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Abstract

Purpose of Review Hyperexpression of classical HLA class I (HLA-I) molecules in insulin-containing islets has become a widely
accepted hallmark of type 1 diabetes pathology. In comparison, relatively little is known about the expression, function and role
ofnon-classical subtypes of HLA-I. This review focuses on the current understanding of the non-classical HLA-I subtypes: HLA-
E, HLA-F and HLA-G, within and outside the field of type 1 diabetes, and considers the possible impacts of these molecules on
disease etiology.

Recent Findings Evidence is growing to suggest that non-classical HLA-I proteins are upregulated, both at the RNA and protein
levels in the pancreas of individuals with recent-onset type 1 diabetes. Moreover, associations between non-classical HLA-I
genotypes and age at onset of type 1 diabetes have been reported in some studies. As with classical HLA-I, it is likely that
hyperexpression of non-classical HLA-I is driven by the release of diffusible interferons by stressed 3 cells (potentially driven by
viral infection) and exacerbated by release of cytokines from infiltrating immune cells.

Summary Non-classical HLA-I proteins predominantly (but not exclusively) transduce negative signals to immune cells infil-
trating at the site of injury/inflammation. We propose a model in which the islet endocrine cells, through expression of non-
classical HLA-I are fighting back against the infiltrating immune cells. By inhibiting the activity and function on NK, B and select
T cells, the non-classical HLA-I, proteins will reduce the non-specific bystander effects of inflammation, while at the same time
still allowing the targeted destruction of 3 cells by specific islet-reactive CD8+ T cells.

Keywords Type 1 diabetes - HLA-I - Non-classical HLA-I - HLA-E - HLA-F - HLA-G - Immune system

Introduction polymorphisms within this region confer approximately 50—

60% of the overall risk of developing type 1 diabetes [1]. HLA
The human leukocyte antigen (HLA) gene family is the human  genes encode for proteins that are key mediators of immune
form of the major histocompatibility complex (MHC). This gene  responses to pathogens, the development of self-tolerance and
family is clustered in a region of chromosome 6, and  function as histocompatibility antigens in transplantation. A
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central role of these proteins is to present peptide antigens to the
immune system, enabling recognition of non-self antigens and
development of humoral, as well as cell-mediated immune re-
sponses. More than 200 genes form this complex, which is
sorted into three groups: class I, class II and class III. HLA class
II (HLA-II) risk alleles associated with type 1 diabetes confer the
greatest genetic risk for this disease [2]. Certain HLA class I
(HLA-I) alleles are also associated with type 1 diabetes, and
there is some evidence of an association between single nucleo-
tide polymorphisms (SNPs) in the class III region [1, 3].

HLA-II proteins are normally expressed by professional
antigen-presenting cells (APCs), such as macrophages, dendrit-
ic cells and B cells. However, they can also be conditionally
expressed by a wide range of cells, including epithelial, endo-
crine, endothelial and fibroblastic cells, in response to certain
inflammatory mediators (e.g. interferon y (IFNy) and tumour
necrosis factor « (TNFe) in islet cells) [4, 5]. HLA-II mole-
cules, complexed with peptide antigens, are expressed by APCs
on the cell surface and enable antigen presentation to CD4+
helper T cells. HLA-II molecules present peptide antigens that
derive from proteins in the extracellular space. Extracellular
proteins are internalised by APCs in endosomes, then converted
by endosomal and lysosomal proteases into peptides; these
peptides are loaded onto HLA-II molecules in a specialised
class-II-loading vesicular compartment. The majority of HLA-
I polymorphisms relate to the amino acid sequence of the pep-
tide binding groove, which determines the repertoire of peptides
that can be bound and displayed to T cells. Specific risk alleles
for type 1 diabetes are implicated with the presentation of
autoantigens targeted by islet autoimmunity.

The HLA-III region encompasses more than 60 genes,
encoding proteins involved in the activation of complement,
hormonal synthesis, inflammation and cell stress, extracellular
matrix organisation and immunoglobulin superfamily mem-
bers. Most class III proteins, however, have functions that are
not directly implicated with the immune system [6].

HLA-I proteins (Table 1), in contrast, are expressed ubig-
uitously on all nucleated cells in the body for the presentation
of intracellular self/non-self antigens to CD8+ cytotoxic T cell
receptors and killer-cell immunoglobulin-like receptors
(KIR). HLA-I molecules present intracellular antigens that
originate from the cytoplasm. These are mostly proteins syn-
thesised within the cell, but also proteins that enter the cytosol
via phagosomes, and viral proteins. Peptides derived from
cytosolic proteasome processing (from either constitutive pro-
teasome or interferon-induced immuno-proteasome) are load-
ed on HLA-I molecules in the endoplasmic reticulum. HLA-I
molecules can be split broadly into classical (HLA-A, B and
C) and non-classical subtypes (including HLA-E, F, G and H).
Non-classical HLA-I molecules are less polymorphic than
their classical counterparts; they have the ability to present
different types of intracellular antigens that are recognised
by a different subset of innate immune receptors, and can be
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presented on the cell surface in response to different stimuli
[7]. Non-classical HLA-I exert functions in both the innate
and adaptive immune system, as discussed below.
Importantly, when compared with classical HLA-I, non-
classical HLA-I appear to have mostly inhibitory effects on
immune cells, via interaction with inhibitory receptors. While
most of these molecules are involved in antigen presentation
and immunoregulatory functions, certain HLA-I exhibit non-
immunological functions [8]. As an example, HLA-H (also
known as HFE) is a protein implicated in iron metabolism:
mutations in this gene are responsible for most cases of hered-
itary hemochromatosis, a disease of iron overload [9].

The structures of classical and non-classical HLA-I are
similar: they are comprised of a peptide binding cleft (ol
and «2 domains) and an &3 domain, which forms a non-
covalent association with (32 microglobulin ((3,M) to stabilise
the molecule. Although non-classical HLA-I molecules are
structurally similar to classical subtypes, they have different
affinities for peptide repertoires [7]. Moreover, soluble iso-
forms of HLA-G and HLA-E have been described [10, 11].

Regulation of HLA-I

Stimulated transcriptional regulation of HLA-I genes usually
falls under two main modules in the proximal promoter re-
gion: (a) the enhancer A (EnhA) and the interferon (IFN)-
stimulated response element (ISRE) and (b) the SXY module.
NOD-like receptor family CARD domain containing 5
(NLRCS5) and signal transducer and activator of transcription
1 (STAT1) are important regulators of HLA gene expression
as a part of coordinated immune responses to infections. In
human embryonic kidney cells, NLRCS5 binds and
transactivates HLA class I gene promoters [12]. In vascular
smooth muscle cells, the interaction of IFNy and toll-like
receptor 4 affected expression of a large number of STAT1-
dependent genes including chemokine adhesion molecules
and antiviral/antibacterial genes [13]. Whereas STAT1 regu-
lates HLA-E, it does not appear to regulate HLA-G and HLA-
F [14]. The main transcriptional regulators of HLA-G appears
to be specificity protein 1 (Spl), ISRE and SXY, whereas the
main regulators of HLA-F are nuclear factor kB (NFkB), in-
terferon regulatory factor 1 (IRF1) and class II, major histo-
compatibility complex transactivator (CIITA). CIITA also reg-
ulates HLA-E expression.

Although this all points to regulation by interferons, the
differences highlight a potential for very complex and
individualised responses to different infections and modes of
interferon activation.

HLA-I in Type 1 Diabetes

While evidence of aberrant HLA class II expression in the
pancreatic islets of patients with type 1 diabetes is increasing
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Table 1 Summary of non-
classical HLA-T molecules (HLA- Non- Presented peptides and ~ Expression in the Expression in T1D Genetic
E, F and G), their expression in classical ~ main function normal pancreas pancreas associations with
the pancreas and associations HLA-I TID
with type 1 diabetes
HLA-E Displays a limited Not present/very Increased RNA and Limited evidence to
diversity of low-level protein expression suggest
self-peptides, expression in islets in insulitic islets HLA-E*01:03
including leader Predominantly found associated with
sequences of HLA-I in the o cells but younger age at
molecules also found in onset
Negatively regulates cells SHLA-E*01:01
NK cells and a Expression associated with
subset of T cells dependent on the older age at onset
Interacts with presence of 3 cells
inhibitory
CD94/NKG2
receptors, found on
most NK cells and a
subset of T cells
HLA-F Often exists as an open  Low-level expression RNA expression Unknown
conformer but also in islets upregulated by
binds a diverse islets from T1D
range of peptides donors
(>2000) between 7 Elevated protein
and 30 residues long expression in
Negatively regulates insulin-containing
NK cells islets, primarily
As an open conformer, localised to th.e
interacts with surface. Role mn
inhibitory KIR3DS1 cross-presentation?
and KIR3DL2 Expression
receptors, found on dependent on the
NK cells presence of 3 cells
When presenting a
peptide, interacts
with LIR 1, also
found on NK cells
HLA-G Can display >2200 Expressed by Increased RNA and Strong association
peptides pancreatic islets and protein in islets between
Negatively regulates ducts Elevated protein deletion/deletion
NK, B and T cells Constitutively expression in genotype of
: d b insulin-containin; 14 bp of 3" UTR
Interacts with expressed by &

inhibitory ILT-2,
ILT-4 and KIR2DL4
receptors, found on
NK, B and T cells

and early age of
onset

islets, found in
both 3 and « cells

Expression
dependent on the
presence of 3 cells

endocrine cells—
low levels of
3,M-free heavy
chain proteins,
mainly intracellular

Insertion allele
associated with
later age of onset

[15], hyperexpression of HLA-I antigens in insulin-containing
islets (ICIs) is now widely accepted as a defining hallmark of
the disease. HLA-I hyperexpression is defined as dramatically
elevated expression of HLA-I in all the islet cells (not just 3
cells), when compared to the surrounding acinar tissue of the
same donor or other islets from individuals without type 1
diabetes.

HLA hyperexpression has been confirmed at both the RNA
and protein levels in patients with recent-onset disease and in
many patients who retain residual ICIs with < 10 years of
diagnosis [16°¢]. Hyperexpression is observed in the ICIs of

type 1 diabetes organ donors in the presence or absence of
inflammatory infiltrates of the islets (termed ‘insulitis’) [17].
In support of this, studies examining insulitis in newly diag-
nosed type 1 diabetes donors over the age of 18 years demon-
strate that only 25-30% of the ICIs have insulitis, yet all re-
sidual ICIs hyperexpress HLA-I [18, 19¢]. It is possible that
some of these islets have yet to experience insulitis, and thus,
HLA-I hyperexpression might represent an earlier stage in the
disease pathogenesis. It is hypothesised that HLA-I
hyperexpression is primarily driven by the release of diffusible
interferons by the 3 cells themselves [20+], which could derive
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from the sensing of an infection. Hyperexpression could be
exacerbated following immune cell infiltration through the
release of cytokines (including IFNy) from the infiltrating
cells. Importantly, once the 3 cells have been destroyed, the
hyperexpression of HLA-I is lost [16¢, 17]. The majority of
studies in the field of type 1 diabetes have focused on the
classical HLA-I (HLA-A, B and C), its accessory protein,
3-M and transporter associated with antigen processing 1
(TAP1), which is involved in class I assembly. However, ex-
pression of select non-classical HLA-I molecules have been
described in pancreatic islets, and aberrant regulation in the
islets of individuals with type 1 diabetes has been reported
[16°e, 21]. However, much less is known about the function
of these non-classical isoforms and the role they may play in
type 1 diabetes. This will be the focus of the following review.

Function of Non-classical HLA Class |
HLA-E

HLA-E shares many structural features with classical class |
molecules. It is assembled and regulated using common path-
ways and is ubiquitous throughout tissues, but is the least
polymorphic of the HLAs and is transcribed at lower rates.
Twenty-seven HLA-E alleles encode 8§ proteins, according to
the IMGT/HLA Database (http://hla.alleles.org/ April 2019).
Under basal conditions, the HLA-E protein is present predom-
inantly in immune cells and endothelial cells, and cell surface
presentation of HLA-E requires the loading of one of a limited
range of peptides [10]. Transcription of HLA-E is upregulated
by IFNy, mediated by an upstream STAT1 binding site. HLA-
E transcription can be also be induced by CIITA through the
SXY regulatory module, but it is not upregulated by NF«B or
IRF1 [14]. Two known functional variants of this molecule are
HLA-E*01:01 (HLA-E107R) and HLA-E*01:03 (HLA-
E107G), differing by a single amino acid at position 107
(Arg/Gly). This change impacts the thermal stabilities of the
HLA/peptide complexes and their length of interaction with
cognate receptors, as well as expression levels [22]. It has
been speculated that individuals carrying HLA-E*01:03 have
high levels of the molecule with a greater affinity for viral
antigens [23].

As stated above, a limited diversity of self-peptides can
occupy the peptide binding groove of HLA-E. This includes
the leader sequences of HLA-I molecules HLA-A, HLA-B,
HLA-C and HLA-G. When these peptides bind HLA-E, the
resulting complex is presented on the cell surface and can
interact with inhibitory CD94/NKG2 receptors, located on
most natural killer (NK) cells and on a subset of T cells.
This is a critical mechanism of tolerance and self-surveillance.
In tumour cells, for instance, the loss of classical HLA-I ex-
pression would provide a survival advantage, but the
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subsequent reduction in availability of leader peptides, along
with the co-regulation, determines a decrease in HLA-E pre-
sentation: this removes signals that are inhibitory for NK cells,
licensing them to kill the target tumour cells.

Micro-environmental stresses such as hypoxia and glucose
deprivation can lead to upregulation of HLA-E [24]. An en-
vironment that impairs the peptide transporter TAP, which can
be inhibited by a viral infection or in tumour tissue, can deter-
mine a reduction in availability of HLA-I leader peptides and
can lead to an alternative repertoire of peptides being present-
ed in the context of HLA-E; this can subsequently impact the
outcome of the viral infection or the elimination of damaged
or neoplastic cells [24-26]. In endothelial cells, the pro-
inflammatory mediators TNF«, interleukin-13 and IFNy
can upregulate the cell surface expression of HLA-E and in-
duce the release of soluble HLA-E. Upregulation of
membrane-bound HLA-E protects activated endothelial cells
from NK cell lysis, whereas soluble HLA-E protects bystand-
er cells [10].

In summary, the expression of HLA-E is induced by many
of the same stimuli that regulate classical HLA-I, and the
critical peptides presented by HLA-E are the leader peptides
derived from these. As one of the key functions of HLA-E is
to regulate NK cell activity, it is conceivable that the coordi-
nated upregulation of HLA-E with classical HLA-I is de-
signed to provide the target cell with protection from NK-
mediated cytotoxicity, while still facilitating the ability of the
CD8+ T cells to specifically kill any cells in which they rec-
ognise their target peptide bound to the classical HLA-IL. In an
inflammatory environment where many immune cells have
been recruited, this mechanism would result in a shielding of
bystander cells from immune attack, while still allowing the
targeted destruction of select dysfunctional/virally infected
cells (Fig. 1).

HLA-F

HLA-F is highly conserved with low levels of polymorphism
in humans: 38 alleles give rise to 6 different full-length protein
molecules (according to the IMGT/HLA Database http://hla.
alleles.org/ April 2019). Expression of HLA-F is tightly con-
trolled and tissue-specific, with higher levels in lymphoid cells
compared with non-lymphoid cells. Transcription can be up-
regulated by NFkB through EnhA, IFNy via the ISRE and
CIITA [14]. Although this molecule is known to associate
with 3,M and TAP, it is largely intracellular rather than
expressed at the surface [27]. Upon immune cell activation,
HLA-F can bind HLA-I heavy chains and facilitate their mi-
gration to the cell surface in an open-conformation (i.e. not
bound to peptides) [28]. These complexes can act as ligands
for inhibitory NK cell receptors to modulate the immune sys-
tem [29]. HLA-F is also a genetic determinant of fecundability
[30] and exerts an immunomodulatory function in maternal-
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Fig. 1 Model of the immunomodulatory impact of non-classical HLA
class I in type 1 diabetes. Upregulation of classical and non-classical
HLA-I expression in type 1 diabetes occurs on both 3 and « cells,
which could impact on the activation and function of immune cells
infiltrating into the islet as a result of an as yet unknown diabetogenic
stimuli (e.g. viruses, interferons, cytokines). This likely also results in the
presentation of o and {3 cell-derived peptides on their respective cells.
Infiltrating islet-reactive CD8+ T cells will target only (3 cells presenting
appropriate diabetes-associated peptides. The upregulation of non-
classical HLA-I molecules will broadly have an inhibitory effect on NK

foetal tolerance during pregnancy. Extravillous trophoblast
cells that invade the maternal endometrial decidua express
HLA-F, along with HLA-E and HLA-G, [31]. HLA-F is be-
lieved to interact with the inhibitory immunoglobulin-like
transcript 2 (ILT2) and 4 (ILT4) receptors present on a variety
of immune cells [32], as well as with KIR receptors present on
NK cells [29] (Fig. 1). HLA-F also acts as a ligand for inhib-
itory KIR3DL2 to prevent astrocyte toxicity towards motor
neurons in the development of amyotrophic lateral sclerosis
[33].

Until recently, efforts to characterise HLA-F associated
with (3,M and sequence peptides have been largely unsuccess-
ful [28, 29]. A more recent study, however, successfully
engineered (3,M to HLA-F as a single polypeptide in order
to solve the first crystal structures of HLA-F and characterise
peptide repertoires presented by the molecule. This showed

't‘\ NI
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cells through differential mechanisms. For example, HLA-E negatively
regulates infiltrating NK cells through interactions with CD94/NK2
receptors, or HLA-F impacts NK cell activity via interaction with
inhibitory receptors (such as ILT2, ILT4 and KIR). HLA-G can also
negatively regulate NK, B and T cell function. The unique surface
localisation of HLA-F in type 1 diabetes could reflect a yet unknown
function, potentially facilitating the binding of exogenous peptides,
which, once internalised, are presented via the classical HLA-I pathway
resulting in the cross-presentation of peptides within 3 cells

that HLA-F can exist as an open conformer but can also bind a
diverse number of peptides (>2000) between 7 and 30 resi-
dues long and be recognised by leukocyte immunoglobulin-
like receptor 1 (LIR1). This raises the possibility that HLA-F
could be recognised by other immune receptors and elicit
different responses depending on their conformation [34se,
35]. Although most immunomodulatory actions of HLA-F
are inhibitory, under some circumstances HLA-F open con-
formers activate primary human NK cells. For example, HLA-
F binding to the KIR3DS1 receptor can activate NK cells and
elicit an antiviral response to inhibit HIV-1 replication [36].

HLA-G

HLA-G is the most polymorphic of the non-classical isoforms,
but its grade of polymorphism is still low (61 alleles encode 19
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proteins according to the IMGT/HLA Database http://hla.
alleles.org/ April 2019) compared to classical HLA-I, for
which >4000 alleles encode thousands of proteins.
Alternative splicing of the primary mRNA leads to 7
isoforms of HLA-G. G1-G4 isoforms have transmembrane
and cytoplasmic domains, meaning they are membranous,
whereas G5—-G7 isoforms are soluble. G1 and G5 are also able
to bind non-covalently to 3,M [11]. Unlike HLA-E and the
classical HLA-I molecules, HLA-G is not constitutively
expressed in tissues, but it is found in a limited number of cell
types, such as cytotrophoblast cells at the maternal-foetal in-
terface of the placenta, corneal, nail matrix, embryonic mes-
enchymal stem cells and pancreatic islet 3 cells [37, 38].
HLA-G can bind a repertoire of self-peptides. Regulation of
HLA-G transcription is peculiar, as this gene is unresponsive
to NFkB, IRF1 and CIITA mediated pathways, although it
may be responsive to NLRCS [12, 14]. Alternative regulatory
elements have been described, some examples of which in-
clude a heat shock element (HSE), which would respond to
stress-induced heat shock proteins (HSP), long interspersed
elements (LINEs) and the hypoxia-inducible factor (HIF), in-
volved in cellular responses to oxygen depletion [39]. HLA-G
mediates immune responses of NK, B and T cells through
interactions with inhibitory receptors including ILT-2, ILT-4,
KIR2DLA and CD160 (Fig. 1). It can inhibit a wide range of
immune functions, including the antigen-specific cytolytic
function of cytotoxic T cells, alloproliferative response of
CD4+ T cells, ongoing proliferation of NK and T cells and
maturation of dendritic cells [11, 40]. Hence, HLA-G upreg-
ulation in tumours and in the placenta during pregnancy is
advantageous for concealment from immune surveillance
and to impart tolerance. Interestingly, a recent study showed
that HLA-E complexed with an HLA-G leader peptide enrich
a population of adaptive NK cells [41]. These cells,
characterised by a reduced FeCRy expression, have an upreg-
ulated CD25 expression, increased proliferation and increased
antibody-dependent cell-mediated cytotoxicity and prompt a
heightened IFNy response. NK cells exposed to HLA-E mol-
ecules presenting HLA-C leader peptides, in contrast, did not
show the same effects [41].

What Is Known About Non-classical HLA Class
| in Type 1 Diabetes?

HLA-E

Very few studies have directly examined the expression of
HLA-E in the pancreas. However, studies utilising the unique
type 1 diabetes pancreas resection material from recently di-
agnosed patients enrolled in the Norwegian DiViD study [42]
demonstrated that HLA-E RNA expression was elevated in
inflamed islets when compared with islets from control
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pancreata. HLA-E expression was particularly high in the
non-infiltrated islet core of the type 1 diabetes donors when
compared to the peri-islet area that contained infiltrating im-
mune cells, which suggests that the islet cells rather than the
immune cells have the highest expression [43e¢]. Elevated
HLA-E RNA expression was also observed in 4 further
recent-onset T1D organ donors, and elevated protein was con-
firmed in select islets of one of these donors. Hyperexpression
was also observed in exocrine tissue of the same T1D donor
[44]. More recent studies of recent-onset T1D donors from the
Exeter Archival Diabetes Biobank (EADB) and DiViD have
revealed that HLA-E is specifically upregulated in the IClIs.
This was confirmed at the RNA and protein level.
Intriguingly, HLA-E expression appears higher in « cells but
was also observed in 3 cells. HLA-E levels in insulin-
deficient islets are comparable with those of islets in non-
diabetic controls (Fig. 2; Richardson, unpublished data).
There is limited evidence to suggest that certain HLA-E ge-
notypes (HLA-E107R/G) are associated with age at onset of
type 1 diabetes [45].

HLA-F

Upregulation of HLA-F (at both the RNA and protein level)
has been observed in the insulin-containing islets of patients
with recent-onset type 1 diabetes when compared with islets
from non-diabetic controls [16¢¢]. This upregulation is lost
when islets are devoid of insulin, suggesting that like the clas-
sical HLA-I, the stimulus regulating its expression is derived
either from the 3 cells themselves, or requires the presence of
{3 cells to elicit the release of this factor from other cell types,
e.g. infiltrating immune cells. Similar observations were made
in donor samples from the nPOD, DiViD and EADB cohorts.
These findings were supported further by RNA expression
data, which showed that HLA-F was upregulated by 1.71 +
0.04-fold in islets from patients of the DiViD cohort [16°¢].
Furthermore, bulk sorted 3 cells from T1D donors showed
increased expression of HLA-F compared to non-diabetic do-
nors [15].

Similar to classical HLA-I in T1D, HLA-F was expressed
in both o and 3 cells. Uniquely, in contrast with conventional
HLA-F expression, this molecule was primarily localised to
the surface of the cell (Fig. 2; inset), co-localising with clas-
sical HLA-I [16¢°]. The ability of HLA-F to aid the transloca-
tion of free HLA-I to the cell surface, where it may bind to
exogenous peptides, raises the possibility that cross-
presentation of peptides from within the extracellular space
could be occurring in « and 3 cells in T1D. Proteins released
from neighbouring {3 cells may be bound, endocytosed and
processed within a cell, and subsequently presented in the
context of normal HLA-I, which could have important impli-
cations for immune responses at the islet site [16°°] (Fig. 1).
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a No diabetes

Insulin

Fig. 2 Non-classical HLA class I molecules are elevated in the islets of
patients with type 1 diabetes. Representative immunofluorescence
micrographs depicting the expression of (i) HLA-E, (ii)) HLA-F and (iii)
HLA-G in pancreatic islets. Samples from control individuals (a) and
from patients with type 1 diabetes with b insulin-containing islets and ¢

HLA-G

Associations between an HLA-G polymorphism and the age
of onset of type 1 diabetes have been found [46].
Homozygosity for the deletion of 14 bp of the 3 untranslated
region of HLA-G was associated with an earlier age of type 1
diabetes onset, whereas heterozygotes (carrying only one de-
letion) had a later age of onset of type 1 diabetes [46]. HLA-G
is expressed by pancreatic islet and duct cells, and it is upreg-
ulated in response to pro-inflammatory cytokines [37]. In pan-
creatic endocrine cells, HLA-G is constitutively expressed at
low levels as a 3,M-free heavy chain protein and remains
mainly intracellular. Interestingly, HLA-G appears to be asso-
ciated with a subset of insulin-containing granules and can be
exported to the 3 cell surface, not only through the constitu-
tive secretory pathway, but also through the regulated pathway
by which insulin is secreted [37]. Numerous autoantigens in
islet immunity are components of secretory granules [47-49];
therefore, insulin exocytosis sites may be the sites where the
immunogenic ligands become exposed. As the activation of
autoreactive T cells depends upon surface density of antigen/
MHC complexes, this may lead to the activation of low-
affinity cytotoxic T cells. Consequently, the presence of

b Insulin-containing islets (T1D)

c Insulin-deficient islet (T1D)

Insulin

Insulin

insulin-deficient islets were immunostained for non-classical HLA-I
(green), glucagon (red), insulin (light blue) and DAPI (dark blue). The
surface expression of HLA-F is demonstrated in the magnified inset
(white box). Scale bar 25 pm

HLA-G at such granule exocytosis sites could represent a
prevention mechanism for aberrant immune activations.

In pancreas tissue from patients with recent-onset type 1
diabetes, upregulation of HLA-G at the protein level can be
seen in the islets, in both o and 3 cells. Expression is predom-
inantly cytoplasmic, but HLA-G is also observed at the cell
surface (Fig. 2; Wyatt, unpublished data).

Virus Manipulation of Non-classical HLA-I

A viral etiology for the development of type 1 diabetes has
long been hypothesised and has been a topic of great contro-
versy [50-57, 58<]. At least 10 viruses have been reported to
be associated with the development of type 1 diabetes-like
syndromes in animals [59]. Some of them, such as encepha-
lomyocarditis (EMC) virus in mice, are (3-cell-tropic: these
viruses can determine either acute widespread destruction of
{3 cells, in the presence of high viral titer, or initial infection of
{3 cells followed by recruitment of immune cells, islet inflam-
mation and 3 cell loss [59]. Other viruses, such as Kilham rat
virus, lead to preferential activation of effector T cells, thus
facilitate autoimmune responses and depletion of 3 cells [59].
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While epidemiologic evidence exists in humans, suggesting a
role of viral pathogens in type 1 diabetes development and
progression, there has been debate in the field, as no definitive
causative agent has been identified. This is connected to the
fact that the detection of viruses in patients has been more than
sporadic, but not truly conclusive. Nevertheless, there is evi-
dence for the role of viruses (particularly enteroviruses) in
type 1 diabetes and other auto-immunities [42, 52, 56, 60—63].

Viruses have evolved a range of mechanisms to escape host
immune recognition and innate or adaptive immune re-
sponses, some of which are based on the hijacking of non-
classical HLA-I functions. Viruses such as Epstein-Barr virus
(EBV), cytomegalovirus (CMV), parvovirus-B19 (Parvo
B-19), herpes simplex virus type 1 (HSV-1) and RABV26
modulate HLA-E and HLA-G, facilitating the immune escape
of infected cells [54, 64—72]. HSV-1, a neuronotropic virus
with potential for acute infection and neuron latency, and ra-
bies virus (RABV), a neuronotropic virus triggering acute
neuron infection, both upregulate the neuronal expression of
several HLA-G isoforms [73]. Herpes B virus, a simian virus,
stimulates an upregulation of HLA-G and HLA-E, which
probably facilitates immune escape of the infected cells [74].
Hepatitis C virus (HCV) and Japanese encephalitis virus
(JEV) can increase expression of HLA-F [75, 76].

Maternal infections during pregnancy are associated with a
doubling of the risk of type 1 diabetes in the offspring [63].
Haplotypes and polymorphisms, such as the 14-bp deletion/
insertion polymorphism in the 3’ untranslated region of HLA-
G, could be involved in the mother-to-child vertical transmis-
sion of viruses, such as in the case of HIV [77-79].

The upregulation in the expression levels of HLA-E, HLA-
F and HLA-G in insulin-containing islets of patients with type
1 diabetes could conceivably be linked to a viral infection
where the virus is attempting to shield itself from the immune
system.

Conclusions and Future Perspectives

This review highlights emerging evidence of the involvement
of non-classical HLA-I molecules in type 1 diabetes.
Expression of HLA-E, HLA-F and HLA-G are all elevated
in the insulin-containing islets of patients with type 1 diabetes
and while expression was not restricted to 3 cells, the presence
of 3 cells was a requirement for the elevated expression. In a
pattern that mirrors that of classical HLA-I, non-classical
HLA-I hyperexpression is lost in islets that are devoid of (3
cells (Fig. 2). Upregulation of these molecules may represent a
protective response to inflammatory mediators, such as inter-
ferons, present in the microenvironment of islets with residual
[ cells. As non-classical HLA class I molecules most fre-
quently impart inhibitory signals to immune cells, particularly
to NK cells, their expression by islet cells could be a defense
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mechanism from immune cells recruited to the islet during the
inflammatory process (Fig. 1). Several small studies have
identified polymorphism of HLA-E and HLA-G alleles that
are associated with younger age of type 1 diabetes onset. As
such, the ability of an individual to activate these inhibitory
pathways could determine how rapidly 3 cells are destroyed
during an autoimmune attack. Alternatively, this observed up-
regulation may be connected to viral infections and viral
mechanisms of immune escape. Further investigations to de-
lineate the causes and implications of non-classical HLA-I
hyperexpression in type 1 diabetes pancreatic islets are, there-
fore, warranted.
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