Dynamics of the power-duration relationship during prolonged endurance exercise and influence of carbohydrate ingestion

Ida E. Clark ${ }^{1}$, Anni Vanhatalo ${ }^{1}$, Christopher Thompson ${ }^{1}$, Charlotte Joseph ${ }^{1}$, Matthew I. Black ${ }^{1}$, Jamie R. Blackwell ${ }^{1}$, Lee J. Wylie ${ }^{1}$, Rachel Tan 1, Stephen J. Bailey ${ }^{1}$, Brad W. Wilkins ${ }^{2}$, Brett S. Kirby ${ }^{2}$ and Andrew M. Jones ${ }^{1}$
${ }^{1}$ Sport and Health Sciences, College of Life and Environmental Sciences, St. Luke's Campus, University of Exeter, Heavitree Road, Exeter, EX1 2LU, United Kingdom; ${ }^{2}$ Nike Sport Research Lab, One SW Bowerman Dr, Beaverton 97005, USA.

Address for Correspondence:

Andrew M Jones PhD

Sport and Health Sciences

University of Exeter

United Kingdom

Tel: 01392262815

E-mail: a.m.jones@exeter.ac.uk

Abstract

We tested the hypotheses that the parameters of the power-duration relationship, estimated as the end-test power (EP) and work done above EP (WEP) during a 3-min all out exercise test (3MT), would be reduced progressively following $40 \mathrm{~min}, 80 \mathrm{~min}$ and 2 h of heavy-intensity cycling, and that carbohydrate (CHO) ingestion would attenuate the reduction in EP and WEP. Sixteen participants completed a 3MT without prior exercise (control), immediately after $40 \mathrm{~min}, 80 \mathrm{~min}$ and 2-h of heavy-intensity exercise while consuming a placebo beverage, and also after 2-h of heavy-intensity exercise while consuming a CHO supplement ($60 \mathrm{~g} / \mathrm{h}$ CHO). There was no difference in EP measured without prior exercise ($260 \pm 37 \mathrm{~W}$) compared to EP following $40 \mathrm{~min}(268 \pm 39 \mathrm{~W})$ or $80 \mathrm{~min}(260 \pm 40 \mathrm{~W})$ of heavy-intensity exercise; however, after 2-h, EP was 9% lower compared to control ($236 \pm 47 \mathrm{~W} ; P<0.05$). There was no difference in WEP measured without prior exercise ($17.9 \pm 3.3 \mathrm{~kJ}$) compared to after 40 min of heavy-intensity exercise $(16.1 \pm 3.3 \mathrm{~kJ})$, but WEP was lower $(P<0.05)$ than control after $80 \mathrm{~min}(14.7 \pm 2.9 \mathrm{~kJ})$ and $2-\mathrm{h}(13.8 \pm 2.7 \mathrm{~kJ})$. Compared to placebo, CHO ingestion negated the reduction of EP following 2-h of heavy-intensity exercise (254 $\pm 49 \mathrm{~W}$) but had no effect on WEP $(13.5 \pm 3.4 \mathrm{~kJ})$. These results reveal a different time course for the deterioration of EP and WEP during prolonged endurance exercise and indicate that EP is sensitive to CHO availability.

New and Noteworthy

The parameters of the power-duration relationship (critical power, CP , and the curvature constant, W^{\prime}) have typically been considered to be static. Herein, we report the time course for reductions in CP and W^{\prime}, as estimated using the 3-min all-out cycle test, during 2 h of heavyintensity exercise. We also show that carbohydrate ingestion during exercise preserves CP , but not W^{\prime}, without altering muscle glycogen depletion. These results provide new mechanistic and practical insight into the power-duration curve and its relationship to exercise-related fatigue development.

Introduction

The parameters of the hyperbolic power-duration relationship, the critical power (CP) and the curvature constant (W^{\prime}, which represents a fixed work capacity above CP), are important determinants of endurance exercise performance $(25,32,50) . \mathrm{CP}$ is considered to be a metabolic or fatigue threshold which separates the 'heavy' from the 'severe' exercise intensity domains (8, 40, 41). In the heavy-intensity domain ($<\mathrm{CP}$), intramuscular metabolic homeostasis is maintained and pulmonary $\dot{\mathrm{V}}_{2}$ attains a delayed steady-state $(4,26,41)$. In contrast, in the severe-intensity domain ($>\mathrm{CP}$), intramuscular metabolic homeostasis is not achieved, a $\dot{\mathrm{V}} \mathrm{O}_{2}$ 'slow component' develops that drives $\dot{\mathrm{V}} \mathrm{O}_{2}$ inexorably to its maximum, and exercise tolerance is predictably limited as a function of the power output above CP and the size of the $W^{\prime}(4,26,40,41)$.

The CP and W^{\prime} are conventionally estimated using 3-5 severe-intensity prediction trials in which constant power outputs are maintained until the limit of tolerance, with the asymptote (representing CP) and the curvature constant (representing W^{\prime}) of the power-time relationship subsequently being determined mathematically (30, 41, 48). More recently, a 3-min all-out cycle test against fixed resistance (3MT) has been developed, during which external power output declines hyperbolically with time, which permits a more expeditious assessment of CP and $W^{\prime}(7,48)$. The 3MT has been shown to provide valid and reliable estimates of CP and W^{\prime}, where the mean power output during the last 30 s of the test (end-test power, EP) represents CP, and the work completed above EP (WEP) represents $\mathrm{W}^{\prime}(7,38,48)$. We have recently reported that the 3 MT continues to provide valid (13) and reasonably reliable (12) estimates of CP and W^{\prime} following 2 h of heavy-intensity cycle exercise. In these studies we found that prolonged endurance exercise consistently and profoundly altered the power-time relationship, with CP and EP falling by $\sim 10 \%$ and W^{\prime} and WEP falling by $\sim 20 \%(12,13)$. These results have important implications for our understanding of fatigue development, and
for performance prognosis, during endurance exercise. At present, however, the time course over which EP and WEP deteriorate during prolonged endurance exercise is not known. Elucidating the dynamic changes in EP and WEP during prolonged exercise may provide insight into the determinants of fatigue and underpin the development of interventions to attenuate the decline in performance during such exercise.

The mechanistic bases for the reductions in EP and WEP after 2 h of heavy-intensity exercise are likely multifactorial, and may include muscle glycogen depletion (12, 13, 30). It is well known that glycogen depletion increases with the duration of heavy-intensity exercise (17, 18). If glycogen depletion impacts the power-duration relationship, then reductions in EP and WEP would be expected to become much more substantial following longer, compared to shorter, bouts of heavy-intensity exercise. Carbohydrate (CHO) ingestion is known to benefit prolonged endurance exercise performance by sparing muscle [glycogen], better maintaining blood [glucose] and/or providing stimulation to the central nervous system via the 'pleasure and reward' centers of the brain $(21,23)$. During long-duration events, which deplete muscle glycogen stores, exogenous CHO intake is particularly important to maintain high rates of CHO oxidation (20), with the greatest performance enhancement observed at ingestion rates of $60-80 \mathrm{~g} / \mathrm{h}(44)$. While the reductions in EP and WEP were not significantly correlated with changes in muscle [glycogen] following 2 h of heavy-exercise in our previous study (13), the relationship between muscle CHO availability (in the muscle and circulation) and the powertime relationship is likely to be complex, and it is possible that CHO ingestion may offset the reductions in EP and WEP reported following 2 h of heavy-intensity cycling $(12,13)$

The purpose of this study was to: 1) investigate the dynamic changes in EP and WEP during and following 2 h of heavy-intensity exercise; and 2) determine the effect of $60 \mathrm{~g} / \mathrm{h}$ of CHO ingestion, compared to a placebo, on EP and WEP during and following 2 h of heavyintensity exercise. We hypothesized that EP and WEP would be reduced progressively
following $40 \mathrm{~min}, 80 \mathrm{~min}$ and 2 h of heavy-intensity exercise, and that CHO ingestion would attenuate the declines in EP and WEP after 2 h of heavy-intensity exercise.

Methods

This paper reports the results of two experiments. The first experiment was conducted to investigate possible changes in EP and WEP after $40 \mathrm{~min}, 80 \mathrm{~min}$ and 2 h of heavy-intensity exercise and the second experiment was conducted to investigate the effect of CHO ingestion on changes in EP and WEP after 2 h of heavy-intensity exercise.

Participants

Experiments I and II were conducted on the same group of participants. Sixteen males (mean $\pm \mathrm{SD}:$ age $=34 \pm 6$ years, height $=1.78 \pm 0.07 \mathrm{~m}$, body mass $=79.1 \pm 7.6 \mathrm{~kg}$, peak O_{2} uptake $\left.\left(\dot{\mathrm{VO}}_{2 \text { peak }}\right)=52.5 \pm 7.3 \mathrm{~mL} \cdot \mathrm{~kg}^{-1} \cdot \mathrm{~min}^{-1}\right)$ took part in the experiments. They were all competitive athletes (comprising two runners, six cyclists, four triathletes, three Crossfit athletes, and one squash player) but were not professional/elite. The participants were instructed to arrive at the laboratory in a rested and hydrated state, to avoid alcoholic drinks and strenuous exercise for 24 h prior to testing, and to maintain their habitual diet throughout the study. The participants recorded their diet for 24 h prior to the first experimental session and replicated this prior to each subsequent visit. The experimental procedures were approved by the Institutional Research Ethics Committee at the University of Exeter and informed consent was obtained from each participant prior to testing. One participant did not consent to having muscle biopsies taken in Experiment II. All exercise tests were separated by a minimum of 24 h but the tests in which the 3 MT was completed following a bout of heavy-intensity exercise (see below for more details) were separated by at least 72 h (i.e., 7 ± 4 days).

Experimental design

Participants reported to the laboratory on 7 occasions over a 7 -week period (± 2 weeks). The tests included a ramp incremental exercise test for the determination of $\dot{\mathrm{V}} \mathrm{O}_{2 \text { peak }}$ and gas exchange threshold (GET), a 3MT familiarisation trial, a 3MT performed in a rested state which served as a control (C-3MT), and on subsequent visits: a 3 MT preceded by 40 min (40$3 \mathrm{MT}), 80 \mathrm{~min}(80-3 \mathrm{MT})$ or, on two occasions, 2 h of heavy-intensity exercise. A placebo drink was consumed during the $40-3 \mathrm{MT}, 80-3 \mathrm{MT}$ and during one of the 2 h visits (120$3 \mathrm{MT}_{\text {PLA }}$), while CHO was consumed during one 2 h visit ($120-3 \mathrm{MT}_{\text {CHO }}$). The $120-3 \mathrm{MT}_{\text {PLA }}$ visit was used for both experiments. The other trials were administered in a randomized and counterbalanced order.

All exercise tests were conducted using the same electrically-braked cycle ergometer (Lode Excalibur Sport, Groningen, Netherlands). During all tests, except the 3MTs, the participants cycled at a self-selected pedal rate ($70-90 \mathrm{rpm}$). For each participant, the self-selected pedal rate used in the ramp incremental test was recorded and replicated in each subsequent visit. The ergometer seat and handlebar configuration were adjusted for comfort during the first visit and were recorded and then replicated in subsequent visits. Exercise tests took place in an air-conditioned laboratory with ambient temperature of $20^{\circ} \mathrm{C}$ and relative humidity of 60%.

Determination of $\dot{V} O_{2 p e a k}$ and gas exchange threshold

During visit 1 the participants completed a ramp incremental exercise test. The ramp protocol consisted of a 3-min baseline of pedalling at 20 W after which the power output was increased by $30 \mathrm{~W} / \mathrm{min}$ until the participant was unable to continue. The limit of tolerance was determined when cadence fell $>10 \mathrm{rpm}$ below the target cadence for more than 5 s despite strong verbal encouragement. $\dot{\mathrm{V}} \mathrm{O}_{2 \text { peak }}$ was determined as the highest 30 -s mean value recorded during the test. The GET was defined according to the procedures of Beaver et al. (2). The GET and $\dot{\mathrm{V}} \mathrm{O}_{\text {2peak }}$ were used to normalize the fixed resistance for the 3 MTs .

Three-min all-out tests (3MTs)

The resistance for the 3MT was applied using the linear factor function of the ergometer and was calculated as: linear factor $=$ power output/preferred cadence ${ }^{2}$ where the power was $50 \% \Delta$ (i.e., GET plus 50% of the interval between the GET and ramp test peak power output). Visit 2 (familiarization test) and visit 3 consisted of a C-3MT performed with no prior exercise. The 3MT protocol began with a 3-min baseline of pedalling at 20 W . During visits 4-7, a 60 s pause was administered after the constant power output bout, during which the participants had 30 s of passive recovery and then were instructed to cycle for the last 30 s against a resistance of 20 W . This was done to replicate the $1-\mathrm{min}$ pause that was required to obtain a muscle biopsy in Experiment II. A 5 s countdown was given prior to the 3 MT and the participant was instructed to increase cadence to $\sim 110-120 \mathrm{rpm}$. Strong verbal encouragement was then given for an all-out effort from the onset of the 3MT. Participants were not informed of the elapsed time. Instructions were given to reach peak power output as quickly as possible and to maintain the all-out effort throughout the test. The EP was subsequently calculated as the mean power output over the last 30 s of the test, and the WEP was calculated as the work done above EP during the 3MT, i.e. the mean power output above EP for each second of the test was multipled by the number of seconds of exercise performed above EP to compute the total work done above EP (48). The results of the 3MT were deemed valid only when the $\dot{\mathrm{V}} \mathrm{O}_{\text {2peak }}$ attained exceeded 95% of the $\dot{\mathrm{V}} \mathrm{O}_{\text {2peak }}$ determined in the initial ramp incremental test. Results determined from the C-3MT, $40-3 \mathrm{MT}, 80-3 \mathrm{MT}, 120-3 \mathrm{MT}_{\mathrm{PLA}}$ and $120-3 \mathrm{MT}_{\mathrm{CHO}}$ were consequently termed C-EP and C-WEP, $40-\mathrm{EP}$ and $40-\mathrm{WEP}, 80-\mathrm{EP}$ and $80-\mathrm{WEP}, 120_{\text {PLA }}-\mathrm{EP}$ and $120_{\text {PLA }}-\mathrm{WEP}, 120_{\text {CHO }}-\mathrm{EP}$ and $120_{\text {Сно }}-\mathrm{WEP}$, respectively.

Experiment I: Effect of $40 \mathrm{~min}, 80 \mathrm{~min}$ and 2 h of heavy-intensity exercise on the parameters of the power-duration relationship

The constant power output applied during the $40 \mathrm{~min}, 80 \mathrm{~min}$ and 2 h heavy-intensity exercise bouts was calculated as the power output at the GET plus 25% of the difference between the GET and C-EP $(25 \% \Delta 1 ; 12)$. Experiment I consisted of three heavy-intensity exercise bouts of $40 \mathrm{~min}, 80 \mathrm{~min}$ and 2 h followed by a 3MT. The visits began with a 3-min baseline of pedaling at 20 W for attainment of baseline measurements, after which the power output abruptly increased to the target power output for $40 \mathrm{~min}, 80 \mathrm{~min}$ or 2 h . Participants were instructed to hold their desired cadence throughout the constant power output bout. Participants were provided with a $100-\mathrm{ml}$ opaque plastic bottle containing 1 mL of appleflavored sweetener (Myprotein.Co, UK), with no caloric value, added to 94 mL of water to ensure that supplements were indistinguishable from, and of equal volume to, the CHO solution used in Experiment II (see below). The first bottle was given at -3 min , as participants wore a mask between - $3-15 \mathrm{~min}$ for measurements of pulmonary gas exchange, and thereafter a bottle was given every 15 min . During the $40-3 \mathrm{MT}$ the last beverage was consumed at 30 min ; during the $80-3 \mathrm{MT}$ visit the last beverage was consumed at 75 min ; and during the $120-3 \mathrm{MT}_{\text {PLA }}$ the last beverage was consumed at 105 min . A clock with time remaining was visible during the constant power output bout and participants were allowed to listen to music; however, both were withdrawn 2 min prior to the 3 MT . Participants were instructed to stop pedalling for 30 s after the constant power output bout, and at 30 s , they were instructed to start cycling again at 20 W . This was administered to ensure the same rest period was provided between the four constant power output tests (both experiments) and the 3MTs and so that muscle biopsies could be taken in the 30 s window during the 2 h visits for experiment II. Pulmonary gas exchange data were attained at the following time points during the $40-3 \mathrm{MT}$ visit: $-3-15,25-30$ and $35-40 \mathrm{~min}$; the $80-3 \mathrm{MT}$ visit: $-3-15,25-30,55-60$ and $75-$ 80 min ; and the $120-3 \mathrm{MT}_{\text {PLA }}$ visit: $-3-15,25-30,55-60,85-90$ and $115-120 \mathrm{~min}$; and continuously throughout the 3 MT . A blood sample from a fingertip was collected every 20
min during the constant power output bouts for the analysis of [lactate] and [glucose]. Heart rate (HR) was recorded (Garmin FR70, Garmin Ltd, Schaffhausen, Switzerland) every 5 s during all visits. Before and after the test, participants were weighed in minimal clothing to assess changes in body mass.

Experiment II: Effect of CHO ingestion on the parameters of the power-duration relationship

The $120-3 \mathrm{MT}_{\text {PLA }}$ and $120-3 \mathrm{MT}_{\text {CHO }}$ visits included 2 h of heavy-intensity exercise immediately followed by a 3 MT . The $120-3 \mathrm{MT}_{\text {PLA }}$ exercise trial was the same as that in Experiment I. The procedures for the $120-3 \mathrm{MT}_{\mathrm{CHO}}$ visit were identical to the 2 h visit described in Experiment I, except for the ingestion of CHO . During the $120-3 \mathrm{MT}_{\mathrm{CHO}}$ visit participants consumed $60 \mathrm{~g} / \mathrm{h}$ of CHO (Maurten drink mix 320, Biotech center, Gothenburg, Sweden). Participants were given the same bottle as described in Experiment I, containing 94 ml of Maurten drink mix $(15 \mathrm{~g}$ of CHO$)$, every 15 min during the constant power output bout. A muscle biopsy was taken prior to exercise and again at 120 min during the 30 s rest period between the constant-power-output bout and the 3 MT .

Measurements

Pulmonary gas exchange. Pulmonary gas exchange was measured breath-by-breath and averaged over 10 s periods during all visits. Participants wore a face mask (Hans Rudolf 7450 Series V2 ${ }^{\mathrm{TM}}$ Mask, CareFusion, Germany) and inspired and expired gas volume and gas concentration signals were sampled continuously at 100 Hz (Vyntus, CareFusion, Germany) via a capillary line connected to the mask. These analysers were calibrated before each test with gases of known concentration and the turbine volume transducer was calibrated using a 3-L syringe (Hans Rudolph, MO). The volume and concentration signals were time-aligned by accounting for the delay in capillary gas transit and analyzer rise time relative to the volume signal. The baseline $\dot{\mathrm{V}}_{2}$ period during all visits were defined as the mean value
recorded over the final minute during the 3 -min warm up period at 20 W . Fat and CHO oxidation rates were calculated from $\dot{\mathrm{V}} \mathrm{O}_{2}$ and $\dot{\mathrm{V}} \mathrm{CO}_{2}$ using the following stoichiometric equations with the assumption that protein oxidation during exercise did not change (24):

CHO oxidation $\left(\mathrm{g} \cdot \mathrm{min}^{-1}\right)=\left[4.21\left(\dot{\mathrm{~V}}_{\mathrm{CO}}^{2}\right)-2.692\left(\dot{\mathrm{~V}}_{2}\right)\right]$

Fat oxidation $\left(\mathrm{g} \cdot \mathrm{min}^{-1}\right)=\left[1.695\left(\mathrm{~V}_{2}\right)-1.701\left(\mathrm{~V}_{2} \mathrm{VO}_{2}\right)\right]$

Muscle biopsies. Muscle samples were obtained from one incision from the medial region of the m. vastus lateralis under local anesthesia (1% lidocaine) using the percutaneous Bergström needle biopsy technique under suction (3). Muscle samples were taken at rest and immediately post 2 h of heavy-intensity exercise during the $120-3 \mathrm{MT}_{\text {СНо }}$ and $120-3 \mathrm{MT}_{\text {PLA }}$ visits. The post-exercise biopsies were taken while participants remained on the cycle ergometer and were typically collected within 10 s of the completion of the exercise bout. Biopsy samples were immediately frozen in liquid nitrogen and stored at $-80^{\circ} \mathrm{C}$ for subsequent analysis.

Muscle glycogen concentration. Muscle samples were freeze-dried prior to dissection from connective tissue, fat and blood. Muscle glycogen was extracted from $\sim 1 \mathrm{mg}$ d.w. muscle and hydrolysed to glucose units in 1 M HCl at $95^{\circ} \mathrm{C}$ for 3 h . The addition of hexokinase catalyzed the reaction of glucose with adenosine triphosphate to glucose-6-phosphate, and then to 6-Pgluconolactone with $\mathrm{NADH}+$ in the presence of G-6-PDH enzyme, producing the fluorescent detectable NADPH (28). Reactions were measured on a Fluoroskan (Fluoroskan ${ }^{\text {TM }}$ Microplate Fluorometer, ThermoFisher Scientific, Mass. USA), with Excitation 355 nm and Emission 460 nm filters. Glycogen was reported in units of mmol of glucose per kg dry muscle.

Blood analyses. All fingertip blood samples ($\sim 25 \mu \mathrm{l}$) (visit 4-7) were collected into capillary tubes and analysed within 60 s for blood [lactate] and [glucose] using an automated lactate analyser (Stat2300, Yellow Spring Instrument, Yellow Springs, OH).

Statistical analysis

For experiment I, one-way ANOVAs with repeated measures were used to assess differences over time during the $40-3 \mathrm{MT}, 80-3 \mathrm{MT}$ and $120-3 \mathrm{MT}_{\text {PLA }}$ tests in respiratory gas exchange variables, HR, blood [lactate] and blood [glucose]. To assess the difference in these physiological variables at common time points within the $40-3 \mathrm{MT}, 80-3 \mathrm{MT}$ and $120-3 \mathrm{MT}_{\text {PLA }}$ a repeated measures ANOVA (condition x time) was used. One-way ANOVA with repeated measures was used to assess differences in EP, WEP, total work done (TWD), peak power output, $\dot{\mathrm{V}}_{2 \text { peak }}$, and body mass between C-3MT, $40-3 \mathrm{MT}, 80-3 \mathrm{MT}$ and $120-3 \mathrm{MT} \mathrm{PLA}$.

For experiment II, one-way ANOVAs with repeated measures were used to assess differences in the EP,WEP, TWD, peak power output, muscle glycogen concentration and $\dot{\mathrm{V}} \mathrm{O}_{2 \text { peak }}$, as well as differences in respiratory gas exchange variables, blood [glucose] and blood [lactate] between C-3MT, $120-3 \mathrm{MT}_{\text {PLA }}$ and $120-3 \mathrm{MT}_{\text {CHO }}$. Differences in the change in muscle [glycogen] (from rest to post-exercise) between the $120-3 \mathrm{MT}_{\text {PLA }}$ and $120-3 \mathrm{MT}_{\text {Cho }}$ visits were analysed using a paired sample t-test. The relationships between the change in muscle [glycogen] and the changes in in EP and WEP were determined using Pearson productmoment correlation coefficients.

Statistical significance was accepted at $P<0.05$. Significant interactions and main effects were followed up with Bonferroni post hoc tests. Data are reported as mean $\pm \mathrm{SD}$.

Results

The $\dot{\mathrm{V}} \mathrm{O}_{2 \text { peak }}$ in the ramp incremental test was $4.12 \pm 0.45 \mathrm{~L} \cdot \mathrm{~min}^{-1}$, the peak power output was $360 \pm 41 \mathrm{~W}$ and the GET was $132 \pm 7 \mathrm{~W}$. The $25 \% \Delta 1$ for the 2 h constant power output bouts was $164 \pm 28 \mathrm{~W}$.

Experiment I: Dynamic changes in the parameters of the power-duration relationship following 40 min, 80 min and $2 h$ of heavy-intensity exercise

During the $40-3 \mathrm{MT}$ visit, the relative intensity did not change between $10-15 \mathrm{~min}(63 \% \pm 7 \%$ $\left.\dot{\mathrm{V}} \mathrm{O}_{2 \text { peak }}\right)$ and $35-40 \mathrm{~min}\left(63 \% \pm 5 \% \dot{\mathrm{VO}}_{2 \text { peak }} ; P>0.05\right)$. The relative intensity increased during both the $80-3 \mathrm{MT}$ visit (from $10-15 \mathrm{~min}: 63 \% \pm 7 \% \dot{\mathrm{VO}}{ }_{2 \text { peak }}$ to $75-80 \mathrm{~min}: 65 \% \pm 5 \% \dot{\mathrm{~V}} \mathrm{O}_{2 \text { peak }}$; $P<0.05$) and the $120-3 \mathrm{MT}_{\text {PLA }}$ visit (from $10-15 \mathrm{~min}: 64 \% \pm 8 \% \mathrm{~V}_{2 \text { peak }}$ to $115-120 \mathrm{~min}: 68 \%$ $\pm 7 \% \dot{\mathrm{~V}} \mathrm{O}_{2 \text { peak }} ; P<0.001$). HR increased over time during all the constant power output bouts (Table 1). During the $40-3 \mathrm{MT}$ visit, RER did not change significantly from $10-15 \mathrm{~min}$ to 35 40 min ; however, RER decreased during both the $80-3 \mathrm{MT}$ and the $120-3 \mathrm{MT}_{\text {PLA }}$ visits (Table 1).

Body mass decreased during the $40-3 \mathrm{MT}, 80-3 \mathrm{MT}$ and $120-3 \mathrm{MT}_{\mathrm{PLA}}$ trials (Table 1). Body mass was lower post-exercise in the $120-3 \mathrm{MT}_{\text {PLA }}$ visit compared to the $80-3 \mathrm{MT}$ and $40-3 \mathrm{MT}$ visits with no differences between the $80-3 \mathrm{MT}$ and the $40-3 \mathrm{MT}$ visit (Table 1).

The power output profiles during the $\mathrm{C}-3 \mathrm{MT}, 40-3 \mathrm{MT}, 80-3 \mathrm{MT}$ and $120-3 \mathrm{MT}_{\mathrm{PLA}}$ are shown in Fig. 1. There were no differences in $\dot{\mathrm{V}} \mathrm{O}_{2 \text { peak }}$ between $\mathrm{C}-3 \mathrm{MT}\left(4.03 \pm 0.40 \mathrm{~L} \cdot \mathrm{~min}^{-1}\right), 40$ $3 \mathrm{MT}\left(4.19 \pm 0.40 \mathrm{~L} \cdot \mathrm{~min}^{-1}\right), 80-3 \mathrm{MT}\left(4.15 \pm 0.41 \mathrm{~L} \cdot \mathrm{~min}^{-1}\right), 120-3 \mathrm{MT}_{\mathrm{PLA}}\left(4.08 \pm 0.51 \mathrm{~L} \cdot \mathrm{~min}^{-1}\right)$ and the ramp incremental test $(P>0.05)$. There was no differences in EP between C-EP $(260 \pm$ $37 \mathrm{~W}), 40-\mathrm{EP}(268 \pm 39 \mathrm{~W})$ and $80-\mathrm{EP}(260 \pm 40 \mathrm{~W} ; P>0.05)$. However, $120_{\text {PLA }}-\mathrm{EP}$ was lower than EP in all the other conditions ($236 \pm 47 \mathrm{~W} ; P<0.05$; Fig. 2A). There was no difference in WEP between C-WEP $(17.9 \pm 3.3 \mathrm{~kJ})$ and $40-\mathrm{WEP}(16.1 \pm 3.3 \mathrm{~kJ})$, but both 80 WEP $(14.7 \pm 2.9 \mathrm{~kJ} ; P<0.05)$ and $120_{\text {PLA }}-W E P(13.8 \pm 2.7 \mathrm{~kJ} ; P<0.05)$ were lower than CWEP; 80-WEP was also lower than 40-WEP ($P<0.05$; Fig. 2B). Results for peak power output and TWD during the 3 MT s are shown in Fig. 2C and Fig. 2D, respectively. Blood
[lactate] immediately after the 3 MT was higher in the $40-3 \mathrm{MT}(8.8 \pm 2.1 \mathrm{mM})$ compared to the $120-3 \mathrm{MT}_{\text {PLA }}$ visit $(7.0 \pm 2.1 \mathrm{mM} ; P<0.05)$ with no difference after any other 3 MTs .

Experiment II: Influence of CHO ingestion on changes in the power-duration relationship following $2 h$ of heavy-intensity exercise

In both the $120-3 \mathrm{MT}_{\text {PLA }}$ and $120-3 \mathrm{MT}_{\text {CHO }}$ tests, the relative intensity increased from $\sim 64 \%$ $\dot{\mathrm{V}} \mathrm{O}_{2 \text { peak }}$ at $10-15 \mathrm{~min}$ to $\sim 68 \% \dot{\mathrm{~V}}_{2 \text { peak }}$ at $115-120 \mathrm{~min}$ (Fig. 3A). HR increased during both 120-3MT visits (Table 1). There was no difference in relative intensity or HR between the $120-3 \mathrm{MT}_{\text {CHO }}$ and $120-3 \mathrm{MT}_{\text {PLA }}$ visits at any time point (Table 1 and Fig. 3A). RER decreased during both the $120-3 \mathrm{MT}_{\text {CHO }}$ and $120-3 \mathrm{MT}_{\text {PLA }}$ visits, but was higher at $115-120 \mathrm{~min}$ in the $120-3 \mathrm{MT}_{\text {CHO }}$ trial compared to the $120-3 \mathrm{MT}_{\text {PLA }}$ (Fig. 3B). CHO oxidation was higher in the $120-3 \mathrm{MT}_{\text {СНО }}$ bout compared to the $120-3 \mathrm{MT}_{\text {PLA }}$ bout at $85-90$ and $115-120 \mathrm{~min}$ (Fig. 3C). Blood [glucose] was higher during the $120-3 \mathrm{MT}_{\text {CHO }}$ bout compared to $120-3 \mathrm{MT}_{\text {PLA }}$ at all time points at and beyond 40 min (Fig. 3D). There was no difference in blood [lactate] measured during the $120-3 \mathrm{MT}_{\text {CHO }}$ and $120-3 \mathrm{MT}_{\text {PLA }}$ trials. However, blood [lactate] was higher post 3 MT during the $120-3 \mathrm{MT}_{\text {СНО }}(8.4 \pm 0.5 \mathrm{mM})$ compared to the $120-3 \mathrm{MT}_{\text {PLA }}$ visit $(7.2 \pm 0.5$ $\mathrm{mM} ; P<0.05)$.

The power output profiles during the $\mathrm{C}-3 \mathrm{MT}, 120-3 \mathrm{MT}_{\text {CHO }}$ and $120-3 \mathrm{MT}_{\text {PLA }}$ are shown in Fig. 4. There were no differences in $\dot{\mathrm{V}}_{2 \text { peak }}$ between C-3MT, $120-3 \mathrm{MT}_{\text {CHO }}, 120-3 \mathrm{MT}_{\text {PLA }}$ and the ramp incremental test $(P>0.05) .120_{\text {PLA }}-$ EP was 9% lower ($236 \pm 47 \mathrm{~W}$) than C-EP $(260 \pm$ $37 \mathrm{~W} ; P<0.05)$ and 7% lower than $120_{\text {chо }}-\mathrm{EP}(254 \pm 49 \mathrm{~W} ; P<0.05$; Fig. 5 A$) .120_{\text {сно }}$-EP was not different from C-EP (Fig. 5A). C-WEP was 22% higher ($17.9 \pm 3.3 \mathrm{~kJ}$) than $120_{\text {PLA }}{ }^{-}$ WEP ($13.8 \pm 2.7 \mathrm{~kJ} ; P<0.001$) and 24% higher than $120_{\text {сно }}-\mathrm{WEP}(13.5 \pm 3.4 \mathrm{~kJ} ; P<0.001$; Fig. 5B). $120_{\text {cho }}$-WEP was not different from $120_{\text {PLA }}-$ WEP (Fig. 5B). Results for peak power output and TWD are shown in Fig. 5C and Fig. 5D, respectively.

There was insufficient muscle tissue in one biopsy sample for completion of muscle glycogen analyses, and therefore the muscle glycogen data are for $\mathrm{n}=14$. Muscle [glycogen] decreased over the 2 h heavy-intensity exercise bouts in both the $120-3 \mathrm{MT}_{\text {CHO }}$ and $120-3 \mathrm{MT}_{\text {PLA }}$ trial (Fig. 6). Muscle [glycogen] was lower following the 2 h bout in the $120-3 \mathrm{MT}_{\text {PLA }}$ trial compared to $120-3 \mathrm{MT}_{\text {CHO }}$ trial; however, the change in muscle [glycogen] was not different between trials (Fig. 6). There was no correlation between the change in muscle [glycogen] over the 2 h exercise bout and the changes in EP or WEP in either the $120-3 \mathrm{MT}_{\text {PLA }}$ or the $120-$ $3 \mathrm{MT}_{\text {Сно }}$ bout.

To increase sample size and therefore increase confidence in our analysis, we combined the data from the present study with those from Clark et al. (13) to create a data set containing 28 participants who underwent muscle biopsies and completed a 3MT both at rest and following 2 h of heavy-intensity exercise. The pooled data show that muscle [glycogen] at rest was correlated with control EP (Fig. 7A) and that muscle [glycogen] following 2 h of heavyintensity exercise was correlated with both fatigued EP (Fig. 7B) and fatigued WEP ($r=0.43$; $P<0.05$). The change in EP following 2 h of heavy-intensity exercise was not correlated with the change in muscle [glycogen] (Fig. 8C, 8D). However, the percentage change in muscle [glycogen] following 2 h of heavy-intensity exercise was correlated with both the absolute change in WEP (Fig. 7E) and the percentage change in WEP (Fig. 7F).

Discussion

This is the first study to investigate the influence of different durations of prolonged endurance exercise, and CHO ingestion during exercise, on the parameters of the powerduration relationship. We used the 3 MT as a practical and expeditious method to appraise changes in the power-duration relationship because it has been shown that the EP and WEP
provide valid estimates of CP and W^{\prime}, respectively, both in the absence of prior exercise (7, 48) and following 2 h of heavy-intensity cycle exercise (13). The principal novel findings were that: (1) EP was not altered by 40 min or 80 min but was significantly reduced after 2 h of heavy-intensity exercise; (2) WEP was not altered by 40 min but was significantly reduced after 80 min and 2 h of heavy-intensity exercise; (3) the reduction in EP following 2 h of heavy-intensity exercise was negated when CHO was consumed; and (4) the reduction in WEP following 2 h of heavy-intensity exercise was not rescued by CHO ingestion. These results reveal disparate time courses for the changes in EP and WEP during heavy-intensity exercise: WEP appears to fall in an approximately linear fashion and becomes significantly reduced when exercise duration $\geq 80 \mathrm{~min}$; while EP is preserved for at least 80 min and is only significantly reduced when exercise duration approaches 2 h . Importantly, our results show that EP (but not WEP) is preserved following 2 h of heavy-intensity exercise when $60 \mathrm{~g} / \mathrm{h}$ CHO is consumed, suggesting that CP (but not W^{\prime}) is influenced, at least in part, by CHO feeding. These findings may have significant implications for performance prediction and the formulation of optimal race (pacing and nutritional) strategies.

I: Dynamic changes in the parameters of the power-duration relationship following 40 min , 80 min and 2 h of heavy-intensity exercise

Consistent with our previous research, we found that 2 h of heavy-intensity exercise led to a decline of both EP and WEP (12, 13). Specifically, there was a $\sim 9 \%$ fall in EP and a $\sim 22 \%$ fall in WEP compared to C-3MT, results which are in close agreement with our previous findings of an $8-11 \%$ reduction in EP and a $20-22 \%$ reduction in WEP following 2 h of heavy-intensity exercise $(12,13)$. The key novel findings of the present study were that there were no significant changes in either EP or WEP compared to the control condition following 40 min of heavy-intensity exercise whereas, following 80 min of exercise, EP was unchanged but WEP was significantly reduced (by 17%). Our study therefore reveals differences in the
time course of changes in EP and WEP during endurance exercise, with WEP deteriorating more rapidly than EP. These results may provide insight into the physiological mechanisms underpinning the power-duration relationship and their relationship with the fatigue process during endurance exercise.

Several factors likely contribute to the changes observed in the power-duration parameters following 80 min and $/$ or 2 h of heavy-intensity exercise. An increase in the O_{2} cost of sustaining the constant power output was observed during the 2 h (from $\sim 64 \%$ to $\sim 68 \%$ of initial $\dot{\mathrm{V}} \mathrm{O}_{2 \text { peak }}$) and 80 min (from $\sim 63 \%$ to $\sim 65 \%$ of initial $\dot{\mathrm{V}} \mathrm{O}_{2 \text { peak }}$) but not the 40 min exercise bout (stable at $\sim 63 \%$ of initial $\dot{\mathrm{V}}_{2 \text { peak }}$) and occurred concomitantly with a decrease in RER in the 2 h (from ~ 0.91 to ~ 0.84) and $80-\mathrm{min}$ (from ~ 0.93 to ~ 0.91) exercise bouts but not in the 40 min bout (from ~ 0.93 to ~ 0.92). The progressive loss of efficiency is therefore related in part to a shift in substrate utilisation from CHO towards fat oxidation during the 80 \min and 2 h exercise bouts. Given that EP reflects a critical oxidative metabolic rate (1), a loss of efficiency (i.e., a higher $\dot{\mathrm{V}}_{2}$ per watt of power output) would necessarily result in a reduced EP.

A substantially increased core temperature and consequent redistribution of blood flow away from skeletal muscle to facilitate heat exchange might also increase the overall O_{2} cost of exercise (36). Moreover, significant dehydration, due to the sweat rate exceeding the rate of fluid replacement, could compromise cardiac output and muscle O_{2} delivery (42). Given that EP is an index of oxidative metabolic function $(29,47)$, these changes could reduce efficiency and/or exacerbate muscle metabolic perturbation and fatigue development. In our study, however, participants exercised in an air-conditioned lab $\left(20^{\circ} \mathrm{C}\right)$ and consumed 380 ml of fluid per hour, pro rata, such that body mass losses were minimal ($\leq 1.0 \mathrm{~kg}$; $\leq 1.2 \%$). Such small changes in body mass suggest that issues related to thermoregulation probably did not
contribute appreciably to the decline in 3MT performance we observed and certainly indicate that, if hyperthermia did occur, it likely affected subjects similarly.

It appears that CP represents an important boundary for neuromuscular fatigue development $(9,40)$ such that central fatigue, which may be determined by a reduction in voluntary activation measured by motor nerve stimulation, makes a greater contribution to fatigue development in the heavy-intensity domain compared to the severe-intensity domain (4, 9, 46). It is possible, therefore, that the development of central fatigue during the 80 min and 2 h heavy-intensity exercise bouts in the present study impaired performance in the subsequent 3MT, reducing EP and/or WEP. Consistent with this interpretation, it has been reported that acetaminophen ingestion, which would be expected to blunt central fatigue development by attenuating the sensation of pain and preventing any reduction in central motor drive, led to greater muscle activation over the last 30 s of a 3MT and a higher EP compared to the placebo condition (31).

The reduction in WEP after just 80 min as well as after 2 h of heavy-intensity exercise is intriguing. Significant changes in muscle [ATP] and/or muscle metabolic status (i.e. substantial depletion of phosphocreatine or accumulation of hydrogen ions) would not be anticipated during heavy-intensity exercise (4) such that the development of peripheral fatigue through these mechanisms is unlikely to explain the reduced WEP. The lack of effect on peak power output during the 3 MT following 80 min and 2 h of heavy-intensity exercise might suggest that the reduced WEP at these time points is related not to high-energy phosphate depletion but rather to impaired ATP production via anaerobic glycolysis which may, in turn, be related to muscle glycogen depletion. Consistent with this, a reduction in WEP has been reported when glycogen depletion has been invoked by dietary restriction (30) or the performance of 2 h of heavy-intensity exercise (13). We note here that the evaluation of WEP is less reliable than EP (12) such that possible error in the estimates of WEP is a possible
limitation of the present study; however, the reduction in WEP at 80 min and 2 h of exercise is substantial relative to the likely error.

When we combined the data from the present study with those from Clark et al. (13), we found a significant correlation between the change in WEP, but not EP, and the change in muscle [glycogen] following 2 h of heavy-intensity exercise. The progressive decline in muscle [glycogen] that would be expected during prolonged heavy-intensity exercise $(18,19)$ could therefore contribute to the reduction in WEP during the 80 min and 2 h exercise bouts. It is interesting to note, however, that WEP was significantly reduced despite muscle glycogen depletion being far from complete $(\sim 36 \%$ of the resting value was remaining following 2 h of exercise) at the start of the 3MT. An important consideration in this regard is that muscle glycogen depletion can be localised to subcellular compartments such that muscle performance might become impaired even when 'global' muscle [glycogen] appears sufficient (34). The present data suggest that absolute muscle [glycogen] may influence the rate of energy generation through anaerobic glycolysis, and/or influence contractile function via effects on sarcoplasmic reticulum calcium release (37), thereby reducing WEP.

II: Influence of CHO ingestion on changes in the power-duration relationship following 2 h of heavy-intensity exercise

We tested the hypothesis that changes in the power-duration relationship following 2 h of heavy-intensity exercise would be mitigated when CHO , compared to placebo, was consumed during exercise. A striking observation was that the reduction in EP following 2 h of heavyintensity exercise was eliminated by $60 \mathrm{~g} / \mathrm{h}$ of CHO ingestion. Specifically, in the placebo condition, EP was reduced by 9% compared to C-EP, consistent with previous findings (12, 13); however, when CHO was ingested during exercise, there was no significant reduction in EP compared to C-EP. In contrast, WEP was significantly reduced in both the placebo and

CHO conditions (22% and 24% reductions, respectively) compared to C-WEP, with there being no difference between the two conditions. An important novel finding of the present study is therefore that EP, but not WEP, may be preserved by CHO ingestion during endurance exercise of up to 2 h duration.

Significant muscle glycogen depletion was evident following 2 h of heavy-intensity exercise both when subjects ingested CHO (53\% reduction in [glycogen]) and when they ingested a placebo beverage (64% reduction in [glycogen]). Muscle [glycogen] was higher following 2 h of heavy-intensity exercise with CHO compared to placebo ingestion but this may be explained by the tendency for muscle [glycogen] to be higher at baseline in the CHO condition. The reduction in muscle [glycogen] over the 2 h exercise bout was not different between conditions despite there being greater CHO availability and utilization (evidenced by higher RER, a greater rate of CHO oxidation and higher blood [glucose]) when CHO was ingested. Similarly, Smith et al. (45) reported that ingestion of $60 \mathrm{~g} / \mathrm{h}$ of CHO during 2 h of exercise at 77% of $\dot{\mathrm{V}} \mathrm{O}_{2 \text { peak }}$ did not spare muscle glycogen, compared to placebo, but did enhance subsequent $20-\mathrm{km}$ time trial performance, an effect that the authors suggested was due to the increased rate of CHO oxidation. In light of the results of the present study, it is possible that the participants in Smith et al. (45) had a higher CP and could therefore sustain a higher power output during the $20-\mathrm{km}$ time trial following CHO compared to placebo ingestion.

The increased rate of CHO oxidation observed in the present study, consequent to CHO ingestion, likely contributed to the preserved EP we observed. However, given the greater proportional development of central fatigue during heavy-intensity endurance exercise (4, 9, 46), it is possible that other factors also contributed. In the placebo condition, blood [glucose] was significantly lower than the baseline value at 100 and 120 min of exercise $(\sim 3.8 \mathrm{mM})$ whereas it remained stable throughout exercise in the CHO condition ($\sim 4.8 \mathrm{mM}$). It is
possible that this difference in blood [glucose] attenuated central fatigue development $(14,35)$ and enabled a higher muscle activation during the subsequent 3MT. Similarly, the detection of CHO by sensors in the mouth, even when the CHO is not swallowed, may attenuate decrements in exercise performance associated with fatigue (10, 16, 22). Specifically, it appears that CHO receptors in the oral cavity may signal an impending increase in CHO availability to higher brain regions $(11,16,23)$. It is possible therefore that, in addition to direct effects on skeletal muscle metabolism, the ingestion of CHO during exercise reduced central fatigue and enabled enhanced motor output and contractile function (35) during the subsequent 3 MT .

In the present study, no significant correlations were found between the changes in muscle [glycogen] and EP or WEP in either condition, possibly due to the relatively small sample size. However, when the data from the present study were pooled with those of Clark et al. (13), we found a positive relationship between EP and muscle [glycogen] both at rest and following 2 h of heavy-intensity exercise. These results suggest a link between aerobic fitness and muscle glycogen storage, which might be mediated by training status (15). Moreover, when the data from the two studies were combined, we found that, following 2 h of heavyintensity exercise, muscle [glycogen] was correlated with WEP and also that the change in muscle [glycogen] over the 2 h exercise bout was correlated with the change in WEP.

The physiological mechanisms underpinning W^{\prime} have not been entirely resolved (5, 33, 43). However, because CP is closely related to the proportion of type I muscle fibers (29, 47), it has been suggested that W^{\prime} may reflect the metabolic, contractile and/or fatigue-related characteristics of type II muscle fibers $(47,51)$. The fall in WEP we observed might therefore reflect the specific effects of 2 h of heavy-intensity exercise on the type II fiber population, including glycogen depletion (52). There is evidence to suggest that W^{\prime} is related to the capacity for substrate-level phosphorylation, with PCr availability being important for the
achievement of peak power output in the $3 \mathrm{MT}(39,47,49)$. It has been reported that W^{\prime} is reduced following glycogen depletion induced by dietary CHO restriction, with there being no effect on CP (30). The results of the current investigation are consistent with these findings in showing that WEP is reduced when glycogen depletion is evident following 2 h of heavyintensity cycling, irrespective of effects on EP.

The different effect of CHO feeding during endurance exercise on EP and WEP provide novel insight into the mechanisms underpinning these parameters (and, by extension, CP and W^{\prime}). While muscle glycogen depletion was not altered compared to the placebo condition, the maintenance of euglycaemia by CHO ingestion during prolonged exercise resulted in a preservation of EP in the face of a decline in WEP. This suggests that, following 2 h of heavyintensity exercise, EP may be modulated by central fatigue whereas WEP may be more directly related to muscle glycogen availability. Further studies are required, with more direct measurements of central and peripheral fatigue, to explore this possibility.

Implications for Performance

The results of the present study have several potentially important implications for athlete performance diagnostics and race practice. The disparate time courses for the degradation of EP and WEP we observed during prolonged endurance exercise is of particular interest. The maintenance of EP for $\sim 80 \mathrm{~min}$ of such exercise indicates that performance for events which are sustained below EP can be faithfully predicted from measurements made in the rested state whereas, for longer events, the fall in EP render such predictions more complicated. Indeed, inter-individual variation in the reductions in EP and WEP during endurance exercise, reflecting fatigue resistance, is likely an important but previously overlooked component of success in endurance sports (12). The fall in WEP during heavy-intensity exercise occurred much earlier than the fall in EP, with the group mean reduction being 10% after 40 min (not
significant), 18% after 80 min and 23% after 2 h . This relatively early reduction in WEP may impact on an athlete's ability to draw upon W^{\prime}, limiting their ability to respond to, or initiate, surges in pace above CP , a factor that should be carefully considered when developing race tactics.

Our findings also emphasise the importance of CHO consumption during prolonged endurance exercise by showing that ingestion of $60 \mathrm{~g} / \mathrm{h} \mathrm{CHO}$ enabled EP to be maintained compared to a 9% reduction in EP when placebo was consumed. The performance implications of this difference, whether measured in terms of the mean speed that may be sustained throughout a race or in the ability to finish strongly, are likely to be profound. Depending on the power being sustained and the extent of the fall in CP during prolonged endurance exercise, it is possible that an athlete may eventually transition from the heavy- to the severe-intensity exercise domain, with the inevitable outcome that power must fall and/or exercise will become intolerable. This highlights the important interaction between physiology and nutrition during endurance exercise. Maintaining a high rate of CHO ingestion while exercising at a high intensity is an important consideration, and a potential limiting factor, for extreme human endurance challenges such as the attempt to run $\mathrm{a}<2 \mathrm{~h}$ marathon $(6,27)$.

It is important to acknowledge that our results are specific to the conditions of our study. Naturally, dynamic changes in EP and WEP would likely be different if other combinations of exercise intensity and duration were assessed. Moreover, the effect of CHO ingestion on the change in EP is also likely influenced by exercise intensity, exercise duration and the rate (and type) of CHO consumption (22). Finally, the extent to which our results in cycling may be extrapolated to other exercise modalities is presently unclear. These questions and the nature of the interaction between these key variables might be the subject of future investigations.

Conclusion

In conclusion, the EP and WEP, surrogates of the parameters of the power-duration relationship, CP and W^{\prime}, respectively, were reduced following 2 h of heavy-intensity cycling. WEP, but not EP, was also reduced following 80 min of heavy-intensity cycling. CHO ingestion during 2 h of heavy-intensity cycling abolished the reduction in EP, but not WEP. These results suggest that, following prolonged endurance exercise, W^{\prime} may be sensitive to local muscle glycogen availability, presumably via a limitation to energy production by anaerobic glycolysis, whereas CP may be sensitive to global CHO availability, perhaps via its relationship with central fatigue development. Practitioners should be aware that dynamic changes in the parameters of the power-duration relationship during heavy-intensity exercise present a challenge to the use of these parameters to predict performance during endurance sports events. It is clear, however, that CHO supplementation represents a practical and effective intervention to constrain the deterioration of CP during endurance exercise.

References

1. Barker T, Poole DC, Noble ML, Barstow TJ. Human critical power-oxygen uptake relationship at different pedalling frequencies. Exp Physiol 91: 621-32, 2006.
2. Beaver WL, Wasserman K, Whipp BJ. A new method for detecting anaerobic threshold by gas exchange. J Appl Physiol 60: 2020-2027, 1986.
3. Bergström J. Percutaneous needle biopsy of skeletal muscle in physiological and clinical research. Scand J Clin Lab Invest 35: 609-616, 1975.
4. Black MI, Jones AM, Blackwell JR, Bailey SJ, Wylie LJ, McDonagh STJ, Thompson C, Kelly J, Sumners P, Mileva KN, Bowtell JL, Vanhatalo A. Muscle metabolic and neuromuscular determinants of fatigue during cycling in different exercise intensity domains. J Appl Physiol 122: 446-459, 2017.
5. Broxterman RM, Ade CJ, Craig JC, Wilcox SL, Schlup SJ, Barstow TJ. Influence of blood flow occlusion on muscle oxygenation characteristics and the parameters of the power-duration relationship. J Appl Physiol 118: 880-889, 2015.
6. Burke LM, Jeukendrup AE, Jones AM, Mooses M. Contemporary Nutrition Strategies to Optimize Performance in Distance Runners and Race Walkers. Int J Sport Nutr Exerc Metab. 12:1-42, in press.
7. Burnley M, Doust JH, Vanhatalo A. A 3-min all-out test to determine peak oxygen uptake and the maximal steady state. Med Sci Sports Exerc 38: 1995-2003, 2006.
8. Burnley M, Jones AM. Power-duration relationship: Physiology, fatigue, and the limits of human performance. Eur J Sport Sci 18: 1-12, 2018.
9. Burnley M, Vanhatalo A, Jones AM. Distinct profiles of neuromuscular fatigue during muscle contractions below and above the critical torque in humans. J Appl Physiol 113: 215-223. 2012.
10. 10. Carter JM, Jeukendrup AE, Jones DA. The effect of carbohydrate mouth rinse on 1-h cycle time trial performance. Med Sci Sports Exerc 36: 2107-2111, 2004.
1. Chambers ES, Bridge MW, Jones DA. Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity. J Physiol 587: 1779-1794, 2009.
2. Clark IE, Vanhatalo A, Bailey SJ, Wylie LJ, Kirby BS, Wilkins BW, Jones AM. Effects of two hours of heavy-intensity exercise on the power-duration relationship. Med Sci Sports Exerc 50: 1658-1668, 2018.
3. Clark IE, Vanhatalo A, Thompson C, Wylie LJ, Bailey SJ, Kirby BS, Wilkins BW, Jones AM. Changes in the power-duration relationship following prolonged exercise: estimation using conventional and all-out test protocols and relationship to muscle glycogen. Am J Physiol, in press.
4. Coggan AR, Coyle EF. Carbohydrate ingestion during prolonged exercise: effects on metabolism and performance. Exerc Sport Sci Rev 19: 1-40, 1991.
5. Costill DL, Fink WJ, Hargreaves M, King DS, Thomas R, Fielding R. Metabolic characteristics of skeletal muscle during detraining from competitive swimming. Med Sci Sports Exerc 17: 339-343, 1985,
6. Gant N, Stinear CM, Byblow WD. Carbohydrate in the mouth immediately facilitates motor output. Brain Res 1350: 151-158, 2010.
7. Gollnick PD, Armstrong RB, Sembrowich WL, Shepherd RE, Saltin B. Glycogen depletion pattern in human skeletal muscle fibers after heavy exercise. J Appl Physiol 34: 615-618, 1973.
8. Gollnick P, Karlsson J, Piehl K, Saltin B. Selective glycogen depletion pattern in human muscle fibres after exercise of varying intensity and at varying pedalling rates. J Physiol 241: 45-57, 1974.
9. Hermansen L, Hultman E, Saltin B. Muscle Glycogen during Prolonged Severe Exercise. Acta Physiol Scand 71: 129-139, 1967.
10. Jentjens RL, Achten J, Jeukendrup AE. High oxidation rates from combined carbohydrates ingested during exercise. Med Sci Sports Exerc 36: 1551-1558, 2004.
11. Jeukendrup AE. Carbohydrate intake during exercise and performance. Nutrition 20: 669-677, 2004.
12. Jeukendrup A. A step towards personalized sports nutrition: Carbohydrate intake during exercise. Sport Med 44: S25-S33, 2014.
13. Jeukendrup AE, Chambers ES. Oral carbohydrate sensing and exercise performance. Current Opinion in Clinical Nutrition and Metabolic Care 13: 447-451, 2010.
14. Jeukendrup AE, Wallis GA. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sport Med Suppl 26: S28-S37, 2005.
15. Jones AM, Vanhatalo A, Burnley M, Morton RH, Poole DC. Critical power: implications for determination of $\dot{\mathrm{VO}}_{2} \max$ and exercise tolerance. Med Sci Sports Exerc 42: 1876-1890, 2010.
16. Jones AM, Wilkerson DP, DiMenna F, Fulford J, Poole DC. Muscle metabolic responses to exercise above and below the "critical power" assessed using 31P-MRS. Am J Physiol Regul Integr Comp Physiol 294: R585-93, 2008.
17. Joyner MJ, Ruiz JR, Lucia A. The two-hour marathon: who and when? J Appl Physiol 110: 275-277, 2011.
18. Lowry OH, Passonneau JV. A Flexible System of Enzymatic Analysis, New York: Academic, 1972, pp. 237-249.
19. Mitchell EA, Martin NRW, Bailey SJ, Ferguson RA. Critical power is positively related to skeletal muscle capillarity and type I muscle fibers in endurance trained individuals. J Appl Physiol 125: 737-745, 2018.
20. Miura A, Sato H, Sato H, Whipp BJ, Fukuba Y. The effect of glycogen depletion on the curvature constant parameter of the power-duration curve for cycle ergometry. Ergonomics 2000; 43: 133-141, 2000.
21. Morgan PT, Vanhatalo A, Bowtell JL, Jones AM, Bailey SJ. Acetaminophen ingestion improves muscle activation and performance during a 3-min all-out cycling test. Appl Physiol Nutr Metab, 2019, in press.
22. Morton RH. The critical power and related whole-body bioenergetic models. Eur J Appl Physiol 96: 339-54, 2006.
23. Murgatroyd SR, Ferguson C, Ward SA, Whipp BJ, Rossiter HB. Pulmonary O_{2} uptake kinetics as a determinant of high-intensity exercise tolerance in humans. J Appl Physiol 110: 1598-1606, 2011.
24. Nielsen J, Holmberg HC, Schrøder HD, Saltin B, Ortenblad N. Human skeletal muscle glycogen utilization in exhaustive exercise: role of subcellular localization and fibre type. J Physiol 589: 2871-2885, 2011.
25. Nybo L. CNS fatigue and prolonged exercise: effect of glucose supplementation. Med Sci Sports Exerc 35: 589-594, 2003.
26. Nybo L, Rasmussen P, Sawka MN. Performance in the heat-physiological factors of importance for hyperthermia-induced fatigue. Compr Physiol 4: 657-689, 2014.
27. Ørtenblad N, Nielsen J, Saltin B, Holmberg HC. Role of glycogen availability in sarcoplasmic reticulum Ca2+ kinetics in human skeletal muscle. J Physiol 589: 71125, 2011.
28. Parker Simpson L, Jones AM, Vanhatalo A, Wilkerson D. Influence of hypoxia on the power-duration relationship during high-intesnity exercise. Int J Sport Med 36: 113119, 2015.
29. Parker Simpson L, Jones AM, Vanhatalo A, Wilkerson DP. Influence of initial metabolic rate on the power-duration relationship for all-out exercise. Eur J Appl Physiol 112: 2467-2473, 2012.
30. Poole DC, Burnley M, Vanhatalo A, Rossiter HB, Jones AM. Critical power: an important fatigue threshold in exercise physiology. Med Sci Sports Exerc 48: 23202334, 2016.
31. Poole DC, Ward SA, Gardner GW, Whipp BJ. Metabolic and respiratory profile of the upper limit for prolonged exercise in man. Ergonomics 31: 1265-1279, 1988.
32. Sawka MN. Physiological consequences of hypohydration: exercise performance and thermoregulation. Med Sci Sports Exerc 24: 657-670, 1992.
33. Skiba PF, Chidnok W, Vanhatalo A, Jones AM. Modeling the expenditure and reconstitution of work capacity above critical power. Med Sci Sports Exerc 44: 15261532, 2012.
34. Smith JW, Zachwieja JJ, Horswill CA, Pascoe DD, Passe D, Ruby BC, Stewart LK. Evidence of a carbohydrate dose and prolonged exercise performance relationship. Med Sci Sports Exerc 42: 84, 2010a.
35. Smith JW, Zachwieja JJ, Peronnet F, Passe DH, Massicotte D, Lavoie C, Pascoe DD. Fuel selection and cycling endurance performance with ingestion of [13C] glucose: evidence for a carbohydrate dose response. J Appl Physiol 108: 1520-1529, 2010 b.
36. Thomas K, Goodall S, Stone M, Howatson G, St Clari Gibson A, Ansley L. Central and peripheral fatigue in male cyclists after 4-, 20-, and 40-km time trials. Med Sci Sports Exerc 47: 537-546, 2015.
37. Vanhatalo A, Black MI, DiMenna FJ, Blackwell JR, Schmidt JF, Thompson C, Wylie LJ, Mohr M, Bangsbo J, Krustrup P, Jones AM. The mechanistic bases of the powertime relationship: muscle metabolic responses and relationships to muscle fibre type. J Physiol 594: 4407-4423, 2016.
38. Vanhatalo A, Doust JH, Burnley M. Determination of critical power using a 3-min allout cycling test. Med Sci Sports Exerc 39: 548-555, 2007.
39. Vanhatalo A, Jones AM. Influence of prior sprint exercise on the parameters of the 'all-out critical power test' in men. Exp Physiol 94: 255-263, 2009.
40. Vanhatalo A, Jones AM, Burnley M. Application of critical power in sport. Int J Sports Physiol Perform 6: 128-136, 2011a.
41. Vanhatalo A, Poole DC, DiMenna FJ, Bailey SJ, Jones AM. Muscle fiber recruitment and the slow component of O_{2} uptake: constant work rate vs. all-out sprint exercise. Am J Physiol: Regul Integr Comp Physiol 300: R700-R707, 2011b.
42. Vøllestad NK, Blom PC. Effect of varying exercise intensity on glycogen depletion in human muscle fibres. Acta Physiol Scand 125: 395-405, 1985.

Figure Legends

Figure 1. The group mean power profiles during the 3-min all-out test (3MT) measured with no prior exercise (C-3MT), and when preceded by $40 \mathrm{~min}(40-3 \mathrm{MT}), 80 \mathrm{~min}(80-3 \mathrm{MT})$ and 2 $h\left(120-3 \mathrm{MT}_{\text {PLA }}\right)$ of heavy-intensity exercise. Error bars are not shown for clarity. The end test power was significantly reduced at 2 h compared to control and the work done above the end test power was significantly reduced at 80 min and at 2 h . See text for further details.

Figure 2. Group mean end test power (A), work done above end test power (B), peak power outputs (C) and total work done (D) during the 3-min all-out test (3MT) measured with no prior exercise (C-3MT), and following $40 \mathrm{~min}(40-3 \mathrm{MT}), 80 \mathrm{~min}(80-3 \mathrm{MT})$ and 2 h (120$\left.3 \mathrm{MT}_{\text {PLA }}\right)$ of heavy-intensity exercise. $\mathrm{a}=$ different from $\mathrm{C}-3 \mathrm{MT}(P<0.05), \mathrm{b}=$ different from 40-3MT $(P<0.005)$, $\mathrm{c}=$ different from $80-3 \mathrm{MT}(P<0.05)$.

Figure 3. Group mean relative intensity $\left(\% \dot{\mathrm{~V}}_{2 \text { peak }}\right)$ (panel A), respiratory exchange ratio (panel B), carbohydrate oxidation (panel C) and blood [glucose] and [lactate] (panel D) during 2 h of heavy-intensity cycling while ingesting carbohydrate (white symbols) or placebo (black symbols). * = different from placebo ($P<0.05$), $\mathrm{a}=$ different from $10-15 \mathrm{~min}$ $(P<0.05), \mathrm{b}=\operatorname{different}$ from 25-30 $\min (P<0.05), \mathrm{c}=\operatorname{different}$ from 55-60 $\min (P<0.05), \mathrm{d}=$ different from 85-90 $\min (P<0.05), \$=$ different from baseline $(P<0.05), £=$ different from 20 $\min (P<0.05)$.

Figure 4. The group mean power profiles during the 3-min all-out test (3MT) measured with no prior exercise (C-3MT) and when preceded by a 2 h -heavy intensity exercise bout with ingestion of carbohydrate $\left(120-3 \mathrm{MT}_{\mathrm{CHO}}\right)$ or placebo $\left(120-3 \mathrm{MT}_{\text {PLA }}\right)$. Error bars are not shown for clarity. The end test power was significantly reduced at 2 h compared to control when
placebo was ingested but was not different to control when carbohydrate was ingested. The work done above the end test power was significantly reduced compared to control irrespective of placebo or carbohydrate ingestion. See text for further details.

Figure 5. Group mean $\pm \mathrm{SD}$ end test power (A), work done above end test power (B), peak power outputs (C), and total work done (D) during the 3-min all-out test measured with no prior exercise (C-3MT) and after 2 h of exercise while ingesting carbohydrates $\left(120-3 \mathrm{MT}_{\mathrm{CHO}}\right)$ or placebo $\left(120-3 \mathrm{MT}_{\mathrm{PLA}}\right) . *=$ significant difference $(P<0.05)$.

Figure 6. Group mean $\pm \mathrm{SD}$ muscle [glycogen] before and after 2 h of heavy-intensity exercise while consuming carbohydrate (CHO) or placebo (PLA). $\mathrm{a}=$ different from preexercise values $(P<0.001), \mathrm{b}=$ different from CHO condition $(P<0.05)$.

Figure 7. Combined results from present study (black circles) and Clark et al. (13) (white circles) ($\mathrm{n}=28$). Correlation between muscle [glycogen] at rest and end test power (EP) without preceding exercise (panel A) and correlation between muscle [glycogen] and EP after 2 h of heavy-intensity exercise (B). Correlations between the percentage change in muscle [glycogen] and the absolute (panel C) and percentage (panel D) change in EP over 2 h of heavy-intensity exercise. Correlations between the percentage change in muscle [glycogen] and the absolute (panel E) and percentage (panel F) change in WEP over 2 h of heavyintensity exercise. ${ }^{* *}=P<0.005 ; *=P<0.05$.

Table 1. Mean \pm S.D. body mass, heart rate and RER during heavy-intensity exercise performed for various durations of heavy-intensity exercise

	Body mass (kg)		Heart Rate $\left(\mathrm{b} \cdot \mathrm{min}^{-1}\right)$		RER	
	Pre exercise	Post exercise	$10-15 \mathrm{~min}$	Last 5 min of exercise	$10-15 \mathrm{~min}$	Last 5 min of exercise
$40-3 \mathrm{MT}$	79.2 ± 7.6	$78.9 \pm 7.6^{\mathrm{ab}}$	134 ± 16	$138 \pm 16^{\mathrm{ab}}$	0.93 ± 0.03	$0.92 \pm 0.04^{\mathrm{b}}$
$80-3 \mathrm{MT}$	79.3 ± 7.6	$78.7 \pm 7.5^{\mathrm{ab}}$	133 ± 15	$141 \pm 17^{\mathrm{ab}}$	0.93 ± 0.04	$0.91 \pm 0.05^{\mathrm{ab}}$
$120-3 \mathrm{MT}_{\text {PLA }}$	79.2 ± 7.5	$78.2 \pm 7.3^{\mathrm{a}}$	134 ± 18	$150 \pm 16^{\mathrm{a}}$	0.91 ± 0.04	$0.84 \pm 0.05^{\mathrm{a}}$
$120-3 \mathrm{MT}_{\text {CHO }}$	79.4 ± 7.6	$78.5 \pm 7.4^{\mathrm{a}}$	130 ± 16	$149 \pm 17^{\mathrm{a}}$	0.90 ± 0.05	$0.87 \pm 0.04^{\mathrm{ab}}$

$40-3 \mathrm{MT}, 40 \mathrm{~min}$ of heavy-intensity exercise; $80-3 \mathrm{MT}, 80 \mathrm{~min}$ of heavy-intensity exercise; $120-3 \mathrm{MT}_{\text {PLA }}, 120 \mathrm{~min}$ of heavy-intensity exercise consuming water, $120-3 \mathrm{MT}_{\text {СНО }}, 120 \mathrm{~min}$ of heavy-intensity exercise consuming carbohydrates. ${ }^{\mathrm{a}}=$ different from start of exercise measurements, $P<0.05 ;{ }^{\mathrm{b}}=$ different from $120-3 \mathrm{MT}_{\text {PLA. }}, P<0.05$.

B

Difference in rest versus post [glycogen] (\%)

Difference in rest versus post [glycogen] (\%)

Difference in rest versus post [glycogen] (\%)

