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Abstract

The bio-aerosol is an important medium for the potential dispersal of biological 

warfare agents within the battlefield space.  In order to better protect the military

personnel who work within this environment it is imperative that we increase our

understanding of this matrix, especially the naturally occurring variation and its 

causes.  Understanding the naturally occurring variation within the bio-aerosol 

will enable future and current biological detection platforms to be put through 

better test and evaluation processes, thus reducing the potential for false 

alarms and false negatives.  Analysing bio-aerosol samples collected across a 

temporal gradient through a metagenomics approach will enable the natural 

variation to be better understood.  However, metagenomic analysis tools have 

been shown to have contradictory reviews within the literature, it is therefore 

essential to identify the most suitable analysis approach. 

Here I developed a metagenomic analysis pipeline which delivers high 

confidence taxonomic identification to species level, as well as accurate 

measures of diversity and homogeneity.  The analysis pipeline that was 

developed takes the output from multiple tools thus reducing the number of 

false positives, delivering high confidence taxonomic identification.  The 

analysis pipeline also gives a more accurate measure of diversity and 

homogeneity compared to any of the tools being used individually.  This 

improved accuracy will deliver superior results when measuring the change in 

abundance of species identified within the bio-aerosol in sampling regimes 

carried out at Dstl.  These improvements will lead to more accurate test bio-

aerosols being developed for biological detection platform evaluation.  

Fundamentally this will improve the UK military’s capability to detect biological 

warfare releases within the battlespace.

.
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1 The evaluation of metagenomic analysis software, using in-silico and

in-vitro mock community datasets, for the accurate study of bio-

aerosol samples.

1.1 Overview

This thesis describes the process implemented to define a metagenomic 

analysis approach to evaluate the biological diversity of bio-aerosol samples.  A 

range of sample types, including in-silico and in-vitro mock community samples,

were generated to evaluate a range of metagenomic analysis algorithms.  The 

tools were evaluated based on the true positives (a species identified by an 

algorithm that was present in the sample), false positives (a species identified 

by an algorithm that was not present in the sample) and false negatives (a 

species not identified by an algorithm that was present in the sample) that they 

identified.  The time taken for the tools to run and their computational 

requirements were also of interest.

The output from this thesis will be directly exploited by a wider Defence Science

and Technology Laboratory (Dstl) project looking to develop a greater 

understanding of the geographical and temporal variation of biological diversity 

within bio-aerosols.  There is a long-term study to take bio-aerosol samples at a

single location over the course of at least two years.  These samples will be 

used to measure the variation of the biological content over temporal gradients. 

Further aerosol samples will be collected at multiple locations across the United

Kingdom, Europe and potentially further afield.  These samples will enable the 

measurement of variation between bio-aerosols across a variety of 

geographical regions.  This greater understanding of the temporal and 

geographical variation of the bio-aerosol will be utilised when testing and 

evaluating new and existing bio-warfare detection platforms.
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1.2 Introduction

1.2.1 Biological aerosols

Biological aerosols (bio-aerosols) are of interest to Dstl, and other military 

organisations, because a deliberate release of a biological warfare agent is 

likely to involve the aerosolisation of the agent [1].  As such, the bio-aerosol 

becomes an essential medium for monitoring any potential release.  Bio-

aerosols are also of importance to the wider population.  There are numerous 

human health conditions that are impacted by the bio-aerosol, for example 

fungal spores are linked to asthma and other respiratory health conditions[2].  

The bio-aerosol is also the transmission vector of airborne infections such as 

influenza[3], SARS[4] and tuberculosis[5].

The term bio-aerosol describes the biological content of the air within a specific 

location and point in time.  The biological content includes single cell organisms,

pollen, spores, plant and animal debris, metabolic products and extra cellular 

DNA[6].  The sources of the biological materials include the terrestrial and 

aquatic environments which can be released into the atmosphere through 

environmental actions[7], animals[8], and human behaviour[9].  The nature of 

the constituent parts that make up the bio-aerosol mean that they can travel 

large distances, via the wind, human movements or animal migrations[10].  Due

to the complex factors involved in generating bio-aerosols and their distribution, 

both locally and globally, there is expected to be a large variation in the diversity

of organisms found within the bio-aerosol depending on the time of year, 

geographical location and weather conditions.  Looking for trends in how the 

diversity of the bio-aerosol changes over time and between locations is 

important not only for defence but also health professionals and agriculture.

The relatively recent advancements in sequencing techniques, including 16S 

ribosomal RNA (rRNA) and Whole Genome Shotgun (WGS) sequencing, have 

enabled the diversity of the bio-aerosols to be better appreciated[11].  Prior to 

the development of sequencing as a tool for microbial identification, analysis of 

the microbial load of environmental samples relied solely on direct culturing or 

polymerase chain reaction (PCR).  Direct culturing as a technique has a few 
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disadvantages, mainly around the viability of the organisms collected.  Any 

organism that becomes non-viable during the collection phase will not be 

represented in the results.  Due to the high airflow rates of some collectors, 

desiccation of the cells is a likely outcome impacting viability.  However, any 

DNA collected would still be present in the sample and would therefore be 

identifiable as part of the bio-aerosol using a genomics approach.  There is also

the well-known phenomenon of viable but non culturable (VBNC) species which

impact the results from an analysis approach based on culturing the sample[12].

By the year 2017 there were 85 bacterial species identified as being able to 

enter the VBNC state[13].  These species include Escherichia coli, Listeria 

monocytogenes and Campylobacter spp. which have all been identified within 

bio-aerosol samples collected on this project[14].  Again, sequencing would be 

able to identify the VBNC species present within the sample as the DNA would 

be present providing a more accurate measure of the bio-aerosol[15].  The best 

advantage that culturing offers over a sequencing approach is in regards to true

positives.  If a species can be isolated through culturing, as long as good 

laboratory practice is followed, then it is safe to assume it was present in the 

sample.  This cannot be said for the sequencing approach due to the high rates 

of DNA contamination within biological grade reagents[16].  Alongside the 

contamination issue there is the potential for high numbers of false positives 

identified by different analysis algorithms[17].  As an approach for identification 

PCR does not rely on culturing the cells so viability isn’t an issue, however, the 

primers used to amplify the DNA have to be specific to the organism.  Therefore

PCR is a targeted approach to identify known organisms rather than a tool to 

gauge the unknown diversity of a sample.  

The purpose of this work was to identify a taxonomic identification pipeline 

which reports the highest number of true positives with both the lowest number 

of false negatives and false positives.  Identifying a bioinformatics approach to 

remove reagent contamination is also of interest for future work.

1.2.2 Biological warfare

Biological warfare is the intentional release of a biological agent that can cause 

death, incapacitation or territory denial.  Biological warfare includes the release 
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of wild type organisms or species which have been genetically modified to 

increase pathogenicity, transmissibility or antibiotic resistance[18].  Biological 

warfare was first truly investigated as an act of war during the First World War, 

with many nations having offensive programs[19].  However, there are reports 

of blankets contaminated with smallpox being given to Native Americans during 

the siege of Fort Pitt in 1763 and plague victims being catapulted into the 

sieged city of Caffa in 1346[20].  These reports suggest that biological warfare 

has been used as an offensive weapon for a much longer period of time.

As previously mentioned, the bio-aerosol would be a primary means for the 

dissemination of a biological warfare agent.  The bio-aerosol route offers many 

advantages to a bio-terrorist or rogue state as it can be used to transit the 

biological agent from point of release to the intended victims.  This enables the 

perpetrators to maintain a critical distance from the point of attack.  Also, and 

potentially more importantly, the most pathogenic route of infection for the 

majority of biological warfare agents is through the respiratory tract[1].  This 

means an aerosolised agent transported through the bio-aerosol is likely to 

cause an infection in a large proportion of people exposed to the aerosol.  

Examples of biological warfare attacks using the bio-aerosol dispersal route 

include the Amerithrax letters in 2001; where letters laced with Bacillus 

anthracis spores were sent across the USA[21].  On opening the letter, the 

spores were aerosolised and inhaled by the victims, leading to 5 deaths and 17 

infections.  Another, less successful, attack took place in 1993 where the 

Japanese cult Aum Shinrikyo attempted to aerosolise a crude B. anthracis 

culture[22].  Despite successfully releasing the agent the cult had, fortuitously, 

acquired a vaccine strain of the organism and there were no reported human 

casualties, although there were reports of some animal deaths in the location.

1.2.3 Metagenomics

Metagenomics is the direct analysis of the genomes contained within a sample 

without the prior need for cultivating clonal cultures [23]. This direct approach of 

sequencing the DNA within a sample offers several benefits over the more 

conventional cultivation and sequencing methods. These include a reduction in 

the time taken for the process and the ability to identify non-culturable 
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organisms within a sample. Metagenomic studies have been used to identify the

organisms found within a variety of different environments, for example the 

Human Microbiome Project [24], the Yellowstone National Park project [25] and 

the Pacific Ocean Virome project [26]. Despite the advantages in the 

metagenomic approach the process can be biased. An example of this bias is 

during DNA extraction where sporulated, Gram-positive and Gram-negative 

bacteria will all require different methods for optimum DNA extraction.  

Nucleotide amplification steps in the sequencing process also risk adding bias 

to the sample. Additionally, the analysis of the data can add bias depending on 

not only the algorithms used for the analysis but how the software is used, due 

to a number of tools containing different parameter settings.  This work will 

investigate if it is possible to use multiple tools and combine their output in an 

effort to minimise the bias that can be introduced through individual tools. 

Metagenomic studies using current next-generation sequencing (NGS) 

platforms and chemistries have the potential to generate vast quantities of data.

For example, a 2 x 125 base pair HiSeq run can generate up to 1 Tera base of 

data (http://www.illumina.com). These huge datasets have the potential to 

cause issues in data analysis and also place large burdens on data storage, 

computing resources and bioinformatics manpower. These burdens can result 

in the data analysis becoming a major bottleneck for projects. Therefore, speed 

and ease of use are important criteria to consider when assessing a 

metagenomics tool; however, the accuracy of the tool must remain the most 

important criteria upon which to judge the tools. The accuracy of a tool can be 

measured by its true positive rate (correctly identifying the presence of an 

organism), false positive rate (incorrectly identifying the presence of an 

organism not present in the sample) and false negative rate (unsuccessfully 

identifying an organism which is in the sample).  These measures can then be 

used to calculate the sensitivity and precision of the tool (See section 2.2.4 for a

definition).
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1.2.4 Biological Detection

There are several methods for the identification of biological material within a 

bio-aerosol ranging from particle size and spectroscopy techniques[27], genetic 

detection[28], immunoassays[29], and culturing techniques[30].  Monitoring 

particle size and spectroscopic techniques offer near real time monitoring but do

not offer specificity.  At the other end of the spectrum are culturing techniques, 

which require long periods of time (up to 72 hours incubation) but offer high 

specificity for culturable organisms.  In the middle of the spectrum are the 

genomic methods (such as sequencing and PCR) and the immunoassays (such

as enzyme linked immunosorbent assay (ELISA)).  These techniques offer a 

shorter time to result compared to culturing and are more specific than 

spectroscopic techniques.

In a military context, the aim of biological detection is to warn of the presence of

bio-warfare agents.  A detection event would lead to the donning of suitable 

personal protective equipment (PPE), decontamination of personnel and 

infrastructure, quarantine and medical surveillance and possible area 

avoidance.  If the bio-detection system fails to alarm in the presence of a 

release the consequences have the potential to be grave; personnel would be 

exposed to the agent and would likely be infected.  Due to an incubation period 

of several days and early symptoms presenting as undifferentiated febrile 

illnesses there is a high chance of the infection spreading between personnel in 

the local region[31].  There would also be a delay in administering suitable 

medical counter measures leading to a high chance of fatalities.  

Conversely, if a detection platform falsely alarms then there could be dramatic 

consequences.  The wearing of PPE, especially in hot environments, has been 

shown to increase the chance of potentially fatal heat injury[32].  There is also 

the financial cost associated with unnecessary decontamination and 

administering unnecessary medical treatment.  Repeated false alarms also risk 

eroding confidence in the detection device, potentially leading to future alarms 

being ignored or the equipment not being used.  It is therefore essential that 

every effort is made to ensure that the bio-detection platforms are highly 

accurate with minimal false positive or false negative alarms.  This project will 
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help build our knowledge of bio-aerosols and improve the ability to test the bio-

detection platforms in a range of realistic, relevant and controlled bio-aerosols.

Bio-detection is also relevant to the wider community, especially in the field of 

agriculture where detection systems for plant pathogens are being 

developed[33].  This will enable more directed use of pesticides, reducing 

financial costs to the farmer and also be of benefit the environment.  Bio-

detection in the food animal industry has the potential to reduce the amount of 

antibiotics used each year.  This approach may have a positive effect on the 

spread of antibiotic resistance genes through the environment, therefore 

impacting human health positively[34].
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1.3 Literature Review

To ensure that the right metagenomic analysis tools were evaluated in this 

project a review of the literature was performed.  A substantial number of tools 

were available for the analysis of metagenomic datasets, with the majority of the

tools designed to perform one specific function in an analysis pipeline (e.g. 

assembly) rather than being multi-purpose tools. This review will only focus on 

those tools developed for the purposes of species identification within 

metagenomics, and therefore does not include tools designed for methods such

as meta-transcriptomics. After an initial review of the literature over 70 tools, 

spanning the last 15 years, were identified as falling within the remit of this 

review (See Appendix 1 for a list of tools). The 70 tools were down-selected for 

further review based on several criteria: 

 Relevance to the scientific community; only keeping tools which had 

more than one citation per month since their release. 

 Whether the tool has been maintained since its release; only tools which 

have been actively maintained since their release will be considered for 

review. 

 Whether the tool had been superseded by a newer release; if the tool 

had been superseded by a newer version the older version was not 

included.

 Whether the tool keeps the data private or releases to the public; online 

tools which don’t have the option to keep the data private will not be 

included in this review. 

This down-selection process reduced the initial list of over 70 tools to 24. The 

down-selection process also highlighted the speed at which this area is moving,

at the time of writing this literature review one of the tools released in early 2015

was on its third version by the end of the year.  Due to the speed at which 

metagenomic analysis tools are released, continual tech-watch will be required 

to stay up to date with new tools.  It is important to note that tools were only 

considered for this review if they were released prior to the 31st December 2015.
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In the following section of the review a brief description of each of the down-

selected tools is provided, accompanied by a reference to the relevant literature

regarding the tool. Additionally, the tools have been broadly collated, based 

upon their function, into two main categories: metagenomics assembly and 

metagenomics binning. A brief description of each of the categories is also 

provided, although some of the larger tools (e.g. MetAMOS [35]) can span both 

categories.  
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1.4 Metagenomics Binning Tools

Binning is an approach to metagenomic analysis where the sample reads are 

sorted into groups based on either their homology to a reference database or 

the composition of the sequences. In this section tools which cover both of 

these binning processes for assigning taxonomy to sequencing reads (or indeed

contigs generated though metagenomics assembly) are discussed.

In homology binning, the reference databases can vary substantially in terms of 

their composition, from large databases of reference genomes to targeted 

databases of marker genes. Alignments of the reads against the databases are 

generated and are subsequently used to ‘bin’ the reads and assign taxonomy. It 

is important to note that some binning tools are able to use various alignment 

tools while others can only use one. However, a detailed review of alignment 

tools is beyond the scope of this current review. 

In contrast to homology binning, composition binning looks for patterns within 

the sequence of the reads and uses these patterns to identify and taxonomically

assign the reads. Typically the patterns looked for are in codon utilisation, 

single-nucleotide variants (SNVs) and k-mer content.
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1.4.1 MetaPhlAn2 [36]

MetaPhlAn2 (metagenomic phylogenetic analysis) maps sample reads to a 

clade specific marker reference database and delivers strain level identification 

and relative quantitation for prokaryote, eukaryote and virus sample reads.  A 

clade specific marker is a coding sequence that is strongly conserved within the

clades genome and has no similarity to a known sequence outside of the clade. 

MetaPhlAn2 is an advanced version of MetaPhlAn [37]  and includes an 

additional 1 million markers covering an additional 7,500 species to MetaPhlAn. 

MetaPhlAn2 supports parallelism and also incorporates the alignment tool 

BowTie2[38] which has increased the speed more than 10 times compared to 

MetaPhlAn.  The MetaPhlAn2 clade specific reference database is greatly 

reduced in size compared to a full genome reference database and therefore 

can be mapped to sample reads very efficiently.  Sequencing error is unlikely to 

result in an erroneous match to a marker sequence due to the uniqueness of 

the marker sequences and their small size.  Therefore there is no requirement 

to perform any pre-processing such as assembly, gene annotation or error 

detection.

1.4.2 CONCOCT [39] 

CONCOCT is an automatic algorithm that uses sequence composition and 

coverage to cluster contigs into genomes.  The initial analysis of CONCOCT, as 

reported in the literature, used in-silico and mock community datasets  The tool 

Ray [40] was used to generate the co-assemblies, with a k-mer length of 41, for 

this initial analysis.  The mock datasets analysed in the paper consisted of ~750

million reads, required compute power of 2,048 cores and took 22.5 hours to 

assemble.  Each of the assembled contigs were cut into 10 kilobase fragments 

to reduce compute requirements for alignment of reads to.  BowTie2 was used 

to align the sample reads back against the contigs to determine coverage of the

contigs per sample.  Any contig which has more than 10 hits during the 

alignment step is labelled as a genuine contig.  TAXAassign 

(https://github.com/umerijaz/TAXAassign) was used to determine the taxonomic

classification of the contig; TAXAassign uses BLAST[41] to match against the 

NCBI NT database (http://www.ncbi.nlm.nih.gov/nucleotide).
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1.4.3 IMG/M 4 [42]

IMG/M 4 (Integrated Microbial Genome/Metagenomes) has a number of 

analysis tools which are only available to registered users.  The metagenomic 

tools available through IMG/M [43] are only accessible after the data has been 

uploaded to IMG/M ER version (Expert Review).  The IMG/M database can be 

used to evaluate the metagenomes prior to public release on the IMG/M 

submission site.  The paper is unclear who owns the data after it has been 

uploaded to this site; this raises concerns if sensitive samples are to be 

analysed.  IMG/M accepts assembled or unassembled data and subjects them 

to a quality step which includes trimming, removal of replicates and masking of 

low complexity regions.  Protein coding genes are detected using ab initio gene 

prediction tools: GeneMark [44], Metagene [45], Prodigal [46] and 

FragGeneScan[47].  Reads can be 100 – 800 bp in length and can be identified 

though comparison to the IMG [48, 49] protein database using BLASTX.  IMG/M

then assigns phylogenetic composition through comparisons of the samples 

protein coding genes to those in the IMG database and NCBIs RefSeq 

database.

1.4.4 MetaPhyler [50]

MetaPhyler uses a set of marker genes to form a taxonomic reference for 

homology-based classification.  The marker gene reference is based on 31 

protein-coding marker genes previously shown to be suitable for phylogenetic 

analysis.  These marker genes are universal, only present once in each 

genome and are rarely subject to horizontal gene transfer pressure. 

MetaPhyler’s database only enables identification of reads to genus level rather 

than species or even strain level.  This level of taxonomic classification is not 

sufficient when identification to species level is required.  For example, samples

containing Bacillus cereus and Bacillus anthracis have the potential to lead to 

very different outcomes due to the health consequences of the organisms.  The 

output of MetaPhyler displays the abundance of different genus within the 

population by calculating the coverage for each marker gene as a function of 

the total reads mapped.
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1.4.5 PhyloSift [51]

PhyloSift has a standard database made up of 37 “elite” gene families (a subset

of 40 elite genes previously reported) representing roughly 1% of the bacterial 

genome.  The “elite” genes are defined as genes which are near universal and 

present in just single copies.  Phylogenetic trees built using these genes 

individually are generally congruent with each other.  In addition to these gene 

families there are four additional families; 16S and 18S rRNA genes; 

mitochondrial genes; eukaryote-specific genes; and viral genes.  This equates 

to a set of 800 gene families, mostly viral genes.  The PhyloSift work flow is 

broken into four distinct tasks; sequence identity search, alignment to reference 

multiple alignments, placement on phylogenetic reference tree and taxonomic 

summary of read placements.  The sequence identity search task uses the 

LAST algorithm [52] to identify regions of the sample reads with homology to 

the reference database. PhyloSift uses hmmalign [53] for the alignment to 

reference multiple alignment tasks.  Each of the alignments of the 37 elite gene 

markers are concatenated into a single row.  For placement on a phylogenetic 

reference tree PhyloSift uses pplacer [54], which can be run in maximum 

likelihood (ML) or Bayesian mode.  ML mode places the sample reads at the 

single most likely attachment point whereas the Bayesian mode shows all 

possible attachment points.  The last task in the analysis workflow is the 

generation of a human friendly summary of the phylogenetic placements.  

Finally, PhyloSift produces Krona plots [55] for both the 37 elite gene families 

and the 37 elite gene families and additional families.  

1.4.6 SURPI [56]

SURPI (Sequence-based Ultra-Rapid Pathogen Identification) utilises SNAP 

and RAPSearch [57].  In fast mode SURPI can detect viruses and bacteria from

samples of 7-500 million reads in 11 minutes to 5 hours using a viral and 

bacterial database.  The speed test detailed in the paper was performed using 

64 core, 512 GB RAM, 3 x 4 TB hard drive.  In comprehensive mode the 

sample reads are classified against the entire NCBI database.  SURPI has a 

minimum hardware requirement of 60 GB RAM, 1 GB disk space for the 

program and 1 TB disk space for the reference data.  SNAP is a hash-based 

nucleotide aligner developed for mapping a wide range of read lengths (50 – 
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10,000bp) to a reference genome.  SNAP was specifically designed for human 

genome mapping and therefore a custom build was made for aligning to 

different reference databases.  The SURPI pipeline accepts FASTQ files which 

are then trimmed on quality using cutadapt[58], low complexity sequences 

removed using DUST [59] and the reads are cropped to 75bp.  The processed 

reads are then aligned to the human database followed by alignment to 29 

indexed nucleotide sub-databases (bacterial, fungal, parasitic, other and viral).  

Matched reads are then taxonomically classified by looking up the GI numbers 

from NCBI.  In comprehensive mode SURPI continues to de novo assembly 

using AbySS [8], AbySS is run several times to increase robustness of the de 

Bruijn graph based assembly and then RAPSearch translates the nucleotide 

output for viral or NCBI protein alignment.

1.4.7 CloVR [60]

CloVR (Cloud Virtual Resource) offers push-button automated sequence 

analysis utilizing either local or cloud computing resource.  CloVR has four 

analysis protocols 1) BLAST search 2) comparative 16S rRNA analysis 3) 

Metagenomic comparative analysis 4) microbial genome assembly and 

annotation.  The metagenome comparison pipeline takes FASTA input and 

processes through UCLUST [61] for clustering and replicate removal.  

Functional classification is performed using BLASTX against COG [62], 

taxonomic classification utilises BLASTN against RefSeq and Metastats[63] 

delivers comparative analysis and outputs summary reports and figures.  

1.4.8 CARMA3 [64]

CARMA3 is a taxonomic classification method that can be used with assembled

or unassembled sequences and has been developed to work with both BLAST 

and HMMER3 [53] homology searches.  The first step for the BLAST 

component of the program is to use BLASTX for homologues to the 

metagenomic sequences in the NCBI NR database.  After this initial search is 

complete all reads without taxonomic assignment or that have unclassified/other

as the output are discarded from the process.  The following step is to take all 

the hits that were generated in the first BLASTX search and generate a new 

database.  This database is then searched against and the output is ranked with
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likely taxonomic classification enabling LCA (lowest common ancestor) 

classification.  The main difference when using the HMMER3 alternative 

approach is that the metagenome sequence is translated into all six possible 

protein sequences before being searched against the pfam database [65].  The 

process then mirrors the BLAST component of the program but there is the 

added benefit of using the HMMER3 component which is the ability for 

functional classification of the reads.  CARMA3 is not a fast program; it was 

reported in the paper that to run the complete CARMA3 pipeline on 10,000 

reads using a dual core 8 GB RAM of computing resource took over 55 hours 

for the BLAST component and over 7 hours for the HMMER3 component [18].

1.4.9 MG-RAST [66]

MG-RAST is an online, open source environment where metagenomic 

sequence data is automatically analysed and annotated.  MG-RAST accepts 

raw sequence data or assembled contigs and runs a prioritisation system where

projects which allow their datasets to be made available to the public with 

metadata are processed with high priority and projects which keep their data 

private have a lower priority.  The uploaded data is password protected and 

there is the option to give permission for the data to be accessible to colleagues

or the MG-RAST user community.  The first data manipulation step is to 

normalise the data by labelling the reads with unique IDs and removing 

duplicate reads.  The normalised data is then screened for protein encoding 

genes using BLASTX against the SEED comprehensive non-redundant 

database [67].  At the same time the data is compared to accessory databases 

including rDNA databases such as GREENGENES [68], RDP-II [69], European 

16S rRNA database [70], chloroplast database, mitochondrial database and 

ACLAME database [71] of mobile elements.  The final data manipulation step is 

to calculate the taxonomic distribution and functional assignment of the sample. 

Taxonomic distribution is calculated using the phylogenetic information from the 

SEED database and the similarities to the 16S database.  These results are 

shown in tabular format which can be mined to show specific taxonomic 

groupings.  There is also a comparative metagenomic function which enables 

taxonomic variation between metagenome datasets to be compared against 
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each other. The results are shown in a tabular heatmap, highlighting the 

differences.

1.4.10 CLARK [72]

The CLARK (CLAssifier based on Reduced K-mers) algorithm develops a 

reference index which contains the unique k-mers (k-mer = 31-mer) for each 

target/reference organism.  The k-mers that appear in more than one target 

genome are removed.   The target specific k-mers are put into a “dictionary” 

resulting in a discriminative database which unknown reads can be referenced 

against.  Each unknown read is queried against the whole “dictionary” and is 

assigned to the target with the most hits using exact matching.  Advantages of 

CLARK include the ability to remove k-mers from the unknown sample based 

on their abundance which enables the reduction of sequence error affecting the 

results.  CLARK is also able to report confidence scores for each of the k-mer 

hits. In addition to the standard program, there are two variants of CLARK: 

CLARK-l (a light version of CLARK) uses a k-mer length of 27 and skips four 

consecutive 27-mers which delivers a reduced compute requirement <4 GB 

RAM that is designed for laptop computing. CLARK-l, reportedly, still achieves 

high precision and high speed although lower precision when compared to 

CLARK.  

CLARK-E (an express version of CLARK) is also available and uses a much 

smaller reference index which only uses non-overlapping k-mers and only 

queries a sample of the unknown reads and assigns the read to the first target 

k-mer that it hits.

1.4.11 GOTTCHA [73]

GOTTCHA (Genomic Origins Through Taxonomic CHAllenge) has a number of 

unique reference genome databases to differing levels of taxonomic levels.  To 

generate the databases shared 24-mer sequences were removed from 

chromosomal and plasmid replicons.  There are databases for bacteria at 

Class, Family, Genus, Order, Phylum, Species and Strain level and also viral 

databases at Genus, Species and Strain level.  These databases are also 
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available with all human 24-mers, which are derived from 3 human genomes, 

removed.  GOTTCHA analysis takes reads trimmed on quality and then 

fragmented into non overlapping 30-mers.  The short read aligner BWA[74] then

aligns the fragmented sample reads to the chosen GOTTCHA reference 

database using the exact match option.  The SAM alignment files are then 

profiled and filtered with the GOTTCHA profiler.   GOTTCHA’s primary 

classification parameter is the Linear Coverage (LC) defined as the percentage 

of the unique genome covered during the mapping stage.  The LC must be 

greater than 0.5%.  The ability of GOTTCHA to identify novel genomes was 

investigated; 2000 draft genomes were examined at a range of taxonomic levels

and 92% of novel strains were correctly identified to the parent taxa.  

GOTTCHA reports a higher memory requirement and performs slower than 

other classifiers tested [22].

1.4.12 One Codex [75]

One Codex is a web-based platform using a k-mer based taxonomic 

classification algorithm.  It contains two reference databases, the OneCodex 

database and an NCBI RefSeq database.  The OneCodex database covers 

40,000 bacterial, viral, fungal and protozoan genomes; the RefSeq database 

covers 8,000 microbial genomes.  They are both developed using 31-mers, 

each read is broken down into overlapping 31-mers and then aligned to the 31-

mers.  The results are summarised as a “k-mer hit chain” showing the lowest 

taxonomic clade each read can be identified as.  It is possible to review filtered 

and unfiltered output from the OneCodex database.  The filtered output 

highlights high confidence results whereas the unfiltered results are all of the 

taxonomic identifications.  One Codex is run as an open access program for 

research involving public data.  Research institutes are limited to 50 runs per 

researcher and industrial users have to pay for access to the platform.

1.4.13 Kraken [76]

Kraken is described as an ultrafast tool delivering genus level sensitivity and 

precision comparable to the fastest BLAST program megaBLAST.  BLAST was 

reported as one of the best tools for metagenomic alignment in 2009[77].  

Kraken uses a database containing k-mer and lowest common ancestor (LCA) 
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for all organisms for whose genome contains that k-mer.  The Kraken database 

is built using a user defined set of genomes and the default setting for k is 31 

which can be modified by the user.  When classifying a sample each read is 

broken down into its k-mers and similar k-mers are grouped together for faster 

searching which is helped by using CPU cache rather than RAM.

Mini-Kraken utilises a 4 GB database, reducing the time and compute power 

required to search against it.  To generate the reduced database size, 18 of 

every 19 k-mer records was removed.  This reduction factor was chosen to 

reduce the database to below 4 GB so Mini-Kraken can be used on small 

personal computers.  As reported in the literature, Kraken and Mini-Kraken offer

comparable levels of precision (97.9% and 98.9% respectively), however, the 

sensitivity of Mini-Kraken is 66.6% compared to a sensitivity of 80.6% for 

Kraken[76].

1.4.14 ConStrains [78]

ConStrains (Conspecific Strains) has been developed to identify conspecific 

biological and archaeal strains using SNP patterns in a set of universal genes.  

ConStrain requires reference species to compare raw metagenomic reads to for

SNP pattern identification.  The ConStrain algorithm is broken into two 

operations; identification of species by which SNPs are detected followed by 

transforming individual SNPs into SNP profiles representing individual strains.  

MetaPhlAn is used for species composition profiling of the raw reads 

(ConStrains requires >10x coverage for each species) and a custom database 

is then built using the PhyloPhlAn marker set which the raw reads are mapped 

to using BowTie2.  SAMtools [79] is subsequently used to generate a table of 

coverage by base position for SNP identification.  ConStrains uses the identified

SNPs to generate a ‘uniGcode’ which identifies SNPs spanning hundreds of 

genes.  SNP-flow and SNP-type algorithms are used to create strain 

combination models and the relative abundance of each strain is estimated for 

each model.  This step is repeated for each species with the required coverage.

This approach was reported to deliver accurate results on in-silico datasets 

based on 36 strains of E. coli and also matched manual strain identification 

techniques on infant gut metagenome dataset[79].
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1.4.15 Anvi'o [80]

Anvi’o is an analysis and visualisation application for ‘omics data and is 

available through command line or a graphical web-browser.  Anvi’o is an 

assembly based metagenomic workflow which utilises human guided and 

automated sample binning, visualisation and reporting.  Anvi’o generates 

community contigs from all or a subset of sample reads, and this contig 

database is used to store k-mer frequencies, functional annotation and GC 

content. The contig database is then mapped to each of the individual sample 

reads and properties such as mean coverage, for each contig in the read 

generated.  The results from this alignment step are put through the CONCOCT

[39] tool for binning of contigs into draft genomes.  A limitation of Anvi’o is the 

high level of compute required for certain steps within the pipeline, cluster 

nodes of up to 512 GB memory were used for the analysis described in the 

paper.

1.4.16 TETRA [81]

TETRA takes DNA sequence reads and calculates the frequencies of each of 

the 256 possible tetranucleotides (a tetranucleotide is a 4-mer, a 4bp section of 

DNA).  Using a maximal-order Markov model the expected frequencies are 

calculated based on the composition of bi- and tri- nucleotides.  Divergence 

from the expected tetranucleotide frequency is converted into a z score; these z

scores are compared in pairs using the Pearson’s correlation to calculate the 

relationship between the pairs.  TETRA is available as a web-service where raw

data is uploaded and the results are emailed when complete but is also 

available as a standalone program which has the benefit of the raw data being 

accessible to the user.  TETRA is able to deliver full classification for reads in 

the region of 40 kb.  However, it will struggle with reads in the region of 1 kb 

because the phylogenetic signal within tetranucleotide usage patterns is weak.  

Tetranucleotide usage patterns should also not be used to deduce phylogenetic 

relationships but rather as a fingerprinting technique and therefore it is unlikely 

to give high levels of resolution.
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1.4.17 specI [82]

specI (species Identification tool) is based on pair wise average nucleotide 

identity of 40 protein coding phylogenetic marker genes (PMGs).  The 40 PMGs

were annotated for 3,496 prokaryotic genomes using SMASH routines [83] a 

tool for estimating and annotating metagenome phylogenetic and functional 

composition, and the sequences were obtained using the eggNOG database

[84].  The pairwise distance for the PMGs was calculated using glsearch [85] to 

generate distance matrices.  Clustering is performed using hcluster 

(https://code.google.com/p/scipy-cluster/) with the distance matrices using 

single, average and complete linkage.  These clusterings were then 

transformed into discrete species level clusters.  Using this technique, greater 

than 96% of assignments for 2,804 genomes from NCBI were correct.

1.4.18 PhymmBL expanded [86]

Phymm [77] (Phylogenetic Markov Models) was developed as a metagenomic 

phylogenetic classifier specifically for short reads.  It has been shown to be 

accurate on reads as short as 100bp.  Phymm was the first example of a 

phylogenetic classification tool that used interpolated Markov models (IMMs).  

IMMs are used to characterise oligonucleotides of different lengths into 

phylogenetic groups.  In developing Phymm an IMM was generated for each of 

the genomes in the RefSeq database (1,146 at the time).  It was also shown 

that utilising Phymm to classify the reads prior to analysis using BLAST 

improved the accuracy of using either Phymm or BLAST independently, this 

pipeline is referred to as PhymmBL.  PhymmBL was expanded in 2011 and the 

output now includes confidence scores on the accuracy of the predictions.  The 

PhymmBL database can now also be modified to include any amount of custom

genomes (including eukaryotic and viral sequences), removing the reliance on 

RefSeq bacterial and archaeal genomes.

1.4.19 TACOA [87]

TACOA (TAxonomic COmposition Analysis) is a supervised taxonomic 

classification method utilising the k-nearest neighbour (k-NN) approach with a 

smoother kernel.  The k-NN approach classifies unknown reads to the nearest 
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known read, but there are limitations associated with this approach regarding 

high-dimensional input data.  The smoother kernel reduces this issue by 

utilising the whole reference data during classification rather than a close 

neighbourhood.  TACOA computes genomic feature vectors (GFV) for each 

genome in the reference database and for the reads to be classified.  The GFVs

are calculated as a ratio of observed oligonucleotide frequency within a 

genomic fragment compared to the expected frequency of the oligonucleotide 

given by the GC content.  Reads with similar GFVs are classified together at 

different taxonomic ranks to genus level.

1.4.20 Centrifuge [88]

Centrifuge is a metagenomic classifier that aligns the sequencing reads to an 

index.  The alignments are performed using a modified indexing scheme based 

on the Burrows-Wheeler transform[89] (BWT) and the Ferragina-Manzini[90] 

(FM) index.  BWT and FM were developed to enable fast and low memory 

alignments.  This approach enables a rapid identification of reads using a 

desktop computer.  Centrifuge further reduced the size of the FM index by 

removing a large amount of repeated genomic information between highly 

similar bacterial strains and species.  For example, the total sequence size for 

the 131 strains of Salmonella enterica was reduced from 661 to 74 Mega base 

pairs.  This fast identification and small index size enables the tool to process 

over 500,000 reads per minute compared to MegaBLAST which processed 327 

reads per minute.  This tool falls outside of the initial selection criteria, however, 

due to the abundance data that it generates it was included into the study.
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1.5 Metagenomic Assembly Tools

First generation sequencing techniques, such as Sanger sequencing, deliver 

longer sequencing read lengths compared to typical NGS platforms, such as the

Illumina MiSeq and IonTorrent PGM. These newer platforms typically deliver a 

lower cost per base and produce a larger number of shorter reads than the 

original sequencing technologies. The longer read lengths of the first generation

platforms and smaller reference databases in the past meant that aligning the 

reads to the database was a suitable approach for read identification.  With 

orders of magnitude more genomes in the databases and substantially larger 

amounts of data generated with NGS, aligning the reads within a metagenomics

sample to these large databases is computationally expensive and time 

consuming.  The shorter read lengths generated by NGS platforms also means 

that aligning reads directly to databases can generate ambiguous taxonomic 

labelling. One potential mechanism to overcome these problems, prior to 

attempting to assign a read to a particular taxonomic group, is to assemble the 

reads into longer regions called contigs. These longer contigs can subsequently

be used in the identification and taxonomic assignment process. The tools 

discussed in this part of the review all fall into this category and perform 

metagenomic assembly.

The assembly tools described below use De Bruijn graphs (dBG) in order to 

assemble contigs from the raw reads.  A dBG works by dividing the sequencing 

reads into smaller, overlapping sections of a pre-defined length called k-mers.  

Figure 1 shows how four sequencing reads are broken down into k-mers of 

length 3 (3-mers); realistically the k-mer length is longer and generally over 

20[91].  The dBG is then built with the k-mers representing nodes within the 

graph where the edges connect overlapping nodes.  Sequencing errors, shown 

in red, may be ignored by the assembly tool as there will be fewer reads 

containing the error so any branches within the graph containing low frequency 

k-mers can be ignored.  The overlapping nodes within the graph are then 

combined to generate the contigs[92].  
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Using dBG to assemble metagenomic datasets is made particularly difficult due 

to four main factors: sequencing errors, repeat regions, strain variants and 

varied depth of coverage[93].  Sequencing errors generate false k-mers which 

increase the size and complexity of the graph.  This can lead to errors in the 

assembled contigs.  Repeat regions generate large numbers of edges within the

graph increasing the number of routes across it.  Increasing the length of the k-

mers will reduce the chance of error but does require a high level of compute 

resource.  The fact that related strains are genetically similar means there will 

be a high number of similar nodes within the graph.  Many of these nodes will 

be ambiguous leading to fragmented contigs.  It is also challenging to 

differentiate between polymorphisms due to strain variants and sequencing 

error.  Finally, the depth of sequencing coverage may impact the contigs 

assembled using a dBG approach.  Low abundant species will have a lower 

depth of coverage compared to a highly abundant species.  This may lead to 

some branches within the graph being erroneously deleted due to the low 

abundance of their nodes.  The higher abundance nodes may also be 

misinterpreted as highly repeated regions leading to errors in the assembly.

For this study, the contigs generated by the assembly tools were aligned 

against the NR database using DIAMOND[94].  MEGAN5[95] was then used to 

assign taxonomic classification to the contigs that were generated by the de 

novo assembly tools discussed in this section.  Using one standardised tool to 

assign taxonomic classification to all aligned contigs enabled the tools to be 

fairly compared against each other.  
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1A Read 1 Read 2 Read 3 Read 4
C G T A C A A C A G A G T T G C G T A C G T C C A G

1B K-mers
C G T A C A T T G C G T

G T A C A G T G C G T C
T A C A G A G C G T C C

A C A G A G C G T C C A
G T A C A G

1C Build the de Bruijn Graph
1 1 1 3 2 1 2 2 1 1

T T G T G C G C G C G T G T A T A C A C A C A G A G A G A G

1 1 1
G T C T C C C C A

1D Contig
T T G C G T A C A G A G

Figure 1: A simplistic representation of the generation of contigs from raw sequencing reads using de Bruijn Graphs, the process utilised 

by many de novo assembly tools.  1A shows four short sequencing reads, read four has a sequencing error (denoted with red font); 1B 

identifies all possible k-mers of 3 bases for the four reads; 1C shows the built de Bruijn Graph, the nodes of the dBG represent the k-

mers with their frequency denoted, each node shares an edge with a node with overlapping k-mers, due to the low frequency of the 

divergent branch it may be disregarded; 1D shows the final contig.
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1.5.1 MetAMOS [35]

MetAMOS (Metagenomic assembly and analysis) is a modular and 

customisable pipeline claiming to deliver a push button solution for 

metagenomic analysis.  The entire pipeline is built around Bambus 2.0 [96], a 

metagenomic scaffolder but also supports a large number of tools, including 

eight assemblers, six contig annotation methods, three gene prediction tools, 

one abundance estimation method and an interactive tool for visualisation of 

taxonomic composition.  The workflow can be broken down into three main 

sections of pre-processing, contig scaffolding and contig analysis. MetAMOS 

produces a report summarising the results from the sequencing run.  

1.5.2 MetaVelvet-SL [97]

Typical single genome de novo assemblers are not capable of assembling 

multiple genomes from mixed sequence reads. MetaVelvet [98] is a 

metagenomic assembly tool that was developed from Velvet [99] (a single 

genome assembler) and utilises the de Bruijn graph approach.  However, 

MetaVelvet shows low accuracy and sensitivity identifying chimeric nodes.  

Regarding metagenomic de novo assembly a chimeric node is a node within a 

dBG which is shared between different species.  This could be due to 

orthologous sequences from closely related species, repeat sequences from a 

single species, conserved sequences or gene transfer.

To combat this issue MetaVelvet-SL has been developed which utilises 

supervised machine learning to classify every node as chimeric or non-chimeric 

in a de Bruijn graph.  Metavelvet-SL consists of two modules: the supervised 

learning module which is required to develop the model for the classification of 

nodes, and secondly the assembly module.  The taxonomic profile for the 

sample can either be inferred from taxonomic profiling methods (a pipeline is 

available connecting the MetaPhlAn [37] profiling tool and MetaVelvet-SL), 

estimated using prior knowledge of the target community or MetaVelvet-SL is 

supplied with a library of pre-trained classification models for different 

environments (e.g. soil, human blood and deep sea).

38



1.5.3 IDBA-UD [100]

IDBA-UD is a de novo assembler and is a further development to the IDBA and 

Meta-IDBA programs [101].  It has been specifically developed for assembling 

samples which have a very uneven depth of coverage across the genome.  

Three problems were identified for other de novo assembly tools using de Bruijn

graphs: 1) sequencing errors generating incorrect k-mers (a k-mer is defined as 

a piece of DNA k nucleotides in length); 2) missing k-mers in low coverage 

areas; 3) increased branches in the de Bruijn graph due to small k-mers.  IDBA-

UD has been developed utilising a novel approach in the generation of the de 

Bruijn graph to overcome these problems, which are exacerbated with 

metagenomic datasets.  To resolve problems 1 and 3, IDBA-UD uses variable 

thresholds for length k to enable the longest value for k to be used across the 

dataset. This reduces the number of branches generated but also enables the 

shortest k to reduce the chance of incorrect k-mers.  To resolve problem 2 of 

missing k-mers, IBDA-UD uses paired end reads to form local assembly areas.

1.5.4 ABySS [102]

ABySS (Assembly By Short Sequencing) is a de novo assembler specifically 

developed for short reads and uses a unique version of de Bruijn graph theory.  

The algorithm is split into two parts where the first stage generates all possible 

k-mers for the sequence reads.  The k-mers are processed with read errors 

removed and contigs are built. The second stage of the process then extends 

the length of the contigs using paired-end reads.

1.5.5 MEGAHIT [103]

MEGAHIT is a de novo assembly tool which uses succinct de Bruijn graphs 

(SdBG).  SdBG offer advantages over de Bruijn graphs, but their construction is

non-trivial.  In order to overcome these challenges MEGAHIT exploits the 

parallelism of a graphics processing unit.  This approach speeds the 

construction of the SdBG by up to 5 times compared to only using CPU.  

Sequencing error also has a large impact on MEGAHIT, so to reduce this k-

mers that only appear once are disregarded prior to constructing the SdBG.  

This approach has the potential to lead to k-mers from low abundance 

39



organisms not being built into contigs.  The results suggest that MEGAHIT 

generates longer and more accurate contigs compared to some of its 

contemporary assembly tools.

1.5.6 MEGAN [95]

MEGAN (MEtaGenomic ANalyzer) is a computer program designed to analyse 

metagenomic data with an unrestricted choice of alignment tools and 

databases.  The MEGAN pipeline is now on version 5 with version 6 in beta test

stage.  MEGAN’s pipeline starts with the comparison of raw sequence data or 

assembled contigs to one or more reference databases (e.g. NCBI NT) using a 

comparison tool (e.g. BLAST).  The results from the comparison step are then 

collated and each hit has a taxon ID assigned to it based on NCBI taxonomy.  A 

Lowest Common Ancestor (LCA) algorithm is then used to produce a summary 

of taxonomy.  The LCA algorithm takes all of the matches for each read from the

comparison to reference databases stage and calculates the lowest common 

ancestor for each of the hits.  The output from the MEGAN pipeline can be 

displayed at any taxonomic level down to species and strain level.  MEGAN is 

able to accurately assign reads as short as 35bp but reads this short can be 

aligned to a number of divergent genomes and therefore results in higher level 

taxonomic classification.  It is suggested that reads of at least 200bp are used 

for accurate classification to species or strain level.
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1.6 Work plan following the outcome of the literature review.

The tools detailed above highlight the different approaches available for 

metagenomic analysis.  From the initial assessment of over 70 tools, 24 were 

down-selected for further review. Based on the literature review, future work 

was undertaken to gain a better understanding of how each of the down-

selected tools works with data of interest.  Attempts were made to download 

and install the tools described above.  However, some were unavailable for 

download and some were unable to be installed correctly.  The tools which were

correctly installed were evaluated initially using simple in-silico datasets and the

results from this initial evaluation enabled a further round of down-selection.  

The tools which performed best on the simple dataset were further evaluated 

using datasets of increasing complexity, culminating in the analysis of real-life 

data.

Evaluating the ability of each tool to successfully analyse metagenomic data will

be based on the following metrics:  

 The taxonomic level of identity; as previously stated it is essential 

that the tool is able to identify the genomes to species level.  

 The accuracy and sensitivity of the tool will be defined in the 

following terms: true positive, false positives and false negatives.  

The in-silico data were generated using MetaSim [104].  MetaSim is a tool 

designed to simulate genomic data using adaptable error models to represent 

real sequencing data.  This approach enabled the comparison of tools using a 

fully characterised dataset.  The initial datasets were designed to simulate 

Illumina MiSeq runs using a suitable error model.  The datasets were made of 

eight and ten genomes, each with equal coverage.  The Illumina MiSeq platform

is a widely used sequencing platform so simulating the output based on this 

platform increases the utility of the in-silico datasets.  To increase the 

complexity of the in-silico datasets the number of genomes was increased to 

100 and the level of abundance manipulated for each genome.  The 10 and 100

genome datasets mirrored real WGS data from bio-aerosol studies.  The 
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simulated datasets enabled evaluation of the tools without sample preparation 

bias affecting the results.  Further analysis of the down-selected tools, using 

real WGS datasets, enabled the tools to be analysed on sequence data of 

known content.  The culmination of the study was to evaluate bio-aerosol 

samples collected, over long and short term temporal studies, at Dstl.
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2 Construction and analysis of two simple in-silico datasets using 

binning and assembly metagenomics tools.

2.1 Introduction

In order to understand the accuracy of different metagenomic analysis tools it is 

imperative to test them against known datasets.  Each tool evaluated on this 

project has published data indicating the accuracy of its output; however some 

of these reports are contradictory.  For example, Kraken is described as having 

high precision at the genus level (>90%) [76] but also as generating large 

numbers of false positives at the species level (> 4,000) [105].  It is therefore 

important to independently verify these reports with well defined datasets.

Sequencing a defined in-vitro mock community metagenomic sample could 

generate errors in the sequencing and therefore bias the analysis output.  

These errors could be caused by sequencing biases as well as unknown 

contaminants potentially being introduced during the sequencing process.  

These potential errors would reduce confidence that the sequencing output was

a true representation of the sample and would therefore reduce the confidence 

of any results derived from their analysis.  In order to overcome these issues, it 

was decided to build in-silico datasets, ensuring the genomic content of the 

sample waere well defined.  The software package used for this process was 

MetaSim[104].  MetaSim was developed at Tubingen University to generate 

simulated metagenomic datasets for the benchmarking of metagenomic 

analysis software.

  

In order to build a dataset that represented a true aerosol metagenome it was 

decided to identify an aerosol sample from the open literature.  Due to a lack of 

more suitable published datasets, Singapore Air Sample 2 published on 

Integrated Microbial Genomes and Microbes (https://img.jgi.doe.gov/cgi-

bin/m/main.cgi?section=MetaDetail&page=metaDetail&taxon_oid=2003000007)

was used.  Ten organisms were selected to cover a range of GC content and 

include Gram-positive and Gram-negative organisms as these factors are 

considered to impact the results from sequencing[106].  The 10 organisms 
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selected were highly abundant organisms from Singapore air sample 2.  The 

organisms selected cover 7 genera to allow evaluation of the ability of the 

tested tools to differentiate between species from the same taxonomic lineage.  

This dataset was called AM_10G_10M.

The second dataset, termed Zymo_8G_10M, contained the eight bacterial 

organisms used by ZymoBiomics in their Community Standard (cat # D6300).  

Dstl have used the ZymoBiomics community standard as a positive control 

sample to analyse a range of sequencing platforms, DNA extraction 

methodologies and other aspects of the sequencing pipeline.  It was therefore a

logical step to build an in-silico dataset based on this well-utilised sample.  The 

eight bacterial organisms cover a range of GC content from one third to two 

thirds and are also a mix of Gram-positive and Gram-negative species.
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2.2 Methods

2.2.1 In-silico simulation of short read datasets for evaluation of 

metagenomic analysis tools.

MetaSim has a Graphical User Interface (GUI) which enables the user to select 

genomes of interest from its database in order to generate bespoke in-silico 

metagenomic samples.  There is the option to alter the abundance of the 

selected genomes and also to simulate sequencing errors (indels and 

substitutions) to more accurately represent output from a sequencing platform.  

MetaSim was used to generate two in-silico datasets, one based on a real 

aerosol dataset and one based on a community standard often used at Dstl.  

Each of the datasets used the error profile for an Illumina MiSeq sequencing run

with a read length of 300bp and a total of 10 million reads.  Figure 2 shows the 

chance of error for each location of the read, highlighting the more error prone 

5’ end of the read.  For these simple in-silico datasets each of the datasets were

designed with an even abundance.  

Object 3

Figure 2: A representation of the rate of error assigned to each position of the 

300bp error profile used with MetaSim to simulate the AM_10G_10M and 

Zymo_8G_10M in-silico datasets. 
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AM_10G_10M
Gram

+/-

GC content

(%)
Reads

Genome

size (Mb)
Pseudomonas aeruginosa 

PAO1
- 66.6 1383193 6.26

Pseudomonas putida KT2440 - 61.5 1366898 6.18
Brevundimonas subvibrioides 

ATCC 15264
- 68.4 761685 3.45

Bacillus thuringiensis serovar 

konkukian str. 97-27
+ 35.4 1174778 5.32

Bacillus cereus ATCC 14579 + 35.2 1200992 5.43
Bacillus anthracis str. Ames + 35.4 1155395 5.23
Staphylococcus aureus subsp. 

aureus NCTC 8325
+ 32.9 623083 2.82

Mycobacterium tuberculosis 

H37Rv
- 65.6 976654 4.41

Acholeplasma laidlawii PG-8A - 31.9 330789 1.5
Escherichia coli str. K-12 substr. 

MG1655
- 50.8 1026533 4.64

Table 1: Strain level information for the 10 organisms used to construct the in-

silico dataset AM_10G_10M using the metagenomic simulation package 

MetaSim.
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Zymo_8G_10M
Gram

+/-

GC content

(%)
Reads

Genome

Size (Mb)
Bacillus subtilis subsp. subtilis 

str. 168
+ 43.5 1345867 4.22

Listeria monocytogenes EGD-e + 38 940866 2.94
Staphylococcus aureus subsp. 

aureus NCTC 8325
+ 32.8 901277 2.82

Enterococcus faecalis V583 + 37.3 1073728 3.37
Lactobacillus fermentum IFO 

3956
+ 51.5 672433 2.1

Salmonella enterica subsp. 

enterica serovar Typhimurium str.

LT2

- 52.2 1581336 4.95

Escherichia coli str. K-12 substr. 

MG1655
- 50.8 1483062 4.64

Pseudomonas aeruginosa PAO1 - 66.6 2001431 6.26
Table 2: Strain level information for the 8 organisms used to construct the in-

silico dataset Zymo_8G_10M using the metagenomic simulation package 

MetaSim.

2.2.2 Hosting, installing and running the down-selected binning tools

Both AM_10G_10M and Zymo_8G_10M were analysed using seven binning 

tools, listed below in Table 3.  These tools were either hosted locally on a Dell 

XPS13 7 Gb RAM laptop, on EDGE (Empowering the Development of 

Genomics Expertise) hosted on the CLIMB (CLoud Infrastructure for Microbial 

Bioinformatics) network [107] or were on-line tools.  EDGE is a software 

package which enables a number of pre-installed sequencing analysis tools to 

be run using a GUI.  The metagenomic taxonomic analysis tools available 

through EDGE are GOTTCHA, MetaPhlAn, kraken-mini and BWA.  CLIMB is a 

shared cloud compute resource developed for the sharing of bioinformatics 

pipelines and sequencing data. Due to the ease of running MetaPhlAn through 

EDGE it was decided to use it to analyse the initial datasets.   This enabled a 

comparison of the output between a tool and the more up to date replacement.

Binning Tool Hosted Command
MetaPhlAn2 Locally MetaPhlAn2.py sample.fastq --mpa_pkl 

/db_v20/mpa_v20_m200.pkl --bowtie2db 
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/db_v20/mpa_v20_m200 --input_type fastq > 

sample.txt
MetaPhlAn EDGE Run using default parameters

OneCodex
On-line 

tool

Run using default parameters and results 

taken from the filtered and unfiltered output

Kraken-mini
Locally

Kraken –db /minikraken_20141208 

sample.fastq –threads 4 > sample.kraken

Kraken-report –db/minikraken_20141208/ 

sample.kraken
EDGE Run using default parameters

GOTTCHA
Locally

Bin/gottcha.pl –threads 4 –mode all –input 

sample.fastq –database 

/GOTTCHA_BACTERIA_c4937_k24_u30
EDGE Run using default parameters

Phylosift Locally
Phylosift all –output=results-sample 

sample.fastq

Constrains Locally
Constrains –c sample.conf –o sample-output –t

4

MG-RAST
On-line 

tool

Run using default parameters

Table 3: Information pertaining to the location the different binning metagenomic

analysis tools were hosted and the commands required for their use.

2.2.3 Hosting, installing and running the down-selected assembly Tools

The assembly tools listed in Table 4 were used to analyse AM_10G_10M and 

Zymo_8G_10M.  The assembly tools were hosted on the CLIMB cloud compute

infrastructure.  The contigs generated by each of the assembly tools were then 

aligned using DIAMOND [94] against the NCBI non redundant (nr) database.   

In order to generate true positive, false positive and false negative results 

taxonomic assignment was performed with MEGAN5 [95] using the default 

parameters.  Due to the read lengths that had been simulated, IDBA-UD 

needed to have the source code modified; the constant kMaxShortSequence 

was increased from 100 to 300 to enable 300 bp reads to be processed.

Assembly Tool Hosted Command
Abyss CLIMB ABYSS –k ‘k-mer_length’ –o ‘output_location’ 

‘read_location’
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IDBA-UD CLIMB idba_ud –r ‘read_location’  --num_threads 4 –o

‘output_location’
CLARK CLIMB clark-l –k ‘k-mer_length’ –T ‘target-

definition_location’ –D ‘database_location’ –O 

‘read_location’ –R ‘output_location’ –g 

‘gap_length’
MegaHit CLIMB Megahit –r ‘read_location’ –m ‘mode’ –o 

‘output_location’
Diamond Locally ./diamond blastx -d nr -q ‘read_location’ -o 

‘output_location’
Table 4: Information pertaining to the location the different assembly 

metagenomic analysis tools were hosted and the commands required for their 

use.

2.2.4 Results interpretation

The results from each analysis were reported as true positive, false positive and

false negative taxonomic identifications.  

The true positive, false positive and false negative results enabled the 

sensitivity and precision of the tools to be calculated[108].  Sensitivity is a 

measure of a tool’s ability to correctly identify that the organism is truly present 

in the sample; a tool with 100% sensitivity will return zero false negatives.  

Precision defines the proportion of true positives compared to false positives; a 

tool with 100% precision will have zero false positives.

Sensitivity = 
True Positive
True Positive + False Negative

 ×  100

Precision = 
True Positive
True Positive + False Positive

 ×100

A tool with high sensitivity will have a low number of false negatives, giving 

confidence that organisms present in a sample will be identified.  However, 

sensitivity does not take into account false positives.  A tool with high precision 
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will have a low number of false positives giving confidence that the organisms 

identified are present in the sample.  As precision does not take false negatives 

into account there is potential for species present in the sample not to be 

identified by a tool with high precision.  It is therefore important that tools are 

measured and shown to perform well against both metrics of precision and 

sensitivity. 
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2.3 Results and Discussion

2.3.1 Results from the analysis of simple in-silico datasets using binning 

tools.

Identification at the genus level was very accurate for the binning tools tested, 

all but one tool showed 100% sensitivity to both datasets.  GOTTCHA, hosted 

locally, was the only tool unable to identify all genus present in the two datasets.

MetaPhlAn2, MetaPhlAn, GOTTCHA and ConStrain reported zero false 

positives for either of the datasets.  Conversely (the number of false positives 

shown in brackets refer to AM_10G_10M and Zymo_8G_10M respectively), 

One Codex (235 and 170), Kraken-mini (65 and 77), Kraken-mini (EDGE) (68 

and 74), Phylosift (1278 and 1106) and MG-RAST (742) showed high levels of 

false positives see Figure 3A and 3B.  MG-RAST reported high levels of false 

positives for AM_10G_10M, and took several weeks for the program to return 

the results.  Due to the length of time to get the results it was decided that this 

tool is not worth progressing with so the Zymo_8G_10M dataset was not 

processed. 

The ability of the binning tools to correctly identify the organisms to the species 

level in the two in-silico datasets varied across the seven tools tested.  

MetaPhlAn2, One Codex, Kraken and GOTTCHA (EDGE) were able to correctly

identify all organisms at the species level for both datasets.  As well as correctly

identifying all species MetaPhlAn2 and GOTTCHA reported zero false positives.

Kraken (128 and 154), Kraken (EDGE) (175 and 209), One Codex (810 and 

528) and Phylosift (3264 and 2787) reported higher levels of false positives for 

AM_10G_10M and Zymo_8G_10M respectively (Figure 3A and 3B).

Of the seven binning tools tested only One Codex and Kraken were able to 

identify all organisms to strain level across the two datasets.  The only other 

tools able to detect to strain level were MetaPhlAn2 (3 and 0), GOTTCHA 

(hosted locally) (4 and 5), Phylosift (6 and 6) and ConStrains (3 and 0).  The 

figures in brackets refer to the number of strains correctly identified for 

AM_10G_10M and Zymo_8G_10M datasets respectively.  The strain level 

classification generated the highest level of false positives; One Codex returned
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1992 and 2514, Kraken returned 418 and 475, Kraken (EDGE) 322 and 406 

and Phylosift had 3456 and 3088 false positives for AM_10G_10M and 

Zymo_8G_10M respectively (Figure 3A and 3B).

Of note were the differences in output from the same tool hosted on different 

compute platforms.  GOTTCHA hosted locally out-performed GOTTCHA 

(EDGE) at strain level but not at species or genus level identification.  Likewise, 

there were differences between the output of Kraken hosted locally and Kraken 

(EDGE) (Figure 4A and 4B).  These differences could be explained with the 

tools using different versions of their databases or could be different release 

versions of the software.  There is also the possibility that the tools hosted on-

line have different options selected for the commands to run the tools.  No 

information could be found pertaining to the database or commands used by the

on-line tools.
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Object 9 Object 11

Figure 3: Total number of taxa identified  in the in-silico datasets AM_10G_10M 

(A) and Zymo_8G_10M (B) using ten binning tools (MetaPhlAn2, MetaPhlAn 

(EDGE), One Codex (Filtered), One Codex, Kraken-mini, Kraken-mini (EDGE), 

GOTTCHA, GOTTCHA (EDGE), Phylosift and Constrains) at strain, species 

and genus taxonomic levels. 
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Object 13 Object 15

Figure 4: Percentage of true positive, false positive and false negative 

identifications for the in-silico datasets AM_10G_10M (A) and Zymo_8G_10M 

(B) using ten binning tools (MetaPhlAn2, MetaPhlAn (EDGE), One Codex 

(Filtered), One Codex, Kraken-mini, Kraken-mini (EDGE), GOTTCHA, 

GOTTCHA (EDGE), Phylosift and Constrains) at strain, species and genus 

taxonomic levels.
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The sensitivity of the tested binning tools was consistently high (mean 

sensitivity of 94.8%) at the genus level with all but one of the tools (GOTTCHA 

hosted locally – 53% sensitivity) delivering 100% sensitivity.  At species level, 

MetaPhlAn2, One Codex (filtered), One Codex, Kraken-mini, Kraken-mini 

(EDGE), GOTTCHA (EDGE) and Phylosift were all 100% sensitive.  The 

remaining tools were still able to identify a majority of species; ConStrains – 90 

and 100%, MetaPhlAn – 80 and 100% and GOTTCHA – 40 and 62.5% 

sensitive for the two datasets.  The binning tools were less sensitive at 

identification to the strain level.  MetaPhlAn, GOTTCHA (EDGE) and One 

Codex (filtered) had 0% sensitivity at strain level.  MetaPhlAn2 and ConStrains 

were 30% and 0% sensitive at strain level identification for the two datasets 

which was bettered by GOTTCHA – 40% and 62.5% and PhyloSift – 60% and 

75% sensitive to the two datasets.  However, OneCodex, Kraken and Kraken 

(EDGE) were 100% sensitive at the strain level for both in-silico datasets 

(Figure 5A and 5B).

The binning tools could be split into two cohorts when looking at the precision of

the tools.   OneCodex, Kraken, Kraken (EDGE) and Phylosift had much lower 

precision in comparison to MetaPhlAn2, MetaPhlAn, GOTTCHA, GOTTCHA 

(EDGE) and ConStrains.  Apart from One Codex (filtered) which only returned 

results at the species level, the higher performing tools showed 100% precision 

at genus level.  In comparison Kraken, Kraken (EDGE) and Phylosift showed 

precision rates of 9.7 and 9.4%, 9.3 and 9.7%, and 0.5 and 0.7% respectively.  

At species level the high performing tools had a range of 72% – 100% precision

compared to 0.3% – 7.2% for the lower cohort.  The range of precision for the 

lower cohort at strain level identification was 0.3% – 3.0%.  In comparison 

MetaPhlAn2, GOTTCHA and ConStrains showed 100% precision at strain level 

identification.  GOTTCHA (EDGE), MetaPhlAn and One Codex (filtered) did not 

give any results for identification at the strain level (Figure 6A and 6B).

Binning tools did not offer accurate strain identification.  Constrain, MetaPhlAn2 

and GOTTCHA (hosted locally) showed 100% precision but their sensitivity was

consistently below 50%.  This means that for every strain identified in the 

sample there was at least one more unidentified strain.  Conversely, One 

Codex, Kraken and Kraken (EDGE) were 100% sensitive, with Phylosift 
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showing 67% sensitivity at strain identification but the precision was below 1%, 

meaning only 1 in 100 strains identified were actually present in the sample.  

This low precision was also observed at species and genus identification.  

MetaPhlAn2 and GOTTCHA (EDGE) were able to identify at species and genus

level to 100% precision and sensitivity.

The results generated using the simple in-silico datasets AM_10G_10M and 

Zymo_8G_10M generated results that resolved contradictory reports in the 

literature for some tools and confirmed reports for others.  As mentioned in the 

introduction, Kraken-mini is an interesting case with conflicting results reported 

in the literature.  It is described as having high precision at the genus level 

(>90%) [76] but also as generating large numbers of false positives at the 

species level (> 4,000) [105].  The results from this work show (Figure 3A) that 

the tool generates a large number of false positives (209 at species level 

identification) confirming the results from the later paper rather than the 

introductory Kraken paper [88]. Similarly, when MetaPhlAn2 was first described 

in the literature it was shown that its levels of precision and sensitivity were 

equally high [36]. The tool described 10 false positives and 12 false negatives at

species level across 24 in-silico datasets.  These results corroborate the results 

from this work shown in Figure 3.

GOTTCHA was described in the literature as returning higher levels of false 

negatives (7) compared to false positives (0) across six synthetic datasets[105].

Figure 4 confirms the results described in the literature; zero false positives 

were returned for the two simple in-silico datasets generated and analysed on 

this project.

OneCodex (filtered) was reported in the literature to have higher accuracy 

compared to Kraken, CLARK and OneCodex[75].  These findings were 

confirmed here using the simple in-silico datasets shown in Figures 3,  5 and 6.

The only tool that gave substantially differing results between this work and the 

literature was Constrains.  Constrains was reported as being able to identify and

differentiate between strains of E. coli [78].  So it was a surprising result that 
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Constrains was only able to identify 17% of the strains within the two in-silico 

samples (Figure 4).
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Object 17 Object 20

Figure 5: Sensitivity for 10 binning tools (MetaPhlAn2, MetaPhlAn (EDGE), One

Codex (Filtered), One Codex, Kraken-mini, Kraken-mini (EDGE), GOTTCHA, 

GOTTCHA (EDGE), Phylosift and Constrains) post analysis of the in-silico 

datasets AM_10G_10M (A) and Zymo_8G_10M (B) at the strain, species and 

genus taxonomic levels
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Object 23 Object 25

Figure 6: Precision for 10 binning tools (MetaPhlAn2, MetaPhlAn (EDGE), One 

Codex (Filtered), One Codex, Kraken-mini, Kraken-mini (EDGE), GOTTCHA, 

GOTTCHA (EDGE), Phylosift and Constrains) post analysis of the in-silico 

datasets AM_10G_10M (A) and Zymo_8G_10M (B) at the strain, species and 

genus taxonomic levels. 
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2.3.2 Results from the analysis of simple in-silico datasets using 

assembly tools.

The taxonomic classifications by MEGAN on the contigs generated with the 

assembly tools were more consistent compared to those generated with the 

binning tools.  Similar levels of true positives, false positives and false negatives

were seen across all tools tested (Figures 7 and 8).  The four assembly tools 

tested were able to correctly identify all the organisms present in both datasets 

at species and genus level.  The number of false positives ranged from 12 – 20 

genera at the genus level across both datasets and 18 – 45 species at the 

species level.  There were 2 false negative identifications for ABYSS, Megahit 

and IDBA-UD at strain level for AM_10G_10M and 1 false negative for 

Zymo_8G_10M, CLARK does not generate strain level results (Figure 7).
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Object 27

Object 30

Figure 7: Number of taxa identified from the analysis of the in-silico datasets 

AM_10G_10M (A) and Zymo_8G_10M (B) using four assembly tools (IDBA-UD,

Megahit, ABYSS and CLARK) at strain, species and genus taxonomic levels.
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Object 32

Object 34

Figure 8: Percentage of true positive, false positive and false negative 

identifications for the in-silico datasets AM_10G_10M (A) and Zymo_8G_10M 

(B) using four assembly tools (IDBA-UD, Megahit, ABYSS and CLARK) at 

genus, species and strain taxonomic levels.

Taxonomic identification from MEGAN using the contigs from the assembly 

tools delivered low numbers of false positives ensuring high levels of sensitivity. 

The contigs generated by IDBA-UD, Megahit, ABYSS and CLARK all gave 
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100% sensitivity at genus and species level.  The three tools that report results 

at strain level had a mean sensitivity of 80% for AM_10G_10M and 88% for 

Zymo_8G_10M (Figure 9).
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Figure 10: Precision of four assembly tools (IDBA-UD, Megahit, ABYSS and 

CLARK) for analysis of AM_10G_10M (A) and Zymo_8G_10M (B) at different 

taxonomic levels.
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2.3.3 Results from the optimisation of assembly tools using simple in-

silico datasets.

The assembly tools offer the ability to optimise some of the parameters in an 

effort to improve the accuracy of their output.  

The output of IDBA-UD was optimised through altering the k-mer length 

parameter (lengths of 20, 40, 60, 80, 100 and maximum ‘contig’ were tested).  

The k-mer length is the length the reads are broken down into to build the dBG 

for assembly (See Figure 1).  The lower the k-mer the less computationally 

expensive the assembly becomes as fewer edges are stored in the dBG.  

However, reducing the k-mer length increases the number of ambiguous nodes 

within the dBG which will reduce the length and quality of the contigs generated.

Increasing the k-mer length from 20 to the maximum contig length reduced the 

false positives at the species level from 84 to 25 for AM_10G_10M dataset and 

from 59 to 26 for Zymo_8G_10M.  However, at the longest k-mer length false 

negatives were reported, with two for the AM_10G_10M dataset and one in the 

Zymo_8G_10M dataset (Figure 11).
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Figure 11: Impact k-mer length has on the accuracy of output when using the 

assembler IDBA-UD on the AM_10G_10M (A) and Zymo_8G_10M (B) datasets.

Megahit has predefined modes for different sample types: standard, meta, 

meta-large and meta-sensitive.  The meta mode was develop to analyse 

standard metagenomic samples and uses a range of k-mer sizes from 21-99 

increasing the k-mers by 20.  The mode meta-large was designed for 

large/complex samples such as soil samples; its range of k-mer lengths is 27-87

and increases in steps of 20.  The meta-sensitive mode is designed to give a 

sensitive but slower analysis of the sample; the k-mer lengths range from 21-99 

but this time the step is set at 10, this approach generates twice the data as 

twice the k-mer lengths are explored.  A comparison of these different modes 

using the two in-silico datasets showed they had a very subtle impact on the 

observed results.  At strain level the precision for the standard mode was 42% 

and 32% and was improved to 44% and 33% with the meta-large mode for the 

two datasets.  The meta-large mode also offered the optimum precision at 

species level of 21% and 15% - an improvement from 19% and 15% for the 

sensitive mode.  The optimum precision at genus level of 28% and 30% came 

from the standard and meta mode, where-as the precision for the meta-

sensitive mode reduced to 27% and 30% (Figure 12).  There was no difference 

between the sensitivity of any of the pre-set modes, with all showing 100% 

sensitivity.
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Figure 12: Precision of Megahit using preset modes for different taxonomic 

levels for datasets AM_10G_10M (A) and Zymo_8G_10M (B).

Changes to the k-mer length parameter impacted the output from ABYSS 

resulting in improved accuracy for taxonomic identification.  The minimum k-mer

length of 20 generated 96 and 80 false positives at species level and 28 and 25 

false positives at genus level for the in-silico datasets AM_10G_10M and 

Zymo_8G_10M respectively.  Selecting the longest k-mer length reduced the 

69



false positives at species level to 34 and 30 and at genus level to 12 and 16.  

This was a reduction in false positives of 64% at species level and 47% at 

genus level.  As with IDBA_UD the optimum k-mer length for precision had a 

negative impact on sensitivity.  There were 3 false positives reported at strain 

level across both datasets for k64 compared to no false negatives for the other 

k-mer lengths (Figures 13 and 14). 
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Figure 13: Impact the k-mer length has on the accuracy for the assembly tool 

ABYSS on the in-silico  datasets AM_10G_10M (A) and Zymo_8G_10M (B) at 

the strain, species and genus taxonomic level.
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Figure 14: Impact the k-mer length has on precision for the taxonomic 

identification using contigs generated by the assembly tool ABYSS on the in-

silico datasets AM_10G_10M (A) and Zymo_8G_10M (B) at the strain, species 

and genus taxonomic level.
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The two parameters that can be optimised for CLARK are k-mer length and gap

length.  Changing the k-mer length had no impact on the output (results not 

shown).  The gap length refers to the number of non-overlapping k-mers to 

pass.  Increasing the gap length will reduce the RAM usage but is also reported 

to decrease sensitivity. Optimising the gap length reduced the number of false 

positives without impacting the number of false negatives; however, it was not a

linear relationship between gap length and false positives.  The general trend 

was that by increasing the gap length the number of false positives reduced.  A 

gap length of 1 returned the lowest precision at species and genus level for both

datasets.  The precision for AM_10G_10M dataset at species level rose from 

20% with a gap length of 1 to 45% with a gap length of 6 or 10, the precision at 

genus level rose from 20% to 37% with a gap length of 9.  For the dataset 

Zymo_8G_10M the gap length increased from 16% to 35% with a gap length of 

9, the precision at genus level rose from 17% to 67% with a gap length of 9 or 

10 (Figure 15).
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Figure 15: Precision of CLARK using different gap lengths at different taxonomic

levels for in-silico datasets AM_10G_10M and Zymo_8G_10M.

The results from the assembly tool optimisation show that all tools tested had 

100% sensitivity at species and genus level.  However, altering the parameters 

can cause an increase in false negatives at strain level as seen with IDBA_UD 
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and ABYSS.  The pre-set options for Megahit had the least effect on results, 

with the precision only improving for species level identification with the 

AM_10G_10M dataset from 20 to 21%.  CLARK showed the next lowest 

improvement to precision with increases just over 20% for species level and 

42% and 68% at the genus level for the two datasets.  ABYSS and IDBA-UD 

showed similar levels of improvements to their precision scores with an average

increase of 144% and 132% at the species level and 62% and 41% for the two 

datasets respectively.  Despite these large improvements to the precision of 

ABYSS and IDBA-UD it was CLARK that was the most precise tool both pre 

and post optimisation for both datasets at species and genus level (Figure 16). 
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Figure 16: Results of assembly tool optimisation for four assembly tools (IDBA-

UD, Megahit, ABYSS and CLARK) on precision for in-silico datasets 
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AM_10G_10M (A) and Zymo_8G_10M (B) at species and genus level 

identification.

2.4 Conclusion

The analysis of small in-silico datasets using Kraken, One Codex and Phylosift 

generated large numbers of high false positives.  Despite their high sensitivity 

they were disregarded for future analysis due to their low levels of precision.  

Kraken-mini (EDGE) however was retained to determine how more complex 

datasets impact its sensitivity and accuracy.  Kraken-mini (EDGE) was selected 

as it had one of the higher precision levels of the poorer performing tools.  It 

also had a high ease of use; it was run when running GOTTCHA (EDGE).  One 

Codex was discounted for further analysis.  Despite its filtered results 

generating high sensitivity and precision, it was deemed that the high cost for 

each analysis made the tool unsuitable for further use. 

Due to the inability of the analysis tools to accurately identify strains, future work

was planned to focus on species and genus level identification.  If the aim of 

this project was to identify the bio-warfare agents from a bio-aerosol sample 

then accurate identification to strain level would be a major goal.  However, as 

this project is aiming to develop a pipeline to accurately measure the variation 

of bio-aerosols, strain identification is not an essential aspect. ConStrains was 

originally evaluated for its ability to add strain level identification to MetaPhlAn2 

analysis and so it was not used for future analysis.  Further work continued to 

identify new binning tools and evaluate their ability to identify species and 

genera present in in-silico datasets.  MetaPhlAn2 and GOTTCHA (EDGE) were 

down-selected for further evaluation due to their 100% sensitivity and precision 

at species and genus identification.

Results from this initial analysis of simple in-silico datasets showed the 

sensitivity of the assembly tools at species and genus level were equal to the 

best performing binning tools.  However, despite efforts to optimise their 

performance, the precision of the assembly tools at all taxonomic levels was 

lower than the binning tools.  The assembly tools also require a higher compute 
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resource and take considerably longer to run compared to the binning tools.  

Taking this into account, only the best assembly tool, which this initial analysis 

showed to be CLARK, was considered for further analysis.  If there was a 

requirement for functional analysis of the metagenome then the assembly tools 

would offer advantages over the binning tools[109, 110], however, the purpose 

of this study is taxonomic identification of organisms present within the aerosol 

microbiome.

To further evaluate the down-selected analysis tools, more complex datasets 

were subsequently generated.  Increasing the number of organisms in the 

sample will determine whether sample diversity impacts numbers of false 

positives.  Varying the abundance of the organisms present within the sample 

will inform as to whether organism abundance will impact detectability.  Due to 

the length of time that some bioaerosol samples will be left on the collector 

(potentially up to 8 hours) with 300 litres of air/minute passing over them, the 

micro-organisms could become degraded through dehydration and desiccation 

pressures[15].  The degraded cells could lyse causing the DNA to be exposed 

to stresses leading to fragmentation impacting the length of the output from the 

sequencers.  Reducing the length of the reads in the in-silico datasets will show 

whether the length of sequence output has an impact on precision and 

sensitivity of the tools.  This approach has the added benefit that the Illumina 

NextSeq generates shorter read lengths than the Illumina MiSeq so will help to 

identify whether sequencing platform will impact the output from the tools.
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3 The construction and analysis of complex in-silico datasets using 

down-selected metagenomic analysis tools.

3.1 Introduction

In order to further examine the sensitivity and precision of the metagenomics 

analysis tools down-selected in the previous section, more complex datasets 

were designed.  These datasets included increasing the diversity of the species 

present, altering the abundance of the species present and reducing the read 

lengths.  The modifications were designed to generate a suite of datasets that 

more closely resembled a real bio-aerosol sample.   

After analysis of the Singapore air samples 1 and 2 it is expected that there will 

be numerous species present in bio-aerosol samples from the same genus.  

The datasets with increased diversity were designed to test the tools’ abilities to 

differentiate organisms that are closely related. 

The datasets previously used to perform the initial tool down-selection (Chapter 

2) were designed with even abundance for each of the represented species.  

This even representation of organisms is an unlikely reflection of reality.  It is 

important to gain an understanding of a tool’s ability to identify organisms that 

are under-represented compared to the more dominant species within the 

sample.  It is also of interest to see if more dominant species mask the lower 

abundant species.

The selected sequencing platform for this project was the Illumina MiSeq using 

NexteraXT library preparation reagents to generate 300bp reads.  In order to 

replicate this read length the datasets for the initial down-selection of analysis 

tools reflected the 300bp reads.  In reality the sequencer generates reads with a

variety of read lengths; the majority of reads may be 300bp but there are also a 

number of shorter reads.  The potential for cell lysis on the collection filters 

could lead to the degradation of DNA prior to sequencing, impacting the read 

lengths generated.  Generating datasets with shorter read lengths will enable 
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the impact read length has on the output from the down-selected analysis tools 

to be investigated.

3.2 Methods

3.2.1 In-silico simulation of complex datasets for evaluation of 

metagenomic analysis tools.

All of the in-silico datasets described here were generated using MetaSim as 

described in Chapter 2.

3.2.1.1 Generating a dataset with increased diversity

This dataset was again based on the Singapore air sample (used for 

AM_10G_10M); the top 100 abundant species were included and covered 73 

genera (Appendix 2).  The dataset was designed with an even coverage of all 

species.  The previously described Illumina error profile was used, with a read 

length of 300bp and a total of 10 million reads.  This dataset was designed to be

comparable to AM_10G_10M and Zymo_8G_10M and was referred to as:

 AM_100G_10M

3.2.1.2 Generating datasets of variable abundance

MetaSim was used to modify the three previously described datasets 

(AM_100G_10M, AM_10G_10M and Zymo_8G_10M) with mixed abundance of 

the organisms present (abundances shown in Appendix 2).  The previously 

described Illumina error profile, 300bp read length and 10 million read options 

were maintained.  The resulting abundances for AM_100G_10M-V ranged from 

0.3%-1.9% with 10 species at each of the abundance.  Dataset AM_10G_10M-

V’s abundance ranged from 1%-19% and Zymo_8G_10M-V ranged from 1%-

24% abundance.  These new datasets were titled:

 AM_100G_10M-V
 AM_10G_10M-V
 Zymo_8G_10M-V
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3.2.1.3 Generating datasets with shorter read length

MetaSim was used to generate datasets with read lengths of 150bp.  These 

datasets were based on the previously described datasets AM_100G_10M, 

AM_10G_10M and Zymo_8G_10M.  In order to build these datasets the 

Illumina error profile that had been previously used had to be redeveloped.  The

error profile works by defining the chance of error at each position of the 

synthesised read.  In order to ensure that the error for each synthesised read 

was the same as the 300bp error model the error profile couldn’t just be divided 

in two; if the 3’ end of the error profile was used then the error would be too low,

likewise if the 5’ end was used then the error would be too high.  Instead, every 

odd base pair was removed from the 300bp error model ensuring that the error 

for the whole read remained the same (Figure 17).  
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Figure 17: A representation of the rate of error assigned to each position of the 

150bp error profile used with MetaSim to simulate the AM_100G_10M-150, AM-

10G_10M-150 and Zymo_8G_10M-150 in-silico datasets.

Each of the species in the datasets had an equal abundance and there were 10 

million reads generated for each of the datasets.  These three new datasets 

were labelled:  

 AM_100G_10M-150
 AM_10G_10M-150
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 Zymo_8G_10M-150

3.2.2 Analysis tools

The analysis tools used to evaluate the more complex datasets were three 

binning tools (MetaPhlAn2, GOTTCHA-EDGE and Kraken-mini) and one 

assembly tool (CLARK).  The commands described in Tables 3 and 4 were 

followed for all analysis performed in this section.

3.2.3 Results interpretation

The results from this analysis will be interpreted as previously described for the 

simple in-silico datasets (Section 2.2.4).

80



3.3 Results and Discussion

3.3.1 Results from dataset with increased diversity

Increasing the number of species present in the in-silico datasets had no impact

on the sensitivity for GOTTCHA or Kraken-mini, with 100% sensitivity across all 

three datasets at both species and genus level for both tools (Figures 5 and 18).

There was a slight drop in sensitivity for MetaPhlAn2 from 100% for both 

AM_10G_10M and Zymo_10G_10M (Figure 5) at species and genus level to 

98% for species level identification and 99% for identification at the genus level.

The precision of MetaPhlAn2 and GOTTCHA dropped slightly at species level 

from 100% for both of the smaller datasets to 97% and 99% precision 

respectively.  In contrast to this trend of poorer results with a more complex 

dataset, Kraken’s precision increased from 5.4% for AM_10G_10M and 3.7% 

for Zymo_8G_10M to 36% for AM_100G_10M at species level, with a similar 

increase for genus level identification.  The high numbers of false positives 

reported by Kraken are generally closely related to species within the sample.  

As the in-silico dataset was designed to have multiple species from the same 

genus it is possible that a number of species are misidentified but the false 

positives are fortuitously present in the sample.

The results for CLARK show a reduction in sensitivity from 100% at genus and 

species level for the two smaller datasets (Figure 9) to 95% and 89% for the 

AM_100G_10M dataset (Figure 18A).  The precision of CLARK for the larger 

dataset did not change greatly from the optimised analysis of the smaller 

datasets.  The precision of identification at species level for AM_10G_10M was 

45% and Zymo_8G_10M was 35% compared to 45% for the larger dataset.  

Whereas for genus level identification the precision was 37% and 67% for the 

smaller datasets compared to 58% for AM_100G_10M (Figures 16 and 18B).

Due to CLARK’s low level of sensitivity and precision it did not offer sufficiently 

high enough accuracy, it was therefore disregarded for future analysis.
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Figure 18: The sensitivity (A) and precision (B) of four metagenomic analysis 

tools (MetaPhlAn2, GOTTCHA, Kraken and CLARK) for the in-silico dataset 

AM_100G_10M.

3.3.2 Results for datasets with shorter read lengths

Altering the read length for the in-silico datasets had the most impact on the 

accuracy of the tools tested.  When comparing dataset AM_100G_10M-150 

(Figure 19) with AM_100G_10M (Figure 18) the sensitivity was slightly lower for 

the three tools tested at species and genus level identification.  For example 

MetaphlAn2 reduced in sensitivity from 98% to 96% for species identification 

and GOTTCHA’s sensitivity reduced from 100% to 97% for genus identification. 

The precision for MetaPhlAn2 and GOTTCHA showed very little difference in 

identification at the species or genera level of identification.  However, Kraken’s 

precision dropped from 36% to 29% for species identification and from 57% to 

43% for genus identification.  This equates to a reduction in precision of 19% 

and 25% respectively.
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Figure 19: The sensitivity (A) and precision (B) of three metagenomic analysis 

tools (MetaPhlAn2, GOTTCHA and Kraken) for the in-silico dataset 

AM_100G_10M-150.
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All tools tested returned 100% sensitivity when analysing the AM_10G_10M and

AM_10G_10M-150 datasets at species and genus level.  However, Kraken’s 

precision showed the greatest difference with the species identification reduced 

by 26% to 4% and there was a reduction of 44% to 5.2% at the genus level 

(Figure 20).
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Figure 20: The precision of three metagenomic analysis tools (MetaPhlAn2, 

GOTTCHA and Kraken) for the in-silico dataset AM_10G_10M-150.

The results for the comparison between the Zymo_8G_10M (Figures 5 and 6) 

and Zymo_8G_10M-150 (Figures 21) datasets were very similar to those of the 

AM_10G_10M datasets.  All tools tested returned 100% sensitivity at both 

specie and genus level for the Zymo_8G_10M and Zymo_8G_10M-150 

datasets.  There was also no difference in precision between the two datasets 

for MetaPhlAn2 and GOTTCHA.  The precision was lower for Zymo_8G_10M-

150 compared to Zymo_8G_10M, with a reduction of 21.6% to 2.9% precision 

at species level and a reduction of 40.8% to 5.8% precision for identification at 

the genus level.

Reducing the read length from 300 bases to 150 bases had a similar result to 

the two previous parameters that were modified.  There was no difference for 

MetaPhlAn2 and GOTTCHA to the output for the 2 smaller datasets at species 
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and genus level identification.  Kraken showed no difference in sensitivity at 

species or genus level, with all results at 100%.  Kraken did show subtle 

reductions in precision when the read length was reduced and these reductions 

were more pronounced for genus level identification.   The precision for 

AM_10G_10M-150 at genus level was 5.2% compared to 9.3% for 

AM_10G_10M and it reduced from 9.8% Zymo_8G_10M to 5.8% for 

Zymo_8G_10M-150.  At species level Kraken’s precision reduced for all three 

datasets. AM_100G_10M-150 was 29% compared to 36% for the 300bp 

alternate dataset, AM_10G_10M-150 was 25% lower with a precision of 4%, the

output for Zymo_8G_10M-150 was 2.9% compared to 3.7% for Zymo_8G_10M.
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Figure 21: The precision of three metagenomic analysis tools (MetaPhlAn2, 

GOTTCHA and Kraken) for the in-silico dataset Zymo_8G_10M-150.

3.3.3 Results from datasets with variable abundance

Altering the abundance of the organisms present in the in-silico datasets had 

little impact on the output from the analysis tools.  For the smaller datasets 

(AM_10G_10M, AM_10G_10M-V, Zymo_8G_10M and Zymo_8G_10M-V) there 

was no difference to either the sensitivity or precision for MetaPhlAn2 and 

GOTTCHA at species and genus level (Figures 5, 6, 22 and 23).   Likewise, 

there was no difference to the sensitivity of Kraken at species or genus level.  

There was only a very slight difference to Kraken’s precision at species level 
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(from 5.4% for AM_10G_10M to 5.6% for AM_10G_10M-V at species level and 

from 3.7% for Zymo_8G_10M to 4.2% for Zymo_8G_10M-V at species level).  

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

False Positive
Correct ID

Precision

Figure 22: The precision of three metagenomic analysis tools (MetaPhlAn2, 

GOTTCHA and Kraken) for the in-silico dataset AM_10G_10M-V.
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Figure 23: The precision of three metagenomic analysis tools (MetaPhlAn2, 

GOTTCHA and Kraken) for the in-silico dataset Zymo_8G_10M-V.

The results followed a similar trend when comparing the effect varying the 

species abundance had on the larger dataset (AM_100G_10M and 

AM_100G_10M-V).  GOTTCHA produced the same results for sensitivity and 
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precision at species and genus level for AM_100G_10M-V and AM_100G_10M 

(Figures 18, and 24).  MetaPhlAn2 results showed very little difference between

the two datasets, the greatest difference being a 1.3% reduction to the 

sensitivity at genus level.  Regarding Kraken’s results, the sensitivity did not 

alter when the species abundance was changed at species or genus level 

identification.  In addition, the precision increased slightly when the abundance 

was changed.  The mean increase in precision for the three datasets at species 

level identification was 1.6% and for genus level identification the mean 

increase in precision was 4.5%.
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Figure 24: The sensitivity (A) and precision (B) of three metagenomic analysis 

tools (MetaPhlAn2, GOTTCHA and Kraken) for the in-silico dataset 

AM_100G_10M-V.

These results show that altering the abundance of the species present in these 

in-silico datasets has very little impact on the output of the tools.  Having a more

divergent abundance of species could have a more dramatic effect on the tools 
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output.  For example contaminating DNA from laboratory reagents are a major 

issue, especially for low biomass environments[111].  Suggesting samples with 

high levels of DNA are less likely to be impacted by contaminating DNA as the 

low levels are masked by highly abundant species. However, due to a lack of 

available time, this avenue was not explored further in this piece of work.

3.3.4 Accuracy of metagenomic analysis tools to estimate the relative 

abundance of taxon within in-silico samples. 

True positive, false positive and false negative identifications are an important 

metric for the evaluation of metagenomic analysis tools.  However, when 

monitoring how organisms change over time simple identification is not 

sufficient.  Of the three down-selected tools two, MetaphlAn2 and GOTTCHA, 

output relative abundance results.  Because Kraken doesn’t output the relative 

abundance of the species identified, alternative metagenomic analysis tools 

were required.  Centrifuge was identified as a suitable tool (Appendix 3) which 

outputs relative abundance data and performs similarly to Kraken.  See 

Appendix 3 for the output of Centrifuge’s analysis of the in-silico datasets 

previously described.  

The relative abundance data produced by Centrifuge can be used to generate 

Krona plots, as shown in Figure 25.  Interactive versions of these Krona plots 

are available at the following link: .  The Krona plots give an easily interpretable 

visual representation of the abundance of different species within the sample.  

The plots shown in figure 25 illustrate Centrifuges ability to differentiate the 

abundance of the species within the sample.  Figures 25 A, C and E are from 

samples with equal abundance and the majority of species identified are shown 

to have an even level of abundance.  Figures 25 B, D and F are from datasets 

with varied abundance, Figures 25 B and D most clearly show the abundance 

for species identified is varied.
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Figure 25: Krona plots showing relative abundance determined by Centrifuge at 

species level for datasets AM_10G_10M (A) and AM_10G_10M-V (B), 

Zymo_8G_10M (C) and Zymo_8G_10M-V (D), AM_100G_10M (E) and 

AM_100G_10M-V (F).   

The abundance output for the three down-selected tools was able to predict the 

relative abundance for each of the species present with varying degrees of 

accuracy.  

Figure 26A shows the relative abundance as calculated by MetaPhlAn2, 

GOTTCHA and Centrifuge for the even abundance dataset AM_10G_10M.  

GOTTCHA shows the most accurate prediction of abundance with a mean of 

10% ± 0.7 (95% confidence interval) for the 10 species present in the dataset.  

MetaPhlAn2 is the next most accurate tool with an average abundance for the 

10 species of 9.6% ± 2.3 and Centrifuge showed the lowest accuracy with a 

mean abundance of 6.3% ±2.7.  The lower accuracy for Centrifuge can be 

explained by the large number of false positives.  These false positives will all 

have an abundance associated with them and therefore reduce the accuracy of 

the relative abundancy output.  

Figure 25B shows the tools predictions for the varied abundance dataset 

AM_10G_10M-V.  The tools are all able to demonstrate the increase in 

abundance.  Again, GOTTCHA is the more accurate tool with a mean difference

to the actual abundance of 0.6%.  MetaPhlAn2 shows a mean difference to the 
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mean of 3.15% and Centrifuge, again the least accurate tool, with a mean 

difference to the known abundance of 4.88%.
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Figure 26: Relative abundance as calculated by three tools (MetaPhlAn2, 

GOTTCHA and Centrifuge) for the datasets AM_10G_10M (A) and 

AM_10G_10M-V (B) compared to the actual abundance and the mean 

abundance for the three tools.
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The analysis of the constant abundant dataset Zymo_8G_10M showed very 

similar results to the AM_10G_10M dataset.  GOTTCHA was again the more 

accurate tool with a mean relative abundance for the 8 species of 12.5% ±1.4.  

MetaPhlAn2 predicted a mean relative abundance for the dataset of 11.2% ±1.9

with Centrifuge, again, under-predicting the abundance with a mean relative 

abundance of 6.6% ±3.5 (Figure 27A).

Figure 27B shows that the three tools are able to describe the difference in 

abundance with the Zymo_8G_10M-V dataset with varying degrees of 

accuracy.  GOTTCHA showed a mean difference to the known abundancies of 

1.1%.  MetaPhlAn2 was slightly less accurate with a mean difference to the 

known abundance of 1.73% and Centrifuge, once more, was the least accurate 

with a mean difference of 6.17%.
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Figure 27: Relative abundance as calculated by three tools (MetaPhlAn2, 

GOTTCHA and Centrifuge) for the datasets Zymo_8G_10M (A) and 

Zymo_8G_10M-V (B) compared to the actual abundance and the mean 

abundance for the three tools.
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Figure 28: Relative abundance, as calculated by three tools (MetaPhlAn2, GOTTCHA and Centrifuge) for the datasets AM_100G_10M 

(A) and AM_100G_10M-V (B) compared to the actual abundance and the mean abundance for the three tools.  Species details have 

been removed for clarity but they have been ordered in increasing abundance from left to right (See Appendix 2-A). 

97



The large datasets AM_100G_10M, with a constant abundance, followed the 

same trends as the smaller datasets (Figure 28A).  GOTTCHA was the most 

accurate tool for describing the abundance of the species with a mean 

abundance for all 100 species of 0.99% ±0.02.  MetaPhlAn2 had a mean 

abundance of 0.98% ± 0.05 and Centrifuge was the least accurate tool for 

describing abundance with a mean abundance of 0.92% ±0.07.  Of note was 

over represented abundance of B. multivorans by both GOTTCHA (1.76%) and 

MetaPhlAn2 (1.34%).

Figure 28B displays the general trend for the tools to accurately identify the 

species of greater abundance within a sample.  The mean difference from the 

known abundance for all 100 species using GOTTCHA was 0.12%, for 

MetaPhlAn2 it was 0.17% and Centrifuge it was 0.31%.  This trend is further 

demonstrated in Figure 29 where the mean relative abundances, for the 10 

species at each of the known abundances, are shown.  The mean relative 

abundance for the three tools closely resembled the actual abundance.  The 

range that the mean relative abundance varied from the actual mean was from 

0.01% for the 0.9% cohort of species to 0.2% for the 1.9% cohort. 
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Figure 29: Mean abundance as calculated by three analysis tools (MetaPhlAn2, 

GOTTCHA and Centrifuge) for the 10 species at each level of abundance in the 

in-silico dataset AM_100G_10M-V (Error bars equal 1 standard deviation).
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3.4 Conclusions

This section of work has investigated how the complexity of in-silico generated 

datasets impacts on the accuracy of metagenomic analysis tools for taxonomic 

identification and estimated relative abundance.  Increasing the diversity of the 

sample to 100 species had minimal impact on the output for MetaPhlAn2 and 

GOTTCHA when compared to the less diverse datasets.  The sensitivity did not 

drop below 98% and precision did not drop below 97%, which is deemed a high 

level of accuracy.  The sensitivity of Kraken was unaltered, however, its 

precision increased by roughly 8-fold for species identification and roughly 6-

fold for genus level identification.  These changes to the accuracy of the tools 

do not raise any concerns for their use to evaluate the content of bio-aerosol 

samples. Regarding Kraken, it has been shown here that the accuracy of the 

tool increases with sample diversity; likely due to the design of the datasets and

the false positives generated being closely related to species within the sample.

Altering the abundance of the species within the samples had no impact on the 

results for any of the tools tested at any taxonomic level.  This would imply that 

10 million reads is a sufficient number of reads to identify species, even when 

they only represent 0.03% of the sample (seven species with  relative 

abundance of 0.1% were identified by all tools tested).  Future sequencing runs 

will aim to deliver 10 million reads per sample, which equates to a full MiSeq 

cartridge for each sample.  This is an area that should be investigated in the 

future so as to ascertain whether it is possible to run multiple samples on a 

MiSeq cartridge.  If the full diversity of a sample can be described through 

running multiple samples on one cartridge, this would reduce the cost of 

sequencing dramatically.

For the low diversity datasets, MetaPhlAn2 and GOTTCHA were unaffected by 

read length.  Kraken’s sensitivity was also unaffected; however, Kraken’s 

precision was reduced by up to 44%.  For the more diverse dataset there were 

reductions in sensitivity and precision for all tools at both the species and genus

taxonomic levels.  The most notable reduction was for Kraken’s precision which 

reduced by 25% for genus level identification.  Because reducing the read 
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length had a negative impact on all tools this is clearly an important parameter 

for accurate taxonomic classification from sequence data and should be 

maximised where possible.  This research has not investigated long read 

sequencing platforms, but these results clearly raise the question as to whether 

there is a pay off between the accuracy of short read Illumina sequencing and 

the longer but less accurate reads generated by long read sequencing [112] 

such as the MinION produced by Oxford Nanopore Technologies[113].

The final aspect of this section looked at the accuracy of the tools to describe 

the relative abundance of the species within an in-silico dataset.  GOTTCHA 

was shown to be the more accurate tool with mean differences from the known 

abundance of 0.6%, 1.1% and 0.12% for the datasets AM_10G_10M-V, 

Zymo_8G_10M-V and AM_100G_10M-V respectively.  This compares to 

Centrifuge which showed the lowest level of accuracy and had a mean 

difference from the known abundance of 4.88%, 6.17% and 0.31%.  The lower 

accuracy for Centrifuge is due to the large number of false positives it reports.  

These false positives all have an abundance assigned to them so will reduce 

the accuracy of the abundance for the true positive results.  

This section of work has concluded that the three evaluated metagenomic 

analysis tools are able to accurately identify the organisms, at species and 

genus level, for in-silico datasets at a range of complexities.  It has also 

concluded that the relative abundances assigned to the identified species are 

an accurate representation of the true abundance.

The next section of work focused on the analysis of real sequence data.  An in-

vitro mock metagenomic community was generated for another project at Dstl 

and the data was obtained for use on this project.  The criterion of 10 million 

reads and 300bp read lengths was adhered to and the species were used with 

equal quantities.
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4 Analysis of two previously generated in-vitro mock community 

datasets using down-selected metagenomic analysis tools.

4.1 Introduction

To verify the results obtained from analysing in-silico datasets it was important 

to test the down-selected metagenomic analysis tools against ‘real’ sequencing 

data.  Previous work at Dstl generated two mock metagenomics communities 

which were sequenced on the Illumina MiSeq platform.  These mock 

communities were developed using DNA extracted from 51 species, with DNA 

extracted from either Bacillus anthracis or Yersinia pestis included, all at even 

abundancies.  By using quantified DNA extracted from each species, any bias 

introduced to a metagenomics pipeline through the DNA extraction process was

removed.  Non-biased DNA extraction of metagenomic samples is an important 

area of research that this work has not attempted to investigate[114, 115].  Post

sequencing, the reads were quality checked and trimmed to ensure only data of

a suitable quality was analysed by the tools.
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4.2 Methods

4.2.1 Generating in-vitro mock community datasets

Sequence data from a previous project undertaken at Dstl was obtained.  In 

brief, the data was generated by sequencing two mock community mixes using 

the Illumina MiSeq sequencing platform with Nextera XT library preparation 

reagents.  The in-vitro mock community DNA mixes was made using DNA 

extracts from 52 species (Appendix 4).  The DNA was extracted following 

optimised methods for each organism.  The DNA from each organism was then 

pooled prior to sequencing, see Appendix 4 for the quantities and relative 

abundances of each species added.  The two in-vitro mock community datasets

varied by just one organism, one contained B. anthracis and the other contained

Y. pestis.  These two in-vitro mock community metagenomic mixes were 

processed for and sequenced on an Illumina MiSeq platform.  Library 

preparations were performed using the Nextera XT method generating 2x300bp

reads.  The two datasets will simply be referred to as:

 Ba [Bacillus anthracis]
 Yp [Yersinia pestis]

4.2.2 Initial analysis of sequencing data

The data generated from the sequencing run was initially passed through 

FastQC (http://www.bioinformatics.babraham.ac.uk/projects/fastqc/) to ensure 

that the run had generated data of a suitable quality based on the 11 matrices 

measured.  Post FastQC, the reads were trimmed based on their quality score 

using seqtk (https://github.com/lh3/seqtk).  The seqtk trimfq command removes 

bases from the reads with a quality score lower than that defined in the 

command line.  A base with a quality score lower than 20 was removed from the

reads using the following command:

 seqtk trimfq –q 0.05 sample.fq.gz > sample-trim.fq
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Figure 30: FastQC output file highlighting how the quality score reduces across 

the length of the read, matching the error profile used to generate the in-silico 

datasets (Figures 2 and 17).

4.2.3 Analysis tools

The analysis tools used to evaluate the more complex datasets were three 

binning tools (MetaPhlAn2, GOTTCHA-EDGE and Centrifuge).  The commands

described in Tables 3 were followed for the MetaPhlAn2 and GOTTCHA 

analysis performed in this section.  The command to run Centrifuge was

 centrifuge –p 4 –min-hitlen 250 –x  centrifuge-1.0.3-

beta/p_compressed+h+v -1 sample-R1-trim.fq.gz -2 sample-R2-

trim.fq.gz –report-file sample-report –S sample.out

4.2.4 Results interpretation

The results from this analysis will be interpreted as previously described in the 

simple in-silico dataset section (2.2.4).  

Additionally, the terms “High Confidence” identification and “Combined” 

identification will be used to define the output of results detailed in this section.  

The additional approaches were the outcome of combining the three tools used 
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to analyse the data.  For an identification to be defined as High Confidence it 

had to be identified by all three tools or by both MetaPhlAn2 and GOTTCHA.  

Organisms identified by Centrifuge and MetaPhlAn2, or Centrifuge and 

GOTTCHA, were pooled with the High Confidence identifications to produce the

Combined identification output.

Taxonomic 

identification approach

Combination of output from tools

High Confidence MetaPhlAn2 + GOTTHCA
MetaPhlAn2 + GOTTCHA + Centrifuge

Combined Centrifuge + MetaPhlAn2
Centrifuge + GOTTCHA
High Confidence

Table 5: The incorporation of individual tools into the newly described High 

Confidence and Combined taxonomic identification approaches.
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4.3 Results and discussion

The analysis of the in-vitro mock community datasets returned less accurate 

results compared to all of the in-silico datasets previously analysed.  There 

were more false negatives for the in-vitro mock community datasets (Figure 28) 

compared to the in-silico datasets, which will impact on the sensitivity of the 

tools.  The lowest sensitivity for species identification across all in-silico 

datasets for all three tools was 96% for MetaPhlAn2’s analysis of 

AM_100G_10M-150.  This compares to the highest sensitivity for species 

identification across the in-vitro mock community datasets of 89.3% achieved by

Centrifuge’s analyses of both Ba and Yp.  For genus level identification the 

lowest sensitivity for the in-silico datasets was 95.9%, compared to the highest 

for in-vitro mock community datasets being 92.3%. The precision was more 

comparable between the in-silico and in-vitro mock community datasets, 

although the output from the in-vitro mock community datasets was slightly 

lower.

105



1 10 100 1000

Correct ID
False Neg
False Pos

Number of Organisms Identified

1 10 100 1000

Correct ID
False Neg
False Pos

Number of Organisms Identified

Figure 31: Results from the analysis of the in-vitro mock community datasets Ba

(A) and Yp (B) using three binning tools (MetaPhlAn2, GOTTCHA and 

Centrifuge) at the species and genus taxonomic levels.

Due to the lower accuracy for the analysis of the in-vitro mock community 

datasets this work investigated taking the output from the tools with high 

precision (MetPhlan2 and GOTTCHA) and combining it with the output of the 

sensitive tool (Centrifuge).  If a species or genus were identified by MetaPhlAn2
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and GOTTCHA and Centrifuge, or by MetaPhlAn2 and GOTTCHA, then they 

were deemed a High Confidence identification, whereas, if they were identified 

by Centrifuge and MetaPhlAn2, or Centrifuge and GOTTCHA, they were pooled

with the High Confidence results to produce the Combined identification output 

(Figures 32-35).

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

False Neg
Correct ID

Sensitivity

Figure 32: Sensitivity of five identification approaches, including three binning 

tools (MetaPhlAn2, GOTTCHA and Centrifuge) and two combined approaches 

(High confidence and combined) for analysis of the in-vitro mock community 

dataset Ba at species and genus level.

The high confidence output for the Ba dataset enabled 71.2% (Figure 32) of the 

species present in the sample to be identified, and of those species identified 

92.5% (Figure 33) were true positives.  These results compare favourably to 

MetaPhlAn2 which showed 78.8% sensitivity but 89.1% precision at species 

level.  GOTTCHA showed 75% sensitivity and 60.9% precision to the Ba 

dataset at species level.  At the genus level the high confidence output showed 

78.9% sensitivity of the diversity identified with 96.8% of those genera identified 

being true positives.  This precision is close to that obtained when analysing the

in-silico datasets.
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Figure 33: Precision of five identification approaches, including three binning 

tools (MetaPhlAn2, GOTTCHA and Centrifuge) and two combined approaches 

(High confidence and combined) for analysis of the in-vitro mock community 

dataset Ba at species and genus level.

The tool with the highest sensitivity for the Yp dataset was Centrifuge which was

able to identify 96.2% of the species within the sample (Figure 34).  However, 

only 9.1% of the results were true positives.  Using the High Confidence 

approach, as described for the Ba dataset, the precision of the output got as 

high as 92.7% for species identification (Figure 35).  This approach was more 

precise than MetaPhlAn2 and GOTTCHA with 87.5% and 60.6% respectively.  

Although the high confidence approach does not describe the full diversity of 

the sample, it does increase the confidence that the species identified are in 

fact true positives.
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Figure 34: Sensitivity of five identification approaches, including three binning 

tools (MetaPhlAn2, GOTTCHA and Centrifuge) and two combined approaches 

(High confidence and combined) for analysis of the in-vitro mock community 

dataset Yp at species and genus level.
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Figure 35: Precision of five identification approaches, including three binning 

tools (MetaPhlAn2, GOTTCHA and Centrifuge) and two combined approaches 

(High confidence and combined) for analysis of the in-vitro mock community 

dataset Yp at species and genus level.
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4.4 Conclusions

This section of work has shown that the in-silico datasets generated for the 

initial assessment of the bioinformatics analysis tools (Section 2 and 3) did not 

fully replicate the intricacies of real sequencing data.  The in-silico datasets 

were suitable for the initial down-selection of the poorest performing tools.  This 

was shown as the low precision and sensitivity of the weakest tools tested were 

highlighted with the simple in-silico datasets.  However, the high accuracy 

displayed by some of the tools with the in-silico datasets were not replicated 

when analyzing the in-vitro mock community datasets.  However, using the in-

vitro mock community dataset would be a suitable dataset to evaluate future 

tools.  The only advantage that in-silico datasets provide is the ease at which 

the parameters can be modified, i.e. read length or abundance.

To fully utilize the potential benefits offered through in-silico dataset generation 

further work is required to enhance the error model that was used to generate 

the in-silico datasets used for this project.  Alternatively, other in-silico 

metagenomic dataset simulator software scould be investigated such as 

CAMSIM[116] or InSilicoSeq[117] [118].

The work from this section has shown the output from an individual tool does 

not offer the required accuracy when analyzing real sequencing data.  

Combining the output from three tools increases the precision and does impact 

the sensitivity.  The overall aim of this project is to be able to accurately monitor 

the variation of the bio-aerosol.  Having confidence that the species identified in 

a sample are true positives is of greater importance than being confident that 

you have identified all species within the sample.  To this end a bioinformatics 

approach that delivers high precision will be deemed superior to an approach 

that offers high sensitivity.  If the aim of the project was to deliver a 

bioinformatics approach that was monitoring the bio-aerosol for threat agents 

then tools that offered high sensitivity would likely be favored over tools with 

high precision.  Improving the confidence in the identification using low 

precision tools could be accomplishedby aligning the reads back to a reference 
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database of known threat agents.  However, this approach would add compute 

resource and time penalties.
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5 Analysis of bio-aerosol samples collected at Dstl.

5.1 Introduction

The final aim of this work was to use the metagenomic analysis pipeline to 

describe the microbial diversity of bio-aerosol samples.  A bio-aerosol collection 

methodology was developed by Dstl and collaborators to collect bio-aerosols 

onto dry filters using a SASS 3100 instrument.  The SASS 3100 instrument 

passes air through a dry filter at a rate of 300 litres per minute.  The instrument 

was located at a specific location within the grounds of Dstl and was used to 

collect samples to answer two initial questions:  

1. How does the bacterial diversity of the bio-aerosol change across a 

long temporal gradient?  

2. How does the bacterial diversity of the bio-aerosol change across a 

short term temporal gradient?  

In order to answer these questions with the highest level of granularity, work 

was undertaken by colleagues to ascertain the required duration of sampling.  

Collecting samples for too long will not enable the bio-aerosol’s variation of 

diversity to be fully resolved.  Collecting samples for too short a period of time 

will not deliver sufficient DNA to enable successful sequencing.  Samples were 

collected for 0.5, 2 and 4 hours, the DNA was extracted from the filters using the

method described in section 5.2.2.1 and quantified using the Qubit high 

sensitivity double stranded DNA kit.  The result of this work identified that a 4 

hour sample collection regime delivers sufficient DNA for successful 

sequencing.  However, the quantities were too low for the Nextera XT library 

preparation kit so the ThruPLEX DNA-seq kit was identified as an alternative.  

The ThruPLEX DNA-kit can work with an input quantity of between 50 pg and 

50 ng of DNA compared to the Nextera XT kit which is designed for an input of 

1 ng.

To answer the first question the SASS 3100 collector was used to collect two 

consecutive 4 hour samples on a monthly basis.  Moving forward this will 
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change to a bi-monthly sampling strategy, with this regime planned to continue 

until March 2020 at the earliest.  The second approach was to collect six 

consecutive 4 hour samples covering a 24 hour period.  The analysis of the 

variation across a short term temporal gradient is planned to be repeated at 

least annually for the next two years.

An additional challenge to the work described previously in this thesis was how 

to extract DNA from the filter.  An unpublished method was developed by Dstl 

and one of its collaborators, with thorough research under taken to ensure that 

the DNA extraction method was effective on Gram positive and Gram negative 

cells and also vegetative and sporolated cells.  This delivered an approach 

minimising the level of bias that a poorly developed extraction method would 

introduce to the sequencing of a metagenomic sample.

The extracted DNA was sequenced using the Illumina NextSeq platform, in 

contrast to the MiSeq platform which had previously been used.  The NextSeq 

generates shorter reads (150bp) compared to the MiSeq (300bp) which has a 

small impact on the accuracy of the metagenomic analysis tools; data in section

3.3.2 shows a slight drop in sensitivity demonstrated by  in-silico datasets with 

shorter read lengths but almost no impact on precision.  However, the NextSeq 

produces a greater number of reads compared to the MiSeq.  This enabled 

multiple samples to be sequenced on each sequencing run, thus reducing the 

sequencing costs.  This financial saving will enable a greater number of 

samples to be collected and sequenced for the remainder of the project, moving

from one to two sampling days each month increasing the statistical validity of 

the findings of the study.

The sequencing reads were analysed using the pipeline as described in section 

4.2.4 and Table 5.  The output from MetaPhlAn2, GOTTCHA and Centrifuge 

was combined to deliver High Confidence and Combined taxonomic 

identification.  These identifications were used to measure how the abundance 

of species varied over time, how the diversity of the samples changed over time

and how the homogeneity of the samples changed.  The measure of diversity 

was based on the Shannon index[119],  a widely used measure of diversity in 

many ecological studies.  When the Shannon Index score increases it is a 
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measure that the level of diversity has increased.  It is then possible to calculate

the homogeneity of the sample using the Shannon index and the maximum 

possible Shannon score for the sample size.  This measure runs from zero, 

where the sample shows minimum homogeneity, to one, where the sample 

shows maximum homogeneity.  These scoring methods will enable the diversity 

and homogeneity of the different samples to be compared more accurately.
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5.2 Methods

5.2.1.1 Aerosol Collection

The SASS 3100 aerosol collector was used to collect samples onto dry SASS 

3100 standard filter cartridges.  The collector was secured to a tripod and fixed 

1.5 meters above the ground.  The collector was inverted at 45º to ensure that 

no biological material landed on the filter and to avoid the filter getting wet.

The collection location was defined and marked at the start of the collection 

regime.  It was in a remote part of the site in order to avoid it being disturbed by 

the mass transit of employees and vehicles on site.  Towards the end of the trial

a gazebo was erected during the collection periods to reduce the chance of 

inclement weather inhibiting sample collection.

In order to answer the two questions regarding long and short term temporal 

gradients two collection regimes were deployed:

 Two consecutive 4 hour samples were collected on the 21st of each 

month at 08:00 – 12:00 and 12:00 – 16:00 from May to August 2018 (this

monthly sampling routine will continue for a minimum of two years).  

Unfortunately, rainfall and high wind inhibited the 21st May 08:00 – 12:00 

sample and the 21st July 08:00 – 12:00 sample being collected.
 Six 4 hour samples were collected over a 24 hour period at 00:00 – 

04:00, 04:00 – 08:00, 08:00 – 12:00, 12:00 – 16:00, 16:00 – 20:00 and 

20:00 – 00:00 (this sampling regime will be repeated at least annually).

Post sample collection, the filters were stored at -80ºC until they could be 

processed for sequencing.  
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5.2.1.2 Metadata collection

Alongside the SASS 3100 collectors a suite of meteorological detectors were 

also deployed.  These monitored the air and soil temperature, humidity, wind 

direction and wind speed, particle number and particle size.  Notes were also 

made of any activities that were taking place around the collection site, such as 

mowing the grass, low flying aircraft or insects being found on the filter which 

could have an effect on the DNA collected.

5.2.2 Sequencing of bio-aerosol samples

5.2.2.1 DNA extraction

The DNA extraction of all samples was performed by colleagues at Dstl.  The 

DNA extraction process was developed by Dstl and one of its collaborators and 

the method is awaiting publication.  Further details will be provided in the 

forthcoming publication, but briefly: 

1. The filters were incubated in lysis buffer followed by centrifugation and 

the supernatant set aside

2. The pellet from step 1 was put through a MetaPolyzyme pre-treatment 

before centrifugation

3. The pellet from step 2 then went through a lysis, DNA extraction and 

inhibitor removal process including bead beating

4. The supernatants from step 1 and 3 were combined and magnetic beads

used to isolate the DNA.

5.2.2.2 Library preparation

As described in section 5.1 the DNA quantities isolated from the bio-aerosol 

collection filters waere too low for the Nextera XT kit (used to generate the 

sequencing libraries in Chapter 4).  So the ThruPLEX DNA-seq kit was used 

following the manufacturer’s guidelines.  All library preparation procedures were

performed by colleagues at Dstl.
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5.2.2.3 Sequencing Platform

As described previously in section 5.1 the NextSeq platform from Illumina was 

used with a multiplexed approach.  Colleagues performed the sequencing using

the NextSeq 500/550 High Output Kit v2.5 (300 cycles) with a dual indexed 

workflow following the manufacturer’s guidelines.

5.2.3 Initial analysis of sequencing data

As described previously in section 4.2.2, the sequence data was analysed using

FASTQC to ensure the quality of the run was suitable for further analysis.  The 

reads were then trimmed using the seqtk trimfq command.

5.2.4 Sequence analysis tools

The metagenomic analysis tools used to evaluate the samples were the same 

as those described in section 4.2.3.  MetaPhlAn2, GOTTCHA and Centrifuge 

were used, running the previously described methods.  The only modification to 

the Centrifuge command was changing the minimum hit length parameter (min-

hitlen) from 250 to 100.  This was to ensure that the shorter reads generated 

using the NextSeq platform were evaluated.

5.2.5 Interpretation of sequence analysis

As these samples are true unknowns it is impossible to measure the precision 

or sensitivity of the tools as previously described.  The High Confidence and 

Combined output (described in section 4.2.4) were used to describe the 

bacterial content of the samples to species level.  

The diversity and homogeneity of the samples were calculated using the 

Shannon index ( H ' ) and relative diversity ( J ' ).  The Shannon index gives 

a measure of diversity for the sample; as the Shannon index score increases so

does the sample diversity.  The equation to calculate the Shannon Index is 

shown below (www.real-statistics.com/descriptive-statistics/diversity-

indices/shannons-diversity-index/describes the Shannon index), where k is the 

number of species and pi  is the proportion of observations in the i th of

k  categories.
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Shannon Index 

H '=−∑
i=1

k

pi log pi

The relative diversity ( J ' ) is a measure of evenness and is calculated by 

working out the proportion the Shannon index is of its maximum.  In order to 

calculate J '  the maximum Shannon index ( Hmax
' ) must first be calculated.

Hmax
'  describes a position where all species are evenly observed and so

pi  is 1.

Maximum Shannon Index

 Hmax
' =−∑

i=1

k

p1 log p1=−k p1 log p1=− log p1=−log( 1
k )=log k

It is then a simple case of performing the following equation to calculate the 

relative diversity:

Relative diversity 

J '
=

H '

log k
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5.3 Results and Discussion

5.3.1 Analysis of samples from the monthly collection regime

The results from the High Confidence approach are shown in Appendix 5-A.  

Due to inclement weather conditions two samples were not able to be collected 

(21/05/2018 0800-1200 and 21/07/2018 0800-1200).  27 different species were 

identified across the four months of sampling and had a range in relative 

abundance from 0.53 – 12.4%.  Of the 27 species identified, 41% of the species

were identified in just one sample and 7% of the species were identified in all 6 

samples.  The two species that were present in all samples were 

Stenontrophomonas maltophilia (which ranged in abundance from 0.53% - 

5.83%) and Clavibacter michiganensis (with a range in abundance from 1.59% -

6.15%).  The species which had the highest abundance was Lactobacillus 

amylovorus with 12.4% and the species with the lowest abundance across the 4

months was Terriglobus roseus with an abundance of 0.53%.

Table 6 shows the different number of species identified by the different 

taxonomic identification methods for each of the samples.  The High Confidence

method continuously reports fewer species compared to the other approaches, 

whereas the Combined approach and GOTTCHA report a similar number of 

species for each sample.  As seen with the in-silico datasets Centrifuge 

reported a far higher number of species for each of the long term temporal 

gradient samples.  The results from the in-silico datasets would imply that the 

vast majority of these Centrifuge results are false positives.  The sample with 

the highest number of species, as identified by all tools, was collected on 21st 

June between 12:00 and 16:00.  There was also a good trend between the 

numbers of species identified for each sample across all tools.
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21/05/2018 21/06/2018 21/07/2018 21/08/2018
0800-

1200

1200-

1600

0800-

1200

1200-

1600

0800-

1200

1200-

1600

0800-

1200

1200-

1600
High Conf - 7 9 19 - 10 13 6
Combined - 32 28 61 - 37 52 36
MetaPhlAn

2

-

17 14 41

-

27 37 24
GOTTCHA - 30 29 60 - 34 48 36
Centrifuge - 1120 1064 1385 - 1210 1274 1176
Table 6: Number of species identified by the different taxonomic identification 

strategies for the samples collected on the long term temporal study.

The number of species identified is not a true measure of diversity and so the 

Shannon index was used to measure the difference in diversity across the six 

samples collected across the four month period (Figure 36).  Due to the large 

number of False Positives Centrifuge generates it will have a biased measure of

diversity.  This is represented in Centrifuge’s high Shannon Index score.  

Surprisingly the Shannon Index for GOTTCHA was similarly high to Centrifuge 

which would suggest that it also reports a higher than authentic level of diversity

within the sample.  The Shannon Index score for the High Confidence approach

was similar to MetaPhlAn2’s score.  This suggests the diversity of the samples 

were at the lower end of the spectrum of the tools tested.  The level of diversity 

ranged from 0.687 – 1.105 for the High Confidence approach, 1.343 – 1.655 for 

the combined approach, 1.169-1.799 for Centrifuge, 0.877-1.158 for 

MetaPhlAn2 and 1.459-1.766 for GOTTCHA.  The highest measures of diversity

were for June 21st 1200-1600 and August 21st 0800-1200 however the general 

trend was for the diversity to increase through year.  The High Confidence 

approach had a Shannon index score of 0.803 in May compared to 1.024 in 

August resulting in an R2 score of 0.918 with a p-value of 0.042.  Likewise 

Centrifuge had a Shannon Index score of 1.169 in May compared with 1.799 in 

August giving an R2 score of 0.927 with a p-value of 0.37.  These variations in 

diversity need to be measured against the metadata that was also collected at 

the time of sampling to see if any correlations can be made between weather 

conditions and diversity.
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Figure 36: Shannon index for the taxonomic identification strategies run on the 

samples collected on the long term temporal study.  The legend relates to 

sample numbers (155 = May 21st 1200-1600, 186 = June 21st 0800-1200, 187 = 

June 21st 1200-1600, 211 = July 21st 1200-1600, 246 = August 21st 0800-1200 

and 247 = August 21st 1200-1600).

The relative diversity of the samples is a measure of homogeneity and runs on 

a scale between 0 and 1. A score of 1 represents a sample with a completely 

homogenous group of species present.  Figure 37 shows the range of relative 

diversity scores for all of the taxonomic approaches used.  Again, due to the 

high level of false positives that Centrifuge is known to report its relative 

diversity is likely to be skewed towards a more uneven distribution and as the 

results show Centrifuge did have the lowest relative diversity scores.  The 

lowest score was 0.494 for the sample taken 1200-1600 on the 21st August.  In 

fact the five lowest relative abundance scores were from Centrifuge’s output.  

The taxonomic identification approach with the next lowest relative abundance 

was MetaPhlAn2, with 5 of the 6 samples falling within Centrifuges range of 

Relative abundances (0.644 and 0.765).  This result suggests that MetaPhlAn2 

also over estimates the relative diversity of a sample.  At the other end of the 

scale GOTTCHA’s relative abundance score for all six of the samples was 0.993

or greater.  This implies that all of the species detected across all six samples 

have near identical levels of diversity which is very unlikely.  With the High 

Confidence output generating relative abundance scores between those of 
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Centrifuge, MetaPhlAn2 and GOTTCHA it would suggest that the output is 

potentially more accurate.
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Figure 37: Relative diversity for the different taxonomic identification strategies 

run on the samples collected for the long term temporal study. The legend 

relates to sample numbers (155 = May 21st 1200-1600, 186 = June 21st 0800-

1200, 187 = June 21st 1200-1600, 211 = July 21st 1200-1600, 246 = August 21st 

0800-1200 and 247 = August 21st 1200-1600).

5.3.2 Analysis of samples from the 24 hour collection regime

The results for the analysis of the samples collected over a 24 hour period using

the High Confidence taxonomic identification approach are shown in Appendix 

5-B.  Over the 24 hours 34 different species were identified with a range of 

abundancies from 0.14% - 19.14%.  Of the 34 species identified 26% were 

identified in only one sample, whereas 15% of the species were identified in all 

six samples.  The species that were present in all samples were Lactobacillus 

amylovorus, with a relative abundance ranging from 3.28 – 19.14%, 

Lactobacillus reuteri which ranged in abundance from 1.68 – 3.39%, S. 

maltophilia with a range of abundances from 0.53 – 3.18%, Brachybacterium 
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faecium ranging from 0.39 – 2.94% and C. michiganensis with a range of 

relative abundance from 0.64 – 2.11%.  The species with the highest 

abundance across the 24 hour period was L. amylovorus at 19.14% for a single 

sample.  The species with the lowest abundance was Bacteroides salanitronis 

with an abundance of 0.14%.

Table 7 shows the number of species identified for each of the samples 

collected across the 24 hour period.  The High Confidence approach returned 

the lowest number of species across all samples, with Centrifuge showing the 

largest number of species.  As with the long term temporal study GOTTCHA 

and the combined approach returned a similar Shannon Index score for all 

samples.  Surprisingly, the sample which showed the greatest number of 

species identified was the 2000 – 0000 sample.  A review of the Metadata 

associated with this collection is required to understand the reasons behind this 

increase in diversity.  The samples with the lowest variety of species were 

collected between 0400 and 1200.  There was also agreement between the 

different numbers of species identified across the samples for the different 

taxonomic identification approaches.

0000-

0400

0400-

0800

0800-

1200

1200-

1600

1600-

2000

2000-

0000
High Conf. 15 13 9 19 17 23
Combined 57 38 28 61 72 96
MetaPhlAn2 34 27 14 41 42 60
GOTTCHA 54 38 29 60 69 87
Centrifuge 1242 1082 1064 1385 1476 1599
Table 7: Number of species identified by the different taxonomic identification 

strategies for the samples collected on the short term temporal study.

As seen for the long term temporal study, the Shannon Index for the High 

Confidence taxonomic approach mirrored that of MetaPhlAn2 analysis of the 

short term temporal study (Figure 38).  The High Confidence approach 

generated a range of Shannon Index scores of 0.812 – 1.107 and MetaPhlAn2 

had a range from 0.877 – 1.275. The Combined taxonomic identification 

approach and Centrifuge also had similar levels of diversity with Shannon index 

scores ranging from 1.343 – 1.619 and 1.215 – 1.665 respectively.  On this 

occasion GOTTCHA showed the highest level of diversity with the highest 
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Shannon Index scores ranging from 1.459 – 4.866.  The general trend for the 

diversity across the 24 hours for all analysis approaches showed a drop in 

abundance for the 0800 – 1200 collection.  This was followed by a more subtle 

drop in the Shannon Index for the collection from 1600 – 2000.  These timings 

correlate with the majority of staff entering and leaving the site but further 

investigation of the metadata would be needed to confirm this hypothesis.  Any 

trends will need to be confirmed with more repeats of this short term temporal 

study.
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Figure 38: Shannon index for the taxonomic identification strategies run on the 

samples collected on the short term temporal study.

The Relative abundance results for the short term temporal study are similar to 

the long term study results.  GOTTCHA generates high scores, between 0.961 

and 0.997, which would suggest there is no variation in the abundance of the 

species present in the samples.  The relative index scores for Centrifuge are the

lowest of all approaches tested (ranging from 0.412 – 0.601). This low level of 

homogeneity is likely skewed by the large numbers of false positives that 

Centrifuge has been shown to report.  The High Confidence approach shows a 

Relative abundance score range of 0.641 – 0.964.  These results are between 

the unlikely scores from GOTTCHA and the negatively biased Centrifuge 

suggesting they are a more accurate representation of the homogeneity of the 

species within the samples.  The trend for the Relative Diversity for all analysis 

approaches was for the score to decrease over the 24 hours.  For example 
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GOTTCHA dropped from 0.995 – 0.962, Centrifuge reduced from 0.592 – 0.412

and the High Confidence approach went from 0.905 – 0.635 over the 24 hour 

period (Figure 39).  Time will need to be spent trying to correlate these results 

with changes in the meteorological conditions.  The short term temporal study 

also needs to be repeated to see if this is a general trend or if it is a one off 

phenomenon. 
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Figure 39: Relative diversity for the different taxonomic identification strategies 

run on the samples collected for the short term temporal study.
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5.4 Conclusions

The analysis of the long term temporal study samples showed that the High 

Confidence taxonomic identification results accurately describe the diversity of 

the samples.  This finding was confirmed with the analysis of the short term 

temporal study samples.  This summation was based on the fact that Centrifuge

has been shown in this study to generate a large number of false positives 

which inflate the Shannon index score, inaccurately describing the level of 

diversity within the sample.  The Shannon Index score for GOTTCHA was 

similarly high to Centrifuge suggesting that GOTTCHA also over estimates the 

level of diversity within a sample.  MetaPhlAn2 and the High Confidence 

approach both returned Shannon Index scores lower than Centrifuge or 

GOTTCHA thus implying they more accurately describe the level of abundance 

within a sample.

The high number of false positives also negatively impact Centrifuge’s ability to 

accurately predict the homogeneity of a sample.  The results for the long and 

short term temporal studies show that Centrifuge gave the highest level of 

unevenness to all of the samples, confirming this predicted bias.  MetaPhlAn2 

gave measures of relative diversity similar to Centrifuge for the long and short 

term temporal studies.  These results bring into question MetaPhlAn2’s ability to

accurately describe the homogeneity of the samples.  The results for 

GOTTCHA’s analysis of the long and short term temporal studies show a very 

high level of relative diversity (0.961 – 0.997) suggesting that all the species 

identified are evenly distributed within the sample. This is a very unlikely 

outcome, and therefore calls into question GOTTCHA’s ability to accurately 

define diversity.  The High Confidence results fall between these extremes 

shown from Centrifuge and GOTTCHA, suggesting it is able to more accurately 

describe the homogeneity of the samples.

The results from the previous sections show that the High Confidence 

taxonomic identification approach offers the most accurate method for 

identifying the species present in a sample.  The results shown in this section 

now demonstrate that the High Confidence approach is also the best method for
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accurately describing the diversity and homogeneity of the sample compared to 

running the tools individually.

From the work undertaken within this study, based on three different 

measurements using the output from the High Confidence taxonomic 

identification approach, there was a greater diversity of species within the 24 

hour study compared to the long term temporal study.  More species were 

identified across the six samples taken across 24 hours (n=34) compared to the

six samples collected over 4 months (n=27).  The mean Shannon index for the 

long term temporal study was 0.893 compared to 0.968 for the short term study.

Also, the homogeneity was greater in the 4 month study with a mean relative 

diversity score of 0.899 compared to 0.819 for the 24 hour study.  These 

findings need to be confirmed with further repeats of the short term temporal 

study, which are planned to take place until at least March 2020.  Ultimately, 

these findings show that there is a requirement to monitor the bio-aerosol 

across the full 24 hour period in order to fully understand the variation rather 

than just sampling the same time through the year. 

It is now imperative that the meteorological data, collected alongside the 

aerosol collections, are analysed.  Accurately identifying meteorological 

conditions which cause differences in species abundance in the aerosol 

microbiome are now achievable due to this work.
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6 Final Conclusions and future work.

This work has confirmed that there is variance within the accuracy in the 

available metagenomic analysis tools.  The tools which performed well in this 

study were able to demonstrate 100% accuracy at the species level for simple 

in-silico datasets.  The poorer performing tools showed much lower levels of 

accuracy, with precision as low as 1.3%, for the same simple in-silico datasets.  

In-silico datasets are a suitable mechanism for performing initial down-selection 

of metagenomic analysis tools.  Using the simple in-silico datasets 10 binning 

tools and 4 assembly tools were able to be down-selected to just 3 binning tools

and 1 assembly tool.  The results from analysing the simple in-silico datasets 

discussed in this thesis clarify the results published in the literature, therefore 

providing confidence in the down-selection of the tools.

Increasing the complexity of the in-silico dataset, by increasing the diversity of 

species present, only had a minor effect on accuracies.  The only major 

difference between the smaller datasets, AM_10G_10M and Zymo_8G_10M, 

and the larger dataset, AM_100G_10M, was a near 10-fold increase in the 

precision of Kraken.  This increase in precision for Kraken is likely due to the 

miss identified taxa actually being present in the sample.  These are important 

findings and give confidence that the accuracy of species identification will not 

differ if the bio-aerosol complexity changes through the year.

Reducing the read length of the in-silico datasets from 300bp to 150bp had an 

impact on the accuracy of the metagenomic tools.  This reduction in read length

was more substantial than any of the other variables tested for the large 

dataset.  There was a drop in sensitivity for all three tools, but only a minimal 

reduction in precision.  However, for the smaller in-silico datasets the read 

length had no impact on the accuracy of the tools.  The reduction in accuracy 

caused by reduced read lengths is because the shorter read lengths are less 

likely to contain the unique sections of the genomes required for successful 

taxonomic identification to the species level.
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Altering the abundance of organisms represented in the in-silico datasets made 

little difference to the accuracy of the analysis tools.  The sensitivity and the 

precision of the tools remained similar with the varied abundance datasets 

compared to the datasets with even abundance.  These results suggest that 

species with low abundance will still be identified from bio-aerosol samples; to 

confirm this assumption future work using in-vitro mock community samples of 

varied abundance is required.  Identification of low abundant species is positive 

as bio-aerosols are thought to have a low biological content.  However, this 

increases the need to fully understand and control the impact reagent 

contaminants will have on the results.

Analysing the tools ability to accurately predict the relative abundances of the 

species present was successful.  All three tools were able to predict the 

abundance of the species in the even and varied abundance in-silico datasets. 

GOTTCHA was shown to be the tool that most accurately estimated the 

abundance of the species in the in-silico datasets, with Centrifuge showing the 

lowest level of accuracy. The ability to accurately estimate the abundance of 

species is an essential element of monitoring changes in the diversity of the bio-

aerosol so it was imperative that this aspect of the analysis was a success.

Generating and analysing real sequencing data gave the best measure of a 

tool’s accuracy.  The accuracy of all tools tested was impacted negatively when 

using in-vitro mock community datasets compared to in-silico datasets.  Due to 

the cost benefits of using an in-silico approach and the ease in analysing 

different variables, future time could be invested in investigating different 

metagenomic simulation tools to devise more realistic datasets for use as initial 

down-selection analysis.  This approach could then be followed with the 

analysis of a well characterised in-vitro mock community sample for the finer 

selection of any new tools of interest.  Other areas of interest would be to 

investigate the tool’s abilities to accurately describe the abundance of the 

organisms present within an in-vitro mock community sample.

Combining the output from the three different metagenomic analysis tools 

increased the accuracy compared to using the tools independently.  This 

approach reduced the number of false positives and therefore increases 
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confidence that the species identified in unknown samples are in fact true 

positives.  This is critical for Dstl as it will allow an accurate analysis of bio-

aerosols in military relevant environments, enabling future bio-detection 

platforms to be evaluated in a well-defined, mock bio-aerosol environment.

The culmination of this work produced an analysis pipeline which delivered 

accurate taxonomic identification and relative abundance prediction of species.  

This pipeline was used, and will continue to be used, for the analysis of real bio-

aerosol samples collected as part of a long term and a short term temporal 

gradient study designed to measure the variation in species abundance in bio-

aerosol samples.  The results from the real data analysis show that the High 

Confidence taxonomic identification approach delivers the most accurate 

prediction of diversity and homogeneity of all the analysis tools tested.  

The application of the High Confidence taxonomic identification pipeline has led 

to changes to the sampling regime at Dstl.  Due to higher levels of variation 

measured outside of 0800 – 1600 there will be an increase in the number of 

short term, 24 hour temporal studies through to March 2020.  This will enable a 

measure of the full diversity and homogeneity of the bio-aerosol.

The output of this work is a metagenomic taxonomic identification pipeline that 

is already employed on a bio-aerosol analysis project at Dstl.  The aim of the 

project is to measure the temporal and geographical variation of the bio-aerosol.

In order to understand any variation it is imperative that a well characterised 

bioinformatics approach is used.  This work has delivered that well 

characterised analysis pipeline utilising tools selected on their performance.  

The implementation of the pipeline developed through this research will have a 

direct impact on the evaluation of future and current biological warfare detection

platforms, leading to the improved safety for military personnel.
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Appendix 1 – Initial list of metagenomic analysis tools identified for 

potential evaluation

ABySS MetaFlow
Anvi'o Meta-IDBA
BLAST MetaPhlAn
CARMA MetaPhlAn2
CARMA2 MetaPhyler
CARMA3 metaSPAdes
CLARK MetaVelvet
CLARK-S MetaVelvet-SL
CLC Genomics Workbench metBEETL
CloVR MG-RAST
CloVR-Meta MOCAT
CONCOCT NBC
ConStrains One-Codex
DIAMOND PathoScope
DiScRIBinATE PathoScope2
ESOM PhyloPhlAn
GaSiC Phylopythia
GATTACA PhyloSift
Genometa PhymmBL
GOTTCHA PhymmBL_expanded
GroopM Ray Meta
GSMer RITA
IDBA-UD Sequedex
IMG ShotMAP
IMG-4 SIGMA
IMG-M SOAP
IMG-M4 SOAP2
Kraken SPAdes
Kraken-mini SPANNER
LMAT specl
megaBLAST SURPI
MEGAHIT TACOA
MEGAN TaxyPro
MetaAMOS TETRA
MetaBin Velvet
MetaCV
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Appendix 2 – List of organisms selected to build in-silico datasets, 

including the abundances for the varied abundance in-silico datasets 

AM_100G_10M (Appendix 2-A); AM_10G_10M (Appendix 2-B) and 

Zymo_8G_10M (Appendix2-C).

Appendix 2-A: List of species for in-silico dataset AM_100G_10M and

the abundance of species for dataset AM_100G_10M-V.

Genus Species
AM_100G_10M-V

Abundance (%)
Acholeplasma Acholeplasma laidlawii 0.1
Acidovorax Acidovorax avenae 0.3
Agrobacterium Agrobacterium vitis 0.5
Alkaliphilus Alkaliphilus metalliredigens 0.7
Arthrobacter Arthrobacter arilaitensis 0.1
 Arthrobacter aurescens 0.5
 Arthrobacter chlorophenolicus 1.5
 Arthrobacter sp. FB24 1.9
Asticcacaulis Asticcacaulis excentricus 0.9
Azoarcus Azoarcus sp. BH72 1.1
Azorhizobium Azorhizobium caulinodans 1.3
Azospirillum Azospirillum sp. B510 1.5
Bacillus Bacillus anthracis 0.1
 Bacillus cellulosilyticus 0.3
 Bacillus cereus 0.5
 Bacillus megaterium 0.7
 Bacillus pumilus 1.3
 Bacillus subtilis 1.5
 Bacillus thuringiensis 1.7
Bacteroides Bacteroides fragilis 1.7
Borrelia Borrelia burgdorferi 1.9
Brachybacterium Brachybacterium faecium 0.1
Bradyrhizobium Bradyrhizobium japonicum 0.3
 Bradyrhizobium sp. BTAi1 0.7
 Bradyrhizobium sp. ORS 278 1.7
Brevundimonas Brevundimonas subvibrioides 0.3
Burkholderia Burkholderia multivorans 0.5
 Burkholderia vietnamiensis 1.5
Candidatus 

Desulforudis
Candidatus Desulforudis audaxviator

0.5
Candidatus 

Protochlamydia

Candidatus Protochlamydia 

amoebophila 0.7
Caulobacter Caulobacter crescentus 0.3
 Caulobacter segnis 1.1
 Caulobacter sp. K31 1.7
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Chloroflexus Chloroflexus aurantiacus 0.9
Clavibacter Clavibacter michiganensis 1.1
Clostridium Clostridium cellulolyticum 0.1
 Clostridium difficile 0.9
 Clostridium perfringens 1.9
Enterococcus Enterococcus faecalis 0.5
 Enterococcus faecium 1.9
Erythrobacter Erythrobacter litoralis 1.3
Escherichia Escherichia coli 1.5
Flavobacterium Flavobacterium johnsoniae 1.7
Gloebacter Gloeobacter violaceus 1.9
Gluconacetobacter Gluconacetobacter diazotrophicus 0.1
Hyphomonas Hyphomonas neptunium 0.3
Janthinobacterium Janthinobacterium sp. Marseille 0.5
Lactobacillus Lactobacillus crispatus 0.7
Leifsonia Leifsonia xyli 0.9
Listeria Listeria monocytogenes 1.1
Maricaulis Maricaulis maris 1.3
Methylobacterium Methylobacterium extorquens 0.1
 Methylobacterium nodulans 0.7
 Methylobacterium populi 1.1
 Methylobacterium radiotolerans 1.5
 Methylobacterium sp. 4-46 1.9
Micrococcus Micrococcus luteus 1.5
Mycobacterium Mycobacterium tuberculosis 1.7
Nitrobacter Nitrobacter hamburgensis 1.9
Novosphingobium Novosphingobium aromaticivorans 0.3
Ochrobactrum Ochrobactrum anthropi 0.7
Paenibacillus Paenibacillus larvae 0.3
 Paenibacillus polymyxa 0.9
 Paenibacillus sp. JDR-2 1.7
Paracoccus Paracoccus denitrificans 0.9
Pedobacter Pedobacter heparinus 1.1
Pelotomaculum Pelotomaculum thermopropionicum 1.3
Phenylobacterium Phenylobacterium zucineum 1.9
Planctomyces Planctomyces limnophilus 0.9
Pseudomonas Pseudomonas aeruginosa 0.5
 Pseudomonas putida 1.3
Pseudoxanthomonas Pseudoxanthomonas suwonensis 1.1
Rhizobium Rhizobium etli 1.3
Rhodobacter Rhodobacter capsulatus 0.7
 Rhodobacter sphaeroides 1.5
Rhodococcus Rhodococcus erythropolis 0.9
Rhodopseudomonas Rhodopseudomonas palustris 1.3
Roseobacter Roseobacter denitrificans 0.1
Ruegeria Ruegeria pomeroyi 0.3
Ruminococcus Ruminococcus albus 0.5
Shewanella Shewanella sp. ANA-3 0.7
Sorangium Sorangium cellulosum 0.9
Sphingobium Sphingobium japonicum 1.1
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Sphingomonas Sphingomonas wittichii 1.3
Sphingopyxis Sphingopyxis alaskensis 1.5
Spirosoma Spirosoma linguale 1.7
Staphylococcus Staphylococcus aureus 1.9
Stenotrophomonas Stenotrophomonas maltophilia 0.1
Streptococcus Streptococcus agalactiae 0.1
 Streptococcus pneumoniae 1.1
 Streptococcus suis 1.7
Streptomyces Streptomyces violaceusniger 0.3
Symbiobacterium Symbiobacterium thermophilum 0.5
Syntrophothermus Syntrophothermus lipocalidus 0.7
Thermaerobacter Thermaerobacter marianensis 0.9
Thermoanaerobacter Thermoanaerobacter italicus 1.1
Veillonella Veillonella parvula 1.3
Xanthomonas Xanthomonas campestris 1.5
Xylanimonas Xylanimonas cellulosilytica 1.7
Zymomonas Zymomonas mobilis 1.9

Appendix 2-B: Abundance of species for dataset AM_10G_10M-V.

AM_10G_10M-V species
Abundanc

e %
Pseudomonas aeruginosa 24.2
Bacillus thuringiensis 22.9
Acholeplasma laidlawii 15
Bacillus cereus 8.6
Staphylococcus aureus 7.1
Brevundimonas subvibrioides 7
Escherichia coli 5.3
Mycobacterium tuberculosis 4.4
Pseudomonas putida 4.2
Bacillus anthracis 1.2

Appendix 2-C: Abundance of species for dataset Zymo_8G_10M-V.

Zymo_8G_10M-V species

Abundanc

e

%
Pseudomonas aeruginosa 34.31
Escherichia coli 22.26
Salmonella enterica 19.22
Enterococcus faecalis 9.2
Lactobacillus fermentum 6.21
Staphylococcus aureus 5.15
Listeria monocytogenes 2.69
Bacillus subtilis 0.96
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Appendix 3 – Output from analysis of in-silico datasets using the 
metagenomic analysis tool Centrifuge

In-silico Dataset
True 

Positive

False 

Positive

False 

Negative

Sensitivity 

(%)

Precision 

(%)
AM_10G_10M 10 252 0 100 3.8
AM_10G_10M-V 10 232 0 100 4.1
AM_10G_10M-150 10 374 0 100 2.6

Zymo_8G_10M 8 307 0 100 2.5
Zymo_8G_10M-V 8 305 0 100 2.6
Zymo_8G_10M-150 8 466 0 100 1.7

AM_100G_10M 97 635 3 97 13
AM_100G_10M-V 97 606 3 97 14
AM_100G_10M-150 94 916 6 94 9.3
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Appendix 4 – List of organisms selected to build the in-vitro mock 

community datasets Ba and Yp.

Genus Species
Quantity

(µg)

Genome

size 

(Mb)

Relative 

abundance 

(%)

Actinobacillus 

Actinobacillus 

pleuropneumoniae

10 2.3 0.04

Aeromonas 

Aeromonas 

hydrophila

10 4.9 0.02

Alcaligenes 

Alcaligenes 

faecalis

10 3.9 0.02

Arcanobacterium 

Arcanobacterium 

pyogenes

10 2.3 0.04

Bacillus Bacillus cereus 10 5.8 0.02
Bacillus 

halodurans

5 4.2 0.01

Bacillus subtilis 5 4.1 0.01
Bacillus 

thuringiensis

10 6.1 0.02

Bordetella 

Bordetella 

bronchiseptica

5 5.2 0.01

Bordetella 

parapertussis

5 4.8 0.01

Bordetella 

pertussis

5 4.1 0.01

Citrobacter 

Citrobacter 

freundii

10 5.3 0.02

Clostridium Clostridium difficile 5 4.2 0.01
Clostridium 

perfringens

5 3.5 0.01

Cupriavidus 
Cupriavidus 

metallidurans

5 7.0 0.01

Deinococcus 
Deinococcus 

radiodurans

10 3.2 0.03

Derxia Derxia gummosa 10 5.2 0.02

Enterobacter 
Enterobacter 

aerogenes

10 5.3 0.02

Enterobacter 

cloacae

10 4.9 0.02

Enterococcus Enterococcus 5 3.0 0.02
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faecalis
Enterococcus 

faecium

10 2.9 0.03

Escherichia Escherichia coli 5 5.1 0.01

Geobacillus 

Geobacillus 

stearothermophilu

s

10 2.9 0.03

Klebsiella Klebsiella oxytoca 10 6.0 0.02
Klebsiella 

pneumonia

5 5.6 0.01

Legionella 
Legionella 

pneumophila

5 3.4 0.01

Listeria Listeria innocua 10 2.9 0.03
Listeria 

monocytogenes

10 3.0 0.03

Mannheimia 
Mannheimia 

haemolytica

10 2.6 0.04

Morganella 
Morganella 

morganii

10 4.0 0.02

Pantoea 
Pantoea 

agglomerans

10 4.9 0.02

Pectobacterium 
Pectobacterium 

atrosepticum

10 5.0 0.02

Plesiomonas 
Plesiomonas 

shigelloides

10 3.8 0.02

Porphyromonas 
Porphyromonas 

gingivalis

10 2.3 0.04

Propionibacteriu

m 

Propionibacterium 

acnes

5 2.5 0.02

Proteus Proteus mirabilis 10 4.0 0.02
Proteus vulgaris 10 4.0 0.02

Providencia 
Providencia 

stuartii

10 4.4 0.02

Pseudomonas 
Pseudomonas 

aeruginosa

5 6.6 0.01

Pseudomonas 

fluorescens

10 6.3 0.01

Pseudomonas 

putida

5 6.0 0.01

Rahnella Rahnella aquatilis 10 5.4 0.02
Rhizobium Rhizobium 10 5.6 0.02
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radiobacter

Salmonella 
Salmonella 

enterica

Serratia 
Serratia 

marcescens

Shewanella 
Shewanella 

oneidensis
Shigella Shigella flexneri

Staphylococcus 
Staphylococcus 

aureus

Streptococcus 
Streptococcus 

pneumoniae
Vibrio Vibrio fischeri

Vibrio 

parahaemolyticus

Bacillus Bacillus anthracis
Yersinia Yersinia pestis
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Appendix 5 – High Confidence Taxonomic identification of bio-aerosol samples collected over a long term temporal study 

(Appendix 5-A) and over a short term temporal study (Appendix 5-B).

Appendix 5-A: High Confidence taxonomic identification of bio-aerosol samples collected over a long term temporal study.

Sample ID 155 186 187 211 246 247

Date 21/05/18 21/06/18 21/07/18 21/08/18

Collection time 1200-1600 0800-1200 1200-1600 1200-1600 0800-1200 1200-1600

Lactobacillus amylovorus -

12.412386

7

8.34385666

7 - 1.85819 -

Stenotrophomonas 

maltophilia 4.69644

1.8240633

3

0.53387166

7 4.90813

5.82505333

3

2.9619033

3

Clavibacter michiganensis 1.5921456 2.1093543 1.832943 1.82923666 2.53020666 6.15399
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7 3 7 7

Pseudomonas poae - -

2.14328666

7

4.94674666

7 - 7.51603

Pseudomonas syringae -

2.4191266

7 2.23864 2.66321 -

2.0694633

3

Lactobacillus reuteri

1.9124033

3

3.0322233

3

1.68263666

7

1.27388233

3

1.41579333

3 -

Brachybacterium faecium

3.5510033

3

1.5382333

3

0.60975733

3

2.06217333

3 1.11978 -

Megasphaera elsdenii -

2.8253766

7

2.13149666

7 - - -

Propionibacterium acnes

2.5515366

7 -

0.76747566

7 -

1.50054666

7 -
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Eubacterium rectale - 2.040125 0.957675 - - -

Escherichia coli - - - 1.264448 -

1.7167116

7

Corynebacterium efficiens -

1.4322066

7 0.723621 -

0.71047533

3 -

Lactobacillus salivarius 1.85378 - - -

0.99937633

3 -

Terriglobus roseus 1.258786 -

0.52837666

7 - 1.05332 -

Lactobacillus johnsonii - - - 1.43175 1.31283 -

Pantoea vagans - -

0.79534166

7 1.265456 - -

Staphylococcus - - - - 1.27850333 -
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saprophyticus 3

Erwinia billingiae - -

1.18804666

7 - - -

Sanguibacter keddieii - - - - - 1.170034

Lactobacillus crispatus - - - - 1.16491 -

Lactobacillus helveticus - - - 1.043987 - -

Erwinia tasmaniensis - -

0.94707666

7 - - -

Arthrobacter arilaitensis - - - -

0.87196333

3 -

Jonesia denitrificans - -

0.78066633

3 - - -
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Corynebacterium glutamicum - - 0.678162 - - -

Buchnera aphidicola - - 0.639882 - - -

Acholeplasma laidlawii - - 0.554955 - - -
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Appendix 5-B: High Confidence taxonomic identification of bio-aerosol samples collected over a short term temporal study.

Collection time 0000-0400 0400-0800 0800-1200 1200-1600 1600-2000 2000-0000

Lactobacillus amylovorus

7.1979133

3 3.27983 12.4123867 8.343857 16.9548533

19.143933

3

Lactobacillus reuteri

2.4374933

3 3.39356 3.03222333 1.682637 2.94471667 3.05811

Stenotrophomonas maltophilia

2.5531033

3 3.17570667 1.82406333 0.533872 0.61193367 0.53766

Brachybacterium faecium 1.36035 2.937 1.53823333 0.609757 0.390704

0.4201236

7

Clavibacter michiganensis

0.6351333

3 0.82501267 2.10935433 1.832943 0.80031133

0.6415843

3

Pseudomonas syringae 1.2543833 - 2.41912667 2.23864 0.65299467 0.4360466
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3 7

Corynebacterium efficiens

0.2055054

3 - 1.43220667 0.723621 1.26763867 1.244324

Megasphaera elsdenii - - 2.82537667 2.131497 2.77635 2.7496

Lactobacillus johnsonii 2.07319 4.25058333 - - 0.8436

0.8317966

7

Eubacterium rectale - - 2.040125 0.957675 1.386925 1.244505

Lactobacillus salivarius

1.3486533

3 3.88342 - - -

0.3130526

7

Lactobacillus crispatus 0.84138 3.113485 - - - 0.516985

Erwinia billingiae - - - 1.188047 2.43878667

0.2981936

7

155



Jonesia denitrificans - - - 0.780666 0.82722767

0.8101326

7

Acholeplasma laidlawii - - - 0.554955 0.571679

0.4223284

3

Staphylococcus saprophyticus 0.48177 2.83818 - - - -

Corynebacterium urealyticum

0.3461936

7 2.073143 - - - -

Propionibacterium acnes - 1.27939333 - 0.767476 - -

Lactobacillus helveticus 0.431452 1.45699167 - - - -

Escherichia coli

0.3011383

3 1.17852 - - - -

Corynebacterium glutamicum - - - 0.678162 -

0.6765543

3
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Desulfovibrio desulfuricans - - - - 0.571823

0.5062176

7

Acidaminococcus fermentans - - - - 0.403092 0.357667

Bifidobacterium thermophilum - - - - 0.38063133

0.3545743

3

Lactobacillus delbrueckii - - - - 0.34675507

0.3000438

3

Pseudomonas poae - - - 2.143287 - -

Erwinia tasmaniensis - - - 0.947077 - -

Pantoea vagans - - - 0.795342 - -

Acidaminococcus intestini - - - - - 0.65218

Buchnera aphidicola - - - 0.639882 - -
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Terriglobus roseus - - - 0.528377 - -

Arthrobacter arilaitensis - - - - -

0.4732621

7

Brachyspira pilosicoli - - - - -

0.3084546

7

Bacteroides salanitronis 0.141275 - - - - -
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