur as persistent 

131 year round phenomena (Perez, Fernandez, Maranon, Serret & Garcia-Soto, 2005a; Perez, 

132 Fernandez, Maranon, Serret, Varela et al., 2005b) due to the presence of Equatorial 

133 upwelling. The phytoplankton community is still dominated by pico-phytoplankton (Perez et 

134 al., 2005b; Zubkov, Sleigh, Tarran, Burkill & Leakey, 1998), but nano-phytoplankton 
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135 (Tarran, Heywood & Zubkov, 2006), diatoms and dinoflagellates increase in abundance at 

136 the peak of upwelling (Barlow, Aiken, Holligan, Cummings, Maritorena et al., 2002; Barlow, 

137 Aiken, Moore, Holligan & Lavender, 2004; Gibb, Barlow, Cummings, Rees, Trees et al., 

138 2000).

139 Since micro-phytoplankton potentially contribute most to export production, 

140 quantifying its contribution to total PP is fundamental to improving our understanding of the 

141 carbon cycle and the biological pump. In this paper we address the following questions: What 

142 is the magnitude of micro-phytoplankton PP in open ocean provinces of the Atlantic Ocean? 

143 What is the contribution of micro-phytoplankton PP to total PP? How does the rate of micro-

144 phytoplankton photosynthesis compare with that of nano- and pico-phytoplankton? Can 

145 accurate satellite models of micro-phytoplankton PP be developed for the Atlantic Ocean and 

146 if so, have there been recent changes in micro-phytoplankton PP? What is the contribution of 

147 micro-phytoplankton PP to export production?

148 2. Methods

149 2.1. Study area and sampling

150 From 1995 to 2013, 940 size-fractionated Pz measurements using simulated in situ 

151 incubations (SIS) were made at 258 stations on 10 Atlantic Meridional Transect Cruises (Fig. 

152 1A, B, Table 1). In addition, size fractionated photosynthesis-irradiance (PE) curves were 

153 made at 62 stations at two depths in the water column (surface and DCM) on AMT22 in 2012 

154 and AMT23 in 2013 (Fig. 1C). Of the 21 cruises listed in Table 1, we grouped them into two 

155 sets, based on the seasons in which the North and South Atlantic Gyres were sampled. The 

156 first group is comprised of cruises in boreal spring (Fig. 1A) and the second group consisted 

157 of cruises in boreal autumn (Fig. 1B).
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158 A SeaBird SBE19+ CTD was deployed at each station to initially assess the vertical 

159 structure of temperature, salinity, density, fluorescence and PAR and to collect the samples 

160 for the Pz and PE curve measurements. For SIS Pz, seawater samples were collected in 10 L 

161 black out carboys from light depths based on the PAR profiles. Depths for the PE curves 

162 were determined from fluorescence profiles. Under conditions of vertical heterogeneity in the 

163 fluorescence data, additional samples were taken at depths delineating strong changes in the 

164 vertical profile. Mixed layer depth (MLD) was calculated as the depth at which the difference 

165 with the surface density was greater than 0.125 kg m-3 (Levitus 1982). The mean sections of 

166 temperature, salinity, Chl a fluorescence and primary production were calculated from 

167 weight-averaged spatial interpolation of observations and plotted using the software Ocean 

168 Data View (Fig. 2, 3).

169

170 2.2. Size fractionated Chlorophyll-a. 

171 During AMT22 and 23, 200–300 mL samples were sequentially filtered through 10, 2 and 0.2 

172 µm polycarbonate filters. After filtration, pigments were extracted in 90% acetone at -20 ºC 

173 for 24 h after which the Chl a concentration was determined on a Trilogy Turner Design 

174 Fluorometer using the method of Welschmeyer (1994). For each cruise, the fluorometer was 

175 pre-calibrated and post-calibrated with a pure Chl a standard. The total Chl a concentration 

176 was calculated as the sum of the three size fractions. 

177

178 2.3. Size fractionated phytoplankton photosynthesis and primary production

179 For simulated in situ primary production on cruises AMT1-23, water samples were taken 

180 from pre-dawn (03:15-05:15 GMT) deployments of SeaBird CTD rosette sampler on a 

181 stainless steel frame with 21 x 10L and 3 x 20L niskin bottles. Samples were taken from 6-8 
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182 depths in the euphotic zone following the methods described in Tilstone et al. (2009). The 

183 samples were transferred from Niskin bottles to black carboys to prevent shock to the 

184 photosynthetic lamellae of the phytoplankton cells. Water from each sample was sub sampled 

185 into three 75 ml clear polycarbonate bottles and three black polycarbonate bottles. All bottles 

186 were pre cleaned following JGOFS protocols (IOC, 1994), to reduce trace metal 

187 contamination. Each sample was inoculated with between 185 and 555 kBq (5 - 15 µCi) 

188 NaH14CO3 according to the biomass of phytoplankton. The polycarbonate bottles were 

189 transferred to an on deck (simulated in situ) incubation system using neutral density and blue 

190 filters to simulate subsurface irradiance over depth to 97%, 55%, 33%, 20%, 14%, 7%, 3%, 

191 1% or 0.1% of the surface value and incubated from local dawn to dusk (10 – 16 h). On AMT 

192 1-11 bottles were incubated for 6h and carbon fixation over this period was scaled to daily 

193 PAR to calculate PP (Tilstone et al., 2009). The incubators were maintained at surface 

194 temperature by pumping sea water from a depth of 7 m through the upper light level 

195 incubators (97, 55, 33, 14, & 7 %) and from a chiller maintained at ±1C of in situ 

196 temperature for the lower light level incubators (3, 1 & 0.1%). For AMT 2-6 and 18-23, to 

197 terminate the incubations, suspended material were filtered sequentially through 0.2, 2 and 10 

198 or 20 m polycarbonate filters to measure the pico-, nano- and micro-phytoplankton 

199 production, respectively (for further details see Table 1). The filters were exposed to 

200 concentrated HCl fumes for 8-12 h immersed in scintillation cocktail and 14C disintegration 

201 time per minute (DPM) was measured on board using a Perkin Elmer, Tricarb 2900 liquid 

202 scintillation counter and the external standard and the channel ratio methods were applied to 

203 correct for quenching.

204 On AMT22 and 23, photosynthesis-irradiance (PE) curves were measured at 62 

205 stations at the surface and DCM, using linear photosynthetrons following the methods given 

206 in Tilstone, Figueiras, Lorenzo and Arbones (2003), with either 35 or 50 W tungsten halogen 
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207 or 9 W LED lamps depending on the ambient PAR at depth. For each depth, 16 aliquots of 70 

208 mL were inoculated with 185 to555 kBq (5-15 µCi) of 14C-labelled bicarbonate. Samples 

209 were maintained at in situ temperature during the 1.5 h incubations and were then 

210 sequentially filtered through 0.2, 2 and 10 m polycarbonate filters. The filters were then 

211 exposed to 37% fuming hydrochloric acid and DPM was measured on board using the 

212 Tricarb 2900 Perkin Elmer scintillation counter as above. Natural 12C carbon fixation within 

213 each sample was calculated following Tilstone et al. (2003). The spectral irradiance Eq(λ) of 

214 the tungsten halogen and LED lamps were measured using a SATLANTIC HyperSAS 

215 radiometer (Model No. SATHSE0258) and the photosynthetic available radiation (EPAR) at 

216 each bottle position in the photosynthetron were measured. Raw values of the initial slope of 

217 the photosynthesis-irradiance curve (αB) are biased due to the emission spectrum of the light 

218 source. This bias was corrected by multiplying each αB value by a weighting factor, 

219 computed as the ratio of the mean absorption spectrum of a particular size class to the 

220 weighted (by the emission spectrum of the light source) absorption spectrum of the same size 

221 class of phytoplankton. Further details of this correction are given in Brewin et al. (this 

222 issue). The spectral light saturated chlorophyll-specific rate of photosynthesis for each size 

223 class (Pm
B), and αB, the light saturation parameter (Ek) and the rate of photoinhibition (β) 

224 were then estimated by fitting the normalised size-fractionated data to the model of Platt, 

225 Gallegos and Harrison (1980) as long as the r2 ≥ 0.9. 

226

227 2.4. Satellite models of micro-phytoplankton primary production and export production.

228 Total water column integrated PP was computed using the wavelength resolving model 

229 (WRM) of Morel (1991) implemented following Smyth, Tilstone and Groom (2005) for the 

230 SeaWiFS time series. The WRM was chosen as it is known to be accurate for the Atlantic 
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231 Ocean (Campbell, Antoine, Armstrong, Arrigo, Balch et al., 2002; Carr, Friedrichs, Schmeltz, 

232 Aita, Antoine et al., 2006; Friedrichs, Carr, Barber, Scardi, Antoine et al., 2009; Saba, 

233 Friedrichs, Carr, Antoine, Armstrong et al., 2010; Tilstone et al., 2009). The % of size-

234 fractionated pico-, nano- and micro-phytoplankton PP were calculated from the model 

235 described in Brewin et al. (this issue). This is an available light PP model and similar to that 

236 of Platt et al. (1980). It computes the carbon fixation of pico- (<2μm), nano- (2-10μm) and 

237 micro-phytoplankton (>10μm) cells. The model estimates the vertical Chl a profile as a 

238 function of the surface concentration derived from satellite data, following methods modified 

239 from Platt and Sathyendranath (1988) and (Uitz, Claustre, Morel & Hooker, 2006) re-

240 parameterised to AMT pigment profiles, then partitions Chl a into the three size classes using 

241 the model of Brewin, Sathyendranath, Tilstone, Lange and Platt (2014). The model estimates 

242 the euphotic depth following the approach of Morel et al., (2007), which modulates vertical 

243 changes in the diffuse attenuation coefficient using the Chl a profile. For estimation of size 

244 fractionated PP, the method of Uitz et al. (2008) was re-tuned using size-fractionated 

245 photosynthesis-irradiance experiments on AMT 22 and 23, Pm
B and αB measured for a flat 

246 incident spectral light field are modelled separately for each size class. These parameters are 

247 used to compute PP at each depth, at hourly intervals over the day length, for each size class. 

248 These values are summed and integrated to give daily PP. A thorough sensitivity and error 

249 propagation analysis on the model was conducted using Monte Carlo techniques to assess the 

250 impact of uncertainty in the model input (e.g. Chl a, irradiance) and model parameters (e.g. 

251 Pm
B, αB) on the resulting computed PP. For further details of the model and uncertainty 

252 analysis are given in Brewin et al. (this issue). Together with estimates of the light field, 

253 derived from satellite estimates of photosynthetically available radiation (PAR) and the 

254 diffuse attenuation of PAR, % PP for each size class were computed for each month from 

255 1998 to 2010 using the SeaWiFS data. The PP of each size fraction was calculated from the 
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256 total PP using the WRM as a function of the % PP for each size class, which were integrated 

257 over the water column to 0.1% euphotic depth which was derived from KPAR calculated as a 

258 function of Chl a .

259 We also used the algorithm of Henson, Sanders, Madsen, Morris, Le Moigne et al. 

260 (2011) to estimate ExP in each Atlantic province. This algorithm is derived from a 

261 comprehensive database of thorium-234 (234Th) based particulate organic carbon (POC) 

262 export measurements (ThExP) and sea surface temperature (SST) whereby the 234Th export 

263 ratio (ThE-ratio) = 0.23 * exp(-0.08*SST). We applied the ThE-ratio to monthly estimates of total 

264 PP from the WRM to calculate daily, mean monthly and annual rates of ExP, which we 

265 compared with micro-phytoplankton PP. 

266

267 3. Results

268 3.1. Hydrographic conditions

269 Mean sections of temperature, salinity and fluorescence for cruises in boreal spring and 

270 boreal autumn are given in Figure 2. In the Northern portion of the sections during boreal 

271 spring, colder (~16 °C) and less saline (36 psu) water (Fig. 2A, B) characterised the North 

272 Atlantic Drift (NADR) province (Fig. 1D), when the phytoplankton biomass reached >0.6 mg 

273 m-3 Chl a (Fig. 2C). During boreal autumn, the surface water temperature was higher (Fig. 

274 2D) and the phytoplankton biomass was lower (Fig. 2F). At the southernmost extent of the 

275 NADR during boreal spring, a subtropical front marked the boundary between NADR and 

276 NATL province, where in the top 100 m of the water column the salinity increased to 37 psu, 

277 temperature increased to ~17 °C, and surface Chl a decreased to <0.5 mg m-3. In boreal 

278 autumn, the temperature change from the NADR to the NATL was 18 – 20 °C. Further south 

279 in the WTRA the temperature rose to 28 °C, salinity increased to >37 psu when sub-surface 
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280 Chl a was <0.5 mg m-3 during boreal spring, and decreased to 35 psu when sub-surface Chl a 

281 was >1.0 mg m-3 during boreal autumn. In the southern hemisphere during boreal spring, an 

282 increase in sea surface temperature to >25 °C and an increase in salinity to 37 psu demarked 

283 the SATL province, where surface Chl a reached the lowest concentrations along the entire 

284 transect. During boreal autumn, temperatures in the SATL were lower, the salinity was 

285 similar and Chl a was higher. South of 35 °S, the temperature decreased to 16 °C and the 

286 salinity was <36 psu, and there was a concomitant increase in Chl a to >1.0 mg m-3, 

287 characterizing the SSTC province. During boreal autumn, both the temperature (15 °C) and 

288 salinity (35.5 psu) were lower and Chl a was higher (>1.0 mg m-3). 

289

290 3.2. Simulated in situ size-fractionated primary production

291 Of the 21 AMT cruises used in this study, only 10 cruises measured micro-phytoplankton PP. 

292 On AMT 2-6 this was done using 20 m filters, whereas on cruises AMT 18-23 used 10 m 

293 filters (Table 1). During both boreal spring and autumn, depth specific-primary production 

294 (Pz) was highest in the surface waters of the NADR, WTRA and SSTC and lowest in the 

295 NATL and SATL (Fig. 3A, D). Pz was generally higher during boreal spring compared to 

296 autumn, especially in the NATL due to the closer proximity to the Mauritanian Upwelling of 

297 the CNRY on AMT 1-11 (Fig. 1A). The % contribution of micro-phytoplankton Pz to total Pz 

298 (Fig. 3B, E) was highest at the extreme ends of the transect, especially in boreal spring at 

299 ~100 m due to the influence of water column mixing and possibly the sedimentation of large 

300 aggregates. In the top 50 m, % micro-phytoplankton Pz reached ~30% in the NADR and 

301 NATL, but decreased to 15-30% in the WTRA and SATL. Below 50 m, the distribution of % 

302 micro-phytoplankton Pz was patchy with higher values at 100 m in the WTRA and at the 

303 boundary between the SATL and SSTC (Fig. 3B, E). The % contribution of pico-
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304 phytoplankton Pz to total Pz was generally greater over the entire transect during both boreal 

305 and autumn, and especially in the DCM during boreal autumn where % pico- phytoplankton 

306 Pz was >60% (Fig. 3C, F).  

307 Integrated in situ water column primary production (PP) from AMT1-11 and AMT18-23 

308 for each size fraction and as a mean and mean % of the total, are given in Table 2. The actual 

309 data for each size class and as a % of the total from AMT18-23 are given in Figure 4. Micro-

310 phytoplankton PP was highest in the SSTC (409 ± 720 mgC m-2 d-1), where it contributed 

311 38% of the total PP and was lowest in the NATL (37 ± 27 mgC m-2 d-1) where it represented 

312 18 % of the total PP (Table 2). Similarly, the highest pico-phytoplankton PP was in the SSTC 

313 (mean ~309 ± 185 mgC m-2 d-1) and WTRA (mean ~212 ± 115 mg C m-2 d-1), which 

314 contributed 28 and 60 % to the total PP and the lowest was in the SATL (Table 2). The 

315 highest micro-phytoplankton PP were measured on AMT 18 in 2008 and AMT23 in 2013 at 

316 the boundaries between the WTRA & NATL and SATL & SSTC. By comparison, pico-

317 phytoplankton PP was highest during AMT22 in 2012. Nano-phytoplankton PP was similar 

318 throughout all cruises and on average represented 32% of the total PP in the Atlantic Ocean 

319 (Table 2, Figure 4).   

320

321 3.3. Size-fractionated photosynthesis-irradiance parameters

322 The variability in Pm
B, αB and Ek during AMT22 and 23 for micro-, nano- and pico-

323 phytoplankton in surface waters and at the DCM are given in Figures 5, 6 and Table 3. In all 

324 provinces and in both surface waters and the DCM, pico-phytoplankton had the highest Chl a 

325 concentrations with ~0.1 mg m-3 at surface and ~0.25 mg m-3 at the DCM and micro-

326 phytoplankton had the lowest Chl a with ~0.02 mg m-3 at the surface and ~0.03 mg m-3 at the 

327 DCM (Table 3). Micro-phytoplankton Pm
B was generally higher at the surface than in the 
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328 DCM in the NATL, SATL and SSTC (mean ~5.8 mg C (mg Chl-a)-1 h-1) and was similar 

329 between the surface and DCM in the NADR and WTRA (NADR mean ~2.82; WTRA mean 

330 ~5.4 mg C (mg Chl-a)-1 h-1; Fig. 5A, D, 6A, D, Table 3), probably as a result of more vertical 

331 mixing in these provinces and the proximity of the DCM to the surface (Fig. 2). There was 

332 considerable variability in Pm
B between cruises (Fig. 5, 6). In surface waters, micro-

333 phytoplankton had the highest Pm
B in the NATL during AMT22, followed by the WTRA and 

334 SATL during AMT23 (Fig. 5A, D, Table 3). Additionally, when comparing size fractions, 

335 micro-phytoplankton Pm
B > nano- Pm

B > pico- Pm
B, except in the WTRA where nano-

336 phytoplankton had the highest Pm
B (Table 3), especially during AMT23 (Fig. 5D). In the 

337 DCM of the NATL and WTRA, micro-phytoplankton had the highest Pm
B, during both 

338 AMT22 and 23 (Fig. 6A, D), and micro-phytoplankton Pm
B > nano- Pm

B > pico- Pm
B. In the 

339 NADR, SATL and SSTC, however, nano-phyoplankton Pm
B > micro- Pm

B > pico- Pm
B, 

340 especially on AMT23 (Fig. 6D). Pico-phytoplankton consistently had the lowest Pm
B at both 

341 surface and the DCM, and in surface waters highest values were measured in the WTRA and 

342 in the DCM in the SSTC. 

343 Micro-phytoplankton αB was similar between surface and DCM, highest in the WTRA 

344 and lowest in the SSTC (Fig. 5B, E, 6B, E, Table 3). Only in surface waters of the WTRA 

345 was micro-phytoplankton αB > nano- αB > pico- αB, whereas in the other provinces (except 

346 the NATL), pico- αB > micro- αB > nano- αB. In the DCM, in all provinces except the NATL, 

347 micro-phytoplankton had the highest αB, reflecting the low light acclimation at depth. By 

348 contrast, in the NATL nano-phytoplankton had the highest αB. 

349 The trend in Pm
B reflected Ek, such that micro-phytoplankton had the highest values at 

350 both the surface and the DCM, with micro- Ek > nano- Ek > pico- Ek in the NADR & NATL 

351 (Fig. 5C, F, 6C, F Table 3), indicating the adaptation of the larger size class to a higher light 

352 environment in these provinces. By contrast, in the SATL, SSTC, and DCM of the WTRA, 
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353 nano- Ek > micro- Ek > pico- Ek, whereas in the surface waters of the WTRA nano- Ek > pico- 

354 Ek > micro- Ek. 

355

356 3.4. Satellite estimates of micro-phytoplankton primary production.

357 In Figure 8, we plot daily in situ and satellite estimates of micro-phytoplankton PP using 

358 SeaWIFS data for cruises AMT18 – 23 (see Brewin et al. this issue for details on match-up 

359 procedure). From AMT18 in 2008 to AMT23 in 2013 there were 26 satellite match-ups and 

360 over all cruises there was a good agreement with in situ micro-PP in 1og10-space with 85% of 

361 the variability explained, a slope close of ~0.69 and a low bias (-0.1) and centre-pattern root 

362 mean square (0.3). The relative percentage difference (RPD) between in situ and satellite 

363 estimates of micro-PP was 37 %. There were two match-up points in the SSTC on AMT 22 

364 however, which exhibited large differences compared to in situ micro-phytoplankton PP 

365 values (Fig. 7D). These data points were at the boundary of the SSTC and SATL, which are 

366 very heterogeneous between low to high productive waters, so the difference in measurement 

367 resolution (point value for in situ versus 4km x 4km pixel for satellite) may explain the 

368 differences observed. If these points were removed, 90% of the variability explained, the 

369 slope is closer to 1 (~0.78), root mean square is lower (0.28) and the RPD was reduced to 14 

370 %, however nearly all of the remaining matchups were in a low PP range.  

371 After applying this model to the SeaWiFS time series, we then extracted mean monthly 

372 total and micro-phytoplankton PP in each province (Fig. 8). The seasonal oscillation between 

373 maximum values in spring and minimum values in winter is well defined for both total and 

374 micro-phytoplankton PP, especially in the temperate provinces of the NADR and SSTC (Fig. 

375 8A, H). In the NADR, NATL, CNRY, ETRA, WTRA and SATL micro-PP remained 

376 constant over the decadal time series (Fig. 8E, F). In the BENG and SSTC, there was a 

377 significant increase in micro-PP from 1998 to 2010 (Fig. 8G, H; BENG, F1,151 = 25.08, P < 



17

378 0.0001; SSTC, F1,151 = 41.62, P < 0.0001). The cumulative values reflected the anomalies, 

379 with little change from 1998 to 2010 in the NADR, NATL, CNRY, ETRA, WTRA and 

380 SATL, except for a large decrease in micro-PP (increase in the NADR) during 2000 (Fig. 9). 

381 Similarly in the BENG and SSTC there was a progressive increase in the cumulative sum of 

382 micro-PP from 2001 to 2011 (Fig. 9G, H).    

383

384 3.5. Satellite estimates of export production.

385 The algorithm of Henson et al. (2011) was applied to satellite estimates of total PP to 

386 estimate the average ThExP, which was 13 g C m-2 y-1 in the NADR and 16 g C m-2 y-1 and in 

387 the SSTC. In the NATL, SATL and WTRA the average annual ThExP was similar at 5, 4 and 

388 5 g C m-2 y-1, respectively and in the ETRA this increased to 8 g C m-2 y-1. The largest mean 

389 annual ThExP is in the CNRY and BENG, which were 21 and 17 g C m-2 y-1.

390 Comparing ThExP in each Atlantic province with the estimates of micro-

391 phytoplankton PP, we found that in the NADR and SSTC ThExP is 23 and 39 % of micro-

392 phytoplankton PP (Fig. 10A, D). By contrast, in the NATL and SATL the average annual 

393 ThExP is 14 and 15 % of the micro-phytoplankton PP, respectively (Fig. 10B). Similarly in 

394 the WTRA the average annual ThExP is 10 % of micro-phytoplankton PP, and in the ETRA 

395 it is 11 % (Fig. 10C). The ThExP of the CNRY and BENG, represent 15 and 21 % of micro-

396 phytoplankton PP, respectively (Fig. 10A, D). We found that ThExP in the NATL and SATL 

397 was relatively constant (Fig. 11B, F), the NADR exhibited a decline until 2005, after which 

398 there as increase in ThExP (Fig. 11A) and the BENG and SSTC were constant until 2007 

399 after which time ThExP increased to 2009 and decreased again in 2010 (Fig. 11G, H). The 

400 ETRA and WTRA displayed cyclical oscillations at 3-4 y scales between increases and 

401 decreases in ThExP (Fig. 11D, E). In the NATL, CNRY, ETRA and WTRA, there was un-
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402 coupling between ThExP and micro-phytoplankton PP in 2000 which was repeated in the 

403 CNRY, ETRA and WTRA in 2009 (Fig. 11B, C, D, E).   

404

405 4. Discussion

406 4.1. Variability in micro-phytoplankton primary production.

407 Pico-phytoplankton dominate the biomass and primary productivity in sub-tropical and 

408 tropical oligotrophic regions of the Atlantic Ocean (Maranon et al., 2000; Zubkov et al., 

409 2000; Zubkov et al., 1998), however a significant proportion of this productivity is attributed 

410 to both the nano- and micro-phytoplankton (Maranon et al., 2001; Poulton, Holligan, 

411 Hickman, Kim, Adey et al., 2006). Spatial and temporal changes in nutrient and light 

412 availability, turbulence and predation affect the composition of the phytoplankton community 

413 which in turn modify photosynthetic rates of the different size fractions (Poulton et al., 2006). 

414 The majority of the Atlantic Meridional Transect cruises took place during boreal 

415 autumn in the Northern hemisphere and austral spring in the Southern hemisphere, and 

416 therefore only provided a snap shot of the intra-annual variability in PP. During these times 

417 of the year, the NATL and SATL remain strongly stratified which constrains micro-

418 phytoplankton PP (Fig. 2, 3). The Atlantic Gyres remain stratified for most of the year but 

419 there are periods, during January in the Northern Hemisphere and July in the Southern 

420 Hemisphere (Aiken et al. this issue), when the mixing in these regions can become deeper 

421 which could potentially enhance PP, especially micro-phytoplankton PP. From the in situ 

422 data, the micro-phytoplankton PP varied from 37 mg C m-2 d-1 in the NATL to 409 mg C m-2 

423 d-1 in the SSTC and constituted between 18 and 38 % of the total PP. Of the 23 AMT cruises 

424 conducted from 1995 to 2013, only 10 cruises (AMT 2-6, 18, 20-23) measured micro-

425 phytoplankton PP. During AMT 2-6, micro-phytoplankton PP was measured using 20 m 
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426 polycarbonate filters (Table 1) and these cruises sampled the eastern edge of the NATL, the 

427 western edge of the SATL and the CNRY and ETRA (Fig. 1). Three out of five of the cruises 

428 were conducted in boreal spring and the other two were during boreal autumn (Table 1). 

429 During AMT12-16, the focus on size fractionated PP was in the pico- and nano+micro-

430 phytoplankton (Table 1). During AMT 18, 20-23 10 m filters were used for micro-

431 phytoplankton PP (Table 1). One may therefore expect that the patterns in size fractionated Pz 

432 and PP between AMT 2-6 and AMT18, 20-23 reflect the different pore sized filters used 

433 between cruises. This is more constrained, however, by the location of the ship’s tracks in the 

434 NATL and SATL and the timing of the cruises. During repeat cruises along similar tracks in 

435 boreal autumn and using the same pore size (10 m) for micro-phytoplankton, data from 

436 AMT18-23 consistently showed that micro-phytoplankton contribute ~19 % of the total PP in 

437 the Atlantic Ocean and at specific depths this reached 38 %. In much of the oligotrophic 

438 Atlantic Ocean, the strong vertical stratification of the water column limits the supply of 

439 nutrients from below the thermocline to the euphotic layer, thus possibly limiting PP 

440 (Maranon et al., 2003) especially in the micro- and nano-phytoplankton size fractions 

441 (Aldridge, Purdie & Zubkov, 2014). This may partially explain why micro-phytoplankton PP 

442 did not exceed 20 % in these regions. It is not possible to capture all seasons of the year based 

443 on in situ data alone, but using a satellite model that has been calibrated with representative 

444 PE parameters, accurate estimates of size-fractionated PP are achievable (Fig. 7; see also 

445 Brewin et al. this issue). Such satellite models can then be used to assess intra-, inter- and 

446 annual changes in the carbon fixation by different size classes. From the satellite model, the 

447 average annual micro-phytoplankton production for the NADR from 1998 to 2010 was 56 g 

448 C m-2 y-1, in the NATL it was 34 g C m-2 y-1, in the WTRA it was 53 g C m-2 y-1, 74 g C m-2 

449 y-1 in the ETRA, for the SATL it was 21 g C m-2 y-1 and for SSTC region it was 41 g C m-2 y-

450 1.
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451

452 4.2. Variability in size-fractionated photosynthesis-irradiance parameters.

453 4.2.1. Photosynthetic efficiency of size classes. 

454 The determination of size fractionated PE curves has been conducted in the global 

455 ocean since the 1980’s (Joint & Pomroy, 1983; Platt, Rao & Irwin, 1983). The consensus that 

456 has emerged is that micro-phytoplankton has the highest Pm
B in open ocean areas of the 

457 equatorial tropical and sub-tropical Atlantic and Pacific Oceans (Claustre, Babin, Merien, 

458 Ras, Prieur et al., 2005; Li, Karl, Letelier & Church, 2011; Uitz, Huot, Bruyant, Babin & 

459 Claustre, 2008), in upwelling of the Canary Current (Cermeno, Maranon, Rodriguez & 

460 Fernandez, 2005), especially when diatoms dominate the phytoplankton community (Babin, 

461 Morel, Claustre, Bricaud, Kolber et al., 1996; Lorenzo, Arbones, Tilstone & Figueiras, 2005). 

462 In upwelling zones this is due to the availability and acquisition of replete light and nutrients 

463 by the micro-phytoplankton. In the open ocean, the high photosynthetic rates are associated 

464 with filamentous and colonial cyanobacteria and protists (Li et al., 2011), which have the 

465 ability to change the number of available photosynthetic reaction centres and can fix nitrogen 

466 from the atmosphere suggesting that photosynthesis does not become limited by nutrients (at 

467 least by nitrogen). A number of other studies have reported that larger phytoplankton sustain 

468 higher biomass-normalised photosynthetic rates than smaller cells due to a higher light 

469 utilisation efficiency (Tamigneaux, Legendre, Klein & Mingelbier, 1999). This may in part, 

470 be due to their ability to increase the intra-cellular pigment concentrations in response to 

471 decreasing growth irradiance (Taylor, Geider & Gilbert, 1997). Though large cells are less 

472 efficient at absorbing light due to the package effect, some diatoms have the ability to store 

473 nutrients in vacuoles, allowing them to maximise Pm
B during favourable light conditions 

474 (Raven, 1997) and some of them have a thick layer of chloroplasts close to the cytoplasm 
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475 membrane, which allows the cell surface to maximise the absorption of light. In laboratory 

476 based studies, Pm
B of diatoms vary from 1.2 to 11.4 mg C (mg Chl a)-1 h-1 with a mean value 

477 of 2.6 ± 1.0. This is similar to the median Pm
B that we measured for micro-phytoplankton in 

478 the Atlantic Ocean (~2.88 mg C (mg Chl a)-1 h-1; Table 4), even though it is difficult to 

479 simulate the light field of the natural environment under laboratory conditions. In our study, 

480 the range in micro- αB was from 0.002 mg C (mg Chl-a) -1 h -1 (µmol photons m -2 s -1) -1 in 

481 the SATL to 0.085 mg C (mg Chl-a) -1 h -1 (µmol photons m -2 s -1) -1 in the WTRA with an 

482 average of 0.013 mg C (mg Chl-a) -1 h -1 (µmol photons m -2 s -1) -1 over the entire Atlantic 

483 Ocean. Studies on diatoms have reported a higher range in αB , from 0.013 to 0.087 mg C (mg 

484 Chl-a) -1 h -1 (µmol photons m -2 s -1) -1, with an average of 0.021 ± 0.005 mg C (mg Chl-a) -1 

485 h -1 (µmol photons m -2 s -1) -1 (Sarthou et al., 2005).  Similarly we found that Ek varied from 

486 6 to 1800 with an average of 420 µmol photons m -2 s -1 during two AMT cruises in the 

487 micro-phytoplankton, whereas for diatoms Ek is reported to be lower, from 46 and 498 µmol 

488 photons m -2 s -1,  with an average value of 95 ± 120 µmol photons m -2 s -1. The higher Pm
B 

489 and Ek in the micro-phytoplankton may be the consequence of the very low Chl a values 

490 associated with these fractions rather than reflecting a higher efficiency of photosynthesis per 

491 unit Chl a, per se (deMadariaga & Joint, 1994).  When Chl a is close to the analytical 

492 detection limit, normalization of photosynthetic rates to Chl a can result in inaccuracies, 

493 which may not reflect the true photo-physiological response of the phytoplankton community 

494 to changes environmental conditions. 

495 To the best of our knowledge our AMT dataset of size fractionated PE parameters is 

496 the most comprehensive for the Atlantic Ocean to date. We found that from the NADR to the 

497 SSTC the average Pm
B for micro-phytoplankton was 4.54 mg C (mg Chl-a)-1 h-1 and for αB 

498 was 0.013 mg C (mg Chl-a) -1 h -1 (µmol photons m -2 s -1) -1, and for Pm
B corresponds to the 

499 values reported by Uitz et al. (2008) for the sub-tropical Atlantic, the equatorial Pacific and 
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500 the Mediterranean Sea and by Barnes, Tilstone, Smyth, Suggett, Astoreca et al. (2014) for the 

501 Western English Channel. The micro-phytoplankton mean αB is similar to that reported by 

502 Tilstone, Figueiras, Fermin and Arbones (1999) and Figueiras, Espinoza-Gonzalez, Arbones, 

503 Garrido, Teixeira et al. (2014) for the NW Iberian Upwelling system, by Toon, Lohrenz, 

504 Rathbun, Wood, Arnone et al. (2000) for the Northern Arabian Sea and by deMadariaga and 

505 Joint (1994) for the North Sea. This may suggest that for micro-phytoplankton at least, a 

506 common algorithm for the oligotrophic, upwelling shelf and coastal regions of the Atlantic 

507 Ocean may be achievable.

508

509 4.2.2. Depth dependency in photosynthetic parameters of different size-classes.

510 From the AMT data, Pm
B tended to decrease with depth in all size fractions and especially in 

511 the NATL, SATL, SSTC, (Fig. 5, 6, Table 3) as a result of moving from high saturating 

512 irradiance at the surface to lower irradiance at depth. Similarly, there was a reduction in Ek 

513 between the surface and DCM in all size fractions, indicative of photo-acclimation to 

514 attenuated light over the water column (Falkowski, 1980). By contrast, αB values for all size 

515 fractions and all provinces were more homogeneous except in the WTRA, with a slight 

516 tendency to increase over depth during AMT23 (Fig. 6), reflecting an adaptation to the light 

517 environment under stratified conditions. In the WTRA, under the influence of equatorial 

518 upwelling and vertical mixing (Fig. 2), αB values were similar between the surface and DCM 

519 for the micro-phytoplankton. Nano-phytoplankton αB decreased with depth whereas values 

520 for pico-phytoplankton increased over depth indicating pico- out compete nano-

521 phytoplankton in light absorption at depth. Similarly Moran and Sharek (2015) found higher 

522 αB in the pico-phytoplankton at depth during summer stratification and little difference in 

523 micro-phytoplankton αB between the surface and deeper in the water column. Such depth 

524 dependent patterns in Pm
B, αB and Ek have also been reported during stratified conditions in 
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525 the NW Iberian upwelling zone (Figueiras et al., 2014), the Bay of Biscay (Moran, 2007; 

526 Moran & Sharek, 2015) and the North Pacific Gyre (Li et al., 2011), possibly reflecting light 

527 acclimation through changes in the number of photosynthetic reaction centres (Behrenfeld, 

528 Prasil, Babin & Bruyant, 2004), rather than increases in the size of the light harvesting 

529 antennae (Geider, MacIntyre & Kana, 1998). Often an increase in photosynthetic rates has 

530 been explained by a decrease in light-harvesting pigment content, which reduces the package 

531 effect and enables a more efficient carbon fixation per unit Chl a (Berner, Dubinsky, Wyman 

532 & Falkowski, 1989). The higher photosynthetic rates that we measured in the micro- and 

533 nano-phytoplankton, compared to the pico-phytoplankton, contradicts the theory that small 

534 cells are more efficient at light harvesting (Raven, 1998; Veldhuis et al., 2005). This may be 

535 partially explained by the fact that the pico-phytoplankton fix a higher percentage of carbon 

536 at depth in the water column, whereas micro-phytoplankton fix more carbon closer to the 

537 surface. In other studies in the Atlantic Ocean, nano- and micro-phytoplankton consistently 

538 showed higher carbon fixation rates than the pico-phytoplankton (Poulton et al., 2006).

539

540 4.3. Temporal trends in micro-phytoplankton primary production.

541 Satellite models of size fractionated PP have been developed either based on deriving 

542 size fractionated biomass (Uitz et al., 2008) or size fractionated phytoplankton absorption 

543 coefficients (Hirata, Hardman-Mountford, Barlow, Lamont, Brewin et al., 2009). Uitz et al. 

544 (2008) developed an empirical model of size-fractionated PP based on a large in situ data 

545 base of phytoplankton pigments, aph* and PE curves taken along latitudinal transects in the 

546 sub-tropical Atlantic and Pacific Oceans. This model describes the dependence of algal 

547 photo-physiology on phytoplankton size and the relative irradiance of the water column. It 

548 has been applied to global ocean colour satellite data to derive PP in micro-, nano- and pico-
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549 phytoplankton (Uitz, Claustre, Gentili & Stramski, 2010). In the model, micro-phytoplankton 

550 has higher photosynthetic efficiency than the other size classes. 

551  In the Atlantic Ocean, Uitz et al. (2010) reported 500 mg C m-2 d-1 for micro-

552 phytoplankton in the oligotrophic gyres and 1000 mg C m-2 d-1 along the shelf of the east 

553 African upwelling system, with micro-phytoplankton accounting for 15 and 30% of the total 

554 PP, respectively. We parameterised a size-fractionated PP model specifically for the Atlantic 

555 Ocean and for the oligotrophic gyres. From this model, micro-phytoplankton PP was lower 

556 than the estimates given in Uitz et al. (2010) even though similar to our data, Uitz et al. 

557 (2008) described micro- Pm
B > nano- Pm

B > pico- Pm
B. In their study,  mean Pm

B for micro-, 

558 nano- and pico-phytoplankton were 4.26, 2.94 and 3.75 mg C (mg Chl-a)-1 h-1, respectively, 

559 whereas in our study though micro- was similar (4.54 mg C (mg Chl-a)-1 h-1), nano- Pm
B was 

560 higher (4.15 mg C (mg Chl-a)-1 h-1) and pico-phytoplankton Pm
B was lower (~2.29 mg C (mg 

561 Chl-a)-1 h-1). For αB Uitz et al. (2008) reported micro- αB > nano- αB > pico- αB in surface 

562 waters and nano- αB > pico- αB > micro- αB  at depth, with mean αB of 0.032 mg C (mg Chl-a) 

563 -1 h -1 (µmol photons m -2 s -1) -1 for micro-, 0.026 mg C (mg Chl-a) -1 h -1 (µmol photons m -2 

564 s -1) -1 for nano-, and 0.007 mg C (mg Chl-a) -1 h -1 (µmol photons m -2 s -1) -1 for pico- over 

565 the euphotic zone. By contrast, we found that pico- αB > micro- αB > nano- αB at the surface, 

566 and at the DCM this relationship changed by province, reflecting the light acclimation at 

567 depth by the different size fractions. Over the entire water column our mean values were 

568 lower, with micro- αB having 0.012 mg C (mg Chl-a) -1 h -1 (µmol photons m -2 s -1) -1, nano- 

569 αB 0.012 mg C (mg Chl-a) -1 h -1 (µmol photons m -2 s -1) -1 and pico- αB 0.014 mg C (mg Chl-

570 a) -1 h -1 (µmol photons m -2 s -1) -1. The differences in micro-phytoplankton PP between our 

571 and the Uitz et al. (2008) are therefore partly due to the representative mean αB values used, 

572 but also since deriving size fractionated Chl a from HPLC diagnostic pigments results in 

573 higher values compared to sequential filtration through different pore size filters (Brewin, 
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574 Sathyendranath, Lange & Tilstone, 2014).  By Comparison, Figueiras et al. (2014) applied 

575 the Uitz et al. (2008) model to the NW Iberian upwelling region and found that it over-

576 estimates size-fractionated PP compared to measured parameters, particularly during periods 

577 of upwelling when the water column is mixed, dominated by diatoms and when there is little 

578 variation in the PE parameters over depth. They concluded that the Uitz et al. (2008) model 

579 can only be accurately used for oligotrophic environments where photo-acclimation is a 

580 characteristic feature of these highly stratified waters. Global models that assume higher 

581 photosynthetic efficiency in a single size class without considering regional variability, may 

582 therefore lead to erroneous estimates of size fractionated PP. 

583 When we applied our model to SeaWiFS data, we found that micro-phytoplankton PP 

584 was constant in most provinces from 1998-2011, except in the BENG and SSTC where it 

585 increased significantly over this time period. Similarly, Agirbas, Martinez-Vincente, Brewin, 

586 Racault, Airs et al. (2015) observed that Chl a measured by HPLC was found to increase in 

587 the SATL during boreal autumn from 2003 to 2010. Hirata et al. (2009) used an IOP 

588 inversion model to estimate aph and portioned this between micro-, nano- and pico-

589 phytoplankton using known slopes in these spectra between blue and green wave bands. They 

590 then regressed aph for each size class against size-fractionated PP from simulated in situ deck 

591 incubations and applied these relationships to satellite data from different upwelling zones. In 

592 the BENG and CNRY from 1998 to 2008, Hirata et al. (2009) showed that there was no 

593 change in micro-phytoplankton PP over this period. The Pz values that they report for the 

594 BENG and CNRY (~0.28 g C m-3 d-1) are similar to the values we measured in these 

595 provinces (Fig. 3), but in the BENG we observed a slight increase in micro-phytoplankton 

596 PP. These differences may be due to the way that the Hirata et al. (2009) model is 

597 parameterised based on diagnostic pigments which cannot differentiate for micro-
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598 phytoplankton from nano-flagellates such as Phaeocystis spp. which also possess 

599 fucoxanthin, the marker pigment for diatoms.

600

601 4.4. The potential for micro-phytoplankton export production in the Atlantic Ocean.

602 4.4.1. Mechanisms for export production. 

603 Early studies on carbon export in the ocean hypothesized that there was a direct link between 

604 particulate ExP and PP (Eppley & Peterson, 1979) and that the magnitude of the export is 

605 governed by the supply of nutrients into the euphotic zone, the composition and seasonality 

606 of primary producers and grazers (Laws, Falkowski, Smith, Ducklow & McCarthy, 2000) and 

607 mechanisms of aggregation which make particles sink faster. As aggregated particles sink 

608 from the upper mesopelagic zone, they become converted into small, non-sinking POC 

609 detritus, which is rapidly metabolized by zooplankton, protozoan and bacterial processes 

610 (Belcher et al. 2016). There are three main processes by which phytoplankton are exported to 

611 the deep ocean: The first and by far the most important, is through ingestion and excretion by 

612 zooplankton (Honjo, Manganini, Krishfield & Francois, 2008). The second mechanism is by 

613 gravitational settling of phytoplankton aggregates ballasted by heavy bio-mineral or aerosol 

614 lithogenic particles (Armstrong, Lee, Hedges, Honjo & Wakeham, 2002; Francois, Honjo, 

615 Krishfield & Manganini, 2002) and the third is through the aggregation of ‘heavy’ 

616 phytoplankton which in turn is modified by bacterial decomposition (e.g. Buesseler, 

617 Lamborg, Boyd, Lam, Trull et al., 2007). 

618 In productive ecosystems, micro-phytoplankton blooms, especially those dominated 

619 by diatoms, are known to trigger substantial export of fast-sinking phyto-detrital aggregates 

620 that can carpet the deep ocean floor (Honjo & Manganini, 1993). There are a number of 

621 hypotheses to explain this mechanism: 1.) silicate limitation of diatoms at the end of a bloom 

622 can lead to transparent exo-polymer particles (TEP) being formed (Sieracki, Verity & 
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623 Stoecker, 1993), which causes cells to stick together promoting aggregation, sinking and 

624 sedimentation (Kiørboe, Hansen, Alldredge, Jackson, Passow et al., 1996); 2.) higher inputs 

625 of nutrients as a result of deep mixed layers or upwelling lead to enhanced PP that favours 

626 micro-phytoplankton which augments the export of siliceous particulate organic matter (Brix, 

627 Gruber, Karl & Bates, 2006); 3.) Low temperatures cause a slow-down in heterotrophic 

628 processes compared to autotrophic processes, which can subsequently lead to the 

629 intensification of ExP (Laws et al., 2000). On 1.), the silicate content of diatoms can be a 

630 function of growth rate (Claquin et al., 2002), which may cause nitrate and phosphorus 

631 limitation that may enhance sedimentation rates. By comparison, silicate limitation can cause 

632 low silicate frustule content, which could reduce sinking rates.  

633

634 4.4.2. Export production in the Atlantic Ocean.

635 There are a wide variety of techniques to measure ExP with increasing interest in the 

636 use of radionuclide disequilibria technique between thorium-234 (234Th) and its parent 

637 uranium-238 (238U) as a tracer of particle export, has resulted in a comprehensive global data 

638 base of ThExP (Le Moigne, Henson, Sanders & Madsen, 2013). In this study we were able to 

639 address the question: How do the estimates of ThExP that we computed using the algorithm 

640 of Henson et al. (2011), compare with those reported in other studies? The 234Th technique 

641 was deployed during AMT14 in 2004 to measure POC export in Atlantic Ocean Provinces 

642 (Thomalla, Turnewitsch, Lucas & Poulton, 2006). The lowest 234Th-derived POC export 

643 fluxes were in the Atlantic Gyres with 0 g C m-2 d-1 measured in the NATL and 0.07 g C m-2 

644 d-1 in the SATL, where ExP was between < 10 and 246 % of total PP. By contrast, higher 

645 export flux was associated with the equatorial upwelling regions of the ETRA (0.30 g C m-2 

646 d-1) and WTRA (0.18 g C m-2 d-1) and also in the NADR and SSTC (0.08 – 0.49 g C m-2 d-1), 

647 which was 20 – 50 % of total PP. By comparison, using total PP from SeaWiFS during April 
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648 & May 2004, we estimate an average ThExP of 0.017 and 0.010 g C m-2 d-1 in the NATL and 

649 SATL; 0.018 and 0.014 g C m-2 d-1 in the ETRA and WTRA and 0.058 and 0.029 g C m-2 d-1 

650 in the NADR and SSTC, respectively. Similarly using total PP from the SeaWiFS time series 

651 (1998-2010) we estimate an average ThExP of 0.013 and 0.011 g C m-2 d-1 in the NATL and 

652 SATL; 0.023 and 0.015 g C m-2 d-1 in the ETRA and WTRA and 0.044 and 0.036 g C m-2 d-1 

653 in the NADR and SSTC. The values we compute were slightly lower than those given in 

654 Thomalla et al. (2006) since we estimated average values over each province whereas 

655 Thomalla et al. (2006) measured ThExP at point stations.  

656

657 4.4.3. The potential contribution of micro-phytoplankton to export production.

658 It has been observed in many oligotrophic environments that micro-phytoplankton, 

659 and especially the diatoms, contribute more to ExP than to PP (Goldman & McGillicuddy, 

660 2003; Karl, Michaels, Bergman, Capone, Carpenter et al., 2002). Diatoms alone account for 

661 9–20% of organic carbon export in the North Pacific Subtropical Gyre (Brzezinski , Krause, 

662 Church, Karl, Li et al., 2011), 15–20% of the ExP in the equatorial Pacific (Krause, Nelson & 

663 Brzezinski, 2011) and up to 30% in the Sargasso Sea at BATS (Nelson & Brzezinski, 1997). 

664 At BATS positive correlations between temperature and export ratios, and between wind 

665 speed and total PP, suggests that total PP increases when MLD is at its maximum and 

666 nutrient supply at its peak, and that ExP increases afterwards with the onset of stratification 

667 and increases in temperature (Brix et al. 2006). These changes in mixing and nutrient supply 

668 and also in light intensity produce a shift in phytoplankton community from pico-

669 phytoplankton to larger phytoplankton which is also correlated with the export flux (Casey, 

670 Aucan, Goldberg & Lomas, 2013). Considering the magnitude of micro-phytoplankton PP, 

671 we found that SSTC is the most efficient export system (ThExP / micro-PP ratio ~0.44) and 

672 the ETRA is the least efficient (ThExP / micro-PP ratio ~0.07). The upwelling regions of the 
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673 CNRY and BENG and the NADR have a ThExP / micro-PP ratio of ~0.2 and the NATL, 

674 SATL and WTRA are closer to 0.1.  

675  

676 5. Conclusions.

677 A large in situ database from the Atlantic Meridional Transect of micro-phytoplankton Pz, PP 

678 and PE parameters was used to quantify the contribution of micro-phytoplankton to total PP 

679 in different Atlantic Provinces.  For cruises that sampled the edge of the NATL the % micro-

680 phytoplankton Pz to total Pz in the top 50 m was ~30% in the NADR and NATL, but 

681 decreased to 15 - 30 % in the WTRA and SATL. On cruises that sampled closer to the centre 

682 of the NATL, % micro-Pz was <15 %, reaching ~20 % at the boundaries between the NATL, 

683 SATL and WTRA. We found that over the Atlantic basin, micro-phytoplankton had the 

684 highest Pm
B (~5 mg C (mg Chl a)-1 h-1), followed by nano- (~4 mg C (mg Chl a)-1 h-1) and 

685 pico-phytoplankton (~2 mg C (mg Chl a)-1 h-1). The highest micro-phytoplankton Pm
B was in 

686 the NATL and the lowest values were in the NADR and SATL. The PE parameters were 

687 used to calibrate a remote sensing model of micro-phytoplankton PP, which were within 14 

688 % of in situ values. When the model was applied to the SeaWiFS time series, it revealed that 

689 that micro-phytoplankton PP remained fairly constant from 1998 to 2010 in the NADR, 

690 NATL, CNRY, ETRA, WTRA and SATL, but showed a gradual increase in the BENG and 

691 SSTC. We also used the algorithm of Henson et al. (2011) to estimate ThExP from total PP 

692 and compared this with micro-phytoplankton PP. The results suggest that micro-

693 phytoplankton PP in the SSTC potentially export 44 % of their production, whereas in the 

694 NATL, SATL and WTRA micro-phytoplankton only account for 10 % of the ThExP.

695
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1014 Figure Legends.

1015 Figure 1. Station locations: (A.) AMT 1 to AMT 11, (B.) AMT12 to 22, (C.) AMT 22 and 23 

1016 and (D.) Longhurst Provinces.

1017

1018 Figure 2. Sections of CTD temperature, salinity and chlorophyll a estimated from 

1019 fluorescence for Boreal Spring (A, B, C) and Boreal Autumn (D, E, F).

1020

1021 Figure 3. Sections of total water integrated primary production (mg C m-3 d-1) and mean 

1022 percentage of microphytoplankton (>10 µm) and picoplankton (0.2-2 µm) primary 

1023 production during Boreal Spring (A, B, C) and AMT Boreal Autumn (D, E, F). 

1024

1025 Figure 4. Integrated primary production (mg C m-2 d-1) for (A.) micro-, (B.) nano-, (C.) pico-

1026 phytoplankton and percentage of total primary production for (D.) micro-, (E.) nano-, (F.) 

1027 pico-phytoplankton during AMT 18 to AMT 23.

1028

1029 Figure 5. Size Fractionated Photosynthesis-Irradiance parameters from surface samples on 

1030 AMT22 (A.) PmB, (B.) alphaB, (C.) Ek and AMT23 (D.) PmB, (E.) alphaB, (F.) Ek.  Dark 

1031 grey bar is micro- (>10m); light grey bar is nano- (2-10m); black Bar is pico-

1032 phytoplankton (0.2-2m).

1033

1034 Figure 6. Size Fractionated Photosynthesis-Irradiance parameters from Deep Chlorohyll 

1035 maximum samples on AMT22 (A.) PmB, (B.) alphaB, (C.) Ek and AMT23 (D.) PmB, (E.) 
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1036 alphaB, (F.) Ek.  Dark grey bar is micro- (>10m); light grey bar is nano- (2-10m); black 

1037 Bar is pico-phytoplankton (0.2-2m).

1038

1039 Figure 7. In situ (filled shapes) and satellite estimated (open shapes) of micro-phytoplankton 

1040 primary production (mg C m-2 d-1) on (A.) AMT18, (B.) AMT20, (C.) AMT21, (D.) AMT22, 

1041 (E.) AMT23.

1042

1043 Figure 8. Satellite Time Series of micro-phytoplankton primary production in (A.) North 

1044 Atlantic Drift - NADR (B.) North Atlantic Gyre Province - NATL, (C.) Canary Current 

1045 Coastal upwelling - CNRY, (D.) Eastern Tropical Atlantic - ETRA, (E.) Western Tropical 

1046 Atlantic – WTRA, (F.) South Atlantic Subtropical Gyre - SATL, (G.) Benguela Current 

1047 Coastal - BENG, (H.) South Subtropical Convergence - SSTC. Dotted line is Total PP; solid 

1048 line is Micro-PP. 

1049

1050 Figure 9. Anomaly in micro-phytoplankton primary production in (A.) NADR (B.) NATL, 

1051 (C.) CNRY, (D.) ETRA, (E.) WTRA, (F.) SATL, (G.) BENG, (H.) SSTC. Solid line is 

1052 regression through the anomalies. Dotted line in (G.) and (H.) is 0 to illustrate trend in 

1053 regression.

1054

1055 Figure 10. Linear regression between monthly micro-phytoplankton primary production and 

1056 export production (g C m-2) calculated from Henson et al. (2011) for the (A.) NADR (filled 

1057 circles; solid line) & CNRY (open circles; dashed line) (B.) NATL (filled squares; solid line) 

1058 & SATL (open squares; dashed line), (C.) ETRA (filled triangles; solid line) & WTRA (open 
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1059 triangles; dashed line), (D.) BENG (filled inverted triangles; solid line) & SSTC (open 

1060 inverted triangles; dashed line).

1061

1062 Figure 11. Variation in annual micro-phytoplankton primary production (solid shapes) and 

1063 export production (open shapes) in g C m-2 y-1 calculated from Henson et al. (2011) in the 

1064 (A.) NADR (B.) NATL, (C.) CNRY, (D.) ETRA, (E.) WTRA, (F.) SATL, (G.) BENG, (H.) 

1065 SSTC. 





















Cruise Date Year Filter sizes (m)

AMT01 21 Sept – 24 Oct 1995 0.2

AMT02 22 April – 28 May 1996 0.2, 2, 20

AMT03 22 Sept – 25 Oct 1996 0.2, 2, 20

AMT04 21 April – 27 May 1997 0.2, 2, 20

AMT05 14 Sept – 17 Oct 1997 0.2, 2, 20

AMT06 14 May – 15 June 1998 0.2, 2, 20

AMT07 14 Sept – 25 Oct 1998 0.2

AMT08 25 April – 6 June 1999 0.2

AMT09

AMT10

15 Sept – 13 Oct 

12 April – 7 May

1999

2000

0.2

0.2

AMT11 11 Sept – 13 Oct 2000 0.2

AMT12 12 May – 17 June 2003 0.2, 2

AMT13 10 Sept – 14 Oct 2003 0.2, 2

AMT14 26 April – 2 June 2004 0.2, 2

AMT15 19 Sept – 29 Oct 2004 0.2, 2

AMT16 19 May – 29 June 2005 0.2, 2

AMT18 3 Oct – 10 Nov 2008 0.2, 2, 10

AMT20

AMT21

12 Oct – 25 Nov 

29 Oct – 11 Nov

2010

2011

0.2, 2, 10

0.2, 2, 10

AMT22 10 Oct – 24 Nov 2012 0.2, 2, 10

AMT23 7 Oct – 8 Nov 2013 0.2, 2, 10

Table 1. Dates and filter sizes for determination of size fractionated primary production on 
Atlantic Meridional Transect (AMT) Cruises 1 to 23.



PP 

(mgC m-2 d-1)

AMT1-11 AMT12-22

NADR Micro Nano Pico Micro Nano Pico

Mean 

± SD (n)

 225  

192 (21)

218

181 (21)

182  

79 (21)

52

57 (13)

113 

73 (13)

133

74 (13) 

% total PP 43 42 15 17 38 44

NATL Micro Nano Pico Micro Nano Pico

Mean 

± SD (n)

265 

342 (42)

132

171 (42)

242

224 (42)

37 

27 (48) 

54

29 (48)

111 

85 (48)

% total PP 44 22 34 18 27 55

WTRA Micro Nano Pico Micro Nano Pico

Mean 

± SD (n)

 69

38 (42)

80

41 (42)

278

124 (42)

57 

33 (16) 

84 

47 (16)

212 

115 (16) 

% total PP 16 19 65 16 24 60

SATL Micro Nano Pico Micro Nano Pico

Mean 

± SD (n)

 331  

363 (29)

146

153 (29) 

156 

32 (29)

81 

147 (39)

118 

130 (39)

152 

141 (39)

% total PP 58 25 17 23 34 43

SSTC Micro Nano Pico Micro Nano Pico

Mean 

± SD (n)

 ND ND ND 409

720 (8)

353

237 (8)

309 

185 (8)

% total PP 38 33 28

Table 2. Mean and standard deviation (SD) for depth integrated primary production (PP) and 
percentage of total for pico-, nano- and micro-phytoplankton during AMT1-11 and AMT12-
22. N is the number of data points used to calculate the mean and SD. ND is no data.



Parameter Surface DCM

NADR Micro Nano Pico Micro Nano Pico

Chl a 0.03 ± 0.01 0.076 ± 0.02 0.14 ± 0.037 0.03 ± 0.01 0.12 ± 0.024 0.35 ± 0.19

𝑷𝑩
𝒎 2.81 ± 2.01 1.95 ± 1.31 2.75 ± 2.41 2.83 ± 2.28 3.21 ± 3.03 2.33 ± 1.87

αB 0.005 ±0.004 0.006 ±0.003 0.018 ±0.03 0.024 ±0.018 0.024 ±0.018 0.019 ±0.008

Ek 640 ± 563 389 ± 335 368 ± 465 255 ± 189 125 ± 51 117 ± 61

NATL Micro Nano Pico Micro Nano Pico

Chl a 0.02 ± 0.02 0.024 ± 0.01 0.074 ± 0.05 0.02 ± 0.012 0.048 ± 0.02 0.23 ± 0.11

𝑷𝑩
𝒎 8.82 ± 5.78 4.23 ± 2.29 2.68 ± 1.52 5.94 ± 5.17 3.99 ± 3.51 1.08 ± 1.63

αB

Ek

0.007 ±0.004

1328 ± 1026

0.01 ±0.007

588 ± 648

0.007 ±0.006

587 ± 480

0.02±0.01   

460 ± 478

0.047 ±0.019

261 ± 281

0.016 ±0.015

61 ± 40

WTRA Micro Nano Pico Micro Nano Pico

Chl a 0.01 ± 0.01 0.026 ± 0.03 0.082 ± 0.05 0.026 ± 0.01 0.07 ± 0.045 0.28 ± 0.13

𝑷𝑩
𝒎 5.15 ± 4.08 10.07 ± 5.3 3.82 ± 4.51 5.63 ± 5.12 3.71 ± 2.96 1.75 ± 2.11

αB 0.02 ±0.03 0.024 ±0.03 0.006 ±0.004 0.022 ± 0.03 0.011 ±0.009 0.011 ±0.010

Ek 648 ± 486 780 ± 468 629 ± 462 494 ± 380 483 ± 443 146 ± 161

SATL Micro Nano Pico Micro Nano Pico

Chl a 0.02 ± 0.04 0.06 ± 0.094 0.09 ± 0.133 0.034 ± 0.04 0.10 ± 0.15 0.20 ± 0.12

𝑷𝑩
𝒎 3.20 ± 3.18 2.55 ± 1.31 1.21 ± 1.02 2.18 ± 1.66 2.88 ± 3.49 1.97 ± 3.10

αB

Ek

0.01 ±0.01

306 ± 154

0.007 ±0.002

374 ± 161

0.041 ±0.011

279 ± 210

0.013 ± 0.01

270 ± 356

0.016 ±0.013

260 ± 311

0.012 ±0.010

120 ± 102

SSTC Micro Nano Pico Micro Nano Pico

Chl a 0.03 ± 0.05 0.084 ± 0.11 0.13 ± 0.16 0.046 ± 0.05 0.13 ± 0.17 0.24 ± 0.12

𝑷𝑩
𝒎 5.41 ± 4.89 3.69 ± 1.44 2.13 ± 1.74 3.38 ± 2.08 5.17 ± 4.21 3.21 ± 3.69

αB

Ek

0.009 ±0.01

751 ± 475

0.007 ±0.003

546 ± 238

0.06 ±0.14

535 ± 553

0.012±0.01 7

423 ± 420

0.015 ±0.019

500 ± 328

0.015 ±0.015

204 ± 194

Table 3. Mean and standard deviation for Chl a (mg m-3) and the photo-physiological parameters; the 
maximum photosynthetic rate ( ) (mg C (mg Chl-a)-1 h-1), the light-limited photosynthetic rate (αB) B

mP



(mg C (mg Chl-a) -1 h -1 (µmol photons m -2 s -1) -1) and the light saturation parameter (Ek) (µmol 
photons m -2 s -1) for pico-, nano- and micro-phytoplankton.



Reference Region Pore size (µm) B
mP αB Ek

Tilstone et al. 
(this study)

n=124

Atlantic 
Ocean

Micro 
>10

Nano 
2 - 10
Pico 

0.2 - 2

4.54
(0.08 – 17.13)

4.15
(0.05 – 18.47)

2.29
(0.07 – 17.92)

0.013
(0.002 – 0.085)

0.014
(0.002 – 0.087)

0.018
(0.001 – 0.079)

578
(6 – 3554)

448
(5 – 2173)

332
(2 – 1795)

Uitz et al. 
(2008)
n=902

NATL, 
CNRY, 

equatorial 
Pacific, Med 

Sea

***Micro >10
**Nano 
2 - 10
*Pico 
0.2 - 2

4.26

2.94

3.75

0.032

0.026

0.007

ND

Claustre et al. 
(2005)
n = 334

Atlantic 
Ocean - 
NATL

† Micro 
>20

Nano 
2 - 10
Pico 

0.2 - 2

6.27

2.38

0.13

0.093

0.046

0.014

ND

Platt et al. 
(1983)
n=11

Atlantic 
Ocean - 
NATL

Nano+Micro 
>1

Pico
0.2 - 1

0.49
(0.24 – 0.92)

0.68
(0.25 - 1)

0.038
(0.014 – 0.068)

0.074
(0.025 – 0.1)

14
(7 – 19)

9.5
(6 – 14)

Tilstone et al. 
(1999)
n=54

NW Iberian 
Upwelling

Micro 
>20

Pico+ Nano 
0.2 - 20

2.26
(0.61 – 7.41)

3.09
(0.86 – 6.27)

0.015
(0.005 – 0.029)

0.024
(0.008 – 0.037)

ND

Figueiras et al. 
(2014)
n=94

NW Iberian 
Upwelling

***Micro 
>10

**Nano 
2 - 10
*Pico 
0.2 - 2

3.58

1.55

4.25

0.015

0.021

0.036

ND

Moran & 
Sharek (2015)

n=11

Bay of 
Biscay

Nano+Micro 
>2

Pico
0.2 - 2

3.62
(1.98-5.60)

5.41
(0.88-7.17)

0.024
(0.003 - 0.026)

0.031
(0.002 – 0.052)

179
(98 – 291)

282
(104 – 572)

Li et al. (2011)
n=104

North Pacific 
Subtropical 

Gyre

Nano+Micro 
>2

Pico
0.2 - 2

5.57
(1.3 - 14.2)

2.45
(0.9 – 4.5)

0.04
(0.01 – 0.1)

0.03
(0.01 – 0.1)

130
(25 - 319)

110
(27 - 286)

Toon et al. 
(2000)
n=19

Northern 
Arabian Sea

Micro 
>20

Nano
 2 - 20
Pico 

0.2 - 2

3.5
(1.05 - 5.86)

4.0
(1.79 - 5.75)

4.28
(ND)

0.017
(0.008 – 0.013)

0.017
(0.01 – 0.023)

0.038
(ND)

ND

Segura et al. 
(2013)
n=70

Argentine 
Sea

Micro 
>5

Nano+ Pico 
<5

3.17
(ND)
2.40
(ND)

0.15
(ND)
0.19
(ND)

ND

deMadariaga 
and Joint (1994)

n=11

Celtic Sea Micro
>5

Nano
1 - 5
Pico

0.2 - 1

3.44
(1.75 – 8.26)

4.10
(1.80 – 9.58)

8.49
(3.84 – 17.22)

0.013
(0.007 – 0.033)

0.024
(0.009 – 0.043)

0.219
(0.044 – 0.68)

257
(195 – 390)

184
(103 – 300)

105
(19 - 236)

Barnes et al. 
(2014)

Western 
English 

Micro
>10

4.15
(1.06 - 17.38)

0.015
(0.002-0.049)

332
(84-2186)



n=87 Channel Nano
2 - 10
Pico

0.2 - 2

4.10
(0.44 – 26.10)

8.09
(1.66 – 24.55)

0.019
(0.001 – 0.092)

0.044
(0.004 – 0.223)

259
(44 – 1569)

278
(13 – 1163)

Table 4. Comparison of range and Mean in the size-fractionated photosynthetic parameters; 
 (mg C (mg Chl-a)-1 h-1), αB (mg C (mg Chl-a) -1 h -1 (µmol photons m -2 s -1) -1) and the B

mP
Ek (µmol photons m -2 s -1) for pico-, nano- and micro-phytoplankton, from our data with 
other studies. N is the total number of PE curves per size fraction. ***micro- is derived from 
the weighted phytoplankton pigment concentrations of fucoxanthin + peridinin, **nano- from 
alloxanthin + 19-hex + 19-but, *pico- from zeaxanthin + Chl b + divinyl- Chl b. † size 
fraction values derived from correlations between % phytoplankton biomass and PE 
parameters.  Ek values are in W m-2.



Province Model II Linear regression

(g C m-2)

r2

NADR export P = micro-PP * 0.16 + 0.34 0.83

CNRY export P = micro-PP * 0.11 + 0.51 0.58

NATL export P = micro-PP * 0.05 + 0.24 0.27

SATL export P = micro-PP * 0.08 + 0.15 0.24

ETRA export P = micro-PP * 0.09 + 0.14 0.64

WTRA export P = micro-PP * 0.04 + 0.26 0.45

BENG export P = micro-PP * 0.09 + 0.80 0.19

SSTC export P = micro-PP * 0.37 + 0.04 0.76

Table 5. Linear regression between monthly micro-phytoplankton Primary Production and 
Export Production (g C m-2) estimated from SeaWiFS Ocean Colour data. Export production 
was estimated from the Thorium-234 export production using the algorithm of Henson et al. 
(2011).



Research highlights:

 Spatial and temporal changes in micro-phytoplankton production (micro-PP) were 

assessed.

 Micro-PP was highest in the South Subtropical Convergence (SSTC) constituting 25 

% of the total PP.

 Micro-phytoplankton had the highest maximum photosynthetic rates.

 Size-fractionated photosynthetic parameters were used to calibrate a micro-PP 

satellite model. 

 The model applied to SeaWiFS data showed an increase in micro-PP in the Benguela 

Upwelling and SSTC.

 In the SSTC, 39 % of micro-PP was estimated to be exported out of the photic zone.


