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Emergent constraints underreport uncertainty and are based on strong, unrealistic statistical 

assumptions, but they need not be. We show how to weaken the assumptions and quantify 

important uncertainties while retaining the simplicity of the framework.

HOW ARE EMERGENT 
CONSTRAINTS QUANTIFYING 

UNCERTAINTY AND WHAT DO 
THEY LEAVE BEHIND?

Daniel B. Williamson and Philip G. Sansom

Emergent constraints have become a popular and 
controversial topic within the climate science 
community over the last number of years (Hall 

and Qu 2006; Wenzel et al. 2016; Cox et al. 2018). For 
some policy relevant quantity that we cannot observe 
now, for example equilibrium climate sensitivity 
(ECS), researchers seek to discover whether there are 
observations that we can make that would quantify or 
constrain our uncertainty in that quantity.

To answer this question, the community has 
looked to the ensembles of the Coupled Model In-
tercomparison Projects CMIP3 (Meehl et al. 2007) 
and CMIP5 (Taylor et al. 2012), and now CMIP6 
(Eyring et al. 2016). The idea is to find a (typically 
linear) “emergent” relationship across the models 
between the quantity of interest (QoI; e.g., ECS) and 
something that can be measured. For example, Hall 
and Qu (2006) found that the current seasonal cycle 
had a linear relationship with snow albedo feedback 
in CMIP models. Cox et al. (2018) relate ECS to a 
particular metric of climate variability. Once such a 
relationship is found, the models are used to estimate 
it via regression. Observations from the real world, 
coupled with the regression produce a constraint on 
the QoI in reality.

There are a number of reasons that this practice 
has caused controversy. One is the way in which the 
constraints are found. Some use physical reasoning 
to show that we would expect a linear relationship 
between model quantities, and then look to confirm 
this through the ensemble (e.g., Cox et al. 2018). 
Others have suggested data mining be used to find 
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them (e.g., Karpechko et al. 2013). Hall et al. (2019) 
highlight the importance of understanding the physi-
cal basis for emergent relationships. We discuss these 
ideas later. Another source of controversy is the sim-
plicity of the treatment versus the complexity of the 
models and the quantities of interest. The argument 
is that the observed relationships are not emergent 
from the physics and hence predictive, but a result 
of the interaction of many different processes, well 
captured in the models or not, which must be better 
understood in order to say something about reality. 
A final concern is that emergent constraints actually 
underestimate uncertainty. Several authors have at-
tempted to quantify the effect of uncertainty in the 
observations themselves without a formal statistical 
framework (e.g., Brient and Schneider 2016; Wenzel 
et al. 2016; Cox et al. 2018). Bowman et al. (2018) 
constructed a statistical framework for emergent 
constraints that properly accounts for uncertainty in 
the observations, but neglects other sources that we 
seek to address here.

In this paper we will explain the underpinning 
statistical assumptions and judgements that lead to 
the existing emergent constraints model. We will 
highlight the different sources of uncertainty that 
should be present when finding emergent constraints 
and show where they can enter the usual framework. 
We will argue for a simple generalization to existing 
methods that allows hitherto neglected uncertainties 
to be quantified and then compare results from this 
extended model to existing results in the literature. 
Our goal is to translate the existing underpinning 
statistical assumptions behind emergent constraints 
and then place them in a more general framework 
that allows all assumptions for any emergent con-
straint analysis to be transparently understood. Our 
framework highlights all sources of uncertainty and 
offers methodology for guided quantification of these 
additional uncertainty sources. To accompany the pa-
per we present an open-source software tool capable 
of fitting the general emergent constraints model to 
user-inputted data that allows users to explore the 
effects of all sources of uncertainty on the analysis. 
Whether the statistical assumptions themselves are 
valid for any particular emergent constraint, or at 
all when using CMIP and observations in this way 
is a question for the climate community to resolve. 
This paper and its accompanying software can help 
to frame this discussion.

In the second section we present the strong statis-
tical assumptions behind emergent constraints and 
generalize the framework by weakening them. We 
show where key uncertainties were being ignored 

and show how they can be quantified going forward. 
In the third section we apply the generalized frame-
work to the emergent constraint on ECS recently 
presented by Cox et al. (2018) to demonstrate the 
effect of acknowledging additional sources of uncer-
tainty. In the fourth section we discuss quantifying 
these additional sources of uncertainty and present 
a default guided specification which is available 
to use through our software tool. In the fifth sec-
tion we apply the new framework to a collection of 
constraints on ECS from the literature and discuss 
the interpretation of different emergent constraints 
analyses for the same quantity. The final section 
contains a discussion. The appendix contains some 
of the mathematical results used to derive our more 
general framework. The software tool and user in-
structions are available at https://github.com/ps344 
/emergent-constraints-shiny.

EXCHANGEABILITY AND EMERGENT 
CONSTRAINTS. Emergent constraints are formed 
through relationships between climate models. Sup-
pose we have an ensemble of climate models of size 
n. From each model we can obtain the value of a pre-
dictor (something we can observe) xi, and a response 
(e.g., ECS) yi, for i = 1,…, n. The general concept is 
to use this ensemble data to fit a regression model:

yi = β0 + β1 xi,     i = 1,…, n, 

and use this model to “constrain” uncertainty for 
the response in the real world, y*, given a value for 
the predictor from the real world, x*. But what kinds 
of assumptions are required to underpin such an 
approach and in what contexts might they be valid?

Ordinary least squares and classical regression. Least 
squares estimates of β = (β0, β1)

T can be obtained 
without any assumptions, simply by minimizing the 
sum of squared distances between the yi and the βTxi 
[where xi = (1, xi)

T ], leading to well-known formulae 
for estimates β^ (see, e.g., Draper and Smith 1998). 
Using such estimates to account for uncertainty in 
other models or reality, however, requires a statistical 
model to formalize the underpinning assumptions.

A classical regression assumes that for the true β, 
the errors from the fit are independent and normally 
distributed with common variance

yi = βTxi + ei,     ei ~ N(0, σ2).

The maximum likelihood estimator β^ then coincides 
with the least squares estimator, and prediction 
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intervals can be constructed for unobserved models 
or even reality y* (at x*), if they are assumed to be 
independent draws from the same error distribution. 
But, what might fitting this model require us to as-
sume about the climate models?

There are two ways to treat the models so that fit-
ting this type of regression would make sense, and 
we will argue that, when unpacked, neither stand 
up to scrutiny. The first is to assume the existence of 
a large population of models from which we obtain 
independent random samples through CMIP. Reality 
is then another independent random draw from the 
same population that the models come from. Lack 
of independence is well documented across climate 
models so that, if we did believe the existence of 
such a population, we are sampling a narrow part of 
it and the regression model is simply not true. If the 
model is right but the sample is biased, we cannot 
conclude anything about the model parameters and 
hence the underlying population of models without 
modeling the bias specifically. We know there is 
no “random sample,” the models that are in CMIP 
were specifically designed. That reality should be an 
independent draw from the population of models 
with the same error structure is indefensible and 
against everything we know about models and their 
relationship to reality. But what does the population 
of models argument mean anyway? What counts as 
a model from the population? Is there a resolution 
dependence, or a modeled process dependence? Does 
the population include future models at new resolu-
tions we cannot currently run? These questions have 
yet to be addressed.

A second way to treat the models that does not 
require a large population sampled independently 
would be to assume that the models themselves are 
random. For this interpretation, uncertainty arises 
through the random nature of the climate model 
as it deviates from the line βTx. As the models are 
deterministic, this randomness can only come from 
initial condition uncertainty leading us to view the 
deviation as the result of observing a random point 
on each model’s attractor, and the line representing 
the mean of the attractor as it changes with x. Note 
this implies every model’s attractor has the same 
“variability” (σ2), a claim that is difficult to defend.

More natural is a Bayesian approach in which we 
acknowledge that, before we observe the models, we 
are uncertain as to what their xi and yi values will be, 
just as we are uncertain about the corresponding x* 
and y* values for reality. We do not need to view any 
of these values as random and coming from some 
distribution; they can be fixed and deterministic. 

To quantify uncertainty through probabilities, the 
key concept here is the prior judgement of exchange-
ability between the responses given the predictors. 
Exchangeability is a weak assumption that amounts 
to indifference over labels (de Finetti 1974, 1975). 
Here it says that, for any i, j, we think that no infor-
mation about the pairs (yi, xi) and (yj, xj) is encoded 
in their labels i and j. Hence, if xi and xj took the 
same value, our distribution for yi and yj would be 
the same a priori.

Here the i and j are the labels for the different 
climate models, so applying this assumption for an 
emergent constraint means that if the value of the 
predictor turned out to be the same for any subset 
of models, there is nothing else that we know about 
those models that would lead us to change our dis-
tribution for the response before seeing the model 
responses. On the other hand, a view that a particu-
lar model better represented various processes might 
break exchangeability if, that is, it could be articu-
lated, for a given x how the better representation of 
processes would change our view of the distribution 
for y|x. For example, we might think feedbacks were 
captured that raised/lowered the expectation for y 
compared with a model with a poorer representa-
tion. The key difference here between classical 
independence and Bayesian exchangeability is that 
the former is a property of the models and the way 
they are chosen, and the latter is a property of the 
beliefs of the analyst before he/she has observed the 
data from the models.

Coupled with the assumption that there is a linear 
relationship between xi and yi, this type of exchange-
ability implies

	 E[yi|xi] = βTxi.

Assuming that yi|xi are independent and identically 
distributed, as in the classical setting, trivially implies 
exchangeability. To make use of the weaker exchange-
ability assumption without assuming independence, 
de Finetti’s representation theorem and its various 
generalizations (Hewitt and Savage 1955; Diaconis 
and Freedman 1980) imply that given exchangeability, 
there exists a probability model p(y|x, θ), considered 
to be a limit of a function of the yi and a prior distri-
bution on θ, π(θ) so that

p y y x x p y x dn n i i
i

n

1 1
1

, , , , | , .� �� � � � � � �
�
�� �� �� ���

We include this result for interest only. From a 
practical perspective it means that for exchangeable 
quantities we can behave as if a finite collection is an 
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independent random sample from some probability 
model, parameterized with θ and with a prior distri-
bution on θ, π(θ).

In the case of emergent constraints, we might view 
the symmetry and ubiquity of the Normal distribu-
tion as attractive for our choice of distribution and set

	 y x Ni i i, , ,θθ ∼ ( )βTx σ 2 	 (1)

where θ = {β, σ2} and we choose a prior π(β, σ2) to 
encode any prior information that we have. This 
is the Bayesian version of the regression problem 
and, though perhaps unusual at first, is, as argued 
above, based on much weaker assumptions than 
the classical version. What’s more, if the usual so-
called “reference” prior, π(β, σ2) ∝ 1/σ2 is used, the 
classical analysis and the Bayesian analysis coincide 
(see, e.g., Bernardo and Smith 1994; Gelman et al. 
2013). So we can view the current approach used to 
model emergent constraints as Bayesian with the 
reference prior on the regression and variance pa-
rameters. We discuss physically motivated priors in 
the “Confidence-linked default priors for physically 
motivated constraints” section.

Emergent constraints and exchangeable reality. The 
standard procedure in the emergent constraints 
literature is to assume reality, y*, follows the same 
regression as the other models. From the statistical 
view we have given, this implies that y* is assumed 
to be exchangeable with all of the climate models 
given x*. Usually x* is taken to be the observed pre-
dictor [though Wenzel et al. (2016) and Cox et al. 
(2018) numerically integrate out variability in x* 
and Bowman et al. (2018) provide a framework that 
includes modeling x* explicitly, as we will later], and 
then the regression is used to predict y* and calculate 
prediction intervals.

Taking the stronger classical version of this as-
sumption first, reality is assumed to be an indepen-
dent draw from the same distribution that the models 
were drawn from. This is the strongest possible form 
of assumption linking models and reality and does 
not seem defensible, or necessary given that it implies 
the weaker exchangeability assumption that we shall 
argue against below.

Rather than assume reality is an independent draw 
from the distribution of the models, we could assume 
conditional exchangeability of y* given x* with the yi 
given xi. This would amount to the view that there are 
no processes systematically missing from the models, 
but present in reality, that might cause us to view the 
behavior of the real world to be distinguishable from 

that of the models. Rougier et al. (2013) dismissed 
this idea out of hand, yet it is the weakest form of the 
key assumption driving the calculations currently 
performed for emergent constraints. We propose a 
general framework to aid our discussion of the issues.

Suppose we believe the physical insight behind 
the linearity assumption for our emergent constraint 
so that

	 y*|x*, β*, σ*2 ~ N(β*Tx*, σ*2)	  (2)

was a sensible model, but the regression coefficients 
and the error standard deviation, β* = (β0*, β1*)T and σ* 
were uncertain. Suppose, further, that we believe that 
the relationships across the models are informative 
for the relationships in reality, but not necessarily the 
same. A natural way to express this through a statisti-
cal model is to state

	 β*|β ~ N(β, Σβ*), 

where       Σβ* = 		  (3)

and	 σ σ σ σ σ ξ�2 2 2 2 2 0= + ∼ ( )R R, , ,HN � 	 (4)

with � �
� �0 1
 ,  , and ρ* representing ways in which 

missing or incorrectly parameterized processes across 
models might change the emergent relationship, and 
ξ* acknowledging structural uncertainty that simply 
makes us more uncertain about what reality might do 
even having observed the models. HN here indicates 
the Half-Normal distribution which shares the form 
of the PDF of the traditional Normal distribution, but 
with support restricted to σ > 0, (Gelman 2006). Note 
that one would be free to change these distributions 
to incorporate specific physical knowledge where 
available, but these assumptions are both natural (the 
reality coefficients are centered on the model coeffi-
cients, but uncertain, and the variance for reality is at 
least as big as the model uncertainty), and sufficient 
to illustrate a point.

The current exchangeability between models and 
reality assumed within the literature is recovered if 
the extra sources of uncertainty � �

� �0 1
 ,  , and ξ* 

in Eqs. (3) and (4) are collapsed to zero. In the “Priors 
for the real world” subsection, we argue that ρ*, the 
correlation between the intercept β0* and slope β1*, 
should be fixed at the value estimated from the models. 
Parameter �

�0
  captures our uncertainty about missing 

processes that might cause all models to under or over 
estimate the response yi, independent of the predictor 

� � � �

� � � �
� � �

� � �

0 0 1

0 1 1

2

2

  

  





�

�

�
�

�

�

�
�
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xi, for example, we might believe that a certain missing 
process will cause all models to underestimate ECS by 
2 K. Parameter �

�0
  captures our uncertainty about 

missing processes that might alter the gradient of the 
constraint, for example, we might believe that there 
are additional feedbacks acting on y* and depending 
on x* that are missing from the models. Parameter ξ* 
captures our uncertainty about how far y* might lie 
from the true regression line, even if we knew the true 
relationship perfectly: for example, due to insufficient 
model resolution or missing processes not directly re-
lated to x* or y*. If even one systematic bias in models, 
or one missing process known to affect the response, 
can be acknowledged by a researcher or the wider 
community, then clearly the standard emergent con-
straints approach is underreporting uncertainty. We 
demonstrate this in the “Illustration using a recently 
found emergent constraint” section using a recently dis-
covered emergent constraint on ECS (Cox et al. 2018). 
In the “Confidence-linked default priors for physically 
motivated constraints” section, we propose a default 
approach to setting sensible values for � �

� �0 1
 ,  , and 

ξ*, in the absence of strong beliefs about specific biases 
or missing processes.

A complete framework for emergent constraints. We pro-
pose to use the extended emergent constraints frame-
work described by the statistical model in Eqs. (1) 
and (2). We discuss general priors for the model pa-
rameters, π(β, σ2), in the “Confidence-linked default 
priors for physically motivated constraints” section 
and in the illustration that follows we shall use the 
reference prior described above (so our regression for 
the models will coincide with the classical analysis). 
We use the model for β* given by Eq. (3) and, instead 
of Eq. (4), we use a Folded Normal distribution for σ*,

	  σ σ σ ξ� ∼ ( )FN , .� 	 (5)

The Folded Normal is a generalization of the Half-
Normal distribution centered on σ instead of zero 
with density

	 p σ σ
πξ ξ

σ σ
ξ
σ σ� � �( ) = − −( )







+ − +( )


















1
2

1
2

1
2

2 2
exp exp ,, .σ � ≥ 0��� 	

	                            p σ σ
πξ ξ

σ σ
ξ
σ σ� � �( ) = − −( )







+ − +( )


















1
2

1
2

1
2

2 2
exp exp ,, .σ � ≥ 0���

We prefer this to the more natural formulation in 
Eq. (4) because it does not introduce extra param-
eters; does not bound σ* below by σ, which may not 
be appropriate in some circumstances; is strictly 
positive; and tends to the normal distribution when 

σ is relatively larger than 2√
–
ξ*. Keeping our modeling 

choices within the Normal family enables researchers 
to more easily fit their own distributions by thinking 
about means and standard errors for unknowns. We 
say more about this in the “Confidence-linked default 
priors for physically motivated constraints” section.

To account for the uncertainty in the observations, 
let x* be the true value of the predictor in reality and 
z an imperfect observation of it. The simple measure-
ment model

	 z N x z� � � , ,� 2 	 (6)

with given error variance σ2
z  accounts for the obser-

vation uncertainty. Often this error might be quite 
large, particularly if the “observation” really comes 
from reanalysis. To complete the Bayesian model, 
a prior on the mean x* should be given. A natural 
specification is

	 x N x x
 � � �� �, ,2 	 (7)

with the interpretation that, before we see the data, 
our best guess for real world x* is μx ± 2σx. In situa-
tions where x* must respect physical constraints (e.g., 
being strictly positive), other distributions can be 
used, without affecting the generality of the frame-
work, or our methods of inference. Choosing a ref-
erence prior π(x*) ∝ 1 recovers the usual emergent 
constraints model, and so we use this in our reference 
calculations throughout.

In any particular problem, we specify the rest of 
our prior uncertainty through the quantities Σβ*, ξ*, 
and σ2

z in Eqs. (3), (5), and (6) respectively (we shall 
demonstrate specification of these in our example 
below and more generally in the “Confidence-linked 
default priors for physically motivated constraints” 
section). Letting (Y, X) represent the ensemble, we 
can then use Bayesian software Stan (Carpenter et al. 
2017) to generate samples from the posterior predic-
tive distribution p(y*|z, Y, X). We give an integral 
expression for this in the appendix.

The code we have provided with this paper samples 
from this distribution and is sufficiently flexible that 
any of the distributional assumptions we have made 
(such as the use of Normal and Half-Normal distri-
butions) can be easily altered if required. The app we 
have provided allows users to add their own emergent 
constraint data and to experiment with the different 
sources of uncertainty for themselves. What follows 
is an illustration of these ideas through a reexamina-
tion of the Cox et al. (2018) constraint accounting for 
different levels of uncertainty.
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ILLUSTRATION USING A RECENTLY 
FOUND EMERGENT CONSTRAINT. We 
start with the Ψ statistic presented by Cox et al. 
(2018) as an emergent constraint on climate sensi-
tivity. The Ψ is a metric of temperature variability 
(standard deviation of global temperature divided 
by the negative root one year lag autocorrelation of 
temperature), with a given physical justification for 
why it should have a linear relationship with ECS 
(though some dispute that justification as part of 
the discussion to that paper).

We begin by introducing what we view as sensible 
uncertainty judgements, adding the uncertainty in 
layers so that the effects on the constraint can be ob-
served. Throughout, the reference model refers to the 
standard emergent constraints model computed by 
sampling from the posterior under the reference prior. 
Note, throughout, that the reference prior on the re-
gression coefficients [π(β, σ2) ∝ 1/ σ2] with π(x*) ∝ 1 
and with Σβ* and ξ* in Eqs. (3) and (5) collapsed to 
zero recovers the usual emergent constraints model.

We use the HadCRUT4 dataset tabulated in Cox 
et al. (2018) to give the observations, z = 0.13 K, and 
their uncertainty σz = 0.016 K, in Eq. (6). For our non-
reference calculations we set µx = 0.15 K and σx = 1 K 
in Eq. (7), based on Fig. 2a of Cox et al. (2018), which 
shows model time series of Ψ (the data are estimated 
using a moving average approach) across CMIP5, that 
are all centered between 0.1 and 0.5 K but with an av-
erage of around 0.15 K (by eye). By setting a prior that 
covers all of the models with much larger uncertainty 

than an expert may set, we ensure our analysis is not 
sensitive to the prior choice (the observation variance 
is orders of magnitude smaller and so this will not 
change the posterior very much). Figure 1 shows the 
posterior distribution of the emergent constraint with 
these prior choices and reference priors elsewhere. 
The shading represents the 66% Bayesian prediction 
interval [the probability that ECS is inside the interval 
is 0.66, corresponding to the IPCC’s “likely” range 
and chosen to mirror Cox et al. (2018)], with the red 
curve and shading representing our model with the 
informed prior on x* and the black curve represent-
ing the Bayesian reference model that coincides with 
the usual analysis. The reference model gives the 
same interval as reported in Cox et al. (2018), [2.20, 
3.41 K] [black shading (left plot) and black contour 
(right plot)]. We overlay our model results in red 
with the same median estimate 2.80 K and interval 
of [2.20, 3.41 K].

Acknowledging additional uncertainty. Instead of as-
suming no uncertainty for β*|β and σ*|σ, we look 

Table 1. Posterior means and stan-
dard deviations for the model regres-
sion parameters.

Parameter Mean Std dev

β0
1.23 0.47

β1
12.08 2.65

σ 0.59 0.12

Fig. 1. (left) Posterior density for ECS given the models and the observations under the reference prior and with 
all other uncertainties reduced to 0 K (black) and our model with x* ~ N(0.15,1) (red). The shading represents 
the 66% Bayesian prediction intervals under the two models. (right) The Cox constraint vs ECS. Black dots 
are the CMIP5 models, the gray dots are samples from our posterior distribution for ECS. Blue vertical lines 
represent the uncertainty on the observation of the Cox constraint and the straight red lines are the median 
and prediction intervals for the regression relationship for reality. The red and black contours represent the 
uncertainty on ECS as it depends on the Cox constraint, with black belonging to the reference model and red, 
our model.
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at the effect on the emergent constraint of adding a 
“reasonable” amount by specifying nonzero Σβ* and ξ* 
in Eqs. (3) and (5). In the “Confidence-linked default 
priors for physically motivated constraints” section 
we offer a principled approach to setting values for 
these quantities, which will require a number of ad-
ditional arguments and results. For illustration here, 
we shall define reasonable in terms of the relation-
ship of these “reality parameter” uncertainties to the 
regression parameter uncertainties that come from 
the Bayesian model.

Having fit the Bayesian regression, we have our 
beliefs about the relationship between the models 
through samples from the posterior π(β, σ|Y), which 
can be used to calculate posterior means and stan-
dard deviations for the parameters, shown, for the 
Cox et al. (2018) constraint in Table 1. The posterior 
correlation between β0 and β1 is ρ^ = –0.95.

We begin with the scenario where, given the val-
ues of β and σ, we would have the same uncertainty 
(in terms of standard deviations) for β* and σ* as we 
currently do for β and σ, using the numbers in Table 1 
and a correlation of ρ* = ρ^ = –0.95 to construct Σβ* and 
ξ. This effectively doubles the marginal variance for 
β* and σ*. The emergent constraint in this scenario is 
shown in Fig. 2 and has a 66% interval [2.17, 3.43 K]. 
We can see from the interval and from the plots that, 
though we have acknowledged additional uncer-
tainty at a level that may seem reasonable to some, the 
emergent constraint is hardly changed. Increasing all 
uncertainties by 10% leaves the intervals unchanged 
(not shown).

Note that even with the additional uncertainty 
specification given above, we are still virtually certain 
that the emergent constraint exists in reality given 
the expected value of the models, that is, our mean 
for β1* would be 12.08 K and our standard deviation 

would be 3.75 K. For there to be no relationship 
(β1* crosses 0 K) in reality under this model would 
involve roughly a four standard deviation event, 
or a probability of 6.34 × 10−4! Setting the standard 
deviation of β1* so that no relationship in reality is a 
two standard deviation event (≈2.5% chance) and a 
one standard deviation event (≈16.6% chance), and 
setting the standard deviation of β0* at 1 and 2 K for 
these scenarios respectively (based on an argument 
that says if β1* = 0, then β0* should be our current best 
guess for ECS, which we will make more carefully in 
the “Confidence-linked default priors for physically 
motivated constraints” section), gives 66% prediction 
intervals of [2.10, 3.50 K] and [1.88, 3.73 K] respec-
tively. These constraints are shown in Fig. 3 (note 
we added no additional uncertainty for σ* for these 
calculations).

This example shows that not-insignificant ad-
ditional uncertainty can be acknowledged for an 
emergent constraint, without dramatically changing 
the conclusions of the analysis. However, there are 
clearly sensible levels of additional uncertainty that 
could matter to an emergent constraint. In any given 
application, what should the additional uncertainty 
be? This is a fair question that might often receive 
the answer “that depends on the beliefs of the scien-
tist.” While it is hard to argue with this answer and, 
while acknowledging that any firm beliefs of the 
scientist that can be captured with the parameters 
above and openly defended should be used, we think 
there is a place for sensible default settings for these 
uncertainties that can be used and understood by 
any practitioner. The risk of not having such defaults 
is that these real additional uncertainties continue 
to be swept under the carpet by the community 
and set to zero. We present and justify our default 
choices below.

Fig. 2. As in Fig. 1, but with the posterior uncertainties for the regression parameters adopted for the condi-
tional variances of the reality parameters.
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CONFIDENCE-LINKED DEFAULT PRIORS 
FOR PHYSICALLY MOTIVATED CON-
STRAINTS. The app that accompanies this paper al-
lows the user to work with reference priors throughout 
and allows all of the quantities that we’ve introduced by 
hand to be set manually, giving the user ultimate con-
trol and the freedom to express their judgments. For 
the model regression parameters we go no further than 
this. In the first subsection, we describe useful subjec-
tive default priors for the regression, but we believe that 
in many instances ensemble sizes will be sufficient to 
enable the relatively safe use of the reference prior. For 
the reality relationships our app offers a third, guided 
specification option, based on the arguments and 
results from the “Priors for the real world” subsection.

Priors for the model relationships. Though the reference 
prior is often deemed the “objective” prior choice for 
regression, it actually imparts far less information 
than any scientist is capable of. For example, the 
prior states that all intervals of the same width on 
the real line are equally likely to contain the true in-
tercept and slope, which is preposterous given even a 
rudimentary knowledge of the scale of the predictors 

and responses we might see in the models. Physical 
knowledge of the response should at least be able to 
bound the prior support for β and σ2. For example, 
consider finding an emergent constraint for ECS. 
We might view it (nearly) impossible that ECS in any 
model were outside of the range [0, 10 K]. So if there 
were no constraint at all, σ2 should be such that the 
ensemble mean ECS ±3σ did not cross both bounds.

A natural choice of prior is

	 β ~ N(μ, Σβ), where Σβ = 










σ σ σ ρ

σ σ ρ σ
β β β

β β β

0 0 1

0 1 1

2

2 	(8)

and μ = (��0
, ��1

)T. We set ��1
 = 0 to ensure that “no 

relationship” is the most likely outcome a priori and 
that the sign of the constraint will be dictated by the 
data. Parameter ��0

 can be set to 0, with ��0
 used to 

set limits on the prior support for the intercept, or 
physical arguments such as, “if the predictor were 
zero what would you expect the response to be” used 
to fix these elements of the prior. Parameter ��0

 
can be used to bound the prior support as discussed 
above. We would recommend setting the prior cor-
relation ρ = 0, as negative values would indicate a 
linear relationship was expected and will appear in 

Fig. 3. (top) Emergent constraint plots given a 2.5% chance of no constraint. (bottom) Emergent constraint 
plots given a 16.6% chance of no constraint.
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the posterior when the constraint is estimated if that 
is the case.

As argued by Gelman (2006), a natural choice of 
prior for σ is a Half-Normal prior,

	 � �� � �HN 0 2, ,s 	 (9)

where the Half-Normal distribution shares the form of 
the PDF of the traditional Normal distribution, but with 
support restricted to σ > 0. Though this choice does not 
lead to analytically tractable Bayesian updating, as with, 
say, an inverse gamma prior, giving a limit to σs is far 
easier to do for a user, and modern inference with Stan 
(Carpenter et al. 2017) is extremely fast for problems 
of this size and type. We apply these ideas to choose a 
subjective prior for the Cox constraint in the models 
in the “Application to the Cox constraint” subsection.

Priors for the real world. Equations (2), (3), and (5) 
gave a model for reality y* as a regression on some 
predictor x*, with “reality parameters” β* and σ*, 
that we link to the output of the models. But the in-
terpretation, particularly for β* could be problematic. 
Succinctly, how can there be a regression relationship 
between x* and y* in reality when there is only one 
reality (one x* and one y*)? The following construct 
offers us a way to think about this statistical model.

Suppose, for the generation of models in our en-
semble, the values of β and σ could be made known 
to us (e.g., through many more models of the current 
generation being included in the sample). At some 
future time, an ensemble of the next generation of 
models will be made available to the community and 
we can reexamine our emergent constraint, finding 
β′ and σ′. We expect the next generation of models to 
represent physical processes better. Some models will 
have higher resolution, others will have used the inter-
vening years to develop new parameterizations that 
overcome known structural biases in their models. If 
β′ and σ′, could be made known to us, we would expect 
them to be different from β and σ, as the new physics in 
the models alters the relationships, even if we may not 
know if the improved physics would make the slope of 
the constraint stronger or weaker. We might consider 
β* and σ* to be the model parameters at the limit of the 
process of improving all of the models and submitting 
large ensembles. This idea is similar to that introduced 
as “reification” by Goldstein and Rougier (2009) (where 
there is discussion of why this theoretical limit should 
not be reality itself). By considering how different the 
relationship could be from one generation of models 
to the next, we may be more easily able to consider the 
effect of missing processes on the relationship and more 

comfortably able to conceptualize how/why β* might 
be different from β (and similar for σ*).

If limiting relationships between model processes 
are not a helpful thought construct for considering 
beliefs about β* and σ*, a practitioner could consider 
the effects of missing processes in the models on the 
constraint. For example, suppose we knew that a 
systematically missing or misrepresented process led 
to the response (ECS, say), being 2 too high for every 
model, but the slope of the line was capturing the 
underlying physical relationships perfectly. Then we 
would want to increase β0* by 2 to account for this. 
Similarly, if a feedback process that would strengthen 
(or weaken) the physical constraint were missing, we 
would want to adjust β1* appropriately. In this way, 
uncertainty on β* and σ* can be considered in terms 
of whether the current models accurately measure the 
perceived constraint.

We present arguments for sensible default priors for 
β* and σ* that depend on the level of confidence we 
have in the physical reasoning leading to the existence 
of the emergent constraint in the models transferring 
to reality (or the relationship between different classes 
of models at the conceptual limit of improvement). Our 
basic argument will be that, for constraints that were 
effectively data-mined using the current ensemble, we 
should have low confidence in their holding in the real 
world (or the next generation of models), and for those 
based on purely physical reasoning we might have a 
greater degree of confidence. To enable us to talk about 
our confidence in a constraint given the ensemble and 
to enable other researchers to make similar arguments 
or debate the level of confidence that should be present, 
we require further probabilistic arguments.

Suppose

	 β*|β ~ N(β, Σβ*) and β ~ N(B, Σβ),

then the marginal distribution for β* is

	 β* ~ N(B, Σβ + Σβ*).

See the appendix for a proof of this result. This result 
is relevant because, given the ensemble, (X, Y), we 
would expect

	 β|(X, Y) ∙~ N(β
^
, Σ

^

β), where

	 Σ
^

β = 
σ σ σ ρ

σ σ ρ σ
β β β

β β β

0 0 1

0 1 1

2

2









^ ^ ^ ^

^ ^^^

 and
	

	 β
^
 = (β

^

0, β
^

1)T.
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This is a well-known limiting property of Bayesian 
analyses for large data and is the basis of the Laplace 
approximation (Gelman et al. 2013), but is particu-
larly good for this type of quantity. Its veracity can 
be checked by looking at the posterior samples, a fea-
ture available in the software tool that accompanies 
the paper. Hence, having seen the constraint on the 
models, we set

	 β*|(X, Y) ~ N(β
^
, Σ

^

β  + Σβ*).

A subtle point here is that we are assuming that the 
model for β* in Eq. (3) is a prior model conditioned 
on the ensemble (X, Y) (and it will be similar for 
σ*), rather than a prior we adopt before we see the 
ensemble. We believe this is the right assumption to 
use and reflects how emergent constraints research is 
done in practice. Having found a linear relationship 
between a predictor and a response in the ensemble 
(whatever physical arguments led you to look), you 
must then decide what this tells you about the real 
world. The posterior mean and variance of β, β

^
, and 

Σ
^

β , respectively, are easily computed from the poste-
rior samples, and are provided in the data summary 
in the accompanying software. It remains to specify 
the prior covariance matrix for reality Σβ* , parameter-
ized by �

�0
  and �

�1
  in Eq. (3).

Our “guided” expert judgements involve eliciting 
a researcher’s confidence in the constraint holding 
in the real world (in the sense we made clear above). 
We use “confidence” here in a similar way to the 
IPCC, and will consider levels “virtually certain,” 
“very likely,” “likely,” with these words implying the 
same probability levels as they do in the IPCC (99%, 
90%, 66%). Suppose we have a 100(1 – α)% confidence 
level in our emergent constraint being real. We will 
interpret this as an interval for β1* of [0, T] (for a posi-
tive constraint), so that the confidence indicates the 
probability of the constraint crossing zero and thus 
disappearing (we do not need to consider or find T). 
This probability is P(β1* < 0) = α/2. So, for example, 
suppose you are virtually certain that your constraint 
holds in reality, then α = 0.01 and P(β1* < 0) = 0.005. 
Given the Normal marginal distribution for β1* de-
scribed above, standard calculations give

	 σ
β

α
σ

β β
1 1

2 1
2

2
2

2
� =

( )
−−

^

^

Φ

where Φ(·) is the CDF of the standard Normal dis-
tribution.

The same mathematics governs the marginal 
distribution for β0*, however, the same sign changing 

argument does not work for the intercept. Instead, 
we consider the effect on the intercept β0* if the slope 
β1* were to change sign. In that case, and as the slope 
moved through zero, the intercept should move 
toward our current expectation for the response. 
So, for ECS and with a positive constraint, β1*, as 
that constraint reduced, the intercept, β0*, should 
increase and cross our current mean for ECS (3 K, 
say) at β1* = 0. Given the confidence in the constraint 
as above, and a response with current expectation μy*, 
we set P(β0* ≥ μy*) ≥ α/2, giving

	  σ
µ β

α
σ

β β
0 0

2 0

2

2
2

1 2
�

�

=
−( )
−( )

−−

y

^

.
Φ

^

We set the correlation ρ* between β0* and β1* to be 
equal to that of the models ρ^, which in our experience 
is usually large and negative, reflecting the geometry 
of fitting straight lines, rather than any particular 
judgements about the variability.

As discussed in the appendix, for σ*| σ ~ FN(σ, ξ*) 
and σ ~ FN(s, ξ), the marginal distribution for σ* is

	
σ* ~ FN(s, ξ + ξ*). 

This relationship is useful if we find σ|(Y, X) to be 
approximately Folded Normal, which we have found 
to be a reasonable approximation in practice. When 
it is, we fit s^ and ξ

^
 using the regression samples nu-

merically. Given a 100(1 – α)% confidence level in the 
constraint (as discussed above), we consider an argu-
ment based on the prior uncertainty of the response 
for fixing ξ*. If the constraint, β1*, were really zero, our 
model for the response would be a mean (β0* = μy*), 
as argued previously, with uncertainty around that 
mean represented by σ*. The final judgement our 
guided elicitation therefore requires is a judgement 
for how uncertain the response is currently, via a 
standard deviation, σy*. Note that both μy* and σy*, 
because they pertain to the response (e.g., ECS), 
could be found via a literature review or even IPCC 
summaries, as we will use for the Cox constraint.

Having obtained σy*, we set ξ* using the condition

	 P(σ* > σy*) ≥ α/2

so that the confidence is linked to whether the con-
straint actually reduces uncertainty in the response. 
We set this numerically as there is no analytic expres-
sion for the inverse CDF of the Folded Normal. In 
guided elicitation mode, the app that accompanies 
the paper requires only μy*, σy*, and a confidence level 
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in the constraint (any is possible but the 
defaults use the IPCC levels) to complete 
the emergent constraints model.

Application to the Cox constraint. Applying 
the ideas from the “Priors for the model re-
lationships” subsection, we use the following 
simple arguments to set Σβ  and σs. We know 
from previous IPCC reports that models 
typically have a climate sensitivity “around” 
3 K and that an ECS of 10 K or a negative 
ECS would be hugely surprising (in a CMIP model). 
Under a naive assumption that each model ECS was a 
uniform draw from [0, 10 K] with no emergent signal 
at all, the regression should fit a mean of around five 
with no slope and the residual standard deviation, σ, 
should be around 2.5 K (so that two standard devia-
tions covers the interval). This is a “worst-case” type 
regression where the data are far more spread than 
anyone familiar with ECS could possibly expect, and 
no signal at all. We can therefore set σs = 2.5 K as a 
weakly informative prior on σ in Eq. (9).

Parameter Ψ is on the order of 0.1 K, and ECS 
is on the order of 1 K. Hence, as Ψ changes, when 
multiplied by β1, we should still expect a change that 
is on the order of 1 K. Thus, if there is a relationship, 
β1 should not be more than order 10. To be cau-
tious and only weakly informative, we set the prior 
standard deviation ��1

 = 34 K in Eq. (8) so that a β1 
value on the order of 100 is a three standard deviation 
event. Note the expectation is 0 and so, in the prior, 
a negative relationship is as likely as a positive one. 
It is only the magnitude of the possible relationships 
that we control.

Given changes in ECS that are order 1 K  at most, 
we would expect the intercept, β0 to be order 1 K  for 
ECS. To allow for the possibility of strong negative 
effects, we set a very cautious prior standard devia-
tion of ��0

 = 5 K, in Eq. (8) so that the event that the 
absolute value of the intercept is greater than 10 K 
is a two standard deviation event. Prior predictive 
checks (available in the app) show that this prior on 
the models offers a huge range of potential ECS and 
relationships, while being sensible. The posterior in 
this case is almost identical to the reference analysis, 
perhaps because the signal is clear and the ensemble 
is sufficiently large.

For the guided real world uncertainty specifica-
tion, we interpret the IPCC likely range for ECS of 
[1.5, 4.5 K] as implying a central estimate of μy* = 3 K 
and a standard deviation of σy* = 1.5 K. Table 2 shows 
the 66%, 90%, and 95% prediction intervals under 
four different confidence levels. What we refer to as 

“coin flip” is a 50% confidence level, though we use 
50.1% to avoid numerical issues in our estimation 
procedure. We say more about this option in the 
discussion.

The posterior distributions for ECS under the three 
main levels of confidence are given in Fig. 4 and the 
updated intervals for the Cox et al. (2018) constraint are 
given in Table 2. We see in all cases that acknowledg-
ing the additional uncertainty inflates the posterior 
distribution and the intervals, but not so much as to 
remove the constraint. In all cases, having some physi-
cal confidence behind the constraint is enough to en-
sure that something is learned from the analysis. This 
is even true in the coin-flip scenario, which leads to a 
note of caution that we expand upon in the discussion: 
if constraints have been data-mined from an ensemble 
rather than physically motivated, we do not think this 
procedure should be used at all. Even fitting the model 
and specifying some level of confidence requires a 
strong scientific statement that one must be prepared 
to back up with physical reasoning, that is, one conse-
quence of the emergent constraints framework, even 
our generalized one, is that the central estimate will be 
determined by the observations and will not be altered 
by the confidence level.

For the Cox et al. (2018) constraint in particular, 
we do not offer any judgements as to what the confi-
dence in the constraint should be, as we are not physi-
cists. If the physical reasoning is sound, however, we 
do insist that the reference model, with all legitimate 
reality uncertainties ignored, is not appropriate.

EMERGENT CONSTRAINTS IN THE LIT-
ERATURE. In this section we apply our extended 
framework to selected emergent constraints for 
equilibrium climate sensitivity published within the 
literature. We only select constraints published with 
respect to CMIP5 models and we do not include 
CMIP3 results within the constraints, which may lead 
our reference intervals to differ from those published. 
The constraints we choose are the sum of large- and 
small-scale indices for lower tropospheric mixing 

Table 2. Bayesian prediction intervals for ECS using the 
Cox et al. (2018) emergent constraint with four different 
confidence levels in the physical arguments behind the 
constraint.

Confidence 66% interval 90% interval 95% interval

Virtually certain [2.17, 3.43 K] [1.55, 4.05 K] [1.21, 4.39 K]

Very likely [2.08, 3.51 K] [1.33, 4.26 K] [0.89, 4.70 K]

Likely [1.80, 3.76 K] [0.80, 4.79 K] [0.19, 5.40 K]

Coin flip [1.53, 4.06 K] [0.31, 5.27 K] [−0.41, 5.99 K]
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(Sherwood et al. 2014), the temporal covariance of 
low cloud reflection with temperature (Brient and 
Schneider 2016), the double intertropical convergence 
zone bias (Tian 2015), and the seasonal variation of 
marine boundary layer cloud fraction with SST (Zhai 
et al. 2015). The observations and their standard 
deviations that we used for each constraint are given 
in Table 3.

The results of applying our extended framework 
for emergent constraints to these data are given as 

66% prediction intervals in Table 4, and shown as 
PDFs in Fig. 5, for different levels of confidence in 
the physical arguments behind the constraints. From 
the figure we see that in cases where we weaken the 
confidence in the constraint but where the 66% in-
terval remains relatively unchanged, the effect of the 
additional uncertainty has been to inflate the tails so 
that our probability of extreme ECS has increased.

We have compared these analyses on alternative 
emergent constraints on ECS for two reasons. First, 

Fig. 4. (top) Emergent constraint plots for ECS given Ψ under a confidence level of virtually certain in the exis-
tence of the constraint. (middle) As in (top), but under a very likely confidence level. (bottom) As in (top), but 
with a confidence level of likely. The black lines and shading represent the reference model.
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to show that the effect of acknowledging reason-
able doubt into the existence of each constraint, as 
discussed via the method of the “Priors for the real 
world” subsection, is to inflate the prediction inter-
vals, but by a small amount rather than an amount 
that points to no result. We can say that emergent 
constraints have underreported uncertainty in the 
past, but through the given framework, in the future 
they need not so long as researchers are willing to 
state their confidence in the underlying physical 
argument for the linear relationship.

Our second reason is to highlight that published 
constraints can lead to quite different probability 
distributions over ECS (e.g., Sherwood predicts a 
higher climate sensitivity and Cox predicts a much 
lower climate sensitivity), and to make it clear that 
these distributions are not compatible in any sense. 
In each analysis, the authors have made (implic-
itly) quite different and incompatible conditional 
exchangeability judgements for ECS given their 
individual predictors, leading to different models 
that capture residual variability as Normal with zero 
mean. A meta-analysis or review of this literature 
for ECS that sought to give an idea of the current 
uncertainty in ECS itself, might stray into somehow 
combining these intervals or central estimates to 
give an objective view of the state of the science. This 
would be particularly troublesome if that combina-
tion put more weight on intervals that overlapped. 
Each interval must be thought of as the scientific 
judgements of the author, based on their confidence 
and a transparent set of statistical assumptions, 
as outlined in the “Exchangeability and emergent 
constraints” section. A form of meta-analysis might 
seek to take the individual judgements of a group 
of scientists and summarize them, but that would 
not lead to an objective uncertainty assessment for 
ECS, but rather an honest survey of the opinions of 
different scientists asserted with perhaps differing 
levels of confidence and based on transparent as-
sumptions and beliefs.

As noted by a reviewer, each of the posterior dis-
tributions from the different emergent constraints on 

ECS are symmetric about a central estimate and this 
may not be a realistic quantification of uncertainty for 
ECS. More realistic may be that the posterior should 
be skewed with a longer tail on higher climate sen-
sitivities. Though our folded normal representation 
for σ* breaks the usual symmetry in Normal models, 
the correct place to establish this type of scientific 
uncertainty judgement within the model is to change 
the Normal assumption for y*|x* in Eq. (2) (normal-
ity across the models need not be changed). The 
linear mean might still be used and our arguments 
for uncertainty on the intercepts and slopes would 
be transferable, but a lognormal or shifted gamma-
type structure could be used to describe reality given 
the observations. A benefit of our having formally 
provided the statistical modeling behind emergent 
constraints is that practitioners can clearly see which 
elements of the modeling can be changed in order to 
capture different types of assumptions.

DISCUSSION. In this paper we sought to unwrap 
the underpinning statistical assumptions behind the 
use of emergent constraints to quantify uncertainty 
for key unknowns in the climate system. We dis-
cussed the strong foundational assumptions under-
pinning the usual classical regression analysis and the 
interpretation of the real world as a random sample 
from the distribution of models. We argued that these 
ideas were too difficult to defend objectively.

We presented the Bayesian view of emergent con-
straints, and the far weaker and more reasonable a 
priori conditional exchangeability judgements that 
would lead to regression analyses that coincided 

Table 4. Bayesian 66% prediction intervals for ECS for different published emergent constraints using the 
reference model and three different confidence levels in the physical arguments behind the constraint as 
per our extended framework.

Constraint Reference interval Virtually certain Very likely Likely

Sherwood et al. (2014) [3.59, 5.02 K] [3.42, 5.18 K] [3.19, 5.48 K] [2.61, 6.04 K] 

Brient and Schneider (2016) [3.10, 4.31 K] [3.06, 4.37 K] [2.90, 4.55 K] [2.52, 4.88 K] 

Tian (2015) [2.66, 4.14 K] [2.65, 4.17 K] [2.56, 4.25 K] [2.27, 4.54 K] 

Zhai et al. (2015) [2.52, 4.33 K] [2.52, 4.33 K] [2.53, 4.30 K] [2.48, 4.35 K] 

Table 3. Observations and standard deviations 
used in our analyses of four emergent constraints 
from the literature.

Constraint Obs (z) Std dev (σz)

Sherwood et al. (2014) 0.825 K 0.072 K

Brient and Schneider (2016) −0.960 K 0.220 K

Tian (2015) 1.000 K 0.500 K

Zhai et al. (2015) −1.285 K 0.565 K
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with the classical analysis under reference priors 
and showed how, under this framework, standard 
emergent constraints analyses ignored the key 
uncertainties present when there are potential 
structural deficiencies in the current generation 
of models. We presented a generalized framework 
for emergent constraints that acknowledged these 
additional uncertainties, yet collapsed back to the 
standard model when these uncertainties were set 
to zero.

Our modeling looks to adopt the prior judgement 
that the emergent constraint is informative for reality 
after having observed the ensemble, to avoid incoher-
ent models for reality beforehand and to acknowledge 
that these judgements should only be made sparingly. 
We also believe that this is how scientists think about 
emergent constraints. As one scientist put it to us by 
email, “nobody publishes an emergent constraint that 
doesn’t correlate.”

We presented a guided prior uncertainty specifica-
tion that links confidence in the physical reasoning 
for a linear relationship between the response and 
the constraint to reasonable additional uncertainties 
through judgements about the response itself which 

are either simple to specify or generally available 
through literature review. We have developed a soft-
ware tool that allows users to do this for themselves, 
and have ensured that this tool also allows scientists 
full freedom to specify any levels of uncertainty 
on any of the parameters that they wish, if they do 
not want to follow our guided specification. Our 
tool is simple to use and we will maintain it for the 
community through GitHub. When scientists have 
specific judgements relating to the models and their 
deficiencies, we would recommend using our tool 
and a structured prior elicitation (Gosling 2018) to 
quantify these effects.

Our modeling accounts for parameter uncertainty, 
observation uncertainty and uncertainty about how 
the emergent relationship observed in the models ap-
plies to the real world. Sansom et al. (2019) also dem-
onstrate that emergent constraints can be sensitive to 
uncertainty in the values of the model predictors xi 
(i = 1,…, n). Our method can be readily extended to 
account for these errors in variables without effecting 
the guided uncertainty specification, since only the 
model posterior distribution of the parameters given 
the models π(β, σ|Y, X) will change.

Fig. 5. Posterior probability density functions for ECS found for four different emergent constraints (colors) 
and four different levels of confidence in the constraint. The solid line in each case is the reference analysis.
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The arguments in this paper make it very clear that 
strong scientific judgement is implied when linking 
models to reality, particularly when claiming that a 
linear relationship between quantities across models 
indicates a physical relationship. Data mining for 
constraints may very well lead to a multiple testing 
problem. A simple numerical experiment can be used 
to illustrate the point. Generating 430,000 (normal) 
random numbers and stacking these into a matrix with 
43 rows, generates a pseudo ensemble with 43 members 
and with no physical links between the 10,000 outputs. 
Looking at the maximum absolute correlation between 
outputs across the ensemble will usually return correla-
tions between 0.70 and 0.85, well above the threshold 
for relationships for an emergent constraint. To base 
the strong beliefs required to take this relationship into 
the real world (in the way we have made clear) on only 
the discovery of a large correlation cannot be justified. 
For that reason, even specifying a low confidence in 
the constraint through our guided framework would 
still be inappropriate. See also Caldwell et al. (2014) for 
discussion of this point.

One criticism of emergent constraints is that they 
are overly simple, ignoring complex nonlinearities 
or interactions with processes that are not yet well 
understood or resolved by models. We do not fully 
agree with this criticism. When the linear relation-
ship can be well established through mathematical 
and physical arguments, the conditional exchange-
ability judgements we have explained in this paper, 
amounting to indifference over labels and, though 
appreciating that the relationship will not be exactly 
linear, having no strong judgements as to systematic 
deviations from it, seem plausible in many situations. 

While the models and reality themselves may well be 
more complex, that does not invalidate the statistical 
model which, rather than making strong statements 
about how reality/the models actually behave, cap-
tures our current knowledge and can be defended 
on those grounds. Of course, more complex forms 
of regression could be used within the framework 
we discuss, but the implied beliefs and the way these 
will be amended for transferring the constraint from 
models to reality will be far more complex and dif-
ficult to defend.

We hope that by making the required statistical 
assumptions clear and transparent, the validity of any 
given constraint, new or existing, can be discussed by 
the community in terms of the physical reasoning, 
the reasonableness of the exchangeability judge-
ments, and the confidence in the current generation 
of models and linear relationship for a given quantity. 
By making software available to the community, we 
hope to help this debate move forward by allowing 
different researchers to look at the sensitivity of inter-
vals to these judgements and to form their own views.
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The software tool, user instructions, and data for the 
Cox et al. (2018) example are available at https://github.com 
/ps344/emergent-constraints-shiny.

APPENDIX: MATHEMATICAL DETAILS. Posterior predictive sampling. The posterior predictive dis-
tribution for reality given the models and observations is expressed by the following integral:
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Our software samples from each distribution within this factorization to provide posterior predictive 
samples.

Bayesian updates. As argued in the “Confidence-linked default priors for physically motivated constraints” 
section, if

	 β*|β ~ N(β, Σβ*) and β ~ N(B, Σβ)

then, the marginal distribution for β* is

2585AMERICAN METEOROLOGICAL SOCIETY |DECEMBER 2019

https://github.com/ps344/emergent-constraints-shiny
https://github.com/ps344/emergent-constraints-shiny


REFERENCES

Bernardo, J. M., and A. Smith, 1994: Bayesian Theory. 
Wiley, 675 pp.

Bowman, K. W., N. Cressie, X. Qu, and A. Hall, 2018: 
A hierarchical statistical framework for emergent 
constraints: Application to snow-albedo feedback. 
Geophys. Res. Lett., 45, 13 050–13 059, https://doi 
.org/10.1029/2018GL080082.

Brient, F., and T. Schneider, 2016: Constraints on climate 
sensitivity from space-based measurements of low-
cloud reflection. J. Climate, 29, 5821–5835, https://
doi.org/10.1175/JCLI-D-15-0897.1.

Caldwell, P. M., C. S. Bretherton, M. D. Zelinka, S. A. 
Klein, B. D. Santer, and B. M. Sanderson, 2014: Sta-
tistical significance of climate sensitivity predictors 
obtained by data mining. Geophys. Res. Lett., 41, 
1803–1808, https://doi.org/10.1002/2014GL059205.

Carpenter, B., and Coauthors, 2017: Stan: A probabilis-
tic programming language. J. Stat. Software, 76 (1), 
https://doi.org/10.18637/jss.v076.i01.

Cox, P. M., C. Huntingford, and M. S. Williamson, 
2018: Emergent constraint on equilibrium climate 
sensitivity from global temperature variability. 

	 β* ~ N(B, Σβ + Σβ*).

To show this, we have

p p p d� �

� �
� �

( ) = ( ) ( )

= ( ) − −( ) −(
−∞

∞

− −
−

∫
2 1

2
1 1 2

1π exp
T ))








( ) − −( ) −( )







= −

−∞

∞

− − −

∫

2 1
2

1 1 2 1π exp

exp

TB B d

A 11
2

21 1 1 1T T
� �

�− − − −

−∞−

∞
+( ) − +( )











∫ B dβ β ββ

β

β β β

β β

β

β β

βββ

β β β β

β β β β β

ΣΣ

Σ Σ

Σ ΣΣΣ

where
A = ( ) − +( )








− − − − −2 1
2

2 1 2 1 2 1 1π � �
� �exp T TB B .ββ ββββΣ Σ Σ Σ

Completing the square for the integrand, it becomes proportional to a Normal distribution in β and so the 
integral becomes

2 1
2

1 2 1 2 1 2
1 1 1 1

1
π( ) + +( ) +( )−

− − − −
−

� � � �
�exp

T
B �

�− −+( )







1 1Bβ βββββ β βββ β βΣ Σ Σ Σ Σ Σ Σ Σ Σ Σ

Combining with the constant, collecting the exponential terms and simplifying gives

p � � �
� �( ) = ( ) + − −( ) +( ) −( )








− − −
2 1

2
1 1 2 1

π exp
T

B Bβ ββ β β β βΣ Σ Σ Σ

proving the result. For the Folded Normal result of the “Priors for the real world” subsection, the technique 
is the same (not shown), though the integral in that case is removed by expressing the integrand as a term 
proportional to the PDF of a Folded Normal (rather than a Normal).

Nature, 553, 319–322, https://doi.org/10.1038/nature 
25450.

de Finetti, B., 1974: Theory of Probability. Vol. I, John 
Wiley & Sons, 300 pp.

—, 1975: Theory of Probability. Vol II, John Wiley & 
Sons, 375 pp.

Diaconis, P., and D. Freedman, 1980: Finite exchange-
able sequences. Ann. Probab., 8, 745–764.

Draper, N. R., and H. Smith, 1998: Applied Regression 
Analysis. 3rd ed., John Wiley & Sons, 736 pp.

Eyring, V., S. Bony, G. A. Meehl, C. A. Senior, B. Stevens, 
R. J. Stouffer, and K. E. Taylor, 2016: Overview of the 
Coupled Model Intercomparison Project phase 6 
(CMIP6) experimental design and organization. Geos-
ci. Model Dev., 9, 1937–1958, https://doi.org/10.5194 
/gmd-9-1937-2016.

Gelman, A., 2006: Prior distributions for variance pa-
rameters in hierarchical models. Bayesian Anal., 1, 
515–534, https://doi.org/10.1214/06-BA117A.

—, J. B. Carlin, H. S. Stern, D. B. Dunson, A. Vehtari, 
and D. B. Rubin, 2013: Bayesian Data Analysis. 3rd 
ed. Chapman and Hall/CRC, 675 pp.

2586 | DECEMBER 2019

https://doi.org/10.1029/2018GL080082
https://doi.org/10.1029/2018GL080082
https://doi.org/10.1175/JCLI-D-15-0897.1
https://doi.org/10.1175/JCLI-D-15-0897.1
https://doi.org/10.1002/2014GL059205
https://doi.org/10.18637/jss.v076.i01
https://doi.org/10.1038/nature25450
https://doi.org/10.1038/nature25450
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.5194/gmd-9-1937-2016
https://doi.org/10.1214/06-BA117A


Goldstein, M., and J. C. Rougier, 2009: Reified Bayes-
ian modelling and inference for physical systems. 
J. Stat. Plann. Inference, 139, 1221–1239, https://doi 
.org/10.1016/j.jspi.2008.07.019.

Gosling, J. P., 2018: SHELF: The Sheffield Elicita-
tion Framework. Elicitation: The Science and Art 
of Structuring Judgement, L. C. Dias, A. Morton, 
and J. Quigley, Eds., Springer, 61–93, https://doi 
.org/10.1007/978-3-319-65052-4_4.

Hall, A., and X. Qu, 2006: Using the current seasonal 
cycle to constrain snow albedo feedback in future 
climate change. Geophys. Res. Lett., 33, L03502, 
https://doi.org/10.1029/2005GL025127.

—, P. Cox, C. Huntingford, and S. Klein, 2019: Pro-
gressing emergent constraints on future climate 
change. Nat. Climate Change, 9, 269–278, https://doi 
.org/10.1038/s41558-019-0436-6.

Hewitt, E., and L. J. Savage, 1955: Symmetric measures 
on Cartesian products. Trans. Amer. Math. Soc., 80, 
470–501, https://doi.org/10.1090/S0002-9947-1955 
-0076206-8.

Karpechko, A. Y., D. Maraun, and V. Eyring, 2013: 
Improving Antarctic total ozone projections by 
a process-oriented multiple diagnostic ensemble 
regression. J. Atmos. Sci., 70, 3959–3976, https://doi 
.org/10.1175/JAS-D-13-071.1.

Meehl, G. A., C. Covey, K. E. Taylor, T. Delworth, R. J. 
Stouffer, M. Latif, B. McAvaney, and J. F. B. Mitchell, 
2007: The WCRP CMIP3 Multimodel Dataset: A new 
era in climate change research. Bull. Amer. Meteor. 
Soc., 88, 1383–1394, https://doi.org/10.1175/BAMS 
-88-9-1383.

Rougier, J. C., M. Goldstein, and L. House, 2013: Second-
order exchangeability analysis for multimodel en-
sembles. J. Amer. Stat. Assoc., 108, 852–863, https://
doi.org/10.1080/01621459.2013.802963.

Sansom, P. G., D. B. Stephenson, and T. J. Bracegirdle, 
2019: On constraining projections of future climate 
using observations and simulations from multiple 
climate models. J. Amer. Stat. Soc., in press.

Sherwood, S. C., S. Bony, and J.-L. Dufresne, 2014: 
Spread in model climate sensitivity traced to at-
mospheric convective mixing. Nature, 505, 37–42, 
https://doi.org/10.1038/nature12829.

Taylor, K. E., R. J. Stouffer, and G. A. Meehl, 2012: An 
overview of CMIP5 and the experiment design. 
Bull. Amer. Meteor. Soc., 93, 485–498, https://doi 
.org/10.1175/BAMS-D-11-00094.1.

Tian, B., 2015: Spread of model climate sensitivity 
linked to double-intertropical convergence zone 
bias. Geophys. Res. Lett., 42, 4133–4141, https://doi 
.org/10.1002/2015GL064119.

Wenzel, S., V. Eyring, E. P. Gerber, and A. Y. Karpechko, 
2016: Constraining future summer austral jet 
stream positions in the CMIP5 ensemble by process-
oriented multiple diagnostic regression. J. Climate, 
29, 673–687, https://doi.org/10.1175/JCLI-D-15 
-0412.1.

Zhai, C., J. H. Jiang, and H. Su, 2015: Long-term 
cloud change imprinted in seasonal cloud varia-
tion: More evidence of high climate sensitiv-
ity. Geophys. Res. Lett., 42, 8729–8737, https://doi 
.org/10.1002/2015GL065911.

2587AMERICAN METEOROLOGICAL SOCIETY |DECEMBER 2019

https://doi.org/10.1016/j.jspi.2008.07.019
https://doi.org/10.1016/j.jspi.2008.07.019
https://doi.org/10.1007/978-3-319-65052-4_4
https://doi.org/10.1007/978-3-319-65052-4_4
https://doi.org/10.1029/2005GL025127
https://doi.org/10.1038/s41558-019-0436-6
https://doi.org/10.1038/s41558-019-0436-6
https://doi.org/10.1090/S0002-9947-1955-0076206-8
https://doi.org/10.1090/S0002-9947-1955-0076206-8
https://doi.org/10.1175/JAS-D-13-071.1
https://doi.org/10.1175/JAS-D-13-071.1
https://doi.org/10.1175/BAMS-88-9-1383
https://doi.org/10.1175/BAMS-88-9-1383
https://doi.org/10.1080/01621459.2013.802963
https://doi.org/10.1080/01621459.2013.802963
https://doi.org/10.1038/nature12829
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1175/BAMS-D-11-00094.1
https://doi.org/10.1002/2015GL064119
https://doi.org/10.1002/2015GL064119
https://doi.org/10.1175/JCLI-D-15-0412.1
https://doi.org/10.1175/JCLI-D-15-0412.1
https://doi.org/10.1002/2015GL065911
https://doi.org/10.1002/2015GL065911


http://ametsoc.org/give

