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Abstract: This article presents a novel deep learning method for semi-automated detection of 
historic mining pits using aerial LiDAR data. The recent emergence of national scale remotely 
sensed datasets has created the potential to greatly increase the rate of analysis and recording of 
cultural heritage sites. However, the time and resources required to process these datasets in 
traditional desktop surveys presents a near insurmountable challenge. The use of artificial 
intelligence to carry out preliminary processing of vast areas could enable experts to prioritize their 
prospection focus; however, success so far has been hindered by the lack of large training datasets 
in this field. This study develops an innovative transfer learning approach, utilizing a deep 
convolutional neural network initially trained on Lunar LiDAR datasets and reapplied here in an 
archaeological context. Recall rates of 80% and 83% were obtained on the 0.5 m and 0.25 m resolution 
datasets respectively, with false positive rates maintained below 20%. These results are state of the 
art and demonstrate that this model is an efficient, effective tool for semi-automated object detection 
for this type of archaeological objects. Further tests indicated strong potential for detection of other 
types of archaeological objects when trained accordingly. 
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1. Introduction 

Airborne LiDAR systems are an increasingly valuable tool for locating, visualizing and 
understanding cultural heritage sites. The ability to perceive subtle depressions and patterns in the 
landscape uncoupled from photometric representations has led to discoveries ranging from 
additional monuments at Stonehenge [1] to Mayan cave dwelling entrances in Belize [2]. These are 
examples of the more traditional uses of LiDAR in archaeology, where data over a small area is 
visually analyzed through an experience and knowledge based process to obtain a detailed 
understanding of a landscape, usually by displaying the LiDAR data as a hillshaded image [3]. This 
approach is effective for discrete areas, especially where high resolution datasets have been gathered, 
but does not fully leverage the advantages of newly available large scale general purpose LiDAR 
datasets [4]. Whilst analysis by experts will always produce the best results, the increasing availability 
of these new datasets now requires a paradigm change towards the integration of computer aided 
detection to take advantage of these greatly increased volumes of data [5]. 

In England alone, the Environment Agency has pledged nationwide coverage at 1 m resolution 
or higher by 2020, totaling over 130,000 km2 of coverage [6]. Scotland has currently been partially 
covered by a two phase campaign, with more coverage planned for the future [4]. Analyzing these 
volumes of data efficiently by human operators is extremely challenging. For example, the English 
Heritage National Mapping Program (primarily aerial image interpretation) achieves a coverage rate 
of approximately 1 km2 per person per day; this project has been running for over 20 years employing 
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on average 15–20 staff and had covered an area of 52,000 km2 by 2012, in contrast, the Baden-
Württemberg study, whilst still a primarily manual approach, took advantage of automated 
processing where possible, allowing an estimated coverage rate of over 35,000 km2 by a single 
operator in six years [7]. These two projects are not directly comparable, as the quality and accuracy 
of their results varies greatly along with the data types analyzed [3], but it is an indication of the 
speed advantages gained from integrating automated processes into an analysis workflow. Despite 
the differing data types, the English Heritage study provides an indication of the timescales required 
to put human eyes over nationwide remotely sensed data tiles at a high resolution scale. With current 
advances in computing power the potential to pre-process entire national datasets in weeks rather 
than decades is now a distinct possibility. 

This approach would be particularly valuable for countries which do not have many existing 
historic site records; a rapid Artificial Intelligence (AI) scan would provide a preliminary database 
which could be developed further as more resources become available. Due to the very low time and 
cost overheads required for automated processing there can be complementarity between achieving 
the quantity of the automated results versus the quality of traditionally generated databases, which 
can proceed to be created as normal in tandem to the automated processing. Even if imprecise, these 
machine learning tools would be capable of identifying the greater trends in the data [3], allowing 
human resources to be prioritized to the areas with a large number of potential sites for detailed 
precision mapping. Especially when sites are under threat from development, rapid identification 
and mapping would give cultural heritage managers more time to act. 

In the UK, sites such as those defined by English Heritage as National Importance sites would 
also benefit from a semi-automated approach. These are sites that are deemed to have national 
importance but are not currently or cannot be designated as heritage assets and scheduled 
monuments [8]. Many of these sites have a landscape scale, consisting of ‘a coherent and contiguous 
group of monuments, the group value of which augments the significance or importance of each, 
though the importance of the whole landscape can also be defined in its own terms’ [8]. Identification 
and delineation of sites such as these remains a challenge due to limited mapping resources and the 
large extent of these sites. Large-scale monument counting tools, especially if cheap and efficient to 
run, would underpin more informed management of these types of sites, provided the sites present 
above ground topographical representations visible to an aerial LiDAR sensor. The results from such 
a preliminary survey could be stored in a geospatial database such as that described in [9]. 

Alongside the vast speed improvements possible from semi-automated detection, computer-
based methods have other strengths compared to human observers. Humans are inherently unable 
to process height data in its native state; therefore, it must be processed to create visualizations that 
are interpretable by the human eye. This can lead to a loss of information, image artefacts [10] or a 
bias stemming from the visualization techniques used [11]. As a computer can process the single 
channel numeric gridded height data directly, this removes some of these issues. Conversely, multi-
channel or hyperspectral data containing more than three channels is also not easily representable in 
a human readable form [12], whereas a computer can stack as many channels as necessary to process 
hyperspectral or multiple data source imagery. Artificial intelligence based solutions can also make 
their own generalizations and assumptions; often different to those that a human would make. Whilst 
this in itself will create biases, discussed later in this work, the addition of a very alien ‘brain’ to the 
problem will go some way to alleviate human biases. Humans see what they are expecting to see [13], 
and a trained neural network will also see what it is expecting to see; using both allows for potentially 
unexpected objects to be discovered. 

However, despite all the advantages discussed above, computer aided methods are still inferior 
to human interpretation in terms of accuracy, inference and knowledge [3]. To benefit from the power 
of automation whilst maintaining the experience and insight gained from human experts a twofold 
approach is needed. The challenge lies in both improving the algorithms to a point where they are 
‘fit for purpose’ and integrating the semi-automated detections into the archaeological prospection 
workflow in an appropriate manner [3]. It is envisioned that once applicable tools have been 
designed, they would be run as a pre-processing step over entire datasets, narrowing the areas to be 
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inspected manually. Another integration possibility is the combined citizen science and automation 
workflow proposed in [14]. The integration of citizen science is already a powerful and well 
developed methodology for both conventional and semi-automated LiDAR projects addressing the 
need for more manpower than is available from experts in the field, alongside leveraging the intimate 
knowledge of a local area provided by the people who live, work and recreate there [15,16]. However, 
a major building block of any large-scale site detection system is the algorithm itself; accurate, 
generalizable and repeatable methods are required to create confidence in such a system and much 
research has been focused on this problem. 

Early methods for semi-automated archaeological site identification used template matching 
(where a predefined template is passed over the scene) or rule-based methods (where rules are 
applied to determine an object’s category). Successful applications of template matching are 
described by Trier in [17,18]. Other proposed methods utilize Geographic Object-Based Image 
Analysis (GEOBIA), examples of these are described in Sevara et al. [19] and Freeland et al. [20]. These 
types of techniques require prior knowledge of the shape and size of the object to be identified and 
perform well on relatively simple geometries but are less effective at generalizing to unseen or 
partially occluded examples [21]. This is because these methods are responding to preprogramed 
definitions of the object to be detected rather than ‘taught’ about the object features. 

Machine learning is where a computer model is developed that can recognize features. The 
model is developed by ‘training’—a process by which known examples are fed into the model and it 
is adjusted until it can predict the correct answer. The model is then evaluated with a second set of 
known examples (to ensure that the model does not simply memorize the data) before being used in 
a real situation. There are many types of machine learning algorithms from simple statistical models 
to deep neural networks. Recently, some results with very high accuracy have been obtained by 
combining an advanced visualization technique based on topographic deviation at multiple scales 
with a random forest machine learning classifier to identify Neolithic burial mounds [22]. 

In the field of computer vision, a particular type of neural network called a convolutional neural 
network (CNN) has been shown to be capable of solving diverse and complex problems such as 
visual image question answering [23] and real time object detection for over 9000 categories [24]. 
Considerable research has been carried out in the broader remote sensing community as to how to 
design and modify similar systems for aerial remote sensing tasks. Primarily this work has involved 
Very High Resolution (VHR) images as the input to the CNN, either building their own network 
architecture [25] or modifying and fine tuning existing computer vision models [26,27]. Nogueira et 
al. [28] give an overview of the advantages and disadvantages of these approaches, concluding that 
fine tuning an existing trained model provides the best results, however, the lack of an appropriate 
training datasets makes it very difficult to develop a model. Borrowing a similar model and 
transferring it to the problem at hand is one possible solution [29]. 

The primary balance that must be addressed when choosing an approach is the applicability of 
the model versus the availability of training data. If training data and computing power allow, the 
ideal scenario is to design and train a model from scratch for the required task using the specific data 
that is required. However, available training datasets for remote sensing data are small and usually 
not representative of a wide range of environments. Conversely, labelled training datasets in the 
computer vision community are vast: ImageNet has over 14 million labelled images in 20,000 object 
categories [30] and models trained on these large datasets tend to be less prone to overfitting and can 
generalize well compared to ones trained on small datasets [28]. However, there are differences in 
the type of objects they have been trained to detect. For example, in computer vision the objects tend 
to take up more of the frame and can appear at very different scales, but generally not in many 
different rotations, whereas for aerial data the scale is relatively constant, but the object can have 
many rotations [27]. When using a pretrained model to generalize to images created from a LiDAR 
DEM the problem is exacerbated, as most existing models have been trained on three channel RGB 
images and not one channel depth images. This, along with the differing ways that objects appear in 
a LiDAR DEM versus imagery, can make transfer learning with LiDAR data challenging [31]. 
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Two published studies have used CNNs with LiDAR data to identify archaeological objects, 
with promising results. Trier et al. [32] found strong positive identifications on one dataset but on 
their second dataset, which contained more varied objects, their results were less conclusive. 
Verschoof-van der Vaart and Lambers [33] employed a similar methodology using variously trained 
versions of the same pretrained deep learning model to detect multiple classes of archaeological 
objects, achieving accuracy scores comparable or surpassing those obtained by the other machine 
learning methods. In both studies a transfer learning technique was used, with the essential 
methodology involving the generation of a local relief model [34] from the LiDAR data and then 
either converting this generated single channel image into a conventional three channel image stack 
by triplicating the greyscale channel [32] or by modifying the input layer of the CNN [33]. Both 
studies used models that had been trained on RGB images of terrestrial scenes such as ImageNet. A 
recommendation from both studies was to use a model pretrained on data more similar to LiDAR 
data in the future; however, obtaining such models was determined to be challenging. 

A possible solution can be found in the planetary remote sensing field. Large planet scale digital 
DEM datasets exist from sources such as the Lunar Reconnaissance Orbiter [35] and the Mars Global 
Surveyor [36]. Several studies have built and trained CNNs to detect craters from these datasets [37–
39]. These models are designed to be highly receptive to elevation changes and to roughly circular 
patterns observed in single channel DEM images. This makes them a good fit for the problem of 
archaeological object detection. An example of this type of model was built by Silburt et al. [37], based 
on the U-net semantic segmentation model, itself originally designed for medical image segmentation 
[40]. This model, named DeepMoon (Available at https://github.com/silburt/DeepMoon.git) was 
trained on 30,000 labelled images randomly extracted over the entire surface of the moon combined 
with the existing catalogues of moon craters. This is a larger and more robust training data set than 
those available for archaeological remote sensing, solving the problem of applicable transfer learning 
datasets. 

In this paper we propose a highly effective transfer learning strategy to detect historic mining 
pits utilizing the DeepMoon base model fine-tuned with local LiDAR data. Several different 
resolutions and representations of LiDAR data are tested, and the final model predictions are verified 
with a full ground inspection. Mining remains were chosen as the class of interest as there is a rich 
mining cultural history in South West England, and the evidence of these historic extractive 
industries is both numerous and well recorded. These mining areas are also suitably covered by freely 
available high-resolution LiDAR data. Whilst this model has been trained and tested specifically to 
detect historic mining pits, it is hypothesized that the principals will remain true for any 
archaeological feature that presents with a circular height change in aerial LiDAR data, such as: 
Charcoal kilns [41], pitfall traps [42], shell rings [43], conical mounds [18,20,43] and roundhouses [32] 
Thus, our method has potential applicability across many archaeological prospection challenges 
when furnished with appropriate training data. 

2. Materials and Methods 

2.1. Study Area 

The primary study area for this research is Dartmoor National Park, an upland area of moorland 
studded with exposed granite hilltops known as tors. The ground cover is primarily low vegetation, 
including heather, bracken, gorse, fern and marsh grasses. Tin and copper mining on Dartmoor has 
taken place almost continuously from the 12th to the 20th centuries and the remains are pervasive 
and visually striking throughout the landscape [44]. Three areas of concentrated historic mining 
activity were used to develop this deep learning model; these are shown in Figure 1. The different 
colors in Figure 1 refer to the distribution of training, validation and testing data. The training and 
validation areas include in the north the old Birch Tor Mine (1726–1928) [45] and in the south the 
former Whiteworks Mine. It is believed that the Whiteworks area was being mined as early as 1180 
although the mine was expanded substantially around 1790 towards the beginning of the industrial 
revolution when the demand for tin increased [45]. The mine was owned by the wealthy Tavistock 
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mining entrepreneur Moses Bawden and operated for just under 100 years until 1880, briefly 
reopening in early 1900 before finally closing for good by 1914 [46]. The test area for Dartmoor is the 
site of Hexworthy Mine (1891–1912). This is an interesting site as it displays remains from multiple 
eras of mining; from the early unrecorded open workings, through traditional 19th century mining 
to semi-modern 20th century workings [47]. The mine operated productively until the call up for men 
in 1914, during the war it was placed in care and maintenance before a large storm in 1920 destroyed 
the waterwheel flume, causing the underground workings to flood [46]. 

 

Figure 1. Overview of the Dartmoor dataset. Grey areas represent training data (14 tiles), the purple 
tile shows the cross validation area and the orange tile shows the test area. Coordinate system British 
National Grid, image data © Environment Agency 2015 & Getmapping Plc. Basemap © ESRI 2019. 

A further testing area was selected in the Yorkshire Dales National Park more than 500 km from 
Dartmoor to examine the model’s ability to generalize to new locations, mine types and data 
resolutions. This test area is part of the site of the former Grassington Moor lead mine. The first 
known exploitation of lead at Grassington was by the 4th Earl of Cumberland in the early 17th 
century, although it is thought that some primitive extraction and smelting had taken place earlier. 
The early exploitation involved the digging of shallow shafts along the vein. The first mill to process 
the Grassington lead ore was the Low Mill built in 1605. The test area covers the western part of the 
Yarnbury mine, including Tomkins, Barretts and Good Hope shafts [48]. 

In all cases, the objects to be detected are trial pits, shallow pit workings and shaft heads. 
Examples of these are shown in Figure 2. Trial pits are dug whilst prospecting for tin lodes. They are 
usually 2–3 m in diameter, of limited depth (up to 1 m) and are often silted, water filled and reedy 
[44]. Shallow pit workings are comprised of alignments of deeper pits which are dug to below the 
soil overburden and mined downwards from there; however, these are not underground mines and 
there is no lateral development between the pits. The depth of these types of workings would be 
limited by the ability of the surrounding side-walls to remain intact before collapsing, which is 
usually less than 3 m. These workings present as conical depressions often accompanied by a ring of 
spoil material, crescentic on the downhill side in sloping ground [44]. The final category are shafts 
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for true underground mines. These have mainly been capped or backfilled in Dartmoor for public 
safety; however, evidence may remain in the form of large conical pits or straight openings. Site 
inspections may reveal a collar of finished material lining the inside of the shaft, but this is generally 
not visible from aerial surveys. 

 

Figure 2. Examples of the historic mining objects found in this study displayed on a 315° azimuth 35° 
sun elevation hillshaded visualization created in ArcGIS. Base DSM © Environment Agency 2015. 

2.2. Data Pre-Processing 

The LiDAR datasets used for this project was obtained from the Environment Agency under 
their Open Government License and are available at https://environment.data.gov.uk/ [49]. The 
Dartmoor data was flown in 2009 at a resolution of 0.5 m and the Yorkshire data in 2012 at a resolution 
of 0.25 m. In total twelve 1km × 1km tiles were processed for this study. Both datasets are available 
in either Digital Surface Model (DSM) or Digital Terrain Model (DTM) formats produced by the 
Environment Agency. The DSM was chosen in preference to the filtered DTM due to concerns that 
the filtering algorithms used to produce the DTM can excessively smooth small features [50]. 

The data was imported into ArcGIS Pro [51] along with several other interpretive layers such as 
historical maps [52] and aerial images [53] to create a GIS of the study area. Other GIS software could 
be used for this step, but ArcGIS Pro was chosen as it has a function for automatic exporting of image 
tiles and training labels, crucial for the later steps of the workflow. The additional GIS layers were 
only used to add context to the dataset to aid the human operator. To generate training and validation 
datasets, a desktop survey was carried out to identify features resembling mining pits. From this 
survey over 1,500 samples were identified and marked as point features. The test area dataset was 
created in the same way, but in order to validate the performance of the model every feature in the 
test set was also confirmed with a ground survey. This survey involved visiting the test sites with 
two reference maps, one containing the predictions and one containing the human generated pit 
locations from the desktop survey. Using these maps in conjunction with a handheld GPS for site 
orientation the true existence of pits shown on the maps was confirmed or rejected. The pits were not 
recorded with the GPS as in many cases it is not safe to access the ground directly above suspected 
shafts. A schematic of the project process is shown in Figure 3 and full details of the processing steps 
are provided in Supplementary Document S1. 
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Figure 3. Methodology process diagram. Full details of the processing steps are provided in 
Supplementary Document S1. 

For the model inputs, image tiles of 256 × 256 pixels were exported along with the pit locations 
as xml labels to create image segmentation masks. The overlap between tiles was set to 52%. To 
preserve the fine detail in the DSM image, the image tiles first were exported as 16-bit float images 
with the values corresponding to the actual ground elevation of the data within that tile. Each tile 
was then individually rescaled to greyscale values between 0–1 maintaining its original distribution 
before finally being converted to an 8-bit integer format. To enhance contrast the image tiles were 
further rescaled linearly prior to model input. The image tile preparation process is shown in Figure 
4. For the training and validation datasets, only image tiles which contain mining pits were exported. 
The training dataset contains 520 images and the test and validation datasets contain 70 images each. 
These datasets are stored in hdf5 format with the image names used as the database key. Table 1 
shows the dataset split, number of pits and pit instances per dataset, along with the minimum, mean 
and maximum pits per image tile. The pit instances are greater than the number of pits as some pits 
are present on more than one image tile due to the >50% overlap between tiles. 

Table 1. Dataset statistics. 

Dataset Image Tiles Pit Ground Pit Instances Minimum Mean Maximum 

Train 542 1568 3649 1 5.96 59 
Cross-validate 71 254 423 1 5.96 33 
Test Dartmoor 196 193 654 1 5.74 24 
Test Yorkshire 900 172 1 n/a 2 n/a 2 n/a 2 n/a 2 

1 Only pits within a section of the dataset were ground truthed as shown in Figure 10c. 2 The Yorkshire 
dataset was exported for testing without human generated labels. 
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Figure 4. Overview of image preprocessing pipeline. (a) shows a selection of original individual pixel 
values, (b) shows the same pixels rescales between 0 and 1. (c) shows the conversion to greyscale. For 
subimages (a–c) the actual greyscale value does not change as the range is still determined by the 
elevation range across the original 1 km × 1 km DSM tile, in this simple example this is set as 20 m. 
(d) shows the pixel values after linearly rescaling by tile range. 

Other visualization of LiDAR data have been shown to aid in identification of archaeological 
features. Using the Relief Visualization Toolbox [10,54] several other representations of the data were 
generated from the original exported tiles. A simplified local relief model (SLRM) is a representation 
where the major features of the landscape have been removed. This process is known as detrending. 
These models are created first by smoothing a DEM so that small features are removed. The smoothed 
DEM is then compared to the original DEM and areas that are the same in both models are extracted 
to build the new smoothed DEM. This is finally subtracted from the original to produce the SLRM 
[34]. The SLRM is a very clear way to depict small relative changes in the landscape such as those 
from archaeological or mining features, and is the visualization method chosen by both [32,33] for 
their models. 

Alongside the SLRM another visualization type known as openness was created. Openness is a 
geographical visualization technique that is calculated by measuring the angular size of a sphere 
either looking up or down from each pixel. It is described as either positive or negative openness. 
Negative openness is not the inverse of positive openness and highlights deep features instead of 
protruding features. As openness is calculated in relation to terrain rather than the sky, features on 
slopes appear the same as features on horizontal ground [55]. This is a valuable property for the 
Dartmoor data as most of the features are situated in rolling moorland terrain. Figure 5 illustrates the 
different visualization types generated for this study. 

 
Figure 5. Illustration of the different advanced visualizations created from the original LiDAR DSM. 
Base DSM © Environment Agency 2015, visualizations created using the Relief Visualization Toolbox 
[54]. 
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2.3. Deep Learning Model 

The type of model used in this research is a variant of an Artificial Neural Network (ANN) 
known as a Convolutional Neural Network (CNN). A simple ANN contains one or more hidden 
layers, with every node in a hidden layer directly connected to every node in the layers before and 
after it. Each node has a weight associated with it which determines the final output result. When 
first initialized, the weights are randomly assigned and the first result from the network most likely 
will be incorrect. The direction in which to change the weights to approach the correct answer is then 
determined using gradient descent and the weights are updated; this process is known as 
backpropagation. The network continues to feedforward and backpropagate until it has converged 
on a satisfactory result. Each input is treated individually, therefore a 256 × 256 pixel image would 
have 65,536 inputs; as input images get larger the process becomes untenable. 

The original Convolutional Neural Network was proposed by Lecun et al. [56], however the 
power of CNNs to solve complex image processing problems was not capable of being fully realized 
until the advent of powerful graphical processing units since 2010, with the first highly successful 
implementation [57] winning the 2012 Large-Scale Visual Recognition Challenge (ILSVRC) by a 
significant margin. CNNs improve upon the ANN design by allowing the sharing of weights across 
nodes, thus greatly decreasing the number of weights to optimize whilst also introducing spatial 
connectivity across the image. This is achieved by convolving a filter across the image which activates 
different underlying structures. The result of this convolution is a feature map. A single convolutional 
layer can have many filters, producing a multidimensional feature map of activations. To reduce the 
dimensionality of the image and increase the field of view of the filter, downsampling via max 
pooling is carried out on the layers to reduce the spatial dimensions. For a detailed description of the 
theory and mathematics of CNNs, see [58] Chapter 9. 

In general, the lower layers of a CNN have high spatial resolution and describe the low level 
features which make up an image, and the upper layers have low spatial resolution and describe 
more complex patterns such as objects. For the task of image classification this is the final 
convolutional stage, as the question being asked is whether a certain object is present in the image. 
The next step, object detection is popularly achieved using R-CNNs, which use a region proposal 
network to identify areas of the image which may contain objects, these regions are then extracted 
and classified [59]. Finally, semantic segmentation, where every pixel in the image is assigned a class 
can be achieved by either extending the R-CNN approach [60] or by adding a deconvolutional 
network which up-samples the high level, low resolution feature layers by up-convolution to return 
to the resolution of the input image; this architecture is known as an encoder-decoder model [40]. 

Initially in this research an object detection pipeline using the Inception model [61] pretrained 
on the Common Objects in Context dataset [62] was trialed. The preliminary results from this method 
were reasonable but there appeared to be many mining pits not detected by the model even after 
100,000 training epochs. Images from this initial method are shown in Figure 6. It is suspected that 
the mining pits detection task is simply too different from the original task to achieve optimum 
results. These initial tests showed a detection rate of less than 40%, this result, along with the 
recommendations from Trier et al. [32] motivated a search for a transfer learning candidate model 
that resembles more closely the task at hand instead of continuing to refine the Inception model. 

After exploring several alternatives, the exact model chosen for this study is a version of the U-
net model designed by Ronneberger et al. [40] and modified by Silburt et al. [37]. The U-net model is 
an encoder-decoder (see [63]) model with a near symmetrical architecture, designed for biomedical 
image segmentation. It has no final fully connected layer, replacing it with a 1 × 1 convolutional layer 
with a sigmoidal activation function to output pixelwise class probabilities, thus reducing the number 
of hyperparameters to tune and making it more suitable for small numbers of training data. The 
original U-net achieved significant accuracy improvements over the next best architecture in the ISBI 
cell tracking challenge despite the training set only containing 35 images [40]. Biomedical image 
analysis shares many challenges with remote sensing LiDAR analysis such as small training sample 
sizes, single channel images and high resolution data. Therefore, it is more applicable to use a model 
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such as U-net rather than one of the models designed for large datasets of natural images, as shown 
in Figure 6. 

 

Figure 6. Examples of the input data to different pretrained models. (a) is an example from the 
Common Objects in Context (COCO) [62] dataset which many existing models are trained with and 
is similar to the image type found in ImageNet [30] and other natural photography datasets. (b) and 
(c) show the results from an object detector pre-trained using the COCO dataset. It can be seen that 
whilst it makes many correct detections there are also many missed pits. (d) shows the type of 
microscopy data which the U-net architecture was designed to segment [40] and (e) shows data from 
the lunar DSM which was used to pre-train the model used in this research [37]. (f) shows the DSM 
data used in this project. Base DSM in (b,c,f) © Environment Agency 2015. 

2.4. Transfer Learning 

Nogueira et al. [28] found that for remote sensing problems with limited training data, a transfer 
learning strategy achieved the most accurate results across all tested datasets. In transfer learning, 
instead of initializing the model weights from scratch, the weights from another model trained for 
many epochs on a larger dataset are used. One transfer learning strategy involves removing the last 
layer of the network and replacing it with a layer to classify the objects of interest, this is required if 
the final classification categories are different. Another approach is to fine tune a model by adding 
new training examples whilst keeping the final output layer the same. All the model weights can be 
updated, or the lower layers can be frozen and only the weights in the upper layers are updated. For 
this research, as the classification is the same geometrically if ‘crater’ is substituted for ‘pit’ a fine-
tuning strategy was employed with all weights unfrozen and the learning rate set to 10−4. As this 
study utilizes a pre-existing model, the same software (Python [64], TensorFlow [65] and Keras [66]) 
used by the creators of the original DeepMoon model [37] are used throughout. All of these packages 
are industry standard and available free from their respective websites. 

2.5. Training 

In a neural network the hyperparameters can be used to control overfitting; for the DeepMoon 
model, the hyperparameters include weight regularization for the convolutional layers, dropout 
layers, filter size, model depth, and learning rate. Full details on these hyperparameters and complete 
model design can be found in [37]. These hyperparameters were chosen after a cross validation check 
using 60 models, where the hyperparameters were chosen randomly from across their standard 
ranges. To avoid overfitting on the small project dataset used in this research the hyperparameters 
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chosen in [37] have been maintained here, with only minimal fine tuning training. Silbert’s base 
model was trained for 4 epochs (where one epoch equals a full pass through the entire training set). 
As the lunar dataset contained 30,000 images this training totaled 120,000 training examples. A 
standard learning rate of 10−4 was found to deliver the best results [37]. The additional training for 
transferring the model to its terrestrial archaeological context involved 4 more epochs of 520 images, 
totaling 2080 new training examples. The number of fine-tuning epochs was varied to determine the 
most effective fine-tuning strategy, this is discussed further in Section 3.1. To further control 
overfitting between epochs data augmentation is carried out, where all input images are randomly 
flipped, rotated and shifted prior to model input. 

2.6. Post-Processing 

Once the model is trained and verified against the cross validation dataset, individual image 
tiles to be tested are inputted to the model and probability masks are outputted as tif files. Using the 
same naming convention for both input and output files results in correct translation into the original 
coordinate system. Using ArcGIS, all output probability masks are then mosaiced into one continuous 
raster covering the entire test area. 

For qualitative visual analysis and map creation, a graduated stretch symbology where solid 
color depicts probabilities of 1 and fully transparent depicts probabilities of 0 is used for maximum 
readability. This visualization scheme maintains information on the confidence of the prediction and 
allows for the more subtle workings of the model to remain visible. This enhances the model’s 
readability in comparison to a yes/no response as it symbolizes uncertainty in the model, allowing 
an archaeological prospector more freedom to interpret the results using superior human reasoning. 
To quantitatively determine the rate of true positives, false negatives and false positives in order to 
report accuracy metrics, a new binary mask layer was created containing only pixels with prediction 
probabilities above 0.5. These pixels were then vectorized, merged and filled to create a vector layer 
of predicted pits to use in spatial queries. A comparison of these post processing methods is shown 
in Figure 7. It can be seen in Figure 7c that there are some incomplete rings, this is because some 
detections are made up of a mixture of pixels above and below 0.4 probability. This further supports 
the decision to use the full masks rather than the instances for interpretation where possible. 

 

Figure 7. Comparison of qualitative and quantitative results representations. (a) shows the ground 
truth locations of a section of very shallow (30–50 cm depth) mining pits in the Hexworthy test area. 
(b) shows the model’s predicted results depicted with a graduated transparency color scale 
representing model confidence and (c) shows a binary mask where all prediction pixels above 0.4 are 
assigned as ‘pit’ and all others are discarded. DSM © Environment Agency 2015. 

3. Results 

3.1. Cross Validation Results 

During training binary cross-entropy was used as the loss metric; the training loss began at 
approximately 0.02 for the DSM and between 0.03–0.04 for the other visualization types, reducing to 
an average of 0.0146 for all data types after four epochs. There was negligible variation in the loss by 
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visualization type. The cross validation loss remained within 0.005 of the training loss for each epoch 
with the average cross validation loss 0.0145 after four epochs. However, during human examination 
of the output masks it was observed that because the model is attempting to lower the global loss 
over every pixel, the numeric values output from the TensorFlow console did not fully describe the 
real effectiveness of the model for detecting pit objects. This is suspected to be due to the fact that the 
model loss is a pixel based loss function rather than an object based one. Figure 8a displays the losses 
per epoch; showing that whilst the cross validation loss continues to decrease after four epochs, when 
compared to the F1 score shown in Figure 8b it can be seen that the real detection accuracy degrades 
after four epochs. 

 

Figure 8. Accuracy metrics by training epochs (a) and by visualization type (b), both evaluated on 
sample tiles from the validation dataset. Note: This figure shows accuracy metrics over only 5 tiles 
from the validation dataset chosen for their difficulty to evaluate model generalization ability. 
Therefore, it does not represent the accuracy obtained by the model on the test datasets. 
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In light of this, a much smaller human cross validation was carried out on five sample tiles from 
the cross validation dataset. These tiles were visually chosen after inspecting all tiles in the validation 
dataset to asses each model’s performance at both ends of the difficulty spectrum, from simple cases 
with several well defined pits to complex cases with multiple ill-defined and overlapping pits or pits 
within larger trenches. To determine the optimal fine-tuning strategy, the number of epochs for 
which the model was retrained was varied and the results were examined by counting the detection 
instances over these tiles. 

For each model and each tile, the number of true positives (correctly detected pits), false 
negatives (undetected pits) and false positives (detections which do not correspond to true pits) were 
counted. From these numbers the precision (the proportion of the model’s pit predictions that were 
correct) and the recall (the proportion of actual pits that were detected) were calculated. The F1 score 
(harmonic mean of precision and recall) was also calculated, as it is a useful single valued accuracy 
metric for a detection problem of this kind (formulas defined in Table 2). Due to the variability of 
deep learning model convergence, training will not produce identical results every time, to account 
for this each test was run three times and averaged. Figure 8b shows how the precision, recall and F1 
scores vary as the number of fine-tuning epochs is increased. It should be noted that this figure shows 
accuracy metrics over only 5 tiles from the validation dataset, chosen for their difficulty to evaluate 
model generalization ability. Therefore, it does not represent the accuracy obtained by the model on 
the test datasets. It can be seen that the best results are found after three to four epochs of training. 
The degradation of accuracy after four epochs could correspond to overfitting; because each epoch 
trains the model using the same 520 test images, albeit augmented differently each time. As another 
test, the DeepMoon model was also run directly on the Dartmoor data without any fine-tuning 
training, this gave detection rates of approximately 40% with a bias towards large pits more similar 
in appearance to impact craters. 

Table 2. Full results from test datasets. 

Test Area True Positives False Positives False Negatives Precision 1 Recall 2 F1 3 

Dartmoor 155 37 38 0.81 0.80 0.81 
Yorkshire 142 13 30 0.92 0.83 0.87 

1 Precision = True Positives/(True Positives + False Positives), 2 Recall = True Positives/(True Positives 
+ False Negatives), 3 F1 = 2 × ((Precision × Recall)/(Precision + Recall)). 

Once the optimal amount of fine tuning was determined, the four advanced visualization types 
were tested against the same five sample images. Each of the visualization types depicted previously 
in Figure 5 were used as the training data input for fine tuning the model. Using the knowledge from 
the previous validation test, the models were trained for four epochs, as before, each test was run 
three times and averaged. Longer training runs of eight epochs were also tested. This is to account 
for the possibility that due to the greater difference between some of the visualization styles and the 
model’s original lunar DSM training data more epochs might be required to obtain strong results. 
However, these tests displayed the same behavior as that shown in Figure 8b. It can be seen from 
Figure 8c that whilst the precision is high for all four data representations, the recall and therefore 
the F1 score is poorer for the advanced visualizations. 

3.2. Test Area Results 

The cross-validation results informed the development of the final model, which was then 
evaluated on the final unseen test datasets. The model was evaluated on a 1km2 tile of LiDAR data in 
Dartmoor approximately 20 km away from the training area. An additional test was carried out on a 
0.2 km2 of Yorkshire more than 500 km away from the training data. The results obtained are 
summarized in Table 2. For both sets of results the highest performing model from the validation 
dataset was used for the predictions. It must be noted that these results have been calculated from 
the binary results mask. Of the missed detections 23 out of the 38 in Dartmoor and 17 out of 30 in 
Yorkshire are still visibly predicted in the full transparency results layer. This is because they fall 
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below the 0.5 probability threshold used in the binary masking operation, thereby removing them 
from the count. 

To further investigate the model’s generalization capabilities for additional archaeological object 
detection, a final experiment was carried out. For this, the model was run directly on 1m resolution 
LiDAR from the same section of Machie Moor (Arran, Scotland) as that tested by Trier et al. [32]. To 
validate, the true roundhouse locations were taken from [32]. In this experiment no additional 
training was carried out and the Dartmoor model was applied in its naive state. The results show the 
model generalized well considering the lack of training, with a precision rate of 0.55 and a recall rate 
of 0.45. This suggests real potential if trained for this type of feature detection. These results are 
consistent with how the original DeepMoon naive model performed on the Dartmoor data before 
fine tuning training was undertaken. From these results it is hoped that by introducing limited 
amounts of training data for other features of interest, this model is capable of being applied to a 
wide range of archaeological prospection problems. 

4. Discussion 

The cross-validation results from the different types of LiDAR visualizations indicated that the 
model performed better when trained on the raw 8-bit DSM height values rather than any of the 
advanced visualizations. It is suspected that whilst these visualizations are effective for human 
interpretation of archaeological data [11] and also effective for more traditional machine learning 
techniques [22], because deep CNNs learn their own feature representations during training, it is not 
desirable to artificially alter the data representation prior to input. However, it also must be taken 
into account that the CNN chosen in this study was pretrained on 8-bit DSM height values, thereby 
introducing a bias towards this representation. To fully test which LiDAR visualization is best suited 
for CNNs in future, would require a robust CNN trained from scratch on multiple differently 
visualized representations of the same data; however, such a model has not been made publicly 
available from any known sources at this time. To attempt to test this theory with the existing datasets 
experiments were carried out to create a model from scratch using the DeepMoon architecture and 
the Dartmoor training data with different visualizations. However, no meaningful results were 
obtained from any visualization, presumably due to the limited size of the training data. The SLRM 
and openness visualizations are included in this study as discussion points, to observe how the 
predictions vary and to provide stimulation for future work. An example of the predictions on a 
single challenging tile for each visualization type is shown in Figure 9. It can be seen that the 
predictions from the raw DSM are the most sensitive, resulting in the least amount of missed 
detections, and is the only one that picks up the isolated pit in the lower right corner. The confusion 
areas of low probability are easily filtered out by setting a probability threshold of 0.5 in the post-
processing steps, as discussed in Section 2.6. 
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Figure 9. Results from a single image tile for each of the different visualization predictions. 1Hillshade 
used for display purposes only and not processed by the CNN model. Coordinate system arbitrary 
pixel based. 

The final test area results demonstrate that the model is highly effective with the correct 
detections greatly outnumbering the missed and false detections, displaying strong precision and 
recall simultaneously. Precision and recall figures concurrently above 0.8 has not been achieved to 
date by any other deep learning tool for archaeological prospection [33], however, as there is no 
standard archaeological test dataset different approaches are not directly comparable, though the 
results obtained here clearly indicate this model has achieved state of the art results. 

Figure 10 shows the full transparency results overlaid on the Dartmoor and Yorkshire test 
datasets. This figure shows that the model is highly capable of discerning mining pits and is not 
overwhelmed by false positives. It also demonstrates that even if individual detections might not 
always be correct the greater trends in the landscape are very clearly reproduced by the model. This 
is in line with the recommendations from Cowley for ‘a key conceptual shift from a widely held 
fixation in archaeology on individual identifications being correct to overall patterns being 
descriptive’ [3]. From a management perspective, these automatically generated maps clearly 
delineate the extents and key structures of these historic mining sites, with limited confusion areas 
due to model assumptions and landscape morphology. 
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Figure 10. Results overlaid on hillshaded LiDAR. (a,b) are from the Dartmoor Hexworthy mine test 
area, Ordnance Survey grid tile SX6570. (a) shows the true mining hole locations in blue and (b) shows 
the model’s predicted mining hole locations in magenta. (c) and (d) show the results from the 
Yorkshire Yarnbury mine test area, Ordnance Survey grid tile SE0166. (c) shows the true mining hole 
locations in blue and (d) shows the model’s predicted mining hole locations in magenta. In the 
extensively mined area to the southeast it was not possible to ground verify precise locations as it was 
fenced off as a hazardous area, however, a visual inspection confirmed many pits and shafts present 
thereabouts. Their locations were determined from a desktop search and are marked accordingly in 
(c). Coordinate system British National Grid, DSM © Environment Agency 2015. 
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In Figure 10a,b small confusion areas can be seen around the ends of larger openworked 
trenches. This is due to the fact that the model is making predictions on cropped image tiles; if only 
the end of the trench is visible in the tile, the model’s strong generalization ability works against it 
and it will predict a semi-circular occluded hole. As the tiles have 52% overlap these false positives 
are typically removed by the raster mosaic post processing step, however, due to anomalies in 
position and tile overlap, some remain. 

The Yorkshire test as shown in Figure 10c,d was carried out to examine the model’s ability to 
generalize to different types of mines and different resolution data. The model surpassed its previous 
performance on this dataset, as shown in Table 2. The Yorkshire LiDAR DSM is twice the resolution 
of the Dartmoor data at 0.25 m but contains more confusion objects such as building remains, stone 
lined trenches and drainage culverts. The model was capable of discriminating between building 
foundation remains and excavated platforms from mining pits and made only two false positive 
detections in these areas. This is an extremely positive result and indicated the model is doing more 
than just looking for unnatural changes in ground elevation and is searching instead for areas that 
contain the features which it was trained on. 

Of the mistakes, one drainage culvert was mistaken for a hole, but the geometry was such that 
is was only discernible as a culvert from a side view under the road unafforded to the LiDAR data. 
This is a limitation of all overhead remotely sensed data and is not specific to a deep learning model. 
Two trenches were misidentified as pits but only where dense vegetation masked their linearity 
causing them to appear as circular depressions on the LiDAR. 

The site verification visits revealed that many of the detected pits would be difficult to locate 
either on foot or from aerial photography as they are faint, shallow and reed-filled. Whilst ground 
truthing many pits were near-invisible until the surveyor was within a few meters of the model’s 
predicted location; as well, whilst traversing the sites to verify the predictions, no isolated pits were 
seen that were missed by the model, all missed detections were within larger excavations that had 
caused confusion. Figure 11 shows a photograph taken looking north from the Hexworthy site, 
aligned with the same view from the LiDAR model overlaid with aerial imagery and predicted hole 
locations. 

 

Figure 11. Ground level view of the Hexworthy historic mine site. (a) is a photograph taken during 
the verification survey, (b) shows the same scene in a hillshaded DSM, (c) includes OSGB 2010 aerial 
imagery and (d) includes the model’s predictions. DSM and aerial imagery © Environment Agency 
2015 & Digimap Getmapping Plc. 
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The results from the two tests indicate that this model is able to generalize to new sites and that 
higher resolution LiDAR improves classification accuracy. These tests also show that despite being 
trained on one resolution of data the model is capable of being applied at a different resolution 
without the need for additional training, greatly increasing its applicability for varying quality and 
resolution general purpose LiDAR datasets. This is crucial as most LiDAR is not flown specifically 
for archeological site detection purposes; therefore, site detection algorithms must be capable of 
working with varying accuracy and resolution datasets gathered by many agencies for diverse 
reasons. 

This model is a single class segmenter; therefore, to extend the model to more general 
archaeological prospection tasks multiple models must be trained for different classes. Whist this 
could be considered a weakness of this approach, no other work to date has managed to fully 
optimize models for multiple classes simultaneously, despite architectures which permit multiclass 
outputs. Verschoof-van der Vaart and Lambers [33] successfully trained a multi-class detector and 
achieved high F1 scores in both classes, however, the highest F1 scores per class did not occur 
simultaneously. Multi-class learning is more difficult than single class learning, and the problem of 
automated archaeological site detection is also more difficult than general image classification, due 
to the small amount of training data and the subtlety of the detections required. It is proposed that at 
this early stage, development of accurate single class detectors which can be stacked into multi-layer 
images will produce the most effective, repeatable and easily usable results. These detectors do not 
have to be trained for every type of potential feature, an approach which would be neither achievable 
nor desirable, but rather trained to detect general areas of suspicious topology in several broad 
categories, flagging it for further inspection, leaving the interpretation to humans for now. The results 
shown in this study prove that as a first part of a multi-stage phased landscape analysis this model 
is capable and effective. Delineation and quantification of sites using an approach such as this would 
add to the body of knowledge about such sites, provide impetus for further surveys and underpin 
protection of these sites from future threats. 

The mining pit detection model created here can be rapidly run on any LiDAR DSM suspected 
of containing remains of historic mining activity; the approximate time to process a 1km tile including 
manual ArcGIS post-processing is 5 min. This pipeline could be easily automated further, as this 
research has been concerned with the ultimate performance of the deep learning model the periphery 
workflow has not yet been streamlined. As an output, simple GIS point layers (with their accuracy 
specifications of ± 20%) can be supplied to the land managers such as Dartmoor National Park and 
Yorkshire Dales National Park. These results are usable directly by the land managers to rapidly 
inform future decisions about preservation and management. 

A model trained for a different type of site detection could be applied similarly, provided the 
appropriate training and testing had been carried out. Development of these new models is an 
exciting direction for further research. The logical next step would be to trial this model on a well-
researched study area such as Arran [4], with the aim of developing accurate general purpose, large 
scale semi-automated site detection tools in the near future. 

5. Conclusions 

The transfer learning model developed in this research shows strong, repeatable results for the 
task of detecting historic mining pits, alongside promising generalization abilities for other similar 
tasks. It is a novel application of knowledge from the disparate but related field of planetary remote 
sensing, achieving state of the art results on its allocated task. It is capable of differentiating between 
natural depressions and manmade ones, even in areas of occlusion and erosion. This is due to the 
close resemblance between the data on which the base model was pretrained and the data for the 
problem at hand. Other strengths of this model are its ability to output full pixelwise segmented 
confidence masks for any size and resolution data, alongside this workflow’s integration with 
existing ArcGIS tools where possible to ensure ease of use and repeatability. 

This research builds on the work of Trier et al. [32] and Verschoof-van der Vaart and Lambers 
[33] by following their recommendations to seek closely applicable transfer learning models for deep 
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learning on archaeological LiDAR data. It is hoped that this model will prove suitable for other 
archaeological prospection tasks when furnished with applicable training data. The initial naive 
applicability test using the Arran data showed promising results for future work in this direction. 

This model can run on large swathes of LiDAR data extremely quickly and produces meaningful 
results which will aid interpretation of large scale historic mining landscapes. The model is also 
valuable for detecting outlying smaller pits away from the main shafts and mineral veins. These are 
often unrecorded remains of earlier prospecting and information on their location can add to 
understanding of a site’s exploitation history. It is envisaged that this model would be run as a first 
step in the prospection process, vastly reducing the areas to be analyzed in fine detail in a desktop 
search or fieldwork survey by a mining historian. With a false positive rate of less than 20% it does 
not overwhelm the analyst with incorrect predictions, providing an effective tool for preliminary site 
investigation and allowing confidence in the use of the model. The workflow and model presented 
here will allow the scale and magnitude of sites to be rapidly analyzed, underpinning better cultural 
heritage management decisions for these valuable records of our industrial past. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Workflow document: 
S1, Model S2: Deep learning model. 
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