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Abstract

Logistic volatility is a significant contributor to supply chain inefficiency. In this paper we

investigate the amplification of order and inventory fluctuations in a state-space supply chain

model with stochastic lead-time, general auto-correlated demand and a proportional order-

up-to replenishment policy. We identify the exact distribution functions of the orders and

the inventory levels. We give conditions for the ability of proportional control mechanism to

simultaneously reduce inventory and order variances. For AR(2) and ARMA(1,1) demand,

we show that both variances can be lowered together under the proportional order-up-to

policy. Simulation with real demand and lead-time data also confirms a cost benefit exists.
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1. Introduction

We investigate the performance of the order-up-to (OUT) and proportional order-up-to

(POUT) inventory control policies via the variance of the inventory and orders under a

stochastic lead-time. Variability in inventory systems is commonly generated by uncertain-

ties in demand, supply, transportation, and manufacturing. This variability can be amplified

by poorly designed replenishment policies (Lee et al., 1997; Chen et al., 2000). Fluctuations

in the replenishment orders and inventory levels pose an operational threat to companies.

High order variance (a.k.a. the bullwhip effect) brings uncertainty to the upstream supplier,
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and reduces supply chain efficiency. Similarly, high inventory variance results in high safety

stock levels and/or poor customer service, which in turn leads to inflated inventory cost.

Logistics uncertainty and stochastic shipping delays are a major component of supply

chain risk. In recent years, production and distribution systems have become increasingly

global, exposing supply chains to more volatility than ever before. Global transportation

routes, involving air, truck, rail and ocean freight modes, have long and variable lead-times,

due to external factors such as seasonality effects, security and customs delays and slow

steaming. Uncertain lead-times sometimes trigger another effect called order crossover,

where replenishments are received in a different sequence than they were ordered. Whilst

these two concepts do not necessarily imply each other (Zipkin, 1986; Riezebos, 2006), a

highly variable lead-time often results in order crossover. This is especially so in global

supply chains where container liners may take different routes, overtake each other at sea,

and stop at different ports along the way. Furthermore, individual containers may be held

up for customs inspections at national borders.

Hayya et al. (2008a) classified the research on stochastic lead-time into three schools:

the Hadley-Whitin School (Hadley and Whitin, 1963), which assumes that the probability

of order crossover is so small that it can be totally ignored; the Zipkin-Song School (Zipkin,

1986; Song, 1994), which assumes that goods are processed sequentially (perhaps in some sort

of first-in-first-out queue) so that order crossover cannot happen; and the Zalkind School

(Zalkind, 1978; Robinson et al., 2001; Bradley and Robinson, 2005), which takes order

crossover into account and discovers that inventory cost and safety stock can be reduced by

considering this effect. Models of this kind are first introduced by Finch (1961) and Agin

(1966), which gave the correct expression for the distribution of the number of outstanding

orders. Zalkind (1978) determined the optimal target inventory level to minimize total cost.

Bagchi et al. (1986) showed the importance of considering order crossover when setting safety

stock. Robinson et al. (2001) highlighted that order crossover has a significant impact on

inventory control and should not be ignored. The aims of these studies are either to derive

(approximate) relevant distributions or to decide safety stock parameters.

In recent years the impact of order cross-over on inventory management is gaining aca-
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demic attention. Chatfield et al. (2004) and Kim et al. (2006) have investigated the bullwhip

effect with stochastic lead-time, adopting the assumptions of i.i.d. demand and the OUT

replenishment policy. Hayya et al. (2008b) considered the inventory cost optimization prob-

lem under order crossover using regression on empirical data. Hayya et al. (2011) further

studied the impact of order-crossover on inventory cost, assuming deterministic demand and

exponentially distributed lead-time. Bischak et al. (2014) showed that taking into account

order crossover and using an approximate effective lead-time deviation allows companies to

reduce inventory costs.

Another stream of research has shown that the POUT policy is effective at smoothing

the bullwhip effect at a cost of increased inventory variability (Gaalman, 2006; Chen and

Disney, 2007). However, most studies on bullwhip effect require at least a predictable,

if not a constant, lead-time; while existing research on stochastic lead-time problems do

not explicitly tackle the amplification problem. Disney et al. (2016) tried to fill this gap by

considering an inventory system with stochastic lead-time and order-crossover. They derived

the distribution of orders and inventory under stochastic lead-time and discussed the impact

of the proportional OUT policy on costs and safety stocks. However, the demand pattern is

restricted to i.i.d. and no formal proof is given for the superiority of the POUT policy over

the OUT policy.

This paper is a sequel to Disney et al. (2016) in which we extend, sharpen and refine their

results in the following ways: (1) we identify the distributions of order and inventory under

stochastic lead-time and auto-correlated demand; (2) we provide conditions when the OUT

and POUT policies minimizes inventory variability under the ARMA(p,q) demand process;

(3) we examine the possibility of simultaneous reduction of inventory and order variances

by proportional control. Below we list our contributions in more detail.

• We develop a state space approach which allows us to derive the probability den-

sity functions of orders and inventory under the POUT policy, arbitrarily distributed

stochastic lead-time and general ARMA(p,q) demand. The pdfs then allows us to

derive exact expressions for the inventory and order variances.
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• We give a necessary condition for when the OUT policy minimizes the inventory vari-

ance under general ARMA demand and a stochastic lead-time. Based on this condition

we prove that the OUT policy is never optimal for minimizing inventory variance when

order crossover is present and demand is temporally independent.

• We give a precise condition under which the inventory and order variances can be

reduced simultaneously by optimizing the proportional controller in the POUT policy.

Parametrical combinations for this condition are derived for special cases of AR(2)

and ARMA(1,1) demand. Simultaneous reduction of inventory and order variance via

proportional control is possible for the majority of demand processes.

The paper is organized as follows. In §2 we introduce notation and modelling basics. §3

contains the main results, which includes an exact approach to obtain the distribution of

order and inventory, conditions for the optimality of the OUT policy, and conditions for the

simultaneous improvement of inventory and order variances. In §4 we numerically investigate

the impact of demand correlation and lead-time uncertainty. The cost implications of the

proportional policy are also provided based on real demand and lead-time data. Finally we

conclude and discuss our results in §5. Proofs that are not outlined in the main text are

presented in the Appendix.

2. Modelling the demand and ordering policy

In this section we establish the model including the objective function, demand process,

forecasting and inventory control policies, sequence of events, and the balance equations. We

focus on a periodic review inventory system where the system states are defined on R. The

lead-time, defined on N+, is a positive random variable following any arbitrary non-negative

discrete distribution that is independent over time. The assumption of discrete lead-time

is natural as the lead-time is measured in units of the review period in periodic systems

(Disney et al., 2016). Since our model allows for order crossovers, there are no restrictions

on the lead-times of consecutive orders. The demand is a normally distributed ARMA(p,q)
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process. Both the lead-time distribution and demand correlation are known in advance. In

practice this knowledge can be realized by statistically analysing historical data.

Table 1 lists commonly used notation. Importantly we denote Σxy(τ) as the mutual

covariance function between the random variables x and y, with time difference τ . E(x)

or µx is the expectation of x. Variables x and y don’t have to be scalars. If x and y each

contains m and n scalar random variables respectively, Σxy(τ) is an m× n matrix and E(x)

is a 1 ×m vector. When τ = 0, Σxx(0) is the autocovariance matrix of x. Sometimes we

write this as Σxx if no other confusion would occur. The leading diagonal of Σxx contains

the variances of the elements in x. Other notation will be introduced when necessary.

2.1. Sequence of events and the balance equations

We consider a 3 node supply chain model consisting of an end consumer, a manufacturer

and a supplier. The consumers demand is assumed to be exogenous, and the supplier is never

capacitated. We define the sequence of events as follows. In each period t, the supplier ships

the order it has received from the manufacturer in the previous period, and the manufacturer

receives the shipment corresponding to the order placed t − L periods ago, where L is the

(possibly stochastic) lead-time. Next, the customer demand is observed and satisfied. The

WIP and inventory information is updated. In our definition, it refers to the net inventory

level after order completion and demand consumption in period t, hence it < 0 denotes a

backlogged situation. Finally, the manufacturer calculates a forecast and issues a new order

based on updated forecast, inventory and WIP information.

The balance equations for inventory, it, and WIP, wt, in our model are

it = it−1 + ot−L − dt,

wt = wt−1 + ot−1 − ot−L.
(1)

Here ot is the replenishment order placed at time t. Under a stochastic lead-time there

could be zero or multiple orders arriving in one period. For modelling purposes, we assign

a lead-time value to an order at the time when the order is issued. This is to ensure that

an order is only received once. Here we also assume that an order will always be received in

full, regardless of the lead-time.
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Table 1: Commonly used notation in this paper

Variables (time-dependent random processes)

yt, zt Variables in the ARMA model

εt Gaussian i.i.d. variable with zero mean and unit variance

dt Demand

d̂t Demand forecast

D̂t Lead-time demand forecast

St Order-up-to level

ot Order

it Net inventory level

wt Work-in-process

IPt Inventory position, IPt = it + wt

ξt Pipeline Status

xt(ξ) Sub-process of {xt} with pipeline status ξ

Parameters (constant)

φ, θ Auto-correlation and moving average parameters in the ARMA demand model

ss Safety stock level

1− λ Proportional feedback controller

L+, L− Maximum and minimum lead-time

h, b Unit holding and backlog cost

First-order moment

E(x), µx Expectation of x

E(x; ξ) Expectation of xt(ξ)

Second-order moments

Σxy(τ) Mutual covariance function between x and y with time difference τ

Σxx(0), Σxx Autocovariance matrix of x

Σxy(0; ξ) Mutual covariance between xt(ξ) and yt(ξ)

Probabilities and distribution functions

pL Probability of lead-time being L periods long

ψx(·) Probability density function of x

Ψx(·) Cumulative distribution function of x

Ψ̄x(·) Complementary cumulative distribution function of x

ϕ(x|µ, σ2) Probability density function of normal distributed variable x with mean µ and variance σ2

Matrices

I Appropriately dimensioned identity matrix

1 Appropriately dimensioned unit column vector

AT Transpose of A

A−1 Inverse of A

diag{· · · } Block-diagonal matrix
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2.2. The objective functions

We consider the minimization of the inventory variance, Σii, as the primary objective.

The reason is threefold. First, from a practical perspective, a smooth inventory process is

much easier to manage than a highly fluctuating one. An inventory process with low variance

requires less safety stock, which leads to low inventory and backlog levels. Second, from a

modelling perspective, under mild assumptions, minimizing the variance of the inventory is

equivalent to minimizing the inventory cost. If the lead-time is constant, then the optimized

piecewise-linear inventory cost is proportional to the standard deviation of the inventory

levels. Third, under the quadratic assumption, the problem defined in this paper becomes

a linear quadratic Gaussian (LQG) problem which greatly promotes the tractability of the

problem.

The variance of orders, Σoo, serves as a second objective due to the large negative impact

on supply chain inefficiency brought about by volatile production rates and replenishment

orders. By means of the proportional policy, we do not try to minimize Σoo due to its

triviality (setting all orders to the mean demand ensures Σoo = 0). Instead, we will evaluate

Σoo under an optimal POUT policy for minimizing Σii.

In §4 we numerically investigate the inventory cost under the assumption of a piecewise

linear cost function. The expected cost C is defined as the expected inventory holding and

backlog costs, which are proportional to the inventory level and the backlog level respectively,

C = hE(i+t ) + bE(−it)+, (2)

where x+ = max(x, 0), i+t is the inventory level in period t when it > 0; (−it)+ is the backlog

level when it < 0.

2.3. The demand process

An ARMA(p,q) demand, dt = µd + zt, can be formulated as a constant, µd, plus a zero

mean ARMA(p,q) process, zt, where

zt = φ1zt−1 + · · ·+ φpzt−p − θ1εt−1 − · · · − θqεt−q.
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Here {εt} is a Gaussian white noise process. Let m = max(p, q + 1) and θj = 0 for j =

q + 1, . . . ,m; φj = 0 for j = p+ 1, . . . ,m. Introduce another 1×m vector, y, such that

yj,t = φjzt−1 + · · ·+ φmzt+j−m−1 − θjεt−1 − · · · − θmεt+j−m−1,

where yj,t is the jth element of yt, j = 1, 2, . . . ,m. With this definition we can transform

the ARMA demand model into a canonical state space form

yt = Ayt−1 +Bεt,

zt = Cyt.
(3)

Here A is an m×m left companion matrix with Aj1 = φj and Aj,j+1 = 1. B = (1 −θ1 · · · −

θm−1)T and C = (1 0 · · · 0).

The auto correlation of y satisfies

Σyy = AΣyyA
T +BBT . (4)

The solution of (4) can be found from

vec(Σyy) = (I − A⊗ A)−1vec(BBT ), (5)

in which ⊗ denotes the Kronecker (tensor) product of matrices, vec(·) is the matrix column-

wise stacking operation which transforms an m×n matrix into an (m×n)×1 column vector,

such that for matrix A = (a1 a2 · · · an) where a1, a2, · · · , an are m × 1 column vectors,

vec(A) = (aT1 aT2 · · · aTn )T .

2.4. The forecasting and inventory control policies

When the lead-time is longer than the review period, the manufacturer has to determine

the forecast of the lead-time demand D̂. This is a sum of all k-step-ahead demand forecasts

over the lead-time, D̂t =
∑L

k=1 d̂t,k. d̂t,k is the conditional expectation of dt+k based on all

observations available at time t which the manufacturer uses to produce a minimum mean

squared error (MMSE) k-step-ahead forecast of demand. It was chosen as minimizing the

squared forecast errors over the lead-time and review period results in minimal inventory
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variance (Hosoda and Disney, 2006). Although MMSE forecasting requires the full knowl-

edge of the demand process, we note that our approach can be easily extended to incorporate

any linear forecasting method.

To calculate d̂t,k we need to first derive the corresponding forecast of ARMA state variable

y. The MMSE k-step-ahead forecast for y is given by

ŷt,k = Akyt, (6)

where Ak is the matrix A raised to its kth power. The k-step ahead forecasts of d are then

simply d̂t,k = Cŷt,k + µd.

We study the POUT policy, which can be formed by adding a proportional controller

into the inventory position feedback loop of the OUT policy. This policy has been studied

by Magee (1956); Deziel and Eilon (1967); John et al. (1994); Disney et al. (2004). We start

from the classic OUT policy under constant lead-time before introducing the POUT policy

under stochastic lead-time. The OUT policy is defined as

ot = St − IPt;

St = D̂t + ss.

This policy can be further rewritten as (Dejonckheere et al., 2003)

ot = d̂t,L + (ss+ ŵt − it − wt), (7)

where ŵt is the (time varying) target WIP level, ŵt =
∑L−1

k=1 d̂t,k. wt is the actual WIP level

and under a constant lead-time, wt =
∑L−1

k=1 ot−k. ss is the target inventory level.

The POUT policy is formed by adding a proportional controller, 1 − λ, to the second

term of (7) such that

ot = d̂t,L + (1− λ)(ss+ ŵt − it − wt). (8)

The proportional controller must satisfy λ ∈ (−1, 1) for stability (Disney, 2008). Note that

ss+ ŵt is the target inventory position and it +wt is the actual inventory position. In other

words, the order quantity equals the L-step-ahead demand forecast plus a fraction (1 − λ)
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of the discrepancy between the target and actual inventory position. Since the lead-time is

i.i.d. with a known discrete distribution, d̂t,L and ŵt can then be calculated as the average

over all possible lead-time values, which we denote as:

d̂t,L =
L+∑

k=L−

pkd̂t,k,

ŵt =
L+∑
l=L−

pl

l−1∑
k=1

d̂t,k.

(9)

Rearranging (8) yields

ot = ft + (1− λ)(ss− it − wt), (10)

where ft is the forecast term

ft = d̂t,L + (1− λ)ŵt =
L+∑

k=L−

pkd̂t,k + (1− λ)
L+∑
l=L−

pl

l−1∑
k=1

d̂t,k. (11)

From (6) we see that the MMSE forecast is linear, which enables us to rewrite ft as a linear

function of yt, i.e., ft = Fyt + (µL − λµL + λ)µd. F is the forecasting vector,

F =
L+∑

k=L−

pkCA
k + (1− λ)

L+∑
l=L−

pl

l−1∑
k=1

CAk.

The variance of f takes the quadratic form

Σff = FΣyyF
T .

3. Distributions of the orders and the inventory

3.1. Revisiting the constant lead-time case

To reveal the impact of stochastic lead-time, we first revisit some well-established results

under constant lead-time to highlight the trade-off between order and inventory variance.

The demand is assumed to be i.i.d. (white noise) here, but the trade-off also exists under

auto-correlated demand.
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Lemma 1. Under i.i.d. demand, a constant lead-time L and the POUT policy (8), the order

and inventory variances are

Σoo =
1− λ
1 + λ

Σdd,

and

Σii =

(
λ2

1− λ2
+ L

)
Σdd.

Proof. A proof was provided in Disney et al. (2004).

The following observations can be made from Lemma 1. (1) Order-up-to optimality : the

optimal λ for minimizing Σii is λ = 0. In other words, the OUT policy minimizes Σii. (2)

Variance trade-off : Under a constant lead-time, at λ = 0, Σoo can be reduced only at a cost

of increasing Σii.

3.2. Distribution of orders under a stochastic lead-time

In this section we characterise the order distribution, including the type of distribution,

the mean and the (co)variance functions under a stochastic lead-time.

Lemma 2. For the inventory evolution given by (1), demand processes by (3) and the

ordering policy by (8), under a stochastic lead-time, the orders and the inventory position is

normally distributed with E(o) = µd and E(IP ) = ss+ (µL − 1)µd.

The following Lemma gives the auto- and mutual- covariance function between y and o.

Lemma 3. For the inventory evolution given by (1), demand processes by (3) and the

ordering policy by (8), under a stochastic lead-time we have:

Covariance between the demand and orders,

Σyo = (I − λA)−1
[
(I − A)ΣyyF

T + (1− λ)ΣyyC
T
]
. (12)

Mutual covariance function between demand and orders,

Σyo(τ) = AτΣyo(0). (13)
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Variance of orders,

Σoo =
2

1 + λ
F (I − λA)−1(I − A)ΣyyF

T +
2λ

1 + λ
F (A− I)(I − λA)−1ΣyyC

T+

2

1 + λ
C(I − λA)−1(I − A)ΣyyF

T +
1− λ
1 + λ

C(I + λA)(I − λA)−1ΣyyC
T .

(14)

Autocovariance function of orders,

Σoo(τ) = [FA+ (1− λ)CA− F ] Σyo(τ − 1) + λΣoo(τ − 1). (15)

The probability density function of orders ψo(x) can be characterized as,

ψo(x) = ϕ(x|µd,Σoo).

From Lemma 2 we see that E(o) is not affected by the lead-time; but Lemma 3 shows Σoo

is affected by the lead-time distribution through the forecasting vector F . More importantly,

the process of the orders is stationary. Lemma 3 not only gives the variance of orders, but

also provides an iterative approach to calculate the auto/mutual covariance functions of y

and o which is essential in calculating the inventory distribution.

3.3. Distribution of inventory under a stochastic lead-time

In a constant lead-time scenario, whether or not a previous order ot−k is outstanding

at time t is deterministic. However, if lead-time is stochastic then this status becomes

probabilistic. To derive the distribution of inventory we have to understand how it is affected

by the stochastic lead-time in terms of the outstanding order status. Two definitions are

necessary here.

Definition 1. The pipeline status ξ is defined as a 1 × (L+ − 1) binary vector. The kth

element of ξ, ξ(k), is a random binary variable for k > L− and ξ(k) = 1 for k < L−.

ξt indicates which orders are outstanding and which have been received at time t. Specif-

ically ξt(k) = 1 means the order placed at time t−k is outstanding at t and ξt(k) = 0 means

the order placed at t − k is completed (or has been received) at t, k = 1, 2, . . . , L+ − 1.

Note that for any t, orders made before (and including) t−L+ are fulfilled, i.e., ξt(k) ≡ 0 for
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Table 2: Example of stochastic lead time and outstanding orders

Period 1 2 3 4 5 6 7 8 9 10

Order lead-time 3 3 1 3 2 1 1 3 1 2

Outstanding orders - - o1, o2 o2 o4 o4, o5 None None o8 o8

Pipeline status - - (1, 1) (1, 0) (0, 1) (1, 1) (0, 0) (0, 0) (0, 1) (1, 0)

k > L+, therefore they are not included in the pipeline. Orders made after (and excluding)

t − L− are outstanding, i.e., ξt(k) ≡ 1 for k < L−. So the pipeline contains a maximum

of L+ − 1 outstanding orders, in which the first L− − 1 orders have deterministic status

(they are all outstanding) and the other L+ −L− orders have random status. ξ has 2L
+−L−

possible realizations, which we index as ξj. Here the superscript j = 1, 2, . . . , 2L
+−L−

denotes all possible realizations of vector ξ, which should not be confused with ξ(k), the kth

element of ξ.

Definition 2. A sub-process {xt(ξ)} of a process {xt} is defined as a subset of the process

when the pipeline status is unique, e.g., {it(ξj)} = {it|ξt = ξj}, {wt(ξj)} = {wt|ξt = ξj}.

Example. Consider the lead-time distribution: pk = 1/3, k = 1, 2, 3. The second line in

Table 2 is a realization of the stochastic lead-time for each order in the 10 period simulation.

As L+ = 3 we start our investigation from period 3. Since the lead-time for o1 and o2 are

both 3, in period 3 they are both outstanding. In period 4, o1 has arrived and so does o3,

which has a lead-time of 1. The only outstanding order is o2. At period 5, o2 has arrived

and o4 is outstanding. This constitutes the third line of Table 2. The WIP with the same

pipeline status belongs to one sub-process, e.g., periods 3 and 6, periods 4 and 10, period 5

and 9, periods 7 and 8. Thus there are several sub-processes (4 in this example as 23−1 = 4)

in the WIP process. Each of the sub-processes is characterized by a pipeline status vector,

(1, 1), (1, 0), (0, 1) and (0, 0), shown in the last row of Table 2.

Equation (10) reveals that the distribution of inventory is a convolution of the distri-

bution functions of ft, ot and wt, and both ft and ot are independent of the lead-time

realization. Hence we can decompose the inventory process into several sub-processes as-
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sociated with the different pipeline status. By such division, the random variables in one

sub-process follow identical normal distributions, due to the fixed pipeline status. The com-

plication of the current problem, compared with the assumptions of i.i.d. demand and OUT

policy in the literature (Robinson et al., 2001), is that the order process is now correlated

as a consequence of the demand correlation and the proportional feedback controller, so

the covariances must be accounted for. However, the covariance functions with the same

pipeline status will be identical.

For the inventory sub-process {it(ξ)}, we have the following Lemma:

Lemma 4. The mean and variance of {it(ξ)} are given by

E(i; ξ) = ss+ (µL − ξ1− 1)µd,

and

Σii(0; ξ) =
Σff + Σoo − 2FΣyo

(1− λ)2
+

2ξ(α− β)

1− λ
+ ξΓξT .

where α and β are (L+ − 1) × 1 column vectors, Γ is a (L+ − 1) × (L+ − 1) covariance

matrix of orders, in which the elements are αj = Σoo(j), βj = FΣyo(j), γjk = Σoo(j − k)

respectively, j, k = 1, 2, . . . , L+ − 1.

We use p(ξ) to denote the probability of ξ, the proportion of the sub-process characterized

by ξ in the whole process. Zalkind (1978) shows that

p(ξ) =
L+−1∏
k=1

{
[1− ξ(k)] ΨL(k) + ξ(k)Ψ̄L(k)

}
. (16)

where ΨL(·) and Ψ̄L(·) are the cumulative distribution function and the complementary

cumulative distribution function of the discrete lead-time. The full inventory process is a

simple mixture of the sub-processes, which are mutually independent (because the lead-

time is temporally independent). Therefore after determining the first- and second- order

moments of the sub-processes, the distribution function of the full inventory process can be

derived by summing over the distributions of all the sub-processes:

ψi(x) =
2L

+−L−∑
j=1

p(ξj)ϕ
(
x|E(i; ξj),Σii(0; ξj)

)
. (17)

14

Wang, X., and Disney, S.M., (2016), “Mitigating variance amplification under stochastic lead-time: The proportional control approach”, 
 Accepted for publication in the European Journal of Operational Research.



We can now obtain a general expression for the inventory variance.

Proposition 1. The variance of {it} is given by

Σii =
Σff + Σoo − 2FΣyo

(1− λ)2
+
L+−1∑
k=1

Ψ̄L(k)

[
Σoo + 2

Σoo(k)− FΣyo(k)

1− λ

]
+
L+−2∑
k=1

νkΣoo(k)+µ2
dΣNN ,

(18)

where

νk := 2
L+−k−1∑
j=1

Ψ̄L(j)Ψ̄L(j + k),

and the variance of the number of outstanding orders

ΣNN =
∑
j>k

p(ξj)p(ξk)(ξj1− ξk1)2.

The first term of (18) is the inventory variance when L = 1. The last term gives the

inventory variance under constant demand, i.e., dt ≡ µd. It can be seen that a larger mean

demand increases the inventory variance under stochastic lead-times. This is contrary to the

deterministic lead-time case where the mean demand does not affect the inventory variance,

but the variance of inventory is greatly affected by the mean demand under a stochastic

lead-time. Moreover, since ψi(x) is a sum of several normal distributions with different

means, it does not have to be normally distributed or even unimodal.

Also note that (18) is different from the inventory variance expression in Disney et al.

(2016) in the following ways. First, the demand auto-correlation is taken into account, which

affects all the covariance terms, especially those related to the forecast. Second, the variance

expression is based on the lead-time distribution directly, rather than on the probabilities

of ξ. The latter improvement is essential in proving the sub-optimality of the OUT policy

in §3.4.

Our approach to calculate inventory variance needs the lead-time to be bounded, which

is practically plausible. If the lead-time follows a theoretical distribution where lead-time is

unbounded, computational difficulties may arise. As noted by Robinson et al. (2001) this

would require calculating an infinite sum of random variables. However, under the assump-

tion of limL→∞ pL = 0, we anticipate that our approach can generate an approximation to

any desired level of accuracy.
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3.4. Conditions for optimality and variance trade-off

Having extended the lead-time assumption from deterministic to stochastic, the following

questions naturally arises: (1) will the OUT policy still be the optimal policy to minimize

inventory variance? (2) If the answer to (1) is no, then will there still be variance trade-

off in the OUT policy, i.e., what happens to the order variance as we optimize inventory

variance? The non-optimality of order-up-to policy means that there is at least a λ 6= 0 which

gives lower inventory variance; the non-existence of the variance trade-off means that the

order variance can be reduced simultaneously with inventory variance – a highly desirable

situation. Hereafter we denote λ∗ as the optimal feedback controller for minimizing the

inventory variance. Then these two questions can be reiterated as: (1) Is λ∗ = 0? (2) Does

Σoo|λ=λ∗ > Σoo|λ=0?

Based on the explicit expression of inventory variance, we now present several results

that answer these questions. First, we give a necessary condition for the OUT policy to

be optimal at minimizing the inventory variance. Moreover, we give exact conditions under

which Σii and Σoo can be reduced together. For the special case of i.i.d. demand, we can

derive a stronger result, that is, if there is order cross-over present, i.e., the difference

between maximum and minimum i.i.d. lead-time is larger than 1, then the OUT policy is

never optimal in minimizing inventory variance; and the optimal proportional policy will

always lead to a reduced order variance. This phenomenon is observed in Disney et al.

(2016) and we prove it here.

Lemma 5. The derivative of the order variance w.r.t. λ is

∂Σoo

∂λ
= 2QP0∆QT , (19)

and the derivative of the inventory variance w.r.t. λ is

∂Σii

∂λ
= Q

(
P1 + 2

L+−1∑
k=1

Ψ̄L(k)P2k +
L+−2∑
k=1

νkP3k

)
∆QT , (20)
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where Q := (F ∂F/∂λ C), ∆ := diag{Σyy,Σyy,Σyy},

P0 :=


−(I − A)2 I − A A− I

I − A 0 0

−(I − A)2 I − A A− I

 ,

P1 :=


2A I −4I

I 0 −2I

2(I − A2) 2(I − A) 2A

 ,

P2 :=




0 0 −I

0 0 −I

I −A3 I −A2 A2

 k = 1


(Ak +Ak−2 −A+ I)(A− I) (Ak−1 − I)(A− I) −Ak +Ak−1 −Ak−2 +A− I

(Ak−1 − I)(A− I) 0 −Ak−1

(Ak+1 +Ak−1 +A− I)(I −A) (Ak−1 + I)(I −A) Ak+1 −Ak +Ak−1 +A− I

 k > 1

and

P3 :=




(A2 −A+ 2I)(I −A) −(I −A)2 (I −A)2

−(I −A)2 0 A− I

(A2 −A+ 2I)(I −A) A(I −A) (I −A)2

 k = 1


−Ak−2(I +A2)(I −A)2 −Ak−1(I −A)2 (Ak −Ak−1 +Ak−2)(A− I)

−Ak−1(I −A)2 0 Ak−1(A− I)

(Ak+1 −Ak +Ak−1)(I −A) Ak(I −A) Ak−1(I −A)2

 k > 1

Proof. The proof is straightforward from Proposition 1.

Lemma 5 directly leads to the following proposition which gives a necessary condition

for the optimality of the OUT policy. We present it without proof.

Proposition 2. λ∗ = 0 only if

∂Σii

∂λ
= Q

(
P1 + 2

L+−1∑
k=1

Ψ̄L(k)P2k +
L+−2∑
k=1

νkP3k

)
∆QT = 0. (21)

For all combinations of ARMA processes and discrete lead-time distributions, the set

that satisfies (21) has zero measure (loosely speaking, for a randomly chosen demand model
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and lead-time distribution, the probability that λ∗ = 0 is negligible). That is, the demand

process and lead-time distribution seldom meet the criteria of (21).

On the other hand, the signs of the derivatives at λ = 0 determine whether an optimal

proportional policy leads to an increased or decreased order variance, as Proposition 3 shows.

Proposition 3. If (19) and (20) have the same sign, then Σoo|λ=λ∗ < Σoo|λ=0.

We have omitted the proof because it is straightforward from Lemma 5. The logic is that

if both derivatives are positive or negative at λ = 0, then decreasing Σii will also decrease

Σoo. The inverse proposition is also true. Note that Proposition 3 builds on the assumption

that Σoo is monotonic for λ ∈ (0, λ∗). This can be reasonably accepted since λ∗ is usually

quite close to 0.

Through the state space formulation, Propositions 2 and 3 provide computationally ef-

ficient criteria to determine the performance of OUT policy under ARMA demand and

stochastic lead-time. For a demand process that is temporally independent, the non-

optimality and non-existence of variance trade-off at λ = 0 is guaranteed when order

crossover is present:

Corollary 1. Under i.i.d. demand, MMSE forecast and order crossover, λ∗ 6= 0 and

Σoo|λ=λ∗ < Σoo|λ=0.

Corollary 1 contradicts Lemma 1 in the presence of order crossover. This is because

all the inventory sub-processes characterized by the vector ξ, with an order crossover (when

there is at least one 1 on the left side of a 0 in ξ), can all be minimized with a λ > 0, whereas

those without crossover are minimized by λ = 0. Therefore the full inventory process, which

is a sum of all the sub-processes, is minimized by a λ > 0. Intuitively, this is because under

order crossover, the WIP is a weighted sum of multiple outstanding orders instead of simple

sum. Hence the feedback controller of inventory position in the replenishment policy should

be a fraction.

18

Wang, X., and Disney, S.M., (2016), “Mitigating variance amplification under stochastic lead-time: The proportional control approach”, 
 Accepted for publication in the European Journal of Operational Research.



4. Numerical experiments

In this section we conduct numerical experiments to illustrate our analytical results. We

show the mixed impact of the stochastic lead-time, order crossover and demand correlation.

In all experiments the expected demand is 5 units per period. {εt} is a white noise process,

i.i.d. random variable with zero mean and unit variance. We consider 10 different lead-time

distributions (see Figure 1) with both non-crossover (i, ii) and crossover (iii-x) scenarios. In

the crossover scenarios we further investigate several distributions where the lead-time vari-

ability gradually increases, from low variability distributions (iii, vii), to higher variability

(iv, viii), uniform (v, ix) and then two-point distributions (vi, x).

Figure 1: Lead-time distribution scenarios in the numerical experiment

4.1. The impact of stochastic lead-time

In Table 3 we compare the inventory and order variances under the OUT policy and

the optimized POUT policy. Here demand follows an i.i.d. white noise process. First of

all, we can observe that the proportional policy can reduce order and inventory variance
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Table 3: System variance with different lead time distributions and i.i.d. demand

Lead-time distribution OUT (1− λ = 1) POUT % Σii

Reduction

% Σoo

Reduction
No. Description Σii Σoo 1− λ∗ Σii Σoo

i L− = L+ = 1 p1 = 1 1 1 1 1 1 0.00 0.00

ii L− = 1, L+ = 2 p1 = 0.5, p2 = 0.5 7.75 1 1 7.75 1 0.00 0.00

iii

L− = 1, L+ = 3

p1 = 0.1, p2 = 0.8, p3 = 0.1 6.50 1 0.99 6.50 0.98 0.00 2.00

iv p1 = 0.2, p2 = 0.5, p3 = 0.3 11.35 1 0.95 11.35 0.91 0.00 9.00

v pl = 1/3, l = 1, 2, 3 13.11 1 0.92 13.10 0.85 0.08 15.00

vi p1 = 0.5, p3 = 0.5 14.50 1 0.87 14.47 0.76 0.21 24.00

vii

L− = 1, L+ = 4

p1 = 0.05, p2 = 0.45,

p3 = 0.45, p4 = 0.05
11.12 1 0.96 11.12 0.92 0.00 8.00

viii
p1 = 0.2, p2 = 0.3,

p3 = 0.3, p4 = 0.2
16.75 1 0.88 16.73 0.78 0.12 22.00

ix pl = 1/4, l = 1, 2, 3, 4 18.13 1 0.86 18.09 0.75 0.22 25.00

x p1 = 0.5, p4 = 0.5 21.25 1 0.79 21.14 0.65 0.52 35.00

simultaneously – but only when there is order crossover. When crossover is not present

(cases i and ii), λ = 0 minimizes inventory variance. For the order crossover scenarios

(iii-x), an optimized POUT policy is able to mitigate the order amplification significantly

while mildly reducing the inventory variance. The reduction in order variability is more

considerable when lead-time volatility is high, e.g., when it follows a two-point distribution

(cases vi and x). When the lead-time distribution is less variable, λ∗ is close to zero, and

the benefit of the POUT policy becomes marginal.

For illustration, we have plotted the inventory and order variances w.r.t. λ for case vi

(see Figure 2) under i.i.d. demand. The existence of a minimal Σii and the monotonicity of

Σoo can be clearly seen. The inventory variance reaches a minimum when λ = 0.13 whereas

the order variance decreases with λ. So setting λ to 0.13 reduces both inventory and order

variances, compared with λ = 0. As λ increases, the order variance will continue to decrease;

however this comes with increased inventory variance. (For instance, when λ = 0.26, the

inventory variance is the same as when λ = 0; the order variance has reduced from 1 to

0.59.)
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Figure 2: Inventory variance and bullwhip in Case vi

In Table 4 we make a similar comparison between the OUT and proportional policies,

the only difference with Table 3 being that demand follows an AR(2) process with φ1 = 0.6

and φ2 = −0.9. Similar observations can be made.

The impact of the POUT policy on order and inventory variance is asymmetric. This

can be explained as follows. Under stochastic lead-time and positive average demand, the

inventory distribution is multimodal with modes separated by µd. While the POUT policy

reduces the variance of each mode, it has no effect on the mode separation. Therefore we

see that the inventory variance is dominated by µd rather than λ. The order distribution is

unaffected by µd and is always a unimodal normal distribution; because of this, the influence

of λ on order variance is more substantial.

4.2. Optimality and variance trade-off: Special cases

For demand processes following an AR(2) and ARMA(1,1) processes, we investigate

the optimality of OUT policy and the possibility of reducing order and inventory variance

simultaneously. The reason we have chosen these two processes is that the parametrical

space is two dimensional which can be easily visualized. The AR(1) process is naturally
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Table 4: System variance with different lead time distributions and AR(2) demand

Lead-time distribution OUT (1− λ = 1) POUT % Σii

Reduction

% Σoo

Reduction
No. Description Σii Σoo 1− λ∗ Σii Σoo

i L− = L+ = 1 p1 = 1 1 7.05 1 1 7.05 0.00 0.00

ii L− = 1, L+ = 2 p1 = 0.5, p2 = 0.5 9.65 7.42 1 9.65 7.42 0.00 0.00

iii

L− = 1, L+ = 3

p1 = 0.1, p2 = 0.8, p3 = 0.1 8.73 4.19 0.99 8.73 4.13 0.00 1.43

iv p1 = 0.2, p2 = 0.5, p3 = 0.3 14.43 2.64 0.94 14.42 2.43 0.07 7.95

v pl = 1/3, l = 1, 2, 3 16.50 2.16 0.91 16.48 1.87 0.12 13.43

vi p1 = 0.5, p3 = 0.5 18.37 1.24 0.85 18.32 0.92 0.27 25.81

vii

L− = 1, L+ = 4

p1 = 0.05, p2 = 0.45,

p3 = 0.45, p4 = 0.05
14.15 2.26 0.95 14.15 2.15 0.00 4.87

viii
p1 = 0.2, p2 = 0.3,

p3 = 0.3, p4 = 0.2
20.51 1.05 0.86 20.48 0.83 0.15 20.95

ix pl = 1/4, l = 1, 2, 3, 4 21.98 0.83 0.85 21.94 0.60 0.18 27.71

x p1 = 0.5, p4 = 0.5 24.45 1.13 0.79 24.42 0.94 0.12 16.81

included in the analysis as a special case. The lead-time distribution follows the cases in

Figure 1, excluding (i) and (ii). Figures 3 and 4 show the auto-correlation and moving

average parameters under which the OUT policy is optimal (bold curve) and where the

variance trade-off exists (dark grey area). The white area denotes the desirable situation

where minimizing the inventory variance simultaneously results in a reduction in the order

variance. The dashed line for φ2 = 0 and θ = 0 represents the AR(1) case. The light grey

area in Figure 3 is the unstable region for AR(2) process.

First we note, the condition of OUT optimality (21) is represented by one-dimensional

curves in the figures, therefore it is practically impossible for the OUT policy to be optimal.

Secondly, as anticipated in §3.4, the area where the variance trade-off exists for the OUT

policy only takes a small proportion of the parametrical plane. In some cases (iii and vii

under ARMA(1,1) demand) such an area does not exist al all. Thirdly, in most cases, OUT

optimality and variance trade-off usually occurs when dominant auto-regressive parameter

is negative (φ1 < 0).
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Figure 3: Optimality and trade-off of order-up-to policy under AR(2) process and stochastic lead-time

Figure 4: Optimality and trade-off of order-up-to policy under ARMA(1,1) process and stochastic lead-time

4.3. Cost implications using real demand data

In this section we use real demand data and lead-time distributions to test the perfor-

mance of the proportional policy, in terms of both variance and cost. The dataset contains

time series of demand from a general household retailer in Germany. Each time series con-
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tain 103 data points. The ARMA(1,1) process is found to be an appropriate model for 91

items in the dataset, and Figure 5 portrays the ARMA(1,1) coefficients, φ and θ for these

items. The empirical data shown in Figure 2 of Disney et al. (2016) is used to define the

lead-time distribution. In Figure 5 we present the optimality and trade-off details under this

demand distribution together with the auto-correlation and moving average parameters of

the demand processes for each of the 91 ARMA(1,1) items. It can be clearly seen that the

POUT policy should be able to mitigate inventory and order fluctuation for all of the items

in the dataset.

Figure 5: Optimality and trade-off under real lead-time distribution

We use simulation to verify this result. First we derive the optimal feedback controller

for each item based on model fit. The demand and lead-time data is then imported into

the inventory system which uses either the OUT policy or the optimized POUT policy. The

variance ratio between inventory/order and demand is recorded. To capture the effect of the

randomly generated lead-time, the simulation is repeated 100 times with different lead-time

realizations in each repetition and the average is taken. Only the last 50 data points are
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Table 5: Average variance ratio with real demand data and lead-time distribution

Replenishment policy Σii/Σdd Σoo/Σdd

% Reduction

Σii/Σdd

% Reduction

Σoo/Σdd

OUT 29.854 16.949 - -

POUT 28.947 14.903 3.04∗ 12.07∗

∗ The difference is significant at the 0.05 level.

used in the performance evaluation to exclude any initialization effects in our simulation.

We present the result both in the form of average over the items (Table 5) and a boxplot of

all items (Figure 6).

Figure 6: Boxplot of variance ratio for all SKUs (The range of whiskers is ±2.7σ).

The simulated performance is consistent with our analytical results. By adopting the

proportional policy, the inventory variance can be reduced mildly (3.04%). However the

order variance can be reduced significantly (12.07%). This result verifies the effectiveness of

proportional inventory control in the presence of a stochastic lead-time. From the boxplot

it can be seen that the proportional policy also leads to a decrease in the variation among

items.

The cost performances of the order-up-to and proportional policies are also compared.
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Table 6: Inventory cost with real demand data and lead-time distribution under various cost parameters

Replenishment policy
h = 5, b = 5 h = 3, b = 7 h = 1, b = 9

C % Reduction C % Reduction C % Reduction

OUT 587.77 - 514.42 - 265.62 -

POUT 579.20 1.46 507.13 1.42 263.43 0.82

In Table 6 the inventory cost as defined by (2). The safety stock is set via
∫ 0

−∞ ψi(x)dx =

h/(h+ b) in the usual newsvendor fashion. Three cost settings are included: {h = 5, b = 5},

{h = 3, b = 7} and {h = 1, b = 9}. They represent different availability requirements of

50%, 70% and 90% respectively. The numerical results confirm that the proportional policy

also reduces average inventory cost, especially when the service level is low.

5. Conclusion and discussion

Based on our experience of observing a stochastic lead-time in practice and building

upon the results in Disney et al. (2016), we studied its effect on order and inventory vari-

ances with auto-correlated demand. Given a known (or perceived) lead-time distribution

and demand correlation information, we presented a state-space approach to calculate the

inventory variance. We gave conditions under which the POUT policy outperforms the OUT

policy in mitigating both order and inventory amplifications.

In Table 7 we summarize the properties of the inventory system under different demand

and lead-time conditions. First, the stochasticity of the lead-time determines the shape of

the inventory distribution, and hence the relationship between demand level and inventory

variance. If the lead-time is stochastic, then the inventory variance is dependent upon the

average demand level. Second, order crossover determines whether the OUT policy is the

proper choice for minimizing inventory variance and inventory related costs. Proportional

control is able to reduce inventory variance under order crossover. Third, the demand

correlation corresponds to whether there is a variance trade-off under the OUT policy. An

investigation of the special cases of AR(2) and ARMA(1,1) demand suggests that order and
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Table 7: Summarization of the properties of different lead-time conditions

Constant

lead-time,

iid/ARMA demand

Stochastic lead-time

without crossover, iid

demand

Order

crossover,

i.i.d. demand

Order crossover, ARMA

demand

Related

research

Disney et al. (2004),

Gaalman (2006)

Disney et al. (2016), this

paper

Disney et al.

(2016), this

paper

This paper

Shape of

inventory

pdf

Bell-shaped Multi-modal

µd and Σii Σii is independent of

µd

Σii is dependent on µd

λ∗ λ∗ = 0 λ∗ 6= 0 λ∗ 6= 0 in most cases

Variance

trade-off

Reducing Σoo increases Σii Minimizing Σii

decreases Σoo

Depending on demand

correlation and lead-time

distribution

inventory variance can be almost always be simultaneously reduced.

Managerially this result has interesting consequences. One of the concerns practitioners

have before adopting a POUT policy is its potential aggravating effect on inventory cost,

see Lemma 1. However, our finding implies that, under most demand correlation and order

crossover scenarios (which are quite common in practice), this concern is not valid since

inventory variance and inventory cost can be reduced by proportional control, albeit only

marginally. However, this subsequently allows one to mitigate order fluctuation considerably.

Even if the proportional controller is not set optimally due to statistical and computational

imperfections, the benefit of reducing order variability will arguably outweigh the (small)

potential loss of the increased inventory cost. The intuition is that the order variability

is always more sensitive to the proportional controller, and inventory cost is less sensitive,

especially when the mean demand is large and the lead-time is highly variable. Therefore

we conclude that the proportional policy is preferable to the OUT policy in the presence

of volatile delays and auto-correlated demand, conditions which co-exist in contemporary

global supply chains.

This research can be further developed in the following directions. (1) The model as-

sumes full knowledge of the demand and lead-time distributions. Although this can be
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partly achieved by statistical analysis of historical data, a dynamic inventory policy that

tracks this data over time might be more desirable. (2) An exogenous lead-time distribu-

tion is assumed throughout this paper for simplicity. However, in practice we may be able

to adjust the transportation mode (and hence the lead-time) based on system states. For

example in times of low stock or high demand, air freight could be used to expedite replen-

ishment. Thus it will be intriguing to incorporate dependence of transportation delay on

system states. (3) The ARMA(p,q) model can be further extended to ARIMA(p,d,q) model

or seasonal ARMA(p,q) model (Nagaraja et al., 2015) to incorporate more sophisticated de-

mand patterns; (4) From the theoretical perspective, this problem calls for more knowledge

on mathematical properties of the objectives, e.g. monotonicity and convexity of order and

inventory variances w.r.t. λ for ARMA demand and stochastic lead-time.
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Appendix A. Mathematical Proofs

Proof of Lemma 2. We prove the normality of order distribution by showing that under a

stochastic lead-time, the order process is the output of a linear system with a normally

distributed input. The inventory system can be defined by two difference equations: ot =

ft + (1− λ)(ss− IPt) and IPt = IPt−1 + ot−1− dt. Both dt and ft are linear functions of yt,

which is normally distributed. So ot and IPt are also normally distributed.

E(o) can be derived directly from IPt = IPt−1 +ot−1−dt by taking expectations on both

sides and rearranging. From (11), E(f) = (µL − λµL + λ)µd. Together with (10) we have

the mean of inventory position.

Proof of Lemma 3. Substituting (1) into (10) and arranging, we have

ot = ft − ft−1 + λot−1 + (1− λ)dt

which can be further rewritten as

ot = [FA+ (1− λ)CA− F ]yt−1 + λot−1 + [F + (1− λ)C]Bεt + (1− λ)µd. (A.1)

To calculate the correlation function of x and y we simply multiply x by the transpose

of y and take the expectation. Note that the constants can be omitted when they do not

contribute to second order moments. Therefore we multiply (A.1) by ot−τ on both sides and

take expectation to obtain (15). Using the same method, multiply ot−τ on both sides of

yt = Ayt−1 + Bεt and notice εt is independent in time, we have (13). The initial values of

the iterations (15) and (13) can be calculated in the following way. Firstly, y and o form a
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stochastic affine system: yt

ot

 =

 A 0

FA+ (1− λ)CA− F λ

 yt−1

ot−1

+

 B

FB + (1− λ)CB

 εt.

Multiplying both sides with transposition shows that the covariance of the state variables

satisfies Σyy Σyo

Σoy σoo

 =

 A 0

FA+ (1− λ)CA− F λ

 Σyy Σyo

Σoy σoo

 A 0

FA+ (1− λ)CA− F λ

T

+

 B

FB + (1− λ)CB

 B

FB + (1− λ)CB

T

.

The top right element gives (12), and the bottom right element gives (14).

Proof of Lemma 4. For the mean of each inventory sub-process, note that

E(w; ξ) =
L+−1∑
k=1

ξ(k)µd = ξ1µd.

By Lemma 2 we see that the mean of inventory position is independent of the lead-time.

Therefore E(i; ξ) = E(IP ) − E(w; ξ). For the variance of a specific inventory sub-process,

rearrange (10) to see that

it =
ft − ot
1− λ

− wt + ss.

The variance of an inventory sub-process is then

Σii(0; ξ) =
Σff + Σoo − 2FΣyo

(1− λ)2
+ 2

Σow(0; ξ)− Σfw(0; ξ)

1− λ
+ Σww(0; ξ)

where Σfo = FΣyo. The covariances Σow(0; ξ), Σfw(0; ξ) and Σww(0; ξ) can be expressed

in the matrix form: Σow(0; ξ) = ξα, Σfw(0; ξ) = ξβ and Σww(0; ξ) = ξΓξT due to their

linearity.

Proof of Proposition 1. The distribution of the inventory is a weighted sum of normal dis-

tributions. Therefore the variance of the inventory process can be calculated as follows:

Σii =
2L

+−L−∑
j=1

p(ξj)Σii(0; ξj) +
1

2

2L
+−L−∑
j,k=1

p(ξj)p(ξk)
[
E(i; ξj)− E(i; ξk)

]2
.
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The second term leads to the last term in (18). Note that ΣNN is the variance of the number

of outstanding orders.

By the definition of p(ξ) and WIP we see that
∑

k p(ξ
k)
[
Σow(0; ξk)− Σfw(0; ξk)

]
can

be interpreted as the summation of Σoo(k) − Σfo(k) multiplied by the expected number

of outstanding orders in the pipeline, and
∑

k p(ξ
k)Σww(0; ξk) as the summation of Σoo(k)

multiplied by the expected number of order pairs in the pipeline. Thus

2L
+−L−∑
k=1

p(ξk)ξk(α− β) =
L+−1∑
k=1

Ψ̄L(k) [Σoo(k)− FΣyo(k)]

and
2L

+−L−∑
k=1

p(ξk)ξkΓ(ξk)T =
L+−1∑
k=1

Ψ̄L(k)Σoo +
L+−2∑
k=1

νkΣoo(k).

Ψ̄L(k) is the probability that an order placed k periods ago is still outstanding; νk is the

probability that two orders with k periods gap in placement are both outstanding, which is

computed as stated in Proposition 1. Substitution and rearranging will lead us to (18).

Proof of Corollary 1. We complete this proof by showing that under i.i.d. demand, ∂Σii/∂λ <

0 when λ = 0, indicating that there exists a λ > 0 that outperforms λ = 0. As demand is

i.i.d. and a MMSE forecast is adopted, we have A = 0, F = 0, C = 1, ∆ = I. Also P1I = 0,

QP2kQ
T =

 0 k = 1

−1 k > 1
, and QP3kQ

T =

 1 k = 1

0 k > 1
. Then (21) becomes

ν1 − 2
L+−1∑
k=2

Ψ̄L(k) = 2
L+−1∑
k=2

Ψ̄L(k − 1)Ψ̄L(k)− 2
L+−1∑
k=2

Ψ̄L(k)

= 2
L+−1∑
k=2

Ψ̄L(k)
[
Ψ̄L(k − 1)− 1

]
.

With i.i.d. lead-times, the non-crossover distribution must satisfy L+ − L− 6 1, which

can be derived directly from Corollaries 1 and 2 in Riezebos (2006) and the exogenous

assumption in this paper. Since Ψ̄L(k) is non-increasing, the above equation equals to zero

only in two cases: either Ψ̄L(L+ − 1) = 1, which means that the lead-time is constant; or

Ψ̄L(L+ − 1) < 1 and Ψ̄L(L+ − 2) = 1, which means the lead-time is stochastic but there is
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no order crossover. Otherwise ∂Σii/∂λ|λ=0 < 0, from which we also have λ∗ > 0. Since Σoo

is monotonic and decreasing from Lemma 1, we finally have Σoo|λ=λ∗ < Σoo|λ=0.
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