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Abstract

We investigate the dynamics of a closed-loop supply chain with first-order
auto-regressive (AR(1)) demand and return processes. We assume these two
processes are cross-correlated. The remanufacturing process is subject to
a random triage yield. Remanufactured products are considered as-good-
as-new and used to partially satisfy market demand; newly manufactured
products make up the remainder. We derive the optimal linear policy in our
closed-loop supply chain setting to minimise the manufacturer’s inventory
costs. We show that the lead-time paradox can emerge in many cases. In
particular, the auto- and cross-correlation parameters and variances of the
error terms in the demand and the returns, as well as the remanufacturing
lead time, all influence the existence of the lead-time paradox. Finally, we
propose managerial recommendations for manufacturers.
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1. Introduction

Collection and recycling systems for post-consumer products have been
established in many countries. For example, many countries have achieved
high collection and recycling rates for post-consumer polyethylene terephtha-
late (PET) bottles. (Welle, 2011), and various PET bottle-to-bottle recycling
technologies have been developed (Coelho et al., 2011; Welle, 2011). For in-
stance, in Japan, the collection and recycling rate of PET bottles reached
86.9% in 2015 (CPBR, 2015), and bottle-to-bottle mechanical recycling tech-
nology is used to manufacture as-good-as-new PET bottles from only reused
resin (Suntory Group, 2013). This movement is mainly motivated by the
sustainability ethic and public concern rather than an economic perspec-
tive (Welle, 2011). Understanding the dynamics of closed-loop supply chains
(CLSC) can help improve their operational performance and economic via-
bility. However, due to the natural complexity of CLSCs, their dynamical
behaviour is not well understood (Akçalı and Çetinkaya, 2011).

It is known that in traditional forward supply chains, reducing the lead
time often reduces the bullwhip effect and almost always reduces the variance
of the net stock levels (Hosoda and Disney, 2006). However, some authors
have noticed that in CLSCs increasing the remanufacturing lead time some-
times decreases the cost. This phenomena is called the lead-time paradox of
CLSCs. This paradox was first reported by van der Laan et al. (1999) and
was investigated further by Inderfurth and van der Laan (2001). Hosoda
et al. (2015) also found a lead-time paradox in a CLSC, albeit in a different
setting. This paradox may have a significant impact on the operational de-
sign of the reverse logistics network. The lead-time paradox might lead us to
believe, counterintuitively, that importing remanufactured PET bottles from
geographically remote countries (with long lead times) is more economic than
sourcing them locally (with short lead times). The purpose of this paper is
to analyse a CLSC setting that is general enough to resolve the question of
the presence of the lead-time paradox.

The structure of our paper is as follows. In Section 2, we review literature
related to our CLSC model. In Section 3 we develop our model and derive
some useful properties in our setting. In Section 4, we present the results of
a numerical analysis, confirming our theoretical contributions. Conclusions,
managerial insights and potential future research directions are presented in
Section 5.
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2. Literature review and contribution

The bullwhip effect is a well-known phenomenon in traditional supply
chains (Lee et al., 1997). Defined as the increase in the variability of the
production compared to the variability of the demand, it is often measured
as a ratio of the variances (Chen et al., 2000; Disney and Towill, 2003).
Bullwhip is an important measure, as the induced variability increases both
idling and overtime and creates excess capacity requirements. Furthermore, it
can increase inventory requirements in upstream suppliers. Wang and Disney
(2016) provided a recent review of the bullwhip literature, highlighting the
open research questions in the field. Their study also noted the first-order
auto-regressive AR(1) demand that is commonly assumed in the literature
(Lee et al., 2000; Chen et al., 2000; Alwan et al., 2003; Zhang, 2004; Kim and
Ryan, 2003; Hosoda and Disney, 2006, for example) as it is representative of
many real demand patterns (Lee et al., 2000; Hosoda et al., 2008; Ali et al.,
2017).

Recently, the vector auto-regressive (VAR) demand process has gained
attention due to its ability to model multi-product situations. Originally,
the VAR model was established to investigate multiple time series data sets
(see Box and Tiao, 1977; Tiao and Box, 1981, for example). To the best of
our knowledge, Kurata et al. (2007) was the first to use the VAR model to
analyse a supply chain management problem. Kurata et al. (2007) investi-
gated the impact of risk pooling and bundling in a supply chain consisting
of a supplier and two manufacturers. Chaharsooghi and Sadeghi (2008) used
the VAR demand process for two products in a two-level supply chain to
investigate the bullwhip effect. This work was further extended by Sadeghi
(2015), who investigated the bullwhip effect in a two-product, two-level sup-
ply chain. Here, the VAR demand was forecasted using the exponential
smoothing method.

Ratanachote (2011) studied a VAR model of a distribution network with
n warehouses and found that not only is there a square root law for inventory
costs when the order-up-to (OUT) policy is used to generate replenishment
orders, but there is also a square root law for capacity (bullwhip) costs.
Boute et al. (2013) developed an uncorrelated noise VAR demand model
to study a multi-product supply chain. General stability conditions were
obtained. Raghunathan et al. (2017) considered an n product VAR(1) model
with contemporaneous correlation in the forecast errors. They found that a
super bullwhip effect exists under demand pooling. That is, pooling can
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actually amplify rather than mitigate order variance.
Although the VAR model is gaining popularity in studies of forward sup-

ply chains, its application to a CLSC setting does not seem to have been
considered before. Akçalı and Çetinkaya (2011) argued that correlation be-
tween demands and returns is a natural assumption, as some portion of the
demand will eventually form the returns. However, they noted that simple
demand and return processes are often adopted to avoid as much modelling
complexity as possible. Hosoda et al. (2015) established a cross-correlated de-
mand and return model in a CLSC setting, but both the demand and returns
were independently and identically distributed (i.i.d.) random variables.

The existence of the lead-time paradox was reported in van der Laan et al.
(1999), Inderfurth and van der Laan (2001) and Hosoda et al. (2015). Van der
Laan et al. (1999) adopted a continuous review (s,Q) policy for the manufac-
turer and a push/pull policy for the remanufacturer to investigate the impact
of the remanufacturer’s policy and the lead times on system-wide cost. Their
numerical analysis showed that system-wide cost decreases monotonically in
the remanufacturing lead time. This counterintuitive finding occurred when
the remanufacturing lead time was less than the manufacturing lead time.
Using an (s,Q) continuous review policy for the manufacturer and the push
policy for the remanufacturer, Inderfurth and van der Laan (2001) argued
that cost is convex in the remanufacturing lead time. Inderfurth and van der
Laan (2001) proposed that the remanufacturing lead time should be consid-
ered a decision variable. Based on a numerical analysis, they concluded that
depending on the cost parameters, the optimal remanufacturing lead time
should be equal to, or longer than, the manufacturing lead time.

Hosoda et al. (2015) studied the periodic review OUT policy with cross-
correlated i.i.d. demand and return processes using the standard deviation of
the net stock levels as an indicator of the inventory cost. They concluded that
when the remanufacturing lead time is shorter than the manufacturing lead
time, the lead-time paradox emerges in the inventory cost. The inventory
cost decreases monotonically as the remanufacturing lead time increases up
to the manufacturing lead time. Once these two lead times are equal, the
remanufacturing lead time no longer affects the inventory cost.

There is also evidence that, contrary to the lead-time paradox, shorter
remanufacturing lead times result in lower costs in CLSCs. Using a control
theory approach, Zhou and Disney (2006) investigated a CLSC model and
found that shorter remanufacturing lead time reduces net stock variance.
Further, the greater the proportion of returns, the smoother the produc-
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tion of new products. Based on a systematic literature review and some
experimental analysis, Cannella et al. (2016) concluded that shorter reman-
ufacturing lead times mitigate the bullwhip effect. Furthermore, both Zhou
and Disney (2006) and Cannella et al. (2016) concluded that a larger return
rate can reduce the bullwhip effect and the inventory variance.

We establish an optimal linear policy in our CLSC setting to minimise
inventory costs. We model a proportional random yield in the triage process
of the auto- and cross-correlated returns. Our modelling setting is general
enough to capture instances when the lead-time paradox exists, supporting
van der Laan et al. (1999), Inderfurth and van der Laan (2001), and Hosoda
et al. (2015), and when the lead-time paradox does not exist, supporting Zhou
and Disney (2006) and Cannella et al. (2016). Our theoretical contribution
effectively integrates the two schools of thought on the lead-time paradox,
thus representing a unified theory for CLSCs. We reveal that the lead-time
paradox can exist in the bullwhip effect, the capacity cost and the inventory
cost1.

3. A closed-loop supply chain model

Our CLSC model is a periodic review backlog system with constant lead
times facing stochastic demand and return processes. Figure 1 is a schematic
of our CLSC, which consists of a manufacturer and a remanufacturer. As
all studies on the lead-time paradox assume a continuous review system (i.e.
van der Laan et al., 1999; Inderfurth and van der Laan, 2001), except Hosoda
et al. (2015), further study of periodic review policy models seems prudent
to determine the extent of the lead-time paradox in this setting. This may
be especially true as many supply chains operate on a discrete time basis;
see Potter and Disney (2010) and Disney et al. (2013). Unlimited capacity is
assumed in both the manufacturing and remanufacturing processes, enabling
us to ensure mathematical tractability of our CLSC model. This assumption
also reflects that capacity for PET bottle-to-bottle recycling is readily avail-
able in many countries (Welle, 2011). The triage process at the remanufac-
turer is subject to a random yield. The manufacturer holds a finished goods

1Even if the lead-time paradox exists, factors outside our model (such as in-transit in-
ventory) might be more significant. Therefore, lengthening the remanufacturing lead time
to enjoy the lead-time paradox requires careful consideration, as there may be unintended
consequences.
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Figure 1: Schematic of the model

inventory and incurs an inventory holding or a backlog cost in each period.
To minimise these linear convex inventory costs, the manufacturer exploits
the OUT policy with a minimum mean square error (MMSE) forecast. This
is known to be the optimal linear replenishment policy for our inventory cost
function (Vassian, 1955; Hosoda and Disney, 2006; Hedenstierna and Disney,
2016).

The remanufacturer uses a push policy, as assumed by Inderfurth and
van der Laan (2001). The push policy assumption for the remanufacturer
fits well with the ethics of sustainability. Furthermore, the demand for recy-
cled plastics is stable, despite the recent volatility in oil prices (PRE, 2016a),
and it is reasonable to assume that a remanufacturer is motivated to use the
push policy in order to quickly recover any costs associated with collecting
and processing returns and avoid the costs of holding returns as inventory.
The remanufactured but as-good-as new products are shipped to the man-
ufacturer to partially meet the market demand. Any remaining demand is
met by producing new products. The remanufacturing lead time, Tr, includes
the transport time to the manufacturer, which might be influenced by the
geographic size of the market.

We assume that the manufacturer has knowledge, via an information shar-
ing strategy, of the return process and the yield rate and uses this knowledge
to determine his production order quantity to minimise his inventory costs.
This cooperative approach in the CLSC reflects the growing understanding
that to enhance collection rates and recycling rates industry must work to-
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Figure 2: Sequence of events at the manufacturer

gether and share responsibility to create a sustainable society (Welle, 2011;
CPBR, 2012; PRE, 2016b). The precise mechanism for information sharing
we leave undefined; it could be enabled by ERP systems, shared files on the
cloud or direct communication via telephone, fax or email.

3.1. Sequence of events

The sequence of events for the manufacturer is shown in Fig. 2. At
the beginning of time period t, the manufacturer receives both the newly
produced items from its production line and the serviceable items from the
remanufacturer. The manufacturer then observes and satisfies the market
demand. Unmet demand is backlogged. Finally, at the end of time period t,
the manufacturer places a production order. This leads to the following net
stock balance equation for the manufacturer,

NS t = NS t−1 + ξt−(Tr+1)Rt−(Tr+1) + Pt−(Tp+1) −Dt. (1)

Here, NS t is the net stock at time t, ξt−(Tr+1) is the yield rate realised at
time t−(Tr+1), Tr is the remanufacturing lead time, Rt−(Tr+1) is the returns
received by the remanufacturer at time t− (Tr + 1), ξt−(Tr+1)Rt−(Tr+1) is the
remanufactured products received by the manufacturer at t, Pt−(Tp+1) is the
production of new items completed after a production lead time of Tp and
received by the manufacturer at t and Dt is the demand over time period t.

3.2. Demand and return

We adopt the vector auto-regressive process of the first order, VAR(1), to
represent the case when both demand and returns are auto-correlated over
time. The returns are cross-correlated with the demand but not vice versa;
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this is a natural assumption, as products cannot be returned before demand
has occurred. The demand and the return processes are defined as:

Dt = µd + ϕd(Dt−1 − µd) + εd,t (2)

Rt = µr + ϕr(Rt−1 − µr) + θr(Dt−1 − µd) + εr,t, (3)

where {µd, µr} are the mean (average) demand and returns and {εd,t, εr,t} are
i.i.d. random variables with zero means and standard deviations of {σd, σr}.
We assume that εd,t and εr,t are independent of each other. {ϕd, ϕr} are
the auto-correlation coefficients for the demand and returns, and θr is the
cross-correlation coefficient between demand in the previous period and the
current returns. It is assumed that the manufacturer is aware of (3) in
addition to (2) via an information sharing mechanism. Stability requires
|ϕd| < 1 and |ϕr| < 1. Interestingly, stability is independent of θr (see Boute
et al., 2013, for more information). While our analytical results hold for all
stable systems, we assume that ϕd ≥ 0 and ϕr ≥ 0 when we conduct our
numerical investigations. This reflects that most real demand processes have
positive auto-regressive parameters (Lee et al., 2000; Hosoda et al., 2008; Ali
et al., 2017).

Box et al. (2008) show the variance of the first order auto-regressive de-
mand process is given by

V [D] =
σ2
d

1− ϕ2
d

.

A simple way to obtain this variance is shown in Appendix 1. The demand
variance is finite when |ϕd| < 1, infinite at |ϕd| = 1, convex between these two
points, and minimal at ϕd = 0. The variance of the auto- and cross-correlated
returns is given by

V [R] =
θ2r(1 + ϕdϕr)V [D] + (1− ϕdϕr)σ

2
r

(1− ϕdϕr)(1− ϕ2
r)

. (4)

Details of the process to obtain (4) are shown in Appendix 1. For a finite
variance of the returns, |ϕr| < 1 and |ϕd| < 1 are required. When |ϕd| = 1 or
|ϕr| = 1, the return variance, V [R] → ∞, as expected in an unstable system.
Furthermore, V [R] is strictly increasing in θ2r .

Our demand and return model allows Rt and Dt−n (n = 1, 2, 3, . . . ) to be
correlated. The correlation between Rt and Dt−n, ρn is given by

ρn =
COV n√

V [D]
√
V [R]

,
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where COV 0 = ϕdθrV [D]/(1− ϕdϕr), COV 1 = ϕrCOV 0 + θrV [D], and

COV n≥2 =



ϕn
rCOV 0 + θr

ϕn
d−ϕn

r

ϕd−ϕr
V [D], ϕd ̸= ϕr

ϕn
rCOV 0 + nθrϕ

n−1
d V [D], ϕd = ϕr ̸= 0

θrϕ
n−1
r V [D], ϕd = 0 ∧ ϕr ̸= 0

θrϕ
n−1
d V [D], ϕd ̸= 0 ∧ ϕr = 0

0, ϕd = ϕr = 0.

Details of the process to obtain these covariances are shown in Appendix 1.
When the cross-correlation coefficient θr = 0, there is no correlation be-

tween Rt and Dt−n (i.e. ρn = 0). If Dt−n is large (small) and is frequently
followed by large (small) returns, Rt, the value of ρn is likely to be positive. If
large (small) demand is frequently followed by small (large) returns, the value
of ρn is likely to be negative. Negative correlation may occur when, for exam-
ple, the total available logistic capacity is limited and this limited capacity
is used to deliver finished products and collect returns. In such cases, high
demand requires a larger proportion of the available logistics capacity, and
because the capacity is limited, the capacity available for collecting returns is
reduced. Besides the dynamic information sharing, we also assume that both
parties have the capability to identify and share static information—the lead
times and the underlying VAR(1) demand and return process parameters—
and that the structure of the demand and return processes are unchanging
over time.

3.3. Random yields in the triage process

A random yield in the remanufacturing process is a natural assumption,
as the returns may exhibit large variation in quality. We use the stochasti-
cally proportional yield model (Henig and Gerchak, 1990) to represent the
random yield at the remanufacturer. The yield at time period t, ξt, is an i.i.d.
stochastic process, and the yield loss is proportional to the return quantity
(i.e. (1−ξt)Rt), as in Hosoda et al. (2015). This proportional model is appro-
priate when the return is subject to material variations (Yano and Lee, 1995).
No correlation is assumed between ξt and Rt, and no specific distribution for
ξt is assumed. The uniform, triangular or beta distribution (amongst others)
could be used to represent ξt. In what follows, Ξ[·] is used to represent the
yield from the triage process. For example, Ξ[Rt] represents the value of ξtRt.
The variance of the production of remanufactured items, V [Ξ[R]], when Rt
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follows a VAR(1) process is

V [Ξ[R]] = V [ξ]µ2
r + (V [ξ] + ξ̄2)V [R], (5)

where V [ξ] is the variance of ξt and ξ̄ is the mean of ξt. The process to obtain
V [Ξ[R]] is presented in Appendix 2. Note that V [Ξ[R]] includes the mean
of the yield, ξ̄, and the mean of the returns, µr, which indicates that our
model is non-linear and therefore cannot be analysed using the traditional
control theory approach (Dejonckheere et al., 2003). Note that in the special
case that the yield rate is constant (i.e. V [ξ] = 0), the system remains linear
(hence its popularity in previous studies), µr disappears from V [Ξ[R]] and
only ξ̄ and V [R] have an impact upon V [Ξ[R]].

3.4. Derivation of CLSC order-up-to policy

Hosoda et al. (2015) showed that regardless of the type of ordering policy
present, the following relationship always holds in our CLSC setting:

NS t+Tp+1 = NS t + (Pt +
∑Tp

i=1
Pt−i)

−(Dt+Tp+1 +
∑Tp

i=1
Dt+i) + PIRt + FPIRt. (6)

Here, the sum of the pipeline inventory of returns (PIRt) and the future
pipeline inventory of returns (FPIRt), PIRt + FPIRt, represents the current
total quantity of on-order remanufactured products at time period t. PIRt

and FPIRt are defined as,

PIRt =

{∑Tr

i=Tr−Tp
Ξ[Rt−i], Tr ≥ Tp∑Tr

i=0 Ξ[Rt−i], Tr < Tp

and

FPIRt =

{
0, Tr ≥ Tp∑Tp−Tr

i=1 Ξ[Rt+i], Tr < Tp.

It is assumed that the value of PIRt is known by the manufacturer at time t,
as its value is already realised and observed by the remanufacturer and the
necessary information is shared with the manufacturer. However, when Tr <
Tp, the value of FPIRt is unknown at time t; it will be revealed sometime in
the future. In this case, the manufacturer must estimate its value. Equation 6
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shows that the variability of the net stock level at time period t + Tp + 1

originates from the uncertain future demands (
∑Tp+1

i=1 Dt+i) and when Tr <

Tp, FPIRt (=
∑Tp−Tr

i=1 Ξ[Rt+i]). This fact suggests that if Tp is constant, then
the uncertainty of NS t+Tp+1 mainly comes from FPIRt and can be reduced

by lengthening Tr, as FPIRt =
∑Tp−Tr

i=1 Ξ[Rt+i].
We assume the following inventory cost function is relevant for the man-

ufacturer:

J = hE[(NS t)
+] + gE[(−NS t)

+],

where h is the per period unit inventory holding cost and g is the per period
unit backlog cost2. If it is reasonable to assume that NS t follows the normal
distribution3, to minimise J , the expected value of NS t+Tp+1 in (6) should
be set to:

E
[
NS t+Tp+1

]
=

√
V [NS ] Φ−1

[
g

g + h

]
:= TNS ,

(Zipkin, 2000), where V [NS ] is the variance of the net stock levels over an
infinite time horizon defined as E[(NS t−E[NS t])

2], and Φ−1[·] is the inverse
of the standard normal cumulative distribution function. TNS represents the
target net stock and if used when setting production targets and inventory
levels were normally distributed, the following expression would give the per
period expected inventory and holding cost at the manufacturer (Zipkin,
2000):

J =
√
V [NS ](g + h)φ

[
Φ−1

[
g

g + h

]]
, (7)

where φ[·] is the standard normal density function. Equation 7 shows that
with optimal safety stocks, the inventory costs are a linear function of the
standard deviation of the net stock levels. Therefore, understanding the
standard deviation of the net stock suffices to understand the inventory costs.

2We do not use b for the backlog cost to avoid confusion when we discuss the case of a
triangular distribution for the triage yield in Section 4.

3The appropriateness of the normality assumption on the net stock levels is discussed
in Appendix 3.
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At time period t, (6) can be rewritten as:

TNS = NS t + (Pt +
∑Tp

i=1
Pt−i)

−
(
E
[
Dt+Tp+1

]
+ E

[∑Tp

i=1
Dt+i

])
+ PIRt + E [FPIRt] . (8)

Rearranging (8) reveals an optimal replenishment OUT policy for minimising
the inventory cost in our CLSC:

Pt = E
[
Dt+Tp+1

]
+ TNS − NS t︸ ︷︷ ︸

Inventory feedback

+E
[∑Tp

i=1
Dt+i

]
−
(∑Tp

i=1
Pt−i + PIRt + E [FPIRt]

)
︸ ︷︷ ︸

WIP feedback

. (9)

Note that (9) is an OUT policy. Another formulation of this OUT policy
can be obtained as follows. Using the net stock balance equation (1), NS t +∑Tp

i=0 Pt−i can be rewritten as:

NS t +
∑Tp

i=0
Pt−i = NS t−1 + Ξ[Rt−(Tr+1)] + Pt−(Tp+1) −Dt︸ ︷︷ ︸

=NS t

+
∑Tp

i=0
Pt−i

= Pt +
∑Tp

i=0
Pt−1−i︸ ︷︷ ︸

=Pt−(Tp+1)+
∑Tp

i=0 Pt−i

+NS t−1 + Ξ[Rt−(Tr+1)]−Dt.

(10)

Rearranging (10) results in:

Pt = Dt − Ξ[Rt−(Tr+1)]

+
(
NS t +

∑Tp

i=0
Pt−i

)
−
(
NS t−1 +

∑Tp

i=0
Pt−1−i

)
. (11)

To eliminate {NS t,NS t−1} and {
∑Tp

i=0 Pt−i,
∑Tp

i=0 Pt−1−i} on the right-hand
side of (11), we again use (6), which results in:

NS t +
∑Tp

i=0
Pt−i =

∑Tp+1

i=1
Dt+i − PIRt − FPIRt + NS t+Tp+1. (12)
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Using expected values of the future variables in (12) and substituting these
into (11) yields:

Pt = Dt − Ξ[Rt−(Tr+1)] +
(
E
[∑Tp+1

i=1
Dt+i

]
− PIRt − E[FPIRt]

)
−
(
E
[∑Tp+1

i=1
Dt−1+i

]
− PIRt−1 − E[FPIRt−1]

)
, (13)

which is yet another form of OUT policy for our CLSC. This form is particu-
larly useful because the net stock level is not required to calculate the order
quantity, thus simplifying our analysis.

Let s be the slack capacity for the production. Let us assume that if the
production order is greater than a regular capacity level of µd − ξ̄µr + s, the
excess production requirements are met by working overtime at a unit cost
of w. If the production requirements do not fill the regular capacity level,
µd − ξ̄µr + s, a unit opportunity loss of u is incurred. Therefore, the per
period capacity cost is given by:

C = uE[((µd − ξ̄µr + s)− Pt)
+] + wE[(Pt − (µd − ξ̄µr + s))+].

Under this cost regime, s is a decision variable to be optimised (in a similar
manner to the newsvendor model). Disney et al. (2012) showed that when
production orders are normally distributed, the optimal slack capacity (above
or below the mean demand, µd, minus the mean serviceable returns, ξ̄µr), is
given by:

s∗ =
√
V [P ] Φ−1

[
w

u+ w

]
,

where V [P ] is the variance of the production order over an infinite time
horizon. When a capacity of µd−ξ̄µr+s∗ and normally distributed production
orders are present then the expected per period capacity cost is:

C =
√
V [P ](u+ w)φ

[
Φ−1

[
w

u+ w

]]
. (14)

Equation 14 shows that the expected capacity cost is linear in the standard
deviation of production orders. This demonstrates that understanding of
the standard deviation of the orders is sufficient to understand capacity cost
behaviour. Appendix 3 investigates the appropriateness of assuming that the
production orders are normally distributed.
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3.5. Order-up-to policy in a CLSC with minimum mean square error forecasts
of demand and returns

As shown by Box et al. (2008), conditional expectation provides an MMSE
forecast for an AR(1) process. Furthermore, the MMSE forecast minimises
the variance of the net stock levels under the OUT policy (Vassian, 1955;
Hosoda and Disney, 2006). The MMSE forecast of the AR(1) process over
the lead time plus review period made at time t is well known (Lee et al.,
2000; Hosoda and Disney, 2006):

E
[∑Tp+1

n=1
Dt+n

]
= (Tp + 1)µd + ϕd

1− ϕ
Tp+1
d

1− ϕd

(Dt − µd).

The MMSE forecast of the n (= 1, 2, 3, . . . ) period-ahead returns made at
time t is

E[Rt+n] =


µr + ϕn

r (Rt − µr) + θr
ϕn
d−ϕn

r

ϕd−ϕr
(Dt − µd), ϕd ̸= ϕr

µr + ϕn
r (Rt − µr) + nθrϕ

n−1
d (Dt − µd), ϕd = ϕr ̸= 0

µr + θr(Dt − µd), ϕd = ϕr = 0 ∧ n = 1

µr, ϕd = ϕr = 0 ∧ n ≥ 2,

which enables us to obtain the following expressions for the MMSE forecast
of Rt over the lead time (Tp) and the review period (+1):

E
[∑Tp+1

n=1
Rt+n

]
= (Tp + 1)µr +

ϕr(ϕ
Tp+1
r − 1)

ϕr − 1
(Rt − µr) +X(Dt − µd),

where

X =


θr(ϕ

Tp+2

d (ϕr−1)−ϕ
Tp+2
r (ϕd−1)+ϕd−ϕr)

(ϕd−1)(ϕd−ϕr)(ϕr−1)
, ϕd ̸= ϕr

θr(1+ϕ
Tp+1

d (ϕd+Tp(ϕd−1)−2))

(ϕd−1)2
, ϕd = ϕr.

The MMSE forecast of FPIRt, E[FPIRt] is

E[FPIRt] =E
[∑Tp−Tr

i=1
Ξ[Rt+i]

]
= E

[∑Tp−Tr

i=1
ξt+iRt+i

]
=ξ̄
(
(Tp − Tr)µr +

∑Tp−Tr

i=1
ϕi
r(Rt − µr)

+θr
∑Tp−Tr

i=0

∑i−1

j=0
ϕi−j−1
d ϕj

r(Dt − µd)
)

=ξ̄

(
(Tp − Tr)µr + ϕr

(ϕ
Tp−Tr
r − 1)

ϕr − 1
(Rt − µr) + Λθ(Dt − µd)

)
,
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where

Λθ =


θr(ϕ

Tp−Tr+1

d (ϕr−1)−ϕ
Tp−Tr+1
r (ϕd−1)+ϕd−ϕr)

(ϕd−1)(ϕd−ϕr)(ϕr−1)
, ϕd ̸= ϕr

θr(1+ϕ
Tp−Tr
d ((Tp−Tr)(ϕd−1)−1))

(ϕd−1)2
, ϕd = ϕr.

Substituting these conditional expectations into (13) yields the OUT policy
with the MMSE forecast for our CLSC. The ordering policy when Tr ≥ Tp

can be simplified to:

Pt = Dt + ϕd
1− ϕ

Tp+1
d

1− ϕd

(Dt −Dt−1)− Ξ[Rt−(Tr−Tp)], (15)

as all FPIRs are null in this case, and Ξ[Rt−(Tr+1)] + PIRt − PIRt−1 is equal
to Ξ[Rt−(Tr−Tp)]. Equation 15 shows that the manufacturer needs knowledge
of Ξ[Rt−(Tr−Tp)] from the remanufacturer to determine the value of Pt.

The ordering policy for the case of Tp > Tr is:

Pt = Dt + ϕd
1− ϕ

Tp+1
d

1− ϕd

(Dt −Dt−1)− Ξ[Rt]

−ξ̄

(
ϕr

ϕ
Tp−Tr
r − 1

ϕr − 1
(Rt −Rt−1) + Λθ(Dt −Dt−1)

)
. (16)

To obtain (16), we used Ξ[Rt−(Tr+1)] + PIRt − PIRt−1 = Ξ[Rt]. In this case,
the manufacturer needs additional dynamic information from the remanu-
facturer, Ξ[Rt] and Rt, in addition to the static information, ξ̄, ϕr and θr, to
optimally determine his order quantity.

3.6. Variance of order rates

In order to determine if a bullwhip (or capacity cost) lead-time paradox
exists, we need to inspect the production order variance. By substituting (2)
into (15), when Tr ≥ Tp the order can be written as:

Pt = Dt − Ξ[Rt−(Tr−Tp)] + Λd(ϕd − 1)(Dt−1 − µd) + Λdεd,t,

where Λd = ϕd(1 − ϕ
Tp+1
d )/(1 − ϕd). Appendix 4 shows that the variance of

the order rate when Tr ≥ Tp is:

V [P ] = E[(Pt − E[Pt])
2]

= V [D] + V [Ξ[R]] + 2Λd(1− ϕ
Tp+2
d )V [D]− 2ξ̄ϕTr+1

d COV 0, (17)
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where COV 0 is the covariance between Dt and Rt, as shown in (27) in Ap-
pendix 1. The variance of order rates in a traditional forward supply chain
under AR(1) demand when an OUT policy and MMSE forecasting scheme
is present is:

V [D] + 2Λd(1− ϕ
Tp+2
d )V [D]; (18)

see Hosoda and Disney (2006). Therefore, the order variance expression of
our CLSC, (17), can be interpreted as the sum of the order rate’s variance of
the traditional forward supply chain, (18), and the variance of the serviceable
returns (V [Ξ[R]]) minus a function of the covariance between the demand and
the returns (2ξ̄ϕTr+1

d COV 0).

Property 1. When Tr ≥ Tp, ϕd > 0 and COV 0 > 0, V [P ] is increasing in
both Tr and Tp.

Property 1 reveals that when Tr ≥ Tp, ϕd > 0 and COV 0 > 0, as in a
traditional forward supply chain, the order variance (and hence bullwhip and
capacity costs) is increasing in both the lead times.

Property 2. When Tr ≥ Tp and ϕd = 0, V [P ] is equal to V [D] + V [Ξ[R]]
and is independent of {Tr, Tp}.

Property 2 suggests that when Tr ≥ Tp, because V [Ξ[R]] > 0, the bull-
whip effect is always present (i.e. V [P ] > V [D]), even though the demand is
a white noise process (i.e. ϕd = 0). A similar finding was shown in Hosoda
et al. (2015) and is interesting because traditional supply chains with i.i.d.
demand and MMSE forecasts exhibit a bullwhip ratio of unity. This suggests
that returns are likely to introduce variability in the production volume of
new products.

When Tr < Tp, Pt, (16) can be rewritten as:

Pt = Dt − Ξ[Rt] +
(
(Λd − ξ̄Λθ)(ϕd − 1)− ξ̄Λrθr

)
(Dt−1 − µd)

+ξ̄Λr(1− ϕr)(Rt−1 − µr) + (Λd − ξ̄Λθ)εd,t − ξ̄Λrεr,t,

where Λr = ϕr(1− ϕ
Tp−Tr
r )/(1− ϕr). The variance of Pt when Tr < Tp then
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becomes:

V [P ] = E[(Pt − E[Pt])
2]

= E
[(
(Dt − µd)− (Ξ[Rt]− ξ̄µr)

+
(
(Λd − ξ̄Λθ)(ϕd − 1)− ξ̄Λrθr

)
(Dt−1 − µd)

+ξ̄Λr(1− ϕr)(Rt−1 − µr) + (Λd − ξ̄Λθ)εd,t − ξ̄Λrεr,t
)2]

= V [D] + V [Ξ[R]] +
(
(Λd − ξ̄Λθ)(ϕd − 1)− ξ̄Λrθr

)2
V [D]

+ξ̄2Λ2
r(1− ϕr)

2V [R] + (Λd − ξ̄Λθ)
2σ2

d + ξ̄2Λ2
rσ

2
r

−2ξ̄COV 0 + 2
(
(Λd − ξ̄Λθ)(ϕd − 1)− ξ̄Λrθr

)
ϕdV [D]

+2ϕdξ̄Λr(1− ϕd)COV 0 + 2(Λd − ξ̄Λθ)σ
2
d

−2
(
(Λd − ξ̄Λθ)(ϕd − 1)− ξ̄Λrθr

)
ξ̄COV 1

−2ξ̄2Λr(1− ϕr)(ϕrV [R] + θrCOV 0)

+2
(
(Λd − ξ̄Λθ)(ϕd − 1)− ξ̄Λrθr

)
ξ̄Λr(1− ϕr)COV 0

+2ξ̄2Λrσ
2
r . (19)

The relationships (24) and (28) derived in Appendix 1 were used to obtain
the last expression. Equations (17) and (19) yield the following property.

Property 3. V [P ] is increasing in µr, irrespective of the values of {Tp, Tr}.

As discussed in Section 3.3, V [Ξ[R]], (5), includes the mean of the returns,
µr. As shown in (17) and (19), V [P ] includes V [Ξ[R]]. Therefore it is obvious
that V [P ] is increasing in µr, suggesting that increasing the mean returns
increases bullwhip and the capacity cost. While ξ̄ is contained in V [Ξ[R]],
unlike with µr, we cannot infer that V [P ] is increasing in ξ̄ because ξ̄ is also
contained in V [ξ]. Indeed, as 0 ≤ ξt ≤ 1, V [ξ] and V [Ξ[R]] is often decreasing
in ξ̄.

Due to the complexity of (19), we have to resort to numerical analysis
to further understand the character of V [P ]. The results of this exercise are
discussed in Section 4.

3.7. Variance of net stock levels

From (6), we obtain the following expression:∑Tp

i=1
Pt−i + PIRt = NS t+Tp+1 − NS t +

∑Tp+1

i=1
Dt+i − FPIRt − Pt. (20)
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Substituting (20) into (9) and rearranging it reveals that:

NS t+Tp+1 − TNS = FPIRt −
∑Tp+1

i=1
Dt+i −

(
E[FPIRt]− E

[∑Tp+1

i=1
Dt+i

])
= FPIRt − E[FPIRt]−

(∑Tp+1

i=1
Dt+i − E

[∑Tp+1

i=1
Dt+i

])
,

(21)

indicating that the variance of the net stock level over an infinite time horizon,
E[(NS t+Tp+1 − TNS )2], is equal to the expected value of the square of the
right-hand side of (21):

V [NS ] =E[(NS t+Tp+1 − TNS )2]

=E
[
(FPIRt − E [FPIRt])

2]+ E

[(∑Tp+1

i=1
Dt+i − E

[∑Tp+1

i=1
Dt+i

])2]
− 2E

[
(FPIRt − E [FPIRt])

(∑Tp+1

i=1
Dt+i − E

[∑Tp+1

i=1
Dt+i

])]
.

The above expression shows that the net stock variance consists of: 1) the
variance of the forecast error of FPIRt over (Tp − Tr) time periods, 2) the
variance of the forecast errors of the demand over (Tp + 1) time periods and
3) the covariance between those two forecast errors. If Tr ≥ Tp, FPIRt is null
and the net stock variance is identical to the variance of the forecast errors
of the demand over Tp + 1 time periods:

V [NS ] = E

[(∑Tp+1

i=1
Dt+i − E

[∑Tp+1

i=1
Dt+i

])2]
=

(Tp + 1)(1− ϕ2
d) + ϕd(1− ϕ

Tp+1
d )(ϕ

Tp+2
d − ϕd − 2)

(1− ϕd)2(1− ϕ2
d)

σ2
d. (22)

This expression is identical to the variance of the net stock levels in a tra-
ditional forward supply chain facing an AR(1) demand with an OUT policy
and MMSE forecasting scheme (Hosoda and Disney, 2006). This result is
surprising because the manufacturer not only faces both uncertainty in de-
mand but also uncertainty in serviceable returns. Equation (22) reveals the
following properties:

Property 4. When Tr ≥ Tp and ϕd > 0, V [NS ] is increasing in Tp.

Property 5. When Tr ≥ Tp, V [NS ] is independent of {Tr, ϕr, θr, σr, µr, ξ̄, V [ξ]}.
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Property 4 suggests that a shorter manufacturing lead time, Tp, yields
smaller inventory costs. This is intuitive and agrees with existing knowledge
about traditional forward supply chains. Interestingly, as shown by Property
5, the remanufacturing lead time, Tr, does not affect V [NS ] when Tr ≥ Tp.
Furthermore, when Tr ≥ Tp, higher mean returns, µr, do not affect the value
of V [NS ] either. Therefore, if Tr ≥ Tp holds, the remanufacturer need not
urgently process the returns, and higher collection rates do not increase the
manufacturer’s inventory variance.

When Tr < Tp, the net stock variance expression is rather complex. This
complexity originates from the error terms in FPIRt, which are correlated
with both the demand and the return processes. To avoid clutter here, the
expression for V [NS ] when Tr < Tp is shown in Appendix 5 from which the
following property can be obtained.

Property 6. When Tr < Tp, V [NS ] is increasing in µr.

As shown in Appendix 5, V [NS ] is increasing in µr. Further characteri-
sations of V [NS ] in the case of Tr ≤ Tp are explored in the next section using
a numerical analysis.

4. Numerical analysis of the lead-time paradox when Tr ≤ Tp

Our interest herein is whether the lead-time paradox actually emerges
when Tr ≤ Tp. The error terms of the demand and the returns, {εd,t, εr,t}, are
assumed to follow a normal distribution. For the yield rate, ξt, a triangular
distribution with three parameters a, b and c (0 ≤ a ≤ c ≤ b ≤ 1) is assumed.
Here, a and b are the range of support and c is the mode of the triangular
distribution. The probability density function of the triage yield is given by:

f(ξt) =



0, ξt < a
2(ξt−a)

(b−a)(c−a)
, a ≤ ξt < c

2
b−a

, ξt = c
2(b−ξt)

(b−a)(b−c)
, c < ξt ≤ b

0, b < ξt.

The triage yield, ξt, has a mean of ξ̄ = (a + b + c)/3 and a variance of
V [ξ] = (a2 + b2 + c2 − ab − ac − bc)/18. The following indicator is used to
quantify the bullwhip effect:

BW = V [P ]/V [D].
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In addition, the standard deviation of the production order (as the capacity

cost indicator),
√
V [P ], and that of the net stock levels (as the inventory cost

indicator),
√
V [NS ], are used to measure the performance of our CLSC.

In our numerical analysis, unless otherwise stated, the following values
are used: a = 0.5, b = 0.99, c = 0.8, µd = 100, µr = 50, σd = {1, 10},
σr = {1, 10}, ϕd = {0.3, 0.7}, ϕr = {0.3, 0.7}, θr = {−0.9, 0, 0.9} and Tp = 6.

If we find that the value of BW ,
√
V [P ] or

√
V [NS ] is decreasing in Tr, we

can conclude that the lead-time paradox occurs in the bullwhip ratios, the
capacity cost or the inventory cost, respectively.

Figures 3–5 illustrate the relationships between those three indicators
and Tr. In many settings, the cost indicators decrease in Tr , suggesting that
longer remanufacturing lead times reduce those costs4. This is the evidence
of the existence of the lead-time paradox. The results indicate that the lead-
time paradox tends to be present when σr ≫ σd or θr < 0.

Figure 3 shows that the auto-correlation of the return process, ϕr, has a
greater impact on the lead-time paradox in BW than the auto-correlation
of the demand process, ϕd. In contrast, Figs. 4–5 suggest that θr has a
significant impact on

√
V [P ] and

√
V [NS ] when σd > σr. This particular

result was investigated further, and the results are shown in Figs. 6–9.
Figures 6–7 show the impact of Tr on

√
V [P ] when ϕd = ϕr = 0.3 (Fig. 6)

and ϕd = ϕr = 0.7 (Fig. 7). Note that if we set ϕd = ϕr = 0,
√
V [P ] becomes

independent of Tr (see (19)). Figure 6 reveals that when θr is smaller and
σr is bigger, the lead-time paradox is likely to be observed. Figure 7 shows
that the lead-time paradox can appear under larger values of θr. Figures 6–7
illustrate that when θr = 0, the lead-time paradox in the capacity cost always
emerges, irrespective of the values of ϕd, ϕr and σr.

Figures 8–9 show the impact of Tr on
√
V [NS ] when ϕd = ϕr = 0 (Fig. 8)

and ϕd = ϕr = 0.7 (Fig. 9). Figure 8 suggests that when θr = 0, the lead-time
paradox always exists, irrespective of the value of σr. This finding supports
the results of van der Laan et al. (1999) and Inderfurth and van der Laan
(2001). Those studies used i.i.d. processes for the demand and the return,
and no cross-correlation was assumed (i.e. ϕd = ϕr = θr = 0). In the case
of the positive cross-correlation in Fig. 8, the lead-time paradox disappears,
as θr increases when σr is small. This finding coincides with the findings

4Some lines in Fig. 3 are not easy to see for the case of σd = 10 and σr = 1, so actual
numbers are shown in Table 2 in Appendix 6.
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Figure 3: Lead-time paradox in bullwhip when Tr ≤ Tp = 6

0 1 2 3 4 5 6

20

40

60

80

100

20

40

60

80

100

0 1 2 3 4 5 6

20

40

60

80

100

0 1 2 3 4 5 6

20

40

60

80

100

0 1 2 3 4 5 6

TrTr

o
r

d
o

d
= 0.7

= 0.7
o

r

d
o

d
= 0.7

= 0.3

o
r

d
o

d
= 0.3

= 0.3
o

r

d
o

d
= 0.3

= 0.7

=10

=1

σd

σr

=1

=10

σd

σr

=10

=1

σd

σr

=1

=10

σd

σr
=10

=1

σd

σr

=1

=10

σd

σr

=10

=1

σd

σr

=1

=10

σd

σr

0.9

0.0

-0.9
rθ =

V P[ ]

V P[ ]

Figure 4: Lead-time paradox in capacity cost when Tr ≤ Tp = 6

21

Hosoda, T., and Disney, S.M., (2018), “A unified theory of the dynamics of closed-loop supply chains”, 
European Journal of Operational Research, 269 (1), 313–326. DOI: 10.1016/j.ejor.2017.07.020.



20

40

60

80

100

120

140

20

40

60

80

100

120

140

20

40

60

80

100

120

140

20

40

60

80

100

120

140

0 1 2 3 4 5 6

0 1 2 3 4 5 60 1 2 3 4 5 6

0 1 2 3 4 5 6

0.9

0.0

-0.9
rθ =

o
r

d
o

d
= 0.7

= 0.7

o
r

d
o

d
= 0.3

= 0.7

o
r

d
o

d
= 0.7

= 0.3

o
r

d
o

d
= 0.3

= 0.3

=10

=1

σd

σr

=10

=1

σd

σr

=1

=10

σd

σr

=10

=1

σd

σr

=1

=10

σd

σr

=10

=1

σd

σr
=1

=10

σd

σr

V NS[ ]

V NS[ ]

TrTr

=1

=10

σd

σr

Figure 5: Lead-time paradox in inventory cost when Tr ≤ Tp = 6

of Zhou and Disney (2006). Their study assumed that the demand and the
return are i.i.d. processes (i.e. ϕd = ϕr = 0) and that they are positively
correlated with each other (i.e. θr > 0). They concluded that shorter Tr can
reduce the net stock variance.

Figure 9 shows the results of the positively auto-correlated case (ϕd =
ϕr = 0.7). In this case, the lead-time paradox is present if, σr > σd. The
θr = 0.9 plot in Fig. 9 shows that when σr = σd, between Tr = 0 and 1
there is a lead-time paradox and between Tr = 1 and 5 there is no paradox
but that it re-emerges between Tr = 5 and 6. This is a rather complex set
of behaviours. It is also reasonable to conclude that when the demand and
the return are positively auto- and cross-correlated, a greater value of σr is
necessary to observe the inventory lead-time paradox than to observe the
lead-time paradox in orders.

Considering the results shown in this section, we may conclude that when
Tr ≤ Tp, shortening Tr may not be a good course of action when θr ≤ 0 or
σr ≫ σd, as in such settings the lead-time paradox is evident. In addition,
the cross-correlation assumption has a significant impact on the lead-time
paradox. Table 1 shows a numerical example of the lead-time paradox when
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ϕr = 0.3 and Tr ≤ Tp = 6 (the bold line represents the case of σr = σd = 10)
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Table 1: The lead-time paradox when ϕd = ϕr = 0.7, θr = 0.3, σd = 10, σr = 20 and
Tr ≤ Tp

Case 1 Base case Lengthening Tr Shortening Tp

Tp 3 3 3 3 2 1 0
Tr 0 1 2 3 0 0 0
BW 9.81 8.77 7.61 6.61 8.22 6.20 4.08√
V [P ] 43.86 41.47 38.64 35.99 40.15 34.86 28.29√
V [NS ] 57.40 48.73 42.16 38.86 41.82 25.60 10.00

Case 2 Base case Lengthening Tr Shortening Tp

Tp 6 6 6 6 5 4 3
Tr 3 4 5 6 3 3 3
BW 10.65 9.75 8.72 7.79 9.52 8.10 6.61√
V [P ] 45.70 43.72 41.34 39.08 43.20 39.85 35.99√
V [NS ] 75.98 70.15 65.94 63.87 63.17 50.47 38.86

Note: Minimum value in each case is in bold.

Tp = {3, 6}, Tr = {0, 3} and σr ≫ σd. To improve the performance of the
CLSC, we consider two courses of action: 1) lengthening Tr while holding
Tp constant or 2) shortening Tp while holding Tr constant. Table 1 suggests
that both alternatives are attractive but that shortening Tp down to Tp =
Tr = 0 (Case 1) or Tp = Tr = 3 (Case 2) can achieve the most economic
performance. Once the manufacturer sets the lead times to identical values,
then Properties 1–5 hold. Of the properties, Properties 1 and 4 suggest that
shorter manufacturing lead time (Tp) can yield lower bullwhip and capacity
and inventory costs. Furthermore the impact of θr on BW (see (17)) becomes

minor, and its impact on
√
V [NS ] disappears (Property 5).

5. Conclusions, managerial insights, and future research directions

Using auto- and cross-correlated demand and return processes, we inves-
tigated the dynamics of a CLSC with arbitrary lead times and a proportional
random yield in the triage of returns. First, we derived the OUT policy with
MMSE forecasting for the CLSC. This policy yields the minimum inventory
cost for the manufacturer. It is assumed that the required information to
enable this minimum cost policy is provided by the remanufacturer. We
also highlighted some useful characteristics of auto- and cross-correlated de-
mand and return processes via a detailed analysis of the processes. The
dynamics of the CLSC were analysed both analytically and numerically. It
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was shown that when Tr ≥ Tp, the dynamics of the CLSC were similar to
those observed in traditional forward supply chains. Furthermore, the in-
ventory cost of the manufacturer is independent of the remanufacturing lead
time. When Tr < Tp, the complex analytical results were supported by a
numerical investigation. It was shown that when Tr < Tp, the lead-time
paradox could emerge. This was the case not only in the inventory costs,
but also in the bullwhip ratio and the capacity cost, especially when the re-
turns are highly variable or non-positively correlated. This finding supports
the results of van der Laan et al. (1999) and Inderfurth and van der Laan
(2001). Our unifying theory also explains why the lead-time paradox is not
observed in Zhou and Disney (2006). Finally, we recommend that the two
lead times are first set equal by shortening Tp and then shortening them to-
gether when Tp = Tr. This helps to establish a more sustainable operation
without sacrificing economic performance as improvements are made. It also
helps the manufacturer to avoid the detrimental effects associated with the
higher mean returns (µr) increasing its inventory cost when Tr < Tp. Once
the relationship of Tr ≥ Tp is established, such negative effects simply vanish.
Ultimately, our managerial recommendation for manufacturers in CLSCs are:

Rule 1 When the remanufacturing lead time is equal to or longer than the
manufacturing lead time, shortening the manufacturing lead time re-
duces your capacity and inventory costs. Also in this setting, higher
returns do not increase inventory costs. Shortening the remanufactur-
ing lead time does not contribute to lower inventory costs but could
generate some other benefits, such as lower capacity cost and in-transit
inventory.

Rule 2 When the remanufacturing lead time is less than the manufacturing
lead time, you should understand that: a) the lead-time paradox can
emerge, and b) higher mean returns always increase your inventory cost.
Point a) suggests that shortening the remanufacturing lead time may
not have desirable consequences. Point b) highlights the conflicting
incentives between company performance and societal needs. To avoid
these consequences, first shorten the manufacturing lead time until both
lead times are equal. Then your incentives are aligned and Rule 1
applies.

In terms of potential future research directions, our demand and return
model can be generalised further. One direction might be to use θr(Dt−τ−µd),
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where τ = 1, 2, 3, . . . , instead of θr(Dt−1 −µd) in (3). This affects the degree
of the correlation between Dt−τ and Rt. Another direction might be to
consider adding cross-correlation from the previous returns to the current
demand, to yield a more complete VAR(1) model. This model might be
appropriate when the quality and accessibility of recycling facilities positively
affects a market with a growing concern about environmental issues. Indeed,
a full VARMA(p, q) model could be used to model the demand and returns,
perhaps using a matrix-based approach as in Ratanachote (2011). Finally,
in terms of the random yield model, correlation between the returns, Rt, and
the triage yield, ξt, might better reflect reality. A simulation approach may
be needed to address this research direction.
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Appendix 1. The variances of and covariances between the demand
and the returns

In this section, we identify the variances of Dt and Rt, the covariance
between Dt−n and Rt (n = 1, 2, 3, . . . ) and the covariance between Dt and
Rt−n. Generally, the variance of a random variable x is denoted by E[(x −
E[x])2]. Then, because E[Dt] = µd, the variance of AR(1) process Dt is:

V [D] = E[(Dt − E[Dt])
2]

= E[(ϕd(Dt−1 − µd) + εd,t)
2]

= ϕ2
dV [D] + σ2

d. (23)

Solving the equation above for V [D], we obtain the demand variance:

V [D] =
σ2
d

1− ϕ2
d

.

Box et al. (2008) show that the autocovariance between Dt and Dt−n (n =
1, 2, 3, . . . ) is:

E[(Dt − µd)(Dt−n − µd)] = ϕn
dV [D]. (24)
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Using E[Rt] = µr and E[εr,t] = 0, we can describe the variance of the returns
as follows:

V [R] = E[(Rt − E[Rt])
2]

= E[(ϕr(Rt−1 − µr) + θr(Dt−1 − µd) + εr,t)
2]

= ϕ2
rV [R] + θ2rV [D] + σ2

r + 2ϕrθrCOV 0, (25)

where COV 0 is the covariance between Rt and Dt. From the definition of
the covariance, we have:

COV 0 = E[(Rt − µr)(Dt − µd)]

= E[(ϕr(Rt−1 − µr) + θr(Dt−1 − µd) + εr,t)(ϕd(Dt−1 − µd) + εd,t)]

= ϕdϕrCOV 0 + θrϕdV [D]. (26)

To obtain (26), we have used the relation E[(Rt−1−µr)(Dt−1−µd)] = E[(Rt−
µr)(Dt − µd)]. Rearranging (26) yields COV 0:

COV 0 =
ϕdθr

1− ϕdϕr

V [D]. (27)

Finally, we obtain the following expression for the variance of the returns:

V [R] =
θ2r(1 + ϕdϕr)V [D] + (1− ϕdϕr)σ

2
r

(1− ϕdϕr)(1− ϕ2
r)

.

Using the knowledge of COV 0, the covariance between Rt and Dt−1 (as
this is the case where n = 1), COV 1, can be written as:

COV 1 = E[(Rt − µr)(Dt−1 − µd)]

= E[(ϕr(Rt−1 − µr) + θr(Dt−1 − µd) + εr,t)(Dt−1 − µd)]

= ϕrCOV 0 + θrV [D]

=
θr

1− ϕdϕr

V [D].

Furthermore, COV 2 is

COV 2 = E[(Rt − µr)(Dt−2 − µd)]

= E[(ϕr(ϕr(Rt−2 − µr) + θr(Dt−2 − µd) + εr,t−1)

+θr(ϕd(Dt−2 − µd) + εd,t−1) + εr,t)(Dt−2 − µd)]

= ϕ2
rCOV 0 + θr(ϕd + ϕr)V [D].
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Repeating these same steps, we can then use induction to find an expression
for COV n (n ≥ 2)

COV n≥2 = E[(Rt − µr)(Dt−n − µd)]

=



ϕn
rCOV 0 + θr

ϕn
d−ϕn

r

ϕd−ϕr
V [D], ϕd ̸= ϕr

ϕn
rCOV 0 + nθrϕ

n−1
d V [D], ϕd = ϕr ̸= 0

θrϕ
n−1
r V [D], ϕd = 0 ∧ ϕr ̸= 0

θrϕ
n−1
d V [D], ϕd ̸= 0 ∧ ϕr = 0

0, ϕd = ϕr = 0.

The knowledge of COV n enables us to obtain an expression of the correlation
between Rt and Dt−n, ρn = COV n/(

√
V [D]

√
V [R]).

Following similar steps to those shown above, we can also find that the
covariance between Dt and Rt−n (n = 1, 2, 3, . . . ) is:

E[(Dt − µd)(Rt−n − µr)] = ϕn
dCOV 0. (28)

Appendix 2. The variance of the serviceable returns

The variance of the returns subject to the random yield when the return
process follows a VAR(1) process is derived as follows:

V [Ξ[R]] =V [ξtRt] = E[(ξtRt − E[ξtRt])
2]

=E[((ξt − ξ̄)µr + ξtϕr(Rt−1 − µr) + ξtθr(Dt−1µd) + ξtεr,t)
2]

=V [ξ]µ2
r + (V [ξ] + ξ̄2)(ϕ2

rV [R] + θ2rV [D] + σ2
r + 2ϕrθrCOV 0)

=V [ξ]µ2
r + (V [ξ] + ξ̄2)V [R].

To obtain this result, we used (25) and (27).

Appendix 3. Normality tests

We conducted normality tests on the simulated values of NS t and Pt when
εd,t and εr,t were normally distributed but ξt was drawn from a triangular
distribution. The data set was generated by a 20,000 time period numerical
simulation. For the simulation, the following parameters were used: µd =
100, µr = 50, ϕd = ϕr = 0.7, θr = 0.3, Tp = 1, Tr = 0 and TNS = 10. The
error terms, εd,t and εr,t, follow N(0, 102) and N(0, 202), respectively. The
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values of {a, b, c} for the triangular distribution were: Case 1 {0.3, 0.7, 0.5}
and Case 2 {0.5, 0.99, 0.8}. Figure 10 shows the quantile-quantile (Q-Q) plots
of the simulation results with the p-values of a Kolmogorov-Smirnov test for
each case. The null hypothesis, which is the sample data set is drawn from
a normal distribution, was not rejected in any of the cases.
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Figure 10: Q-Q plots of NS t(upper) and Pt(lower) when {a, b, c} = {0.3, 0.7, 0.5} (left)
and {0.5, 0.99, 0.8} (right).
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Appendix 4. The variance of the production orders when Tr ≥ Tp

The process to obtain V [P ] for the case of Tr ≥ Tp is shown below.

V [P ] =E[(Pt − E[Pt])
2]

=E
[(
(Dt − µd)− (Ξ[Rt−(Tr−Tp)]− ξ̄µr)

+Λd(ϕd − 1)(Dt−1 − µd) + Λdεd,t)
2]

=V [D] + V [Ξ[R]] + Λ2
d(ϕd − 1)2V [D] + Λ2

dσ
2
d − 2ξ̄ϕ

Tr−Tp

d COV 0

+ 2Λd(ϕd − 1)ϕdV [D] + 2Λdσ
2
d − 2ξ̄Λd(ϕd − 1)ϕ

Tr−Tp−1
d COV 0,

=V [D] + V [Ξ[R]] + Λ2
d(ϕ

2
d − 2ϕd + 1)V [D] + Λ2

dσ
2
d − 2ξ̄ϕ

Tr−Tp

d COV 0

+ 2ϕ2
dΛdV [D]− 2ϕdΛdV [D] + 2Λdσ

2
d − 2ξ̄Λd(ϕd − 1)ϕ

Tr−Tp−1
d COV 0,

=V [D] + V [Ξ[R]] + Λ2
d(ϕ

2
dV [D] + σ2

d︸ ︷︷ ︸
=V [D]

)− 2ϕdΛ
2
dV [D] + Λ2

dV [D]

− 2ξ̄ϕ
Tr−Tp

d COV 0 + 2Λd(ϕ
2
dV [D] + σ2

d︸ ︷︷ ︸
=V [D]

)

− 2ϕdΛdV [D]− 2ξ̄Λd(ϕd − 1)ϕ
Tr−Tp−1
d COV 0,

=V [D] + V [Ξ[R]] + 2Λ2
dV [D]− 2ϕdΛ

2
dV [D]− 2ξ̄ϕ

Tr−Tp

d COV 0

+ 2ΛdV [D]− 2ϕdΛdV [D]− 2ξ̄Λd(ϕd − 1)ϕ
Tr−Tp−1
d COV 0,

=V [D] + V [Ξ[R]] + 2Λ2
dV [D](1− ϕd) + 2ΛdV [D](1− ϕd)

− 2ξ̄ϕ
Tr−Tp−1
d (ϕd + Λd(ϕd − 1)︸ ︷︷ ︸

=ϕ
Tp+2

d

)COV 0,

=V [D] + V [Ξ[R]] + 2Λd (1− ϕd)(Λd + 1)︸ ︷︷ ︸
=1−ϕ

Tp+2

d

V [D]− 2ξ̄ϕTr+1
d COV 0

=V [D] + V [Ξ[R]] + 2Λd(1− ϕ
Tp+2
d )V [D]− 2ξ̄ϕTr+1

d COV 0,

where Λd = ϕd(1 − ϕ
Tp+1
d )/(1 − ϕd). To simplify this expression, (23), (24)

and (27) were used.
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Appendix 5. The variance of the net stock levels when Tr < Tp

The variance of the net stock levels when Tr < Tp can be described as
follows:

V [NS ] =E
[
(FPIRt − E [FPIRt])

2]+ E

[(∑Tp+1

i=1
Dt+i − E

[∑Tp+1

i=1
Dt+i

])2]
− 2E

[
(FPIRt − E [FPIRt])

(∑Tp+1

i=1
Dt+i − E

[∑Tp+1

i=1
Dt+i

])]
=E

[(∑Tp−Tr

i=1
ξt+iRt+i − E

[∑Tp−Tr

i=1
ξt+iRt+i

])2]
︸ ︷︷ ︸

A

+ E

[(∑Tp+1

i=1
Dt+i − E

[∑Tp+1

i=1
Dt+i

])2]
︸ ︷︷ ︸

B

−2E
[(∑Tp−Tr

i=1 ξt+iRt+i − E
[∑Tp−Tr

i=1 ξt+iRt+i

])
×
(∑Tp+1

i=1 Dt+i − E
[∑Tp+1

i=1 Dt+i

])]
︸ ︷︷ ︸

C

.

The expressions of A, B and C are dependent upon the values of ϕd and ϕr:

A =E

[(∑Tp−Tr

i=1
ξt+iRt+i − E

[∑Tp−Tr

i=1
ξt+iRt+i

])2]

=E

(Tp−Tr∑
i=1

ξt+iRt+i − ξ̄E[Rt+i]

)2


=E

[(∑Tp−Tr

i=1
ξt+i (E [Rt+i] +Rt+i − E [Rt+i])− ξ̄E [Rt+i]

)2]
=E

[(∑Tp−Tr

i=1
(ξt+i − ξ̄)E [Rt+i] + ξt+i (Rt+i − E [Rt+i])

)2]
=V [ξ]

∑Tp−Tr

i=1
E [Rt+i]

2︸ ︷︷ ︸
A1

+
∑Tp−Tr

i=1
E
[
ξ2t+i

]
E
[
(Rt+i − E [Rt+i])

2]︸ ︷︷ ︸
A2

+ E

Tp−Tr∑
i=1

∑
j∈{1,...,Tp−Tr}\i

ξt+i(Rt+i − E[Rt+i])ξt+j(Rt+j − E[Rt+j])

2
︸ ︷︷ ︸

A3

,
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where

A1 =



V [ξ]
∑Tp−Tr

i=1

(
µ2
r + ϕ2i

r V [R] + θ2r

(
ϕi
d−ϕi

r

ϕd−ϕr

)2
V [D]

+
2ϕdϕ

i
rθ

2
r(ϕ

i
d−ϕi

r)

(ϕd−ϕr)(1−ϕdϕr)
V [D]

)
, ϕd ̸= ϕr

V [ξ](Tp − Tr)(µ
2
r + θ2rσ

2
d), ϕd = ϕr = 0

V [ξ]
∑Tp−Tr

i=1

(
µ2
r + ϕ2i

r V [R] + θ2r(iϕ
i−1
d )2V [D]

+
2iθ2rϕ

2i
d

1−ϕ2
d
V [D]

)
, ϕd = ϕr ̸= 0,

A2 =



(V [ξ] + ξ̄2)

×
∑Tp−Tr

i=1

(∑i−1
j=0 ϕ

2j
r σ2

r + θ2r
∑i−1

j=0

(
ϕj
d−ϕj

r

ϕd−ϕr

)2
σ2
d

)
, ϕd ̸= ϕr ∧ ϕdϕr ̸= 0

(V [ξ] + ξ̄2)
∑Tp−Tr

i=1

(∑i−1
j=0 ϕ

2j
r σ2

r + θ2r
∑i−2

j=0 ϕ
2j
r σ2

d

)
, ϕd = 0 ∧ ϕr ̸= 0

(V [ξ] + ξ̄2)
∑Tp−Tr

i=1

(
σ2
r + θ2r

∑i−2
j=0 ϕ

2j
d σ2

d

)
, ϕd ̸= 0 ∧ ϕr = 0

(V [ξ] + ξ̄2)((Tp − Tr)σ
2
r + (Tp − Tr − 1)θ2rσ

2
d), ϕd = ϕr = 0

(V [ξ] + ξ̄2)

×
∑Tp−Tr

i=1

(∑i−1
j=0 ϕ

2j
r σ2

r + θ2r
∑i−1

j=0(jϕ
j−1
d )2σ2

d

)
, ϕd = ϕr ̸= 0,

and

A3 =



2
∑Tp−Tr

i=1

(
ξ̄2
∑Tp−Tr−i

j=1

∑Tp−Tr+1−i
k=j+1 ϕj+k−2

r σ2
r

+θ2r ξ̄
2
∑Tp−Tr−1−i

j=1

∑Tp−Tr−i
k=j+1

(ϕj
d−ϕj

r)(ϕ
k
d−ϕk

r )

(ϕd−ϕr)2
σ2
d

)
, ϕd ̸= ϕr

0, ϕd = ϕr = 0

2
∑Tp−Tr

i=1

(
ξ̄2
∑Tp−Tr−i

j=1

∑Tp−Tr+1−i
k=j+1 ϕj+k−2

r σ2
r

+θ2r ξ̄
2
∑Tp−Tr−1−i

j=1

∑Tp−Tr−i
k=j+1 jkϕj+k−2

d σ2
d

)
, ϕd = ϕr ̸= 0.

B = E

[(∑Tp+1

i=1
Dt+i − E

[∑Tp+1

i=1
Dt+i

])2]
=

(Tp + 1)(1− ϕ2
d) + ϕd(1− ϕ

Tp+1
d )(ϕ

Tp+2
d − ϕd − 2)

(1− ϕd)2(1− ϕ2
d)

σ2
d.
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C = −2E
[(∑Tp−Tr

i=1
ξt+iRt+i − E

[∑Tp−Tr

i=1
ξt+iRt+i

])
×
(∑Tp+1

i=1
Dt+i − E

[∑Tp+1

i=1
Dt+i

])]

=


−2θrξ̄

∑Tp−Tr

i=1

∑Tp−Tr−i
j=1

(ϕi
d−ϕi

r)(1−ϕ
Tp+2−j

d )

(ϕd−ϕr)(1−ϕd)
σ2
d, ϕd ̸= ϕr

−2θrξ̄(Tp − Tr − 1)σ2
d, ϕd = ϕr = 0

−2θrξ̄
∑Tp−Tr

i=1

∑Tp−Tr−i
j=1

iϕi−1
d (1−ϕ

Tp+2−j

d )

1−ϕd
σ2
d, ϕd = ϕr ̸= 0.

Appendix 6. The lead-time paradox in bullwhip when Tr ≤ Tp = 6,
σd = 10 and σr = 1

Figure 3 illustrates the presence of the lead-time paradox in the bullwhip
measure. However, the case when σd = 10 and σr = 1 was hard to see in
Fig. 3. Table 2 provides an alternative visualisation for clarity.

Table 2: The values of BW when σd = 10 and σr = 1, used in Fig. 3

Tr 0 1 2 3 4 5 6

ϕd = 0.7, ϕr = 0.7
θ = 0.9 2.555 1.626 1.216 1.655 3.169 5.561 7.767
θ = 0.0 5.193 5.191 5.188 5.185 5.180 5.175 5.171
θ = −0.9 35.504 30.174 24.520 18.961 14.042 10.292 8.077

ϕd = 0.7, ϕr = 0.3
θ = 0.9 0.216 0.320 0.550 1.034 1.994 3.692 5.876
θ = 0.0 5.171 5.171 5.171 5.171 5.171 5.170 5.169
θ = −0.9 18.194 17.025 15.451 13.409 10.927 8.265 6.077

ϕd = 0.3, ϕr = 0.7
θ = 0.9 2.055 1.623 1.159 0.798 0.844 1.762 3.541
θ = 0.0 2.138 2.135 2.130 2.123 2.115 2.106 2.099
θ = −0.9 16.616 15.140 13.197 10.765 7.989 5.335 3.541

ϕd = 0.3, ϕr = 0.3
θ = 0.9 0.254 0.255 0.258 0.278 0.388 0.943 2.726
θ = 0.0 2.099 2.099 2.099 2.099 2.099 2.097 2.094
θ = −0.9 7.517 7.465 7.324 6.958 6.104 4.516 2.726

Note: Minimum value in each case is in bold.
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