1 Using the Fatigue Severity Scale to inform healthcare decision-making in multiple

2 sclerosis: mapping to three quality-adjusted life-year measures (EQ-5D-3L, SF-6D,

- 3 **MSIS-8D)**
- 4
- 5 Goodwin E PhD¹, Hawton A PhD^{1,2}, Green C PhD^{1,2}
- 6 1 Health Economics Group, Institute of Health Research, University of Exeter, Exeter, UK
- 7 2 South West Collaboration for Leadership in Applied Health Research and Care (CLAHRC),
- 8 University of Exeter Medical School, University of Exeter, Exeter, UK
- 9
- 10 Corresponding author: Annie Hawton, Health Economics Group, South Cloisters, St Luke's
- 11 Campus, University of Exeter, Exeter UK EX1 2LU <u>@HEG_Exeter</u>
- 12 <u>a.hawton@exeter.ac.uk</u>
- 13 +44 1392722284
- 14 <u>e.goodwin@exeter.ac.uk</u>
- 15 <u>c.green@exeter.ac.uk</u>
- 16
- 17 Keywords: cost effectiveness, decision making, multiple sclerosis, outcomes research,
- 18 quality of life, fatigue
- 19
- 20
- 21

22 Abstract

23

Background: Fatigue has a major influence on the quality of life of people with multiple
sclerosis. The Fatigue Severity Scale is a frequently used patient-reported measure of
fatigue impact, but does not generate the health state utility values required to inform costeffectiveness analysis, limiting its applicability within decision-making contexts. The objective
of this study was to use statistical mapping methods to convert Fatigue Severity Scale
scores to health state utility values from three preference-based measures: the EQ-5D-3L,
SF-6D and Multiple Sclerosis Impact Scale-8D.

31

Methods: The relationships between the measures were estimated through regression
analysis using cohort data from 1056 people with multiple sclerosis in South West England.
Estimation errors were assessed and predictive performance of the best models were tested
in a separate sample (n=352).

36

37 Results: For the EQ-5D and the Multiple Sclerosis Impact Scale-8D, the best performing 38 models used a censored least absolute deviation specification, with Fatigue Severity Scale 39 total score, age and gender as predictors. For the SF-6D, the best performing model used 40 an ordinary least squares specification, with Fatigue Severity Scale total score as the only 41 predictor.

42

43 Conclusions: Here we present algorithms to convert Fatigue Severity Scales scores into
44 health state utility values based on three preference-based measures. These values may be
45 used to estimate quality adjusted life-years for use in cost-effectiveness analyses and to
46 consider the health-related quality of life of people with multiple sclerosis, thereby informing
47 health policy decisions.

- 48
- 49

51 Background

52

Over the last two decades, various disease-modifying and symptomatic treatments have 53 been developed for people with MS. Meanwhile, increasing emphasis has been placed on 54 55 achieving "value for money" within healthcare systems (1). Clinical trials of interventions that target particular symptoms frequently use symptom-specific outcome measures in order to 56 maximise sensitivity and responsiveness to change. Fatigue is the most common symptom 57 58 experienced by people with MS, and has a considerable impact on quality of life (2). The Fatigue Severity Scale (FSS) (3) is frequently used in clinical trials of interventions for fatigue 59 in people with MS, including carnitine, amantadine, aspirin, modafinil and cognitive 60 61 behavioural therapy (4) (5) (6) (7). Symptom-specific outcome measures, such as the FSS, 62 provide a standardised means of describing "health states" that may be experienced by 63 patients, but do not provide data in the format required by many decision-making bodies to assess cost-effectiveness (1). 64

65

66 The quality-adjusted life-year (QALY) is recommended for use as an outcome measure for 67 cost-effectiveness analyses by several national decision-making bodies, eg the National 68 Institute for Health and Care Excellence (NICE) (8) (9) (10). QALYs combine quantity and guality of life in a single measure, by adjusting the number of life-years lived according to the 69 70 quality-of-life experienced during those years (1). In order to estimate QALYs, numerical values must be assigned to reflect the quality of life experienced when living in particular 71 72 health states. These values are commonly obtained using preference-based measures (PBMs) of health-related quality of life (11). 73

74

However, many clinical trials do not include a PBM, limiting the ability to conduct economic
evaluations. In such cases, statistical procedures may be used to "map" scores on nonpreference based outcome measures, such as the FSS, to HSUVs derived from PBMs.
"Mapping' involves regression analysis, using a dataset containing responses to both

79 measures from the same sample, to derive an algorithm that can be used to convert data from non-preference-based measures into HSUVs. Over recent years, the use of mapping 80 81 has increased considerably (11). Previous studies have reported on mapping from MS-82 specific outcome measures including the Multiple Sclerosis Impact Scale and the Multiple 83 Sclerosis Walking Scale-12 (12) (13) (14). However, no approach has been reported that 84 uses fatigue measures to map to HSUVs in the context of MS. 85 86 **Methods** 87 88 89 This paper uses statistical techniques to map from the FSS (the "source measure") to 90 HSUVs derived from three preference-based measures: the EQ-5D, SF-6D and MSIS-8D 91 (the "target measures"). The aim is to derive algorithms to convert FSS scores into HSUVs for use in assessing the cost-effectiveness of treatments for fatigue in people with MS. The 92 93 statistical approach presented here is based on good practice methodology, and is 94 consistent with the recommendations regarding mapping methods from NICE in the UK (15) 95 and the international ISPOR Good Practices for Outcomes Research Task Force (16). 96 97 Measures 98 The Fatigue Severity Scale (FSS) has acceptable reliability, internal consistency, sensitivity 99 100 and responsiveness for people with MS (3) (17) (18) (19) (20) (21). It comprises nine statements, describing the severity and impact of fatigue, with a scale of possible responses 101 ranging from 1 ("strongly disagree") to 7 ("strongly agree"). FSS total scores are usually 102 103 reported as the mean score over the nine items; a higher score indicates greater severity. 104 The EuroQoL EQ-5D-3L has five dimensions (mobility, self-care, usual activities, 105 106 pain/discomfort, anxiety/depression) with three response levels per dimension - no

problems, some problems or extreme problems/confined to bed. HSUVs were derived from
the preferences of a representative sample of the UK general population, using a variant of
the time trade-off (TTO) technique, and range from -0.594 to 1.000 (22). The EQ-5D is
widely used in economic evaluation, particularly in the UK, where NICE recommend it as the
preferred measure of health outcomes for cost effectiveness analyses (8).

112

The Short-Form 6D (SF-6D) enables HSUVs to be estimated from a popular non-preference 113 114 based measure of HRQoL, the Short-Form 36 (SF-36). It consists of six dimensions 115 (physical functioning, role limitations, social functioning, pain, mental health, vitality) with 116 between four and six response levels. Preferences were elicited from a representative sample of the UK general population using the standard gamble technique and values range 117 from 0.301 to 1.000 (23). The SWIMS dataset includes responses to Version 1 of the SF-36 118 119 from earlier waves of data collection, before this was replaced by SF-36 Version 2, which was developed to address concerns about the structure and wording of some items (24). 120 Given that the component items of the SF-6D classification system differ between the two 121 versions, we only included responses to Version 2 of the SF-36 in this analysis, in order to 122 123 ensure consistency.

124

The Multiple Sclerosis Impact Scale 8D (MSIS-8D) enables HSUVs to be estimated from 125 responses to an MS-specific outcome measure, the Multiple Sclerosis Impact Scale (MSIS-126 29). It includes eight dimensions (physical function; social and leisure activities, mobility, 127 daily activities, mental fatigue, emotional well-being, cognition, depression) with four 128 response levels (25). HSUVs were derived from a TTO survey with a sample of the UK 129 general population. Values range from 0.079 to 0.882. It was not assumed that the best 130 health state described by the MSIS-8D classification system (ie "no problems" on all 131 dimensions) was equivalent to perfect health, therefore the value of this health state was not 132 constrained to 1 (26). The MSIS-8D was derived from Version 2 of the MSIS-29 (21), which 133 134 has four response levels per item, rather than Version 1 of the MSIS-29, which has five

response levels (27). Therefore, although earlier waves of SWIMS data collection used
Version 1 of the MSIS-29, only responses to Version 2 were included in this analysis.

137

138

139 Dataset

140

The South West Impact of Multiple Sclerosis (SWIMS) project is a longitudinal cohort study of people with MS aged 18 or over, living in Devon and Cornwall. Respondents complete sixmonthly questionnaires, including several patient-reported outcome measures alongside clinical and demographic characteristics. The study was approved in the UK by the Cornwall and Plymouth and South Devon Research Ethics Committees, and written informed consent is obtained from all participants.

147

This analysis used SWIMS data received between August 2004 and October 2012. Only 148 data collected at baseline were included, as this is the only point at which the FSS, EQ-5D, 149 150 SF-36 and MSIS-29 are completed simultaneously. A random sample of 75% of the baseline 151 data were used as the estimation dataset (n=1056), with the remaining 25% constituting the validation dataset (n=352) (28) (11). As Table 1 shows, there were no significant differences 152 (p<0.05) between the datasets in terms of mean FSS total scores, mean HSUVs, or 153 recorded demographic or clinical characteristics. The mapping algorithms were derived 154 using data from respondents who provided answers to all questions required to produce both 155 a FSS total score and a HSUV from the target PBM: 1023 respondents for the EQ-5D, 607 156 for the SF-6D and 650 for the MSIS-8D (response numbers are lower for the SF-6D and the 157 MSIS-8D as only version 2 of these questionnaires were included). All statistical analysis 158 159 was undertaken in Stata 14.

160

161

162 Preliminary assessment of measures

163

Two key conditions must be met for mapping: there should be conceptual overlap between 164 the source and target measures, and the target measure should demonstrate discriminative 165 166 validity with respect to the severity of the condition captured by the source measure (11) 167 (29). To assess conceptual overlap, the FSS items and the dimensions of the PBMs were 168 allocated to a multi-dimensional conceptual framework, which was developed for this study in order to provide a structure for comparing the content of the measures. The measurement 169 170 concept underpinning the three PBMs is health-related quality of life (HRQL) (22) (23) (25). 171 Therefore, the conceptual framework was structured around the commonly agreed key 172 dimensions of HRQL, which comprise physical and mental domains alongside a third domain relating to social and role function and participation (30) (31) (32). The framework was 173 constructed based on a systematic literature review of qualitative research into the impact of 174 175 fatigue on people with MS (details of this review are included as Supplementary Material A). Pearson correlation coefficients were assessed between the total FSS score and HSUVs 176 from each of the PBMs, while Spearman correlation coefficients were assessed between 177 FSS total scores and individual dimension scores for each PBM, and between HSUVs and 178 179 individual FSS item scores. Assuming that these instruments measure distinct but related 180 concepts, we expected to find relationships of moderate strength, ie correlation coefficients between 0.3 and 0.6 (33). To assess the discriminative validity of the PBMs, respondents 181 were categorised into fatigue severity groups: "mild/ no fatigue" (FSS total \leq 35), "moderate 182 fatigue" ($36 \le FSS$ total ≤ 52) and "severe fatigue" (FSS total ≥ 53). The definition of "mild/ 183 no fatigue" was based on the published cut-off point for the FSS (17). The ability of the 184 PBMs to differentiate between the three groups was investigated using ANOVA and 185 standardised effect sizes. Effect sizes can be assessed as small (0.20-0.49), moderate 186 (0.50-0.79) or large (0.80 or over) (34). 187

188

189

191

192 Exploration of model specifications

193

194	The relationships between the source and target measures were examined using statistical							
195	conventions reported in the mapping literature (29) (35). The distribution of scores on each							
196	of the measures was explored by the production of histograms and, the relationship between							
197	each of the PBMS and the FSS total score was investigated by production of scatterplots.							
198	Five regression models were estimated for each PBM. HSUVs were regressed on the:							
199	• Total FSS score for the FSS (Model A);							
200	• Total FSS score for the FSS and total FSS score squared (Model B);							
201	• Total FSS score, age and gender (Model C);							
202	• FSS item scores (Model D);							
203	• FSS item scores, age and gender (Model E).							
204								
205	The majority of mapping studies estimate algorithms using ordinary least squares (OLS)							
206	models (35). However, OLS models can predict values outside the possible range for a							
207	PBM, and can lack predictive accuracy for extreme HSUVs. To address this, Tobit models							
208	were also considered, specifying an upper limit of 1 (29). OLS and Tobit models rely on an							
209	assumption of no heteroscedasticity. Where this assumption was violated according to							
210	White's test for heteroscedasticity, the 'vce(robust)' option was used in conjunction with the							
211	'regress' command for the OLS analyses, and Censored Least Adjusted Deviation (CLAD)							
212	estimation methods (36) were used instead of Tobit models, employing the 'clad' command							
213	with a specified upper limit of 1.							
214								

Predictive ability was assessed using the following estimation errors: mean absolute error
(MAE), root mean squared error (RMSE) and the proportions of estimates that fell within
0.05, 0.10 and 0.25 of the observed HSUV. MAE was selected as the primary criterion for
selection of the preferred models (11). However, if coefficients had unexpected signs these

219 models were not selected. In instances where model MAEs were the same, the model with 220 the best profile of estimates falling within 0.05, 0.10 and 0.25 of the observed HSUV was selected. 221 222 Two researchers decided independently which models to would take forward for validation. 223 224 Where discrepancies arose, these were resolved through discussion until consensus was 225 reached. Demographic variables may not be included in the datasets from which HSUVs are 226 to be estimated. Therefore, where the best performing models included demographic 227 variables, the best performing model without demographic variables was also selected. 228 229 230 Validation and model selection 231 Estimation errors were assessed according to the severity of the health state. The selected 232 models were applied to the validation dataset and their performance was assessed using the 233 234 criteria outlined above. 235 236 Results 237 238 Preliminary assessment of measures 239 The conceptual framework that was developed to assess conceptual overlap between the 240 measures is illustrated in Figure 1. Most of the themes that had been identified in the original 241 qualitative research studies fitted into the three domains of HRQoL that were defined a priori. 242 243 There were two notable exceptions. Several of the themes described the experience of fatigue itself, rather than its effect on HRQoL. This experience was clearly of great 244 245 importance to the people with MS who contributed to the original research, and underpinned 246 the ways in which fatigue impacts upon HRQoL. Therefore, an additional domain was added: "Descriptions of fatigue". In terms of the links between themes, a clear relationship emerged
between "functioning and participation" and "psychological well-being". People with MS
specifically identified negative effects on their psychological well-being that were caused by
the impact of their fatigue on their functioning and participation. These stood alongside, but
distinct from, the direct impact of fatigue on psychological well-being. Therefore, this became
a domain in its own right.

253

In terms of conceptual overlap, the FSS and all PBMs cover the three primary domains of 254 255 the conceptual framework (Physical, Mental and Participation Effects) (Table 2). Coverage of Participation Effects is strong across all four measures. The FSS, SF-6D and MSIS-8D 256 257 capture a wide range of Physical Effects, whereas the EQ-5D includes only specific dimensions for pain/discomfort and mobility. In terms of Mental Effects, the FSS includes 258 259 one item relating to motivation, while the PBMs describe other specific symptoms eg depression or anxiety. Only the MSIS-8D includes cognitive effects. The MSIS-8D and SF-260 261 6D include dimensions relating specifically to fatigue or vitality.

262

263 Significant (p<0.0001) moderate correlations were evident between the FSS total score and HSUVs derived from the EQ-5D (r = -0.455) and the MSIS-8D (-0.590). There was a large 264 significant correlation (p<0.0001) between the FSS total score and HSUVs derived from the 265 SF-6D (-0.647). The FSS total score was significantly correlated with all individual 266 dimensions of the PBMs, and HSUVs derived from each of the PBMs were significantly 267 correlated with all individual items of the FSS (p<0.0001). Most correlations were moderate, 268 as anticipated, and all had the expected negative sign, ie higher FSS scores are related to 269 lower HSUVs (Table 3). 270

271

272 28.4% of respondents with a valid FSS total score were in the "mild/ no fatigue" category,
273 36.6% were in the "moderate fatigue" category and 35.0% were in the "severe fatigue"
274 category. All PBMs discriminated significantly between fatigue severity groups (p<0.0001).

275	The SF-6D performed particularly well, with large standardised effect sizes (≥0.80). Overall,
276	standardised effect sizes were higher for the MSIS-8D than for the EQ-5D (Table 4).
277	
278	As a result of the preliminary assessments, it was judged that conceptual overlap and
279	discriminative validity were sufficient to proceed with the estimation of mapping models.
280	Overall, the SF-6D and MSIS-8D provide a better fit with the FSS.
281	
282	
283	Results of mapping analysis
284	
285	Exploration of model specifications
286	In order to allow for heteroscedasticity, skewness and kurtosis identified in the data, we fitted
287	robust OLS models and used a CLAD rather than a Tobit specification. (The distribution of
288	scores on each of the measures, and the relationships between scores on the PBMs and the
289	FSS total score is shown in the Supplementary Material B and C). Thirty models were
290	considered, with Models A to E estimated for each PBM, using both OLS and CLAD
291	specifications.
292	
293	There was little difference between the predictive ability of the models based on FSS total
294	scores and individual FSS items. In all models, item FSS-08 had a significant coefficient with
295	an unexpected sign, and a majority of the FSS items (ranging from five to seven of the nine
296	items) were not significant predictors of HSUVs. Furthermore, data on individual FSS items
297	may not be available in all potential applications of the mapping algorithms. Therefore
298	selection was restricted to algorithms based on the FSS total score.
299	
300	EQ-5D: CLAD C had the lowest MAE and the highest proportion of individuals with small
301	prediction errors. We also selected CLAD A, as the model which did not include

302 demographic variables with the lowest MAE.

SF-6D: OLS B and CLAD B had coefficients with unexpected signs and were, therefore, not selected. We selected CLAD C as it had the next lowest MAE, and OLS A and CLAD A, as they did not include demographic variables. MSIS-8D: CLAD B and OLS B had the lowest MAEs, however these had unexpected signs for FSS total, and so were not selected. The model with the next lowest MAE and highest proportion of individuals with small predictions errors was CLAD C. As this model included demographic variables, we also selected the model with the next lowest MAE (0.117), CLAD Α. Details of the selected models are presented in Table 5. All model results are provided in Supplementary Material D. Validation and model selection The validation dataset was used to assess estimation errors for the selected models (Table 6). Table 7 shows MAEs for 'poor' and 'good' health states by model. The models predicting HSUVs for the EQ-5D and MSIS-8D had larger MAEs for poorer health states, indicating that these models performed less well at estimating EQ-5D scores for those in poorer health states. The opposite was true for the SF-6D models, although the difference in MAEs here was less marked. (Please see Supplementary Materials E and F). Discussion

330 Here we describe and demonstrate a method for converting responses to the FSS, a frequently-used measure of fatigue severity, into HSUVs, which can be used to estimate 331 QALYs for use in cost-effectiveness analyses, and hence to inform decision-making 332 regarding the availability of treatments for MS-related fatigue. According to the Oxford Health 333 334 Economics Research Centre's Mapping Database, last updated in April 2019 (37), no 335 previous published studies have attempted mapping from the FSS. In addition, we have found no previous studies which have investigated correlations between the FSS and the 336 337 SF-6D or the FSS and the MSIS-8D, and just two which have explored the relationship 338 between the FSS and the EQ-5D (38) (39). Rosa et al. (39) correlated FSS total scores with participants' scores on the EQ-5D visual analogue scale, rather than with the EQ-5D HSUVs 339 340 that are relevant for mapping, and Tremmas et al. (38) found no statistically significant correlation between the FSS and EQ-5D scores of people with lung cancer. 341

342

The ability of the models selected in the current study to predict SF-6D and MSIS-8D values is in keeping with results reported in other mapping studies (35). There are currently no guidelines regarding acceptable limits for estimation errors (13), but MAEs ranging from 0.0011 to 0.19 have been previously described (35). In the current study, the SF-6D MAEs of 0.078 and 0.077 and the MSIS-8D MAEs of 0.117 and 0.116, fall well within this range and, specifically in the context of MS, they are in keeping with the MAE of 0.058 reported by Hawton et al. (12) when the MSIS-29 was mapped to the SF-6D.

350

Results for the EQ-5D algorithms were less convincing. The prediction errors of 0.175 and 0.173 are towards the higher end of MAEs reported in previous mapping studies (35), and are also high in the context of MS mapping studies. Versteegh et al. (13) mapped from the version 1 of the MSIS-29 to the EQ-5D, with a resulting MAEs of 0.13 and 0.16, and Hawton and colleagues (12) mapped from version 2 of the same measures to the EQ-5D with a MAE of 0.147. In addition, when testing the external validity of the Versteegh et al. (13) algorithm, Ernstsson et al. (40) reported a MAE of 0.12.

358

Information is inevitably lost in the process of mapping, as the resulting algorithm will only 359 reflect the areas of content that overlap between the starting and target measures. This 360 361 information loss is accentuated when a domain-specific, condition-specific measure, such as 362 the FSS, is mapped to a generic, multi-dimensional measure, such as the EQ-5D. Therefore, 363 greater predictions errors might be anticipated when mapping from such a uni-dimensional scale as the FSS than when mapping from a multi-dimensional scale such as the MSIS-29 364 365 (41). However, this does not appear to hold in the MS mapping literature to date, with Hawton et al. (14) reporting a MAE of 0.148 when they mapped from the MS Walking Scale-366 367 12 (a mobility-specific, MS-specific measure) to the EQ-5D, and Sidovar et al. (42) described 368 an error statistic of 0.109 when mapping to/from these same measures. 369 370 In the current study, the EQ-5D algorithms were particularly problematic for HSUVs below 0.65. They did not predict any values below 0.54 (assuming an age of 50 years and female 371

372 gender for CLAD Model C), which is of particular concern for a measure with a minimum373 value of -0.594.

374

On the basis of the statistical assessments reported here, the qualitative assessments of conceptual validity, and setting our findings in the context of other mapping studies in MS

and mapping studies more generally, we suggest the use of the following algorithms for

378 mapping from the FSS to HSUVs.

379 SF-6D estimate = 0.897 - 0.006*FSS total score

380 MSIS-8D estimate = 1.084 - 0.008*FSS total score - 0.001*age - 0.0024*gender [0 male, 1

381 female] or age and gender are not available:

382 MSIS-8D estimate = 0.985 – 0.007*FSS total score

Based on these same assessments, we suggest the EQ-5D algorithms are far less likely to

384 produce accurate or valid estimates of EQ-5D scores.

386 There are a number of potential limitations of this work. Firstly, the SWIMS data were collected prior to the development and use of the EQ-5D-5L and the mapping algorithms 387 388 were based on the 'older' EQ-5D-3L. It may have been expected that the EQ-5D-5L would 389 supersede the EQ-5D-3L as it was developed with five, rather than the original three, levels 390 in an attempt to improve its responsiveness. However, the English HSUV set for the EQ-5D-391 5L is not in common use, and if using the EQ-5D-5L descriptive system, the current 'position 392 statement' of NICE is to use a cross-walk algorithm to provide HSUVs from the EQ-5D-3L 393 value set. Secondly, the SF-6D value set is based on the use of standard gamble to elicit 394 preferences for health states. This may result in higher HSUVs (than the EQ-5D), as 395 respondents tend to be risk adverse. Thirdly, we did not explore the performance of some of 396 the 'newer' mapping model specifications, such as limited dependent variable mixture models or beta-based regression, which may have better accounted for the bi-modal nature 397 398 of the EQ-5D data. There is some empirical evidence in support of these models, but the ISPOR Task Force report (16) does not advocate any specific regression approach for 399 400 mapping, recognising that the performance of different methods will vary dependent on a 401 number of factors including the nature of the starting/target measures, the disease, and the 402 patient population. The report suggests it is wise to use a model type for which there is 403 existing evidence of good performance. In the context of MS, mapping algorithms which have used the same regression approaches that we have used here have been reported 404 with MAEs of 0.058 (12), 0.13 and 0.16 (13), 0.147 (12), 0.12 (40), 0.148 (14) and 0.109 405 (42). Brazier et al.'s (35) systematic review of mapping studies reported MAEs of 0.0011 to 406 0.19. Therefore, the regression approaches in the current paper have a track record of use 407 and acceptability in the context of MS. The MAEs reported here for the SF-6D and MSIS-8D 408 are in keeping with those reported in these other mapping studies. The poor performance of 409 the EQ-5D algorithms is likely to be a function of the limited conceptual overlap between the 410 EQ-5D and the FSS. The limited shared conceptual content of these measures will not be 411 412 altered by using a different form of regression analysis. Thirdly, algorithms to predict HSUVs 413 from individual FSS items, rather than the total score, were not generated by this study. This

was, in part, due to an anomaly affecting item FSS-08 (Fatigue is among the most disabling
of my symptoms). While the item correlated negatively (as expected) with HSUVs when
considered in isolation, it had a positive coefficient when included as an independent
variable in regression analysis. Further research would be required to understand the
mechanisms behind this; in the meantime, it is not possible to determine whether this item is
suitable for inclusion in a mapping algorithm.

420

421 A particular strength of this study is the nature of the SWIMS dataset. It has provided 422 comprehensive data on which to base the estimation and validation of these mapping 423 algorithms. Importantly, the cohort is comparable with other UK-based samples of people 424 with MS in terms of age, gender, relapse rates and duration of illness (43) (44) (45) (46) (8) (47), meaning the algorithms should apply generally to people with MS, rather than just to 425 426 specific sub-groups. In addition, the work undertaken to explore the content overlap between the measures provided a form of 'triangulation' in assessing the appropriateness of the 427 428 mapping algorithms. Drawing on good quality qualitative research findings regarding the 429 impacts of fatigue on HRQoL and developing a conceptual framework, provided unique 430 insights into why the measures did and did not map well.

431

It is acknowledged that mapping methods are a second-best option to directly collected 432 HSUVs for estimating QALYs (29) (48) (41). Use of mapping increases the uncertainty and 433 error around estimates of HSUVs (29), and is particularly problematic when there is little 434 content overlap or relationship between the measures being mapped to and from (41). 435 However, when PBM data are not collected directly in a trial, empirically-evidenced mapping 436 algorithms may be used. With the exception of the EQ-5D, the algorithms reported here can 437 be used to support improvements in decision-making where primary PBM data are 438 unavailable. 439

440

441 Conclusions

443	We present statistical algorithms that allow data from the FSS, a fatigue-specific patient-
444	reported outcome measure, to be used in the estimation of QALYs, which are a suitable and
445	policy-relevant measure for use in cost-effectiveness analyses. This will enable the results of
446	studies using the FSS to inform decision-making in a health technology assessment context.
447	
448	Declarations
449	
450	Ethics approval and consent to participate
451	The SWIMS study was approved in the UK by the Cornwall and Plymouth and South Devon
452	Research Ethics Committees, and written informed consent is obtained from all participants.
453	
454	Consent for publication
455	Not applicable.
456	
457	Availability of data and materials
458	The data that support the findings of this study are available from SWIMS Data-Sharing
459	
	Committee.
460	Committee.
460 461	Competing interests
460 461 462	Committee. <i>Competing interests</i> The authors declare that they have no competing interests.
460 461 462 463	Committee. <i>Competing interests</i> The authors declare that they have no competing interests.
460 461 462 463 464	Committee. <i>Competing interests</i> The authors declare that they have no competing interests. <i>Funding</i>
460 461 462 463 464 465	Committee. Competing interests The authors declare that they have no competing interests. Funding This work was supported by the Multiple Sclerosis Society of Great Britain and Northern
460 461 462 463 464 465 466	Committee. Competing interests The authors declare that they have no competing interests. Funding This work was supported by the Multiple Sclerosis Society of Great Britain and Northern Ireland and the UK NIHR Collaboration for Leadership in Applied Health Research and Care
460 461 462 463 464 465 466 467	Committee. <i>Competing interests</i> The authors declare that they have no competing interests. <i>Funding</i> This work was supported by the Multiple Sclerosis Society of Great Britain and Northern Ireland and the UK NIHR Collaboration for Leadership in Applied Health Research and Care of the South West Peninsula (PenCLAHRC). The funding agreements ensured the authors'

469 The views expressed in this publication are those of the authors and not necessarily those of the Multiple Sclerosis Society, the UK NIHR or the Department of Health. 470 471 The Multiple Sclerosis Society of Great Britain and Northern Ireland and the Peninsula 472 473 Medical School Foundation provided support for the SWIMS Project. 474 Authors' contributions 475 All authors conceived the idea for the research, EG conducted the data analysis with support 476 and supervision from AH, EG drafted the article, and CG and AH provided suggestions/edits 477 etc, all authors approved the final version of the paper. 478 479 480 Acknowledgements 481 The authors are grateful to the SWIMS Project participants for allowing access to data they provided for the SWIMS Project. The authors acknowledge the SWIMS Project Team for 482 483 delivering these data. This publication is the work of the authors, who will serve as 484 guarantors for the contents of this publication. This publication does not necessarily reflect 485 the views of the SWIMS Project Team nor the SWIMS Data-Sharing Committee. 486 List of abbreviations: 487 CLAD Censored least absolute deviation 488 EQ-5D EuroQoL EQ-5D-3L 489 490 FSS Fatigue Severity Scale HSUV health state utility value 491 MS multiple Sclerosis 492 MSIS-8D Multiple Sclerosis Impact Scale-8D 493 NICE National Institute for Health and Care Excellence 494 OLS 495 Ordinary least squares 496 PBM preference-based measure

497	QALY	quality-adjusted life-year
498	SF-6D	Short-Form 6D
499	SWIMS	South West Impact of MS study
500	TTO	Time trade-off
501		
502		

503 References

5041.Brazier J, Ratcliffe J, Salomon J, Tsuchiya A. Measuring and valuing health benefits for505economic evaluation. Oxford: Oxford University Press; 2007.

Zajicek J, Freeman J, Porter B. Multiple Sclerosis Care: A Practical Manual. Oxford: Oxford
 University Press; 2007.

Flachenecker P, Kümpfel T, Kallmann B, Gottschalk M, Grauer O, Rieckmann P, et al. Fatigue
 in multiple sclerosis: a comparison of different rating scales and correlation to clinical parameters.
 Multiple Sclerosis. 2002;8:523-6.

Tomassini V, Pozzilli C, Onesti E, Pasqualetti P, Marinelli F, Pisani A, et al. Comparison of the
 effects of acetyl l-carnitine and amantadine for the treatment of fatigue in multiple sclerosis: results
 of a pilot, randomised, double-blind, crossover trial. Journal of the Neurological Sciences.
 2004;218:103-8.

5. Shaygannejad V, Janghorbani M, Ashtari F, Zakeri H. Comparison of the effect of aspirin and amantadine for the treatment of fatigue in multiple sclerosis: a randomized, blinded, crossover 517 study. Neurological Research. 2012;34:854-8.

518 6. Rammohan K, Rosenberg J, Lynn D, Blumenfeld A, Pollak C, Nagaraja H. Efficacy and safety of
519 modafinil (Provigil[®]) for the treatment of fatigue in multiple sclerosis: a two centre phase 2 study.
520 Journal of Neurology, Neurosurgery and Psychiatry. 2002;72:179–83.

521 7. van Kessel K, Moss-Morris R, Willoughby E, Chalder T, Johnson M, Robinson E. A Randomized
522 Controlled Trial of Cognitive Behavior Therapy for Multiple Sclerosis Fatigue. Psychosomatic
523 Medicine. 2008;70:205-13.

Jones K, Ford D, Jones P, John A, Middleton R, Lockhart-Jones H, et al. How people with
 multiple sclerosis rate their quality of life: an EQ-5D survey via the UK MS Register. PLoS ONE.
 2013;8(6):e65640.

527 9. Guidelines for the economic evaluation of health technologies 3rd edition. Ottawa: Canadian528 Agency for Drugs and Technologies in Health (CADTH); 2006.

52910.Guidelines for preparing submissions to the Pharmaceutical Benefits Advisory Committee530(Version 4.3). Barton, Australia: Pharmaceutical Benefits Advisory Committee, Australian

531 Government, Department of Health and Ageing; 2008.

532 11. Petrou S, Rivero-Arias O, Dakin H, Longworth L, Oppe M, Froud R, et al. The MAPS Reporting
533 Statement for Studies Mapping onto Generic Preference-Based Outcome Measures: Explanation and
534 Elaboration. Pharmacoeconomics. 2015;33:993–1011.

Hawton A, Green C, Telford C, Zajicek J, Wright D. Using the Multiple Sclerosis Impact Scale
to Estimate Health State Utility Values: Mapping from the MSIS-29, Version 2, to the EQ-5D and the
SF-6D. Value in Health. 2012;15:1084-91.

538 13. Versteegh M, Rowen D, Luime J, Boggild M, Groot CU-d, Stolk E. Mapping QLQ-C30, HAQ,
539 and MSIS-29 on EQ-5D. Medical Decision Making. 2012;32:554–68.

Hawton A, Green C, Telford C, Wright D, Zajicek J. The use of multiple sclerosis conditionspecific measures to inform health policy decision-making: mapping from the MSWS-12 to the EQ5D. Multiple Sclerosis. 2012;18:853–61.

543 15. Guide to the methods of technology appraisal 2013. National Institute for Health and Care544 Excellence; 2013.

545 16. Wailoo A, Hernandez-Alava M, al AMe. Mapping to Estimate Health-State Utility from Non–
546 Preference-Based Outcome Measures: An ISPOR Good Practices for Outcomes Research Task Force
547 Report. Value in Health. 2017;20(1):18-27.

548 17. Krupp L, LaRocca N, Muir-Nash J, Steinberg A. The fatigue severity scale. Application to
549 patients with multiple sclerosis and systemic lupus erythematosus. Archives of Neurology.
550 1989;46:1121-23.

Learmonth Y, Dlugonski D, Pilutti L, Sandroff B, Klaren R, Motl R. Psychometric properties of

the Fatigue Severity Scale and the Modified Fatigue Impact Scale. Journal of the Neurological

553 Sciences. 2013;331:102–7.

554 19. Valko P, Bassetti C, Bloch K, Held U, Baumann C. Validation of the Fatigue Severity Scale in a 555 Swiss Cohort. Sleep. 2008;31(11):1601-7.

Armutlu K, Korkmaz N, Keser I, Sumbuloglu VA, DI, Guney Z, Karabudak R. The validity and
reliability of the Fatigue Severity Scale in Turkish multiple sclerosis patients. Int J Rehabil Res.
2007;30:81-5.

Hjollund N, Andersen J, Bech P. Assessment of fatigue in chronic disease: a bibliographic
 study of fatigue measurement scales. Health Qual Life Outcomes. 2007;5(12).

561 22. Dolan P. Modeling Valuations for EuroQol Health States. Medical Care. 1997;35:1095-108.

56223.Brazier J, Roberts J, Deverill M. The estimation of a preference-based measure of health563from the SF-36. Journal of Health Economics. 2002;21:271-92.

Jenkinson C, Stewart-Brown S, Petersen S, Paice C. Assessment of the SF-36 version 2 in the
United Kingdom. J Epidemiol Community Health. 1999;53:46–50.

566 25. Goodwin E, Green C. A quality-adjusted life-year measure for multiple sclerosis: developing a
 567 patient-reported health state classification system for a multiple sclerosis-specific preference-based
 568 measure. Value in Health. 2015;18:1016-24.

569 26. Goodwin E, Green C, Spencer A. Estimating a preference-based index for an eight
570 dimensional health state classification system derived from the Multiple Sclerosis Impact Scale
571 (MSIS-29). Value in Health. 2015;18:1025-36.

572 27. Hobart J, Cano S. Improving the evaluation of therapeutic interventions in multiple sclerosis:
573 the role of new psychometric methods. Health Technology Assessment. 2009;13(12).

574 28. Dakin H, Petrou S, Haggard M, Benge S, Williamson I. Mapping analyses to estimate health
575 utilities based on responses to the OM8-30 otitis media questionnaire. Quality of Life Research.
576 2010;19:65–80.

577 29. Longworth L, Rowen D. Technical Support Document 10: The use of mapping methods to
578 estimate health state utility values. National Institute for Health and Care Excellence Decision
579 Support Unit; 2011.

30. Riazi A. Patient-reported Outcome Measures in Multiple Sclerosis. The International MS
Journal. 2006;13:92–9.

58231.Ware J. Conceptualization and measurement of health-related quality of life: comments on583an evolving field. Archives of Physical Medicine and Rehabilitation. 2003;84(Suppl 2):S43-S51.

584 32. European Medicines Agency. Reflection paper on the regulatory guidance for the use of

health-related quality of life (HRQL) measures in the evaluation of medicinal products.
 EMEA/CHMP/EWP/139391/2004. London: European Medicines Agency; 2005.

587 33. Nunnally J, Bernstein I. Psychometric Theory. New York: McGraw-Hill; 1994.

588 34. Cohen J. Statistical Power Analysis for the Behavioural Sciences. Hillsdale NJ: Lawrence 589 Erlbaum Associates; 1988.

590 35. Brazier J, Yang Y, suchiya T, Rowen D. A review of studies mapping (or cross walking) non-

preference based measures of health to generic preference-based measures. European Journal of
 Health Economics. 2010;11:215–25.

59336.Powell J. Least absolute deviations estimation for the censored regression model. Journal of594Econometrics. 1984;25:303–25.

59537.HERC database of mapping studies Version 7.0. http://www.herc.ox.ac.uk/downloads/herc-596database-of-mapping-studies24th April 2019 [

597 38. Tremmas I, Petsatodis G, Potoupnis M, Laskou S, Giannakidis D, Mantalovas S, et al.

598 Monitoring changes in quality of life in patients with lung cancer under treatment with

chemotherapy and co administration of zoledronic acid by using specialized questionnaires. Journalof Cancer. 2018;9(10):1731-6.

39. Rosa K, Fu M, Gilles L, Cerri K, Peeters M, Bubb J, et al. Validation of the Fatigue Severity
Scale in chronic hepatitis C. Health & Quality of Life Outcomes. 2014;12(90).

- 603 40. Ernstsson O, Tingho P, Alexanderson K, Hillert J, Burstro[¬]m K. The External Validity of
 604 Mapping MSIS-29 on EQ-5D Among Individuals With Multiple Sclerosis in Sweden. MDM Policy &
 605 Practice. 2017;2:1-9.
- 606 41. Round J, Hawton A. Statistical Alchemy: Conceptual Validity and Mapping to Generate
 607 Health State Utility Values. PharmacoEconomics Open. 2017;1(4):233-9.
- 42. Sidovar M, Limone B, Lee S, Coleman C. Mapping the 12-item multiple sclerosis walking scale
 to the EuroQol 5-dimension index measure in North American multiple sclerosis patients. BMJ Open.
 2013;3.
- 611 43. Confavreaux C, Compston A. The natural history of multiple sclerosis. In: Compston A, editor.
 612 McAlpine's Multiple Sclerosis. Philadelphia: Churchill Livingstone Elsevier; 2006.
- 613 44. Ford H, Gerry E, Airey C, Al E. The prevalence of multiple sclerosis in the Leeds Health
- 614 Authority. Journal of Neurology, Neurosurgery and Psychiatry. 1998;64:605-10.
- 45. Forbes R, Wilson S, Swingler R. The prevalence of multiple sclerosis in Tayside, Scotland: do
 latitudinal gradients really exist? Journal of Neurology, Neurosurgery and Psychiatry. 1999;246:103340.
- 46. Fox C, Bensa S, Bray I, Zajicek J. The epidemiology of multiple sclerosis in Devon: a
- 619 comparison of new and old classification criteria. Journal of Neurology, Neurosurgery and Psychiatry.620 2004;75:56-60.
- 47. Robertson N, Deans J, Fraser M, Al E. Multiple sclerosis in the North Cambridgeshire districts
 of East Anglia. Journal of Neurology, Neurosurgery and Psychiatry. 1995;59:71-6.
- 623 48. McCabe C, Edlin R, Meads D, Brown C, Kharroubi S. Constructing indirect utility models:
- 624 some observations on the principles and practice of mapping to obtain health state utilities.
- 625 Pharmacoeconomics. 2013;31(8):635-41.

626

Table 1: Summary of respondent characteristics, comparison of estimation and validation datasets

	All baseline data			Es	dataset	v	alidation	dataset	Difference ¹		
	Mean	SD	Observations	Mean	SD	Observations	Mean	SD	Observations	t statistic	p value
Measure											
FSS	43.73	15.10	1054	43.44	15.16	787	44.60	14.91	267	-1.085	0.278
EQ-5D	0.596	0.295	1346	0.600	0.291	1005	0.584	0.309	341	0.831	0.406
SF-6D	0.646	0.130	632	0.650	0.135	473	0.636	0.113	159	1.141	0.254
MSIS-8D	0.646	0.185	690	0.647	0.190	523	0.641	0.172	167	0.412	0.681
Characteristic											
Age	50.67	11.68	1400	50.74	11.73	1048	50.45	11.54	352	0.402	0.688
Duration (years)	9.62	10.01	1347	9.61	10.00	1009	9.68	10.09	338	-0.113	0.910
EDSS score	4.30	2.31	289	4.32	2.34	218	4.22	2.24	71	0.324	0.746
	Percen	tage	Observations	Percen	tage	Observations	Percei	ntage	Observations	chi ² statistic	p value
Gender											
Female		73.86%	1040		74.62%	788		71.59%	252	1.256	0.262
Male		26.14%	368		25.38%	268		28.41%	100		
MS type											
Relapsing remitting		41.97%	572		42.66%	439		39.82%	133	7.572	0.109
Primary progressive		19.37%	264		18.56%	191		21.86%	73		
Secondary progressive		16.95%	231		17.69%	182		14.67%	49		
Benign		3.3%	45		3.69%	38		2.10%	7		
DK or combination		18.42%	251		17.40%	179		21.56%	72		
Missing			45			27			18		
Recent relapse ²											
Yes		53.55%	732		53.42%	546		53.91%	186	0.025	0.988
No		33.28%	455		33.37%	341		33.04%	114		
Don't know		13.17%	180		13.21%	135		13.04%	45		
Missing			41			34			7		

SD = standard deviation; FSS = Fatigue Severity Scale; EQ-5D = EuroQoL EQ-5D-3L; SF-6D = Short-Form 6D; MSIS-8D = Multiple Sclerosis Impact Scale – Eight Dimensions;

EDSS = Expanded Disability Status Scale; DK = don't know.

¹Difference between estimation and validation datasets

²relapse in the 12 months prior to completing the baseline questionnaire

nb response numbers are lower for the SF-6D and the MSIS-8D as only version 2 of these questionnaires were included

Table 2: Comparison of measures against conceptual framework

Conceptual framework	Fatigue severity scale	EQ-5D	SF-6D	MSIS-8D
Descriptions of fatigue				
General fatigue or vitality	3. Easily fatigued	-	6. Vitality	-
	5. Causes frequent problems			
	8. Among most disabling symptoms			
Physical effects				
General	4. Interferes with physical functioning	-	1. Physical functioning	1. Physically demanding tasks
	6. Prevents sustained physical functioning			
Triggers		-	-	-
Specific physical effects	2. Exercise brings on fatigue	4. Pain/Discomfort	4. Pain	3. Being stuck at home
		1. Mobility		
Mental effects				
General	-	-	-	5. Feeling mentally fatigued
Specific psychological effects	1. Motivation is lower	5. Anxiety/Depression	5. Mental health	6. Irritable, impatient, short-tempered
				8. Feeling depressed
Specific cognitive effects	-	-	-	7. Problems concentrating
Indirect effects	-	-	-	-
Participation effects				
General	7. Interferes with duties & responsibilities		-	3. Being stuck at home
	9. Interferes with work, family, social life			
Effects on specific activities		2. Self-Care	1. Physical functioning	2. Social and leisure activities
		3. Usual Activities	2. Role limitations	4. Work or other daily activities
			3. Social functioning	
			4. Pain	

EQ-5D = EuroQoL EQ-5D-3L; SF-6D = Short-Form 6D; MSIS-8D = Multiple Sclerosis Impact Scale – Eight Dimensions

Explanation for allocation of particular items:

- SF-6D Physical functioning: included under both "Physical effects" and "Functioning/ participation" because level descriptions include "moderate/ vigorous activities" and "bathing and dressing"
- SF-6D Pain: included under both "Physical effects" and "Functioning/ participation" because level descriptions include "pain that interferes with your normal work"
- SF-6D Mental health: included under "Specific psychological effects" because level descriptions refer to feeling "tense or downhearted and low"
- SF-6D Role limitations: included under "Functioning/ participation activities" because level descriptions refer to "work or other regular daily activities".
- MSIS-8D Being stuck at home: included under "Specific physical effects" because the MSIS-8D uses this question as a proxy for mobility, however we have also included it here under "Functioning/ participation"

 Table 3: Correlations between Fatigue Severity Scale and preference-based measures

FSS total score and PBM dimensions	rho	Observations
EQ-5D versus FSS total score		
Mobility	0.423	1035
Self-care	0.385	1048
Usual activities	0.524	1051
Pain/Discomfort	0.361	1047
Anxiety/Depression	0.292	1049
SF-6D versus FSS total score		
Physical functioning	0.547	649
Role limitations	0.424	645
Social functioning	0.530	644
Pain	0.429	642
Mental health	0.324	648
Vitality	0.615	654
MSIS-8D versus FSS total score		
Physically demanding tasks	0.585	656
Social and leisure activities	0.560	652
Mobility (being stuck at nome)	0.489	656
Facing montally fatigued	0.558	055
Feeling inciding langued	0.362	654
Problems concentrating	0.377	654
Feeling depressed	0.450	653
FO-5D versus FSS item	0.320	000
1 My motivation is lower	0.205	1040
2 Exercise brings on my fatigue	-0.285	1040
2 Exercise billings on my ratigue	-0.382	1038
3 i am easily ratigued	-0.464	1040
4 Interferes with physical functioning	-0.471	1033
5 Causes frequent problems for me	-0.498	1039
6 Prevents sustained physical functioning	-0.527	1040
7 interferes with duties and responsibilities	-0.536	1038
8 Among my most disabling symptoms	-0.336	1035
9 Interferes with work, family or social life	-0.482	1039
SF-6D versus FSS item		
1 My motivation is lower	-0.400	614
2 Exercise brings on my fatigue	-0.409	614
3 I am easily fatigued	-0.545	614
4 Interferes with physical functioning	-0.541	612
5 Causes frequent problems for me	-0.585	614
6 Prevents sustained physical functioning	-0 575	61/
7 interferes with duties and responsibilities	_0.575	612
8 Among my most disabling symptoms		013
Q Interferes with work family or social life	-0.455	610
	-0.603	614
1 Mu motivation is lawar		
1 IVIY MOTIVATION IS IOWER	-0.387	659
2 Exercise brings on my fatigue	-0.423	659
3 I am easily fatigued	-0.560	659

Table 4: Discriminative validity

EQ-5D vs FSS groups	Mean	SD	Obs	SES			
Mild/no fatigue	0.775	0.218	297	0.615			
Moderate fatigue	0.641	0.233	369	0.803			
Severe fatigue	0.454	0.3	357				
FFS total	0.614	0.285	1,023				
F-statistic	131.84	Prob <	0.0001				
Bartlett's chi2	40.065	Prob <	0.0001				
SF-6D vs FSS groups							
Mild/no fatigue	0.747	0.124	189	0.871			
Moderate fatigue	0.639	0.099	225	0.879			
Severe fatigue	0.552	0.083	193				
FFS total	0.645	0.129	607				
F-statistic	172.46	Prob <	0.0001				
Bartlett's chi2	30.047	Prob <	0.0001				
MSIS-8D vs FSS groups							
Mild/no fatigue	0.764	0.115	202	0.739			
Moderate fatigue	0.679	0.134	240	1.381			
Severe fatigue	0.494	0.186	208				
FFS total	0.646	0.184	650				
F-statistic	180.71	Prob <	0.0001				
Bartlett chi2	51.434	Prob <	0.0001				
SD = standard deviation; obs = observations; SES = standardised							
effect size; FSS = Fatigue Severity Scale; EQ-5D = EuroQoL EQ-5D-							
3L; SF-6D = Short-Form 6I	D; MSIS-8D) = Multipl	e Sclerosis	Impact			
Scale – Eight Dimensions							

 Table 5: Models mapping from FSS total to PBMs using estimation dataset

		EQ	-5D				SF-	6D				MSI	S-8D	
	CLA	D A	CLA	D C	OL	OLS A CLAD A		CLAD A CLAD C		D C	CLAD A		CLA	D C
	Coeff	SE	Coeff	SE	Coeff	SE	Coeff	SE	Coeff	SE	Coeff	SE	Coeff	SE
FSS total	-0.006*	0.0006	-0.006*	0.0006	-0.006*	0.0003	-0.006*	0.0004	-0.006*	0.0004	-0.007*	0.0007	-0.008*	0.0008
Age			-0.003*	0.0007					-0.0005	0.0005			-0.001	0.0008
Female			0.012	0.0133					-0.012	0.0107			-0.024	0.0233
Constant	0.921	0.0256	1.058	0.0610	0.897	0.0151	0.913	0.0195	0.966	0.0374	0.985	0.0228	1.084	0.0719
Observations	763		755		455		455		452		474		464	
F statistic					357.45									
Prob>F					<0.0001									
R-squared					0.451									
Pseudo R2	0.107		0.126				0.267		0.274		0.196		0.194	
Coefficients	1		3		1		1		3		1		3	
Significant coefficients	1		2		1		1		1		1		1	
Mean absolute error (MAE)	0.175		0.173		0.078		0.078		0.077		0.117		0.116	
Mean squared error (MSE)	0.066		0.067		0.01		0.01		0.01		0.024		0.023	
Root MSE	0.257		0.258		0.1		0.1		0.1		0.154		0.152	
Normalised root MSE	16.12%		16.19%		14.31%		14.31%		14.31%		19.18%		18.93%	
Individuals with MAE < 0.25	78.37%		79.34%		98.68%		98.68%		98.45%		89.05%		90.41%	
Individuals with MAE < 0.1	47.05%		49.14%		68.13%		69.01%		70.13%		51.93%		51.84%	
Individuals with MAE < 0.05	26.47%		29.14%		41.32%		41.98%		42.48%		28.40%		29.39%	
*p<0.001														
Coeff = model coefficient; SE =	Coeff = model coefficient: SE = standard error: CLAD = Censored Least Adjusted Deviation model: EQ-5D = EuroQoL EQ-5D-3L: SF-6D = Short-Form 6D: MSIS-8D = Multiple													

Sclerosis Impact Scale – Eight Dimensions

Table 6: Models mapping from FSS total to PBMs using validation dataset

	EQ-5D			SF-6D						MSIS-8D				
	CLAI	DA	CLAI	D C	OLS A		CLAI	A	CLAD C		CLAD A		CLAI	DC
	Coeff	SE	Coeff	SE	Coeff	SE	Coeff	SE	Coeff	SE	Coeff	SE	Coeff	SE
FSS total	-0.007*	0.0012	-0.008*	0.0011	-0.004*	0.0005	-0.004*	0.0007	-0.004*	0.0008	-0.006*	0.0010	-0.006*	0.0011
Age			-0.004*	0.0011					0.0004	0.0009			-0.001	0.0020
Female			-0.009	0.0260					0.002	0.0187			0.012	0.0395
Constant	1.001	0.0549	1.233	0.0979	0.81	0.0261	0.793	0.0394	0.827	0.0781	0.939	0.0432	0.974	0.1252
Observations	260		258		152		152		152		157		157	
F statistic					54.71								0.185	
Prob>F					< 0.0001									
R-squared					0.316									
Pseudo R2	0.119		0.141				0.169		0.169					
Coefficients	1		3		1		1		3		1		3	
Significant coefficients	1		2		1		1		1		1		1	
Mean absolute error (MAE)	0.183		0.179		0.068		0.068		0.071		0.118		0.114	
Mean squared error (MSE)	0.076		0.071		0.008		0.008		0.009		0.023		0.022	
Root MSE	0.276		0.267		0.09		0.09		0.095		0.151		0.149	
Normalised root MSE	17.31%		16.75%		12.88%		12.88%		13.59%		18.80%		18.56%	
Individuals with MAE < 0.25	78.85%		76.92%		98.68%		98.03%		98.03%		92.36%		91.08%	
Individuals with MAE < 0.1	49.62%		47.31%		76.32%		75.00%		75.66%		50.32%		52.23%	
Individuals with MAE < 0.05	24.62%		25.77%		48.68%		46.05%		46.05%		22.93%		31.21%	

*p<0.001

Coeff = model coefficient; SE = standard error; CLAD = Censored Least Adjusted Deviation model; EQ-5D = EuroQoL EQ-5D-3L; SF-6D = Short-Form 6D; MSIS-8D = Multiple Sclerosis Impact Scale – Eight Dimensions

Table 7: Mean absolute errors by severity group

FSS to EQ-5D	CLAD Model A	CLAD Model C	OLS Model A					
EQ_5D<=0.65	0.234	0.238						
EQ_5D>0.65	0.123	0.115						
FSS to SF-6D								
SF_6D<=0.65	0.070	0.070	0.070					
SF_6D>0.65	0.088	0.088	0.088					
FSS to MSIS-8D								
MSIS_8D<=0.7	0.154	0.154						
MSIS_8D>0.7	0.082	0.082						
Cut-off points for EQ-5D, SF-6D and MSIS-8D were chosen to give								
roughly equally-siz	ed groups.							

Additional file 1

Development of a conceptual framework describing the impact of fatigue on people with MS: a systematic review of the literature

Aim: to identify the main impacts of fatigue on the quality of life of people with MS, from the perspective of people with MS.

Objective: to review the qualitative literature on the impact of fatigue on the lived experiences of people with MS

Methods

Literature search methods

A search design was developed based on three key components of the objective of the literature review: multiple sclerosis, fatigue and qualitative methods.

MS search terms were based on those used for routine searches undertaken by the Cochrane Collaboration's "Multiple sclerosis and rare diseases of the central nervous system" group [Cochrane 2017].

Fatigue search terms were based on those used in a review of interventions for fatigue in Parkinson's disease undertaken by the Cochrane Movement Disorders Group [Elbers et al, 2014].

Qualitative search terms were based on those developed for the purposes of a study that investigated how to find qualitative research in the context of the medical literature [Shaw et al, 2004].

Search terms within each component were combined using the Bayesian operator "or". The components were combined using the "and" operator.

Inclusion criteria

- Original research using a qualitative methodology
- Participants are people with MS, or include people with MS alongside people with other conditions, where the results for people with MS are separately identifiable
- Papers with a stated aim of investigating the impact of fatigue on one or more aspects of (health-related) quality of life, well-being, functioning or participation
- English language

Exclusion criteria

- Review papers
- Papers that explore one or more aspects of (health-related) quality of life, well-being, functioning or participation in MS, without an *a priori* focus on fatigue.
- Papers that focused on fatigue, but did not report on the impact of fatigue on (health-related) quality of life, well-being, functioning or participation.

• Papers that did not present separately identifiable results for people with MS.

Analysis methods

The purpose of this review is to provide the background for mapping between the FSS and the EQ-5D, SF-6D and MSIS-8D. The measurement concept underpinning the three selected PBMs is healthrelated quality of life. Therefore, the results of the literature review were analysed using a conceptual framework based on the key dimensions of health-related quality of life.

There is no firm agreement on which dimensions comprise HRQoL, however there is a consensus that, at a minimum, physical and psychological domains should be included [Riazi, 2006]. More recently, a third dimension, relating to social and role function and participation (ie one's ability to perform 'normal' or expected activities and roles), has been added [Ware, 2003]. Therefore, the conceptual framework consisted of three broad domains: physical functioning, psychological and cognitive functioning, and social functioning and participation.

The themes that were identified by the original analysis were extracted from the results sections of the papers and pasted into tables, including the name of the theme and a description of its contents. All identified themes were then allocated to the three domains of HRQoL. Any themes that were repeated across more than one study were combined and any links between themes were noted. Themes that did not fit into the HRQoL domains were collated separately.

In the next stage, sub- domains were developed by grouping together themes that described similar concepts within each domains of HRQoL. The themes that did not fit into the HRQoL domains and the links between themes were explored to determine whether amendments needed to be made to the three-dimensional structure of the conceptual framework. This was then used to produce a conceptual framework of how fatigue affects the HRQoL of people with MS, for use in assessing the content validity of the source and target measures.

Results

Literature search results

The literature search returned 1124 results. Based on the titles and abstracts of these, 1062 were excluded from further consideration. Of the remaining 62 studies, 11 were conference abstracts for which the full text was not available. The full text of the remaining 52 papers was obtained, and these were assessed against the inclusion and exclusion criteria. Seventeen papers were excluded because they focussed on aspects of fatigue other than its impact (n=7), they did not focus on fatigue (6), they did not use qualitative methods (3) or they were not primarily concerned with MS. Therefore, twelve papers remained for inclusion in the review. This is summarised in Figure A1.

Figure A1: Literature search results

Development of the conceptual framework

Most of the themes that had been identified in the original qualitative research studies fitted into the three domains of HRQoL that were defined *a priori*. There were two notable exceptions. Several of the themes described the experience of fatigue itself, rather than its effect on HRQoL. This experience was clearly of great important to the people with MS who contributed to the original research, and underpinned the ways in which fatigue impacts upon HRQoL. Therefore, an additional domain was added: "Descriptions of fatigue". In terms of the links between themes, a clear relationship emerged between "functioning and participation" and "psychological well-being". People with MS specifically identified negative effects on their psychological well-being that were caused by the impact of their fatigue on their functioning and participation. These stood alongside, but distinct from, the direct impact of fatigue on psychological well-being. Therefore, this became a domain in its own right.

Tables A1 – A4 outline how the themes identified from the literature were mapped to the conceptual framework. The conceptual framework is illustrated in Figure A2.

Table A1. Descriptions of fatigue

1.1 Fatigue as a whole	Fatigue was experienced in the muscles, head, and entire body. It affects sensation in the whole body, from the hair to the toes.
body experience	Fatigue was perceived in the body – whole of parts of the body were perceived differently than they were before. The body did not feel natural
	and could not be taken for granted; increased awareness of the body all the time. Strained body with diminished power.
	Two opposite perceptions of the body: (1) heavy & painful (2) numbed, dead, not quite awake, as if parts were missing.
	A feeling of having a heavy body; wanting to let their arms and hands hang down; impossible to raise the arms or hold the body up straight.
	Muscles feel too weak to support the body
1.2 Betrayed by your	Some felt betrayed when fatigue invaded the body. The body was hard to control and couldn't be trusted.
own body	Body will not obey, eg try to lift leg and nothing happens.
	Their own bodies ruled them and they had to adjust themselves. Feeling feeble and unable to manage.
1.3 All-consuming	Participants experienced fatigue much of the time, and when they did not, they were thinking about it – always taking it into account.
fatigue	An ever-present, ongoing experience, unrelenting and virtually ever present, even after rest or sleep.
	A paralyzing force; although some small reserve of energy is still available, they feel virtually powerless to perform desired activities.
	Undertow Effect: suffocating fatigue characterized by energy impoverishment and absolute powerlessness, relieved only by sleep.
	Energy loss was very unpleasant, perceived as a form of paralyses and as an unstoppable destructive force invading the body, leaving
	participants unable to manage anything further.
1.4 An unusual and	A unique and novel sensation, an experience that is different from experiences of being tired when healthy
invisible feeling	Fatigue is invisible and difficult to describe
1.5 Characteristics of	Weariness, sleepiness, tired most days, weak at rest, exhausted after minimal activity
the experience of	Sudden, can happen very rapidly, unpredictable, uncontrollable
fatigue	Sensation of one's batteries running out
	Need day rest or sleep
	Unrefreshing or broken nocturnal sleep
1.6 Interactions with	Interaction of fatigue with other symptoms leads to difficulties
other symptoms	Fatigue that worsens along with other symptoms
	Fatigue can exacerbate other MS symptoms and vice versa
Individuals were affecte	d differently by fatigue, and could experience fatigue in one or more different ways during the course of their MS.
It was often hard to diffe	erentiate whether a participant was discussing fatigue or MS, as these terms seemed to be used interchangeably
Many participants had e	xperienced more than one state of fatigue during the course of their MS and, on occasion, one state of fatigue could trigger another.
Rather than isolating fat	igue, it's more about the complex and unpredictable relationship between fatigue and other symptoms.

Table A2. Physical effects of fatigue

2.1 Specific	Difficulty walking
physical effects	Falling over
	Weakness/ muscle weakness
	Participants described different states of fatigue.
	Limbs heavy
	Speech problems
	Coordination
	Sensory disturbances/ visual disturbances
	Flickering and swimming or pounding sensation in their eyes, causing dizziness and nausea.
	Pain
	Balance.
	A temporary increase in physical symptoms was associated with increased fatigue.
2.2 Physical	Physical exertion induces weakness/ worsens fatigue
triggers	Fatigue due to unexpected actions
	The feeling of being fatigued increased because of the extra effort of arranging footsteps when walking.

Table A3. Mental effects of fatigue

3.1 Psychological	Emotional impact of fatigue					
effects of fatigue	A temporary	increase in emotional symptoms was associated with increased fatigue.				
	Participants described different states of fatigue including feelings of depression.					
	Feelings of d	lefeat				
3.2 Cognitive effects	General	Cognitive impact of fatigue				
of fatigue		Participants described different states of fatigue including mental fogginess.				
		Felt that their brain was not totally clear; felt like being struck in the head by a sledgehammer.				
	Head experiences: "Brain-cheese," a "hazy, out-of-body fatigue feeling," and a "hangover."					
	Links to other symptoms, including cognition.					
	A temporary increase in cognitive symptoms was associated with increased fatigue.					
		Rather than isolating fatigue, it's about the complex and unpredictable relationship between fatigue and cognition.				
	Specific	Difficulty concentrating or thinking clearly				
		Perception of lower cognitive ability and energy				
		Impact on daily life: difficulties in making decisions and plans				
		Difficulty solving complex problems				

		Difficulty withstanding disturbing sounds
		Difficulties in remembering
		Making mistakes
		Only for brief moments could they feel totally focused.
		Not being able to look forward in time, thinking in the present moment.
3.3 Psychological	Cognitive	Mental effort worsens fatigue
triggers of fatigue	Emotional	Fatigue due to a change in mood
		Stress/anxiety worsens fatigue
		Vicious circle: thinking/ worrying about fatigue could cause fatigue, leaving them unable to complete the task
3.4 Indirect	Emotional	A feeling of having the will but not the ability: wanted to live life as before and be an active person.
psychological effects	impacts	Anxiety
of fatigue		Helpless and exposed.
		Insecurity
(links to		Frustration, stress, sadness.
participation and		Dissatisfaction
functioning effects)		Lower self-worth, despair, sorrow
		Shame; being misunderstood (eg being mistaken as being drunk).
		Anger
	Enjoyment	Involuntary isolation
	of life	Inability to enjoy social activities or hobbies
		No fun in life, feeling bored.
		Feeling trapped by having to live a very structured life; loss of spontaneity
		Prevention of a "normal" life due to fatigue
		Forced interruption of activities due to fatigue
		Inadequate satisfaction of one's basic needs
	Identity	Loss of sense of self due to fatigue
		Disappointment in a fatigued self
		Inability to tend to appearances due to fatigue
		Non-achievement of goals due to a gap in the expected and actual behavioral potential
		Loss of control, which appeared to threaten the self-integrity of the individual.
		Progressive losses including work, youth, driving, strength and energy, relationship roles; feeling "old before my time."
		Losses of driver's license and employment had emotional effects and challenged men's self-identities within the family.
		Some felt they had progressively lost strength and energy, attributes they linked to "being a man."
		Some described attributes associated with self-identity that either contributed to fatigue or helped them continue their exercise
	1	

Those who were able to engage in valued activities—even if the intensity was less, or if they achieved them through a different route—
experienced positive feelings and a sense of control. Those who were unable to make goal adjustments disengaged from valued activities,
resulting in negative feelings.
Ongoing frustration can lead to depression, particularly "when the frustrated goal is deeply connected to the core of the self".
'The importance of having goals that were highly valued and related to activities and work prior to diagnosis allowed the men to feel a sense of
achievement and optimism despite their losses.'

Table 4. Effects of fatigue on participation and functioning

4.1 Pervasive impact	Influences all activities and responsibilities at work, home, and play.					
	Restrictions or interru	ptions to life, including changes in roles within the family, social life and working situation.				
	Barriers to participatio	on were not perceived to directly result from any single MS impairment eg fatigue or communication, but from a complex				
	interplay between the	impairments experienced by an individual, the coping strategies employed and people's attitudes.				
4.2 Activities	Put things off, force self to do things					
	Unable to carry out da	ily tasks as could before				
	Activities of daily living	5				
	Housework					
	Giving up work, workir	ng fewer hours				
	Decreased opportuniti	ies for social interaction.				
	Social activities/ hobbi	es				
4.3 Effects of	Implications of having	to plan ahead/ lead structured daily life/ build rest periods into daily routine = less opportunity for spontaneity				
strategies to manage	Implications of having	to reduce overall activity or prioritise certain activities over others = dilemmas over which things don't get done				
fatigue	Implications of having	to take a planned or necessary cessation of physical activity				
	Difficulty of employme	ent due to the measures for treating fatigue, related to an interruption of activities				
	May take up formal ex	ercise, or other physical activities, in attempt to enhance resistance to fatigue				
	Time-consuming: can't	t hurry, need to take time and avoid stressful situations; doing things in advance, calmly and methodically.				
4.4 Roles and	Communication and	Difficult for others to understand the person's experiences and needs because fatigue is "invisible" and difficult to				
relationships	fatigue	describe				
		Fatigue increases the frequency and severity of communication symptoms, language-processing deficits, motor speech				
		symptoms**				
		Some communication symptoms occur only when experiencing fatigue - language processing difficulties and dysarthria**				
		The interplay between fatigue and communication led to communication symptoms becoming more apparent to				
		listeners. The resulting communication did not reflect how they would like to represent themselves (eg drunk or lazy				
		rather than able and competent).**				

		Common to all participants was the enormous effort and pre-planning that remains hidden from communication partners, eg dealing with word finding and memory difficulties, keeping interactions operating as normally as possible on the surface.**
	Handling fatigue in	Concealment, eg measures to limit activity without letting others know
	relation to others	Measures to arrange an environment by gaining the support of others
	A feeling of being	They felt as if they had been split in two parts: one part was participating while the other was just watching.
	absent	Feeling both present and absent: seeing everything but feeling as if they weren't there. Feeling anaesthetized; things just passing by.
		Unable to understand things happening around them or to participate in conversations due to lack of concentration.
	Letting people	Feeling unreliable and could not always keep promises. Leaving everything half-done due to unpredictable fatigue.
	down/ causing	Unable to participate in family activities; felt this was difficult for the rest of the family - the whole family was suffering.
	problems	Problems in one's life and friendships due to unpredictable fatigue
		Concern of causing friends trouble due to fatigue
	Dependency	Perceptions of dependency - trapped in the sense of needing help from other people – involves feelings of being a
		burden
4.5 Participation	Trying to accomplish	too much
triggers	Family, work or socio	economic stress
	Continuous nature of	burdens and actions
	Work	

Figure A2: Conceptual framework of the impact of fatigue on people with MS

References

Cochrane 2017: http://msrdcns.cochrane.org/our-review, accessed 15/06/2017

Elbers RG, Verhoef J, van Wegen EEH, Berendse HW, Kwakkel G: Interventions for fatigue in Parkinson's disease. 2014: <u>http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD010925/full</u> accessed 22/07/2015

European Medicines Agency. Reflection paper on the regulatory guidance for the use of healthrelated quality of life (HRQL) measures in the evaluation of medicinal products. EMEA/CHMP/EWP/139391/2004. London: European Medicines Agency; 2005.

Riazi A. Patient-reported Outcome Measures in Multiple Sclerosis. The International MS Journal. 2006;13:92–99.

Shaw RL, Booth A, Sutton AJ, Miller T, Smith JA, Young B, Jones DR, Dixon-Woods M. Finding qualitative research: an evaluation of search strategies. BMC Medical Research Methodology 2004, 4:5

Ware J. Conceptualization and measurement of health-related quality of life: comments on an evolving field. Archives of Physical Medicine and Rehabilitation. 2003;84(Suppl 2):S43-S51.

Additional file 2

Histograms of source and target measures

FSS total versus EQ-5D values

FSS total versus SF-6D values

FSS total versus MSIS-8D

Additional file 4: All models run for this analysis

Initial models run using estimation dataset

OLS Model A: Regressing EQ-5D vs				
EQ-5D	Coefficient	SE	t	P> t
FSS_tot	-0.008	0.001	-14.03	<0.0001
_cons	0.976	0.025	38.67	<0.0001
R2	0.2007			
RMSE	0.25087			
Coefficients	1			
Sig coefficients	1			
	Mean	Std.Dev.	Obs	
MAE	0.186	0.168	763	
MSE	0.063	0.113		
RMSE	0.251			
	Freq.	Percent		
Individuals with MAE < 0.25	577	75.62		
Individuals with MAE < 0.1	279	36.57		
Individuals with MAE < 0.05	150	19.66		
OLS Model B: Regressing EQ-5D vs	FSS total and	FSS total squa	ared	
EQ-5D	Coefficient	SE	t	P> t
FSS_tot	-0.002	0.003	-0.69	0.489
FSS_squared	0.000	0.000	-1.93	0.054
_cons	0.876	0.055	15.84	<0.0001
R2	0.2046			
RMSE	0.25043			
Coefficients	2			
Sig coefficients	0			
	Mean	Std.Dev.	Obs	
MAE	0.186	0.167	763	
MSE	0.062	0.112		
RMSE	0.250			
	Freq.	Percent		
Individuals with MAE < 0.25	578	75.75		
Individuals with MAE < 0.1	286	37.48		
Individuals with MAE < 0.05	155	20.31		
OLS Model C: Regressing EQ-5D vs	FSS, age, gen	der		_
EQ-5D	Coefficient	SE	t	P> t
FSS_tot	-0.008	0.001	-13.86	<0.0001
age	-0.005	0.001	-6.39	<0.0001
female	-0.027	0.019	-1.37	0.170
_cons	1.235	0.043	28.43	<0.0001
R2	0.2465	Ī	Ī	1
RMSE	0.24499			1
Coefficients	3			

Sig coefficients	2			
	Mean	Std.Dev.	Obs	
MAE	0.184	0.161	755	
MSE	0.060	0.103		
RMSE	0.244			
	Freq.	Percent		
Individuals with MAE < 0.25	567	75.10		
Individuals with MAE < 0.1	281	37.22		
Individuals with MAE < 0.05	138	18.28		
OLS Model D: Regressing EQ-5D vs	FSS item score	es	1	1
EQ-5D	Coefficient	SE	t	P> t
FSS_01	0.012	0.007	1.84	0.066
FSS_02	-0.011	0.006	-1.87	0.062
FSS_03	-0.012	0.009	-1.32	0.186
FSS_04	-0.006	0.008	-0.68	0.499
FSS_05	-0.010	0.012	-0.84	0.401
FSS_06	-0.024	0.009	-2.73	0.007
FSS_07	-0.031	0.008	-3.96	<0.0001
FSS_08	0.031	0.006	4.73	<0.0001
FSS_09	-0.015	0.009	-1.75	0.081
_cons	0.901	0.032	28.44	<0.0001
R2	0.2584			
RMSE	0.24292			
Coefficients	9			
Sig coefficients	3			
	Mean	Std.Dev.	Obs	
MAE	0.182	0.159	763	
MSE	0.058	0.104		
RMSE	0.241			
	Freq.	Percent		
Individuals with MAE < 0.25	585	76.67		
Individuals with MAE < 0.1	287	37.61		
Individuals with MAE < 0.05	138	18.09		
OLS Model E: Regressing EQ-5D vs	FSS item score	es, age and ge	nder	
EQ-5D	Coefficient	SE	t	P> t
FSS_01	0.011	0.006	1.77	0.076
FSS_02	-0.011	0.006	-1.79	0.074
FSS_03	-0.014	0.009	-1.66	0.097
FSS_04	-0.005	0.008	-0.64	0.521
FSS_05	-0.010	0.011	-0.84	0.402
FSS_06	-0.020	0.009	-2.24	0.025
FSS_07	-0.028	0.008	-3.63	<0.0001
FSS_08	0.030	0.006	4.70	<0.0001
FSS_09	-0.017	0.008	-2.08	0.038

age	-0.004	0.001	-5.76	<0.0001
female	-0.039	0.019	-1.99	0.046
_cons	1.145	0.046	24.91	<0.0001
R2	0.2953			
RMSE	0.23819			
Coefficients	11			
Sig coefficients	6			
	Mean	Std.Dev.	Obs	
MAE	0.180	0.153	755	
MSE	0.056	0.097		
RMSE	0.236			
	Freq.	Percent		
Individuals with MAE < 0.25	585	77.48		
Individuals with MAE < 0.1	263	34.83		
Individuals with MAE < 0.05	137	18.15		
OLS Model A: Regressing SF-6D vs	FSS total			
EQ-5D	Coefficient	SE	t	P> t
FSS_tot	-0.006	0.000	-18.91	<0.0001
_cons	0.897	0.015	59.44	<0.0001
R2	0.4511			
RMSE	0.09985			
Coefficients	1			
Sig coefficients	1			
	Mean	Std.Dev.	Obs	
MAE	0.078	0.062	455	
MSE	0.010	0.015		
RMSE	0.100			
	Freq.	Percent		
Individuals with MAE < 0.25	449	98.68		
Individuals with MAE < 0.1	310	68.13		
Individuals with MAE < 0.05	188	41.32		
OLS Model B: Regressing SF-6D vs	FSS total and	FSS total squa	red	
EQ-5D	Coefficient	SE	t	P> t
FSS_tot	-0.007	0.002	-4.31	<0.0001
FSS_squared	0.000	0.000	0.91	0.364
_cons	0.921	0.032	28.91	<0.0001
R2	0.4521			
RMSE	0.09987			
Coefficients	2			
Sig coefficients	1			
	Mean	Std.Dev.	Obs	
MAE	0.077	0.063	455	

MSE	0.010	0.015		
RMSE	0.100			
	Freq.	Percent		
Individuals with MAE < 0.25	449	98.68		
Individuals with MAE < 0.1	312	68.57		
Individuals with MAE < 0.05	193	42.42		
OLS Model C: Regressing SF-6D vs	FSS, age, gen	der		1
EQ-5D	Coefficient	SE	t	P> t
FSS_tot	-0.006	0.000	-19.07	<0.0001
age	-0.001	0.000	-2.64	0.009
female	-0.026	0.010	-2.5	0.013
_cons	0.970	0.026	37.29	<0.0001
R2	0.4668			
RMSE	0.09888			
Coefficients	3			
Sig coefficients	3			
	Mean	Std.Dev.	Obs	
MAE	0.078	0.060	452	
MSE	0.010	0.014		
RMSE	0.098			
	Freq.	Percent		
Individuals with MAE < 0.25	445	98.45		
Individuals with MAE < 0.1	309	68.36		
Individuals with MAE < 0.05	181	40.04		
OLS Model D: Regressing SF-6D vs	FSS item sco	res		
OLS Model D: Regressing SF-6D vs EQ-5D	FSS item sco	res SE	t	P> t
OLS Model D: Regressing SF-6D vs EQ-5D FSS_01	FSS item sco Coefficient -0.002	res SE 0.004	t -0.55	P> t 0.580
OLS Model D: Regressing SF-6D vs EQ-5D FSS_01 FSS_02	FSS item sco Coefficient -0.002 -0.005	res SE 0.004 0.004	t -0.55 -1.38	P> t 0.580 0.168
OLS Model D: Regressing SF-6D vs EQ-5D FSS_01 FSS_02 FSS_03	FSS item sco Coefficient -0.002 -0.005	res SE 0.004 0.004 0.005	t -0.55 -1.38 -0.99	P> t 0.580 0.168 0.323
OLS Model D: Regressing SF-6D vs EQ-5D FSS_01 FSS_02 FSS_03 FSS_04	FSS item sco Coefficient -0.002 -0.005 -0.005 0.001	res SE 0.004 0.004 0.005 0.005	t -0.55 -1.38 -0.99 0.22	P> t 0.580 0.168 0.323 0.830
OLS Model D: Regressing SF-6D vs EQ-5D FSS_01 FSS_02 FSS_03 FSS_04 FSS_05	FSS item sco Coefficient -0.002 -0.005 -0.005 0.001 -0.007	res SE 0.004 0.004 0.005 0.005 0.005	t -0.55 -1.38 -0.99 0.22 -1.5	P> t 0.580 0.168 0.323 0.830 0.135
OLS Model D: Regressing SF-6D vs EQ-5D FSS_01 FSS_02 FSS_03 FSS_04 FSS_05 FSS_06	FSS item sco Coefficient -0.002 -0.005 -0.005 -0.001 -0.007 -0.002	res SE 0.004 0.004 0.005 0.005 0.005 0.005	t -0.55 -1.38 -0.99 0.22 -1.5 -0.5	P> t 0.580 0.168 0.323 0.830 0.135 0.618
OLS Model D: Regressing SF-6D vs EQ-5D FSS_01 FSS_02 FSS_03 FSS_04 FSS_05 FSS_06 FSS_07	FSS item sco Coefficient -0.002 -0.005 -0.005 -0.007 -0.002	res SE 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.004	t -0.55 -1.38 -0.99 0.22 -1.5 -0.5 -4.94	P> t 0.580 0.168 0.323 0.830 0.135 0.618 <0.0001
OLS Model D: Regressing SF-6D vs EQ-5D FSS_01 FSS_02 FSS_03 FSS_04 FSS_05 FSS_06 FSS_07 FSS_08	FSS item sco Coefficient -0.002 -0.005 -0.005 -0.007 -0.002 -0.002	res SE 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.004 0.004	t -0.55 -1.38 -0.99 0.22 -1.5 -0.5 -4.94 2.14	P> t 0.580 0.168 0.323 0.830 0.135 0.618 <0.0001
OLS Model D: Regressing SF-6D vs EQ-5D FSS_01 FSS_02 FSS_03 FSS_04 FSS_05 FSS_06 FSS_07 FSS_08 FSS_09	FSS item sco Coefficient -0.002 -0.005 -0.005 -0.007 -0.002 -0.002 -0.005	res SE 0.004 0.004 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.005	t -0.55 -1.38 -0.99 0.22 -1.5 -0.5 -4.94 2.14 -3.06	P> t 0.580 0.168 0.323 0.830 0.135 0.618 <0.0001
OLS Model D: Regressing SF-6D vs EQ-5D FSS_01 FSS_02 FSS_03 FSS_04 FSS_05 FSS_06 FSS_07 FSS_08 FSS_09 _cons	FSS item sco Coefficient -0.002 -0.005 -0.005 0.001 -0.007 -0.002 -0.02 0.001 -0.005	res SE 0.004 0.004 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.005 0.018	t -0.55 -1.38 -0.99 0.22 -1.5 -0.5 -4.94 2.14 -3.06 49.25	P> t 0.580 0.168 0.323 0.830 0.135 0.618 <0.0001
OLS Model D: Regressing SF-6D vs EQ-5D FSS_01 FSS_02 FSS_03 FSS_04 FSS_05 FSS_06 FSS_08 FSS_09 _cons R2	FSS item sco Coefficient -0.002 -0.005 -0.005 -0.007 -0.002 -0.002 -0.015 0.871 0.4872	SE 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.005 0.004 0.005 0.018	t -0.55 -1.38 -0.99 0.22 -1.5 -0.5 -4.94 2.14 -3.06 49.25	P> t 0.580 0.168 0.323 0.830 0.135 0.618 <0.0001
OLS Model D: Regressing SF-6D vs EQ-5D FSS_01 FSS_02 FSS_03 FSS_04 FSS_05 FSS_06 FSS_08 FSS_09 _cons R2 RMSE	FSS item sco Coefficient -0.002 -0.005 -0.005 -0.007 -0.002 -0.002 0.001 -0.005 0.001 -0.005 0.001 -0.002 -0.015 0.871 0.4872 0.09738	res SE 0.004 0.004 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.005 0.018	t -0.55 -1.38 -0.99 0.22 -1.5 -0.5 -4.94 2.14 -3.06 49.25	P> t 0.580 0.168 0.323 0.830 0.135 0.618 <0.0001
OLS Model D: Regressing SF-6D vs EQ-5D FSS_01 FSS_02 FSS_03 FSS_04 FSS_05 FSS_06 FSS_08 FSS_09 _cons RMSE Coefficients	FSS item sco Coefficient -0.002 -0.005 -0.005 0.001 -0.002 -0.002 0.001 -0.002 0.001 -0.002 0.002 0.008 -0.015 0.871 0.4872 0.09738 9	SE 0.004 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.005 0.018	t -0.55 -1.38 -0.99 0.22 -1.5 -0.5 -4.94 2.14 -3.06 49.25	P> t 0.580 0.168 0.323 0.830 0.135 0.618 <0.0001
OLS Model D: Regressing SF-6D vs EQ-5D FSS_01 FSS_02 FSS_03 FSS_04 FSS_05 FSS_06 FSS_07 FSS_08 FSS_09 _cons R2 RMSE Coefficients Sig coefficients	FSS item sco Coefficient -0.002 -0.005 -0.005 0.001 -0.002 0.001 -0.002 0.001 -0.002 0.002 -0.015 0.871 0.4872 0.09738 9 3	res SE 0.004 0.004 0.005 0.005 0.005 0.005 0.004 0.004 0.004 0.004 0.005 0.018	t -0.55 -1.38 -0.99 0.22 -1.5 -0.5 -4.94 2.14 -3.06 49.25 	P> t 0.580 0.168 0.323 0.830 0.135 0.618 <0.0001
OLS Model D: Regressing SF-6D vs EQ-5D FSS_01 FSS_02 FSS_03 FSS_04 FSS_05 FSS_06 FSS_07 FSS_08 FSS_09 _cons RMSE Coefficients Sig coefficients	FSS item sco Coefficient -0.002 -0.005 0.001 -0.002 -0.002 -0.002 -0.015 0.871 0.4872 0.09738 9 3 Mean	SE 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.018 Std.Dev.	t -0.55 -1.38 -0.99 0.22 -1.5 -0.5 -4.94 2.14 -3.06 49.25 	P> t 0.580 0.168 0.323 0.830 0.135 0.618 <0.0001
OLS Model D: Regressing SF-6D vs EQ-5D FSS_01 FSS_02 FSS_03 FSS_04 FSS_05 FSS_06 FSS_06 FSS_07 FSS_08 FSS_08 FSS_09 cons R2 RMSE Coefficients Sig coefficients	FSS item sco Coefficient -0.002 -0.005 -0.005 0.001 -0.002 0.001 -0.002 0.001 -0.002 0.002 -0.015 0.871 0.4872 0.09738 9 3 Mean 0.075	SE 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.005 0.004 0.005 0.018 Std.Dev. 0.061	t -0.55 -1.38 -0.99 0.22 -1.5 -0.5 -4.94 2.14 -3.06 49.25 - - - - - - - - - - - - - - - - - - -	P> t 0.580 0.168 0.323 0.830 0.135 0.618 <0.0001
OLS Model D: Regressing SF-6D vs EQ-5D FSS_01 FSS_02 FSS_03 FSS_04 FSS_05 FSS_06 FSS_07 FSS_08 FSS_09 _cons R2 RMSE Coefficients Sig coefficients MAE MSE	FSS item sco Coefficient -0.002 -0.005 -0.005 0.001 -0.002 -0.002 0.001 -0.002 -0.015 0.871 0.4872 0.09738 9 3 Mean 0.075 0.009	SE 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.005 0.004 0.005 0.004 0.004 0.005 0.004 0.005 0.018 Std.Dev. 0.061 0.014	t -0.55 -1.38 -0.99 0.22 -1.5 -0.5 -4.94 2.14 -3.06 49.25 - - - - - - - - - - - - - - - - - - -	P> t 0.580 0.168 0.323 0.830 0.135 0.618 <0.0001
OLS Model D: Regressing SF-6D vs EQ-5D FSS_01 FSS_02 FSS_03 FSS_04 FSS_05 FSS_06 FSS_07 FSS_08 FSS_09 _cons R2 RMSE Coefficients Sig coefficients MAE MSE RMSE	FSS item sco Coefficient -0.002 -0.005 -0.005 -0.007 -0.002 -0.002 0.001 -0.002 0.001 -0.002 -0.022 0.008 -0.015 0.871 0.4872 0.09738 9 3 Mean 0.075 0.009 0.096	SE 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.018 Std.Dev. 0.061 0.014	t -0.55 -1.38 -0.99 0.22 -1.5 -0.5 -4.94 2.14 -3.06 49.25 	P> t 0.580 0.168 0.323 0.830 0.135 0.618 <0.0001
OLS Model D: Regressing SF-6D vs EQ-5D FSS_01 FSS_02 FSS_03 FSS_04 FSS_05 FSS_06 FSS_07 FSS_08 FSS_09 _cons RMSE Coefficients Sig coefficients MAE MSE RMSE	FSS item sco Coefficient -0.002 -0.005 -0.005 -0.007 -0.002 -0.002 0.001 -0.002 -0.015 0.871 0.4872 0.09738 9 3 Mean 0.075 0.009 0.096 Freq.	SE 0.004 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.004 0.005 0.018 Std.Dev. 0.061 0.014 Percent	t -0.55 -1.38 -0.99 0.22 -1.5 -0.5 -4.94 2.14 -3.06 49.25 - - - - - - - - - - - - - - - - - - -	P> t 0.580 0.168 0.323 0.830 0.135 0.618 <0.0001

Individuals with MAE < 0.25	448	98.46		
Individuals with MAE < 0.1	326	71.65		
Individuals with MAE < 0.05	193	42.42		
OLS Model E: Regressing SF-6D vs	FSS item score	es, age and gei	nder	I
EQ-5D	Coefficient	SE	t	P> t
FSS_01	-0.002	0.004	-0.48	0.630
FSS_02	-0.005	0.004	-1.46	0.145
FSS_03	-0.006	0.005	-1.07	0.283
FSS_04	0.001	0.005	0.13	0.898
FSS_05	-0.007	0.005	-1.43	0.153
FSS_06	-0.001	0.005	-0.25	0.805
FSS_07	-0.022	0.004	-5.04	<0.0001
FSS_08	0.009	0.004	2.33	0.020
FSS_09	-0.016	0.005	-3.43	0.001
age	-0.001	0.000	-2.39	0.017
female	-0.030	0.011	-2.81	0.005
cons	0.943	0.029	32.57	<0.0001
R2	0.5043			
RMSE	0.0962			
Coefficients	11			
Sig coefficients	5			
	Mean	Std.Dev.	Obs	
MAE	0.074	0.059	452	
MSE	0.009	0.014		
RMSE	0.095			
	Freq.	Percent		
Individuals with MAE < 0.25	445	98.45		
Individuals with MAE < 0.1	326	72.12		
Individuals with MAE < 0.05	195	43.14		
OLS Model A: Regressing MSIS-8D	vs FSS total	1	1	
EQ-5D	Coefficient	SE	t	P> t
FSS_tot	-0.007	0.000	-17.29	<0.0001
_cons	0.961	0.016	58.69	<0.0001
R2	0.3665			
RMSE	0.15046			
Coefficients	1			
Sig coefficients	1			
	Mean	Std.Dev.	Obs	
MAE	0.119	0.092	493	
MSE	0.023	0.034		
RMSE	0.150			
	Freq.	Percent		
Individuals with MAE < 0.25	448	90.87		

Individuals with MAE < 0.1	242	49.09								
Individuals with MAE < 0.05	136	27.59								
OLS Model B: Regressing MSIS-8D vs FSS total and FSS total squared										
EQ-5D	Coefficient	SE	t	P> t						
FSS_tot	0.003	0.002	1.67	0.096						
FSS_squared	0.000	0.000	-5.08	<0.0001						
_cons	0.785	0.033	23.82	<0.0001						
R2	0.3938									
RMSE	0.14734									
Coefficients	2									
Sig coefficients	1									
	Mean	Std.Dev.	Obs							
MAE	0.116	0.090	493							
MSE	0.022	0.033								
RMSE	0.147									
	Freq.	Percent								
Individuals with MAE < 0.25	447	90.67								
Individuals with MAE < 0.1	257	52.13								
Individuals with MAE < 0.05	118	23.94								
OLS Model C: Regressing MSIS-8D	vs FSS, age, ge	ender								
EQ-5D	Coefficient	SE	t	P> t						
FSS_tot	-0.007	0.000	-16.96	<0.0001						
age	-0.001	0.001	-1.86	0.064						
female	-0.008	0.016	-0.53	0.595						
_cons	1.019	0.032	32.01	<0.0001						
R2	0.3718									
RMSE	0.15048									
Coefficients	3									
Sig coefficients	1									
	Mean	Std.Dev.	Obs							
MAE	0.118	0.093	490							
MSE	0.022	0.034								
RMSE	0.150									
	Freq.	Percent								
Individuals with MAE < 0.25	447	91.22								
Individuals with MAE < 0.1	243	49.59								
Individuals with MAE < 0.05	133	27.14								
OLS Model D: Regressing MSIS-8D	vs FSS item sc	ores	•							
EQ-5D	Coefficient	SE	t	P> t						
FSS_01	0.001	0.005	0.12	0.902						
FSS_02	-0.005	0.005	-1.02	0.307						
FSS_03	-0.009	0.006	-1.45	0.148						
FSS_04	0.006	0.006	1.07	0.287						
FSS_05	-0.024	0.007	-3.29	0.001						

FSS_06	-0.006	0.007	-0.81	0.417
FSS_07	-0.027	0.006	-4.5	<0.0001
FSS_08	0.025	0.004	5.81	<0.0001
FSS_09	-0.023	0.006	-3.82	<0.0001
_cons	0.902	0.020	44.71	<0.0001
R2	0.4389			
RMSE	0.14277			
Coefficients	9			
Sig coefficients	4			
	Mean	Std.Dev.	Obs	
MAE	0.109	0.089	493	
MSE	0.020	0.032		
RMSE	0.141			
	Freq.	Percent		
Individuals with MAE < 0.25	455	92.29		
Individuals with MAE < 0.1	265	53.75		
Individuals with MAE < 0.05	155	31.44		
OLS Model E: Regressing MSIS	-8D vs FSS item s	cores, age an	d gender	
EQ-5D	Coefficient	SE	t	P> t
FSS_01	0.001	0.005	0.15	0.883
FSS_02	-0.005	0.005	-1.01	0.311
FSS_03	-0.009	0.006	-1.47	0.143
FSS_04	0.006	0.006	1.04	0.299
FSS_05	-0.024	0.007	-3.33	0.001
FSS_06	-0.005	0.007	-0.65	0.515
FSS_07	-0.027	0.006	-4.51	<0.0001
FSS_08	0.024	0.004	5.74	<0.0001
FSS_09	-0.023	0.006	-3.94	<0.0001
age	-0.001	0.001	-1.22	0.222
female	-0.014	0.016	-0.87	0.387
Cons	0.946	0.034	27.57	<0.0001
R2	0.4419			
RMSE	0.14301			
Coefficients	11			
Sig coefficients	4	0(15)		
	Mean	Std.Dev.	Obs	
MAE	0.109	0.090	490	
MSE	0.020	0.033		
RMSE	0.141	Dereent		
Individuals with MAE = 0.25	Freq.			
Individuals with MAE < 0.23	400 261	52.00		
	201	22.04		
	15/	32.04		

Note that FSS-08 (fatigue is among my most disabling symptoms) has a positive coefficient FSS-01 (my motivation is lower when I am fatigued) has a positive coefficient in the EQ-5D and MSIS-8D models, but not in the SF-6D models

Models run using estimation dataset, included significant FSS items only

EQ-5D MODELS						
*CLAD Model C2						
Variable	Observed	Bias	Std.Err.	LCL	UCL	
FSS total score	-0.00576	-9.1E-05	0.000608	-0.00696	-0.00455	
Age	-0.00309	-4.2E-05	0.000718	-0.00451	-0.00166	
Constant	1.084261	0.004113	0.049776	0.985494	1.183028	
Observations	755					
	Mean	Std.Dev.				
MAE	0.173114	0.183672				
MSE	0.063659	0.127679				
RMSE	0.252					
Pseudo R2	0.126022					
	Freq.	Percent				
Individuals with MAE < 0.25	597	79.07				
Individuals with MAE < 0.10	353	46.75				
Individuals with MAE < 0.05	190	25.17				
*CLAD Model D2						
Variable	Observed	Bias	Std.Err.	LCL	UCL	
FSS_06	-0.026	0.002269	0.004559	-0.03505	-0.01695	
FSS_07	-0.02067	-0.00229	0.005582	-0.03174	-0.00959	
Constant	0.894667	-0.00099	0.016949	0.861036	0.928298	
Observations	774					
	Mean	Std.Dev.				
MAE	0.172271	0.186334				
MSE	0.064353	0.131224				
RMSE	0.254					
Pseudo R2	0.121661					
	Freq.	Percent				
Individuals with MAE < 0.25	608	78.55				
Individuals with MAE < 0.10	371	47.93				
Individuals with MAE < 0.05	221	28.55				
*CLAD Model E2						
Variable	Observed	Bias	Std.Err.	LCL	UCL	
FSS_07	-0.02939	0.001426	0.00573	-0.04076	-0.01802	
FSS_09	-0.01681	-0.00099	0.004567	-0.02588	-0.00775	
Age	-0.00302	1.63E-05	0.000681	-0.00437	-0.00167	
Constant	1.038418	-0.00442	0.048066	0.943045	1.133792	

Observations	765					
	Mean	Std.Dev.				
MAE	0.171062	0.189995				
MSE	0.065313	0.134326				
RMSE	0.255565					
Pseudo R2	0.134896					
	Freq.	Percent				
Individuals with MAE < 0.25	607	79.35				
Individuals with MAE < 0.10	371	47.93				
Individuals with MAE < 0.05	222	29.02				
SF-6D MODELS						
*OLS Model D2						
SF_6Dv2	Coef.	Std.Err.	t	P> t	LCL	UCL
FSS_07	-0.02902	0.003348	-8.67	<0.0001	-0.0356	-0.02244
FSS_09	-0.01699	0.00333	-5.1	<0.0001	-0.02353	-0.01045
Constant	0.852329	0.012796	66.61	<0.0001	0.827182	0.877476
Observations	460					
	Mean	Std.Dev.				
MAE	0.076699	0.061377				
MSE	0.009642	0.01459				
RMSE	0.098192					
R2	0.4639					
	Freq.	Percent				
Individuals with MAE < 0.25	454	98.7				
Individuals with MAE < 0.10	323	70.22				
Individuals with MAE < 0.05	193	41.96				
F-stat	180.27					
Prob	0					
*OLS Model E2						
SF_6Dv2	Coef.	Std.Err.	t	P> t	LCL	UCL
FSS_07	-0.02864	0.003345	-8.56	<0.0001	-0.03521	-0.02206
FSS_09	-0.01747	0.003259	-5.36	<0.0001	-0.02387	-0.01106
Age	-0.00095	0.000418	-2.28	0.023	-0.00177	-0.00013
Gender (female)	-0.02583	0.010477	-2.47	0.014	-0.04642	-0.00524
Constant	0.919073	0.024879	36.94	<0.0001	0.87018	0.967966
Observations	457					
	Mean	Std.Dev.				
MAE	0.076046	0.060262				
MSE	0.009406	0.013951				
RMSE	0.096987					
R2	0.4796					
	Freq.	Percent				
Individuals with MAE < 0.25	448	98.03				
	1	1	1	1	1	

Individuals with MAE < 0.10	318	69.58				
Individuals with MAE < 0.05	184	40.26				
F-stat	98.23					
Prob	0					
*CLAD Model D2						
Variable	Observed	Bias	Std.Err.	LCL	UCL	
FSS_07	-0.03	-0.00061	0.004572	-0.03907	-0.02093	
FSS_09	-0.018	0.000174	0.004707	-0.02734	-0.00866	
Constant	0.858	0.003514	0.018524	0.821245	0.894755	
Observations	460					
	Mean	Std.Dev.				
MAE	0.076571	0.061931				
MSE	0.00969	0.01486				
RMSE	0.098					
Pseudo R2	0.275523					
	Freq.	Percent				
Individuals with MAE < 0.25	452	98.26				
Individuals with MAE < 0.10	325	70.65				
Individuals with MAE < 0.05	190	41.3				
*CLAD Model E2						
Variable	Observed	Bias	Std.Err.	LCL	UCL	
FSS_07	-0.03085	0.000214	0.004454	-0.03969	-0.02201	
FSS_09	-0.0179	-0.00062	0.004468	-0.02677	-0.00903	
Gender (female)	-0.0215	-0.00175	0.013233	-0.04776	0.004757	
Constant	0.90175	0.004941	0.031155	0.839932	0.963568	
Observations	460					
	Mean	Std.Dev.				
MAE	0.076436	0.061926				
MSE	0.009669	0.014696				
RMSE	0.09833					
Pseudo R2	0.279408					
	Freq.	Percent				
Individuals with MAE < 0.25	453	98.48				
Individuals with MAE < 0.10	324	70.43				
Individuals with MAE < 0.05	201	43.7				
MSIS-8D MODELS						
*OLS Model D2						
MSIS_8D	Coef.	Std.Err.	t	P> t	LCL	UCL
FSS_05	-0.02755	0.005173	-5.33	<0.0001	-0.03771	-0.01738
FSS_07	-0.03342	0.00496	-6.74	<0.0001	-0.04317	-0.02368
Constant	0.914556	0.012816	71.36	<0.0001	0.889375	0.939736

Observations	500					
	Mean	Std.Dev.				
MAE	0.113603	0.090267				
MSE	0.021038	0.032955				
RMSE	0.145043					
R2	0.4048					
	Freq.	Percent				
Individuals with MAE < 0.25	459	91.8				
Individuals with MAE < 0.10	262	52.4				
Individuals with MAE < 0.05	138	27.6				
F-stat	170.87					
Prob	0					
*CLAD Model D2						
Variable	Observed	Bias	Std.Err.	LCL	UCL	
FSS 07	-0.05296	-0.00163	0.003466	-0.05983	-0.04608	
Constant	0.908928	0.00911	0.013695	0.881754	0.936102	
Observations	501					
	Mean	Std.Dev.				
MAE	0.114843	0.102382				
MSE	0.02365	0.040465				
RMSE	0.154					
Pseudo R2	0.223803					
	Freq.	Percent				
Individuals with MAE < 0.25	449	89.62				
Individuals with MAE < 0.10	271	54 09				
Individuals with MAE < 0.05	154	30.74				
CLAD MODELS WITH P						
VALUES						
CLAD_eq_C2.smcl						
	Coef.	Std. Err	Z	P> z	LCL	UCL
FSS_tot	-0.00576	0.000608	-9.47	<0.0001	-0.00695	-0.00456
age	-0.00309	0.000718	-4.3	<0.0001	-0.00449	-0.00168
const	1.084261	0.049776	21.78	<0.0001	0.986701	1.181821
CLAD_eq_D2.smcl						
	Coef.	Std. Err	Z	P> z	LCL	UCL
FSS_06	-0.026	0.004559	-5.7	<0.0001	-0.03493	-0.01707
FSS_07	-0.02067	0.005582	-3.7	<0.0001	-0.03161	-0.00973
const	0.894667	0.016949	52.79	<0.0001	0.861447	0.927886
CLAD_eq_E2.smcl						
	Coef.	Std. Err	Z	P> z	LCL	UCL

FSS_07	-0.02939	0.00573	-5.13	<0.0001	-0.04062	-0.01816
FSS_09	-0.01681	0.004567	-3.68	<0.0001	-0.02577	-0.00786
age	-0.00302	0.000681	-4.43	<0.0001	-0.00435	-0.00168
const	1.038418	0.048066	21.6	<0.0001	0.94421	1.132626
CLAD_sf_D2.smcl						
	Coef.	Std. Err	Z	P> z	LCL	UCL
FSS_07	-0.03	0.004572	-6.56	<0.0001	-0.03896	-0.02104
FSS_09	-0.018	0.004707	-3.82	<0.0001	-0.02723	-0.00878
const	0.858	0.018524	46.32	<0.0001	0.821694	0.894306
CLAD_sf_E2.smcl						
	Coef.	Std. Err	z	P> z	LCL	UCL
FSS_07	-0.03085	0.004454	-6.93	<0.0001	-0.03958	-0.02212
FSS_09	-0.0179	0.004468	-4.01	<0.0001	-0.02666	-0.00914
Gender	-0.0215	0.013233	-1.62	0.104	-0.04744	0.004436
const	0.90175	0.031155	28.94	<0.0001	0.840688	0.962812
CLAD_ms_D2.smcl						
	Coef.	Std. Err	Z	P> z	LCL	UCL
FSS_07	-0.05296	0.003466	-15.28	<0.0001	-0.05975	-0.04616
const	0.908928	0.013695	66.37	< 0.0001	0.882086	0.93577

All models run using validation dataset

EQ-5D CLAD MODEL A							
Variable	Observed	Bias	SE	LCL	UCL	Z	P> z
FSS total score	-0.00726	-0.00018	0.001184	-0.00966	-0.00528	-6.14	<0.0001
Constant	1.001	0.005987	0.054856	0.9133	1.0968	18.25	<0.0001
Observations	260						
	Mean	SD					
MAE	0.183491	0.206009					
MSE	0.075946	0.165228					
RMSE	0.276						
Pseudo R2	0.119159						
	Freq.	Percent					
Individuals with MAE<0.25	205	78.85					
Individuals with MAE<0.10	129	49.62					
Individuals with MAE<0.05	64	24.62					
EQ-5D CLAD MODEL C							

Variable	Observed	Bias	SE	LCL	UCL	Z	P> z
FSS total score	-0.00757	0.000273	0.001066	-0.01062	-0.00559	-7.1	<0.0001
Age	-0.00423	0.000525	0.001077	-0.0056	-0.00245	-3.92	<0.0001
Gender (female)	-0.00898	0.017491	0.025959	-0.04416	0.033484	-0.35	0.729
Constant	1.233316	-0.06679	0.09793	1.094404	1.353203	12.59	<0.0001
Observations	260						
	Mean	SD					
MAE	0.178599	0.198645					
MSE	0.071206	0.153685					
RMSE	0.267						
Pseudo R2	0.141096						
	Freq.	Percent					
Individuals with MAE<0.25	200	76.92					
Individuals with MAE<0.10	123	47.31					
Individuals with	67	25.77					
WIAE<0.05							
SF-6D OLS MODEL A							
SF 6Dv2	Coef.	SE	t	P>t	LCL	UCL	
FSS total score	-0.00401	0.000542	-7.4	0	-0.00508	-0.00294	
Constant	0.809539	0.026061	31.06	0	0.758044	0.861033	
Observations	152						
	Mean	SD					
MAE	0.068365	0.058008					
MSE	0.008017	0.012791					
RMSE	0.089535						
R2	0.3155						
	Freq.	Percent					
Individuals with MAE<0.25	150	98.68					
Individuals with MAE<0.10	116	76.32					
Individuals with MAE<0.05	74	48.68					
	54.71						
Prob	0						
SF-6D CLAD MODEL A		D :	05				
Variable	Observed	Bias	SE		UCL	Z	P> z
FSS total score	-0.00377	-0.00017	0.000729	-0.00519	-0.002	-5.18	<0.0001
Constant	0.792955	0.009771	0.039386	0.738167	0.886	20.13	<0.0001
Observations	152	0.0					
	Mean	SD					
MAE	0.068255	0.059064					
MSE	0.008124	0.012945					
RMSE	0.09						

Pseudo R2	0.168562						
	Freq.	Percent					
Individuals with MAE<0.25	149	98.03					
Individuals with MAE<0.10	114	75					
Individuals with	70	46.05					
SF-6D CLAD MODEL C							
	Observed	Bias	SE		UCL	Z	P> z
FSS total score	-0.0041	0.000174	0.000789	-0.00546	-0.00302	-5.19	<0.0001
Age	-0.00043	7.25E-05	0.000917	-0.00195	0.001836	-0.47	0.636
Gender (Temale)	0.00184	-0.00312	0.018/11	-0.03795	0.035211	0.1	0.922
Observations	152	-0.0029	0.070100	0.070031	0.992034	10.59	<0.0001
	Mean	SD					
MAE	0.070781	0.063761					
MSE	0.009049	0.014786					
RMSE	0.095						
Pseudo R2	0.169288						
	Freq.	Percent					
Individuals with MAE<0.25	149	98.03					
Individuals with	115	75.66					
Individuals with MAE<0.05	70	46.05					
MSIS-8D CLAD							
Variable	Observed	Bias	SE	LCL	UCL	Z	P> z
FSS total score	-0.00639	-2.8E-06	0.000966	-0.01004	-0.00519	-6.61	<0.0001
Constant	0.939022	0.005128	0.043165	0.903513	1.131484	21.75	<0.0001
Observations	157						
	Mean	SD					
MAE	0.118181	0.094082					
MSE	0.022762	0.044508					
RMSE	0.151						
Pseudo R2	0.180284						
	Freq.	Percent					
Individuals with MAE<0.25	145	92.36					
Individuals with MAE<0.10	79	50.32					
Individuals with MAE<0.05	36	22.93					
MSIS-8D CLAD MODEL C							

Variable	Observed	Bias	SE	LCL	UCL	Z	P> z
FSS total score	-0.00597	-0.00019	0.001074	-0.00897	-0.00435	-5.56	<0.0001
Age	-0.00149	0.000546	0.002014	-0.00385	0.002588	-0.74	0.459
Gender (female)	0.011789	0.01073	0.039513	-0.0528	0.08738	0.3	0.765
Constant	0.974376	-0.02785	0.125225	0.728175	1.13045	7.78	<0.0001
Observations	157						
	Mean	SD					
MAE	0.114289	0.096382					
MSE	0.022292	0.035955					
RMSE	0.149						
Pseudo R2	0.185381						
	Freq.	Percent					
Individuals with MAE<0.25	143	91.08					
Individuals with MAE<0.10	82	52.23					
Individuals with MAE<0.05	49	31.21					

Additional file 5

Scatterplots of observed vs predicted HSVs

Observed EQ-5D vs EQ-5D estimated using CLAD A

Observed MSIS-8D vs MSIS-8D estimated using CLAD A

Observed SF-6D vs SF-6D estimated using OLS A

Observed EQ-5D vs EQ-5D estimated using CLAD C

Observed MSIS-8D vs MSIS-8D estimated using CLAD C

Additional file 6: Observed versus predicted HSVs

