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Abstract 

Background: Injury rates are high in populations that regularly undertake weight-

bearing physical activity, particularly military populations. Military training activities, 

that often include load carriage, have been associated with lower limb injury 

occurrence, specifically stress fractures.  

Research question: Recent work identified plantar loading variables as risk factors 

for lower limb stress fractures in Royal Marines recruits that were assessed during 

barefoot running. This study aimed to quantify how those plantar loading variables 

changed in Royal Marines recruits following a prolonged military load carriage activity, 

to further understand potential mechanisms for lower limb stress fractures. 

Methods: Bilateral, synchronised plantar pressure and lower limb kinematic data were 

recorded during barefoot running at 3.6 m s-1 (±5%) pre- and post- a 12.8-km training 

activity (~150 min). The training activity was completed with an average speed typical 

of walking (1.4 m.s-1), and 35.5 kg of additional load was carried throughout. Data were 

collected from 32 male Royal Marines recruits who completed the training activity in 

week-21 of the 32-week training programme. Plantar pressure variables and ankle 

dorsiflexion were compared between pre- and post-activity. 

Results: Post-activity there was reduced loading under the forefoot and increased 

loading under the rearfoot and midfoot. There was no change in dorsiflexion 

touchdown angle, but an increase in peak dorsiflexion and range of motion post-

activity. 

Significance: The increased rearfoot loading, reduced forefoot loading and increased 

ankle dorsiflexion following a prolonged military load carriage activity suggest a 

reduced transfer of loading from the rearfoot to the forefoot during stance, which may 
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have implications for the development of stress fractures, particularly of the 

metatarsals. 
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Introduction 

Injury rates are high in active populations who regularly undertake vigorous weight-

bearing physical activity, and are known to be higher amongst military recruits than 

distance runners [1]. The Royal Marines recruit population has a high injury rate during 

initial training (16% [2]), with stress fractures of the metatarsals and tibia among the 

most common injuries [3]. The 32-week recruit training programme includes frequent, 

prolonged military training activities, often whilst carrying load. Military training 

activities have previously been associated with lower limb injury occurrence in military 

recruits [4–6] and specifically with the high stress fracture occurrence in the Royal 

Marines recruit population [7]. Within this population, a review of the training 

programme resulted in a revised syllabus, which in turn was associated with a 

reduction in stress fracture incidence [7]. Nonetheless, the training programme 

remains necessarily demanding and stress fractures continue to be a problematic 

injury, due in part to their lengthy recovery time [3]. Understanding the influence of 

military training activities on lower limb loading is therefore warranted.  

 

Stress fractures are the result of excessive, repetitive stress on a bone [8], which may 

explain their prevalence in populations who frequently participate in weight-bearing, 

endurance activities. The mechanisms by which military training activities may 

exacerbate stress fracture risk are presently unclear. Load carriage during walking 

results in increased second metatarsal compression [9], which can increase bone 

damage accumulation [10]. Metatarsal loading was increased following running [11]–

[15], whereas reduced metatarsal loading was observed after four consecutive days 

of long-distance walking (160 – 200 km total) [16]. Reduced loading under the lesser 
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toes [12,13,15,16] and hallux [11,13,16] was also observed after walking and running. 

This shift of loading from the toes to the metatarsals during prolonged activity may be 

associated with the relatively high stress fracture risk in populations who regularly 

undertake such activities. 

 

Recent prospective studies of Royal Marines recruits have identified characteristics 

exhibited during barefoot running that predispose a recruit to a second or third 

metatarsal stress fracture [17] or a tibial stress fracture [18] during the 32-week recruit 

training programme. A lower dynamic arch index (i.e. higher arch, assessed as 

percentage of plantar-ground contact in the midfoot area) and later occurrence of peak 

pressures during stance under the metatarsal heads were identified as risk factors for 

second and third metatarsal stress fractures respectively. Greater peak pressure 

under the heel was identified as a risk factor for tibial stress fracture [18]. In order to 

further understand why these characteristics may predispose to risk of site-specific 

stress fractures it is important to understand the influence of the physically demanding 

training activities on these characteristics. Changes to plantar loading following a 

military load carriage training activity are unknown. Given the association between 

load carriage activities and stress fractures within this population, altered plantar 

loading following such an activity may explain mechanisms for the development of 

stress fractures. Quantifying changes to those variables that have previously been 

identified as risk factors for stress fracture is therefore important. Assuming that a 

recruit is in sub-optimal physical condition following a demanding training activity, a 

tendency to demonstrate characteristics associated with stress fracture may be 

expected following the activity. 
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The aim of this study was to investigate changes to plantar loading assessed during 

barefoot running following a prolonged load carriage training activity in Royal Marines 

recruits. It was hypothesised that there would be reduced loading under the toes and 

hallux, accompanied by increased metatarsal loading post- compared with pre-training 

activity. It was also hypothesised that peak pressures under the metatarsals would 

occur later during the stance phase and that peak pressure under the heel would 

increase post- compared with pre-training activity. 

 

Methods 

32 male Royal Marines recruits volunteered to participate in the study, which was 

undertaken in week-21 of the 32-week recruit training programme. All volunteer 

recruits were injury-free and had completed the required training up to the point of data 

collection without being removed from mainstream training for any reason. Within 

these criteria, recruits were randomly selected from three different training troops who 

had followed the same training programme. Volunteer recruits had a mean (SD) age: 

22.19 (3.84) years, body mass: 82.4 (8.4) kg, height 1.78 (0.06) m, and body mass 

index (BMI): 25.9 (2.0) kg.m-2. Recruits had completed 20 weeks of training prior to 

data collection and as such were relatively homogeneous in terms of training status. 

The study was approved by the Ministry of Defence Research Ethics Committee 

(MODREC Reference 367/Gen/12), and all recruits provided informed, written 

consent. 

 

As part of the Royal Marines recruit training programme, all recruits are required to 

cover 12.8 km on foot, whilst carrying a load of 35.5 kg, in week-21 of the training 

programme. This study collected running data pre- and immediately post- this military 
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training activity during the recruit training programme. The training activity took place 

on uneven terrain at varying paces and modes (walking and running), with an 

approximate average duration of 150 minutes. This equates to an average speed of 

5.1 km.h-1 (1.4 m.s-1). The training team determined the pace of the activity, with all 

recruits required to complete the activity together. Recruits wore military issue clothing 

and boots throughout the activity. There was a pause in the activity approximately 

every hour for water breaks, and recruits were encouraged to eat regularly throughout 

the activity. The load consisted of a bergen (large military rucksack) and webbing 

(worn like a belt to carry additional military equipment) with a combined mass of 31.3 

kg, and a weapon (4.2 kg). 

 

Bilateral, synchronised plantar pressure and lower limb kinematic measurements were 

recorded during barefoot running at 3.6 m.s-1 (±5%). This barefoot running protocol 

has previously been used in studies identifying risk factors for lower limb injuries in 

Royal Marines recruits [17,18]. By administering the same protocol it was possible to 

determine whether the variables associated with greater risk of stress fracture in this 

earlier, prospective study were altered following the demanding military training 

activity. Evidence that gait characteristics are reportedly more pronounced when 

barefoot than shod influenced the selection of barefoot data collection for this task 

[19]. 

 

Sagittal plane ankle kinematic data were collected to assist in understanding any 

observed changes in plantar loading. Kinematic data were collected with two Coda 

Mpx30 units at 200 Hz (CodaMotion, Charnwood Dynamics, UK) using eleven active 

markers per leg, and secured using MicroporeTM tape (3M, USA). Recruits wore shorts 
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and t-shirt during the pre- and post-activity running trials. Marker positions were 

identified with pen to allow reliable replacement following the training activity. Plantar 

pressure was recorded using a 2 m pressure plate (RSscan International, Belgium, 4 

x 0.5 m x 0.4 m, 4096 sensors, 125 Hz) positioned and marked in the middle of a 10 

m EVA runway.  

 

Recruits were asked to complete running trials with a relaxed running style, ensuring 

that two consecutive steps contacted the plate. They used a self-selected foot strike 

and order of foot placement. Recruits completed familiarisation trials until successful 

trials were repeated. A successful trial was one in which the run appeared relaxed, the 

speed was within the required range, and there was no observed adjustment for plate 

contact. Running speed was monitored using timing gates. Five successful running 

trials were recorded per recruit, followed by a standing trial, in which recruits stood in 

a relaxed position with legs shoulder-width apart. This allowed for adjustment of 

dynamic joint angles relative to the neutral standing position of each recruit, providing 

anatomically relevant data. This entire process was completed both pre- and post-

activity. Post-activity data collection took place as soon as possible after completion 

of the activity. Recruits finished the training activity at the location of data collection 

and immediately removed their additional load and changed into shorts and t-shirts. 

The time between recruits completing the activity and starting running trials was 

monitored and recorded (range: 10-84 min, mean (sd): 44 (21) min). Changes in 

plantar loading as a result of the training activity are likely to reduce with increased 

recovery time, such that all data were collected within 90 minutes of completion of the 

activity, based on existing findings [20], acknowledging that fatigue was induced in a 
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different way in this study. Energy and water intake were not controlled upon 

completion of the activity, as these factors were not controlled during the activity. 

 

Kinematic data were analysed using a three-dimensional model [21,22].  Ankle 

dorsiflexion was characterised by calculation of touchdown angle, peak angle, range 

of motion from touchdown to peak, time of peak dorsiflexion as a percentage of ground 

contact time and the angular velocity from touchdown to peak dorsiflexion. Ground 

contact time was determined from pressure data. The sagittal plane angle between 

the foot and the ground at touchdown was also calculated to provide an indicator of 

foot strike modality. Kinematic variables were analysed using customised MATLAB 

scripts (R2012a, The MathWorks Inc. Natick, MA, USA).  

 

Pressure trials were exported from the Footscan software (RSscan International, 

Version 7). The software automatically divides the foot into zones (Figure 1), 

representing the hallux, lesser toes, five metatarsals, the midfoot, and the medial and 

lateral heel. Peak pressure, time of peak pressure, and impulse under each zone were 

evaluated.  The foot was further divided into rearfoot (medial and lateral heel), midfoot 

and forefoot (hallux, lesser toes and metatarsals) regions. The relative contribution to 

total ground contact area (contact %) under each of these regions, and their relative 

impulses (%) were also examined. 
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Figure 1: Plantar zone divisions 
HX: Hallux; T2-5: lesser toes; M1-M5; first to fifth metatarsals; MF: midfoot; HM: 
medial heel; HL: lateral heel 

 

 

All statistical analyses were undertaken using SPSS for Windows (Version 16.0, SPSS 

Inc., Chicago, IL, USA) with a statistical significance of P < 0.05. To determine whether 

pressure variables should be normalised to body weight, bivariate correlation analyses 

between these variables were conducted. No variables were significantly associated 

with body weight either pre- or post-activity, thus pressure variables were not 

normalised to body weight. Normality was assessed for all variables by histogram 

observation and assessment of skewness and kurtosis values (|z| < 1.96 indicated 

normality). Data from one randomly selected leg was assessed for each recruit. Means 

were compared between pre- and post-activity using paired t-tests (normally 

distributed variables) and Wilcoxon-signed rank tests (not normally distributed 
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variables). Two-tailed values were considered for all variables. Effect sizes (d) [23] 

were reported for variables which differed between conditions (P < 0.05). 

 

Results 

Pressure data are presented in Table 1. Post-activity, there was a reduction in peak 

pressure and impulse under the hallux, lesser toes and first and second metatarsals. 

Peak pressure occurred earlier under the hallux and lesser toes, and later under the 

second-to-fifth metatarsals post-activity. There was no change in ground contact time. 

There was increased impulse and contact under the rearfoot, and a corresponding 

decrease under the forefoot post- compared with pre-activity. 
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Table 1: Pressure variables pre- and post- 12-mile load carriage activity. 
 

 

 
Mean (sd) 

P d 
 Pre- Post- 

 Ground contact time 
(ms) 209 (20) 213 (18) 0.202 

 

Peak pressure 
(N.cm-2) 

Hallux 11.27 (5.45) 6.04 (3.86) P < 0.001 1.08 

Lesser toes 2.93 (1.28) 1.59 (1.04) P < 0.001 1.14 

1st metatarsal 16.95 (6.17) 10.42 (5.22) P < 0.001 0.87 

2nd metatarsal 21.98 (5.70) 17.75 (4.35) 0.002 0.64 

3rd metatarsal 25.22 (8.82) 22.59 (8.49) 0.115   

4th metatarsal 25.31 (12.23) 23.15 (9.58) 0.314   

5th metatarsal 15.40 (7.80) 15.99 (6.88) 0.618   

Medial heel 15.48 (6.63) 15.98 (6.92) 0.728   

Lateral heel 15.53 (8.15) 15.34 (9.37) 0.773   

Impulse (N.s) 

Hallux 11.09 (8.04) 4.71 (3.84) P < 0.001 0.95 

Lesser toes 2.61 (2.30) 1.27 (1.43) P < 0.001 0.88 

1st metatarsal 17.90 (6.29) 11.01 (6.79) P < 0.001 0.97 

2nd metatarsal 23.81 (6.82) 19.19 (6.33) 0.003 0.59 

3rd metatarsal 24.04 (8.03) 21.76 (8.17) 0.197   

4th metatarsal 20.62 (8.95) 20.65 (9.14) 0.988   

5th metatarsal 12.60 (6.93) 13.00 (6.60) 0.649   

Medial heel 10.01 (6.14) 11.54 (8.19) 0.300   

Lateral heel 6.74 (5.13) 7.43 (6.11) 0.533   

Time of peak 
pressure 

(% stance) 

Hallux 65.36 (6.86) 57.36 (17.38) 0.011 0.52 

Lesser toes 59.60 (15.80) 42.53 (21.62) P < 0.001 0.94 

1st metatarsal 51.97 (6.78) 51.28 (5.78) 0.575   

2nd metatarsal 54.90 (4.86) 59.18 (5.27) P < 0.001 0.86 

3rd metatarsal 53.56 (5.25) 56.32 (4.95) 0.018 0.47 

4th metatarsal 47.33 (6.41) 52.63 (5.90) P < 0.001 0.74 

5th metatarsal 42.04 (10.30) 48.37 (9.24) P < 0.001 0.96 

Medial heel 10.38 (5.98) 12.96 (6.93) 0.065   

Lateral heel 8.03 (3.30) 8.99 (4.77) 0.325   

Contact 
percentage (%) 

Rearfoot 20.81 (2.60) 22.44 (2.42) P < 0.001 0.68 

Midfoot 21.19 (4.46) 23.31 (4.96) 0.06  

Forefoot 58.54 (5.52) 55.11 (5.22) P < 0.001  0.97 

Relative 
impulse (%) 

Rearfoot 10.56 (5.42) 12.69 (5.65) 0.028  0.42 

Midfoot 5.02 (1.51) 6.10 (2.24) P < 0.001  0.74 

Forefoot 84.23 (5.53) 81.21 (6.44) 0.001  0.50 

Note: rows highlighted in bold indicate variables which significantly differed post- compared with pre-
activity 
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Kinematic data are presented in Table 2. There was no change in the angle between 

the foot and the ground, with the toes raised relative to the heel at touchdown in both 

conditions, indicative of a rearfoot strike. There was no difference in dorsiflexion angle 

at touchdown, or dorsiflexion velocity post-activity. There was an increase in peak 

dorsiflexion angle and dorsiflexion range of motion post- compared with pre-activity.  

 

Table 2: Kinematic variables pre- and post- 12-mile load carriage activity. 
 

 

 
Mean (sd)   

 Pre- Post- P d 

Foot-ground angle Foot Angle at TD (˚) 2.67 (3.99) 2.40 (2.37) 0.961  

Ankle dorsiflexion 

Touchdown (˚) 2.49 (4.66) 0.69 (6.14) 0.343  

Peak (˚) -10.48 (3.83) -15.34 (5.16) 0.001 0.95 

Time of peak (%) 46.62 (5.91) 50.78 (8.07) 0.075  

Range of motion (˚) 13.28 (3.12) 16.15 (4.81) 0.031 0.54 

Velocity (˚.sec-1) 137.93 (24.06) 138.96 (28.61) 0.910  

Note: TD= touchdown; rows highlighted in bold indicate variables which significantly differed post- 
compared with pre-activity. All angles are reported relative to the standing position, such that zero 
degrees of dorsiflexion would be reported in the standing trial. A negative dorsiflexion angle indicates a 
dorsiflexed ankle relative to standing. A positive foot angle at TD indicates that the toes are raised 
relative to the heel, typical of a heel strike running style. 

 

 

Discussion 

This study assessed the influence of a Royal Marines military training activity on 

barefoot running gait. As hypothesised, there was reduced loading under the lesser 

toes and hallux following the training activity, which is consistent with previous findings 

[11–13,15,16]. Nagel et al. [13] have suggested that a reduced contribution of the toes 

to push-off increases the loading of the metatarsals, thereby increasing risk of stress 

fracture. However, contrary to the hypothesis and to existing findings [11–15], peak 

pressure was reduced under the first and second metatarsals, and was unchanged 

under the third to fifth metatarsals post-activity. Reduced metatarsal loading was 

previously observed following prolonged walking [16]. The reduction in loading under 
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the first and second metatarsals, as well as the reduced forefoot loading and increased 

rearfoot loading, may be a strategy to reduce forefoot discomfort during running. This 

could also explain why reduced metatarsal loading was previously observed following 

four days of walking  [16]. This earlier study found that 88% of participants reported 

foot complaints after the activity, of which 22% related to the forefoot. This may have 

been the result of increased metatarsal loading at an earlier stage of the activity, as 

observed after shorter duration running activities [11,12,14,15]. This could have led to 

discomfort and an altered gait in order to avoid uncomfortable loading of these regions. 

Assessment of this using in-field, in-shoe devices would provide valuable insight.  

 

Reduced peak pressure under the forefoot (including the hallux and lesser toes) 

coincided with increased rearfoot and midfoot loading. This indicates a reduced 

transfer of load from rearfoot to forefoot during stance post-activity. These changes 

may be influenced by plantar flexor muscle fatigue, of which there was evidence 

following the same military training activity, when assessed during walking [24]. The 

ankle plantar flexors provide eccentric dorsiflexion control during mid-stance, such that 

fatigue of these muscles may also explain the increased dorsiflexion observed post-

activity. These findings suggest an increased reliance on forwards inertia in late 

stance. Reduced plantar flexor muscle function was previously suggested as an 

explanation for reduced loading under the toes and hallux [25], as was observed in the 

present study. This has implications for metatarsal injury risk, as activation of the 

plantar flexor muscles can reduce metatarsal bending moments [26], whereas reduced 

activity of these muscles results in increased metatarsal strain [9]. 
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Earlier peak pressures under the hallux and lesser toes post-activity is evidence of a 

reduced active contribution to push-off. Peak toe pressure occurred at 60% of stance 

pre-activity, which coincides with the usual time of forefoot push-off [27], whereas peak 

toe pressure occurred at 43% of stance post-activity. Later peak pressures under the 

metatarsals were observed post-activity, in support of the hypothesis for this variable. 

A later peak second metatarsal pressure during barefoot running was the strongest 

predictor of third metatarsal stress fracture risk in Royal Marines recruits [17]. This 

previous study found that in recruits who sustained a third metatarsal stress fracture, 

peak pressure occurred under the second metatarsal at 60% of stance, compared with 

57% of stance in recruits who remained injury-free. In the present study, peak pressure 

occurred under the second metatarsal at 59% of stance post-activity, compared with 

55% of stance pre-activity. The later peak pressures occurred closer to the time of 

push-off following the training activity. There may have been an increased leverage 

from the metatarsals at push-off due to a reduced contribution from the toes. The 

contribution of the metatarsals to propulsion during running stance may therefore be 

an important mechanism in the development of metatarsal stress fractures. 

Interventions to minimise the plantar loading changes observed following a military 

training activity could help to reduce the risk of metatarsal stress fracture. Footwear 

designed to facilitate the transfer of loading from rearfoot to forefoot, or strength 

training interventions of both the foot and ankle plantar flexor muscles warrant 

investigation. 

 

Greater peak pressure under the heel was identified as a risk factor for tibial stress 

fractures in Royal Marines recruits  [18]. This variable did not change post-activity, in 

contrast with the hypothesis. There was greater overall loading (rearfoot impulse and 
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contact percentage) under the rearfoot following the activity, but this is not known to 

be a risk factor for tibial stress fracture. Further exploration of the mechanisms by 

which tibial stress fractures develop, and identification of training activities which 

increase this variable, is warranted.  

 

The decision to use a barefoot running protocol in this study was based upon the 

recent identification of plantar loading variables as risk factors for stress fractures in 

this population, when using the same protocol [17,18]. Future investigation of changes 

in plantar loading during shod running and during load carriage whilst wearing military 

boots, would provide further insight into mechanisms for injury.  It is important to note 

that although it was suggested that the plantar flexor muscles had reduced function 

post-activity in the present study, no direct measurements of muscular activity were 

obtained in the present study. This suggestion was based on findings following the 

same training activity but during walking [24]. Assessment of muscular activity during 

running following this training activity would strengthen these findings. Additionally, 

only male recruits were included in this study and the findings may not be 

generalisable to female military recruits. Similarly, foot type was not recorded in this 

study and it should be acknowledged that populations with a specific foot type may 

respond differently to completing a prolonged training activity.  

 

Conclusion 

A prolonged (~ 150 min) military training activity, with 35.5 kg of additional load, 

resulted in increased rearfoot loading, reduced forefoot loading and increased 

dorsiflexion during barefoot running. This is indicative of a reduced transfer of loading 

from rearfoot to forefoot during stance. Peak pressure under the second metatarsal 
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occurred later following the training activity, a characteristic that has been identified as 

the strongest predictor of third metatarsal stress fracture risk in Royal Marines recruits 

when using the same barefoot running protocol. The reduced transfer of loading from 

rearfoot to forefoot following a military training activity may therefore contribute to the 

high incidence of metatarsal stress fractures in this population. Interventions intended 

to minimise these changes should be investigated. 
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