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Abstract: Air valve failure can cause air accumulation and result in a loss of carrying capacity, pipe 11 

vibration and even in some situations a catastrophic failure of water transmission pipelines. Air is most 12 

likely to accumulate in downward sloping pipes, leading to flow regime transition in these pipes. The 13 

flow regime identification can be used for fault diagnosis of air valves, but has received little attention 14 

in previous research. This paper develops a flow regime identification method that is based on support 15 

vector machines (SVMs) to evaluate the operational state of air valves in freshwater/potable pipelines 16 

using pressure signals. The laboratory experiments are set up to collect pressure data with respect to the 17 

four common flow regimes: bubbly flow, plug flow, blow-back flow and stratified flow. Two SVMs are 18 

constructed to identify bubbly and plug flows and validated based on the collected pressure data. The 19 

results demonstrate that pressure signals can be used for identifying flow regimes that represent the 20 

operational state (functioning or malfunctioning) of air valves. Among several signal features, Power 21 

Spectral Density and Short-Zero Crossing Rate are found to be the best indictors to classify flow regimes 22 
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by SVMs. The sampling rate and time of pressure signals have significant influence on the performance 23 

of SVM classification. With optimal SVM features and pressure sampling parameters the identification 24 

accuracies exceeded 93% in the test cases. The findings of this study show that the SVM flow regime 25 

identification is a promising methodology for fault diagnosis of air valve failure in water pipelines.  26 

Keywords: Water transmission Pipeline; Air valve; Flow regime identification; Support vector machine; 27 

Fault diagnosis 28 

1 Introduction 29 

Freshwater resources are unevenly distributed temporally and spatially and particularly 30 

mismatching with urbanization development, thus leading to severe imbalance between supply and 31 

demand. Many long-distance water transmission pipelines were built to address this type of problem, 32 

such as in the case of the Snowy Mountains Hydro-electric Scheme in Australia (Bergmann, 1999), the 33 

Great Lakes Basin Water Diversion (Becker and Easter, 1995), the Central Valley Project in the USA 34 

(Mariño and Loaiciga, 1985), and South to North Water Diversion Project in China (Barnett et al., 2015; 35 

Yu et al., 2018). In the pressurized water transmission pipeline, air valves are a common component 36 

which is used to deaerate the pipe (Meng et al, 2016; Pothof and Clemens, 2012). The existence of air in 37 

water pipelines will not only decrease water conveyance capacity and increase head losses (Escarameia, 38 

2007; Lubbers, 2007), but could also lead to pipe vibration due to the pressure fluctuation of air-water 39 

mixing flows. Worse still, it may even cause pipe to burst during the hydraulic transient process (Pothof 40 

and Clemens, 2010). Air is most likely to accumulate in the downward sloping water pipe, which can 41 

usually be removed by flowing water or discharged through air valves (Escarameia, 2007). If the water 42 

velocity is lower than the “clearing velocity” (Kalinske and Bliss, 1943; Kent, 1952; Wisner et al, 1975), 43 
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the air cannot be completely taken away by hydraulic actions, therefore, air valves are essential for 44 

removing air in this situation. Air valves often break down due to blockage in the vent hole or valve-45 

stem rupture caused by pipe vibration (Ramezani et al, 2015). However, air valves that are normally 46 

located at the high spots of water conveyance pipelines are inconvenient to inspect and maintain (Pothof 47 

and Clemens, 2012). Moreover, air valve failures cannot be easily detected and rectified, affecting the 48 

performance of the pipeline.  49 

Fault diagnosis of air valves located in mechanical systems (e.g., diesel, compressor) is often 50 

performed by various pattern recognition algorithms based on the analysis of acoustic and/or vibration 51 

signals (Pichler et al, 2011; Qin et al, 2012; Verma et al, 2011). However, acoustic and vibration signals 52 

are not suitable for fault diagnosis of air valves in water conveyance pipeline due to poor working 53 

conditions (e.g. humid underground, limited power and communication, and external disturbance) 54 

(Stephens et al., 2004; Schwaller and van Zyl, 2015). However, pressure signals have been successfully 55 

employed in valve fault diagnosis in mechanical systems (Feng et al, 2011). In the downward sloping 56 

water pipes, when the air valves are out of service, the air accumulation can lead to flow regime transition. 57 

This in turn can lead to the change in the dynamic behavior of the valve and pressure fluctuations in the 58 

air-water flow. Moreover, pressure signals in the water pipeline are commonly available, therefore, this 59 

study investigates their use to identify flow regime changes and detect the operational state of air valves 60 

in downward sloping water pipes.  61 

Flow regime identification has been widely studied in the literature. Numerous investigators have 62 

applied various types of instruments to collect different data (e.g., flow image, void fraction or 63 
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differential pressure) for flow regime identification (Arvoh et al, 2012; Lee et al, 2008a,b; Roshani et al, 64 

2015; Salgado et al, 2010). The features, e.g., frequency, stochasticity, fractals or chaotic time series 65 

characteristics, are extracted from the data in order to improve the identification accuracy for a specific 66 

application (Cai et al, 1994; Elperin and Klochko, 2002; Franca et al, 1991; Sun et al, 2013; Vince and 67 

Lahey, 1982). 68 

 Moreover, identification of signal features (pattern recognition) can utilize the classification 69 

methods, i.e., distinguishing the features of anomaly events from a spectrum of event sets. (Mi et al, 70 

2001; Roshani et al, 2015; Tan et al, 2007). Support vector machines (SVM) and artificial neural 71 

networks (ANN) are probably the most commonly used pattern recognition methods. SVM are less prone 72 

to being trapped in a local minimum and require less data during the training process, but most 73 

importantly can overcome the key weakness of ANN, which require an appropriate structure to be 74 

selected and optimized for the problem at hand (Yang et al., 2017). In the water sector, SVM has been 75 

used for water quality classification as an early warning tool. For example, a least square support vector 76 

machine (LS-SVM) was combined with fuzzy clustering to estimate water quality failures in water 77 

distribution networks (Aydogdu and Firat, 2015; Modaresi and Araghinejad, 2014). Moreover, SVM is 78 

used for anomaly detection in water distribution systems based on the pressure and flow signals (Mounce 79 

et al, 2011). In addition to classification applications, SVM is also applied in precipitation and runoff 80 

predictions (Ahmadi et al, 2015; Bray and Han, 2004). These applications prove that SVM has a strong 81 

capability as a classification tool. In this study, SVM is used for flow regime identification in water pipes, 82 

whereby the flow regime changes could be used for diagnosing air valve operation states.  83 
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This paper aims to evaluate the operational state of air valve in the downward sloping water pipe 84 

based on pressure data using SVM classification. Laboratory experiments are set up to collect the 85 

pressure data. Then the data are used to train and validate SVM models. Bubbly flow (including quasi-86 

pure water state) or plug flow can be classified amongst all flow regimes through the SVMs. According 87 

to the analysis of experimental data and the SVM-based results, the following aspects are addressed by: 88 

(i) analysis of the optimal time-frequency characteristics of pressure signals corresponding to different 89 

flow regimes in downward sloping water pipes, (ii) identification accuracy of SVM models using the 90 

different features extracted from pressure data, and (iii) parameter analysis of SVM input data (e.g. 91 

optimal sampling rate and time)? This paper presents a novel methodology for flow regime identification 92 

in water pipe systems. Flow regime in a water pipe can then directly be linked to the operational state of 93 

the air valve, thus performing air valve fault diagnosis and ensuring the safety of water pipelines. The 94 

findings of this study can also provide potential guidance for parameter estimation of the SVM 95 

classification model. 96 

2 Experimental facility 97 

A single-pipe transmission system is set up to collect the pressure signal data under the various flow 98 

conditions. As shown in Fig. 1, the experimental set-up is based on a circulating water system pressurized 99 

by a pump. All pipes are made of plexiglas, and the total length of the pipeline is about 80 m. The inner 100 

and outer diameters of the pipes are 90 mm and 110 mm, respectively. To simulate air-water two-phase 101 

flow in downward slope, the air was injected into the upstream of the pipeline by an air compressor. The 102 
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digital signals of pressure sensor and ultrasonic flowmeter are collected by a multiple-channel data 103 

acquisition card (Advantech USB-4711A). 104 

 105 

Fig. 1 Diagram of the test rig used in this study (test section is shown in the dashed box) - 1: water tank; 2: pump; 106 

3: electric valve; 4: pneumatic butterfly valve; 5: ultrasonic flowmeter; 6: pressure sensor; 7: gas rotameter; 8: air 107 

compressor; 9: data acquisition instrument; 10: computer 108 

 109 

Fig. 2 A detail of the test section with the pressure sensor 110 

The tested pipe section in downward slope is illustrated in Fig. 2. The length of the test section is 111 

2,250 mm, and the pressure sensor is deployed at 300 mm away from the upstream elbow. The 112 

measurement range of the pressure sensor is 0~200 kPa with an accuracy of 0.2%. The experimental 113 

procedure includes the following aspects: 114 
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1) The planned water velocity range included 16 different values (0.7, 0.9, 1.1, 1.3, 1.5, 1.7, 1.8, 115 

1.9, 2.0, 2.1, 2.2, 2.3, 2.4, 2.5, 2.6 and 2.7 m/s), which were controlled by the electric valve near the 116 

pump. The exact value of the velocity was then measured by the ultrasonic flowmeter. 117 

2) The air flow measured by the gas rotameter was set to 8 discrete values (0.5, 1.0, 1.5, 2.0, 2.5, 118 

3.0, 3.5 and 4.0 m3/h), which was controlled by the outlet valve at the air compressor. 119 

3) A total of 128 cases were tested during the experiment based on the orthogonal combination of 120 

different water velocities and air flow values. 121 

4) The pressure signals were sampled at a frequency of 1 kHz and the sampling time was set to 20 122 

s. 123 

5) The images of air-water flow regime at the test section were recorded by a high-speed camera 124 

from a side view. 125 

3 Methodology 126 

3.1 Description of Flow Regimes 127 

It is known that four flow regimes may appear in the downward sloping water pipes (Pothof and Clemens, 128 

2011). Those can be seen in the images of obtained in the tests, as shown in Fig. 3. It should be noted 129 

that the camera lens is placed in parallel with the longitudinal pipe axis, thus the pipes in the images 130 

appear to be horizontal. 131 

 132 
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  133 

(a) Bubbly flow                               (b) Plug flow 134 

  135 

(c) Blow-back flow                         (d) Stratified flow 136 

Fig. 3 Typical flow regime images 137 

There is always a small amount of dissolved air in the water, which can be assumed as a state of 138 

“quasi-pure water” (Zhu et al, 2018). Although the amount of dissolved air is very small, the effect of 139 

local resistance by the elbow will aggregate it into tiny bubbles that are dispersed in pipes (Barnea, 1986). 140 

Therefore, bubbly flow (Fig. 3a) can be considered the normal flow regime in the downward sloping 141 

water pipes. When the water velocity is lower than “clearing velocity”, small bubbles will accumulate to 142 

create plug flow (Fig. 3b), and the air plugs will finally be discharged out of the pipe if the air valve is 143 

working normally. However, if the air valve is not working properly, the air plugs will gradually coalesce 144 

into a large air pocket at the top of the slope, which is called “blow-back flow” as shown in Fig. 3c. As 145 

the large air pocket continues to expand until occupying the entire slope, stratified flow occurs with the 146 

water flowing beneath the air (Fig. 3d). According to the flow regime analysis, the occurrence of blow-147 

back flow or stratified flow in downward sloping pipes indicates that the air valve may be malfunctioning. 148 

3.2 SVM-based Flow Regime Identification 149 

Classification is a process of classifying data points into specific groups (or classes). SVM is one of the 150 

powerful methods for data classification. The training process of a SVM classifier involves finding the 151 
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best hyperplane that divides the two classes with the given data points. If it is necessary to divide the 152 

data points into n classes, n-1 hyperplanes should be constructed by the classifier. The original maximum-153 

margin hyperplane algorithm proposed by Vapnik (1963) is used to build a linear classifier and can only 154 

solve linearly classification problems. In this paper, we used the maximum-margin method, proposed by 155 

Boser et al. (1992), to deal with the nonlinear classification problems by a spectrum of linear decision 156 

functions separating hyperplanes in a transformed high-dimensional feature space. The transformation 157 

algorithm is similar to the mapping calculation except dot product which is replaced by a nonlinear kernel 158 

function (Boser et al., 1992). For a specific nonlinear classification problem, an appropriate kernel 159 

function is crucial for the classification performance, and therefore the Radial Basis Function (RBF) 160 

(Ring and Eskofier, 2016) is used as kernel functions through several trials.  161 

The flow regimes of blow-back or stratified flows are the most severe situations of air accumulation 162 

in pipelines, which indicates air-valve is likely to fail completely. Although plug flow regime shows the 163 

less volume of air accumulation than blow-back and stratified flows, the frequent occurrence of plug 164 

flow indicates potential drawbacks for air exhausting (e.g., the insufficient number of air valves). 165 

Therefore, the four flow regimes are hierarchically classified into three categories for improving the 166 

identification accuracy, since both the blow-back and stratified flows are considered in the same 167 

category. Fig. 4 shows the flowchart of the flow regime identification. As can be seen in Fig. 4, two SVM 168 

models have been constructed to identify the different flow regimes: 1) SVM-1, which is used to 169 

distinguish bubbly flow (including quasi-pure water state) from the other three flow regimes; and 2) 170 
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SVM-2, which is used to distinguish plug flow from blow-back and stratified flows. The detailed training 171 

and testing process are introduced in the following section.  172 

According to Fig. 4, pressure signals are collected with low frequency (twice a day, for example) 173 

at normal conditions. The sampling frequency (i.e. sampling times per minute) will be conducted and 174 

maintained continuously when the results of SVM-1classification demonstrates bubbly flow. If the 175 

results of SVM-1 are not identified as the quasi-pure water state or bubbly flow, the features abstracted 176 

from pressure signals will be passed as input to SVM-2. When the SVM-2 classification results in the 177 

plug flow classification, a “Warning” signal will be given and then the sampling frequency of pressure 178 

signals should be increased in order to strength the monitoring of the transition process from plug flow 179 

to blow-back and stratified flows. Once the results of SVM-2 classification does not show plug flow, an 180 

“Alarm” signal will be launched, which indicates the potential failure of air valve.  181 

 182 

Fig. 4 Flowchart of the evaluation of air valve exhaust 183 
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3.3 SVM Training and Testing 184 

Among the entire 128 cases, two cases were not used for SVM analysis due to the faulty data acquisition 185 

card (one for blow-back flow and the other for stratified flow). Among the remaining 126 cases, there 186 

are 69, 34, 18 and 5 cases for bubbly flow, plug flow, blow-back flow and stratified flow, respectively. 187 

These were determined by analyzing flow regime photos (see Fig. 3). SVM-1 is trained based on 94 188 

cases, and the remaining 32 cases are used to test the identification accuracy of SVM-1. SVM-2 is trained 189 

based on 42 cases exhibiting the three characteristic flow regimes (plug flow, blow-back flow and 190 

stratified flow). The remaining 15 are used to test the identification accuracy of SVM-2. The SVM 191 

training and testing in this study are performed on the Matlab R2011b platform, and the procedures of 192 

SVMs training and testing can be described as follows: 193 

1) Pressure data are preprocessed by downsampling, which can change the sampling rate of the 194 

original pressure signal. 195 

2) In order to make the model training and the obtained testing accuracy more reliable, it is 196 

necessary to enlarge the data volume for both SVM training and testing. This is done by dividing data 197 

series based on the same interval. Assuming that the total length of one pressure signal series is L, the 198 

length of one sample is L′, and the interval between the adjacent samples is I, the number of samples 199 

(N) in a pressure signal series can be calculated by:  200 

 - 1   N L L I                                       (1) 201 

Fig. 5 shows the example of how samples are created from one pressure data series in this study. As can 202 

be seen in Fig. 5, the total data volume of one pressure signal [Pi] is 10. The length of one sample is 5. 203 
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The interval between two adjacent samples is 1. In Fig. 5, the first sample is from P1 to P5, and the last 204 

sample is from P6 to P10. Hence the total number of samples is 6, which is equal to the result calculated 205 

by Eq. (1). 206 

 207 

Fig. 5 Samples for an experimental process 208 

3) Every training and testing sample is labeled with 1 or 0, which indicates whether it belongs to a 209 

given category. 210 

4) The SVMs are trained based on the features extracted from the training samples. The pressure 211 

signals with respect to different flow regimes have significant differences in terms of three types of 212 

features, i.e., pressure fluctuation, periodicity and frequency distribution. The features and their types are 213 

listed in Table 1.  214 

Table 1. Features for flow regime identification 215 

Feature type Feature name Abbreviation 

Pressure Fluctuation 
Variance V 

Short-time Zero-crossing Rate SZR 

Periodicity Autocorrelation Coefficient AC 

Frequency Distribution 
Hilbert-Huang Transform HHT 

Power Spectrum Density PSD 

In Table 1, Variance (V) can reflect the amplitudes of pressure signals for different flow regimes. 216 

Short-time Zero-crossing Rate (SZR) is the rate at which the pressure signal changes from positive to 217 

negative within a short period of time after subtracting their mean values. Autocorrelation Coefficient 218 

(AC) is a feature vector which consists of 51 autocorrelation coefficients, since each test lasts 2 seconds 219 
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including 51 samples. Hibert-Huang Transform (HHT) is an algorithm that decomposes a signal into 220 

various components for obtaining the instantaneous frequency (Ding et al, 2007). The frequency band in 221 

the range of 0 to 10 Hz is evenly divided into 5 components. Each frequency band is 2 Hz here. The 222 

remaining frequency range (> 10 Hz) belongs to the 6th component. Six eigenvalues (i.e., components) 223 

therefore exist in the feature vector of HHT. With respect to Power Spectrum Density (PSD), the pressure 224 

signal value is normalized by subtracting the mean value to eliminate the interference of the average 225 

pressure. Then the Nyquist rate (using half of the sampling rate, 500 Hz) is equally divided into 128 226 

frequency bands, where the average size of frequency band (i.e. frequency interval) is about 3.9 Hz. The 227 

129 eigenvalues are included in the feature vector of PSD. Both HHT and PSD are the frequency-domain 228 

features. Since the feature extraction of HHT is more time-consuming than PSD, the number of frequency 229 

bands in the HHT feature is less than that of PSD. The frequency bands of HHT and PSD are set 230 

differently which will be discussed in 4.1.2. 231 

5) The accuracy of the SVM classification for flow regime identification is investigated using the 232 

experimental samples. The RBF is used as the kernel function in the SVM model and the parameters of 233 

SVM are estimated by the Sequential Minimal Optimization (SMO) method during each training (Platt, 234 

1998). 235 

4. Results and Discussion 236 

4.1 Time-frequency Analysis of Experimental Data 237 
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Flow regimes in water pipes are different from those in other media (e.g., oil-gas transportation, chemical 238 

pipelines or nuclear reactors) (Crawford et al, 1985). Therefore, the time-frequency characteristics of 239 

pressure signals of different flow regimes need to be analyzed for flow regime identification.  240 

4.1.1 Time-domain Characteristics of Pressure Signal 241 

Four typical cases are selected to show the time-series pressure signals of different flow regimes in Fig. 242 

6. qa refers to the air flow and vw represents the water velocity. As shown in Fig. 6a, the pressure 243 

fluctuation of bubbly flow is relatively stable. Because there is little amount of air in bubbly flow, the 244 

interaction between air and water phases is not strong. In the plug flow case (Fig. 6b), the air plug moves 245 

up and down due to its volume change or deformation, and thus the pressure signal of the plug flow 246 

shows occasional pressure drops. In Fig. 6c, the characteristic of pressure fluctuation of blow-back flow 247 

is similar to that of plug flow, but the changes in the pressure drop are more pronounced. The greater 248 

volume of air has been distributed throughout the downward slope with respect to stratified flow, and the 249 

air-water interface intermittently flows back into the slope. Hence, the pressure of stratified flow 250 

fluctuates periodically, as shown in Fig. 6d. Fig. 6 also demonstrates that the amplitudes of pressure 251 

fluctuation of the stratified flow is the largest one, while the second largest is the blow-back flow. In 252 

order to further confirm this result, the variance analysis of all the pressure signals is conducted to express 253 

the amplitude of pressure changes. 254 
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 255 

Fig.6 Time-domain pressure signals of different flow regimes  256 

 257 

Fig. 7 shows the variances of all pressure signals collected in the tests. As shown in Fig. 7, the 258 

variances of all the pressure signals with respect to different flow regimes can be ranked in a descending 259 

order as follows: stratified flow, blow-back flow, plug flow and bubbly flow. That is because the 260 

transition in flow regime is closely related to the change of the air fraction, and it is generally accepted 261 

that bubbly flow, plug flow, blow-back flow and stratified flow appear sequentially in the downward 262 

sloping water pipe as the air fraction increases (Pothof and Clemens, 2011). Moreover, the pressure 263 

fluctuation of air-water flow will become increasingly intense with the increase of air content when the 264 

air fraction is lower than 50% (Riverin et al, 2006). According to the test conditions, the maximum air 265 

fraction in our tests was 25%. Thus, the amplitude of pressure fluctuation in stratified flow is the largest 266 

among the four regimes, which is followed by blow-back flow, plug flow and bubbly flow in order. As 267 

a result, the variance of pressure signal (in Table 1) can be used as an index (feature which can be input 268 

into the SVM) for flow regime identification.  269 
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Fig. 7 Variances of all the pressure signals 271 

4.1.2 Frequency-domain Characteristics of Pressure Signal 272 

Fig. 8 shows the results of Fast Fourier Transform (FFT) on the pressure fluctuation signals according to 273 

the four typical cases in Fig. 6. The pressure fluctuation signals can be obtained by subtracting the mean 274 

values from the original pressure signal values.  275 
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Fig. 8 Fourier spectra of pressure signals for different flow regimes (a) bubbly flow, (b) plug flow, 

(c) blow-back flow, (d) stratified flow. 
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 277 

 278 

As shown in Fig. 8, the frequency-domain distributions of four typical cases are mainly shown 279 

within 10 Hz, therefore the frequency-domain analysis on pressure signals should focus on this frequency 280 

range when the frequency-domain feature is used for flow regime identification. The frequency features 281 

of HHT and PSD used in this study are set with the frequency bands of 2 Hz and 3.9 Hz, respectively. 282 

Moreover, the frequency-domain distributions of pressure fluctuation signals show the single-peak 283 

characteristic in Fig. 8 except for bubbly flow (Fig. 8a), which indicates the pressure fluctuations of plug 284 

flow, blow-back flow and stratified flow have more significant periodicity in time-domain. It can also be 285 

seen in Fig. 8 that the single-peak characteristic becomes increasingly obvious and the pressure value of 286 

the peak increases when comparing from Fig. 8b to Fig. 8d. The main frequency components (i.e. 287 

pressure peak) are 0.2 KPa, 0.4 KPa, 0.7 KPa, 3.7 KPa in Figs 8a-8d, respectively. It indicates the 288 

periodical characteristic of the pressure signals based on the main frequency components becomes more 289 

significant as the air fraction increases. Consequently, the feature AC representing periodicity is used for 290 

flow regime identification (shown in Table 1). 291 

4.2 SVM-based Flow Regime Identification 292 

4.2.1 Effect of Pressure Signal Features on Identification Accuracy 293 

The identification accuracy is defined as the ratio of the number of samples that are correctly classified 294 

into the specific flow regime by the SVM model to the total number of samples. Before studying the 295 

effect of pressure signal features on identification accuracy, the original pressure signals are first 296 
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downsampled to 200 Hz, therefore, the length of one set of pressure signal (L) is 4000. The sample length 297 

(L′) is set to 1000, which means the sampling time (the ratio of sample length to sampling rate) is 5 s. 298 

The interval between the adjacent samples (I) is 200, so every set of pressure signal can obtain 16 samples 299 

for SVM training or testing. The training data mentioned in Section 3.3 are used to train the SVM models, 300 

while the testing data are used to investigate the identification accuracy in SVM models. The 301 

identification accuracies of different features and their combinations for SVM-1 and SVM-2 are listed in 302 

Table 2.  303 

Table 2. Flow identification accuracies corresponding to different features 304 

Feature SVM-1 SVM-2 Feature SVM-1 SVM-2 

SZR 89.6% 80.4% SZR+V 89.8% 80.9% 

V 82.5% 70.7% AC+ PSD 79.0% 77.3% 

AC 87.1% 73.3% V+PSD 89.2% 87.1% 

HHT 73.5% 83.1% V+AC 88.1% 74.2% 

PSD 89.2% 87.6% SZR+AC+PSD 79.0% 76.0% 

SZR+PSD 88.5% 85.8% SZR+V+PSD 88.5% 85.8% 

HHT+PSD 81.7% 73.8% V+AC+PSD 78.8% 76.9% 

SZR+AC 89.2% 83.1% SZR+V+AC+PSD 78.8% 75.6% 

As shown in Table 2, the comparative results show that SZR combined with V provide only a 305 

marginal improvement over using only SZR for SVM-1 classification, while the PSD is the optimal 306 

feature for SVM-2. Therefore, SZR and PSD are the best individual features for SVM-1 and SVM-2, 307 

respectively. The features related to HHT perform worse than other parameters in accuracy comparisons 308 

for both SVM-1 and SVM-2, and HHT calculation is computationally demanding. Thus HHT is not 309 

recommended to use for flow regime identification. As can be seen from Table 2, when comparing the 310 

identification accuracy of AC and AC-related feature combinations, SVM-1 is superior to SVM-2. 311 
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In order to explain the reason why SZR and PSD have better performance on identifying flow 312 

regimes as input features, the SZR values derived from all the original pressure signals in all cases are 313 

shown in Fig. 9 and the PSD distributions of four typical cases in Fig. 6 are demonstrated in Fig. 10. In 314 

general, the SZR values can be ranked in term of the four flow regimes in descending order in Fig. 9: 315 

bubbly flow, plug flow, blow-back flow and stratified flow. The SZR values in a few cases of bubbly 316 

flow are mixed with those of plug flow, and thus the identification accuracy in SVM-1 that is only used 317 

to classify bubbly flow cannot reach the higher values (the highest accuracy is 89.6%). SVM-2 is used 318 

to classify plug flow which can mix both bubbly flow and blow-back flow in Fig. 9, and thus the 319 

identification value of SZR decreases further (equal to 80.4%) when only SZR is used as input feature in 320 

SVM-2. Additionally, it is distinct between stratified and blow-back flows associated with SZR values, 321 

and however they cannot be an indication of flow regime transition in SVM due to the limited 322 

experimental samples.  323 

Fig. 10 shows the PSD results of the pressure signals according to the four typical cases from Fig. 324 

6. The PSD feature is a vector that consists of 129 eigenvalues based on the fixed frequency bands. The 325 

PSD distribution of stratified flow in the high frequency range (>50 Hz) shows periodical changes and 326 

distinguishes from other three flow regimes. The key difference between plug and blow-back flows in 327 

PSD distribution lies in the low frequency range (< 50 Hz). The bubble flow shows relative values of 328 

PSD when the frequency bands are larger than 100 Hz. Therefore, it indicates the PSD as input feature 329 

in SVM models would perform well. Although only four cases of different flow regimes are chosen here 330 

to show the difference in PSD distributions, other cases of PSD have also been investigated in this study. 331 
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The results show the similar rules associated with PSD. Based on the above analysis, SZR and PSD are 332 

effective as input features for flow regime identification in SVM models, and the two features will be 333 

used for the sampling parameters study in the following section.  334 
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Fig. 9 Short-time zero-crossing rates (SZR) for all cases 336 
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Fig. 10 PSD results of pressure signals for four typical cases 338 

4.2.2 Impact of Sampling Parameters on Identification Accuracy 339 
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The sampling rate and sampling time can be adjusted by downsampling and changing the sample length 340 

(L′), respectively. With the features of SZR and PSD, the impact of sampling rate on identification 341 

accuracy in SVM models is investigated when sampling time (1 s or 8 s, for example) is given. In order 342 

to make a relatively large difference among all the samples, the overlapping proportion between the 343 

adjacent samples should be as small as possible, therefore the interval between the adjacent samples in 344 

this study is set to 1,000. Fig. 11 shows the effect of sampling rate on the flow regime identification 345 

accuracy. The identification accuracy is generally improved (i.e. accuracy value increases consecutively) 346 

with the increase in sampling rate. In some cases, sampling rate does not show significant impact on the 347 

identification accuracy (SVM-1 in Fig. 11c). In Fig. 11c, the identification accuracy increases from 87% 348 

to 94% for SVM-2 with the increase in sampling rate. In Fig. 11a, the identification accuracy has been 349 

improved from 66% to 80% when SZR is used as the feature. It demonstrates that the identification 350 

accuracy of SZR is more sensitive to the sampling rate than that of PSD, because higher sampling rates 351 

can amplify distinctions of the SZR values among different flow regimes. Therefore, the sampling rate 352 

of 1 kHz (the maximum value) is recommended for the applications of flow regime identification. 353 
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  354 

Fig. 11 Impact of sampling rate on identification accuracy 355 
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Fig. 12 Impact of sampling time on identification accuracy 357 
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In order to study the impact of sampling time on identification accuracy, the sampling rate is first 358 

fixed to 1 kHz, and the results with different features (SZR and PSD) are shown in Fig. 12. In Fig. 12a, 359 

the identification accuracies for both SZR and PSD show the rising trends with the increase of the 360 

sampling time in SVM-1, however the identification accuracy of PSD is better than that of SZR. 361 

Moreover, as mentioned before, the SZR values of some cases in bubbly flow are mixed with those in 362 

plug flow. Hence the feature SZR is not the best feature for SVM-1 since SVM-1 is built to classify 363 

bubbly flow from all flow regimes. As shown in Fig. 12b, the identification accuracy of SZR in SVM-2 364 

ascends as the sampling time increases, however the PSD shows the opposite trend. As can be seen in 365 

Table 1, SZR is a time-domain feature that can reflect the pressure fluctuation of air-water flow, and SZR 366 

can distinguish plug flow from blow-back flow and stratified flow according to Fig. 9; while PSD can 367 

reflect the frequency-domain distribution of the pressure signal, which can clearly differentiate bubbly 368 

flow from the other three flow regimes by referring to Fig. 8 and Fig. 10. Therefore, it is concluded that 369 

PSD is the optimal feature for SVM-1, and SZR is the optimal feature for SVM-2 under various sampling 370 

time conditions. With the optimal features and sampling parameters (sampling rate: 1 kHz; sampling 371 

time: 8 s), the results of Fig. 12 show that the best identification accuracies for SVM-1 and SVM-2 are 372 

94.3% and 93.9%, respectively. 373 

4.3 Discussion 374 

In water transmission pipelines, pressure signals can be obtained with a lower cost compared with void 375 

fraction (Arvoh et al, 2012; Lee et al, 2008b; Roshani et al, 2015; Salgado et al, 2010). If differential 376 

pressure signal is adopted as the indicator to evaluate the operation state of air valves in water pipes, it 377 
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will be difficult to match an appropriate interval between the pressure taps, and therefore differential 378 

pressure signal cannot accurately predict flow regimes (Sun, 2005). Accordingly, pressure signal is the 379 

best indicator used to identify the operational state of air valves in water pipes. 380 

The energy consumption of pressure signal collection with high frequency (> 100 Hz) can be 381 

ignored in the air-water two-phase flows monitoring (Elperin and Klochko, 2002; Sun, 2005). The 382 

sampling rate of 1 kHz is suggested to be used in practical applications, since the collected pressure 383 

signals will contain the essential information which could amplify the distinctions in SZR and PSD for 384 

different flow regimes.  385 

According to the previous study by Lee et al. (2008a), instantaneous flow regime identification was 386 

applied to practical applications indicating that the sampling time of 1 s could identify the flow regimes 387 

successfully in the downward sloping pipe using the cross-sectional void fraction indicator. However, in 388 

this study the sampling time of 8 seconds is found to give the best identification accuracy using the 389 

pressure signal indicator. The possible reason is that only longer sampling time can reflect the dynamic 390 

characteristics of air-water pressure fluctuation in the flow regime transition.  391 

Due to the limitation of the experimental facility, the training data cannot cover all kinds of pipe 392 

conditions and operational cases. The results of flow regime identification can be extended by more 393 

experimental data. Moreover, the void fraction signal can be used in the same methodology, if void 394 

fraction is measured via air valves. In that case, the better results of flow regime identification may be 395 

obtained by integrating pressure and void fraction measurements. 396 

5 Conclusions 397 
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This paper proposed a novel SVM method to identify flow regimes using pressure signals. Flow regimes 398 

are closely related to air fraction in water pipes, and thus indicate operation state (functioning or 399 

malfunctioning) of air valves. An experiment facility involving a transmission pipeline is set up with the 400 

testing section that includes the pressure gauge on a segment of downward sloping pipe. Several features 401 

including Variance (V), Short-time Zero-crossing Rate (SZR), Autocorrelation Coefficient (AC), Hilbert-402 

Huang Transform (HHT), Power Spectrum Density (PSD), are used to extract the information that 403 

represents fluctuations, periodicity and frequency distributions from the collected pressure signals. The 404 

combination of the features as inputs variables to the SVM models is investigated. Two SVM models are 405 

set up for classifying four flow regimes, and the parameters in the SVM classification are examined for 406 

improving the identification accuracy. The key conclusions are drawn:  407 

1) For the analysis of collected pressure signals, the amplitude of pressure fluctuations for different 408 

flow regimes can be sorted into a descending ordered list as follows: stratified flow, blow-back flow, 409 

plug flow and bubbly flow. The periodicity of pressure fluctuations becomes more obvious as the 410 

air fraction increases, and the periodical characteristics of pressure signals are distinct among 411 

different flow regimes. In the analysis of frequency-domain distributions of pressure signals, the 412 

fluctuation frequency of four typical flow regimes occurs within 10 Hz. The four flow regimes show 413 

a strong variation trend in terms of pressure fluctuation.  414 

2) SVM-1 is used to classify bubbly flow and then SVM-2 distinguish plug flow from blow-back and 415 

stratified flows. PSD and SZR are found to be the best features for the SVM classification through 416 
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the combination analysis. The SVMs perform well for flow regime identification using the suitable 417 

features as input variables.  418 

3) The sampling parameters have a significant impact on the performance of SVM for identifying flow 419 

regimes. Based on the experimental data, the pressure sampling rate should be set relatively high 420 

(maximum 1 kHz) and the long sampling time is recommended to improve the identification 421 

accuracy of SVMs (e.g., 8 s in this study). With the best SVM features (i.e., PSD and SZR) and the 422 

optimal sampling parameters, the identification accuracy of SVM-1 and SVM-2 can reach 94.3% 423 

and 93.9%, respectively.  424 

Data and method in this paper have been collected and tested based on an in-door experimental facility. 425 

The practical application of this flow regime identification method should be updated with the pressure 426 

data to train the SVM models. In the future, some field tests of the method should be done to validate the 427 

method. The high frequency pressure sensors which are used in the experiments should be adequately 428 

installed in the real pipelines to carry out this flow regime identification approach. Other sensors (e.g. 429 

acoustic or vibration sensors) are promising and can be used to extend this study.   430 
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