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ABSTRACT Lack of discriminating power in efficiency values remain a major contention in the 

literature of data envelopment analysis (DEA). To overcome this problem, a well-known procedure for 

ranking efficient units; that is, the super-efficiency model was proposed. The method enables an extreme 

efficient DMU to achieve an efficiency value greater than one by excluding the DMU under evaluation 

from the reference set of the DEA model. However, infeasibility problems may persist while applying the 

super-efficiency DEA model under the constant returns-to-scale (CRS), and this problem tends to be 

compounded under the variable returns-to-scale (VRS). In order to address this drawback sufficiently, we 

extend the deviation variable form of classical VRS technique and propose a procedure for ranking 

efficient units based on the deviation variables values framework in both forms – CRS and VRS. With 

our proposed method, scholars who wish to prescribe theories based on a set of contextual factors need 

not remove large number of DMUs that are infeasible, thus avoiding problems in generalizability of their 

findings. We illustrate the performance and validate the efficacy of our proposed method against 

alternative methods with two established numerical examples. 

Keywords: Data envelopment analysis; Infeasibility; Super-efficiency; Discrimination power; Ranking.  

1. Introduction 

Data envelopment analysis (DEA) was first developed by Charnes, Cooper & Rhods (1978), which 

assumes a constant returns-to-scale (CRS). It is popularly known as the CCR model and remained the 

preferred technique for measuring the relative efficiency of decision-making units (DMUs) due to its 

intuitive ability to prescribe weights from assessments, which depends on multiple inputs and outputs. 

Banker, Charnes & Cooper (1984) further extended the CCR model by accommodating for variable 

returns-to-scale (VRS) and more popularly known as the BCC model. 

The difference between CRS and VRS is such that the number of efficient DMUs of the former is a 

subset of the latter (Ahn, Charnes, & Cooper, 1988). This means that one expects a conventional DEA 

model based on CRS will have lesser number of efficient DMUs as compared to a VRS derived model. 
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DEA has been one of the fastest growing areas of the Operations Research and Management Science 

discipline in the past decades (Emrouznejad, Parker, & Tavares, 2008; Hatami-Marbini, Emrouznejad, & 

Tavana, 2011). However, a major methodological challenge that still persists in the DEA literature is on 

the lack of discriminating power of the DMUs. 

Discriminating power problems can be easily observed when there are close to no DMUs that are 

inefficient. These DMUs cannot be ranked, and therefore limits the managerial insights or their ability to 

be complemented by other techniques. For example, if a business analyst is called to investigate a 

systemic organizational problem where majority of business units are known to have persistent problems 

and therefore considered to be inefficient. Due to the computation of relative efficiency in DEA models, 

these business units would be considered as efficient and a value of 1 will be registered as an outcome of 

the computation. Given the lack of discriminating power of the efficiency scores, the analyst whose 

interest lies in uncovering the underlying problem may wish to regress the efficiency scores (considered 

as dependent variable) on some contextual variables. However, this may not be possible without 

sacrificing data points.  

Cross-efficiency evaluation technique was first proposed by Sexton, Silkman, & Hogan (1986) as an 

attempt at improving discriminating power of DEA. However, non-uniqueness of the DEA optimal input-

output weights, i.e., having multiple solutions to optimal weights in DEA decreases the benefit of the 

cross-efficiency approach. Although recent steps were proposed such as imposing secondary goals to 

improve variability of cross-efficiency scores, the solution still leaves the non-uniqueness problem 

looming (see Cook & Zhu, 2014). More details on cross-efficiency evaluation technique can be found in 

the following literature (e.g. Doyle & Green, 1994; Green, Doyle, & Cook, 1996; Wang & Chin, 2010, 

2011). 

  A procedure for ranking or discriminate efficient units was later proposed by Andersen & Petersen 

(1993), which is termed as the super-efficiency approach. A detailed discussion of can also be found in 

the following literature (e.g. Chen, 2005; Chen, Du, & Huo, 2013; Lee, Chu, & Zhu, 2011). However, it is 

well-known that when applying the super-efficiency approach (Andersen & Petersen, 1993) to the VRS 

technique, one may end up with an infeasible solution. Although many attempts have been made, the 

issue still remains a major problem. For instance, Chen (2005) proposed an approach, claiming that both 

input-oriented and output-oriented super-efficiency models are needed to fully characterize the super-

efficiency model of the evaluated DMUs. Soleimani-Damaneh, Jahanshahloo, & Foroughi (2006) refuted 

these claims by some counterexamples but did not propose an alternative solution. Lee et al. (2011) 

further extended Chen (2005) and Cook, Liang, Zha, & Zhu (2009)’s work by providing an approach for 

addressing the infeasibility issue in the super-efficiency DEA models. However, Lee & Zhu (2012) found 
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that the proposed model by Lee et al. (2011) is feasible when the input data are positive but can be 

infeasible when some of the inputs are zeroes. 

Subsequently, the multiple criteria (or multi-objective) DEA models (Chen, Larbani, & Chang, 2009; 

Li & Reeves, 1999) were introduced as a means to overcome the discriminating power problem. 

However, the form of the multiple criteria DEA (MCDEA) model proposed by Li & Reeves (1999) is 

dependent on   the decision maker (DM) conducting interactive programming tasks. By applying the 

MCDEA model, the approach requires that the three objectives are to be analyzed separately. The aim is 

to find non-dominated solutions, while allowing the analyst to decide on the most preferred one based on 

extenuating circumstances. A weighted goal programming approach was further introduced by Bal, 

Örkcu, & Çelebioğlu (2010) and named as the GPDEA model for solving all 3 objectives of the MCDEA 

model simultaneously. The GPDEA models sought to convert the MCDEA into its equivalent single 

objective DEA model, with the intention of improving the discriminating power of efficiency scores. 

However, Ghasemi, Ignatius, & Emrouznejad (2014) found that there are fundamental flaws associated 

with the GPDEA models in terms of both weight dispersion and discriminating power, which was later 

again corroborated by Dos Santos Rubem, De Mello and Meza (2017). More details on the ranking 

methods can be found in the following literature (Adler, Friedman, & Sinuan-Stern, 2002; Angulo-Meza 

& Lins, 2002).   

Specifically, Ghasemi et al. (2014) proposed a bi-objective weighted MCDEA (BiO-MCDEA) 

model for solving the MCDEA model and illustrated that the BiO-MCDEA model outperforms the 

GPDEA method in terms of both weight dispersion and discriminating power. Nevertheless, the BiO-

MCDEA model does not provide a full discriminating ability for efficient DMUs in certain cases. We 

therefore propose a procedure for ranking efficient units based on the deviation variables values 

framework. We further extend the deviation variable form under VRS technique and the proposed ranking 

method can be used in both CCR and BCC models without facing infeasibility problems. This solves a 

major drawback where there can be overwhelmingly large number of DMUs registered to be efficient 

relative to the total number of DMUs under evaluation (see Cooper, Seiford, & Tone, 2000). In a real 

world situation, the large number of efficient DMUs would require decision makers to come up with an 

alternative post-hoc criteria and discriminate the efficient DMUs through some qualitative means. This 

provides another decision making layer and complexity to fully discriminate DMUs. Our proposed 

method avoids this need. 

The rest of the study is structured as follows. A brief description of the classical DEA models and 

deviation variable form is given in section 2. Section 3 represents the extension of the deviation variable 

form under VRS technique and proposes a procedure for ranking efficient units in CCR and BCC models. 

Section 4 describes the proposed method with two established numerical examples. The performance of 
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our proposed model is compared to other existing methods for performance validation. Section 5 

concludes the study. 

2. Background 

In this section, we provide a short overview of the conventional DEA models and introduce the main 

concepts needed for the rest of the paper. 

2.1. Classical DEA models 

Let us consider the case of evaluating the relative efficiency	 of n DMUs which use m inputs to 

produce s outputs. The m-input-s-output data can be expressed as (xij, i=1,…,m, j=1,…,n) and (yrj, 

r=1,…,s, j=1,…,n). The multiplier form of input-oriented variable returns-to-scale model (Banker, 

Charnes, & Cooper, 1984) can be formulated as follows: 

 (1) 

where  and  are the input and output weights assigned to input i and output r, 

respectively. The input-oriented CCR model (Charnes, Cooper, & Rhodes, 1978) can be easily obtained 

by assuming co = 0 in model (1). DMUo is efficient if the optimal value of the objective function ( ) is 

equal to 1, and is considered inefficient if . 

2.2. Deviation variable form of CCR model 

Li and Reeves (1999) provide a deviation variable form to the CCR model (Charnes, et al., 1978) 

with three objectives termed as the multi-criteria DEA model. One of the three objectives of the model 

including its constraints can be expressed in the CCR equivalent: 
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 (2)  

  

where ur & vi are defined as in model (1), do is a deviation variable for DMUo and dj is a deviation 

variable for DMUj. The quantity do in the objective function is bounded on an interval [0, 1) and is 

regarded as a measure of inefficiency. DMUo is efficient if do = 0 or, equivalently qo = 1, where qo = 1- do 

is the efficiency measure in a classical DEA. 

In comparison with the classical DEA model (1), the input-output weights provided by DEA models 

(2) is distributed more evenly than those obtained by classical DEA model (1) (see Li & Reeves, 1999). In 

fact, in a classical DEA problem, if a DMU is efficient, its optimal solution (weight) is almost surely non-

unique. 

3. Proposed ranking method using the deviation variables 

In this section, the deviation variables are used to discriminate and rank efficient DMUs. Similar to model 

(2), a deviation variable form of BCC model can also be proposed as follows: 

 
(3)  

where ur, vi, do, & dj are defined as in model (2). DMUo is efficient if do = 0 and the efficiency value of 

DMUo is equal to 1- do.  

Our proposed model (3) is formulated as a deviation form of the VRS model. When co = 0, the model 

is equivalent to the CRS form. Therefore, the results of our model is very much scale dependent and not 
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scale-invariant. However, one can achieve a full ranking evaluation for all DMUs by using the deviation 

framework equivalent to the CRS and VRS, as it avoids the infeasibility solutions that may occur through 

the conventional formulation of CRS or VRS technologies. 

In the standard DEA models, inefficient DMUs have scores less than one. However, efficient DMUs 

are identified by an efficiency score equal to 1, so these DMUs cannot be ranked. One problem that has 

been discussed frequently in the literature is the lack of discriminating power in DEA applications. To 

overcome the discrimination power problems, a widely used procedure for ranking efficient units, termed 

the super-efficiency model was proposed by Andersen and Petersen (1993) hereon referred to as the AP 

model. The method enables an extreme efficient DMUo to achieve an efficiency value greater than one by 

excluding the DMUo under evaluation from the reference set of the DEA models (see Appendix A). 

However, by considering the super-efficiency DEA model (AP model) under the BCC technique, the 

infeasibility of the related linear program is extremely likely to occur.  

Although many attempts have been made, the issue still remains a major problem. Our proposed 

model is able to discriminate and rank efficient DMUs under both CRS & VRS techniques without 

infeasibility problems. Since DEA hinges on the concept of relative efficiency, attempting to discriminate 

efficient DMUs with a solution routine that would later discover some DMUs to be infeasible is 

technically incorrect from a decision-making standpoint. The premise is such that when some DMUs are 

infeasible, the concept of relative efficiency among the ones that are discriminated informs the decision 

making process to discard the DMUs that are infeasible and rely on the ranking of the efficient DMUs 

from the “super-set”.  However, this set does not comply with the concept of relative efficiency which is a 

pivotal element in DEA models, thus rendering the concept of ‘technology’ that makes DEA a practical 

tool to be without interpretative merit.  

To elucidate on this point, let us consider the fact that a remuneration package needs to be allocated 

based on the performance of the bank branches for that year. Infeasible DMUS would mean that the 

allocation to these DMUs will not be possible. Even if one disregards these infeasible DMUs and allocate 

the resources among the rest of the bank branches, the solution of the allocation will not be equitably 

justified. Banker and Chang (2006) highlighted the poor ranking performance of AP procedure of the 

super-efficiency model. Contrastingly, they discovered through simulation experiments that the super-

efficiency model is able to identify outliers from contaminated data with random noise. Nonetheless, two 

questions were left unaddressed. First, how does one perform a full ranking when the super-efficiency 

model is not able to discriminate the efficient DMUs effectively? Second, what does the infeasible 

solution of certain DMUs mean towards the interpretability of the ranks? In this study, we addressed these 

gaps by avoiding both infeasibility problems and providing a full ranking procedure for the DMUs.  
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An effective way to deal with issue is to provide the optimal values of deviation variables for each 

efficient DMU using the above model (3).  

Assume that there are k efficient DMUs and , …, are the optimal 

solutions of deviation variables assigned to each efficient DMUn1, …, DMUnk respectively. The 

numerical value of  is further provided so as to associate with each efficient DMU, thus 

allowing the complete ranking of these values from smallest to largest.  

Since the efficiency score of DMUo in the above model is equal to 1- do, the smaller value of do is 

equivalent to the larger value of efficiency. On the other hand, the smaller the value of do, the less 

inefficient (and thus the more efficient) for the DMUo. In this case, the objective function of DEA models 

(2) & (3) minimizes DMUo's inefficiency. That is the reason why we rank the average values of deviation 

variables from smallest to largest. We use the average of deviation variables as a means to normalize the 

deviation scores. For ranking purposes, using an average or total sum of deviation will achieve the same 

ranking outcome. 

By solving the LP problem (3) for DMU0, the optimal value of do is obtained. If DMU0 is efficient, 

we also provide the optimal values of d1 (equivalent to DMU1’s inefficiency), d2 (equivalent to DMU2’s 

inefficiency), …, dn (equivalent to DMUn’s inefficiency) simultaneously. The value of d1 + d2 +…+ dn can 

therefore be interpreted as the total value of inefficiency associated with the efficient DMU0. Therefore, 

the sum of the optimal values of deviations can be provided associated with each efficient DMU. Hence, 

the ranking of these values (or average of all these deviation variables) from smallest to largest can 

provide the ranking of the efficient DMUs. 

It is our aim to achieve the efficiency score for each DMU and the optimal solutions of deviation 

variables for each efficient using the above model (3) and discriminate the efficient DMUs by ranking the 

average values from smallest to largest. Thus the proposed method consists of three stages as follows:  

Stage 1. First we solve the LP problem (3) for o = 1, …, n, to provide the efficiency score of each 

DMU. 

Stage 2. For those DMUs that are efficient, we also provide the optimal solutions of all deviation 

variables, supposing that DMUn1, …, DMUnk are efficient DMUs and , …, 

are the optimal solutions of deviation variables associated with these DMUs.  
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Stage3. The numerical value of  is further provided, which associates with each 

efficient DMU. Hence, the ranking of these values from smallest to largest can provide the ranking of the 

efficient DMUs. 

With regards to the implication, we would like to stress that we did not alter the non-parametric 

properties of DEA. For instance, the proposed method is still able to express that if DMU0 is operating 

with Y units of outputs with X inputs, then DMUj should be able to do so if they were to be operating 

efficiently. Given that in DEA virtual producers can be formed based on composite inputs and composite 

outputs; our method also retains this feature because the technology frontier is still being preserved. 

4. Illustration and validations: two numerical examples   

In this section, two numerical examples are presented to describe the proposed models. The purpose 

is to test out conclusively the performance of our proposed model against similar methods that have been 

used in two examples. 

4.1. The validity of the proposed method as a simple and useful alternative for discriminating efficient 

DMUs 

The first example is taken from Wong & Beasley (1990) whose input and output data are given in 

Table 1. The data consists of three inputs and three outputs, which are defined as follows: 

x1: number of academic staff 
x2: academic staff salaries in thousands of pounds 
x3: support staff salaries in thousands of pounds 
y1: number of undergraduate students 
y2: number of postgraduate students 
y3: number of research papers 

 
Table 1 
The dataset of seven departments in a university  
DMU Inputs  Outputs 
  x₁ x₂ x₃         y₁     y₂      y₃  
1 12 400 20  60 35 17  
2 19 750 70  139 41 40  
3 42 1500 70  225 68 75  
4 15 600 100  90 12 17  
5 45 2000 250  253 145 130  
6 19 730 50  132 45 45  
7 41 2350 600   305 159 97  

* * *
1 2 ... nd d d

n
+ + +
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From Table1, let us compute the efficiency scores using model (3) and provide the values of 

deviation variables that are associated with those DMUs that are efficient. The results are listed in Table 

2. First, by setting co = 0 in model 3 (CRS technique), the deviation variable form of CCR model 

determines that DMUs 1, 2, 3, 5, 6, & 7 are efficient (Table 2). Second, the  can also be 

obtained as a set of optimal deviation variable for each DMU. We therefore provide the set of optimal 

deviation variables associate with each efficient DMU (see Table 2). Third, by considering model (3) 

under VRS technique, the deviation variable form of BCC model determines that with the exception of 

DMU 4, the remaining DMUs are all efficient. We further achieve the set of optimal deviation variables 

associate with each efficient DMU (see Table 2). Fourth, by ranking the values of ∑ 𝑑&∗& 𝑛⁄  from smallest 

to largest, we can provide the complete ranking of the efficient DMUs (see Table 2). 

Table 2 
Proposed method based on the seven department evaluation dataset  
DMU CCR form  BCC form 
 Eff. values ∑ 𝑑&∗& 𝑛⁄   Rank  Eff. Values ∑ 𝑑&∗& 𝑛⁄   Rank 
1 1 0.218 5  1 0.218 6 
2 1 0.145 4  1 0.145 5 
3 1 0.805 6  1 0.056 3 
4 0.820 - 7  0.977 - 7 
5 1 0.049 2  1 0.041 2 
6 1 0.126 3  1 0.126 4 
7 1 0.045 1  1 0.034 1 

The results generated from the DEA-CCR model (Charnes, et al., 1978), DEA-BCC model (Banker, 

et al., 1984), and the super-efficiency model (Andersen & Petersen, 1993) under both  DEA-CCR & 

DEA-BCC techniques are listed in Table 3. 

Table 3 
Classical DEA-CCR & DEA-BCC results based on evaluating the seven department dataset 
DMU CCR form  BCC form 
 Eff. values Super-Eff. values Rank  Eff. values Super-Eff. values 
1 1 1.830 1  1 2.500 
2 1 1.049 6  1 1.058 
3 1 1.198 4  1 2.910 
4 0.820 - 7  0.977 - 
5 1 1.220 2  1 infeasible 
6 1 1.191 5  1 1.229 
7 1 1.266 3  1 infeasible 

From Table 3, DMU 4 is inefficient and the efficiency value of this DMU under CCR model and 

BCC model is equal to 0.820 & 0.977 respectively. With the exception of DMU 4, the remaining DMUs 

(i.e. DMUs 1, 2, 3, 5, 6, & 7) are all efficient. For all the efficient DMUs, the CCR super-efficiency DEA 

* * *
1 2, ,..., nd d d
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technique returns scores for efficient DMUs 1 – 3 & DMUs 5 – 7 as it was designed to perform. However, 

the resulting BCC super-efficiency DEA model are infeasible for DMU 5 and DMU 7 (see Table 3). It is 

a major drawback of the super-efficiency technique, where one may obtain infeasible solutions for 

efficient DMUs; particularly, under the BCC model. 

If one were to compare the efficiency results in Table 2 with the efficiency and super-efficiency 

values reported in Table 3, DMU 4 is inefficient in the DEA-CCR & DEA-BCC models, and the 

proposed model. However, our proposed model would be able to discriminate and rank efficient DMUs 

under both CRS & VRS techniques. Contrastingly, the resulting BCC super-efficiency DEA model could 

not rank DMU 5 and DMU7. This is the ability of the proposed method against the super-efficiency 

technique; particularly, under BCC model.    

4.2. The advantage of the proposed method vs. super-efficiency, MCDEA, BiO-MCDEA, Cross-efficiency 

evaluation techniques under constant & variable returns-to-scale  

The second example is taken from Amirteimoori, Kordrostami, & Nasrollahian (2017), with the 

input and output data reproduced in Table 4. The data consists of 6 DMUs with 2 inputs and 3 outputs. 

Table 4 
Dataset for five DMUs  
DMU Inputs  Outputs  
  x₁ x₂   y₁ y₂ y3  
1 32 54  6 0 27  
2 37 45  0 14 22  
3 24 65  0 0 17  
4 39 0  0 12 0  
5 0 71  0 9 30  

The results of our analysis are presented in Table 5. The 3-step procedure to our analysis is as 

follows: 

First, by using the deviation variable form model (3) under CCR and BCC techniques, model (3) 

determines that DMUs 1, 2, 4, & 5 are efficient in both CCR and BCC forms. Second, we provide the set 

of optimal deviation variables (  ) associated with each efficient DMU under CCR and BCC 

form. Third, by ranking the numerical values of ∑ d+∗ n⁄+  assigned to each efficient DMU from smallest to 

largest, the ranking of efficient DMUs can also be provided (see Table 5). 

Table 4 
Proposed method results based on the second example dataset  
DMU CCR form  BCC form 
 Eff. values ∑ 𝑑&∗& 𝑛⁄   Rank  Eff. values ∑ 𝑑&∗& 𝑛⁄   Rank 
1 1 0.124 3  1 0.123 3 

* * *
1 2, ,..., nd d d
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2 1 0.142 2  1 0.140 2 
3 0.555 - 5  0.652 - 5 
4 1 0.312 1  1 0.312 1 
5 1 0.108 4  1 0.107 4 

The results generated from the DEA-CCR model (Charnes, et al., 1978), DEA-BCC model (Banker, 

et al., 1984), and the super-efficiency models (Andersen & Petersen, 1993) for both DEA-CCR & DEA-

BCC are shown in Table 6. 

Similar to the deviation variable form model, DMUs 1, 2, 4, & 5 are efficient in both CCR and BCC 

form for the 5 DMU assessment (compare Table 5 and Table 6). The super efficiency values were 

generated from the AP model for those efficient DMUs for both the CCR and BCC forms (see Table 6). 

However, for DMU 1, DMU 4, & DMU 5 and for DMU 1, DMU 2, DMU 4 & DMU 5, the resulting 

CCR & BCC super-efficiency DEA models produce infeasible results respectively after applying the 

super-efficiency technique (see Table 6). This is a major drawback of the super-efficiency technique, 

where one may obtain infeasible solutions for efficient DMUs, especially under the VRS form. 

Table 5 
Classical DEA-CCR & DEA-BCC results based on the second example dataset  
DMU CCR form  BCC form 
 Eff. values Super-Eff. values  Eff. values Super-Eff. values 
1 1 infeasible  1 infeasible 
2 1 1.095  1 infeasible 
3 0.555 -  0.652 - 
4 1 infeasible  1 infeasible 
5 1 infeasible  1 infeasible 

 

When we compare the results of the efficiency scores in the CCR and BCC forms (Table 6) against 

the results of our proposed model in Table 5, we found the same set of efficient DMUs. However, an 

attempt to rank the efficient DMUs by the super-efficiency approach revealed 3 infeasible solutions for 

DMU 1, DMU 4, & DMU 5 in the CCR form, and 4 infeasible solutions DMU 1, DMU2, DMU 4, & 

DMU 5 in the BCC form (see Table 6). This highlights the drawback of using the AP super-efficiency 

ranking method for both CRS and VRS techniques.  

We further applied two techniques in the literature that were formulated for the purpose of improving 

discrimination power, which are the MCDEA model (Li & Reeves, 1999) and the BiO-MCDEA model 

(Ghasemi, Ignatius, & Emrouznejad, 2014).  The efficiency values of Table 7 shows that the MCDEA and 

BiO-MCDEA models are not able to improve the discrimination power for datasets that have inputs or 

outputs with zeroes or infinitesimal values.  
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Table 7 
Minsum of MCDEA and BiO-MCDEA models results based on the second example dataset  
DMU minsum of MCDEA results  BiO-MCDEA results  
 Eff. values Rank  Eff. values Rank  
1 1 1  1 1  
2 1 1  1 1  
3 0.549 5  0.549 5  
4 1 1  1 1  
5 1 1  1 1  

 

In addition, we would like to emphasize that our method should not be confused with the cross-

efficiency method. Our proposed method provides unique solutions for the weights and in fact, it is able 

to provide a better discrimination power. In addition, our method is a self-evaluation method, which still 

preserves the concept of relative efficiency. The cross-efficiency method, on the other hand, is a peer 

evaluation method that does not preserve the interpretation of the frontier in deriving the weights. The 

proposed method provides average of deviations for each efficient DMU. This contrasts the cross-

efficiency evaluation technique, where the same set of optimal weights for the DMU under evaluation is 

applied across other DMUs to form the weighted DMUs the cross efficiency scores. Hence, cross-

efficiency method has a major drawback in terms of non-uniqueness of weights (Doyle and Green, 1994).  

Our proposed method provides unique solutions for the weights and is able to provide full 

discrimination of efficient DMUs. The input-output weights provided by DEA models (2) & (3) are 

distributed more evenly than those obtained by classical DEA model (1) (see Appendix B). In other 

words, we provide the deviation variables for each efficient DMU using DEA model (3), in which the 

input-output weights are distributed more evenly and this is the ability of the proposed model vs. DEA 

cross-efficiency evaluation, thus avoiding non-uniqueness of the DEA optimal input-output weights or 

multiple optimal weights. 

To the best of our knowledge, we have not come across a method that provides a full ranking 

procedure which can still retain the DEA “technology” for both CRS and VRS, while avoiding non-

uniqueness of weights and infeasibility problems. In terms of the disadvantage (or under development), 

we believe that more effort could be done on the forefront of weight restrictions and deviational variables 

for future research. 

5. Conclusion 

In this paper, we have extended the deviation variable form under the BCC model and proposed a 

procedure for ranking efficient units based on the deviation variable values framework under CRS and 

VRS techniques in order to improve the discriminating power properties of the efficiency scores. A three-
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step procedure was suggested to provide a ranking method and discriminate efficient DMUs in both CCR 

and BCC forms. The first numerical example used in this paper is to demonstrate the performance of the 

proposed method over the super-efficiency technique (AP model). In terms of a real application, the 

second example was further used to describe the efficacy of the proposed approach. Based on the results 

of the examples, it can be concluded that the proposed method outperforms the super-efficiency 

techniques in terms of discriminating power. We further stress that this has larger methodological 

implications and would further lend utility to DEA as a complementary method that aids predictive 

analysis. The inability to discriminate efficiency scores has prevented management scholars and empirical 

researchers to regress these scores to contextual factors for prescribing theories. To negotiate around the 

issue, most scholars that seek to have explanatory variables predicting the efficiency outcomes would 

need to sacrifice DMUs that possess infeasible solutions from their analysis. Given that in a real case 

study where they may be a large number of infeasible solutions, removing these DMUs from further 

analysis will have severe effects to the degradation of theory under study. This is because the removal of 

infeasible solutions would remove DMUs may invalidate an initial sampling plan that was designed to 

preserve the integrity of the solution. Hence, the generalization of the contextual factors to an 

underpinning theory may be erroneous given that a large number of infeasible solutions were dropped 

from further analysis. We suggest future research to pursue this line of inquiry into the methods that 

combine a multiple-regression approach and DEA. 

Appendix A 
The super-efficiency technique under DEA model (1) can be expressed as 

  

Appendix B 

Model (3) Input-Output weights results  based on second example dataset  
DMU Input weights  Output weights  
  v₁ v₂   u₁ u₂ u3  
1 0.0039 0.0162  0.0001 0.0043 0.0370  
2 0.0045 0.0185  0.0001 0.0049 0.0424  
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3 0.0167 0.0092  0.0632 0.0001 0.0001  
4 0.0196 0.0106  0.1988 0.0833 0.0001  
5 0.0034 0.0141  0.0001 0.0037 0.0322  
 

Classical DEA model Input-Output weights results  based on second example dataset  
DMU Input weights  Output weights  
  v₁ v₂   u₁ u₂ u3  
1 0 0.0185  0 0 0.0370  
2 0 0.0217  0 0.0020 0.0442  
3 0.0167 0.0092  0 0. 0.  
4 0.0256 0.0106  0 0.0833 0.  
5 0.0044 0.0141  0 0. 0.0333  
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