Cities, biodiversity, and health: We need healthy urban microbiome initiatives

Flies, E.J\(^1\)*, Skelly, C\(^2\), Lovell, R.\(^3\), Breed, M.F.\(^4\), Phillips, D.\(^2\) and Weinstein, P.\(^4\)

\(^1\)School of Natural Sciences, University of Tasmania, Hobart, Australia 7001
\(^2\)Public Health Dorset, Dorchester, UK DT11TP
\(^3\)European Centre for Environment and Human Health, University of Exeter Medical School, Truro, UK TR1 3HD
\(^4\)School of Biological Sciences and the Environment Institute, University of Adelaide, SA 5005 Australia

*Corresponding author – Emily.flies@utas.edu.au

Abstract

Current evidence suggests that diverse environmental microbiomes contribute positively to human health, and could account for known associations between urban green space and improved health. We summarise the state of knowledge that could inform the development of healthy urban microbiome initiatives (HUMI) to re-connect urban populations to biodiverse microbial communities.
In his seminal book “On Airs, Water and Places”, Hippocrates - the ‘father of Western medicine’ - wrote of the importance of healthy places for healthy humans (Hippocrates & Translated by Francis Adams, 400BC). Many of the major public health advances in urban areas over the last centuries have emerged from the recognition that clean water, clean air and unpolluted environments prevent communicable diseases. This is particularly evident in developed countries where cholera, plague and tuberculosis have been all but eliminated due to sanitation and housing upgrades. The world now faces a pandemic of non-communicable disease and, despite the resurgence of ‘socio-ecological’ models of public health (Lang & Rayner, 2012), which explicitly link people and place, the focus has largely been on individual risks and behaviours rather than environmental conditions.

The World Health Organisation (WHO) listed ‘a stable ecosystem’ as a prerequisite for health in their Ottawa Charter (1986), and more than 1000 cities have signed up to promote “healthy [physical and social] environs” in the Healthy Cities program (WHO, 2018). Despite these ambitions, few comprehensive and systematic programmes exist to achieve healthy people in healthy places. When they do exist, initiatives are often localised, sporadic or risk/exposure specific without any clear theory of change underpinning the approaches taken. The lack of strategic planning is problematic as the relationships between environmental and human health are multifactorial, indirect and complex (Fig. 1). The putatively causal associations often lack a quantified ‘dose response’ effect and are influenced by powerful countervailing interests (e.g. commercial or governmental pressures) in maintaining the current responsive, rather than preventative, health measures (Mindell, Reynolds, Cohen, & McKee, 2012). Despite the uncertainty in what works, where and for whom, there is general agreement that urban green spaces can play an important role in creating healthy cities (WHO & Europe, 2016).
The term ‘urban green space’ has been used to represent a variety of ecosystems and land use types. Here, we use it to loosely refer to any vegetated area in a town or city to which people may be exposed. They include the public or private parks, forests, riparian zones, gardens, sport fields and playgrounds that urban lives intersect with on a daily basis. Green spaces can include places for commuting (e.g. paths for walking or cycling; Fig. 2), places for recreation, domestic spaces, and places of work for certain professions (e.g. professional sports people, landscapers/gardeners).

The last few decades have seen a rise in the percent of the population residing in cities (urbanicity), a drop in infectious disease rates, and a rise in rates for many non-communicable diseases. It is well known that physical and social environments impact on population-level health of a city (Rydin et al., 2012). Broken windows, congested traffic, unmanaged waste and overcrowding can lead to a physically and mentally unhealthy population. Biodiverse urban green spaces have been identified as an important contributory factor in improving many aspects of public health, but the mechanisms are often not clear. In this editorial, we focus on the role that microbially diverse urban green spaces can have on urban health (Flies et al., 2017), and the need for a systematic, global, healthy urban microbiome initiative (HUMI) to maximise the health gain from exposure to microbial ‘old friends’ (Rook, 2013).

What do we know about the green space contribution to health?

A growing body of evidence has demonstrated that green spaces are key components of healthy places, contributing directly and indirectly to population health and to the quality of life of citizens. Urban green spaces indirectly impact human health through ecosystem services including mitigating heat island effects, air pollution and noise (MEA & Millennium Ecosystem Assessment, 2005; WHO & Europe, 2016). Urban green spaces, of all types, also
provide crucial reservoirs of biodiversity underpinning ecosystem services and functions in urban areas.

Much of the research linking exposure to urban green spaces directly to health has come from the developed west (Lai et al. in press) and has focused on exploring relatively simple exposures and outcomes (Hartig, Mitchell, de Vries, & Frumkin, 2014). Syntheses of this predominantly cross-sectional epidemiological evidence suggests that green spaces in urban residential areas are linked to lower obesity, cardio-vascular disease and mortality and to greater overall self-reported health (Gascon et al., 2016; Lachowycz & Jones, 2011; Twohig-Bennett & Jones, 2018; World Health Organization & Convention on Biological Diversity, 2015), among other benefits. The strongest evidence is perhaps for green space positively impacting mental health and wellbeing, including reductions in stress, fatigue, anxiety and rates of depression (Gascon et al., 2015). These benefits appear to be most significant for marginalised groups; in Europe, socioeconomic inequalities in mental wellbeing have been found to be narrower in greener urban areas (Gascon et al., 2015; Hartig et al., 2014; Mitchell et al., 2008). The greater use of longitudinal data has strengthened the reliability of these outcomes and furthered our understanding of the connection between environment and health through the lifecourse (T Sanders, Feng, Fahey, Lonsdale, & Astell-Burt, 2015; Taren Sanders, Feng, Fahey, Lonsdale, & Astell-Burt, 2015; Weimann et al., 2015). Improved quality of life, increased physical activity and enhanced social interactions have been identified as potential mechanisms connecting green space to improvements in health and wellbeing outcomes.

The associations are not, however, universal. The health benefits from urban green spaces appear to be context dependent, with varying patterns of effect depending on the geographical and socio-cultural location, climate, urban form, and other such factors. We also see variation in outcomes according to individual and population level factors such as gender, age and

Our understanding of health benefits of urban green space is limited for a number of reasons. First, much of the evidence relates only to the residential environment, ignoring green spaces around the work-place or other locations to which people are regularly exposed (e.g. commuter routes). Second, often crude assessments and characterisations of the environment are used, classifying spaces on a continuum of ‘green’ to ‘not green’ with little consideration of the biodiversity, quality, state and type of green spaces (Wheeler et al., 2015). Third, assessments of green space exposure are limited by assumptions of exposure, typically based on a person’s residential proximity to green space, rather than actual assessment of green space exposure age, frequency, duration, and type. Finally, there is substantial variation in the design of studies into green space health benefits (Ekkel & de Vries, 2017). Few studies have made use of designs that examine causative, rather than associative, factors driving the observed benefits.

Given the overwhelming evidence for green space health benefits, some governments (e.g. the United Kingdom; Ham & Alderwick, 2015; NHS, 2014) have begun developing policy to harness the potential of urban green spaces (See Solutions Box). However, there is still a need to better understand the mechanisms driving green space health benefits so that green spaces can be designed, restored, or used more effectively to benefit both the environment and human health concurrently. One of the promising mechanisms is that exposure to biodiverse environmental microbiota causes a cascade of upstream health benefits (Fig. 1; Flies et al., 2017; Kuo, 2015; World Health Organization & Convention on Biological Diversity, 2015).

[insert Solutions Box here]
Mechanisms for health benefits from microbially diverse green space

We could easily be considered to be in the decade of the microbiome; hardly a day goes by without another connection forged between the human microbiome and health. For example, in neonatology it has been found that cesarean births, antenatal antibiotics and bottle feeding alter microbial colonization, and are associated with immune dysfunction (Mueller, Bakacs, Combellick, Grigoryan, & Dominguez-Bello, 2015). Immunotherapy studies have found that anti-cancer treatments (CTLA-4 blockade) are only effective if certain gut microbes are present (Vétizou et al., 2015). Gastroenterology studies have discovered that fecal transplants from healthy individuals can reduce inflammatory bowel disorders (Costello et al., 2017).

However, the environmental source of the human microbiome, and the role of natural environmental microbiomes in human health has largely been neglected. It is clearly possible that there are broader health benefits of exposure to the microbiomes of biodiverse green spaces (Flandroy et al., 2018; Flies et al., 2017; Mills et al., 2017) but these have largely been unexplored experimentally or even epidemiologically.

The environment within which humans evolved was biodiverse (faunistically, floristically, and microbially; Kellert & Wilson, 1993), so a negative health effect of reduced exposure to biological diversity is somewhat intuitive and serves as the foundation for the ‘old friends’ hypothesis (Rook, 2013). However, fundamental research gaps remain in revealing the human health benefits from urban green spaces (Craig, Logan, & Prescott, 2016; Flies et al., 2017; Liddicoat, Waycott, & Weinstein, 2016). Could exposure to biodiverse microbiomes in urban green spaces provide better immune priming and health outcomes (Mills et al., 2017)? If so, it remains unclear how the quality of urban green spaces would affect such a relationship. Such quality indicators would include plant, animal, or structural diversity (Fig. 3), which associate with microbial diversity and therefore exposure to a ‘healthy’
environmental microbiome. If such a relationship can be substantiated and quantified, a significant reduction in disease burden could potentially be achieved by including high quality, biodiverse urban green space in city planning.

What do we know about environmental microbiomes?

As of yet we still know very little about the microbiomes in urban green spaces. We know urban green microbiomes are different than those in built environments (Mhuireach et al., 2016) and can harbour great diversity of microbial species (Ramirez et al., 2014). There are four main components to the environmental microbiome relevant to urban green spaces: substrate, air, water, and plant-dependent microbes (Table 1; Fig. 4). Much is known about each of these microbiomes in different contexts; how soil microbiota interact with plants in ecological (Bissett et al., 2016; Bulgarelli et al., 2012; Urbina et al., 2018) or agricultural settings (Bakker, Otto-hanson, Lange, Bradeen, & Kinkel, 2013; Rousk et al., 2010), or how aerial microbes relate to land use (Bowers, McLetchie, Knight, & Fierer, 2011; Mhuireach et al., 2016), for example. We also know that it is possible to restore microbiomes from a degraded or artificial state to one that represents wild, native areas (Cavagnaro, Cunningham, & Fitzpatrick, 2016; Gellie, Mills, Breed, & Lowe, 2017; Yan et al., 2018). But despite the potential for positive health impact (Charlop-Powers et al., 2016), the microbiomes in urban green spaces remain poorly studied.

There is also a lack of knowledge of the microbiomes associated with human structures (e.g. benches, paths) in these green spaces, and how environmental microbiomes fluctuate through time (e.g. diurnally, daily, seasonally, yearly), external urban influences (e.g. pollution,
traffic, surrounding land use), and across micro- (within-green spaces) and macro-geographic (e.g. latitude, biome, human development index) scales.

Rothschild et al. (2018) clearly showed that people’s environment has a stronger influence on their gut microbiomes than people’s genetic background. However, ‘environment’ in this context refers to anything non-inherited, including diet, lifestyle, and pharmaceuticals. Very little is known of the influence that the outdoor environment has on human microbiomes. Consequently, very few studies have directly linked non-diet environmental microbiomes to human health (but see Liddicoat et al., 2018). However, there is a large body of evidence that supports the inference that environmental microbiomes could potentially impact on human health (Flandroy et al., 2018; Rook, 2013; von Hertzen et al., 2015). Therefore, there is the potential to improve human health by designing microbially rich, biodiverse, heathy urban green spaces.

Healthy urban microbiome initiatives

Microbiome science is rapidly delivering new understanding of the microbial mechanisms of health but it has yet to be linked to contact with natural environments. A Healthy Urban Microbiome Initiative (HUMI) has now emerged to examine these connections specifically, providing the basis for a public health intervention in the form of healthy urban greenspace exposure (see Solutions Box).

Microbial abundance and diversity have been identified as one of the reasons rural farming populations experience less inflammatory related diseases and immune dysfunction (Ege et al., 2011; Hanski et al., 2012; Riedler et al., 2001; Stein et al., 2016; von Mutius & Radon, 2008), but the relationship is complex. If we can identify the species, ecological communities
or routes of exposure for environmental microbiomes that are most conducive to health, green
space public health interventions such as HUMI can be more effective.

In doing so, we have the potential to improve the health and wellbeing of urban populations
by modifying their environment; regreening cities and restoring biodiversity into urban green
spaces, which may then provide human and environmental health co-benefits in ways that we
could not have conceived of before the rise of microbiome science (Mills et al., 2017). This
creates the possibility of a future in which green spaces are no longer considered an economic
burden, due to forgone development and maintenance costs, but rather as an essential
component of urban design that provides benefits to physical, mental wellbeing – and the
associated economic benefits.

Conclusions

Urban green spaces have a clear benefit to both environmental and human health. The
mechanisms behind this connection are not yet clear, but exposure to biodiverse
environmental microbiomes provides one possible explanation with tremendous promise for
public health applications. If we can identify the characteristics of health-giving urban
microbiomes, we can then manipulate aspects of the environment to promote microbial
biodiversity (e.g. urban spaces with a diverse structure, flora, and fauna), and promote the
types of interactions that put people in contact with these beneficial environmental
microbiomes.

To achieve this, however, we will need to makes some fundamental changes to how we think.
We need more place-based, preventative, wellness-focused healthcare systems that interact
with urban planners, environmental managers, and politicians to promote healthy urban
designs and living. We need greater evidence of the mechanisms, and characteristics
connecting green spaces to health. Finally, we need better decision-making frameworks (e.g.
integration of ecological networks or complexity science) to support the trade-offs surrounding healthy urban design (Rydin et al., 2012). Given the rapid rate and scale of global urbanisation and current non-communicable disease trends, the development of a new public health tool – healthy urban microbiomes – could not come at a better time. A global healthy urban initiative (HUMI) that capitalises on this potential could mitigate the adverse effects of our otherwise increasing isolation from biodiverse environments.

Acknowledgements: EJF is funded by Australian Research Council grant FL160100101.

Works Cited

Solutions Box: We provide two examples of components of HUMIs in action: a policy-led, ‘top-down’ initiative in England, and a research, ‘bottom-up’ initiative in Australia.

England: Policy to Practice

England is the home of the Hygiene Hypothesis and more recently, the Old Friends Hypothesis, both of which emphasise the negative impact that separation from nature has on the physical health of humans. In 2012, the Health and Social Care Act transferred local public health resources back to local government from the National Health Service (NHS) and came into force along with a statutory requirement for local government to reduce health inequalities. This policy has driven a focus on the ‘wider determinants’ of health through local statutory fora such as health and wellbeing boards. Links of the environment to human activity and non-communicable diseases have been a particular focus of many of these boards.

More recently, the NHS has started to reshape the national health program to better align with local efforts in order to reduce the gaps in health and wellbeing, and improve quality of care and financial sustainability (NHS 2014). The outcomes of this policy initiative have been the ‘Sustainability and Transformation’ plans for each of 44 areas of England and the formation of Integrated Care Systems. This signals a shift beyond the typical focus on organisational and medical services to a lifecourse and systems approach. These are early days in what will, for England, be a radical transformation, but already the issue of urban green space has been prominent in local discussions. Collaboration between Public Health Dorset and HUMI (see below) is an illustration of the potential for environmental and health co-benefits. However, those co-benefits can only be achieved if the mechanistic evidence can overcome the various international logistic and political challenges (Flies et al 2017).

Australia: the HUMI research

There are daily revelations connecting microbiomes to human health outcomes. The human microbiome has been linked to obesity, depression, and cancer. However, our understanding of how the surrounding environment impacts the human microbiome is in its infancy.

The Healthy Urban Microbiomes Initiative (HUMI, based at the University of Adelaide, Australia) was developed to fill that gap. HUMI integrates microbiome science with ecology, public health and urban development to elucidate what influences urban microbiomes, how they can be manipulated, and how urban microbiomes impact human health. To this end, HUMI works with partners in Australia, the UK, India and China to collect soil, vegetation and aerial samples from local green spaces. With metagenomics and quantitative spatial models, the factors influencing urban microbial communities are being elucidated. With partners in the public health sector, these environmental microbiomes are being connected to human health outcomes. This knowledge can then feed back to inform local governments and the education sector looking to develop healthy, prosperous cities.
<table>
<thead>
<tr>
<th>Major green space biome</th>
<th>Sample type</th>
<th>Relevance for human health</th>
<th>Key references</th>
</tr>
</thead>
<tbody>
<tr>
<td>Substrate</td>
<td>Surface soil, sub-surface soils, pebbles and gravel</td>
<td>During direct interaction with substrates (e.g. digging in garden), major source of aerial microbiome</td>
<td>(Bissett et al., 2016; Ramirez et al., 2014; Roesch et al., 2007)</td>
</tr>
<tr>
<td>Water</td>
<td>Streams, lakes, ponds, sea water</td>
<td>During direct interaction, also a major source of aerial microbiome</td>
<td>(McLellan, Fisher, & Newton, 2015; Vaz-Moreira, Nunes, & Manaia, 2014)</td>
</tr>
<tr>
<td>Vegetation</td>
<td>Whole leaf/bark/root or swabs/washings of plant surface</td>
<td>Direct contact with plants, consumption of plants (e.g. garden), major source of aerial microbiome</td>
<td>(Bulgarelli et al., 2012; Vacher et al., 2016)</td>
</tr>
<tr>
<td>Air</td>
<td>Settlement traps, petri dishes, filtered vacuum samples</td>
<td>Most direct route of human (e.g. respiratory, oral and skin) exposure</td>
<td>(Bowers et al., 2011; Brodie et al., 2007; Burrows, Elbert, Lawrence, & Pöschl, 2009; Mhuireach et al., 2016)</td>
</tr>
</tbody>
</table>

Table 1: Main sources of environmental microbiomes, sampling techniques and health relevance for each. Key citations/references are also provided.
Figure 1: Connections between green spaces and various components of health and wellbeing.

Figure 2: San Mateo Park (California, USA) provides opportunities for exercise (walking, bike riding), relaxation, recreation and interaction with humans, plants and environmental microorganisms.

Figure 3: Does a diversity of substrates (mulch, sand, grass, pavement, fertilized soil) provide greater diversity of habitats, a greater microbial biodiversity and greater potential health benefits?

Figure 4: Humans are exposed to microbes from a variety of environmental sources including the soil, water (standing water and rainfall), air and plants.