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Abstract

In this work, we present a novel dataset consisting of eye
movements and verbal descriptions recorded synchronously
over images. Using this data, we study the differences in
human attention during free-viewing and image captioning
tasks. We look into the relationship between human atten-
tion and language constructs during perception and sen-
tence articulation. We also analyse attention deployment
mechanisms in the top-down soft attention approach that is
argued to mimic human attention in captioning tasks, and
investigate whether visual saliency can help image caption-
ing. Our study reveals that (1) human attention behaviour
differs in free-viewing and image description tasks. Hu-
mans tend to fixate on a greater variety of regions under
the latter task, (2) there is a strong relationship between de-
scribed objects and attended objects (97% of the described
objects are being attended), (3) a convolutional neural net-
work as feature encoder accounts for human-attended re-
gions during image captioning to a great extent (around
78%), (4) soft-attention mechanism differs from human at-
tention, both spatially and temporally, and there is low
correlation between caption scores and attention consis-
tency scores. These indicate a large gap between humans
and machines in regards to top-down attention, and (5) by
integrating the soft attention model with image saliency,
we can significantly improve the model’s performance
on Flickr30k and MSCOCO benchmarks. The dataset
can be found at: https://github.com/SenHe/
Human-Attention-in-Image-Captioning.

1. Introduction
“Two elderly ladies and a young man sitting at a
table with food on it.”

This sentence is an example of how someone would de-
scribe the image in Fig. 1. Describing images in a few
words and extracting the gist of the scene while ignoring
unnecessary details is an easy task for humans, that can

Recorded Audio description

Image

Text transcription:
Two elderly ladies 
and a young man 
sitting at a table 
with food on it Eye-fixation sequence, from left to right, top to bottom

Figure 1: An example of the data collected in our dataset,
including the image shown to the subject, the subject’s au-
dio description for this image, the textual transcription of
this description, and the sequence of eye-fixations while the
subject watched and described the image.

in some cases be achieved from only a very brief glance.
In a stark contrast, providing a formal algorithm for the
same task is an intricate challenge that has been beyond
the reach of computer vision for decades. Recently, with
the availability of powerful deep neural network architec-
tures and large scale datasets, new data-driven approaches
have been proposed for automatic captioning of images and
have demonstrated intriguing performance [5, 21, 33, 35].
Although there is no proof that such models can fully cap-
ture the complexity of visual scenes, they appear to be able
to produce credible captions for a variety of images. This
raises the question of whether such artificial systems are us-
ing similar strategies employed by the human visual system
to generate captions.

One clue onto how humans perform the captioning task
is through the study of visual attention via eye-tracking.
Attention mechanisms have been studied from different
perspectives under the umbrella terms of visual atten-
tion (bottom-up and top-down mechanisms of attention),
saliency prediction (predicting fixations), as well as eye
movement analysis. A large number of studies in computer
vision and robotics have tried to replicate these capabilities
for different applications such as object detection, image
thumbnailing, and human-robot interaction [1, 2, 3]. There
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has been a recent trend in adopting attention mechanisms
for automatic image captioning e.g. [5, 21, 35]. Such re-
search papers often show appealing visualizations of fea-
ture importance over visual regions accompanied with the
corresponding phrase “mimicking human attention”. One
may ask, “Is this really the same as human attention?” and
“How much such mechanisms agree with human attention
during describing content?”.

In this work, we strive to answer the aforementioned
questions. We establish a basis by studying how humans
attend to scene items under the captioning task.

Our contributions include: i) introducing a dataset with
synchronously recorded eye-fixations and scene descrip-
tions (in verbal form), which provides the largest number
of instances at the moment, ii) comparing human atten-
tion during scene free-viewing with human attention during
describing images, iii) analyzing the relationship between
eye-fixations and descriptions during image captioning, iv)
comparing human attention and machine attention in image
captioning, and v) integrating image saliency with soft at-
tention to boost image captioning performance.

2. Related Work
2.1. Bottom-up attention and saliency prediction

Predicting where humans look in an image or a video
is a long standing problem in computer vision, a review
of which is outside the scope of this manuscript (See [2]).
We review some of the recent works in bottom-up attention
modeling in the following. Currently, the most successful
saliency prediction models rely on deep neural architec-
tures. Salicon [15] is the largest dataset (10k training im-
ages) for saliency prediction in free-viewing. Based on the
Salicon dataset, the SAM model [7] uses an LSTM [12] net-
work, which can attend to different salient regions in the im-
age. Deep gaze II [18] uses features from different layers of
a pre-trained deep model and combines them with the prior
knowledge (center-bias) to predict saliency. He et al. [11]
analysed the inner representations learned by deep saliency
models. These models are trying to replicate the bottom-
up attention mechanism of humans during free-viewing of
natural scenes.

2.2. Neural image captioning

The image captioning task can be seen as a machine
translation problem, e.g. translating an image to an English
sentence. A breakthrough in this task has been achieved
with the help of large scale databases for image captioning
(e.g. Flickr30k [36], MSCOCO [20]) that contain a large
number of images and captions (i.e., source and target in-
stances). The neural captioning models often consist of
a deep Convolutional Neural Network (CNN) and a Long
Short Term Memory (LSTM) [12] language model, where

the CNN part generates the feature representation for the
image, and the LSTM cell acts as a language model, which
decodes the features from the CNN part to the text, e.g. [33].
In this paper, we mainly focus on models that incorpo-
rate attention mechanisms. Xu et al. [35] introduce a soft-
attention mechanism to the approach in [33]. That is, dur-
ing the generation of a new word, based on the previously
generated word and the hidden state of the language model,
their model learns to put spatial weight on the visual fea-
tures. Instead of re-weighting features only spatially, Chen
et al. [5] exploit spatial and channel wise weighting. Lu et
al. [21] utilize memory to prevent the model in attending
mainly to the visual content and enforce it to utilize textual
context as well. This is referred to as adaptive attention.
Chen et al. [6] apply the visual saliency to boost the cap-
tioning model. They use weights learned from saliency pre-
diction to initialize their captioning model, but the relative
improvement is marginal compared to training their model
from scratch.

2.3. Human attention and image descriptions

In the vision community, some previous works have in-
vestigated the relationship between human attention and im-
age captioning (e.g. [28, 13]). Yun et al. [37] studied the
relationship between gaze and descriptions, where the hu-
man gaze was recorded under the free-viewing condition.
In their work, subjects were shown an image for 3 sec-
onds, and another group of participants described the image
content separately. We will refer to their data as sbugaze.
Tavakoli et al. [29] pushed further to investigate the rela-
tion between machine-generated and human-generated de-
scriptions. They looked into the contribution of boosting vi-
sual features spatially using saliency models as a replicate
to bottom-up attention. Abhishek et al. [8] studied the re-
lationship between human attention and machine attention
in visual question answering. Contrary to previous studies,
we focus on the human attention under the image caption-
ing task and investigate the attention behaviour by human
and machine.

In the natural language community, eye-tracking and
image descriptions have been used to study the cause of
ambiguity between languages, e.g. English vs Dutch [23].
Vaidyanathan et al. [30] investigated the relation between
linguistic labels and important regions in the image by uti-
lizing eye tracking data and image descriptions. In contrast
to existing datasets in the natural language processing com-
munity, our dataset features a higher number of instances
and images in total, making it more suitable for vision re-
lated tasks (see Table 1 for a comparison). In contrast to
prior works, we also pursue a different goal which is: under-
standing how well current computational attention mecha-
nisms in image captioning models align with human atten-
tion behaviour during image description task.



Table 1: Comparing our data with other similar datasets.

Dataset # images # subjects # Instances
DIDEC [23] 305 45 4604
SNAG [30] 100 30 3000
sbugaze [37] 1000 3 3000
Ours 4000 16 14000

3. Data Collection
Stimuli: Our collected data is organised in two corpora,
denoted by capgaze1 and capgaze2 respectively. The
capgaze1 corpus is used for analysis in the paper and the
capgaze2 corpus is used for modelling the visual saliency
under the image captioning task. For capgaze1, 1,000 im-
ages were selected from the Pascal-50S dataset [32], which
provides 50 captions per image by humans and annotated
semantic masks with 222 semantic categories (the same im-
ages as in sbugaze). For capgaze2, 3,000 images were ran-
domly chosen from the MSCOCO [20]. Yun et al. [37]
recorded eye movements of subjects during free-viewing
images in Pascal-50S. Thus, we can use capgaze1 to com-
pare human attention under free-viewing or captioning.

Apparatus: Precise recording of subjects’ fixations in the
image captioning task requires specialized accurate eye-
tracking equipment, making crowd-sourcing impractical for
this purpose. We used a Tobii X2-30 eye-tracker to record
eye movements under the image captioning task in a con-
trolled laboratory condition. The eye-tracker was posi-
tioned at the bottom of the laptop screen with a resolution
of 1920 × 1080. The subject’s distance from the screen
was about 40cm. Subject was asked to simultaneously
look at the image and describe it in one sentence in ver-
bal form. The eye-tracker and an embedded voice recorder
in the computer recorded the subject’s eye movements and
descriptions synchronously for each image.

Five subjects (postgraduate students, native English
speakers, 3 males and 2 females) participated in the data
collection for capgaze1 corpus. All five subjects finished
the data collection over all 1,000 images in this corpus.
Eleven subjects (postgraduate students, 3 females and 8
males) participated in the data collection over capgaze2 cor-
pus. Each image in this corpus has the recorded data from
three different subjects. The image presentation order was
randomized across subjects. For each subject, we divided
the data collection into 20 images per session. Before each
session, the eye-tracker was re-calibrated. At the start of
a session, the subject was asked to fixate on a central red
cross, which appeared for 2s. The image was then displayed
on the screen and the subject viewed and described the im-
age. After describing the image, the subject pressed a des-
ignated button to move to the next image in the session. An
example of the collected data is illustrated in Fig. 1. During

Table 2: Assessing quality of the collected captions against
50 ground-truth captions of the Pascal-50S.

Dataset CIDEr METEOR
mean/variance mean/variance

sbugaze [37] 0.938/0.038 0.368/ 0.012
Ours 0.937/0.060 0.366/ 0.015

(a) free (b) cap3s (c) cap

Figure 2: Average fixation map across the whole dataset for
(a) the free-viewing condition, (b) first 3 seconds of image
captioning condition (cap3s), and (c) the whole duration of
captioning condition (cap).

the experiments, subjects often looked at the image silently
for a short while to scan the scene, and then started describ-
ing the content spontaneously for several seconds.

Post-processing: After data collection, we manually tran-
scribed the oral descriptions in capgaze1 corpus into text for
all images and subjects. The transcriptions were double-
checked and cross checked with the images. We used off-
the-shelf part of speech (POS) tagging software [22] to ex-
tract the nouns in the transcribed sentences. We then formed
a mapping from the extracted nouns to the semantic cate-
gories present in the image. For example, boys and girls are
both mapped into the person category.

To check the quality of captions in our collected data,
we compute the CIDEr [31] and METEOR [9] scores of the
collected captions based on the ground truth in Pascal-50S
dataset (50 sentences for each image). To ensure that eye
tracking and simultaneous voice recording have not affected
the quality of captions adversely, we compared our scores
with the scores of sbugaze [37] captions, that were collected
in text form, with asynchronous eye tracking and descrip-
tion collection. Table 2 summarizes the results, showing
that eye-tracking does not appear to distract the subjects as
their descriptions rated comparably to the ones in sbugaze.

4. Analysis

In this section, we provide a detailed analysis of (i) atten-
tion during free-viewing and captioning tasks, (ii) the rela-
tionship between fixations and generated captions, and (iii)
attentional mechanisms in captioning models.



Several cows eating from a trough; Cows eating from 
a trough in a field; Cows feeding out of a pen; Brown 
and white cows in a field eating from a trough; Cows 
eating from a trough

Figure 3: An example of the difference between fixations in
free-viewing and image captioning tasks. From left to right:
original image, free-viewing fixations, first 3s fixations, and
all fixations in the captioning task. The captions generated
by 5 subjects are shown at the bottom.

Table 3: Cross task IOC in terms of AUC-Judd

Reference task
free cap3s cap

free 0.81 0.78 0.75
cap3s 0.84 0.84 0.81
cap 0.84 0.85 0.83

4.1. Attention in free-viewing vs. attention in image
captioning

How does attention differ between free-viewing versus
describing images? We first analyze the differences be-
tween the two tasks by visualizing the amount of atten-
tional center-bias and the degree of cross task inter-observer
congruency (IOC). The sbugaze dataset contains gaze for
a maximum of duration of 3s, in free-viewing condition,
whereas in our experiments, subjects needed on average
6.79s to look and describe each image. To ensure the differ-
ence in gaze locations is not solely due to viewing duration,
we divide the visual attention in the image captioning task
into two cases: i) fixations during the first 3s (cap3s), and
ii) fixations during the full viewing period (cap).

The difference in visual attention between free-viewing
and image captioning is shown in Figs. 2 and 3. We find that
visual attention in free-viewing is more focused towards the
central part of the image (i.e. high centre-bias), while atten-
tion under the image captioning task has higher dispersion
over the whole duration of the task.

Table 3 reports the cross task Inter Observer Congruency
(IOC). To compute cross task IOC, we leave fixations of one
subject in one task out and compute its congruency with the
fixations of other subjects in another task using the AUC-
Judd [4] evaluation score. The results shows that human
attention in captioning task is different than free-viewing.

4.2. Analyzing the relationship between fixations
and scene descriptions

How does task-based attention relates to image descrip-
tion? To answer, we analyze the distribution of fixations
on objects in the scene and the relation between attention

Table 4: Mean attention allocation on different regions (ob-
ject vs background).

D(O)¬D(O)D(B)¬D(B)

free 0.66 0.09 0.14 0.11
cap(3s) 0.68 0.09 0.14 0.09

cap 0.63 0.10 0.16 0.11

Table 5: Attention allocation on described objects based on
the order in which they appear in the description

Noun Order
1 2 3 4 5

cap 0.486 0.201 0.147 0.097 0.053
free 0.502 0.204 0.158 0.107 -

allocation and noun descriptions in the sentences. Given
described objects (D(O)), non-described objects (¬D(O)),
described background (e.g., mountain, sky, wall) denoted
as D(B), non-described background (¬D(B)), and fixated
objects (F (O)), we compare the distribution of the fixation
data on objects and image background in free-viewing, first
3s captioning and full captioning tasks. We compute the
attention ratio for regions of interest as:

attention ratio =
# fixations on a region

# total fixations on the image
(1)

Are described objects more likely to be fixated? Table 4
shows the results in terms of overall attention allocation. As
depicted, in all viewing conditions most of the fixations cor-
respond to objects that are described in the caption. This is
in line with previous findings in [29]: described objects re-
ceive more fixations than background (either described or
not) and non-described objects. When comparing the fixa-
tions in the free-viewing and captioning conditions, we see
that in the first 3s of captioning (the common viewing dura-
tion for free-viewing), slightly more attention is allocated to
the described objects. Analyzing the captioning task for the
full duration, we observe a decrease in the attention allo-
cation on described objects and an increase in the attention
to the described background. This indicates that subjects
are more likely to attend to the items which are going to
be described in the first few seconds, before shifting their
attention towards context-defining elements in the scene.

Are the objects that appear at the start, rather than the end
of the description, more likely to be fixated? Table 5 shows
the magnitude of attention allocation to objects with respect
to their order of appearance in the descriptions (noun order).
We see that nouns that are described first receive a larger
fraction of fixations than the subsequent nouns. The slightly
lower number in the captioning condition is associated with
the change in viewing strategy observed after the first 3s, as
discussed previously.
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Figure 4: From left to right: the nouns described in the caption but not annotated in the image; the fixated objects (top 15)
that have a very high likelihood to be described; the fixated objects that have a very low likelihood to be described.

Table 6: The mean fixation duration (T ) on described ob-
jects vs. non-described objects

¬D(O) D(O)

TF (O) 0.52 s 1.68s

Table 7: The probability of an object being described when
fixated vs. fixated when described.

p(D(O)|F (O), O) p(F (O)|D(O), O)

free 0.56 0.87
cap (3s) 0.48 0.95

cap 0.44 0.96

How much time do subjects spend viewing described
objects? Synchronous eye tracking and description artic-
ulation enables us to investigate the duration of fixations
TF on scene elements, specifically on described and non-
described objects. As shown in Table 6, described objects
attract longer fixations than non-described objects. This in-
dicates that once an important object grabs the attention,
more time is allocated to scrutinize it.

How likely is an object to be described if it is fix-
ated? We compute the probability, p(D(O)|F (O), O)),
and compare it with the probability that an object is fix-
ated when it is described (when it is present in the image),
p(F (O)|D(O), O). In other words, are we more likely to
fixate on what we describe, or to describe what we fixate?
Results are summarized in Table 7. They confirm the expec-
tation that described objects are very likely to be fixated,
whereas many fixated objects are not described. Interest-
ingly, under the image captioning task, more fixated objects
are not described, whereas described objects are more likely
to be fixated.

How often do subjects describe something not annotated
in the image (i.e., not present in the image at all)? Also,
which nouns are described more often and which ones are
less likely to be mentioned? The data is visualized in Fig. 4.
Most occurrences of described but un-annotated nouns are
scene categories and places nouns, that are not annotated

as scene elements (because annotations are local and pixel-
based). One glaring exception to this, where an object not
present in the scene is described, is the special case of ‘cam-
era’. The reference to ‘camera’ is often associated with cap-
tions that refer to the photographer taking the picture. Since
the word camera in this case denotes a property of the scene
rather than the material object (here actual camera), we can
loosely construe such cases as a scene category.

4.3. Comparing human and machine attention

How similar are human and machine attention in image
captioning? This section describes two analyses performed
to answer this question.

4.3.1 Attention in the visual encoder

An overlooked aspect in previous research is the amount of
saliency that may have been encoded implicitly within the
visual encoder of a deep neural network. Consider the situ-
ation where a standard convolutional neural network (CNN)
architecture, often used for encoding visual features, is used
to provide the features to a language model for captioning.
We ask (1) to what extend does this CNN capture salient
regions of the visual input? and (2) how well do the salient
regions of the CNN correspond to human attended locations
in the captioning task?

To answer these questions, we first transform the col-
lected fixation data into saliency maps by convolving them
with a Gaussian filter (sigma corresponding to one degree
of visual angle in our experiments). Then, we threshold the
saliency map by its top 5% value and extract the connected
regions. We then check how well the activation maps in the
CNN, here layer conv5-3 of the VGG-16 [27] (including
512 activation maps) correspond to the connected regions.
To this end, for each connected region, we identify if there
is an activation map that has a NSS score [4] higher than a
threshold (here T=4) within that connected region. If there
exists one, then the corresponding connected region is also
attended by the CNN. We report how many regions in im-
ages attended by humans are also attended by machine, as
well as the mean highest NSS score of all the connected



Table 8: Attention agreement between human and the visual
encoder (pre-trained CNN).

percentage mean value
free 72.5% 5.43

cap3s 78.1% 5.62
cap 77.9% 5.61

Figure 5: Example of human attention under captioning
task and VGG-16’s attention. From left to right: image,
human attended regions, and VGG-16 attended regions that
best correlated with each human attended region.

Table 9: Spatial attention consistency evaluation for
bottom-up saliency model (SalGAN), and top-down at-
tention captioning model (Soft-attention). Evaluated by
NSS/s-AUC.

Ground truth
Model free-viewing image captioning

SalGAN 1.929/0.72 1.618/0.677
Soft-attention 1.149/0.622 1.128/0.622

regions in all images (each connected region has a high-
est NSS score from 512 activation maps). We use fixation
maps from free-viewing attention (free), first 3s fixations
under the captioning task (cap3s), and the fixations of the
whole duration of the image captioning task (cap). Results
are shown in Table 8. It can be seen that there exists a large
agreement between internal activation maps of the encoder
CNN and the human attended regions (over 70%). Interest-
ingly, despite not fine-tuning the CNN for captioning, this
agreement is higher for the task-based eye movement data
than that for free-viewing fixations (See example in Fig. 5).

4.3.2 Attention in image captioning models

How well does the top-down attention mechanism in the au-
tomatic image captioning model agree with human attention
when describing images? We study the spatial and tempo-
ral consistency of the soft-attention mechanism in [35] with
human attention in image captioning.

Spatial consistency: We assess the consistency between
the spatial dimension of human attention and machine. For
machine, the spatial attention is computed as the mean
saliency map over all the generated words. We compute
the NSS and s-AUC [4] over this saliency map using human

Figure 6: Example of spatial attention difference. From left
to right: original image, attention in free-viewing, attention
in image captioning, saliency map predicted by SalGAN,
and saliency map from top-down image captioning model.

fixations. We also compare with bottom-up saliency models
by computing the NSS and s-AUC over the saliency maps of
SalGAN [25], a leading saliency model without centre-bias.

Table 9 summarizes the consistency of the saliency maps
generated by a standard bottom-up saliency model (trained
on free-viewing data) [25] and a top-down soft attention im-
age captioning system [35], with ground truth saliency maps
captured either in the free-viewing or the captioning condi-
tion (full duration). Interestingly, the bottom-up saliency
obtains higher scores on both free-viewing and task-based
ground-truth data. In other words, a bottom-up model is a
better predictor of human attention than the top-down soft-
attention model, even for the captioning task. Fig. 6 illus-
trates some example maps.

0.62

A group of cows grazing in a filed

0.51 0.4
0.33

0.53 0.82

Human
attention
sequence

Machine
attention
sequence

Machine
captioning

…

…

…

…

Figure 7: Example of Dynamic Time Warping between hu-
man attention and machine attention. Top row is the human
attention sequence on the image when describing the image,
the bottom row is the top-down model’s attention sequence
when generating the caption for the image, the number be-
sides each blue arrow is the distance for each warping step.

Temporal consistency: What is the temporal difference
between human and machine attention in image caption-
ing? Here, for the human fixation data, we split the se-
quence of fixations by intervals of 0.5s using the recorded
sample time stamps. The fixations of each interval are then
transformed into separate saliency maps, resulting in a se-
quence of saliency maps. For machine attention, we use
the sequence of generated saliency maps during the scene
description. We, then, employ Dynamic Time Warping
(DTW) [24] to align the sequences and compute the dif-
ference between them. Fig. 7 shows this process for an
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Figure 8: Correlation between machine-human attention
congruency (spatial and temporal) and machine perfor-
mance on image captioning (CIDEr score).

example sequence. We report the distance between each
frame pair as 1 − SIM(hi,mj), where hi is the ith frame
in the human attention sequence, mj is the jth frame in
the machine attention sequence, and SIM is the similarity
score [4] between the two attention maps. The final dis-
tance between two sequences is the total distance divided
by the path length in DTW. Our analysis shows a mean dif-
ference of 0.8, which is significantly large and demonstrates
that the two attention patterns differ significantly over time.

Correlation between machine captioning performance
and machine-human attention congruency: Is the con-
sistency between the machine and human subjects’ attention
patterns a predictor of the quality of the descriptions gener-
ated by the machine? To answer this question, we compute
the Spearman correlation coefficient between the machine
performance on each image instance in terms of caption
quality (CIDEr score) and the consistency of machine atten-
tion (spatial and temporal) with human (NSS score for spa-
tial consistency, DTW distance for temporal consistency).
Results are visualized in Fig. 8, indicating a very low coef-
ficient, 0.01 and -0.05 for spatial and temporal attention, re-
spectively. In other words, there seems to be no relation be-
tween the similarity of the machine’s attention to humans’
and the quality of the generated descriptions.

4.4. Can saliency help captioning?

Based on the analytical result in Table 7, 96% of de-
scribed objects are fixated (87% in free-viewing), which
means the image saliency map provides a prior knowledge
of where to attend in image captioning. In contrast, the soft-
attention models for image captioning first treat all regions
equally, before re-weighting each region when generating
each word. Here, we check if image saliency can help image
captioning by proposing a generic architecture, which com-
bines the visual saliency and soft-attention mechanism for
image captioning as depicted in Fig. 9. Our architecture has
three parts: a saliency prediction module (SPM), a percep-
tion module (PM), and a language model (LM). In the SPM
part, we train a saliency prediction model on the capgaze2
corpus to predict a saliency map for each image1. From this

1We adopt the model in [11] for saliency prediction

saliency map, we use a “winner-take-all” approach [17] to
extract a set of fixated locations (FL) for each image. We
denote those locations as:

FL = {(x1, y1),· · · , (xi, yi),· · · , (xN , yN )} (2)

For each fixated location in the image, we apply a foveation
transformation [34], producing a set of foveated images (FI)
for those fixated locations:

FI = {FI1,· · · , F Ii,· · · , F IN} (3)

We further process each foveated image with a pre-trained
CNN, yielding a K dimensional vector for each foveated
image. Finally, for each image, we have a set of foveated
representations (FR):

FR = {FR1,· · · , FRi,· · · , FRN} (4)

The bridge between our SPM and LM is a learned
perception module (PM), parameterized by a function f ,
in which we used a Localised Spatial Transformer Net-
work [14] (LSTN). For each fixated image location (xi, yi),
the PM generates an affine transformation (Ai), based on
the corresponding FRi, to perceive a region centred at the
fixated location:

Ai =
[
f(FRi) (xi, yi)

>]
=

[
θi11 θi12 xi
θi21 θi22 yi

]
(5)

Each perceived region is then processed by a feature extrac-
tion network, and represented by a vector of dimension K.
Finally, for each image, it has a set of feature vectors (FV):

FV = {FV1,· · · , FVi,· · · , FVN} (6)

The LM is a LSTM with a soft attention module (parame-
terized by a learned function att). The soft attention mod-
ule receives the FV as input. Based on the hidden state
of LSTM (h) and each feature vector in FV, LM gener-
ates a weight (w) for each feature vector and then takes the
weighted sum of those feature vectors (WSFV) in FV to up-
date the LSTM state and to generate the next word:

wi = att(FVi,h) (7)

WSFV =
1

N

N∑
i=1

wi · FVi (8)

The only difference between our model and the original soft
attention model in [35] is that our attention module only em-
phasizes salient regions guided by the SPM and perceived
by PM, whereas the original soft attention model empha-
sizes all regions in the image when generating each word.



Saliency prediction

A 
man 
standing 
in 
front 
of 
a 
birthday 
cake

Language 
model

“Winner-take-all "
and 

foveation transformation

Feature extraction

…
…

…
… Feature 

extraction

𝐹𝑉#

𝐹𝑉$

𝐹𝑉%

…
…

Soft
attention

Input 
image

FL and FI Perceived regions
FV

FR

Perception 
module

(𝐴')FL

Figure 9: Architecture of the proposed method

Our architecture is trained in two stages. In the first
stage, we train the SPM, and extract the FL and FR. Then,
the PM and LM are trained jointly by minimizing the cross
entropy loss of the caption generation. The pre-trained fea-
ture extraction for FV and FR is resnet-18 [10], which trans-
form each foveated image and each perceived region into a
512 dimensional feature vector. The learning rate is set to
10−3, and is decreased by a factor of 0.8 every 3 epochs.
Early stopping is used if the BLEU-4 [26] score does not
increase in five consecutive epochs. Our model is trained
and tested on Flickr30k and MSCOCO benchmarks using
the Karpathy et al.’s split [16].

Four metrics are used for evaluation, including BLEU-
4 (B4), ROUGEL (RG) [19], METEOR (MT), and CIDEr
(CD). We also consider the use of free-viewing saliency in
the image captioning (i.e. saliency prediction model trained
on Salicon [15] database).

The performance of our architecture is shown in Table 10
and 11. Our baseline model is the soft attention model
in [35] (for fair comparison, we re-implement this model
with resnet-18 as backbone 2). Our model significantly im-
proves the performance of the soft-attention model by in-
tegrating a bottom-up saliency approach to the soft atten-
tion model. The model using task saliency (saliency predic-
tion model trained on our capgaze2 corpus) performs better
than the one trained using free-viewing saliency—although
the difference is not large. Our model is a general architec-
ture, which could easily be integrated with other CNN back-
bones or the adaptive attention mechanism in [21]. We also
believe that the architecture can be applied to other tasks
where visual saliency is important.

5. Discussions and Conclusion
In this paper, we introduced a novel, relatively large

dataset consisting of synchronized multi-modal attention
and caption annotations. We revisited the consistency be-
tween human attention and captioning models on this data,

2Implemented using the code from: https://github.com/
sgrvinod/a-PyTorch-Tutorial-to-Image-Captioning

Table 10: Performance on Flickr30k testing dataset (ours-
free means saliency prediction model trained on free-
viewing saliency database)

Model B4 MT RG CD
baseline(soft attention) 0.191 0.171 0.419 0.352

ours-free 0.213 0.175 0.431 0.403
ours 0.22 0.184 0.441 0.416

improvement 15.2% 7.6% 5.3% 18.2%

Table 11: Performance on MSCOCO testing dataset

Model B4 MT RG CD
baseline(soft attention) 0.281 0.223 0.496 0.81

ours-free 0.297 0.234 0.511 0.889
ours 0.303 0.238 0.518 0.907

improvement 7.8% 6.7% 4.4% 12%

and showed that human eye-movements differ between im-
age captioning and free-viewing conditions. We also re-
confirmed the strong relationship between described objects
and attended ones, similar to the findings that have been ob-
served in free-viewing experiments.

Interestingly, we demonstrated that the top-down soft-
attention mechanism used by automatic captioning systems
captures neither spatial locations nor the temporal proper-
ties of human attention during captioning. Also, the similar-
ity between human and machine attention has no bearing on
the quality of the machine generated captions. Finally, we
show that attune soft attention captioning models to image
saliency, demonstrating significant performance improve-
ment to the purely top-down soft attention approach.

Overall, the proposed dataset and analysis offer new per-
spectives for the study of top-down attention mechanisms in
captioning pipelines, providing critical hitherto missing in-
formation that we believe will assist further advancements
in developing and evaluating image captioning models.
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