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Global terrestrial models currently predict that the Amazon rainforest will continue to 35 

act as a carbon sink in the future primarily due to the rising atmospheric carbon dioxide 36 

(CO2) concentration, effectively enhancing its resilience and slowing the pace of climate 37 

change. Soil phosphorus impoverishment in parts of the Amazon basin limits biomass 38 

growth, but the role of phosphorus availability in limiting its future carbon uptake has 39 

not been considered in global model ensembles, e.g., during the 5th Climate Model 40 

Intercomparison Project (CMIP5). Here, we simulate a planned free-air CO2 enrichment 41 

experiment in the Amazon with an ensemble of 14 terrestrial ecosystem models. The 42 

model ensemble represents diverse plant functional strategies and generates a series of 43 

testable hypotheses. We show that phosphorus availability reduces the projected CO2-44 

induced biomass carbon growth by about 50% to 79 ± 63 g C m-2 yr-1 over 15 years 45 

compared to estimates from carbon and carbon-nitrogen models. Our results suggest that 46 

the region’s resilience to climate change may be much less than previously assumed. 47 

Variation in the biomass carbon response among the phosphorus-enabled models is 48 

considerable, ranging from 5 to 140 g C m-2 yr-1, due to contrasting assumptions relating 49 

to the flexibility in plant phosphorus use and acquisition strategies. Experimental design 50 

needs to be targeted to reduce the uncertainties around the phosphorus feedback on the 51 

CO2 fertilization effect.  52 

The intact Amazon rainforest acts as a substantial carbon (C) sink, completely offsetting carbon 53 

dioxide (CO2) emissions from fossil fuel combustion and land use change in the Amazon 54 

region1,2. Increasing atmospheric CO2 concentrations from anthropogenic activity may be the 55 

primary factor for the current Amazon net C sink1,3, via so-called CO2 fertilization (an increase 56 

in photosynthetic C uptake by plants under higher CO2), which is projected to continue into the 57 

future by global models4–6. The CO2 fertilization effect has been observed experimentally in 58 

field experiments that were conducted predominantly in the temperate zone. In these 59 

experiments, the eCO2 induced increase in C uptake was generally low when other factors, such 60 

as soil nitrogen (N), were limiting7–9. To date, whole-ecosystem-scale experiments, i.e., free-61 

air CO2 enrichment (FACE) have never been conducted in the tropics10,11.  62 

Over large parts of the Amazon and the tropics worldwide, phosphorus (P), not N, is assumed 63 

to be the key limiting nutrient, as most P has been lost or occluded from plant uptake during 64 

millions of years of soil pedogenesis12,13. Forests growing on these highly weathered old soils 65 

may nonetheless be highly productive due to the evolution of multiple strategies for P 66 

acquisition and use, enabling tight cycling of P between plants and soils14,15. Despite this 67 



knowledge, quantifying the control of P on plant physiology, growth, and plant-soil interactions 68 

in global models, and hence its role in the forests’ response to eCO2, remains challenging16,17. 69 

This challenge is exacerbated by the scarcity of observations and distinctive species responses 70 

in hyperdiverse tropical forests18.  71 

Here, we study the potential interactions between eCO2 and nutrient (N and P) feedbacks in a 72 

mature Amazonian rainforest by simulating the planned AmazonFACE experiment (+200 ppm; 73 

http://amazon-face.org/) with an ensemble of ecosystem models (n = 14, Extended Data Table 74 

3), including three C, five carbon-nitrogen (CN), and six carbon-nitrogen-phosphorus (CNP) 75 

models19–24. The AmazonFACE experiment is located in a well-studied, highly productive 76 

tropical forest in Central Amazonia25,26, growing on a strongly weathered terra firme Ferralsol. 77 

This ecosystem represents the low end of the plant-available P spectrum in the Amazon, 78 

consistent with ~32% of the Amazon rainforest’s cover fraction27. In situ measurements were 79 

used to parameterise the models and to evaluate simulated ambient conditions (Extended Data 80 

Table 1, 2). Our aim was to generate a priori model-based hypotheses to highlight the state-of-81 

the-knowledge and guide measurement strategies for AmazonFACE and other ecosystem 82 

manipulation experiments to gain crucial process understanding of P control on the CO2 83 

fertilization effect. 84 

Simulated eCO2 (+200 ppm) had a positive effect on plant biomass C across all models but was 85 

weakest in the CNP models (Fig. 1a). The eCO2 conditions induced average biomass C gains 86 

of 163 ± 65, 145 ± 83, and 79 ± 63 g C m-2 yr-1 (mean ± SD) over 15 years in the C, CN and 87 

CNP models, respectively (Fig. 1a). Limitations by P thus reduced the predicted biomass C sink 88 

by 52% and 46% compared to that in the C and CN models, respectively, with considerable 89 

variation across and within model groups (Extended Data Fig. 1). Plot inventories at the 90 

AmazonFACE site during the 2000s indicate an aboveground biomass increment of 23 g C m2 91 

yr-1, substantially below the Amazon-wide1 estimate of 64 g C m2 yr-1. The model ensemble 92 

represents ambient conditions, such as productivity and leaf area index, reasonably well, but 93 

ensemble members show divergence in other ecosystem characteristics, such as the biomass C 94 

increment, which range from 5 to 114 g C m2 yr-1. There is, however, no clear pattern in 95 

performance between the model groups, so that we judge that these differences do not have 96 

bearing on the conclusions of our study (see more discussion in Extended Data Fig. 2).  97 

Gross and net primary productivity (GPP and NPP, respectively) are both stimulated by eCO2 98 

in all models, both initially (after 1 year of eCO2) and until the end of the simulation. The CNP 99 

models show the strongest decline from the initial response due to P limitation (Fig. 1b, c). The 100 



final response of NPP to eCO2 was a 35%, 29%, and 9% stimulation for the C, CN and CNP 101 

models, respectively. In general, in the CN and CNP models, nutrient limitation is defined as 102 

nutrient demand being greater than nutrient supply. However, models differ in their 103 

assumptions on how nutrient limitation controls productivity and C allocation in response to 104 

eCO2, so that divergent responses on plant carbon use efficiency (CUE = NPP / GPP) are 105 

simulated (Extended Data Table 3). In some CN models, CUE increases because N limitation 106 

is hypothesized to reduce autotrophic respiration (Ra) via lower tissue N content. Some CNP 107 

models, however, assume a direct downregulation of growth and hence the plant CUE decreases 108 

(Extended Data Fig. 3). Elevated CO2 induced higher fine root investments of NPP in some CN 109 

and CNP models to aid nutrient acquisition (Fig. 1c; Extended Data Fig. 4). Predicted changes 110 

in allocation with eCO2 cause a general increase in biomass turnover across all but one of the 111 

models, partially offsetting the positive biomass response (Extended Data Table 4). Changes in 112 

turnover play a minor role in our 15 years simulation period but rather control the long-term 113 

future CO2 effect on the biomass C sink28,29.  114 

Plant growth under eCO2 is lowest in CNP models as the low availability of soil labile P restricts 115 

P uptake either immediately or over time (Extended Data Fig. 5). We considered the modelled 116 

P limitation on plant growth to be realistic, as the models and observations agree on soil labile 117 

P being very low (Extended Data Fig. 2). Other site observations support the fact that P is 118 

extremely critical for plant productivity, such as high leaf N:P ratios of 37 and high plant P 119 

resorption (before litter fall) of 78% (Extended Data Table 1). While P limitation consistently 120 

reduces the eCO2-induced biomass C sink, there is significant variation among CNP models 121 

due to contrasting process representations (Fig. 2; Extended Data Table 3). P shortages 122 

downregulate growth (i.e., NPP) in all CNP models, directly or via photosynthesis. The major 123 

differences in the model assumptions relate to how they modify P supply and demand to 124 

alleviate plant P shortages, including either (i) enhancing plant P use efficiency (PUE = NPP / 125 

P uptake) or (ii) upregulating P acquisition mechanisms. The models assume that PUE may 126 

change if tissue nutrient ratios are flexible, if C allocation changes among tissues with different 127 

stoichiometry, and/or if P resorption is variable (Fig. 2). Flexible stoichiometry is considered 128 

in all CNP models except ELM-CTC, although with varying degrees of flexibility. Greater fine 129 

root C allocation with plant P stress is considered in some, and P resorption is a fixed fraction 130 

of leaf tissue P in all models (Fig. 2). 131 

Models differ in their representation of soil P acquisition mechanisms; three of the six models 132 

(ELM-ECA, ELM-CTC, GDAY) consider desorption of P from mineral surfaces (i.e., the 133 



secondary or strongly sorbed P pool), whereas the others assume P in those pools to be 134 

unavailable to plants. All the models include biochemical mineralization of organic P via 135 

phosphatase, but only three (ELM-ECA, ELM-CTC and ORCHIDEE) include the functionality 136 

to increase P acquisition via this mechanism under plant P stress (Fig. 2; Extended Data Table 137 

3). Litter and soil stoichiometry are considered with varying degrees of flexibility. Soil labile P 138 

limits microbial decomposition rates of litter and soil, so that decomposition is reduced when 139 

immobilization demands for P exceed soil labile P availability (Fig. 2; Extended Data Table 3).  140 

Diverging representations of plant P use and acquisition among the CNP models cause 141 

predictions of the eCO2-induced biomass C sink to range from 5 g C m-2 yr-1 to 140 g C m-2 yr-142 

1 (Fig. 3a; Extended Data Fig. 1). Greater plant PUE occurred in four of the models, for which 143 

shifts in tissue C:N and N:P due to eCO2 led to increases in biomass C:P ranging from ~200 to 144 

1600 g C g P-1 (Fig. 3c). Higher fine root investment with eCO2, at the expense of less “P-145 

costly” wood, offset some increases in PUE in some models. Flexible biomass stoichiometry 146 

altered decomposition dynamics and induced progressive P limitation in response to eCO2, i.e., 147 

litter stoichiometry shifted towards lower quality (less N and P in relation to C), reducing net P 148 

mineralization rates from microbial decomposition, causing P to become increasingly 149 

unavailable to plants and accumulating in soil organic matter (Fig. 3d, e). This plant-soil-150 

microbial feedback slowed the cycling of P in the ecosystem and exacerbated the initial P 151 

limitation (see Ref. 30 for a similar feedback during pedogenesis).  152 

Enhanced plant P acquisition under eCO2 effectively alleviated P limitation in two CNP models 153 

(ELM-CTC and ELM-ECA) (Fig. 3e). In both, eCO2 increased the liberation of P from the 154 

secondary pool, as higher plant P demand and uptake diminished the labile P pool, in turn 155 

causing higher desorption rates. P desorption is thus only indirectly, and not mechanistically, 156 

enhanced by plants in these models. Biochemical mineralization of P under eCO2 responded 157 

positively in both of the models, but added only notably to additional P acquisition in ELM-158 

CTC (Fig. 3e). Although three CNP models simulated higher fine root investments, the actual 159 

P uptake return per fine root increment was marginal or came only into effect in the long-term 160 

(Extended Data Fig. 6).  161 

Observations document ample N cycling in the system, e.g., high leaf N contents, indicative 162 

δ15N values, high rates of N oxide emissions, and low leaf N resorption31,32, and thereby suggest 163 

that plant growth is not directly affected by N availability. The CN models, however, simulate 164 

increased nitrogen use efficiency (NUE) and biomass C:N ratios, in response to insufficient N 165 

uptake under eCO2 (Extended Data Fig. 5). Plant N availability may be underestimated in the 166 



models, since the plant-available mineral N supply was <7 g N m-2 across all models, as opposed 167 

to 17.5 g N m-2 observed in the top 10 cm only (Extended Data Fig. 2). These results highlight 168 

an important gap in our knowledge also related to the dynamics of N availability, and its 169 

potential interaction with P dynamics (Table 1). 170 

In summary, the model ensemble encapsulates a range of plausible hypotheses and represents 171 

a potential range of biomass C responses to eCO2 under low soil P availability. The assumption 172 

of a lacking ability of plants to acquire more soil P and a limited capacity for plants to use P 173 

more efficiently resulted in effectively zero biomass C gain with eCO2. Conversely, flexible 174 

stoichiometry, in combination with enhanced plant P acquisition, were the key mechanistic 175 

responses leading to biomass gain with eCO2. Divergences in the simulated eCO2 response lead 176 

us to the following testable hypotheses, and call for directed field measurements (Table 1): 177 

H1. Low soil P availability will strongly constrain future plant biomass growth response to 178 

eCO2 either by downregulating photosynthesis or limiting plant growth directly, or a 179 

combination thereof.  180 

H2. Despite the limited soil P supply, plasticity in vegetation stoichiometry and allocation 181 

patterns will allow for some biomass growth under eCO2. 182 

H3. Plants will increase investments in P acquisition to increase P supply and allow biomass 183 

growth under eCO2 either via greater P interception through fine root production or via greater 184 

P liberation from P desorption or biochemical mineralization of P.  185 

These model-based hypotheses deepen a previous analysis of potential N and P limitation on C 186 

accumulation based on mass balance principle33. Furthermore, we add to a model 187 

intercomparison carried out in advance of the EucFACE experiment34 by extending the range 188 

of plant P feedbacks considered across CNP models. This work highlighted H1: two 189 

stoichiometrically constrained CNP models predicted that strong P limitation will curtail the 190 

growth response to eCO2 in Australia. Consistent with this hypothesis, aboveground growth has 191 

not increased with eCO2 in that experiment over the initial years35. This finding underlines that 192 

monitoring efforts need to place a strong(er) focus on belowground carbon and nutrient 193 

dynamics, in addition to canopy-scale photosynthesis and aboveground growth dynamics. 194 

Additionally, Ra dependence on P content and plant stress from drought or nutrient limitation 195 

need further monitoring during experiments to fully elucidate the plant C budget and address 196 

H1 (Table 1).   197 



Nutrient fertilization experiments support H2, as plasticity in leaf stoichiometry at the 198 

individual level, along with plasticity in P resorption efficiency, was observed36. Across the 199 

Amazon, community-weighted leaf N:P in the field varied from 13 to 42 g N g P-1 (n = 64) 200 

(Ref. 32), which place our site, with a mean of 37, closer to the high end. GDAY predicted the 201 

most plausible increase in the leaf N:P ratio from 34 to 38 (Extended Data Fig. 7). Two models 202 

predicted strong increases in the leaf N:P ratio with eCO2 but started off with much lower initial 203 

values. The degree to which plasticity in stoichiometry and resorption can aid plant PUE under 204 

eCO2 in highly P-limited sites that are already at the end of the observed spectrum remains to 205 

be seen (H2). Monitoring plant tissue stoichiometry, including wood with much higher N:P 206 

ratios, combined with assessments of P resorption in CO2 and nutrient fertilization experiments 207 

will reduce uncertainties (Table 1).  208 

Based on previous observations8, a number of models assume increased fine root investment, 209 

as well as higher biochemical P mineralization and P desorption from mineral surfaces, under 210 

eCO2-induced nutrient limitation (H3). The effect of increased fine root biomass on nutrient 211 

uptake was limited in our simulations and ambient fine root allocation fractions were highly 212 

variable among the models, ranging from 5-30% of NPP (Extended Data Fig. 4, 6). Both these 213 

modelled results highlight model deficiencies in belowground processes37 that need addressing 214 

(Table 1). There is evidence that phosphatase activity in litter and soil and the presence of low-215 

molecular-weight acids used to liberate P from organic matter or from mineral surfaces increase 216 

with plant P demand38. This was predicted by ELM-CTC in our simulations, which also showed 217 

Amazon-wide that “[with] enhanced phosphatase production, productivity in the highly P-218 

limited areas can be sustained under elevated CO2 conditions"39. Plants invest in P liberation 219 

and acquisition, but if these mechanisms can be upregulated under eCO2 and over what time 220 

frame this may occur remain open questions. Quantification of such a response is lacking, as 221 

are estimates of the associated plant C costs to acquire P via these and other mechanisms, such 222 

as mycorrhizal symbiosis15,40 (Table 1). The P gain and C cost for P acquisition mechanisms, 223 

as well as the associated plant-soil-microbial interactions, need to be assessed by analyses of 224 

soil, microbial and root nutrition, and via novel techniques investigating enzyme and labile C 225 

dynamics41. Monitoring of belowground fine root dynamics needs to include the surface litter 226 

layer, commonly explored by fine roots in P-impoverished ecosystems in the Amazon, not yet 227 

quantified nor considered in models (Table 1).  228 

Previous model projections suggest a sustained fertilization effect of CO2 on the Amazon C 229 

sink but have not considered feedbacks from low soil P availability5,6. Our study demonstrates 230 



that, based on the current generation of CNP models, the omission of P feedbacks is highly 231 

likely to cause an overestimation of the Amazon rainforest’s capacity to sequester atmospheric 232 

CO2. Considering P limitation on the CO2 fertilization effect in future predictions may indicate 233 

that the forest is less resilient to higher temperatures and changing rainfall patterns than 234 

previously thought6,42. Periods of water deficit may contribute to the eCO2 fertilization effect 235 

on productivity due to its water saving effect34, or due to alterations of decomposition processes. 236 

Our study site experienced years with significantly less than average precipitation, e.g. in 2000 237 

and 2009, however, in our simulations this increased the positive response of GPP and NPP to 238 

eCO2 only marginally (Extended Data Figure 8 and 9). Models lack the appropriate sensitivity 239 

of plant responses to changes in water availability, and even more so when precipitation sums 240 

are that high43. Interactions of water and P availability and their consequences on the CO2 241 

fertilization effect remain uncertain44 and is an area where field measurements will allow us to 242 

better constrain model responses (Table 1).  243 

Although P is likely to reduce the biomass C sink response to CO2 in regions with low plant-244 

available P supply, our results suggest that plasticity in plant P use and plant P acquisition 245 

mechanisms, may at least partially alleviate P limitation under eCO2 and enable CO2 246 

fertilization of biomass growth. The model ensemble may be interpreted as representing a range 247 

of possible tropical plant functional strategies and growth responses to low P availability under 248 

eCO2. Responses are expected to be species-specific, as were plant growth responses to low P 249 

supplies in another tropical region18. The ecosystem-scale response to P limitation under eCO2 250 

will thus depend on the relative contributions of the various P acquisition and P use strategies 251 

across individuals, their interactions and to what extent these processes can be upregulated 252 

under eCO2. All of which ultimately need to be described and represented in a single model 253 

framework in order to accurately predict the Amazon rainforest’s response to future climate 254 

change.  255 

AmazonFACE has the unique opportunity to experimentally address these key areas of 256 

uncertainty, not only by integrating the proposed measurements across seasons and at the 257 

ecosystem scale (summary in Table 1) but also by assessing species-specific responses to eCO2 258 

in relation to trait expression. Amazon-wide expression of plant functional strategies may then 259 

be inferred by applying the mechanistic interplay between trait expression and edaphic 260 

conditions. The key to predicting the future of the world’s largest tropical forest under eCO2 261 

thus lies in obtaining experimental data on, and subsequently modelling, different plant P 262 

acquisition and use strategies, as well as their interactions in a competing plant community.  263 
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Table 1. List of key processes and variables that need to be constrained by observational 392 

estimates in order reduce uncertainty in P cycle control on the eCO2 effect ecosystem models.  393 

(H1) Plant C budget Measurements needed 

  

Canopy scale C 

assimilation 
 Seasonal dynamics of leaf area and photosynthetic capacity 

 Photosynthetic acclimation 

Plant tissue respiration  Control of drought stress, nutrient limitation and P content 

 Wood and root respiration  

Biomass growth  Belowground biomass compartments 

 Long term growth rates 

  

(H2) Plant P use   

  

Plant tissue C:P and N:P 

stoichiometry 
 Plasticity versus adaptability to (experimental) change in 

eCO2 or nutrient availability  

 Functionality of tissue P  

 Wood P content /stoichiometry 

Plant tissue P resorption  P content in live tissue and fresh litter 

 Plasticity versus adaptability to (experimental) change in 

eCO2 or nutrient availability 

  

(H3) Plant P acquisition   

  

P desorption due to plant 

exudation 
 Interactions with microorganisms (directly or via 

microorganisms) 

 Cost of exudation vs. plant P uptake 

P acquisition due to fine 

root production 
 Surface litter activity 

 Fine root allocation fractions  

 Fine root productivity vs. plant P uptake 

Biochemical P 

mineralization (via 

phosphatase) 

 Phosphatase activity and relation to P mineralization 

 Plant production of phosphatase vs. plant-induced 

production by microorganisms 

 Cost of phosphatase production vs. plant P acquisition 

  

Other interactions  

  

Plant N availability  Ecosystem N budget 

 Symbiotic and free-living N fixation 

 Control of N availability on P acquisition 

Plant water availability  Control on P mineralization and transport dynamics 

 Control on of water and P limitation on eCO2 effect 
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Abstract 

Global terrestrial models currently predict that the Amazon rainforest will continue to act as a 

carbon sink in the future primarily due to the rising atmospheric carbon dioxide (CO2) 

concentration, effectively enhancing its resilience and slowing the pace of climate change1–3. 

Soil phosphorus impoverishment in parts of the Amazon basin limits biomass growth, but the 

role of phosphorus availability in limiting its future carbon uptake has not been considered in 

global model ensembles, e.g., during the Coupled Model Intercomparison 

Project (CMIP5)While it is widely accepted that soil phosphorus impoverishment in most of 

the Amazon basin limits biomass growth4, the role of phosphorus availability in limiting future 

Amazon forest carbon uptake has not been considered in global ecosystem model ensembles, 

e.g., during the Coupled Model Intercomparison Project for the 5th Assessment Report of the 

United Nations Intergovernmental Panel on Climate Change3. Here, we simulate a planned free-

air CO2 enrichment experiment in the Amazon with an ensemble of 14 terrestrial ecosystem 

models, including models that account for nitrogen and phosphorus feedbacks.. The model 

ensemble represents diverse tropical plant functional strategies and generate a series of testable 

hypotheses. We show that phosphorus availability reduces the projected CO2-induced biomass 

carbon growth to 79 ± 63 g C m-2 yr-1 over 15 years, a reduction of ~50% compared to estimates 

from carbon and carbon-nitrogen modelsWe show that incorporating phosphorus feedbacks 

reduces the CO2-induced biomass carbon sequestration to 79 ± 63 g C m-2 yr-1 over 15 years, a 

reduction of 46-52% compared to carbon and carbon-nitrogen models. Our resultsThe model 

ensemble suggests that the anticipated future Amazon carbon sink, and hence the region’s 

resilience to climate change, may be much lesssmaller than previously assumed.  

Modelled phosphorus feedbacks restrict the size of the biomass carbon (C) sink under elevated 

CO2 concentrations, but the vVariation in the biomass carbon response among the phosphorus-

enabled models is considerable, ranging from 5 to 140 g C m-2 yr-1. Predictions vary , due to 

contrasting assumptions relating to the flexibility in plant phosphorus use and acquisition 

strategies that allow CO2 fertilization of biomass growth despite low phosphorus availability to 

plants. Our results generate a series of testable hypotheses. , aiding eExperimental design, needs 

to be targeted to directly reduce the uncertainties around the phosphorus feedback on the CO2 

fertilization effect. The model ensemble involuntarily represents diverse tropical plant 

functional strategies and growth responses to phosphorus availability5, which ultimately need 

to be described and represented in a single framework in order to accurately predict the Amazon 

rainforest’s response to future climate change.  



Introduction  

The intact Amazon rainforest acts as a substantial carbon (C) sink, completely offsetting carbon 

dioxide (CO2) emissions from fossil fuel combustion and land use change in the Amazon 

region1,26,7. Increasing atmospheric CO2 concentrations from anthropogenic activity may be the 

primary driving forcefactor for the current Amazon net Ccarbon sink1,34,6, via so-called CO2 

fertilization (an increase in photosynthetic C uptake by plants under higher CO2), which is 

projected to continue into the future by global models4–6.and global models assume that this 

CO2 fertilization effect will continue to provide this globally significant ecosystem service into 

the future3. The CO2 fertilization effect has been observed experimentally in field experiments 

that were conducted predominantly in the temperate zone.The stimulatory effect of elevated 

carbon dioxide (eCO2) on photosynthesis and tree growth has been observed experimentally in 

greenhouses and in the field in open top chamber and free-air CO2 enrichment (FACE) 

experiments. To date, whole-ecosystem-scale experiments (i.e., FACE) have mainly been 

conducted in the temperate zone and never in the tropics7,8. In these experiments, the eCO2-

induced increase in C uptake wais generally low when other factors, such as soil nitrogen (N), 

weare limiting7–99,10. To date, whole-ecosystem-scale experiments, i.e., free-air CO2 enrichment 

(FACE) have never been conducted in the tropics10,11. 

Over large parts of the Amazon and the tropics worldwide, phosphorus (P), not N, is assumed 

to be the key limiting nutrient, as most P has been lost or occluded from plant uptake during 

millions of years of soil pedogenesis12,13. Forests growing on these highly weathered old soils 

may nonetheless be highly productive due to the evolution of multiple strategies for P 

acquisition and use, enabling tight cycling of P between plants and soils14,15. Despite this 

knowledge, quantifying the control of P on plant physiology, growth, and plant-soil interactions 

in global models, and hence its role in the forests’ response to eCO2, remains challenging16,1716. 

This challenge is exacerbated by the scarcity of observations and idiosyncratic distinctive 

species responses in hyperdiverse tropical forests18.  

Here, we study the potential interactions between eCO2 and nutrient (N and P) feedbacks in a 

mature Amazonian rainforest by simulating the planned AmazonFACE experiment (+200 ppm; 

http://amazon-face.org/) with an ensemble of ecosystem models (n = 14, Extended Data Table 

3), including three C, five carbon-nitrogen (CN), and six carbon-nitrogen-phosphorus (CNP) 

models19–24. The AmazonFACE experiment is located in a well-studied, highly productive 

tropical forest in Central Amazonia25,26, growing on a strongly weathered terra firme Ferralsol. 

This ecosystem represents the low end of the plant-available P spectrum in the Amazon, 



consistent with ~32% of the Amazon rainforest’s cover fraction27. In situ measurements were 

used to parameterise the models and to evaluate simulated ambient conditions (Extended Data 

Table 1, 2). Our aim was to generate a priori model-based hypotheses to highlight the state-of-

the-knowledge and guide measurement strategies for AmazonFACE and other ecosystem 

manipulation experiments to gain crucial process understanding of P control on the CO2 

fertilization effect. 

Main text 

Simulated eCO2 (+200 ppm) over a period of 15 years had a positive effect on plant biomass C 

across all models but was weakest in the CNP models (Fig. 1a). The eCO2 conditions induced 

average biomass C gains of 163 ± 65, 145 ± 83, and 79 ± 63 g C m-2 yr-1 (mean ± SD) over 15 

years in the C, CN and CNP models, respectively (Fig. 1a). Limitations by P thus reduced the 

predicted biomass C sink strength by 52% and 46% compared to that in the C and CN models, 

respectively, with considerable variation across and within model groups (Extended Data Fig. 

1). Plot inventories at the AmazonFACE site during the 2000s indicate an ambient aboveground 

biomass sink increment of 23 g C m2 yr-1, substantially below the with an Amazon-wide1 

estimate of 64 g C m2 yr-1. The model ensemble represents ambient conditions, such as 

productivity and leaf area index, reasonably well, but ensemble members show divergence on 

other ecosystem characteristics, such as the biomass C increment, which range from 5 to 114 g 

C m2 yr-1. There is, however, no clear pattern in performance between the model groups, so that 

we judge that these differences do not have bearing on the conclusions of our study (see more 

discussion in Extended Data Fig. 2).The model ensemble represents these and other ambient 

conditions, such as productivity and standing biomass C stock, reasonably well, with biomass 

C increases ranging from 5 to 114 g C m2 yr-1 in the ambient model runs (Extended Data Fig. 

2).  

Gross and net primary productivity (GPP and NPP, respectively) are both stimulated by eCO2 

in all models, both initially (after 1 year of eCO2) and until at the end of the simulation after 15 

years. The CNP models show the strongest decline from the initial response due to P limitation 

(Fig. 1b, c). The final response of NPP to eCO2 was a 35%, 29%, and 9% stimulation for the C, 

CN and CNP models, respectively. In general, in the CN and CNP models, nutrient limitation 

is defined as nutrient demand being greater than nutrient supply. However, models differ in 

their assumptions on how nutrient limitation controls productivity and C allocation in response 

to eCO2, so that divergent responses on plant carbon use efficiency (CUE = NPP / GPP) are 

simulated (Extended Data Table 3). Although both N and P limitations reduce the effect of 



eCO2 on GPP, NPP and biomass increase, they have different effects on plant carbon use 

efficiency (CUE = NPP / GPP). Differing model assumptions relating to how nutrient feedbacks 

control productivity and C allocation in response to eCO2 cause these divergent responses 

(Extended Data Table 3). In some CN models, CUE increases because N limitation is 

hypothesized to reduce autotrophic respiration (Ra) via lower tissue N content. In contrast, 

sSome CNP models, however,  (e.g., CABLE and ELM-ECA) assume a direct downregulation 

of growth or growth efficiency (i.e., NPP) but only a small reduction in GPP, and hence the 

plant CUE decreases under nutrient limitation (Extended Data Fig. 3). Elevated CO2 induced 

higher fine root investments of NPP in some CN and CNP models to aid nutrient acquisition 

(Fig. 1c; Extended Data Fig. 4). Furthermore, eCO2 induced higher fine root investments of 

NPP in some CN and CNP models to aid nutrient acquisition (Fig. 1c; Extended Data Fig. 4).  

Predicted changes in allocation with eCO2 cause a general increase in biomass C turnover across 

all but one of the models, as C allocation moved from longer-lived tissues (wood) towards 

leaves and roots (with shorter lifespans). Tissue-specific turnover rates are assumed to be 

constant in all models. Higher biomass C turnover partially offsetting the positive biomass C 

response (Extended Data Table 4). Changes in turnover play a minor role in our 15 year 

simulation period but rather control the long-term future CO2 effect on the biomass C 

sink28,29.and introduce additional uncertainty into the future CO2 effect on biomass C26. 

Nevertheless, the modelled NPP response dominates the biomass C response to eCO2 over the 

15-year simulation period.  

Plant growth under eCO2 is lowest in CNP models as the low availability of soil labile P restricts 

P uptake either immediately (CABLE, ELM-ECA, GDAY) or over time (CABLE-POP, ELM-

CTC, ORCHIDEE) (Extended Data Fig. 5). We considered the modelled P limitation on plant 

growth to be realistic, as the models and observations agree on soil labile P being very low 

(Extended Data Fig. 2). The models simulated <1.1 g labile P m-2 to 4 m depth in the ambient 

run (with the exception of ELM-CTC) (Extended Data Fig. 2). Observations indicate 1.6 g resin 

P m-2 to 30 cm depth, which is thus slightly higher than the model predictions. However, both 

modelled and observed soil labile P are very low. Other site observations supportat the site 

indicate the fact that P is extremely critical for plant productivity, such as high leaf N:P ratios 

of 37 and high plant P resorption (in plant tissue before litter fall) of 78% (Extended Data Table 

1). While Consequently, we considered the modelled P limitation on plant growth to be realistic. 

Although the P limitation consistently reduces the eCO2-induced biomass C sink, there is 

significant variation among CNP models due to contrasting process representations (Fig. 2; 



Extended Data Table 3).  P shortages downregulate growth (i.e., NPP) in all CNP models, either 

directly or, via photosynthesis, or via a combination of both processes. No model considers P 

effects on Ra. The major differences in the among the model assumptions relate to how they 

modify P supply and demand to alleviate plant P shortages, including either (i) enhancing plant 

P use efficiency (PUE = NPP / P uptake) or (ii) upregulating P acquisition mechanisms. The 

models assume that PUE may change if tissue nutrient ratios are flexible, if C allocation changes 

among tissues with different stoichiometry, and/or if P resorption is variable (Fig. 2)can be 

adjusted. Flexible stoichiometry is considered in all CNP models except ELM-CTC, although 

with varying degrees of flexibility, such that the stoichiometry in CABLE and ORCHIDEE is 

considered effectively fixed (Fig. 2). Greater fine root C allocation with in response to plant P 

stress is considered in some, ELM-ECA, GDAY and ORCHIDEE, and P resorption is a fixed 

fraction of leaf tissue P in all models (Fig. 2). 

Models differ in their representation of Assumptions regarding soil P acquisition mechanisms ; 

differ among the CNP models. Tthree of the six models (ELM-ECA, ELM-CTC, GDAY) 

consider desorption of P from mineral surfaces (i.e., the secondary or strongly sorbed P pool), 

whereas the others assume P in those pools to be unavailable to plants. All the models include 

biochemical mineralization of organic P via phosphatase, but only three (ELM-ECA, ELM-

CTC and ORCHIDEE) include the functionality to increase P acquisition via this mechanism 

under plant P stress (Fig. 2; Extended Data Table 3). Litter and soil stoichiometry are considered 

with varying degrees of flexibility. Soil labile P limits microbial decomposition rates of litter 

and soil, so that decomposition is reduced when immobilization demands for P exceed soil 

labile P availability (Fig. 2; Extended Data Table 3).  

Diverging depictions representations of plant P use and acquisition among the CNP models 

cause predictions of the eCO2-induced biomass C sink to range from 5 g C m-2 yr-1 in CABLE 

to 140 g C m-2 yr-1 in ORCHIDEE (Fig. 3a; Extended Data Fig. 1). Greater plant PUE occurred 

in four of the models, GDAY, ELM-ECA, CABLE-POP, and ORCHIDEE, for which shifts in 

tissue C:N and N:P due to eCO2 led to increases in biomass C:P ranging from ~200 to 1600 g 

C g P-1 (Fig. 3c). Higher fine root investment with eCO2, at the expense of less “P-costly” wood, 

offset some increases in PUE in ELM-ECA and GDAYsome models. Although higher fine root 

allocation was simulated temporarily in ORCHIDEE (Extended Data Fig. 4), investment in 

wood increased over the full simulation period, as was also the case in CABLE-POP (Fig. 3b). 

Flexible biomass stoichiometry altered decomposition dynamics and induced progressive P 

limitation in response to eCO2, i.e., litter stoichiometry shifted towards lower quality (less N 



and P in relation to C), reducing net P mineralization rates from microbial decomposition, 

causing P to become increasingly unavailable to plants and accumulating in soil organic matter 

(Fig. 3d, e). As a consequence, ecosystem P retention increased marginally in some models as 

P leaching rates decreased. This plant-soil-microbial feedback slowed the cycling of P in the 

ecosystem and exacerbated the initial P limitation (see Ref. 30 for a similar feedback during 

pedogenesis).  

Enhanced plant P acquisition under eCO2 effectively alleviated P limitation in two CNP models 

(ELM-CTC and ELM-ECA) (Fig. 3e). In both, eCO2 increased the liberation of P from the 

secondary pool, as higher plant P demand and uptake diminished the labile P pool, in turn 

causing higher desorption rates. P desorption is thus only indirectly, and not mechanistically, 

enhanced by plants in these models. Biochemical mineralization of P under eCO2 responded 

positively in both of the models, but added only notably to additional P acquisition in ELM-

CTC over the course of the simulation (Fig. 3e). Although three CNP models simulated higher 

fine root investments (ELM-ECA, GDAY, and ORCHIDEE), the actual P uptake return per fine 

root increment was marginal and or came only into effect in the long-term , thus contributing 

little over our simulation period (Extended Data Fig. 6).  

Observations document ample N cycling in the system, e.g., high leaf N contents, indicative 

δ15N values, high rates of N oxide emissions, and low N retention31,32, and thereby suggest that 

plant growth is not directly affected by N availability. In summary, the model ensemble 

encapsulates a range of plausible hypotheses and represents a potential range of biomass C 

responses to eCO2 under low soil P availability. At the one end, CABLE assumes no plant-

enabled mechanisms to acquire more P and a limited capacity for plants to use P more 

efficiently, resulting in effectively zero biomass C gain with eCO2. The remaining models 

predicted some biomass C gain with eCO2. Flexible stoichiometry was the key mechanistic 

response to eCO2 in four of these models. ELM-CTC had no change in stoichiometry, but 

nonetheless predicted an increase in biomass C gain under eCO2 based on an increase in plant 

P acquisition as a result of enhanced P mineralization and desorption. 

Our model simulations also highlight the complementary role of N availability at our site. The 

CN models, however, simulate increased nitrogen use efficiency (NUE) and biomass C:N 

ratios, in response to insufficientas N uptake was not sufficient under eCO2 (Extended Data Fig. 

5). Plant N availability may be underestimated in the models, since the plant-available mineral 

N supply was <7 g N m-2 across all models, as opposed to 17.5 g N m-2 observed in the top 10 

cm only (Extended Data Fig. 2). Both CN and CNP versions of GDAY and CABLE-POP were 



included in the model ensemble, allowing the N effect alone to be inferred. These models 

indicated that N limitation occurred, as leaf and biomass C:N were predicted In terms of N 

availability, the simulated N availability may thus be underestimated in the models. These 

results highlight an important gap in our knowledge related to the dynamics of N availability, 

and moreover its potential interaction with P dynamics. Future experiments should help reduce 

the uncertainty surrounding N effects on P limitation(Table 1)., with potential implications for 

regions predominantly or co-limited by N. 

In summary, the model ensemble encapsulates a range of plausible hypotheses and represents a 

potential range of biomass C responses to eCO2 under low soil P availability. The assumption 

of a lacking ability of plants to acquire more soil P and a limited capacity for plants to use P 

more efficiently At the one end, CABLE assumes no plant-enabled mechanisms to acquire more 

P and a limited capacity for plants to use P more efficiently, resulteding in effectively zero 

biomass C gain with eCO2. Conversely, The remaining models predicted some biomass C gain 

with eCO2. Fflexible stoichiometry, in combination with enhanced plant P acquisition, were the  

was the key mechanistic responses leading to biomass gain withto eCO2. in four of these models. 

ELM-CTC had no change in stoichiometry, but nonetheless predicted an increase in biomass C 

gain under eCO2 based on an increase in plant P acquisition as a result of enhanced P 

mineralization and desorption. 

Divergences in the simulated eCO2 response lead us to the following testable hypotheses, and 

call for directed field measurements (Table 1): 

: 

H1. Low soil P availability will strongly constrain future plant biomass growth response to 

eCO2 either by downregulating photosynthesis or limiting plant growth directly, or a 

combination thereof.  

H2. Despite the limited soil P supply, plasticity in vegetation stoichiometry and allocation 

patterns will allow for some biomass growth under eCO2. 

H3. Plants will increase investments in P acquisition to increase P supply and allow biomass 

growth under eCO2 either via greater P interception through fine root production or via greater 

P liberation from P desorption or biochemical mineralization of P.  

These model-based hypotheses deepen a previous analysis of potential N and P limitation on C 

accumulation based on mass balance principle33deepen a previously carried out accounting 

analysis of potential N and P limitation by considering process-based nutrient cycles in dynamic 



ecosystem models29. Furthermore, the set of model-based hypotheseswe add to a model 

intercomparison carried out in advance of the EucFACE experiment34 experiment32 by 

extending the range of plant P feedbacks considered across CNP models. This work highlighted 

H1: two stoichiometrically constrained CNP models predicted that strong P limitation will 

curtail the growth response to eCO2 in Australia.. Consistent with this hypothesis, aboveground 

growth has not increased with eCO2 in that experiment over the initial years35. This finding 

underlines the fact that ongoing and future monitoring efforts need to place a strong(er) focus 

on belowground carbon allocation and soil nutrient dynamics in addition to photosynthetic 

ratescanopy-scale photosynthesis and aboveground growth dynamics. Additionally, Ra 

dependence on P content and plant stress from drought or nutrient limitationthe model ensemble 

does not yet consider the P effect on Ra, while strong links between N and Ra are included. 

Respiration responses under nutrient limitation need further monitoring during experiments to 

further elucidate P effects on the plant C budget and address H1 (Table 1).     

Nutrient fertilization experiments support H2, as plasticity in leaf stoichiometry at the 

individual level, along with plasticity in P resorption efficiency, was observed36. Across the 

Amazon, community-weighted leaf N:P in the field varied from leaf nutrient assessments 

indicate a leaf N:P range of 13 to 42 g N g P-1 (n = 64) (Ref. 32), which place our site, with a 

community mean ratio of 37, closer to the high endat the extreme high end. GDAY thus 

predicted the most plausible increase in the leaf N:P ratio from 34 to 38 (Extended Data Fig. 

87). CABLE-POP and ELM-ECATwo models predicted strong increases in the leaf N:P ratio 

with eCO2 but started off with much lower initial values. The degree to which plasticity in 

stoichiometry and resorption can aid plant PUE under eCO2 in highly P-limited sites that are 

already at the end of the observed spectrum remains to be seen (H2). Monitoring plant tissue 

stoichiometry, including wood with much higher N:P ratios,  combined with assessments of P 

resorption and fresh litter nutrient content in CO2 and nutrient fertilization experiments will 

give an indication of the plasticity of these plant use mechanisms in response to eCO2reduce 

uncertainties (Table 1).  

Based on previous observations8, a number of models assume increased fine root investment, 

as well as higher biochemical P mineralization and P desorption from mineral surfaces, under 

eCO2-induced nutrient limitation (H3). Although simulated, tThe effect of increased fine root 

biomass on nutrient uptake was limited in our simulations and . Likewise, ambient fine root 

allocation fractions were highly variable among the models, ranging from 5-30% of NPP 

(Extended Data Fig. 4, 6). Both these observations highlight model deficiencies in belowground 



processes37.  that need addressing (Table 1). In regards to the P liberation pathways, tThere is 

evidence that phosphatase activity in litter and soil and the presence of low-molecular-weight 

acids used to liberate P from organic matter or from mineral surfaces increase with plant P 

demand38. This process was predicted by ELM-CTC in our simulations, which also indicated 

showed Amazon-wide that “[with] enhanced phosphatase production, productivity in the highly 

P-limited areas can be sustained under elevated CO2 conditions"39. In situ observations at the 

AmazonFACE site and elsewhere indicate that pPlants invest in P liberation and acquisition, 

but if these mechanisms can be upregulated enhance P gain under eCO2 and over what time 

frame this process may occurs remain open questions. Quantification of such a fluxes response 

is lacking, as are estimates of the associated plant C costs to acquire P via these and other 

mechanisms, such as mycorrhizal symbiosis15,40. (Table 1). Monitoring of belowground fine 

root dynamics during manipulation experiments needs to include fine root activity in surface 

litter, which is a common plant mechanism in P-impoverished ecosystems in the Amazon but 

is not yet quantified nor considered in models. The P gain and C cost for P acquisition different 

mechanisms, as well as the  associated plant-soil-microbial interactions, needcould to be 

assessed by analyses of soil, microbial and root nutrition, and  via novel techniques investigating 

enzyme activityand , labile C dynamics41 (low-molecular weight acids), or other approaches 

allowing the associated plant-soil-microbial interactions to be inferred. Monitoring of 

belowground fine root dynamics during manipulation experiments needs to include the fine root 

activity in surface litter layer, which is a commonly explored by fine roots in  plant mechanism 

in P-impoverished ecosystems in the Amazon,  but is not yet quantified nor considered in 

models (Table 1). 

Conclusion 

Previous model projections suggest a sustained fertilization effect of CO2 on the Amazon C 

sink but have not considered feedbacks from low soil P availability5,6. Our study demonstrates 

that, based on the current generation of CNP models, the omission of P feedbacks is highly 

likely to cause an overestimation of the Amazon rainforest’s capacity to sequester atmospheric 

CO2. Considering P limitation on the CO2 fertilization effect in future predictions may indicate 

that the forest is less resilient to higher temperatures and changing rainfall patterns than 

previously thought6,42. Periods of water deficit may contribute to the eCO2 fertilization effect 

on productivity due to its water saving effect34, or due to alterations of decomposition processes. 

Our study site experienced years with significantly less than average precipitation, e.g. in 2000 

and 2009, however, in our simulations this increased the positive response of GPP and NPP to 



eCO2 only marginally (Extended Data Figure 8 and 9). Models lack the appropriate sensitivity 

of plant responses to changes in water availability, and even more so when precipitation sums 

are that high43. Interactions of water and P availability and their consequences on the CO2 

fertilization effect remain uncertain44 and is an area where field measurements will allow us to 

better constrain model responses (Table 1). 

Although P is likely to reduce the biomass C sink response to CO2 in regions with low plant-

available P supply, our results suggest that plasticity in plant P use and plant P acquisition 

mechanisms, may at least partially alleviate P limitation under eCO2 and enable CO2 

fertilization of biomass growth.may enable CO2 fertilization of biomass growth, even in regions 

with a very low plant-available P supply. The spread of responses across our CNP model 

ensemblemodel ensemble may be interpreted as representing a range of possible tropical plant 

functional strategies and growth in responses to low P availability under eCO2. Responses to 

eCO2 are likely expected to be species-specific, as werewas found for plant growth responses 

to low P supplies in another tropical region18. The ecosystem-scale response to P limitation 

under eCO2 will thus depend on the relative contributions of the various P acquisition and P use 

strategies across individuals, their interactions and to what extent these processes can be 

upregulated under eCO2. All of which ultimately need to be described and represented in a 

single model framework in order to accurately predict the Amazon rainforest’s response to 

future climate change.  

AmazonFACE has the unique opportunity to experimentally address these key areas of 

uncertainty with suitable measurements, not only by integrating the proposed measurements 

across seasons and at the ecosystem scale (summary in Table 1) but also by assessing species-

specific responses to eCO2 in relation to trait expression. Amazon-wide expression of plant 

functional strategies may then be inferred by applying the mechanistic interplay between trait 

expression and edaphic conditions. The key to predicting the future of the world’s largest 

tropical forest under eCO2 thus lies in obtaining experimental data on, and subsequently 

modelling, different plant P acquisition and use strategies, as well as their interactions in a 

competing plant community.  
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Table 1. List of key processes and variables that need to be constrained by observational 

estimates in order reduce uncertainty in P cycle control on the eCO2 effect ecosystem models.  

(H1) Plant C budget Measurements needed 

  

Canopy scale C 

assimilation 
 Seasonal dynamics of leaf area and photosynthetic capacity 

 Photosynthetic acclimation 

Plant tissue respiration  Control of drought stress, nutrient limitation and P content 

 Wood and root respiration  

Biomass growth  Belowground biomass compartments 

 Long term growth rates 

  

(H2) Plant P use   

  

Plant tissue C:P and N:P 

stoichiometry 
 Plasticity versus adaptability to (experimental) change in 

eCO2 or nutrient availability  

 Functionality of tissue P  

 Wood P content /stoichiometry 

Plant tissue P resorption  P content in live tissue and fresh litter 

 Plasticity versus adaptability to (experimental) change in 

eCO2 or nutrient availability 

  

(H3) Plant P acquisition   

  

P desorption due to plant 

exudation 
 Interactions with microorganisms (directly or via 

microorganisms) 

 Cost of exudation vs. plant P uptake 

P acquisition due to fine 

root production 
 Surface litter activity 

 Fine root allocation fractions  

 Fine root productivity vs. plant P uptake 

Biochemical P 

mineralization (via 

phosphatase) 

 Phosphatase activity and relation to P mineralization 

 Plant production of phosphatase vs. plant-induced 

production by microorganisms 

 Cost of phosphatase production vs. plant P acquisition 

  

Other interactions  

  

Plant N availability  Ecosystem N budget 

 Symbiotic and free-living N fixation 

 Control of N availability on P acquisition 

Plant water availability  Control on P mineralization and transport dynamics 

 Control on of water and P limitation on eCO2 effect 

 

 



METHODS  395 

Site description 396 

Model simulations were conducted at the AmazonFACE experimental site in Central Amazonia 397 

(2º35’39” S, 60º12’29’’ W). AmazonFACE is an integrated model-experiment project that aims 398 

to assess the effects of high CO2 concentrations on the ecology and resilience of the Amazon 399 

rainforest (http://amazon-face.org/). The experiment is currently being established and is situated 400 

in a terra firme forest on a plateau characterized by highly weathered, deep, clay sediment soil 401 

(with a clay fraction of 76%), classified as a Geric Ferrasol1. The site and the surrounding area 402 

have been subjected to various long-term measurement activities2–6, coordinated by the Large-403 

Scale Biosphere-Atmosphere Program (LBA; http://lba2.inpa.gov.br/) in Amazonia, including the 404 

“K34” eddy covariance flux tower7, located approximately 2 km away from AmazonFACE site. 405 

Mean annual precipitation at K34 from January 2000 to December 2015 was 2600 mm yr-1, and 406 

the mean temperature was 26°C. 407 

Model descriptions 408 

Fourteen ecosystem models with contrasting representations of ecosystem functioning and nutrient 409 

cycling were applied to the experiment (Extended Data Table 3). C cycle dynamics without 410 

nutrient cycle feedbacks are represented in the “C-only” models (InLand, ED2 and ELM-411 

FATES)8–10; C and N dynamics are represented in the “CN” models (LPJ-GUESS, O-CN, JULES, 412 

CABLE-POP(CN) and GDAY(CN))11–13; and C, N, and P dynamics are represented in the “CNP” 413 

models (ELM-ECA, ELM-CTC, CABLE, CABLE-POP, ORCHIDEE, and GDAY)14–19. Four of 414 

the models are dynamic vegetation models: CABLE-POP considers dynamic establishment and 415 

mortality with fixed plant functional type (PFT) composition, while LPJ-GUESS, ED2 and ELM-416 

FATES also consider dynamic PFT composition. Photosynthesis is based on formulations by 417 

Farquahar20 or derivations thereof in all of the models21,22 (Extended Data Table 3).  418 

Prognostic C allocation fractions are based on functional relationships among tissues, e.g., fixed 419 

ratios between sapwood and leaf area in CABLE-POP, LPJ-GUESS, ED2, GDAY, ORCHIDEE, 420 

O-CN, JULES, and ELM-FATES, and on resource dependence, e.g., higher root allocation under 421 

water or nutrient stress in LPJ-GUESS, ELM-ECA, GDAY, O-CN, ORCHIDEE, ED2 and ELM-422 

FATES. C allocation fractions are fixed in InLand and CABLE.  423 



Nutrient limitation is determined by the difference between demand and supply (via root uptake 424 

and resorption) of N or P, with the most limiting nutrient determining the degree of limitation. The 425 

photosynthetic parameters Vcmax and/or Jmax are controlled by leaf N in all CN and CNP models 426 

except JULES, while leaf P additionally downregulates gross primary productivity (GPP) in all 427 

CNP models except ORCHIDEE. N controls net primary productivity (NPP) in some of the 428 

models, i.e., O-CN, JULES, ORCHIDEE, CABLE and CABLE-POP, and additionally 429 

downregulates growth efficiency (GPP/LAI) in CABLE and CABLE-POP.  430 

Maintenance respiration is dependent on temperature in all models and is additionally controlled 431 

by tissue N content in all of the models that consider the N cycle with the exception of GDAY, 432 

where Ra is a fixed fraction of GPP. Plant tissue stoichiometry in the CN and CNP models is either 433 

fixed (ELM-CTC and JULES) or varies within or without bounds (all other models). The nutrient 434 

resorption rates in the CN and CNP models are always fixed fractions of the nutrient content in 435 

leaves and roots. Competition for nutrients between plant uptake and decomposition processes is 436 

handled differently. Nutritional demands for the decomposition process (representing microbial 437 

demands) are met entirely first in some models (CABLE, O-CN, ORCHIDEE, and GDAY), are 438 

based on relative demands between decomposition and plant uptake (ELM-CTC), or are 439 

determined via a multiple consumer approach including adsorption to mineral surfaces (ELM-440 

ECA). Nutrient uptake is a function of plant demand and nutrient availability in all models and is 441 

further controlled by a measure of root mass in LPJ-GUESS, GDAY, ORCHIDEE, and O-CN. 442 

Soil organic matter (SOM) decomposition is limited by soil mineral N availability in most CN and 443 

CNP models (except O-CN and ORCHIDEE) and additionally by labile P availability in most CNP 444 

models (except GDAY and ORCHIDEE). P in SOM can also be mineralized via phosphatase, 445 

decoupling the P cycle from the C and N cycle, termed biochemical P mineralization in the P 446 

models. Biochemical P mineralization is a function of the slow SOM pool turnover in CABLE, 447 

CABLE-POP and GDAY, as well as substrate availability in ORCHIDEE, ELM-ECA and ELM-448 

CTC. Biochemical P mineralization is upregulated with higher plant P stress, representing higher 449 

phosphate production (not specified if by plants or microbes), in ELM-ECA, ELM-CTC and 450 

ORCHIDEE. 451 

N inputs originate from N deposition (prescribed by model protocol) and N fixation (prescribed 452 

individually). N fixation is either fixed, calculated empirically as a fraction of NPP or 453 



evapotranspiration (GDAY, JULES, ORCHIDEE, ALM-CTC, LPJ-GUESS, CABLE, and 454 

CABLE-POP), or based on an optimization scheme (ELM-ECA and O-CN). P inputs originate 455 

from weathering (prescribed individually) and deposition (prescribed by model protocol). Release 456 

of P from rock weathering is a fixed, soil type-specific rate in CABLE and CABLE-POP, a 457 

function of the parent P pool in ELM-ECA, ELM-CTC, and GDAY or described as a function of 458 

lithology, runoff and air temperature in ORCHIDEE. N and P losses occur from leaching, modelled 459 

as a function of the size of the labile P and mineral N pool, respectively, and additionally controlled 460 

by runoff in ELM-ECA and ORCHIDEE. 461 

The number of inorganic P pools and their precise definition varies among the models. We consider 462 

two inorganic P pools relevant for our analysis: the labile P pool and the secondary P pool. The 463 

labile P pool encompasses plant-available inorganic P, represented in most CNP models by two 464 

separate pools connected by sorption dynamics and effectively in equilibrium (described by 465 

Langmuir dynamics in most models and a linear approach in ORCHIDEE). The labile P pools 466 

follow different nomenclature in the models but are comparable in functionality: the P in soil 467 

solution (called labile or solution P) is readily available to plants in the model time step, while the 468 

non-dissolved P (referred to as sorbed or sorbed labile P pool) can become available to plants on 469 

yearly to decadal time scales due to desorption. The secondary P pool represents P strongly sorbed 470 

by minerals, which is largely unavailable but may enter the labile P pool on centennial time scales 471 

and, depending on model assumptions, may be driven by plant P stress. 472 

Model simulations 473 

Models were forced with 16 years of observed local meteorology (2000 to 2015) from the K34 474 

flux tower7. Meteorological data from July 1999 to December 2015 of near-surface air 475 

temperature, rainfall, downward shortwave radiation, downward longwave radiation, vapour 476 

pressure deficit, surface pressure, relative humidity, and wind speed were available for model 477 

input. Specific humidity was calculated based on observed relative humidity and surface pressure. 478 

All data time series were subject to quality control (i.e., removal of outliers) and gap filling using 479 

the variables’ climatological mean. Precipitation data gaps were filled from a nearby weather 480 

station of the Tropical Rainfall Measuring Mission network.  481 

Simulations are initialized with a spin-up routine resulting in equilibrium conditions of C stocks 482 

(and N, and P, if applicable) representing the year 1850. The 16-year meteorological time series 483 



are continuously repeated throughout the whole spin-up, during the transient phase (1851 to 1998), 484 

and during our model-experiment phase (1999 to 2013), representative of a 15-year long 485 

AmazonFACE experiment. Global datasets are used as inputs for atmospheric CO2
23,24, N 486 

deposition25,26, and P deposition27. Atmospheric CO2, N and P deposition levels were set to 284.7 487 

ppm, 1.43 kg N ha-1 yr-1, and 0.144 kg P ha-1 yr-1 in 1850, respectively, and follow historical 488 

changes during the transient and model experiment phase.  489 

Other site parameters used for parameterization of the models are derived from in situ 490 

measurements and include rooting and soil depth (set to rooting depth), soil hydraulic parameters, 491 

specific leaf area (SLA), and soil texture (Extended Data Table 2). Soil hydraulic parameters are 492 

derived from pedotransfer functions28 and site-specific measurements of soil properties29. Soil 493 

hydraulic parameters were included in models that accounted for this functionality to allow for a 494 

better representation of soil water dynamics in tropical soils (Extended Data Table 2). 495 

Two model experiments are performed over the 15-year long experiment phase by each model to 496 

assess the effect of elevated CO2: 1) the ambient run (AMB) and 2) the elevated CO2 run (ELE). 497 

In the AMB run, the atmospheric CO2 is set to ambient levels and is employed for model evaluation 498 

against in situ measurements, including C fluxes from the K34 flux tower. The ELE run represents 499 

the planned AmazonFACE experiment with a step change increase of 200 ppm at the start of the 500 

model experiment and continuous tracking of CO2 levels in AMB plus 200 ppm thereafter. Model 501 

outputs are analysed in biological years of seasonality (July to June), and the difference between 502 

the elevated CO2 run and the control run are used to infer the model-based CO2 effect.   503 

Model output analysis 504 

The analysis of the modelled output includes the evaluation of modelled ambient conditions 505 

relative to in situ observations and hypotheses-based analyses of the modelled CO2 responses. We 506 

employ a structural analysis of the model simulations30–32, splitting model outcomes into the 507 

underlying processes to identify crucial model assumptions determining diverging predictions for 508 

the FACE experiment. We focus on the simulated increase in biomass C due to eCO2 and the 509 

underlying nutrient control thereon.  510 

Biomass C dynamics are a result of primary productivity, C allocation and turnover. We first 511 

analyse the effect of eCO2 on gross primary productivity (GPP), net primary productivity (NPP), 512 

autotrophic respiration (Ra), and the resulting plant carbon use efficiency (CUE), where CUE = 513 



NPP/GPP. We then assess changes in NPP allocation fractions to biomass compartments of wood, 514 

fine roots and leaves, and the resulting effect on biomass C turnover in response to eCO2. Specific 515 

tissue turnover rates are fixed in all models, but overall biomass C turnover changes as a result of 516 

changing C allocation to tissue compartments. Turnover rates of biomass C pools are calculated 517 

as the fraction of total litter fall per total biomass pool size (Extended Data Table 4). 518 

Plant nutrient cycle feedbacks to eCO2 are assessed by splitting the responses into plant N uptake 519 

(NUP) and plant N use efficiency (NUE), where NUE = NPP/NUP, and similarly into P uptake 520 

(PUP) and P use efficiency (PUE), where PUE = NPP/PUP. The responses of NUE and PUE to 521 

eCO2 are further split into changes in tissue C allocation (differing in C:N and N:P ratios) and 522 

changes in tissue stoichiometry (flexible C:N and N:P ratios). Soil nutrient cycle feedbacks to 523 

eCO2 are determined by separating eCO2 responses in N and P mineralization rates (N and P 524 

mineralization from microbial decomposition of SOM and biochemical P mineralization of organic 525 

P via phosphatase) and the balance of ecosystem N and P inputs (N fixation, N and P deposition, 526 

and P weathering) and losses (N and P leaching).  527 

 528 

DATA AVAILABILITY STATEMENT 529 

The model driving data and model outputs will be made publicly available on figshare under 530 

https://figshare.com/ once the manuscript is accepted. Site data used for model evaluation and 531 

calibration are available in the Supplementary Information. All other data are available from the 532 

corresponding author upon reasonable request.  533 
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Figure 1: The predicted effect of eCO2 on biomass C, productivity
and biomass compartments, averaged over C (grey), CN (blue) and CNP
(green) model groups. a, The final absolute response of biomass growth,
calculated as the mean annual response over the 15 years of eCO2 per model
group in g C m−2 yr−1. b, Initial relative responses of productivity (GPP
and NPP), and CUE (=NPP/GPP) in %, calculated as the mean response
in the first year. c, Final relative responses of productivity and CUE, as well
as total leaf, fine root and wood C, calculated as the mean response after
15 years (mean of 13th to 17th year), all in %. Responses to eCO2 are the
differences between the elevated and ambient model run, shown as mean and
standard deviation per model group, and individual model results as dots.
See also corresponding Extended Data Figure 1 and 3.
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Figure 2: Strength of phosphorus feedbacks in controlling the
biomass C response to eCO2 for the six CNP models. Ecosystem pro-
cesses are highlighted that depend (or not depend) on the P cycle, for which
classes (none, intermediate, high) indicate the degree to which the consid-
ered P feedback causes a response of biomass C to eCO2 in our simulations.
P limitation causes strong or intermediate downregulation of photosynthesis
with eCO2 across all models. Maintenance respiration, leaf turnover and P
resorption are not responsive to P feedbacks in any of the models. Leaf N:P
responds to eCO2 in most models, but is fixed in ELM-CTC, narrowly bound
in CABLE, and at its maximum in ORCHIDEE. P limitation causes direct
downregulation of biomass growth in CABLE, CABLE-POP, ELM-ECA and
ORCHIDEE. Allocation shifts towards roots to alleviate P limitation is con-
sidered in GDAY, ELM-ECA and ORCHIDEE. Desorption of P from mineral
surfaces is only considered in ELM-ECA and ELM-CTC, and biochemical P
mineralization is considered in many models, but only effectively responsive
in ELM-CTC.
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Figure 3: Key responses of biomass C gain, stoichiometry, allocation,
and P dynamics to eCO2 for the CNP models, contrasted are positive
(blue) from negative (red) responses. a, Mean annual change in standing
leaf, fine root and wood C over 15 years, increasing across models from left
to right in g C m−2 yr−1. b, The mean change in C allocation for fine roots
and wood in %. c, Mean change in tissue stoichiometry in absolute terms
in g C g P−1 and change in P use efficiency over 15 years in g C g P−1

yr−1. d, Mean change in ecosystem P input and output (leaching) fluxes
in g P m−2 yr−1 and mean change in final P stock in biomass, organic soil,
mineral soil and total ecosystem in g P m−2. e, Mean change in plant P
acquisition processes, including change in net P mineralization, biochemical
P mineralization and P uptake in g P m−2 yr−1 and secondary and labile
P pools in g P m−2. For both, d and e, P flux changes are differences of
cumulative fluxes after 15 years and P pool changes are differences in pools
after 15 years.
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