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Thesis abstract 

DNA repair mechanisms are essential for genome maintenance and adaptive 

immunity. A careful balance must be achieved whereby highly accurate and 

efficient canonical repair protects the genome from accumulating mutations that 

lead to aging and cancer, and yet mutation and error-prone non-canonical repair 

is required for generating immune diversity. 

 

Immune diversity is achieved within a tightly regulated environment in which 

mutator proteins are directed to the antibody locus to introduce a swathe of DNA 

damage. This produces high affinity antibodies that recognise an infinite number 

of invading pathogens. This process of secondary antibody diversification is 

dependent on both active transcription and DNA repair.  

 

Downstream of histone signalling, DNA repair nucleases are recruited to remove 

the damaged bases. The structure of damaged regions in the DNA can have very 

different conformations depending on whether the source of the damage is 

endogenous or exogenous. Specific DNA nucleases recognise particular DNA 

substrates and generate DNA intermediates that are repaired in conjunction with 

polymerases and ligases.  

 

Despite their multitude and importance to DNA repair, very few nucleases have 

been characterised, while the activities of some studied nucleases remain 

controversial. Conventional techniques for studying DNA nucleases have several 

disadvantages; they are hazardous, laborious, time-consuming, and capture 

nuclease activity in a discontinuous manner. Recognising a need for a safer, 

faster alternative, a fluorescence-based method has been developed for the 

study of DNA nucleases, nickases and polymerases. 

 

Key histone modifications that are known to orchestrate canonical DNA repair 

have since been discovered to regulate non-canonical repair at the antibody 

locus. The Kat5 histone lysine acetyltransferase functions highly upstream of 

DNA repair and promotes active transcription, yet a role for Kat5 in secondary 

antibody diversification has not yet been established. Using chemical inhibitors 

to prevent the catalytic activities of Kat5, and the genetic method of an inducible 

degron system for rapid and reversible downregulation of Kat5, a role for Kat5 in 
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secondary antibody diversification is recognised, and the research contributes to 

our current understanding of the DNA repair signal transduction pathway.  
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1 General Introduction 

 

1.1 DNA repair, immunity and cancer 

DNA repair is a tightly regulated process that is integral for maintenance of genomic 

integrity and adaptive immunity. In this regard, there is a conflict whereby, on one 

hand, highly efficient repair is essential for genome maintenance and protection from 

aging and cancer and, on the other hand, we need mutation and the subsequent repair 

pathways to generate the diversity we need for an effective innate and adaptive 

immune response (1,2). As will be discussed in detail, mutation and subsequent 

recombination of the DNA at the immunoglobulin locus enables the immune system to 

produce a vast repertoire of antibodies from a relatively small segment of the genome 

(3). This intentional DNA damage takes place at two developmental stages of B cells 

and is very acutely controlled (3,4). Loss of these constraints can lead to the 

uncontrolled accumulation of genomic mutations and tumourigenesis, or 

immunodeficiencies may develop that increase susceptibility to pathogenic invasion. 

A careful balance must therefore be achieved to minimise and/or localise  

mutagenesis (5).  

 

1.2 Histone modifiers and DNA nucleases drive DNA repair at polar ends of the 

DNA damage signalling pathway 

This thesis examines proteins functioning upstream and downstream of DNA damage 

during the process of DNA repair signalling (Fig. 1). Once damage has been inflicted 

on the genome, proteins that scan the integrity of the DNA and recognise deformation 

in the duplex structure alert histone modifiers to induce local changes in the chromatin 

and recruit enzymes that directly repair the damage. DNA damage can exist in several 

different forms, such as breaks, chemical adducts or pyrimidine dimerization, and in 

all stages of the cell cycle, each of which determine the most appropriate form of  

repair  (6–8).  

 

The DNA damage response is a complex network of interacting pathways that 

determine the cellular response to damage; this involves halting cell cycle progression, 

inducing apoptosis when the damage is too extensive, altering the transcription profile 

of the cell and increasing expression of repair proteins in order to carry out the 
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necessary repair programmes (9) (Fig. 1). In the first instance following DNA damage, 

sensory proteins that scan the genome recognise sites of damage (9–11), and signal 

to ‘transducer’ proteins (9). These include histone proteins that undergo grand scale 

remodelling at the break site, altering chromatin structure, and ataxia telangiectasia 

mutated (ATM) kinase, which activates a series of ‘effector’ repair proteins to resect 

along the damaged region, ligate broken DNA ends, and replicate across the  

break (9,12). 

 

Kat5 is a histone acetyltransferase with known roles supporting both DNA repair and 

transcription. DNA repair and transcription are mutually important for the secondary 

antibody diversification processes of somatic hypermutation (SHM) and class switch 

recombination (CSR), which produce high affinity antibodies during the adaptive 

immune response. A role for Kat5 in the context of SHM and CSR has yet to be 

established. With the use of chemical and genetic methods, the role of Kat5 in CSR is 

explored. A more detailed description of Kat5 is provided below and in Chapter 5. 
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FIGURE 1 

 

 

Figure 1 | General outline of the DNA repair signal transduction pathway 

Illustration of the DNA repair signalling pathway and outcomes broadly summarises the sequential 

process of 1) accumulating damage, 2) signalling and sensing the damage by ‘sensory’ proteins that 

scan the DNA helix for breaks and distortions, 3) alerting ‘transducers’ that co-ordinate and activate 

‘effectors’ that directly repair the damage.  Arrowheads represent activation events and perpendicular 

ends represent inhibitory events. (Source: Zhou NB and Elledge, SJ, 2000, p433) (9). 

 

Many DNA nucleases involved in these processes have yet to be characterised, and 

the activities of known nucleases have yet to be fully elucidated. Several techniques 

have been developed to study nuclease activity and their binding partners, yet they 

are either too time-consuming and hazardous to health, such as using radiolabelled 

DNA nucleotides (13), or the technology is not universally accessible (14,15). As such, 

there is a need for a simple, fast, inexpensive and safe alternative to support the study 

of nucleases, and this has been achieved using the commercially available DNA dye, 

PicoGreen.  
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1.3 DNA damage signalling upstream of the DNA break site 

 

1.3.1 Kat5 promotes transcription and DNA repair 

Kat5 is a member of the MYST family of histone acetyltransferases, based on their 

founding members ((MOZ, Ybf2/Sas3, SAS2, Tip60/Kat5). These play diverse roles in 

gene regulation, DNA damage repair, chromatin remodelling, and tumourigenesis 

(16,17). Recombinant Kat5 acetylates core histones H2AK5, H3K4, H4K5, H4K8, 

H4K12 and H4K16 in vitro (16,17). Kat5 predominantly functions as part of transient 

multiprotein complexes with the appropriate binding partners. The majority of Kat5 

exists within the NuA4-Kat5 complex which performs most of its transcriptional and 

DNA repair functions (18). Members of this complex include p400 (an ATPase with 

chromatin remodelling activity) (19,20), RuvBL1/2 (ATP-dependent chromatin 

remodelling complexes) (21) and Brd8 (recognises acetyl-lysines in cellular proteins 

and histones to regulate gene transcription) (22,23).  

 

Kat5 is proposed to function upstream of both error-free homologous recombination 

(HR) and error-prone nonhomologous end-joining (NHEJ). During HR-mediated DSB 

repair, repressive chromatin complexes are rapidly recruited to the DSB, including the 

Suv39h1/kap-1/HP1 H3K9 methyltransferase complex (24). This complex briefly 

tethers itself to H3K9me2/3 through the HP1 chromodomain (25), and radiates rapidly 

either side of the DSB to form compact nucleosomal arrays (24,26).  

 

Transitioning to an open chromatin state first requires recruitment of the Kat5 complex 

to DSBs. The shift from the repressive to an open chromatin state requires a 

mechanism dependent on its key subunits, H2A.Z exchange by p400, coupled with 

rapid acetylation of histones H2A/H2AX and H4 by Kat5 (20,27–29).  

 

Histone H2A.Z possesses an extended acidic domain that binds to the H4 tail, holding 

the chromatin in a compact state (30,31). Removal of H2A.Z by NuA4-Kat5 provides 

an opportunity for Kat5 to rapidly acetylate the liberated H4 tail on lysine 16 (32). 

Acetylation at this site prohibits further interaction with acidic patches on replacement 

histones, and loosens the chromatin structure (30,31). It also promotes HR by 

disrupting the formation of a salt bridge between the positively charged H4K16 and 
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negatively charged Glu1551 in the NHEJ-promoting 53BP1 Tudor domain (33). 

H4K16ac also prevents 53BP1 binding to the adjacent H4K20me1/2, which is also 

present at sites of DNA damage (33). Loss of 53BP1 encourages binding of BRCA1, 

and thus favours repair by HR. At sites of active transcription, with elevated local 

acetylation already in place, BRCA1 accrues at the site while 53BP1 is specifically 

obstructed (33).   

 

BRCA1 activates 5’–3’ end resection of DSBs by MRN and CtIP to generate tracts of 

single-stranded DNA (ssDNA) (34–38). This resection intermediate is coated in Rad51 

recombinase and, together, invade the sister chromatid to seek a complementary 

region to functions as a template for repair (39).  

 

Kat5 may also function upstream of NHEJ through activation of ATM kinase 

(40,41). ATM phosphorylates a number of targets involved in DNA repair, 

including HP1 to release it from the chromatin and unveil H3K9me3 for Kat5 

binding (24,28). Kat5 binds H3K9me3 directly through its chromodomain following 

phosphorylation by c-Abl kinase on Tyr44. Concordantly, treatment with Kat5 

preparations from IR-treated cells with λ-phosphatase reduces binding affinity of 

Kat5 to this motif (42). Interestingly, the phosphorylation status of Kat5 bears no 

effect on its acetylation of H4, yet interaction between Kat5 and H3K9me3 is 

necessary to stimulate Kat5-mediated acetylation of ATM at Lys-3016 (42). 

Therefore, H3K9me3 binding functions as an allosteric regulator by increasing 

Kat5 catalytic activity (28,43). Mutations within the chromodomain that prohibit this 

interaction also attenuate Kat5 acetylation of ATM. Correspondingly, mutation of 

the ATM acetylation site inhibits activation of ATM’s kinase activity, indicating Kat5 

is required for its activation (43). 

 

Along with HP1, ATM also phosphorylates H2AX (γH2AX) (44), which is a marker 

for DNA repair, and functions as a binding site for several downstream DNA repair 

proteins. Indeed, phosphorylation of H2AX mediates recruitment of E3 ubiquitin 

ligases, RNF8/RNF168 through MDC1 (45,46). These generate polyubiquitin 

binding sites, H2AK14/15ub, for 53BP1. 53BP1 recognises moieties 

H2AK14/15ub and H4K20me2, and γH2AX is itself a platform for 53BP1 binding 

(46,47). As such Kat5 is implicit highly upstream of both homologous and 
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nonhomologous DSB repair, and factors such as cell cycle stage may influence 

the pathway of repair (26).  

 

FIGURE 2 

 

 

Figure 2 | Overview of Kat5-mediated repair in NHEJ and HR 

Illustration of the Kat5 DNA repair pathways that ultimate in recruitment and binding of 53BP1 for NHEJ, 

or binding and activation of BRCA1 and specific obstruction of 53BP1 for HR (Source: Sivanand S, Mol 

Cell, 2017, p453) (48). 

 

In addition to its role in DNA repair, Kat5 is also a transcriptional regulator (18). 

For example, Kat5 can directly acetylate and stabilise the Myc family of 

transcription factors; these directly influence G1/S progression by regulating 

genes required for growth, DNA replication and apoptosis (49). Kat5 can also be 

recruited to Myc-dependent transcription promoters and enhance Myc 

transactivation activity (50). Whilst Kat5 is generally involved in transcription 

activation via recruitment of other complexes, it can also co-repress transcription 
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factors, such as CREB binding protein (51). Intriguingly, dynamic H2A.Z exchange 

observed at DSBs has also been reported at transcription start sites of many 

poised genes, and its ejection may allow progression by RNA polymerase II. 

Whether the Kat5 complex is involved is not yet known (26,52,53).  

 

1.4 Transcription and DNA repair are integral for SHM and CSR 

 

1.4.1 AID relies on active transcription to induce DNA mutations requisite for 

somatic hypermutation and class switch recombination 

Both somatic hypermutation (SHM) and class switch recombination (CSR) are initiated 

by the mutator protein AID. AID is a small protein of 198–210 amino acids, and is 

encoded by the Aicda gene in humans and mice (54). It is a member of the RNA-

editing APOBEC family of cytidine deaminases and converts cytidine residues to uracil 

exclusively in single-stranded DNA, resulting in a C:G to T:A transition. Processing of 

uracil by base excision repair (BER) and mismatch repair (MMR) pathways leads to 

the broader spectrum of point mutations characterising SHM, and to DNA double-

stranded breaks (DSBs) which are necessary intermediates of CSR (55,56). 

 

AID activity, and therefore CSR and SHM, is dependent on the ssDNA revealed during 

transcription. AID interacts with RNA polymerase II and its subunits in vivo (57), 

enabling it to access ssDNA in the wake of the transcription complex. Mutations 

directed to the human Vλ promoter resulted in abrogation of gene rearrangement and 

limited production of high-affinity antibodies (58), indicating AID’s reliance on 

transcription. With regards to CSR, placing a non-functional IgH transgene under the 

transcriptional control of its natural RNA polymerase II-dependent promoter, an RNA 

polymerase I promoter, or no promoter entirely, saw the mutation frequency in cells 

lacking a promoter to be greatly diminished in comparison (59).  

 

It is appropriate that AID is linked to transcription considering its affinity for mutating 

ssDNA rather than RNA or dsDNA. R loops are RNA:DNA structures that occur 

naturally as a by-product of transcription, and contribute towards transcriptional 

pausing (60,61). R loops are generally quite rare yet are prevalent during CSR. R loop 

formation requires high G content on the non-transcribed strand, DNA supercoiling 

and DNA cleavage, all of which are abundant in S regions (62).  
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The precise mechanism by which AID deaminates cytidines is unclear. While 

APOBEC family members may have similar structures, their binding mechanisms and 

functions differ (63). Indeed, AID binds to DNA structures in a specific manner that is 

not shared by other APOBECs (64). Evidence suggests that AID acts on cytidines that 

have been flipped out of alignment. Other deaminases, such as tRNA adenosine 

deaminase (tadA) and adenosine deaminase acting on dsDNA (ADAR) both act on 

pre-flipped bases (65,66). Base flipping is employed by other DNA-modifying enzymes 

such as methyltransferases and uracil glycosylases (67–69). APOBEC3G requires the 

target cytidine to be flipped out into its catalytic pocket (70), which is likely to be 

replicated by AID as it deaminates R loop structures that are likely to force DNA bases 

out of alignment caused by torsional constraints (71). UNG actively flips its target uracil 

from duplex DNA through a ‘pinch-push-pull’ mechanism (72), but as AID acts on 

ssDNA, it is unlikely to entail such a complicated mechanism.  

 

1.4.2 Error-prone DNA repair of AID-induced mutations introduces further 

sequence mutations 

In both mice and humans, SHM mutates the recombined V(D)J region to an 

accelerated rate of 10-5–10-3 mutations per base pair per generation, far exceeding 

the basal rate of mutation in other cells of ~10-9 mutations per base pair per generation 

(73).   

 

AID recognises ‘hotspot’ motifs within the V region, selectively mutating WGCW (74). 

Upon deamination of the target cytosine, a combination of the BER and MMR 

pathways co-ordinate to repair the break via error-prone mechanisms. In BER, uracil 

DNA glycosylase (UNG) recognises and cleaves the damaged base, triggering APE1-

mediated excision of the abasic site, and re-synthesis of the damaged region by error-

prone polymerases (75). 

 

MMR, however, is the major repair pathway in SHM (76). MutSα (Msh2/Msh6) 

recognises the U:G mismatch and recruits the MutL complex (MLH/PMS2) and 

proliferating cell nuclear antigen (PCNA). PMS2 exhibits endonuclease activity and 

introduces nicks spanning the damaged site. Exo1 is a 5’–3’ nuclease which resects 

from this nick and through the damaged region (77).  
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PCNA helps accumulate mutations at Ig variable regions by recruiting error-prone 

translesion polymerases, such as θ, η and ζ (78). This is dependent on its mono-

ubiquitylation and, correspondingly, B cells of PCNAK164R mice display reduced 

mutations at A:T sites. In wild-type B cells, mutations at A and T bases are caused by 

polymerase η, which is particularly error-prone when copying A and T (79,80). It is the 

accumulation of A:T mutations visualised in SHM and not CSR that indicates that MMR 

is the dominant pathway in SHM. UNG-deficiency has no impact on A:T mutations at 

V regions, whereas deficiency in any of the MMR proteins results in cells lacking 80-

90% of all A:T mutations (76).  

 

1.4.3 B cells are reliant on DNA repair factors to induce CSR to distinct antibody 

isotypes 

Prior to activation, B cells express solely IgM or IgD antibodies, which have identical, 

low affinity variable regions. CSR allows for the expression of the IgM and IgD constant 

region genes (Cµ and Cδ) to be replaced by downstream Cγ, Cε or Cα elements to 

express IgG, IgE or IgA (81,82) (Figure 1). In doing so, antibody class, or isotype, 

switching alters the effector function of the antibody (81,82). 

 

Antibody isotype confers the localisation of the antibody within the body, and its 

functions in response to antigen. IgM is exposed on B cells prior to secondary 

diversification, and so binds with very low affinity. This is compensated by its ability to 

form pentamers, endowing high overall avidity. IgM also most efficiently activates the 

complement system, which involves the sequential proteolytic cleavage of inactive 

components to cleave and activate enzymes that coat the pathogen surface (83). IgE 

is found in the mucus and saliva, and antigen-binding triggers mast cells to release 

potent chemical mediators to induce coughing, sneezing, vomiting and diarrhoea (84). 

IgA and IgG both neutralise toxins, viruses and bacteria to prevent their adhesion to 

host cells and inhibit pathogenesis. IgG antibodies typically exhibit higher affinity, and 

opsonises viruses and bacteria for phagocytosis (85).  

 

Each antibody isotype is associated with a unique upstream G-rich switch (S) region, 

which is preceded by an intervening (I) exon. The importance of S regions in CSR was 

observed following deletion of most of Sµ, which dramatically reduced CSR to 
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downstream CH regions (86,87). Furthermore, deletion of Sγ1 prevents isotype 

switching to IgG1 (88,89), without affecting CSR to other isotopes (90).  

 

The cytokines secreted by T cells directs CSR to specific isotypes. For example, IL-4 

induces germline transcription from upstream of the S regions of the un-rearranged 

Cγ1 and Cε genes to induce CSR to IgG1 and IgE (91,92).  IL-4 concomitantly 

downregulates germline transcription of the Cγ2b gene to inhibit CSR to IgG2b (93). 

In contrast, TGF-β and LPS-stimulated B cells induce CSR to IgA, while impeding IgM 

and IgG secretion (94,95). The mouse CH12F3-2A cell line is a model of CSR, and 

specific switches from IgM to IgA-presenting cells in the presence of anti-CD40, IL-4 

and TGF-β (96). 

 

The germline transcripts direct AID to the specific S region where AID deaminates 

cytosine to uracil, prompting uracil excision by UNG (uracil DNA glycosylase). The 

frequency of AID-induced mutations and subsequent base-excision generates double-

stranded breaks, and ultimately results in a recombination event described above.  
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FIGURE 3 

 

Figure 3 | Illustration of the CSR process 

a, Represents the IgH locus which has already undergone V(D)J recombination in the V regions by this 

point. The CH region is composed of each isotypic element. Each isotype is associated with an upstream 

(S)witch region, which is itself associated with an (I)ntervening exon; b, Class switching proceeds when 

Eµ binds to 3’Eα; c, This brings the Sµ and Sα regions close together as a consequence; d, CSR 

machinery targets this loop for recombination, removing Cµ; e, this allows for expression Cα, which 

corresponds to IgA. 

 

Numerous components of DNA repair pathways have been implicated in efficient CSR. 

Processing of the AID-induced DSBs requires ATM (97–103), γH2AX (104–107), 

MDC1 (45,108–110), 53BP1 (111–115), MSH2 (116–118), MSH6 (119–121), MLH1 

(116,117,122), PMS2 (117,123), Exo1 (116,124), and is debatable for MRN (125–

132), Ku70/80 (133–136), DNA-PKcs (137–141), XRCC4-DNA ligase IV complex 

(142,143). These proteins are representative of classical-NHEJ, alternative-NHEJ, HR 

and mismatch repair. Alternative DNA repair proteins, such as DDX1 helicase has 

been found to have a role in CSR (144), whereas PARP1 and PARP2, have been 

shown not to be required (145). Essentially, CSR is highly dependent on the activities 

of a number of DNA repair factors from diverse repair pathways; HR, classical-NHEJ, 

alternative-NHEJ, MMR. The extent of their individual contributions in CSR will be 

discussed in the following review.  
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1.4.4 Several histone modifiers have been implicated in SHM and CSR 

The published review followed at the end of the introduction discusses all known 

histone modifications and related histone writers and readers that orchestrate SHM 

and CSR. The sheer number of histone marks that specifically promote an open 

chromatin state, or recruit AID or DNA repair factors, suggests that Kat5 may also 

make a valuable contribution to SHM and CSR.  

 

1.5 DNA damage signalling downstream of the DNA break site 

 

1.5.1 Nuclease primary sequences are too poorly conserved to accurately 

predict function and substrate specificity 

DNA nucleases maintain genome integrity. DNA is subjected to exogenous stresses, 

including reactive oxygen species, radiation, UV light and carcinogens, which all 

modify the DNA. Endogenous factors can also harm the DNA or form unusual 

structures, and are generated during replication, recombination, or as the result of 

mutagenic proteins. It is essential that these errors are corrected to avoid changing 

the genomic sequence or entangling the DNA, and the vast range of DNA repair 

mechanisms that have evolved, including base excision repair, nucleotide excision 

repair, mismatch repair and DSB repair, gives some indication of the range of insults 

that can be inflicted on the genome (6,146).  
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TABLE 1 

 

 

Table 1 | DNA repair pathways, target lesions and diseases associated with repair defects 

(Source: repurposed from Saccà HS, et al, 2012) (6). 

 

The primary sequences of nucleases are poorly conserved, except for motifs related 

to their catalytic sites (147,148). Active sites typically contain acidic and basic residues 

that coordinate catalytically essential divalent cations, such as magnesium, calcium, 

manganese or zinc as a cofactor to stabilise reaction intermediates. Cleavage 

reactions take place either at the terminal end or within the DNA, categorising 

nucleases as either exonucleases or endonucleases, respectively. Exonucleases can 

then be classified further as 5’ or 3’ processing due to their polarity of consecutive 

cleavage (147).  

 

Tertiary structures of nucleases offer more resolute properties, and fold into more 

conserved features that facilitate classification into enzyme families (147,148). Despite 

these preserved features, the specific activity and substrate preferences remains 

wildly divergent. Furthermore, crystalizing nucleases has often proven tricky to 

perform. Either because the nuclease under study is 1) too toxic when overexpressed 
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(149,150), 2) insoluble without its proper substrate (150–152), 3) not pure enough 

because it co-precipitates with non-specific binders (150), or 4) the substrate is 

unknown hence the lack of adequate enzyme:substrate structure which is more 

informative than enzyme structure alone (153). The DNase I-like fold is observed in 

DNase I (154), ExoIII (155), Ape1 (156,157) and some phosphatases (147). While 

similarities are present in the active sites, the topology surrounding the active sites are 

different. As such, while both DNase I and ExoIII digest ssDNA and dsDNA, ExoIII 

exhibits 3’–5’ polarity, resecting just one strand of duplex DNA. Likewise, FEN1 and 

Exo1 share a resolvase-like domain, and both cleave 5’ overhangs, such as is required 

in Okazaki fragment processing during replication (158), only Exo1 exhibits a powerful 

5’–3’ exonuclease function that is important for repair of mismatched nucleotides, 

replication and meiotic recombination (159,160). Therefore, quick and high throughput 

biochemical analyses are essential to be combined with structural analysis to fully 

decipher the specific roles of nucleases. Understanding their structural preferences 

and directionality will ultimately determine how they are implicated in repair.  

 

1.5.2 DNA repair nucleases are generally structure-specific and not sequence-

specific 

As illustrated by the above examples of FEN1, Exo1 and DNase I, DNA repair 

nucleases recognise specific structures rather than nucleotide sequence to trigger 

cleavage. This is typical of most DNA repair nucleases involved in replication, repair 

and recombination (148). Most DNA polymerases possess proofreading 3’–5’ 

exonuclease activities to minimise incorporation of non-complementary nucleotides. 

DNA polymerases recognise the geometry of correct base pairing, slow catalysis and 

transfer the mismatch into the exonuclease active site (161); this quality control 

process is thought to enhance replication fidelity 100 to 1000-fold (162–164). Pold1 or 

Pole1 exonuclease-deficient mice exhibit 10-fold more mutagenesis and exhibit 

cancerous phenotypes and reduced survival (165–167). Furthermore, sequence 

changes have been identified in POLD1 in human colon cancer cell lines and patient 

tumour samples (168). While most of these changes bore no functional effect, an 

R689W mutation caused lethality when modelled as a homozygous mutant in the 

catalytic subunit of POLδ in S. cerevisiae (169).  
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In some cases, nucleases do exhibit some sequence preference. The E. coli 

Exonuclease III recognises short 3’ overhangs, yet it has been suggested that it 

preferentially cleaves bases C>A~T>G (170). DNase I has also shown a general 

proclivity for AT base pairs as opposed to GC base pairs (171).  

 

1.5.3 DNA nucleases rarely act autonomously 

DNA nucleases tend to function as part of larger complexes for improved efficiency. 

Nbs1 is critical for triggering Mre11 endonuclease activity in the MRN complex for 

optimal DSB repair (15). The MRN complex also functions as a processivity factor to 

maintain Exo1 on DNA and promote extensive resection (15). Human SOSS1, a 

protein that shares structural homology to E. coli single-stranded binding protein 

(SSB), also promotes long-range resection by Exo1 (14), whereas BLM helicase 

increases Exo1 affinity for DNA ends (172). Artemis is an end-processing nuclease in 

the error-prone DSB repair mechanism of nonhomologous end-joining. Independently 

it possesses 5’-3’ exonuclease activity, and interaction with DNA-PKcs permits its 

endonucleolytic processing of hairpin loops (173). This ability to open hairpin loops is 

particularly important for V(D)J recombination. It represents the primary stage of 

antibody diversification which involves the rearrangement of antigen-binding variable 

(V), diversity (D) and joining (J) regions. Here, hairpin-capped DSBs are generated by 

the RAG1/2 recombinase. Terminal deoxynucleotidyl transferase (TdT) incorporates 

nontemplated nucleotides to the ends before the break is sealed, introducing more 

diversity into the coding sequence (173). Defects in either Artemis or DNA-PKcs are 

associated with the immune disorder severe combined immunodeficiency (SCID) 

(174,175). 

 

To date, only 8 autonomously-acting 3’–5’ DNA nucleases have been identified 

(176,177). These may support polymerases that lack intrinsic 3’–5’ exonuclease 

activities; of the 14 human DNA polymerases, only 3 display proofreading capabilities 

(178), and these autonomous nucleases may provide this, such as is suspected for 

Trex1 and Trex2 (179,180).  

 

1.6 Current methods for characterisation of DNA nucleases 

Conventional nuclease assays predominantly involve the use of radioactive labelling 

to visualise DNA substrates on an agarose gel (181–183). The use of radioactive 
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isotopes delivers highly specific, sensitive assays that are free from interference. 

However, these assays are often inefficient, time-consuming, qualitative, and 

potentially hazardous (184,185). Additionally, the assays are discontinuous, and must 

be stopped at discrete, often arbitrary, time points before measuring readouts (13). 

Whilst this can provide an indication of reaction rate, it does not allow for real-time 

visualisation of the catalytic resection activity.  

 

Radiolabelled oligonucleotides are gradually being replaced with fluorescent nucleic 

acid stains such as DAPI (186) and other commercially-available dyes including, but 

not limited to, Midori Green, SYBR Green I and Acridine Orange (187). PicoGreen 

(PG) is a commercially available dye that emits a fluorescent signal upon intercalation 

with double-stranded DNA (dsDNA), emitting a fluorescent signal 1,000-fold stronger 

compared to when it is free in solution. The superior sensitivity can quantify picogram 

or nanogram levels of dsDNA, respectively, unlike other fluorescent dyes, including 

Hoechst (188), ethidium bromide (188), EvaGreen (189), SYBR Green (189) and 

YOYO-1 (189).  

 

One particularly impressive technique is the recently published design of DNA curtains 

for single-molecule imaging (14,15). DNA is tethered to one end of a fluid lipid bilayer 

and targeted by nucleases stained with fluorescently-tagged antibodies. Reaction 

progression is captured through a total internal reflection fluorescence microscope 

(TIRFM) (14,15). This technique aims to obtain statistically relevant information on 

these biochemical reactions. Although effective and highly sensitive, this technology 

may not be accessible to researchers worldwide.  

 

Several other sophisticated fluorescent techniques have been devised, building upon 

the use of FRET, whereby fluorescence is either quenched or dequenched following 

nuclease activity (190). A recently published DNA curtain method involving graphene 

oxide surfaces (191), electrochemical redox reactions (192–194), complexing of DNA 

with a polycationic polymer (195), or immobilising nucleotides on magnetic beads 

(196) have also been developed. While highly sensitive, these methods have been 

designed purely for the detection of a very limited number of DNA and RNA nucleases 

rather than for general characterisation (197). 
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A very different technique studies the kinetics of proteins following DNA damage to 

measure their stepwise recruitment in vivo (198). Using transgenic cell lines that stably 

express eGFP-tagged DNA repair proteins, under the control of their own regulatory 

sequences, ensures the expression of these proteins at close to physiological levels 

(198). Again, this offers a new perspective on repair and provides a global view of how 

dysregulation of one repair factor affects the entirety of DNA repair kinetics (198).   

 

1.6.1 Development of an alternative nuclease resection assay 

Despite the myriad techniques available to study DNA nucleases, there exists a need 

for a rapid, cost-effective and safe protocol that monitors reaction progression in real-

time and is accessible to all lab groups. With these parameters, a highly versatile 

fluorescence-based nuclease resection assay has been developed to study nuclease 

activity on a selection of DNA substrates with the sensitivity to calculate reaction 

kinetics.  

 

1.7 Research objectives 

DNA nucleases function downstream of Kat5 signalling to remove damaged bases in 

the genome and to generate DNA substrate intermediates that are subsequently 

replicated and ligated by DNA polymerases and ligases (6,146,199). Many of the DNA 

nucleases directly involved in DNA repair have yet to be fully characterised, while 

many have yet to studied at all. Conventional techniques for studying nuclease 

activities are hazardous, laborious, time-consuming, and capture activity in a 

discontinuous manner (13,184,185). As such, there is a need for a safer alternative 

method that can visualise reaction progress in real-time. Using the commercially 

available dsDNA dye, PicoGreen, it is hoped that the methods described in Chapters 

3 and 4 represent that safer alternative.  

 

Chapters 3 shall describe: 

1) The stabilisation of PicoGreen; 

2) DNA substrate optimisation to generate a highly fluorescent substrate that is 

less-sensitive to photobleaching; 

3) The development and validation of a real-time nuclease assay using well-

characterised nucleases. 
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Chapter 4 shall describe: 

1) The further improvement of the assay to study the kinetics of both single- and 

double-stranded DNA nucleases and nickases; 

2)  The development of the assay to study DNA polymerisation; 

3) The expansion of the DNA substrate library to include physiologically relevant 

DNA modifications.  

 

Evidence suggests that Kat5 functions upstream of both canonical homologous and 

non-homologous repair pathways (26,200,201). Kat5 also promotes transcription by 

acetylating histone proteins at promoter regions (202–204). Yet, although CSR is 

dependent on both transcription and DNA repair, no known role for Kat5 in secondary 

antibody diversification has been described. This may be due to the fact that, as Kat5 

is essential for viability (205), it is a challenging protein to manipulate intracellularly. It 

is hoped that the studies described in Chapters 5 and 6 shall contribute towards 

elucidating the mechanistic pathway leading from the histone code and culminating in 

DSB repair in both DNA canonical repair and in CSR (18).  

 

Chapters 5 shall describe:  

1) The optimisation of Kat5-specific chemical inhibitors; imatinib (206), iChromo 

and TH1834 (207), which differentially target Kat5 activities 

2) The comparison of the phenotypes that result from chemical inhibition should 

enable separation of function analyses of Kat5 during DNA repair; 

3) The use of a CH12F3 mouse cell line that models CSR (96) to quantify class 

switching efficiency in the presence of these inhibitors;  this will establish a role 

for Kat5 as an essential component of class switching.  

 

Chapter 6 shall describe: 

1) The design of mouse and human inducible Kat5 degron constructs to avoid the 

lethality of Kat5 knockout cell lines (208).  
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2 Review: Epigenomic modifications mediating antibody maturation 

 

This review was published in Frontiers in Immunology on 26th February 2018 and has 

been resubmitted as part of this thesis. 

https://doi.org/10.3389/fimmu.2018.00355 

 

Epigenetic modifications, such as histone modifications, DNA methylation status, and 

non-coding RNAs (ncRNA), all contribute to antibody maturation during somatic 

hypermutation (SHM) and class-switch recombination (CSR). Histone modifications 

alter the chromatin landscape and, together with DNA primary and tertiary structures, 

they help recruit Activation-Induced Cytidine Deaminase (AID) to the immunoglobulin 

(Ig) locus. AID is a potent DNA mutator, which catalyzes cytosine-to-uracil 

deamination on single-stranded DNA to create U:G mismatches. It has been shown 

that alternate chromatin modifications, in concert with ncRNAs and potentially DNA 

methylation, regulate AID recruitment and stabilize DNA repair factors. We, hereby, 

assess the combination of these distinct modifications and discuss how they contribute 

to initiating differential DNA repair pathways at the Ig locus, which ultimately leads to 

enhanced antibody–antigen binding affinity (SHM) or antibody isotype switching 

(CSR). We will also highlight how misregulation of epigenomic regulation during DNA 

repair can compromise antibody development and lead to a number of immunological 

syndromes and cancer. 

 

2.1 Chromatin landscape modulates DNA repair and antibody diversification 

B cells experience dramatic fluctuations in their epigenomic landscape throughout 

haematopoiesis. During B cell development, the genetic rearrangement of germline 

variable (V), diversity (D) and joining (J) gene segments in the Immunoglobulin heavy 

chain locus (Igh) and V and J gene segments in the Immunoglobulin light chain locus 

(Igk) creates a diverse B-cell receptor (BCR) repertoire, which mediates a primary 

antibody response upon antigen encounter. To ensure an effective and long-lasting 

antibody response, upon binding of antigen to the BCR, in a T-cell dependent 

response, B-cells are triggered to enter the germinal centre (GC) microenvironment. 

Here, the affinity of the BCR is increased via a process called somatic hypermutation 

(SHM) and the class of the constant region is switched to increase the effector function 

https://doi.org/10.3389/fimmu.2018.00355
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in a process called class switch recombination (CSR). Subsequently, class switched 

B-cells expressing a high affinity BCR will be positively selected in the light zone of the 

germinal centre and will differentiate into long lived plasma cells and memory B-cells. 

It has become increasingly apparent that epigenetic modifications are indispensable 

for the antibody maturation processes during SHM and CSR at antibody producing 

genes. Both SHM and CSR are initiated by the mutator protein, Activation-Induced 

Cytidine Deaminase (AID), which catalyses cytosine-to-uracil deaminations on single-

stranded DNA (ssDNA) at immunoglobulin genes, to create U:G mismatches, which 

ultimately leads to immune diversity (209). It is the divergent downstream processing 

of this regulated DNA damage, by DNA repair mechanisms, which forms the highly 

mutated antibody-binding variable (V) regions in SHM. This ultimately gives rise to B-

cell receptors (BCR) of differing affinities. Furthermore, the double-stranded breaks at 

the Switch (S) regions integral for CSR, give rise to a range of BCR constant regions 

which results in secretion of antibodies with varying effector functions (210,211).  

 

Precursory circulating IgD+ naïve B cells that have yet to undergo antibody 

diversification have hypermethylated immunoglobulin (Ig) loci and minimal histone 

acetylation signatures, rendering the underlying DNA inaccessible to transcriptional 

machinery and AID catalysis. This is in stark contrast to activated GC B cells, which 

accumulate open chromatin marks at the Ig loci that correlate with the induction of 

SHM and CSR, and the onset of transcription-coupled AID-dependent mutations (212–

214). Specific histone modifications are responsible for relaxing local chromatin 

structure (such as H3K4me3 H3K14ac), whereas others directly propagate DNA repair 

pathways (such as H2AK119ub and H4K20me2; discussed below). More recently, 

both histone marks and RNA-based structures have been implicated in targeting AID 

to the Ig locus (Figure 3) (214,215). 
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FIGURE 1 

 

 

Figure 1 | Epigenomic modifications directing antibody-diversification processes somatic 

hypermutation (SHM) and class switch recombination (CSR).  

Green core histones and associated modifications are involved in chromatin de-compaction and enable 

transcription through the immunoglobulin (Ig) locus. All factors above the locus are important for the 

generation of DSBs while everything below encourages mutagenic repair at the V region, and DSB 

repair at donor and acceptor S regions (Sμ and Sx, respectively). Blue histones and affiliated 

modifications help recruit or tether AID and other factors that facilitate production of DSBs. Purple DNA 

and RNA are linked with sequences and structures that facilitate AID recruitment or targeting. Red core 

histones and accessory modifications recruit DNA repair proteins to ensure excision of intervening 

CH region for successful class switching as well as error-prone polymerases to the V region.  

 

The physiological activity of AID is critical to maintain immune diversity, while high-

fidelity DNA repair factors are important to maintain genome integrity. Misregulation 

of, or mutations in, these DNA repair processes can have serious consequences, 

spanning cancerous transformation (216), developmental defects (217), autoimmunity 

(218) and immunodeficiency syndromes (219). In this review, we aim to provide a 

cohesive understanding of higher-order epigenomic processes critical for the 

regulation of B cell maturation, manipulation of DNA repair mechanisms, and insights 

into the development of debilitating cancer- and immune-based diseases.  
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2.2 Epigenomic factors target AID to V Regions for SHM 

SHM enhances antibody affinity through the accumulation of point mutations at the 

antigen-binding V region (220). Histone marks help target AID to key sites of the Ig 

locus. AID preferentially deaminates cytosines in WRC motifs. These AID ‘hotspots’ 

are present in Ig genes undergoing SHM (Igh, Igk) and CSR (Igh) which are mutated 

in high abundance. However, these hotspots are also prevalent at non-Ig genes, but 

carry significantly less mutational load (221), indicating that the presence of these 

hotspots alone is insufficient to recruit AID. Rather, higher order mechanisms must be 

in place to regulate AID activity and targeting. RNA structures, specifically coding 

messenger RNAs (mRNA), non-coding RNAs (ncRNAs), and defined histone 

signatures, represent additional mechanisms for AID targeting.  

 

2.3 Role of mRNA and ncRNA in SHM 

Sense mRNA transcripts have been detected at Cµ regions, which seem refractory for 

AID-induced mutations, while both sense and antisense transcripts have been 

observed at the neighbouring V and S regions (215). Interestingly, V and S regions 

are susceptible to AID deamination, but not C regions. Whether that is due to efficient 

error-free repair or lack of AID targeting remains to be addressed (222–224). The 

sense and antisense transcripts are thought to be free to bind to complementary 

regions on both stands of the transcription bubble during SHM and CSR. This forms 

an R-loop, a three-stranded DNA:RNA hybrid and the associated non-template ssDNA 

that can provide a ready target for AID the biochemistry (54).  This should be reflected 

in the mutation profile observed at the V region, which should be equally prolific along 

the V region. Instead, most mutations take place within the first few hundred base 

pairs, before tapering off as distance from the TSS increases. Antisense transcripts 

originating from downstream of the recombined VDJ region should compensate for 

this, and AID should be equally able to access this downstream DNA. As there is no 

clearly defined antisense TSS, it is possible that there is reduced antisense 

transcription relative to sense. It is also possible that anti-sense transcripts suffer 

shorter half-lives (225). Regardless, this offers further proof that RNA transcripts 

support SHM and CSR, despite the imbalance in mutation frequency along the V 

region. 
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2.4 V region histone modifications stabilize AID substrates and recruit DNA 

repair proteins to support SHM 

Various histone modifications have been implicated in SHM. Many of these are 

generally associated with open chromatin and active transcription, while others appear 

to have more defined roles in actively supporting antibody maturation (Figure 3) (226). 

A significant histone mark enriched at sites of SHM and CSR is H3K4me3. 

Transcription elongation factor Spt5 helps to introduce H3K4 tri-methylation through 

the trans-histone modification pathway (227), alongside the Facilitates Chromatin 

Transcription (FACT) complex, to support transcription elongation. Spt5 has an 

additional role as an adapter protein to link AID and RNA polymerase II (228).  

 

H3K4me3, SMARCA4 and FACT complex components are equally important for 

recruitment of Topoisomerase I (Top1) (229). Top1 typically acts to correct 

transcription-induced negative supercoiling caused by RNA polymerase II by nicking 

one strand of the DNA helix, passing the other strand through the break, and re-ligating 

the nicked end. Reduction of Top1 increases SHM mutagenesis, whereas 

overexpression of Top1 downregulates SHM. Interestingly, treatment with the Top1 

catalytic inhibitor, camptothecin, suppresses SHM. These results indicate that the 

cleavage activity of Top1 is required for SHM, and not its ligation activity (230).  

 

The H3.3 histone variant is another feature associated with SHM and is enriched at 

the VDJ region in chicken DT40 cells (228). H3.3 appears to be responsible for 

stabilising the ssDNA substrate for AID activity. R-loops are often cited as a 

predominant AID substrate in C regions, although treatment with RNase H to remove 

these R-loops from the V region of wild type and H3.3-null DT40 cells identified that 

loss of these structures does not impede accumulation of AID-induced point mutations. 

H3.3 may instead be responsible for mediating RNA polymerase II pausing, prolonging 

exposure of the transcription bubble, and promoting AID targeting (231,232). Other 

structures have been proposed to facilitate ssDNA exposure, such as the formation of 

negative supercoils upon activation of RNA polymerase II transcription. It appears that 

topoisomerase is unable to repair this topological strain at the same rate that RNA 

polymerase II progresses (233), and this creates localised denaturation bubbles that 

are ideal substrates for AID (234). Unfortunately, the mechanism by which H3.3 

stabilises ssDNA substrates remains elusive. 
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Ubiquitination of proteins is an essential modification to propagate repair of mutated 

regions in SHM; histones and Proliferating Cell Nuclear antigen (PCNA) are well-

known targets. Ubiquitinated (Ub) H2AK119 and H2BK120 are specifically associated 

with V regions, but not with constant region exons (CH) (Figure 3). These histones co-

localise with translesion DNA polymerase η, which possesses a ubiquitin-binding 

domain that binds to mono-ubiquitinated PCNA at lysine 164. DNA polymerase η 

introduces all the A:T mutations in SHM, but limited mutations in CSR, indicating 

polymerase η of mismatch repair (MMR) is the dominant repair polymerase only in 

SHM (235,236). It is not known whether PCNA is ubiquitinated before or after being 

recruited to V regions (237). Surprisingly, the E3 ubiquitin-ligase RNF8 is known to 

ubiquitinate PCNA, yet has only been shown to support CSR (238–240). It is therefore 

possible that although mono-ubiquitinated PCNA enhances the mutation profile for 

SHM, its downstream repair effects in CSR are selected against, as large regions of 

DNA containing these mutations are disposed of following recombination at S regions.  

 

Resolution of mismatched bases is heavily dependent on “corrupted” repair 

mechanisms. However, there are conflicting reports over the relative involvement of 

MMR and BER components. DNA uracil glycosylase recognises and cleaves uracil 

bases from the genome in BER, while MutSα recognises mismatched bases and 

recruits several downstream effectors during antibody diversification, e.g. 

exonuclease I (Exo1) in MMR (241). MSH6 likely promotes SHM and CSR following 

recruitment by mono-, di- and tri-methylated H3K36 through its PWWP motif. Many 

other proteins involved in DNA damage responses and histone modifications also 

carry this PWWP motif to promote chromatin interactions (242), including PCNA. 

Indeed, MMR has been implicated as the principle repair pathway in SHM, following 

observations that the absence of UNG of the BER pathway has very little impact on 

the accumulation of A:T mutations, and loss of MSH2, MSH6  and Exo1 lose 80-90% 

of A:T mutations independently (243). Interestingly, PCNA also interacts with MSH6, 

which may account for its targeting to appropriate regions during antibody maturation 

(237,244). However, it is worth noting that these latter chromatin modifications are not 

specific to antibody genes and could happen genome-wide. Though it is possible that 

they acquire added importance by being combined with antibody gene-specific 

chromatin valencies (245). 
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One histone modification without a clear role in SHM is H2BS14ph (246). While it 

serves as a marker for SHM in B1-8 GC B cells, the implications of losing this 

modification are unknown. H2BS14ph is not present at VJλ1, VH or Sµ in naïve B cells, 

or B cells 14 days post-activation, but was reproducibly detected at day 10. Consistent 

with these observations, the only known H2B kinase, Mst1, is present at these sites 

only at day 10 (246). It is possible that this histone mark is linked to a distinct DSB 

repair response at V regions around day 10, whereas γH2AX is associated with DSB 

repair at S regions (104,246). The strict temporal restriction of the occurrence of this 

histone mark at day 10 may signify that AID-dependent lesions occur at earlier stages 

of the GC response, or it may only be required at earlier stages, perhaps for 

recruitment of downstream proteins (246). 

 

2.5 DNA and RNA structures target AID to S regions for CSR 

CSR is achieved through the generation of DNA DSBs and subsequent ligation of two 

distal S regions (220). Transcription alone cannot determine deamination targets for 

AID, as many genes transcribed in activated B cells are not targeted by AID (247). 

Instead, S regions encode unusually high densities of the overlapping AID hotspot 

WGCW sequences that place two WRC motifs in on opposite strands of the dsDNA 

helix. AID preferentially deaminates the underlined cytosines and, in the event of 

parallel deaminations, the resulting nicks on each strand (following UNG and APE1 

activity) would inevitably produce a DSB. CGC is yet another hotspot, although it rarely 

appears within S regions. Indeed, WGCW density correlates strongly with CSR 

efficiency, much better than when WRC alone was considered to predict S region 

quality (74).  

 

2.5.1 DNA secondary structures affect mutation targeting preference 

Recent work has shown how AID preferentially binds guanine-rich DNA quadruplex 

structures compared to linear DNA of the same sequence (64). Through dissection of 

the core quadruplex unit, it was determined that AID binds to the adjacent ssDNA 

strands at a stoichiometry of AID2/DNA (64). It requires a binding site of at least 5 

nucleotides (64). By studying the distance of the deoxycytidine (dC) in hotspot (AGCT) 

and cold spot (TTCT) motifs from the quadruplex, it became clear that peak 

deamination occurs when dC is at third position, and is independent of the sequence, 
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suggesting that the quadruplex structure overrides sequence motif preferences (64). 

However, as the dC is shifted further from the quadruplex, this preference for AGCT 

is approximately double that of the TTCT, recapitulating hotspot preference seen in a 

multitude of in vitro and in vivo assays (248,249). Interestingly, in S regions, a dC is 

often present at precisely the third position from the G-repeat (64). This binding 

preference is also observed in RNA quadruplexes (64). Accordingly, AID has two 

DNA-binding faces: the substrate binding channel and the ‘assistant patch’ (64). In 

such a model, the assistant patch enhances AID affinity for the substrate, and 

increases its deamination activity. This bifurcate binding structure is unique to AID, 

and is not seen in AID homologues, explaining why this bifurcate binding phenomenon 

and cooperativity is not observed in APOBEC3A or APOBEC3G (64). 

 

This preferential binding to quadruplex DNA has previously been observed, whereby 

AID targets proto-oncogenes to introduce translocations at c-MYC and BCL6, among 

others (247). Lymphomas in which these proto-oncogenes are unstable derive from 

germinal centre B cells. For example, a hallmark of Burkitt’s lymphoma is c-MYC 

recombination with S regions, promoting deregulated expression of this crucial gene 

(250). In addition, c-MYC, PAX5 and BCL6 translocations are associated with 

progression from follicular lymphoma to the more aggressive diffuse large B cell 

lymphoma (251), and PAX5/IgH translocations have been identified in a subset of non-

Hodgkin’s lymphomas (252). This genomic instability does not correlate with WRC 

sequence, but instead correlates with G-rich regions (247). Furthermore, this G-

richness does not characterise translocation breakpoints in AID-null B and T cell 

malignancies (247). Most translocations associated with leukaemias in AID-null cells 

results from a mechanism that is independent of G-rich content, yet the data suggest 

that in germinal centre B cells in which AID is highly expressed, AID preferentially 

targets transcribed G-rich regions, and therefore its stringent targeting to the Ig region 

is essential to maintain genomic stability.  

 

2.5.2 RNA secondary structures also contribute to mutation targeting 

Transcription through S regions has been associated with AID targeting to the IgH 

locus through the formation of R-loops and the interaction between AID and RNA 

polymerase II (232). While germline transcripts through IH-SH-CH regions have been 

implicated in antibody diversification, their mechanistic function has only recently been 



 

41 
 

demonstrated. AID binds directly to sense germline transcripts as well as to telomere 

RNA (253). These transcripts are also G-rich and form G-quadruplex structures. 

Ablating the G-quadruplex structure through G-to-C mutations, or inhibiting the splicing 

machinery that supports formation of these secondary structures, disrupts AID 

interaction with the transcripts and concomitantly reduces CSR (253). Amino acids 

130–138 in AID show homology to the RNA-binding domain of RHAU, a known binder 

of G-quadruplex RNAs. Mutations in this binding region also perturb AID:RNA binding 

capacity, consistent with hyper-IgM patients possessing a G133V mutation (253). 

Whether this mutation impedes AID:DNA binding is unknown, though it may be 

involved in the transfer of AID from its RNA guide to the DNA substrate. This is also 

suggests that some RNA splicing proteins such as PTBP2 and CTNNBL1 may also 

play an indirect role in CSR by shaping the ncRNA architecture (253–255).  

 

Although this provides a detailed explanation of the mechanism behind AID targeting 

to S regions for CSR, it fails to explain AID targeting to V regions. More research is 

needed to determine if this RNA binding capability is indeed distinct for CSR, as it may 

be responsible for deviance in processes downstream of AID-induced mutation in 

SHM and CSR. As previous reports have shown that the C-terminal amino acids 189-

198 are vital only for CSR (256,257), it is unlikely that the RNA-binding region explains 

this whole process. 

 

Studies suggest that the RNA exosome complex is recruited to S regions in an AID-

dependent manner, and makes the transcribed strand accessible to AID deaminations 

by degrading the complementary-bound nascent RNA strand (258). Knockdown of the 

RNA exosome reduces CSR by 30–50% compared to controls. The RNA exosome 

also promotes quality control on the antisense transcription of ncRNA from TSSs, 

which have the ability to both recruit AID and generate ssDNA substrates for its 

catalytic activity (259). By degrading superfluous antisense RNAs, which increases 

the formation of RNA:DNA hybrid structures and heighten risk of premature 

transcription termination and genomic instability, the RNA exosome protects genomic 

integrity (259). In addition, the RNA exosome appears to control a long ncRNA 

(lncRNA) expressed from a divergent enhancer element, which directly regulates the 

3’RR of the IgH locus by enhancing the looping activity known to promote CSR 

activity(260,261) (Figure 3). Unexpectedly, although histone acetylation and 
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deposition of H3K4me3 coincides with B cell development stages along the Igh locus, 

major epigenetic alternations have not been detected at the 3’RR upon splenic B cell 

activation (262,263). 

 

2.5.3 miRNA Control of Antibody Production by Regulation of SHM and CSR 

It has been well-documented that miRNAs can regulate SHM and CSR in B cells,  

chiefly through modulating AID and Blimp-1 expression (261,264–267). miRNAs such 

as miR-155, miR-181b and miR-361 can silence AID expression (264,266,268,269), 

whereas miR-30a and miR-125b can silence Blimp-1 expression (270–272) which is 

required for plasma cell differentiation and antibody production. These miRNAs bind 

to evolutionary conserved target sites in the 3'UTR of Aicda and Prdm1 mRNAs. More 

recently, histone deacetylase inhibitors have been reported to repress the expression 

of AID and Blimp-1 by upregulation of these miRNAs (273).  

 

In particular the more prominent role of miR-155 in regulating activated B-cells and the 

GC response is becoming more established. MiR-155 is directly repressed by BCL-6, 

the master regulator of GC formation, which is upregulated in the dark zone, 

repressing genes involved in cell cycle arrest, DNA damage response and plasma cell 

differentiation and thus allowing SHM to take place. miR-155 deficiency in B-cells has 

been shown to decrease the number of IgG1+ plasma cells and memory B cells and 

abolish the production of high affinity IgG1+ antibodies indicating that miR-155 plays 

a key role in affinity maturation and CSR. More recently, miR-155 has been reported 

to be involved in the survival of positively selected GC B-cells (274–278).  

 

What is now beginning to emerge however, is the notion that miRNA can be 

transferred from one immune cell to another through an understudied “epigenetic 

shuttle” called exosomes that can transport RNA and protein factors (279). Exosome 

‘shuttling’ of miRNAs and antigen between B and T cells occurs following construction 

of the immune synapse (280–282). This may indirectly support CSR by potentiating a 

feedback loop between T helper cells and activated B cells. B cells persistently 

stimulate T helper cells to secrete cytokines that promote CSR, such as TGFβ1, IL-2, 

and IL-4 (283). 12% of B cell-internalised antigen is spared destruction and is instead 

secreted on exosomes that are received by the bound T helper cells to encourage 

cytokine production (284). A specific role for miRNAs in directing this targeted 
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approach towards antibody maturation has yet to be elucidated and further research 

in the regulatory potential of this process is required. 

 

2.6 Histone modifications decorate the donor and recipient S regions to recruit 

AID in CSR 

Specific cytokine stimuli act on activated B cells to drive recombination between donor 

and desired recipient S regions to select for a particular Ig isotype. The Sµ region is 

always primed for class switching as histone modifications that are generally 

associated with an open chromatin state (including H2BK5ac, H3K9ac, H3K14ac, 

H3K27ac, H4K8ac, H3K4me3 and H3K36me3) are enriched at this site prior to 

antigen-engagement. As such, Iµ-Sµ-Cµ transcripts are also constitutively expressed 

(213,285–291). The remainder of the chromatin modifications could be broadly 

categorized into two general pools, targeting modifications upstream of AID 

recruitment and downstream modifications mostly associated with the general DNA 

damage response (Figure 3). Indeed, acetylated H3 and H4 fall broadly within these 

two categories as H3ac correlates with germline transcription in unstimulated splenic 

B cells, while H4 acetylation is observed following B cell activation, likely in response 

to AID-induced DSBs (285). This is observed in the 1. B4.B6 B cell line. These B cells 

undergo CSR to γ3 upon treatment with LPS+CD40, and CSR to γ1 and ε1 following 

treatment with LPS+CD40+IL-4. Following LPS+CD40 treatment, γ3 GLTs are 

induced, while γ1 and ε1 GLTs are repressed. Correspondingly, H4ac levels at Sµ, Iγ3 

and Sγ3 are increased, whereas S regions and promoters for γ1 and ε1 loci are 

marginally affected. The reciprocal is observed upon LPS+CD40+IL-4 treatment for 

GLT expression and H4ac. This suggests that regions of chromatin are specifically 

remodelled to identify the S region for AID mutation (285).  

 

Permissive transcriptional histone marks are abundant in S regions, including 

H3K4me1/2/3. NHEJ-compliant protein PTIP typically facilitates distribution of these 

marks through its interaction with MLL3/MLL4 to support DNA repair and transcription. 

Unexpectedly, the interaction between PTIP and MLL3/MLL4 is dispensable for Igh 

germline transcription and is mostly responsible for H3K4me1/2 production. Recently, 

a sub-complex made up of PTIP-PA1 appears to promote H3K4me3 formation through 

other unidentified histone methyltransferases. The function of this complex facilitates 

the transcription preceding AID deaminations, promoting CSR to IgG isotypes, and 
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appears to have very little influence on DNA repair(35,292). Nevertheless, MLL4 is 

important for maintaining effective CSR; it is frequently mutated in diffuse large B cell 

lymphoma and follicular lymphoma (293), and hypogammaglobulinaemia is common 

in the heritable Kabuki syndrome, often attributed to MLL4 mutations (294).  

 

Specific chromatin modifications have been implicated as markers for the donor and 

recipient, and thus as possible recruiters of AID and/or other components of the CSR 

machinery. Tri-methylation of H3K4 is facilitated by the FACT complex. Knockdown of 

FACT components SSRP1 and SPT16 in the CH12 B cell lines results in a significant 

decrease in IgA switching (290), and corresponds with an overall decrease in H3 

methylation in the Sµ region, and a specific reduction of H3K4me3 in the Sα region. 

The components acting downstream of the H3K4me3 marker that lead to CSR remain 

elusive, although DNA cleavage assays have shown that breaks in the Sµ and Sα 

regions are significantly reduced in SSRP1 and SPT16 knockdown cells (290,295). 

 

H3K4me3, SMARCA4 and FACT help mediate CSR through recruitment of Top1, as 

they do for SHM (229,290). Reduced levels of Top1 renders it unable to keep pace 

with RNA polymerase II, accumulating negative DNA supercoiling at the rear. Repeat 

sequences and palindrome-rich regions are prone to this non-B DNA structure, and 

are prevalent in S regions (296). In addition, there is an interesting relationship 

between AID expression and Top1 levels. AID overexpression coincides with abated 

Top1 mRNA translation, the mechanisms of which have not been thoroughly explored 

(296). 

 

AID has recently been shown to interact with Suv4-20H H4K20me methyltransferases, 

though whether this is a direct interaction, or mediated through other proteins or RNA 

structures, is not known (297). Without AID, Suv4-20H is not recruited to S regions, 

and the level of H4K20me3 is reduced at these sites(297). Concordantly, Suv4-20h 

double-null mice are defective in CSR (298). It has been proposed that H4K16ac and 

Suv4-20H-mediated H4K20me3 play antagonistic roles in RNA pol II pausing. 

H4K16ac promotes release from pausing, while H4K20me3 prolongs RNA pol II 

pausing (299). AID-induced mutations are long-understood to be reliant on RNA pol II 

pausing, so it is possible that AID reinforces this pausing step through Suv4-H20 

recruitment (232). However, this has not been confirmed.   
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Histones H3K9me3 and H3K9ac decorate S regions that undergo recombination 

(213,289). These modifications are dependent on cytokine stimulation but are 

independent of AID expression. It has therefore been suggested that the two histone 

marks precede AID-induced mutations and recombination, and perhaps even function 

in the recruitment of AID to the appropriate sites (289). H3K9me3 has been shown to 

be essential for general DSB repair through its direct interaction with the lysine 

acetyltransferase Kat5 and loss of H3K9me3 results in defective DSB repair (300,301). 

The link between DSB recognition and H3K9 methylation is currently unknown, 

however it is understood that it participates in NHEJ, indicative of a role in CSR, but 

not SHM or the preceding V(D)J recombination. H3K9 is methylated by its 

methyltransferase, Suv39h1, which exists in a complex with kap-1 and HP1. HP1 

possesses a chromodomain, which binds to the newly tri-methylated histone and 

retains the complex at the S region site.  

 

There is specific evidence supporting a role for H3K9me in CSR. The kap-1 and HP1 

complex functions as the structure that tethers AID to Sµ (214). Similar to the G-rich 

quadruplexes mentioned previously, the binding of AID to kap-1 is not reliant on its C-

terminal domain and, as such, it is unlikely that this association explains the requisite 

of the C-terminus for CSR (214).  

 

H3K9ac phosphorylated at serine 10 (S10ph) is another histone modification that has 

been implicated as a marker of donor and recipient S regions. This mark has been 

found to be enriched at the donor Sµ region and, after B cell activation, in the cytokine-

selected recipient S region (302). 14-3-3 adapters interact directly with H3S10ph and 

the affinity of this interaction is increased with the addition of an acetyl group on lysine 

9 of the same histone (303,304). ChIP assays have shown that, upon 

lipopolysaccharide stimulation, 14-3-3 is recruited specifically to the S regions 

enriched in H3K9acS10ph (302). Upregulation of the 14-3-3 complex coincides with 

CSR. The complex directly binds AID and associates specifically with 5’-AGCT-3’ 

motifs that occur frequently in S regions and are particularly common within the V 

region. Reduced 14-3-3 activity correlates with a decrease in AID at active S regions 

(305). This implies that 14-3-3 is an important factor for recruiting AID and associated 
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proteins to recombination sites for CSR. It seems H3K9acS10ph recruits and/or 

stabilises 14-3-3, which in turn recruits AID to the appropriate S region.  

 

2.7 Chromatin modifications recruit DSB repair proteins in CSR 

Chromatin markers participate in the recruitment of the required repair proteins. 53BP1 

is one protein confirmed to hold an essential role in DSB repair, and promotes NHEJ 

for CSR by bridging the broken ends (306–312). Recruitment of 53BP1 to DSBs is 

dependent on various chromatin modification pathways (Figure 4). It is a bivalent 

chromatin reader and interacts directly with the histone marker H4K20me2 through its 

tudor domain, which recognises methylated histones (313,314). Independent of its role 

in S region DSB repair, 53BP1 exerts a secondary influence on CSR by enforcing the 

temporal separation of Sµ and Sγ breaks and ensures that subsequent ligation of the 

broken ends results in a deletion event (315). It does this by orchestrating the 

preferential breaking of the upstream switch region Sµ. 53bp1-/- B cells lose the ability 

to ensure Sµ breaks first, which introduces inversional rearrangements that negatively 

impact CSR efficiency (315). 53BP1 recognises H4K20me1 in vitro, but it is its specific 

recognition of di- and tri-methylated H4K20 made accessible to 53BP1 during the DNA 

damage response that may regulate break order in CSR (313).  
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FIGURE 2 
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Figure 2 | DNA damage repair pathways dictate class-switch recombination (CSR) efficiency.  

An overview of the histone modifications, and the writers and readers associated with them that are 

essential for CSR, as well as suggestions of additional likely factors. Color = confirmed in NHEJ and 

CSR, Gray = DNA damage repair factors not yet shown to affect CSR. The key proteins and histone 

modifications that have been shown to be essential for resolving the DNA double-strand breaks in CSR 

are summarized. A common theme is the recruitment of 53BP1, which is essential for efficient repair 

and isotype switching. Importantly, these repair pathways also function in NHEJ. Additional DNA 

damage repair proteins and histone modifications that have not yet been shown to play a role in CSR 

are indicated in gray. Some proteins and histone marks involved in other repair pathways, such as 

homologous recombination (HR), are also indicated in the figure. As these pathways inhibit the NHEJ 

pathways, they may provide negative control of CSR. Indeed, knockdown of BRCA1 has been shown 

to increase isotype switching efficiency. 

 

Depleting cells of SUV4-20H1/H2, the predominant methyltransferases producing 

H4K20me2, slows the rate of 53BP1 accumulation at break sites and reduces CSR 

efficiency by 50%, however, the absence of the H4K20me2 mark has no impact on S 

region break order (316). This may be due to the activity of another H4K20me1 

methyltransferase called MMSET that had not been considered by Rocha et al. 

Indeed, loss of MMSET hampers H4K20me2 enrichment, significantly reduces 53BP1 

binding, and leads to inefficient CSR (317). MMSET specifically methylates 

H4K20me1 and H4K20me1/2/3 are all locally increased at DSBs (Figure 4) (318). This 

may explain why the loss of SUV4-20H1/H2 only slows 53BP1 recruitment and does 

not completely abolish it. Additionally, MMSET, and not SUV4-20H1/H2, is uniquely 

overexpressed in GC B cells, possibly ascribing MMSET as the dominant 

methyltransferase in antibody diversification (319). MMSET is activated and recruited 

after ATM-mediated phosphorylation during typical DNA repair, allowing it to complex 

with MDC1. MDC1 binds γH2AX, a mark only introduced once DNA repair signalling 

has been initiated (318). MDC1 is important for enlisting ubiquitin ligases RNF8 and 

RNF168, which lay a polyubiquitin motif also recognised by 53BP1 (239) (Figure 4).  

 

Unfortunately, it is impossible to study the impact of H4K20me1 knockdown on CSR 

efficiency as it is a global histone mark implicit in proliferation and cellular viability 

(320), however, introducing a single point mutation in the 53BP1 Tudor domain, 

preventing it from recognising H4K20me1/2, disrupts S region break order. Taken 

together with the aforementioned findings that the absence of H4K20me1 has no 
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impact on S break order, these suggest that the dimethyl mark is dispensable, and 

that it is the H4K20me1 mark that determines break order (315). 

 

Ubiquitin ligases are proving to be pervasive in DNA repair, including CSR. RNF168 

monoubiquitinates H2A on 13 and 15 lysine residues (321,322). Knockdown of either 

RNF8 or RNF168 results in a decrease in 53BP1 accumulation at AID-induced DNA 

breaks, and a corresponding reduction in CSR is observed (239). Furthermore, 

expression of a ubiquitin-H2AX fusion protein can rescue 53BP1 recruitment to DSBs 

in RNF8- or RNF168-deficient cells (323). In the absence of DNA damage, Polycomb 

group protein L3MBTL1 and demethylase JMJD2A mask H4K20me2. RNF8 and 

RNF168 are responsible for ubiquitinating these proteins, removing them from the 

damage site to expose H4K20me2 (324,325). This secondary role of the ubiquitinases 

has not been explored in the context of CSR. The bivalent binding by 53BP1 to 

H4K20me2 and ubiquitin marks could serve to correctly orientate 53BP1 for it to bridge 

across a DSB. Delayed accumulation of these histone marks might prevent 53BP1 

from orientating correctly, which would thus lead to increased CSR inversion events. 

Methyl and ubiquitin modifications appear to have different influences on 53BP1. 

H4K20me2 more likely serves as a signal to recruit 53BP1 to the DSB, while 

ubiquitination H2A/H2AX serves as an anchor to 53BP1, maintaining it at the site of 

the DSB, such that 53BP1 can bridge the gap between donor and recipient S regions 

for isotype switching.  

 

Upstream in the signalling cascade, a deubiquitination event also promotes DNA 

repair and CSR. Ubiquitination of H2BK120 is associated with an open chromatin and 

interferes with chromatin compaction. DSB repair cannot occur until histone 

H2BK120ub is deubiquitinated to allow access to NHEJ factors (326). A genome-wide 

loss-of-function RNAi screen identified several components of the SAGA 

deubiquitinase module required for CSR and DSB repair, including Usp22, Eny2, and 

Atxn7. Knockdown of any of these components using shRNAs or CRISPR/Cas9 

reduces CSR (327). Knockdown did not impair AID function indicating that the defect 

lies somewhere downstream. Interestingly, Eny2 knockdown also interferes with ATM 

and/or DNAPK activity, and thus indirectly limits γH2AX formation, which further 

reduces CSR (327,328).  
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BET family member Brd4 interacts with acetylated histones via its two bromodomains 

(329). Studies have shown that, upon induction of AID, occupancy of Brd4 at Sµ and 

Sα regions increases. ChIP and immunoprecipitation assays have confirmed an 

interaction between Brd4, the modified histones H4 and γH2AX, as well as between 

Brd4, 53BP1 and UNG (330). Treatment with the Brd4 inhibitor JQ1 or siBrd4 

knockdown significantly reduces CSR frequency. The levels of both 53BP1 and UNG 

are reduced, without affecting the levels of H4ac. Brd4 is therefore thought to  function 

as a chromatin-bound platform that recruits 53BP1 and UNG to DSBs (330) (Figure 

4). Finally, the chromatin remodelling complex INO80 has also been implicated as a 

regulator of CSR (331). Knockdown of INO80 in various mammalian cell lines has 

been shown to inhibit 53BP1 accumulation at DSBs (332). More recently, MEFs from 

mino80 knockout mice contradict this observation. Rather, INO80 is suggested to 

participate early on during DSB repair, where it first binds γH2AX, and then exposes 

H4K20me2 for 53BP1 recruitment. Paradoxically, INO80 is involved in 5’–3’ DNA end 

resection to support repair by homologous recombination (333). How it then functions 

to support NHEJ in CSR is yet another mystery.  

 

2.8 Potential role for other repair proteins in CSR 

The histone modifications and DNA damage repair proteins important for CSR (Figure 

4) have parallel roles in NHEJ. This is particularly interesting because a multitude of 

proteins, modifiers, and readers involved in NHEJ have not yet been implicated in 

CSR. These include the E2 ubiquitin-conjugating enzyme Ubc13, which functions in 

complex with RNF8 and RNF168. Ubc13, and its γH2AX independent recruitment 

through the Kat5 complex (27,334–336) are potential important factors in CSR. 

Indeed, H2AX-deficient mice experience reduced CSR (104), while a link with SHM 

fails to be seen (246). A SUMOylation pathway,  initiated by PIAS4 (337,338) and 

further expanded by  STUbL RNF4 (339), provides a potential role of SUMO-ubiquitin 

cross-talk in CSR. The importance of this pathway in general DNA damage repair is 

exemplified by Ataxin-3, which counteracts the RNF4-mediated ubiquitination. As a 

result, Ataxin-3 promotes prolonged retention of MDC1, resulting in reduced 

recruitment of 53BP1 and BRCA1 (316).  

 

The possible impact of NHEJ regulatory factors specifically should be considered on 

antibody diversification. The recently discovered tudor interacting repair regulator 
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(TIRR) stabilises 53BP1 in the nuclear fraction, but blocks NHEJ-directed repair by 

binding the tudor domain and guarding against H4K20me2 binding upon DNA damage 

(340). As such, it may act to hinder CSR when either over- or under-expressed, and 

would determine whether the turnover rate or instability of 5BP1 will compensate for 

more favourable H4K20me2 binding. Equally, the contribution of RIF1 in suppressing 

DNA resection for NHEJ and separating the 53BP1-TIRR complex may similarly serve 

to deregulate CSR at differential expression levels (341). The HR pathway also 

represents a potential research avenue as it may provide inhibitory effects on CSR 

efficiency. Knockdown of BRCA1, a key HR factor, has been shown to increase 

isotype switching (342). Similar effects are observed from downregulation of other 

inhibitory modifications, such as the H2AXK15ac by the Kat5 complex, which inhibits 

the RNF8 mediated ubiquitination of H2AXK15 (343).  

 

2.9 Influence of AID and TET activity on the DNA methylome during B Cell 

Development 

 

2.9.1 Role of AID in DNA Demethylation via Deamination 

Aside from its mutagenic activity, AID has been associated with coordinating DNA 

demethylation during zebrafish development (344), stem cell reprogramming (345), 

and primordial germ cell formation (346). The combined results of these studies 

support the notion that AID could function as a genome-wide epigenetic regulator by 

deaminating 5-methylcytosine (5mC) to 5-methyluracil (5mU); thereby replacing a 

5mC base with an unmethylated C or a thymine (T) via base excision repair (BER). 

GC B cells have more heterogeneous DNA methylation patterns than naïve B cells 

(212), and this has established a potential role for AID during this maturation step. 

 

Several studies have debated whether AID is responsible for DNA demethylation or 

activated gene expression in B cells (347). The methylation status of CpG motifs at 

VDλ1 is unchanged between naïve and day 14 GC B cells (246), AID does not induce 

demethylation at either Sµ or Cµ (297), and 5mC is a poor substrate for AID, although 

it does not prevent its activity on neighboring cytosines (348,349). In contrast, fewer 

studies have found that DNA demethylation events can be attributed to AID. CpGs 

have been observed to have increased methylation pattern variation in wild type 
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tissues, compared to AID-null tissues. Interestingly, 90% of the methylome alterations 

seen in naïve to GC transition were lost in AID-null mice (350). SHM targets are also 

suggested to be enriched with AID-dependent hypomethylation, and the significant 

reduction of both demethylation and SHM ex vivo (such as in the contribution by Fritz 

et al) is due to these two events being coupled in vivo (350). Furthermore, a recent 

study suggested that cytosine demethylation is over-represented in WRCG/CGYW 

motifs in follicular lymphomas, which overlays the WRC AID hotspot motif and the 

methylated CpG dinucleotide. This contrasts SHM of immunoglobulin genes whereby 

cytosine demethylation is under-represented at WRCG/CGYW motifs. Thus, this 

mutational process appears distinct from conventional SHM, and is solely applied to 

the CpG methylation/demethylation process (351). 

 

2.9.2 Role of TET Protein in DNA Demethylation via Hydroxylation 

As the involvement of AID in DNA demethylation remains to be fully established, the 

regulation of DNA methylation by another family of proteins is now being explored. 

Ten-eleven translocases (TET1, TET2, and TET3) oxidize 5mC to 5-

hydroxymethylcytosine (5hmC), and further oxidises 5hmC to 5-formylcytosine (5fC) 

and 5-carboxycytosine (5caC) (352,353). TET proteins predominantly support 

demethylation via dilution through successive rounds of replication(352). 

Nevertheless, it is possible that TET enzymes support active (replication-independent) 

demethylation. TET enzymes often accompany transcription-associated H3K36me3 

histone modifications, and possibly RNA polymerase II, depositing 5hmC and 

generating a more accessible DNA substrate for subsequent cycles of transcription 

(354). TET enzymes are involved in iterative rounds of 5mC oxidation to 5fC and 5caC 

(355). Demethylation could then be achieved either ii) indirectly via  thymidine DNA 

glycosylase (TDG) which recognises and excises 5fC an 5caC (356); or ii) directly by 

yet unidentified decarboxylases (357), (358).  

 

TET proteins appear to be important for programming B cell methylation throughout 

development. 5hmC is enriched in lineage-specific transcription factors, such as Bcl6, 

EBF1 and IRF4, which are important for germinal centre transition (359,360). The 

methylation status of follicular B cells from conditional Tet2-/Tet3- double knockout 

mice were partially hyper-methylated when compared to wild type cohorts. Single 

knockout mice failed to show such noticeable effects on methylation levels (359). Of 
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the sequences that are specifically demethylated in wild type B cells during 

differentiation into germinal centre B cells, 95% are prevented in Tet2-/Tet3- mice, 

providing some evidence that TET proteins may be responsible for most DNA 

demethylation that occurs at this stage (359). In addition, the Igκ locus is known to 

undergo DNA demethylation during antibody diversification, and this demethylation 

step is not observed in Tet2-/Tet3-  knockout mice (359).   

 

2.9.3 Cooperation between AID and TET Proteins during Epigenomic Regulation 

In addition to regulating B cell development, TET proteins are essential tumour 

suppressors in B cells. Of all patients diagnosed with diffuse large B cell lymphoma, 

5.7% carry a Tet2 deletion or loss-of-function mutation (361). In mouse genetic 

studies, Tet1-deficient B cell progenitors developed B cells lymphomas (362); in 

analogous human studies, the Tet1 promoter was found to be hypermethylated with 

concomitant reduction in Tet1 expression in patients with non-Hodgkin lymphoma 

(362). In additional studies, mice with a combined Tet2- and Tet3- deficiency in 

developing B cells developed B cell lymphoma and succumbed to disease within 5–6 

months of age, much earlier than the 15–20 months observed in Tet1/Tet2-deficient 

mice (363,364).  

 

It has been proposed that the product of TET protein-dependent 5mC oxidation may 

be a target for AID. Few studies have addressed the cooperative activities of TET 

proteins and AID. Some have concluded that it is unlikely that AID deaminates 5mC 

or 5hmC:  5mC is deaminated only at 10% the rate of cytosine due to the steric 

hindrance of the methyl group (349). 5hmC is an even poorer substrate for AID (365). 

Deamination of 5hmC in vitro has not been observed, and in vivo studies 

overexpressing AID have also failed to generate 5hmU (349). As 5hmU is not yet 

detected in genomic DNA, AID targeting 5hmC as a target for deamination was 

claimed unlikely, and further supports a role for TET enzymes in B cell developmental 

demethylation (349). On the contrary, a study in 2011 found that AID quite significantly 

promotes 5hmC demethylation in HEK293 cells and in mouse brain. While 

overexpression of AID had little effect on the demethylation of a strand of 5mC-GFP 

DNA, it led to a significant decrease of 5hmC levels induced by TET1 and significant 

increase of 5hmU (366). This is significant because there no detectable endogenous 

5hmU in HEK293 cells. Additionally, the pattern of 5hmC demethylation events were 
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broadly distributed along the 5mC-GFP DNA, 5hmC was also selectively demethylated 

at WCR ‘hotspot’ motifs, and demethylation showed strand bias in the same manner 

as AID deamination (366). Taken together, this could indicate that AID and TET may 

act in tandem to promote DNA demethylation. Whether this is replicated in the context 

of antibody diversification is yet to be seen. 

 

2.9.4 Epigenomic Role of Immune Diversification in Disease Development 

AID defects are associated with hyper-IgM syndrome, causing severe 

immunodeficiency (367). The epigenetic effect of AID on health however, particularly 

lymphomas, is poorly understood. DNA methylation’s role in gene silencing makes it 

essential in regulating normal development, with epigenetic mutations allowing cells 

to grow and reproduce uncontrollably, leading to tumorigenesis. DNA methylation can 

have malignant effects through two main alterations: hypermethylation of tumour 

suppressor genes and hypomethylation of oncogenes. It has come to light in recent 

years that such mutations are a common cause of B cell lymphomas, with 

hypomethylation in GCB-derived lymphomas correlating with AID expression (368). 

Off target effects of AID are also seen in non-B cell cancers, for example, T cell 

malignancy (369), and also in non-lymphatic cancers, such as stomach cancer (370),  

lung cancer (371), breast cancer (372), and liver cancer (373).  

 

From this observation it could be hypothesised that ectopic AID expression plays a 

critical role in lymphomagenesis. Increased epigenetic heterogeneity in lymphomas 

reflects diverse tumour cell populations, which increases risk of resistance to 

cytotoxic drugs (368). Understanding AID, and its role in lymphomas, could provide 

guidance in the development of new epigenetic drugs. Currently the main epigenetic 

cancer therapy drugs are azacytidine and decitabine which function as DNA 

methyltransferase inhibitors, combating DNA hypermethylation. These drugs have 

shown substantial potency in reactivating epigenetically silenced tumour suppressor 

genes in vitro (374). Reducing levels of AID could be used in a similar way against 

hypomethylation or the resistance caused by epigenetic heterogeneity in 

lymphomas. The protein HSP90 is important in the protection of AID from 

proteasomal degradation, with inhibition by the drug 17-AAG, leading to 

polyubiquitination and degradation of AID (375). 17-AAG is currently in clinical trials 

for the treatment of other cancer types, due to its role in inhibiting the degradation of 
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proteins involved in tumour cell proliferation and survival (376). The above 

observations suggest a possibility of using 17-AAG in the treatment of 

hypomethylated lymphomas (Figure 3). In a recent study 17-DMAG, a derivative of 

17-AAG, has been found to reduce CSR and SHM in mice, while B-cell survival and 

proliferation remain unaffected (377). 

 

2.10 Concluding Remarks 

The epigenome is made up of several critical components that must work together to 

promote antibody maturation and diversification in B cells. This is an intricate process; 

each component simultaneously functions both independently and dependently on the 

others, and disruption at any step can have catastrophic downstream affects. For 

example, histone modifications relax the chromatin, allowing for AID transcription. 

Simultaneously, multiple different ncRNAs regulate transcription and target AID to 

mutate Ig region genes. Next, different histone modifications recruit DNA repair 

proteins which then multiple different ncRNAs target. The entire process is further 

complicated depending on which histone modifications are used and which ncRNAs 

are present whether a B cell is returned to the status quo, undergoes CSR, or 

undergoes SHM. It is a tremendously complicated process and abrogation at any step 

can result in various forms of cancer and/or immunodeficiencies. Despite 

advancements of our knowledge of this field, several important questions remain 

unanswered. These include the mechanisms controlling AID transcription and the 

mechanisms that direct AID to target neutral, CSR, or SHM region genes. 

Furthermore, we have yet to determine how ssDNA is stabilized for AID activity. 
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3 Development and optimisation of a fluorescence-based toolkit for 

real-time quantification of DNA resection activity 

 

3.1 Summary 

DNA nucleases are integral for maintaining genomic stability. Nucleases recognise 

particular structural features that arise following endogenous or exogenous sources of 

damage, and characterising their preferences is invaluable to understanding their 

specific roles in DNA repair. Understanding how nuclease activity is influenced by 

catalytic or structural mutations, binding partners, and different DNA structures, may 

illustrate how nucleases are implicated in cancer and age-related diseases. 

Contemporary methods used to study nucleases require radiolabelled substrates to 

visualise nuclease-dependent DNA digestion. While this is a robust approach, there 

are several flaws associated with this method; it is time-intensive, captures nuclease 

activity in a discontinuous manner, and it is inherently dangerous to work with 

radioactive substances. As such, an alternative method for capturing nuclease activity 

in a continuous fashion using the fluorescent double-stranded DNA (dsDNA) dye, 

PicoGreen, has been developed herein. Indeed, PicoGreen has proven to be a stable 

dye that is permissive to nuclease processivity. Furthermore, the dsDNA substrates 

have been optimised to emit a strong fluorescent signal upon PicoGreen binding.  

 

3.2 Nucleases in DNA repair 

Nucleases are a hallmark of the DNA damage response. They help dictate many DNA 

repair pathway choices by controlling the DNA damage substrates created 

downstream during the signalling cascade. The complex roles nucleases play in DNA 

repair pathways underpin several premature ageing-related syndromes, and 

cancerous transformation can result from structural or catalytic mutations in nuclease 

genes (reviewed in (378)). Nucleases hydrolyse the phosphodiester bonds between 

sugar residues in DNA, RNA, or both. DNA repair is critical for proof-reading genomic 

DNA during replication, halting the replication fork, Okazaki fragment processing and 

correcting many forms of genomic insults that require mismatch repair, base excision 

repair, nucleotide excision repair or double-strand break repair (DSB) (147). The 

defining characteristics of nucleases are their substrate specificity, directionality, and 

processivity.  
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3.3 Current approaches for studying nuclease activity and their limitations 

A significant limitation of nuclease studies has been the adequate identification of their 

catalytic functions and/or their relative activities against different DNA intermediates. 

Indeed, the activities of numerous DNA nucleases are debated (e.g. human Mre11, 

CtIP etc (379,380)), and yet there remain many more uncharacterised proteins with 

strong predictions for nuclease domains in mammalian genomes 

(381,382).Conventional nuclease assays predominantly involve the use of radioactive 

labelled 32P-dATP to visualise DNA substrates on an agarose gel (181,182). The use 

of radioactive isotopes delivers highly specific, sensitive assays that are free from 

interference. However, these assays are often inefficient, time-consuming, qualitative, 

and potentially hazardous (184,185). Additionally, the assays are discontinuous, and 

must be stopped at discreet time points before measuring readouts (13). Whilst this 

can provide an indication of reaction rate, it does not allow for real-time visualisation 

of the catalytic reaction.  

 

3.4 PicoGreen is a highly sensitive dsDNA dye used in discontinuous enzyme 

assays 

Radiolabelled DNA oligonucleotides are gradually being replaced with fluorescent 

nucleic acid stains such as DAPI (186) and other commercially-available dyes 

including, but not limited to, Midori Green, SYBR Green I and Acridine Orange (187).  

PicoGreen (PG) is a commercially available dye that emits a fluorescent signal upon 

intercalation with double-stranded DNA (dsDNA), emitting a fluorescent signal 1,000-

fold stronger compared to when free in solution. Its superior sensitivity can quantify 

picogram levels of dsDNA, unlike other fluorescent dyes, including Hoechst (188), 

ethidium bromide (188), EvaGreen (189), SYBR Green (189) and YOYO-1 (189).  

 

A method using PG to stain the DNA and monitor nuclease activity in real-time is 

faster, cheaper, and safer than conventional DNA resection assays using 

radioisotopes. It works cross-species and is platform agnostic. Furthermore, this 

protocol has the sensitivity for enzyme reaction kinetic calculations and can distinguish 

the structural preferences exhibited by an enzyme for its substrate. Similar to other 

nucleic acid dyes, PG has proven to be a versatile DNA stain in different experimental 

conditions. It has been used to visualise dsDNA in agarose electrophoresis as a quality 

control  marker to identify fragmented and nicked DNA (383). It has also been 
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implemented in flow cytometry analysis of cell-free DNA which can increase in certain 

pathologies, such as cancer and autoimmune syndromes (384). PG exhibits readily 

detectable, albeit reduced, fluorescence readings at temperatures of 37°C, despite 

manufacturer recommendations to work at room temperature (385), allowing for 

assays to run at physiologically-appropriate temperatures. As PG very preferentially 

binds dsDNA compared to ssDNA and RNA structures (386), it has been an important 

feature of discontinuous enzyme-mediated DNA-modifying studies, such as nucleases 

(387), helicases (388), polymerases (389,390), polymerase inhibitors (391), 

telomerases (392), and primases (393). However, the full potential of PG in real-time 

visualisation of reaction progression in a continuous assay remains limited (394). The 

discontinuous PG assay described herein will be advanced to create a continuous PG 

assay. 
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3.5 Materials and Methods 

 

3.5.1 Plasmid and oligonucleotide substrates 

DNA substrates were prepared by diluting pNIC28-BSA4 or CTIP in HyClone waterTM 

(GE healthcare), and unmodified HPLC-purified oligonucleotide substrates (Eurofins) 

in 1X annealing buffer (Sigma-Aldrich). Oligonucleotides were designed and optimised 

against secondary structure formation using the ‘Predict a Secondary Structure Web 

Server’ 

(https://rna.urmc.rochester.edu/RNAstructureWeb/Servers/Predict1/Predict1.html) 

(114) and annealed at a 1:1 molar ratio. Table 1 shows all the oligonucleotides and 

their respective illustrations. 

 

Table 1  

Oligo code Sequence (5–’3’) 

RCOL381 GATACGGCATACGTCTATGGCTACTTGGAGCGAGTATCCTTCGAGCTTGCTCGAGCT

TGCCTACTTGGAGGATACGGCAT 

RCOL468 ATGCCGTATCCTCCAAGTAGGCAAGCTCGAGCAAGCTCGAAGGATACTCGCTCCAAG

TAGCCATAGACGTATGCCGTATC 

RCOL396 GGGTCTTAAAGTTAAACCTTAAGGTTCTCCTATAGTGAGTCGTATTAAGTATCAATG

TTCCGGACAAATTACCCTAATTA 

RCOL400 TAATTAGGGTAATTTGTCCGGAACATTGATACTTAATACGACTCACTATAGGAGAAC

CTTAAGGTTTAACTTTAAGACCC 

RCOL556 GATGGTTTGTTGGTCTATTACTACTTGGAGCTTGTATGATTCGAAACCTTGGAGTAC

TTGCCTACTTGGAGTGAACTTAG 

RCOL557 CTAAGTTCACTCCAAGTAGGCAAGTACTCCAAGGTTTCGAATCATACAAGCTCCAAG

TAGTAATAGACCAACAAACCATC 

 

3.5.2 Nucleases and buffers 

The nucleases used were RQ1 RNase-Free DNase I (Promega), T7 exonuclease 

(New England Biolabs), Exonuclease III (New England Biolabs). In preparation for 

each assay, nucleases used were diluted on ice in their appropriate storage buffers, 

omitting glycerol. All storage buffers and reaction buffers were made according to the 

recipes available on their respective NEB and Thermo Fisher web pages. DNase I 

storage buffer (10mM HEPES (pH 7.5), 10mM CaCl2 and 10mM MgCl2) and reaction 

https://rna.urmc.rochester.edu/RNAstructureWeb/Servers/Predict1/Predict1.html
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buffer (400mM Tris-HCl (pH 8.0), 100mM MgSO4 and 10mM CaCl2), T7 exonuclease 

storage buffer (10 mM Tris-HCl, 5 mM DTT, 0.1 mM EDTA, (Ph 8 at 25ºC)) and 

reaction buffer (50 mM potassium acetate, 20 mM Tris-Acetate, 10 mM magnesium 

acetate, 1 mM DTT), and Exonuclease III storage buffer (5 mM KPO4, 200 mM KCl, 5 

mM β-ME, 0.05 mM EDTA, 200 µg/mL BSA, (pH 6.5 at 25ºC)) and reaction buffer (10 

mM Bis-Tris-Propane-HCl, 10 mM MgCl2, 1 mM DTT (pH 7 at 25ºC)) were all filtered 

prior to use, and autoclaved where possible.  

 

3.5.3 Preparation of PicoGreen 

The PG reagent from the Quant-iTTM PicoGreenTM dsDNA Assay Kit (Invitrogen) was 

prepared immediately before use by making a 1:200 dilution of the PG in TE buffer (10 

mM Tris-HCl, 1 mM EDTA, pH 7.5) and 40% (v/v) glycerol.    

 

3.5.4 Discontinuous assay experimental procedure 

Each DNA substrate reaction mixture contained 50 nM DNA substrate, 1X reaction 

buffer (specific for each enzyme), 0.02 mg/mL streptavidin (cat. 21125, Thermo Fisher 

Scientific) if required, 0.25 mM dNTPs if required, 5 µL enzyme or relevant storage 

buffer. For the DNA nucleases, Milli-Q water was added to bring the total reaction 

volume to 50 µL. Reaction mixtures were prepared on ice and samples were tested in 

a 96-well, black flat bottom plate (cat. M9685, Sigma-Aldrich). The final components 

added were the storage buffers, then the enzyme mixtures to start the reaction. DNase 

I reactions were stopped with 5 mM EDTA, after which 50 µL PG solution was added 

and incubated on ice for 15 minutes.   

 

An i-control Infinite 200Pro (Tecan) was pre-heated to 37°C. Samples were read every 

40–50 s for 30–60 mins. Excitation and emission wavelengths used were 483-15 nm 

and 530-30 nm, with a shake before each read.   

 

3.5.5 Continuous assay experimental procedure 

Each DNA substrate reaction mixture contained 50 nM DNA substrate, 1X reaction 

buffer (specific for each enzyme), 50 µL PG solution, 0.02 mg/mL streptavidin (cat. 

21125, Thermo Fisher Scientific) if required, 0.25 mM dNTPs if required, 5 µL enzyme 

or relevant storage buffer. For the DNA nucleases, Milli-Q water was added to bring 

the total reaction volume to 100 µL. Reaction mixtures were prepared on ice and 
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samples were tested in a 96-well, black flat bottom plate (cat. M9685, Sigma-Aldrich). 

The final components added were the storage buffers, then the enzyme mixtures to 

start the reaction.  

 

Either a i-control Infinite 200Pro (Tecan) or a CLARIOstar microplate reader (BMG 

labtech) was pre-heated to 37°C. Samples were read every 40–50 s for 30–60 mins. 

Excitation and emission wavelengths used were 483-15 nm and 530-30 nm, with a 

focal height of 10.2, 20 flashes per well, with a shake before each read.   

 

3.5.6 Data analysis 

For statistical analysis of the data, one-way ANOVA with the Tukey’s post-hoc tests 

were used. This was implemented using GraphPad Prism v7.03. An example of the 

workflow is available in the appendix.  
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3.6 Results 

Here, PG is shown to be a highly sensitive dye to measure DNA nuclease activity in a 

continuous manner, developing upon the current discontinuous approaches 

published. Its specificity for DNA limits its utility to studying only DNA nucleases, as 

opposed to RNA nucleases (386). The methods to stabilise PG for real-time 

experiments and optimise its fluorescence are described within, alongside the 

approach taken to maximise the fluorescent signal emitted from the DNA substrates 

upon PG binding.  

 

3.7 Optimisation and development of the assay from a discontinuous to 

continuous methodology 

Several factors were considered before progressing to a continuous study of nuclease 

activity. First, it was integral to determine that the fluorescence signal could be 

measurably different between a substrate following nuclease-dependent degradation 

and a substrate not treated with a nuclease. Second, the stability of PG had to be 

ensured for it to be used to monitor enzyme activity over the period of the reaction. 

Third, it was necessary to determine whether PG would permit nuclease processivity 

and whether the products of the reaction (free nucleotides) would contribute towards 

the fluorescent signal. Fourth, the oligonucleotide substrates had to be optimised to 

produce a strong fluorescent signal to capture nuclease activity with precision.   

 

To address the first issue concerning the sensitivity of PG on DNase I-treated and 

untreated substrates, the activities of a range of DNase I concentrations on plasmid 

DNA were compared (Fig. 1a). It was only after the reaction was stopped that PG was 

added to the reaction mixtures. Higher concentrations of DNase I (200 nM) digested 

more of the substrate than lower concentrations (25 nM), which is to be expected. The 

results indicate that PG can be used to compare differential enzyme activity. In 

addition, the results also demonstrate the range of concentrations of DNase I that 

would cause an observable decrease in fluorescence over the course of the reaction. 

 

Secondly, the stability of PG was confirmed. Rapid photobleaching would be 

disadvantageous as it would create a very short window within which the reaction 

could be monitored, so a stable reaction mixture is essential. Unexpectedly, it was 

found that the fluorescent signal from PG was almost entirely lost after 5 minutes at 
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37°C (Fig. 1b). This indicates that PG is very unstable and is rapidly photobleached 

under these conditions. Furthermore, DNase I activity failed to be captured, suggesting 

that PG is generally unreliable. Fortunately, PG fluorescence has already been 

characterised, and was found to be stabilised upon addition of glycerol (395). In 

keeping with these results, 20% glycerol in the final reaction mixture was sufficient to 

prevent rapid photobleaching (Fig. 1c).  

 

To capture activity in real-time, PG was added before addition of DNase I. Free 

nucleotides (dNTPs) were added to the reaction mixture where the fluorescent signal 

was negligible, confirming that the reaction products do not contribute towards 

fluorescence signal to distort the results. This assay also established that the 

PG:dsDNA complex does not inhibit DNase I as it processes the DNA (Fig. 1d). 
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FIGURE 1  

 

Figure 1 | Assay progression from a discontinuous to a continuous methodology 

a, Discontinuous assay performed with a DNase I titration on 2 ng/µL 7284 bp plasmid. A dilution series 

was carried out to provide a range of DNase I concentrations: 0, 12.5, 25, 50, 100 and 200 nM. Reaction 

was run at 37°C for 15 minutes. PG was subsequently added, and the fluorescence was read after 10 

minutes incubation to allow for PG saturation of the dsDNA. Error bars represent standard deviation, 

n=2.  b, PG was added to the reaction mixture containing 2 ng/µL plasmid for 15 minutes prior to addition 

of different concentrations of DNase I. Two reads were taken in quick succession at 37°C, followed by 

a third read 5 minutes later to determine the extent of photobleaching. c, 20% glycerol was added to 

the reaction mixture and the fluorescent signal was observed after 5 minutes. d, Continuous assay run 

with 50 nM DNase I at 37°C and 5 mM dNTPs as a control. Error bars represent SD; n=2.  

 

3.8 Oligonucleotide sequence optimisation for highly fluorescent substrates 

Oligonucleotides are far more suitable than large plasmids to study nucleolytic activity 

on a range of different substrate termini. Oligonucleotides are far more versatile 

substrates than plasmids as they can be designed to have different terminal structures, 

such as 5’ or 3’ overhangs, Y-structures, Holliday junctions or strand invasions, 

amongst many more physiologically relevant structures (13,396). The much shorter 

length of the oligonucleotides ensures that each enzyme is exposed to a higher 

proportion of these alternative structures and, for these reasons, only oligonucleotides 

were used for furthering the development of the assay. The oligonucleotides used in 

this assay were designed to be 80 base pairs (bp) in length to emit a suitably high 
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fluorescent signal with the addition of PG (Fig. 2), and were sequence-optimised so 

as to reduce the likelihood of secondary structure formation (114) and thus increase 

the fluorescent read-out (Fig. 3 and 4). 80-bp was deemed an appropriate length due 

to limitations in synthesis. According to Integrated DNA Technologies and Eurofins, 

90–100-bp is typically the maximum length for HPLC-purified oligonucleotides, 

respectively. In addition, reducing the length of one strand to create overhangs would 

affect the fluorescent signal emitting from dsDNA, and would require synthesis of more 

control, ‘ladder’ sequences, rather than simply extending the length of one strand 

when required.  
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FIGURE 2 

 

Figure 2 | Calibration curve of substrates equal in length emit different fluorescent signals.  

Two 80-bp substrates composed of different nucleotide sequences and incubated with PG emit different 

fluorescent signals. Error bars represent standard deviation; n=3. 

 

Two 80-bp oligonucleotides (substrates v1 and v2) were treated with PG, and their 

fluorescence was compared (Fig. 2). Each substrate has a GC content of 53% and 

35%, respectively. As PG fails to show any base preference (395), it is probable that 

this disparity in fluorescence can be attributed to the likelihood of secondary structure 

formation. Secondary structures are the formation of intramolecular structures, such 

as stem loops (397). Secondary structure prediction software 

(https://rna.urmc.rochester.edu/RNAstructureWeb/Servers/Predict1/Predict1.html) 

was used to calculate the likelihood of secondary structure formation for each 

oligonucleotide at 37°C (114). This was to cater for the fact that all enzyme assays are 

to be run at this temperature. The software uses thermodynamics, prediction of base 

pair probabilities, bimolecular structure prediction and other algorithms to calculate the 

probability of secondary structure formation in an RNA or DNA sequence. It attributes 

each oligonucleotide with a ΔG value, which is a measurement of a sequence’s 

thermodynamic stability. It is recommended to have a ΔG value that is more positive 

than -9 kcal/mole. Using the software as a guide, the sequences were edited to reduce 

the probability of secondary structure formation. 

https://rna.urmc.rochester.edu/RNAstructureWeb/Servers/Predict1/Predict1.html
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Substrate v1 was made up of two 80-mer oligonucleotides called 381 and 468. 

Secondary structure prediction software found a high probability of secondary 

structure formation in these sequences (ΔG is -16.9 kcal/mole and -15.6 kcal/mole for 

381, and -12.9 kcal/mole and -11.7 kcal/mole for 468; Fig 3). Substrate v2 is formed 

from two 80-mer oligonucleotides called 396 and 400 and have more positive (or less 

negative) predicted ΔG values (-4.1 kcal/mole and -3.9 kcal/mole for 396, and  

-6.9 kcal/mole and -6.2 kcal/mole for 400; Fig. 7). Substrate v1 exhibits the lowest 

fluorescent signal compared to substrate v2, and their ΔG values corresponded with 

their divergent fluorescence signatures. Substrate v1 was composed of two 80-mer 

oligonucleotides called 381 and 468. Their predicted secondary structures have very 

low ΔG values   
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FIGURE 3 

 

 

Figure 3 | Predicted secondary structures for the less fluorescent substrate v1 have ΔG values 

below the minimum recommended -9 kcal/mole 

Substrate v1 is composed of two oligonucleotides, 381 and 468. The predicted ΔG values for their 

secondary structures are -16.9 kcal/mole and -15.6 kcal/mole for 381, and -12.9 kcal/mole and  

-11.7 kcal/mole for 468. 

  

kcal/mole kcal/mole 

kcal/mole kcal/mole 
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FIGURE 4 

 

 

Figure 4 | Predicted secondary structures for the less fluorescent substrate v1 have higher ΔG 

values than the minimum recommended -9 kcal/mole 

Substrate v2 is composed of two oligonucleotides; 396 and 400. The predicted ΔG values of their 

secondary structures are -4.1 kcal/mole or -3.9 kcal/mole for 396, and -6.9 kcal/mole or -6.2 kcal/mole 

for 400. 

 

To confirm whether the secondary structures are responsible for the strength of the 

fluorescent signal, the less fluorescent substrate (substrate v1; 381/468) was edited 

to try and obtain a fluorescent signature that was equal to, or greater than, the signal 

produced from the more fluorescent substrate (substrate v2; 396/400). Using the 

secondary structure prediction software as a guide to edit the relevant bases, 

kcal/mole kcal/mole 

kcal/mole kcal/mole 
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oligonucleotides 556 and 557 (enhanced substrate v1) were successfully designed 

with more positive ΔG values (-2.8 kcal/mole for both predictions of 556, and -3.5 

kcal/mole for both predictions of 557; Fig. 5).  

 

FIGURE 5 

 

Figure 5 | Improved ΔG values for the edited low-fluorescence substrate  

Enhanced substrate v1 was composed of two oligonucleotides, 556 and 557. The predicted ΔG values 

of their secondary structures are -2.8 kcal/mole for 556 and -3.5 kcal/mole for 557. 

kcal/mole kcal/mole 

kcal/mole kcal/mole 
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As suspected, lower ΔG values cause a reduction in the likelihood of secondary 

structure formation. In turn, this enables a higher proportion of successful annealing 

between the two complementary oligonucleotides with an accompanying increase in 

fluorescence (Fig. 6). Although enhanced substrate v1 (556 and 557) does have the 

most positive ΔG compared to substrate v2 (396 and 400), there is no greater increase 

in fluorescence. This may be because the difference between their ΔG values is minor 

in comparison to enhanced substrate v1 and substrate v1 (381 and 468).   

 

FIGURE 6 

 

Figure 6 | Calibration curve of the two original 80-bp substrates and the enhanced substrate.  

A calibration curve of substrate v1 and substrate v2, including enhanced substrate v1, which was edited 

to reduce the formation of secondary structures at 37°C.  
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PG fluorescence is affected by buffer components 

Evidence suggests that certain compounds exert either a positive or negative influence 

on the PicoGreen fluorescence signal, some of which are present in enzyme storage 

and reaction buffers. 2% (v/v) BSA reduces the signal by 16%, and 200 mM NaCl 

reduces the signal by 30%. This list of compounds is not exhaustive, however, and so 

the differential effects of the DNase I storage and reaction buffers were explored (Fig. 

7). The storage buffer augments the fluorescent signal, whilst the reaction buffer has 

the opposite effect and reduces fluorescence. Altering the recommended 

concentrations of each buffer to 50% or 100% failed to make a significant difference 

to further improve the signal (Fig. 7 a-b).  

 

FIGURE 7 

 

Figure 7 | Effect of DNase I reaction and storage buffers on PicoGreen fluorescence 

a, and b, Comparisons of the fluorescent signal according to the DNase I storage and reaction buffers 

at both 50% and 100% of their recommended concentrations. The storage buffer augments 

fluorescence whilst the reaction buffer reduces the signal. Error bars represent SD; n=2 in all cases.  
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3.9 Optimisation of the assay using the non-specific DNase I 

 

FIGURE 8 

 

Figure 8 | Illustration depicting the concept of the continuous assay 

PG intercalates with dsDNA to produce a measurable fluorescent signal. Addition of a dsDNA nuclease 

or resection nuclease disrupts the PG:dsDNA complex, liberating the PG and triggering a nuclease-

dependent loss of fluorescence. 

 

To confirm whether PG could be used to study nucleases in real-time (as illustrated in 

Fig. 8), its applicability and robustness was first validated with a non-specific nuclease. 

DNase I digests ssDNA, both strands of dsDNA, and does not show absolute 

sequence specificity (although it has shown a general preference for AT base pairs as 

opposed to GC base pairs (171)).  

 

A calibration curve was established to determine the linear range in which the 

concentration of DNA is directly proportional to the fluorescent signal (Fig. 9a). Both 

plasmid DNA (13.1 kb) and oligonucleotide DNA (80 bp) were compared, and it was 

determined that the maximum concentration of DNA that could be used in the assay 

was 2.5 ng/µL, regardless of the length and structure of the DNA. Above 2.5 ng/µL, 

the fluorescent signal plateaued irrespective of the increase in DNA concentration (Fig. 

9a).  
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As an alternative to converting fluorescence to molar concentrations, which vary 

according to the length of the DNA substrate, a standard curve was generated based 

on the signal produced from 80-, 60-, 40- and 20-bp substrates, as well as a 0-bp 

single-stranded 80-mer oligomer to represent the final resection product of other 

resection nucleases (Fig. 9b). PG binds ssDNA with a lower affinity than dsDNA, as 

indicated by the standard curve. For resection nucleases, rather than DNase, this is a 

more appropriate end-point of the reaction rather than the comparatively minor 

fluorescent signal produced in the absence of substrate. This standard curve shows a 

linear increase in fluorescence with the length of duplex DNA (R2 = 0.99).  

 

The purpose of the standard curve is to enable the conversion of fluorescence units 

to DNA base pairs to calculate the length of substrate remaining following nucleolytic 

attack. To convert the data from fluorescence units, the data is first normalised to their 

relevant control (absence of enzyme). This has the additional benefit of accounting for 

the inevitable photobleaching effect. As such, any decrease in fluorescence recorded 

is a result of nuclease activity and not photobleaching of the PG dye. The standard 

curve is then converted to base pairs by finding the gradient (m) and intercept (c) of 

the curve at each time point, and from this it is possible to determine the length of 

dsDNA (x-axis) from the fluorescent signal (y-axis) at each time point and experimental 

condition. A worked example is available in the Appendix.  
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FIGURE 9 

 

 

Figure 9 | Optimisation of assay parameters using the non-specific nuclease DNase I 

a, Calibration curve indicating the fluorescent signal emitted by increasing concentrations of 80 bp 

dsDNA and 13.1 kb plasmid DNA. b, Standard curve composed of 80, 60, 40 and 20 bp sequences. 

The point shown at 0 on the x-axis is an 80-nt ssDNA oligomer to represent the end product of complete 

resection. c, DNase I titration on an 80 bp dsDNA substrate. Dotted grey lines represent controls 

containing standard duplexes of intermediate sizes. d, Extracted maximum gradient from (d) to 

determine the reaction rate at increasing concentrations of DNase I. e, Maximum rate analysis of 

resection per nM DNase I per second. Error bars represent SEM; n=3 in all cases.  

 

A DNase I titration was run with the addition of the standard curve, allowing the 

conversion of the y-axis from fluorescence units to a measurement of the length of 

dsDNA (Fig. 9c). From this it was determined that the rate increases with the 

concentration of DNase I, therefore indicating that the reaction is first order with 

respect to the enzyme (Fig. 9d). Subsequently, the rate of DNase I-mediated digestion 

was calculated to be approximately 0.001 bp nM-1 sec-1 on a 2.5 ng/µL (50 nM) 80-bp 

dsDNA substrate at 37°C (Fig. 9e).  
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FIGURE 10 

 

 

 

Figure 10 | Fluorescence units can be converted to nM concentrations of DNA substrate 

a, Plasmid titration in the presence of 50 nM DNase I. b, Calculated the maximum rate of resection of 

increasing concentrations of plasmid based on the maximum gradients in (a). c, Oligonucleotide titration 

in the presence of 50 nM DNase I. d, Calculated the maximum rate of increasing concentrations of an 

80-mer dsDNA substrate based on the maximum gradients in (c). e, Calculated the value of the rate 

constant for the reaction in (c) 50 nM oligo. 

 

Alternatively, fluorescence units can be converted to nanomolar concentrations of 

substrate as opposed to base pairs of DNA. Utilising the fluorescence units used in 

the samples without DNase I, these figures were used as a calibration curve, allowing 
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us to convert fluorescence units into concentration of substrate. The calibration curve 

was used as a reference point at each time point, which could then be used to convert 

the Y-axis change in fluorescence (ΔF) into a measurement of the number of 

nucleotides cleaved, which was then converted into a value for rate. This method of 

normalising the data circumvents the effect of photobleaching as it subtracts the 

decrease in fluorescence from the controls and the substrates in the presence of 

DNase I, which ensures that the loss of fluorescence observed after normalisation is 

results only from nuclease activity.  

 

The plasmid was titrated in the presence of 50 nM DNase I (Fig. 10a) and the rate of 

DNase I-dependent digestion was obtained at each concentration (Fig. 10b). The 

linear relationship between increasing substrate concentration and DNase I-

dependent digestion indicates that the rate is dependent on the quantity of available 

plasmid. This also suggests that this is a first order reaction with respect to the plasmid 

at this concentration of DNase I.  

 

This titration was replicated on 80 bp DNA substrates (Fig. 10c), and the control 

samples not treated with DNase I were used to generate a calibration curve at each 

time point. This, again, allows for the conversion of the raw fluorescence data to DNA 

concentration. From this the maximum rate in the reaction was obtained and, as with 

the plasmid, there is a linear relationship between the substrate concentration and the 

rate, indicating that this is a first order reaction with respect to the substrate (Fig. 10d). 

To confirm the order of the reaction, the following integrated rate equations was used:  

 

1. ln[oligo]t150 = -kt + ln[oligo]t0 

 

Equation 1 follows the graph of a straight line (y=mx+c).  

The reaction was confirmed as first order by plotting time on the x-axis, and the natural 

log of the concentration of oligo at each time point from 0 to 150 seconds on the y-

axis. These data points fall in a straight line, and therefore the reaction is first order.  

The reaction rate (-k) is calculated from the gradient of the line, and this is 1.36 x 10-3 

(Fig. 10e).  
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These results show that this assay is versatile and can capture a range of kinetic 

information depending on what is required from the experiment. The only difficulty with 

using this method is that nanomolar concentrations of DNA substrate is dependent on 

the length of the oligomer and, as such, creates a situation where the activity of two 

substrates of different lengths cannot be easily compared. Therefore, converting to 

base pairs is a far more straightforward process.  

 

3.10 Modifying DNA substrates to study structure-specific enzymes 

Since the assay has proven to be proficient in garnering detailed kinetic analysis of a 

nonspecific nuclease, the assay then progressed to analysing less tolerant nucleases 

that exhibit structural specificities and directionality. To validate the assay for these 

resection nucleases, the 3’-5’ bacterial Exonuclease III (ExoIII) and the T7 

bacteriophage 5’-3’ T7 exonuclease (T7 Exo) were employed (Fig. 11). 

 

To cater for studying resection nucleases, it was necessary to design substrates that 

directed enzymatic activity to only one end of the substrate. This is due to limitations 

in the maximum length of oligonucleotide that can be synthesised. Therefore, 

generating substrates that are blocked at one end circumvents these limitations. An 

additional benefit of chemically blocking one end of the substrate is that it doesn’t 

require any prior knowledge of inhibitory structures specific to each enzyme, which is 

a technique that has been used to great effect (13).   

 

To account for having enough dsDNA region as well as structurally appropriate 

terminal ends to study nuclease structural preferences, substrates were designed that 

were blocked at one end to direct the enzyme to resect one single strand only, leaving 

a full-length, blocked, single-stranded 80-mer substrate as the end product (Fig. 11a). 

The substrates were blocked with biotin-triethyleneglycol (BITEG) at the necessary 

terminal ends (3’ end for ExoIII and 5’ end for T7 Exo). BITEG alone is insufficient to 

inhibit resection on substrates blocked at both terminal ends (Fig. 11b-c). However, 

inclusion of streptavidin in the reaction mix successfully protects the modified ends 

from resection (Fig. 11b-c). It was noticed that the presence of streptavidin, but not 

BITEG alone, is responsible for preventing total resection, prohibiting ExoIII from 

resecting the final 20 nucleotides (Fig. 11d). This combination of biotin and streptavidin 

has previously been shown to be effective (182). 
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FIGURE 11 

 

 

Figure 11 | BITEG alone is insufficient for preventing nuclease resection 

a, Stick and ball figures illustrate the substrates and the distinguishing features of the BITEG and 

streptavidin modifications. b, Treated a range of substrates with and without the BITEG and streptavidin 

modifications in the presence of 12 nM T7 Exo. c, Treated a range of substrates with and without BITEG 

and streptavidin modifications in the presence of 10 nM ExoIII. d, Presence of streptavidin prevents 

total resection of the substrate.  Error bars represent SEM; n=3 in all cases. 

 

A streptavidin dilution was set up to determine the optimum concentration that would 

suitably prohibit enzymatic resection (Fig. 12). Ultimately, 0.02 ng/µL streptavidin was 

an appropriate concentration, as it appeared that within the range of 0.02 – 1 ng/µL 

the inhibitory effect was negligible. It is suspected that the low level of resection 

observed (10-20%) is attributable to a small proportion of oligonucleotide substrates 

that are shorter in length, or non-biotinylated, and are therefore prone to T7 Exo-

mediated resection.  
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FIGURE 12 

Figure 12 | 0.02 ng/µL streptavidin (SA) is sufficient to inhibit resection by 12 nM T7 Exo 

Increasing concentrations of streptavidin (0.02 – 1 ng/µL) were added to substrates biotinylated at both 

5’ ends to inhibit T7 Exo-mediated resection.  

 

To reduce the background levels of resection and ensure high levels of oligonucleotide 

purity, HPLC purification was deemed the most appropriate. PAGE purification was 

considered as it is the Integrated DNA Technologies-recommended technique for 

oligonucleotides >80 bases in length. However, 3’-BITEG substrates cannot be 

purified using this process. Therefore, as HPLC is capable of purifying 

oligonucleotides with both 5’- and 3’-BITEG modification, and routinely achieves a 

reasonable 85% purity, this was deemed the most suitable technique.   

 

Other methods to block the DNA were considered. Several options are listed on the 

Integrated DNA Technologies website 

(https://eu.idtdna.com/pages/education/decoded/article/modification-highlight-

modifications-that-block-nuclease-degradation), including 2’-O-methyl, 2’ fluoro, 3’-

phosphorylated, and inverted dT and ddT, phosphorothioate bonds. 2’-O-methyl is 

typically used to stabilise RNA duplexes and is not a commercially available 

modification for DNA. Furthermore, 2’-O-methyl only prevents attack by ssDNA 

https://eu.idtdna.com/pages/education/decoded/article/modification-highlight-modifications-that-block-nuclease-degradation
https://eu.idtdna.com/pages/education/decoded/article/modification-highlight-modifications-that-block-nuclease-degradation


 

83 
 

endonucleases, but not exonucleases. As a result, this modification is unsuitable for 

this application (398). 2’fluoro is also an RNA modification, and therefore is also 

inappropriate for this assay (399). 3’-phosphorylations are only inhibitory to some 3’ 

exonucleases, Exonuclease III, for example, has intrinsic phosphatase activity, and 

therefore is not inhibited by this modification (400). Inverted dT (3’-3’) or ddT (5’-5’) 

terminal nucleotides were strongly considered, however very few articles have been 

published on their efficacy, and only in terms of stability against RNA nucleases (401). 

As such, inverted nucleotides were not incorporated into the design of this assay. 

Finally, phosphorothioate linkages were initially selected, and have been shown to be 

effective against RNA and DNA nucleases (402–404). However, the yield after 

purification is lower than for BITEG-modified oligonucleotides, and ultimately would 

have been more costly.   

 

  



 

84 
 

3.11 Discussion 

PG has previously been used to visualise picogram concentrations of DNA in tissue 

samples (405), gel electrophoresis (383), flow cytometry (384), and discontinuous 

nuclease (387) and polymerase assays (389,390). While it has been used for several 

different applications, its value to continuous assays hasn’t fully been recognised 

(394). 

 

Various aspects of the assay have had to be optimised for this to become a possibility. 

PG had to be stabilised using glycerol to protect it from rapid photobleaching (395).  In 

addition, the DNA substrates had to be edited so as to reduce the likelihood of 

secondary structure formation. This ensures the most efficient binding between the 

two complementary strands, and allows for more PG binding, which correlates to a 

much stronger fluorescent signal. This is important to capture enzymatic activity in the 

most detail.  

 

Further to this, the DNA substrates were modified to cater for resection nucleases. To 

direct nuclease activity to one end of the substrate, BITEG was added to the terminal 

ends of the oligonucleotides. While BITEG alone proved to be insufficient to inhibit 

nuclease activity, the addition of streptavidin provided enough steric hindrance to 

prevent both 3’ and 5’ nucleases from resecting the DNA substrate.  

 

To study the kinetics of nuclease activity, a calibration curve can be included in every 

assay to either convert the fluorescence units to base pairs or to nanomolar 

concentrations of DNA. This has the advantage of eliminating the effect of 

photobleaching and indicates the detail in which nucleases can be analysed. It is 

hoped that this assay will prove to be incredibly powerful when it is used to study more 

structure-specific nucleases, as explored in Chapter 4.  
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4 Validation of a fluorescence-based toolkit for measuring structure-

specific nuclease activity and their substrates 

 

4.1 Summary 

DNA nucleases play a critical role in diverse DNA repair processes. Nevertheless, 

many nucleases have unknown or poorly characterized activities. Elucidating 

nuclease activity specificities and regulatory components can support a more definitive 

understanding of the DNA damage response in physiology and disease. Using 

fluorescence-based methods, a quick, safe, reproducible, cost-effective and 

continuous nuclease assay toolkit that could be used for small- and large- scale 

experimental assays was developed. Additionally, these data can be analysed to 

determine each reaction’s unique enzyme kinetics. A library of DNA substrates has 

been designed that can be used to study resecting nucleases and nickases, conferring 

the ability to ascertain substrate preference and enzyme directionality. The assay is 

sensitive enough to detect kinetics of repair enzymes when confronted with DNA 

mismatches or DNA methylation sites. This assay has also been extended to consider 

analysing the kinetics of human single-strand DNA nuclease TREX2, and DNA 

polymerases, which are also involved in DNA repair, and have been associated with 

various disease conditions. 

 

4.2 The combination of PicoGreen and a DNA substrate library enables the study 

of nucleic acid-active enzymes 

Following the detailed introduction about nucleases and the novel assay developed in 

Chapter 3, potential applications of this novel fluorescence-based nuclease resection 

assay will hereby be elaborated on. The aim is to replace the classical radiolabelling-

based assays (406,407). This toolkit has been optimised for a range of important 

representative nucleases, including: DNase I (a non-specific ss- and dsDNA 

nuclease), T7 exonuclease (a 5’–3’ dsDNA bacteriophage nuclease) (13), 

Exonuclease III (a 3’–5’ dsDNA E. coli nuclease) (408), human Trex2 (a 3’–5’ ssDNA 

nuclease) (409), and a viral nickase, Nt.CviPII (410). These representative nucleases 

were chosen because of their 1) availability, stability, purity, and specificity (DNase I, 

T7, ExoIII, Klenow, and Nt.CviPII) and for their 2) importance for mammalian cell 

function (TREX2). TREX2 is a mammalian keratinocyte-specific nuclease that has 
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been shown to work in a 3’–5’ non-processive manner to promote DNA repair or 

apoptosis in chemically- or UVB-induced carcinomas. Consistent with a role in 

keratinocyte carcinogenesis, polymorphisms in the Trex2 gene, and its aberrant 

expression, have been shown in human squamous cell carcinomas (179,411–414). 

 

Furthermore, a library of DNA substrates was designed to account for these enzymes’ 

differential activities. Due to oligomer length limitations, it was necessary to design 

substrates with biotin-TEG-modified 3’ or 5’ termini to control enzyme directionality. 

The addition of streptavidin to the biotinylated ends protects the substrate from 

resection at the modified end, as was demonstrated in a previous resection assay 

(182). This oligonucleotide library can be used to study a multitude of uncharacterised 

nucleases, and their substrate preferences, to elucidate their roles in DNA repair and 

genomic maintenance. To extend the power of this approach, physiologically relevant 

substrates have been designed that contain mismatches and methyl-cytosines. It has 

been posited that repair nucleases resect along a methylated sequence of DNA, thus 

permanently removing epigenetic markers. Human 5’–3’ exonuclease, Exo1, resects 

through mismatches during mismatch repair (415,416). As such, it would be interesting 

to determine whether this mismatch is permissive to nucleases in general. As the 

assay relies on the loss or gain of the DNA duplex structure, other enzymes that 

reconstitute or compromise the DNA-pairing structure could also be validated in this 

assay. Furthermore, monitoring of polymerase activity has been demonstrated on the 

complementary strand. Picogreen (PG) has previously been used to visualise 

polymerase activity, but to the best of found knowledge, this is the first time it has been 

described in a continuous assay (389).  

 

This work provides a robust and versatile toolkit to characterise DNA nucleases and 

determine their substrate preferences with high resolution and sensitivity. This assay 

can be adapted and modified to suit a wide range of DNA repair applications. 
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4.3 Materials and Methods 

 

4.3.1 Plasmid and oligonucleotide substrates 

DNA substrates were prepared by diluting a 7000 kb plasmid in HyClone waterTM (GE 

healthcare), and unmodified HPLC-purified oligonucleotide substrates (Eurofins) in 1X 

annealing buffer (Sigma-Aldrich). Oligonucleotides were designed and optimised 

against secondary structure formation using the ‘Predict a Secondary Structure Web 

Server’ 

(https://rna.urmc.rochester.edu/RNAstructureWeb/Servers/Predict1/Predict1.html) 

(114) and annealed at a 1:1 molar ratio. Table 1 shows all the oligonucleotides and 

their respective illustrations, while Table 2 lists the oligonucleotide sequences and 

modifications.  

 

Table 1 

 

https://rna.urmc.rochester.edu/RNAstructureWeb/Servers/Predict1/Predict1.html


 

88 
 

Table 2 

Oligo 

code 
Sequence (5’–3’) 

RCOL556 GATGGTTTGTTGGTCTATTACTACTTGGAGCTTGTATGATTCGAAACCTTGGAGTACTTGCCTACTTGGAGTGAACTTAG  

RCOL557 CTAAGTTCACTCCAAGTAGGCAAGTACTCCAAGGTTTCGAATCATACAAGCTCCAAGTAGTAATAGACCAACAAACCATC  

RCOL621 GATGGTTTGTTGGTCTATTACTACTTGGAGCTTGTATGATTCGAAACCTTGGAGTACTTGCCTACTTGGAGTGAAC TTAG-BITEG* 

RCOL626 CTAAGTTCACTCCAAGTAGGCAAGTACTCCAAGGTTTCGAATCATACAAGCTCCAAGTAGTAATAGACCAACAAACCATC -BITEG* 

RCOL622 CTAAGTTCACTCCAAGTAGGCAAGTACTCCAAGGTTTCGAATCATACAAGCTCCAAGTAGTAATAGACCAACAAACCATC TT 

RCOL624 CTAAGTTCACTCCAAGTAGGCAAGTACTCCAAGGTTTCGAATCATACAAGCTCCAAGTAGTAATAGACCAACAAACCATC TTTT 

RCOL616 BITEG-GATGGTTTGTTGGTCTATTACTACTTGGAGCTTGTATGATTCGAAACCTTGGAGTACTTGCCTACTTGGAGTGAACTTAG*  

RCOL620 BITEG-CTAAGTTCACTCCAAGTAGGCAAGTACTCCAAGGTTTCGAATCATACAAGCTCCAAGTA GTAATAGACCAACAAACCATC* 

RCOL617 TTCTAAGTTCACTCCAAGTAGGCAAGTACTCCAAGGTTTCGAATCATACAAGCTCCAAGTAGTAATAGACCAACAAACCATC  

RCOL618 
TTTTTTTTTTCTAAGTTCACTCCAAGTAGGCAAGTACTCCAAGGTTTCGAATCATACAAGCTCCAAGTAGTAATAGACCAACAAACC  

ATC 

RCOL619 
TTTTTTTTTTTTTTTTTTTTCTAAGTTCACTCCAAGTAGGCAAGTACTCCAAGGTTTCGAATCATACAAGCTCCAAGTAGTAATAGA  

CCAACAAACCATC 

RCOL714 GATGGTTTGTTGGTTTATTACTACTTGGAGTTTGTATGATTTGAAACCTTGGAGTACTTGTCTACTTGGAGTGAACTTAG** 

RCOL715 CTAAGTTCACTCCAAGTAGACAAGTACTCCAAGGTTTCAAATCATACAAACTCCAAGTAGTAATAAACCAACAAACCATC*** 

RCOL710 GATGGTTTGTTGGTCTATTACTACTTGGAGCTTGTATGATTCGAAACCTTGGAGTACTTGCCTACTTGGAGTGAACTTAG**** 

RCOL711 GATGGTTTGTTGGTCTATTACTACTTGGAGCTTGTATGATTCGAAACCTTGGAGTACTTGCCTACTTGGAGTGAACTTAG****  

RCOL648 GTGAACTTAG-BITEG* 

RCOL649 GATGGTTTGTTGGTCTATTACTACTTGGAGCTTGTATGATTCGAAACCTTGGAGTACTTGCCTACTTGGA  

RCOL650 GATGGTTTGTTGGTCTATTACTACTTGGAGCTTGTATGATTCGAAACCTTGGAGTACTTGCCTACTTGG  

RCOL645 BITEG-GATGGTTTGT* 

RCOL646 TGGTCTATTACTACTTGGAGCTTGTATGATTCGAAACCTTGGAGTACTTGCCTACTTGGAGTGAACTTAG  

RCOL647 GGTCTATTACTACTTGGAGCTTGTATGATTCGAAACCTTGGAGTACTTGCCTACTTGGAGTGAACTTAG  

RCOL611 CTAAGTTCACTCCAAGTAGGCAAGTACTCCAAGGTTTCGAATCATACAAGCTCCAAGTAG  

RCOL610 CTAAGTTCACTCCAAGTAGGCAAGTACTCCAAGGTTTCGA  

RCOL609 CTAAGTTCACTCCAAGTAGG 

RCOL562 GATGGTTTGTTGGTCTATTA 

RCOL560 GATGGTTTGTTGGTCTATTACTACTTGGAGCTTGTATGAT  

RCOL558 GATGGTTTGTTGGTCTATTACTACTTGGAGCTTGTATGATTCGAAACCTTGGAGTACTTG  

RCOL739 TCGAAACCTTGGAGTACTTGCCTACTTGGAGTGAACTTAG  

RCOL738 CCTACTTGGAGTGAACTTAG 

 

*BITEG represents the biotin-TEG modification 

**T bases in bold indicate sites of C>T base changes to generate a mismatched substrate 

***A bases in bold indicate sites of G>A base changes to generate a mismatched substrate 

****C bases in bold indicate methylcytosines 

 

4.3.2 Nucleases and buffers 

The nucleases used were RQ1 RNase-Free DNase I (Promega), T7 exonuclease 

(New England Biolabs), Exonuclease III (New England Biolabs), Trex2 (Stratech), 

Klenow Fragment (3’ → 5’ exo-; New England Biolabs). In preparation for each 

assay, nucleases used were diluted on ice in their appropriate storage buffers, 

omitting glycerol. All storage buffers and reaction buffers were made according to the 

recipes available on their respective NEB and Thermo Fisher web pages. DNase I 

storage buffer (10mM HEPES (pH 7.5), 10mM CaCl2 and 10mM MgCl2) and reaction 
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buffer (400mM Tris-HCl (pH 8.0), 100mM MgSO4 and 10mM CaCl2), T7 exonuclease 

storage buffer (10 mM Tris-HCl, 5 mM DTT, 0.1 mM EDTA, (Ph 8 at 25ºC)) and 

reaction buffer (50 mM potassium acetate, 20 mM Tris-Acetate, 10 mM magnesium 

acetate, 1 mM DTT), and Exonuclease III storage buffer (5 mM KPO4, 200 mM KCl, 

5 mM β-ME, 0.05 mM EDTA, 200 µg/mL BSA, (pH 6.5 at 25ºC)) and reaction buffer 

(10 mM Bis-Tris-Propane-HCl, 10 mM MgCl2, 1 mM DTT (pH 7 at 25ºC)), Trex2 

storage buffer (20 mM Tris-HCl (pH 8), 200 mM NaCl, 5 mM DTT) and reaction 

buffer (50 mM potassium acetate, 20 mM Tris-acetate, 10 mM magnesium acetate, 

100 µg/mL BSA, (pH 7.9 at 25ºC)) and Klenow Fragment storage buffer (25 mM Tris-

HCl, 1 mM DTT, 0.1 mM EDTA, (pH 7.4 at 25ºC)) and reaction buffer (50 mM NaCl, 

10 mM Tris-HCl, 10 mM MgCl2, 1 mM DTT, (pH 7.9 at 25ºC)) were all filtered prior to 

use, and autoclaved where possible.  

 

Trex2 (Stratech), Klenow Fragment (3’ → 5’ exo-; New England Biolabs). In 

preparation for each assay, nucleases used were diluted on ice in their appropriate 

storage buffers, omitting glycerol. DNase I, T7 exonuclease, Exonuclease III, Trex2 

and Klenow fragment storage buffers and reaction buffers were all filtered prior to 

use, and autoclaved where possible.  

 

4.3.3 Preparation of PicoGreen 

The PG reagent from the Quant-iTTM PicoGreenTM dsDNA Assay Kit (Invitrogen) was 

prepared immediately before use by making a 1:200 dilution of the PG in TE buffer (10 

mM Tris-HCl, 1 mM EDTA, pH 7.5) and 40% (v/v) glycerol.    

 

4.3.4 Continuous assay experimental procedure 

Each DNA substrate reaction mixture contained 50 nM DNA substrate, 1X reaction 

buffer (specific for each enzyme), 50 µL PG solution, 0.02 mg/mL streptavidin (cat. 

21125, Thermo Fisher Scientific) if required, 0.25 mM dNTPs if required, 5 µL enzyme 

or relevant storage buffer. For the DNA nucleases, Milli-Q water was added to bring 

the total reaction volume to 100 µL. Reaction mixtures were prepared on ice and 

samples were tested in a 96-well, black flat bottom plate (cat. M9685, Sigma-Aldrich). 

The final components added were the storage buffers, then the enzyme mixtures to 

start the reaction.  
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A CLARIOstar microplate reader (BMG labtech) was pre-heated to 37°C. Samples 

were read every 40-50 s for 30-60 mins. Excitation and emission wavelengths used 

were 483-15 nm and 530-30 nm, with a focal height of 10.2, 20 flashes per well, with 

a shake before each read.   

 

4.3.5 Data analysis 

For statistical analysis of the data, one-way ANOVA with the Tukey’s post-hoc tests 

were used. This was implemented using GraphPad Prism v7.03. An example of the 

workflow is available in the appendix.  
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4.6 Results 

Having optimised PG and the DNA substrates in the previous chapter, this 

fluorescence-based toolkit was subsequently used to study a selection of nucleases 

with different activities and structural preferences. In addition, the substrates were 

further modified to study the processivity of nucleases on physiologically-appropriate 

substrates containing either DNA mismatches, reminiscent of substrates of mismatch 

repair, or methyl-cytosines, to mimic the decorated structures of genomic DNA.  

 

4.7 Validating the assay for 3’–5’ exonuclease: ExoIII 

ExoIII is a well-characterised 3’–5’ exonuclease that resects from blunt end substrates, 

and short 3’-overhangs, but is inhibited by 4-nt 3’-overhangs. These activities were 

replicated in this fluorescence-based assay. For ease, each assay is shown with a 

stick and ball diagram of the substrates used. The table (Fig. 1a) shows the substrates 

that have been used and their respective modifications.  

 

A calibration curve was prepared in order to determine the linear range within which 

the fluorescent signal is directly proportional to the DNA substrate concentration with 

the addition of BITEG and streptavidin (Fig. 1b). The linear range is the same as with 

the unmodified DNA substrate (observed in Chapter 3, Fig. 9).  

 

A range of ExoIII titrations were performed on three different substrates: blunt, 2-nt 

and 4-nt 3’overhangs (Fig. 1c-e). The preference of ExoIII for blunt and 2-nt overhangs 

is known, as is the inhibitory effect of 4-nt 3’-extensions, as these activities are often 

exploited for various sequencing and DNA detection techniques (417–420) (Fig. 1f). 

After determining the rate of resection on each substrate (Fig. 1g), the results suggest 

that the assay can detect previously reported activities and is suitably sensitive to 

determine substrate preference. Indeed, ExoIII is completely inhibited by 4-nt 

overhangs, and is resected at an equally low rate as the negative control, which has 

both 3’-ends blocked with BITEG and streptavidin. Unexpectedly, it appears that the 

reaction rate decreases on the blunt substrate and the 2-nt overhang substrate as 

enzyme concentration increases. It is possible that this inhibition is observed because, 

at higher rates, a larger pool of reaction products will be created, and ExoIII may bind 

to these reaction products instead of the full-length oligonucleotide. These reaction 
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products may function as ‘decoy’ molecules that slow ExoIII-mediated DNA 

degradation. 
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FIGURE 1 

 

Figure 1 | Validation of the continuous assay for 3’ – 5’ nucleases 

a, Key to stick and ball illustrations of the substrates. The parallel horizontal lines (=) represent the 

dsDNA substrate, and the coloured-in circle represents the combination of both biotin and streptavidin 

(●). b, Calibration curve depicting the fluorescent signal according to increasing concentrations of 80-

bp oligomer substrate with one terminal BITEG modification and in the presence of 0.02 mg/ml 

streptavidin. c-e, ExoIII titrations as depicted in the figures on 50 nM substrates presenting a blunt 

terminus (c), 2-nt (d) or 4-nt (e) 3’ overhang (multi-coloured cartoons), and negative controls (black 

cartoons) containing BITEG-modified 3’-ends. Results were normalised against their respective 

negative controls (absence of ExoIII) and converted to bp. The grey curve in (e) shows the equivalent 

reaction without an overhang, highlighting the loss of activity with a 4 bp 3’ overhang. f, Rate of resection 

by ExoIII on the blunt (red), 2-nt (orange) and 4-nt (green) 3’ overhangs and the negative control with 

BITEG-treated 3’-ends. Minimal loss of activity is observed with a 2-nt overhang, in contrast to almost 
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complete loss of activity with a 4-nt overhang. g, Comparison of ExoIII and DNase I activity on their 

respective substrates. Error bars represent SEM; n=3 in all cases.  

 

4.8 Validating the assay for 5’–3’ exonuclease: T7 exonuclease 

Having demonstrated that this assay is suitable for 3’–5’ nucleases, it was then 

confirmed that this assay could also be used to study 5’–3’ nucleases. T7 Exo activity 

was investigated on a selection of substrates, including blunt, 2-, 10- and 20-nt 5’-

overhangs (Fig. 2a). T7 Exo shows no significant difference between the affinity for 

blunt and 2’-nt 5’-overhangs. As had previously been observed, the rate of T7 Exo-

mediated resection with a 20-nt overhang was approximately 50% of a short 

overhang(13) (Fig. 2b). Unexpectedly, as the length of the overhang increased, 

resection was slightly delayed. However, after resection commenced, it appeared to 

take place at a faster rate on the intermediate overhangs, seeing as the reaction 

culminates at approximately the same time point on all substrates (p<0.002 between 

*S and *S+10, and p<0.0001 between *S and *S+20) (Fig. 2b). Regardless, difference in 

rate is rather minimal. In contrast to ExoIII, T7 Exo is able to resect longer overhangs, 

and is restricted, but not inhibited, by the 20-nt overhang.  

 

FIGURE 2 

 

 

Figure 2 | T7 Exo is inhibited by 20-nt 5’ overhangs  

a, 12 nM T7 Exo-mediated resection on 50 nM substrates presenting a blunt (red), 2- (orange), 10- 

(green) and 20-nt (purple) 5’ overhang with. The negative control was synthesised with two 5’-BITEG 

modifications (blue). Results were normalised against their respective negative controls and converted 

to bp. b, Analysis of the rate of resection on the substrates in (a). Error bars represent SEM; n=3 in all 

cases; **p<0.01, ****p<0.0001. 
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4.9 Studying enzyme resection through single-nucleotide mismatches  

During mismatch repair, DNA nucleases resect through the mismatch to generate a 

single-stranded tract of DNA along which DNA polymerases can replicate (75,421–

425). It has been suggested that these resection events may even remove epigenetic 

signatures on the DNA, such as 5-methyl-cytosine (426), which may then be 

permanently lost when repaired with an unmodified cytosine, and not targeted by de 

novo methyltransferases, Dnmt3a or Dnmt3b (427,428). It was therefore tested if this 

assay can detect differences in resection rates through mismatched and methylated 

substrates. 

 

ExoIII activity was investigated on mismatched substrates compared to matching 

substrates and identified some unexpected activities (Fig. 3a–b). First, ExoIII was 

observed to resect the two perfectly matching substrates at substantially different 

rates, resecting *S at a 1.7–2.0-fold faster rate than S* (Fig. 3c). *SC>T contains a 

selection of C>T substitutions, whilst G>AS* contains G>A substitutions, generating T:G 

and A:C mismatches, respectively. The presence of the T:G mismatches slows the 

rate of resection 0.09 – 0.16X compared to its perfectly matching counterpart (p<0.001 

for 5 nM ExoIII; p<0.05 for 10 nM ExoIII; Fig. 3d). Conversely, incorporating A:C 

mismatches increases the rate of resection by 1.5–1.8X (p<0.0001 with both 5 and 10 

nM ExoIII). There is some evidence for a nucleotide preference for ExoIII, although 

this does not appear to have been repeated (170). The rate of resection on both the 

perfectly matching substrate appears to have a delayed start, particularly for S*. 

Interestingly, *S is then resected at an accelerated rate compared to both mismatched 

substrates. The mismatches resect at a slower rate but, as their resection begins at 

the offset, the reaction on the mismatched substrates and *S finish at the same time 

point for both 5 and 10 nM ExoIII.  

 

T7 exonuclease is considered to be sequence-independent as it lacks a defined DNA 

binding-motif, similar to other FEN family nucleases that bind DNA in a nonspecific 

manner (13,429). Nevertheless, it has previously been suggested that it might resect 

different nucleotides with variable efficiency (430). Indeed, T7 Exo was observed to 

resect the perfectly complementary *S with more difficulty than S* (Fig. 3e–g), which 

was noticeable at higher concentrations of T7 Exo (Fig. 3h). Similarly with T7 Exo, this 

assay detected a substrate strand preference (Fig. 3c and 3h).  
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The addition of four T:G mismatches did not slow or accelerate T7 Exo activity. 

However, incorporating A:C mismatches into the more resistant substrate did appear 

to slow resection, and this general trend was observed across all concentrations of T7 

Exo. The effect of the mismatches was more evident at lower T7 Exo concentrations 

(p<0.05 for 7.5 nM and p<0.01 for 2 nM T7 Exo). These data suggest that mismatches 

may only be inhibitory to T7 Exo in certain sequence contexts. Indeed, T7 Exo has 

been shown to recognise single-nucleotide mismatches in an SNP-detection system 

(431).  
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FIGURE 3 
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Figure 3 | ExoIII and T7 Exo resect through single-nucleotide mismatches  

a, 5 nM and b, 10 nM ExoIII was added to perfectly matched substrates (*S and S*) and substrates 

containing four T:G or A:C mismatches, (*SC>T and G>AS*, respectively), and the resection reaction 

followed. Standard curve is represented by the grey dotted lines. c, Calculated resection rate of ExoIII 

on the complementary and mismatched substrates based on maximum gradients in (a) and (b). d, Time 

(seconds) until the ExoIII reaction reaches completion based on the point at which the reaction plateaus. 

e, 2 nM, f, 7.5 nM and g, 10 nM T7 Exo was added to complementary substrates (S* and *S) and 

substrates containing four T:G or A:C mismatches (C>TS* and *SG>A, respectively). Standard curve is 

represented by the grey dotted lines. h, Calculated resection rate of T7 Exo on the complementary and 

mismatched substrates. Error bars represent SEM; n=3 in all cases; *p<0.05, **p<0.01, ***p<0.001, 

****p<0.0001. 

 

 

 

 

 

 

 

 

 

  



 

99 
 

4.10 Studying enzyme resection through methylated cytosines  

 

FIGURE 4 
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Figure 4 | Increased methylcytosine content delays ExoIII-mediated resection; but does not 

affect the rate of resection of either ExoIII or T7 Exo 

a, 5 nM and b, 10 nM ExoIII was added to a non-methylated substrate, a substrate containing one 

methylated cytosine, and a substrate containing four methylated cytosines (*S, *S1M and *S4M, 

respectively). Standard curve is represented by the grey dotted lines. c, Time (seconds) until the ExoIII 

reaction reaches completion on the methylated and unmethylated substrates based on the point at 

which the graphs plateau in (a) and (b). d, Calculated resection rate of ExoIII based on maximum 

gradients in (a) and (b). e, 6 nM and f, 12 nM T7 Exo on non-methylated and differentially methylated 

substrates. Standard curve is represented by the grey dotted lines. g, Time (seconds) until the T7 Exo 

reaction reaches completion on the methylated and unmethylated substrates based on point at which 

the graphs plateau in (e) and (f). h, Calculated resection rate of ExoIII. Error bars represent SEM; n=3 

in all cases; *p<0.05, **p<0.01, ***p<0.001.  

 

Neither ExoIII nor T7 Exo is substantially inhibited by methylated DNA in this 

experimental system. A non-methylated substrate, a substrate containing one 

methylated cytosine, and a substrate containing four methylated cytosines were each 

treated with either 5 nM or 10 nM ExoIII (Fig. 4a and 4b, respectively). ExoIII shows a 

small but significant trend towards taking longer to fully resect substrates with 

increasing numbers of methylated cytosines (p<0.002 for four methylated cytosines, 

Fig. 4c). This is most apparent at lower concentrations of ExoIII. The maximum 

reaction rate at which ExoIII resects through the methylated sites is not significantly 

different from the non-methylated substrate (Fig. 4d). This indicates that while there 

may be some hindrance in reaction initiation, once ExoIII begins to resect, the methyl 

groups are inconsequential. ExoIII may be indifferent to methylated substrates 

because bacterial DNA is methylated as part of the bacterial immune response against 

incoming DNA, including phages, and also influences bacterial gene expression and 

DNA repair. It therefore would not be farfetched to postulate that ExoIII is required for 

cleaving methylated DNA as well as non-methylated DNA (432). Furthermore, there is 

no significant difference in the time it takes for the reaction to reach completion. T7 

Exo showed no significant effect on either maximum rate or time taken to resect in the 

presence of methylated cytosines (Fig. 4g–h). Currently, there is no data on the effect 

of methyl-cytosine on either ExoIII or T7 Exo resection with which to compare.  
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4.11 Validation of nuclease activity on DNA nicks and gaps, and its use in 

studying DNA nickases in combination with processive nucleases 

 

FIGURE 5 

 

Figure 5 | ExoIII and T7 Exo preferentially resect from a nick than a gap 

a, Schematic of the dsDNA substrate indicating the preferred nicking sites (yellow) and the least 

favourable nicking sites (red) of Nt.CviPII. b–c, Schematic of the dsDNA substrates presenting a nick 

or gap at either the 3’-end for ExoIII, or the 5’-end for T7 Exo. d, ExoIII is active against simulated nicked 

substrates. 40 nM ExoIII was added to a blocked substrate (blue) and related substrates designed with 

either a nick (red) or a gap (orange) towards the 3’ end of one strand, showing similar activity against 

both modified substrates. Standard curve is represented by the grey dotted lines. e, Quantification of 

the Nt.CviPII nickase enzyme activity coupled to ExoIII. Nt.CviPII was added to the blocked substrate, 

either with (purple) or without (green) 40 nM ExoIII. Controls from b) are shown for comparison. f, 

Calculated resection rate of nicked and gapped substrates by ExoIII, extracted from the maximum 

gradient. Addition of the nickase significantly increases the resection rate, highlighting that the nickase 

activity is detected. g, T7 Exo is active against simulated nicked substrates. 12 nM T7 Exo was added 

to substrates with a nick (red) or a gap (orange) towards the 5’ end of one strand. Negative control is in 

blue. Standard curve is represented by the grey dotted lines. h, Quantification of the Nt.CviPII enzyme 

activity coupled to T7 Exo. Nt.CviPII was added to the blocked substrate, either with (purple) or without 

(green) 12 nM T7. Negative control is in blue. i, Calculated resection rate of nicked and gapped 

substrates by T7 Exo, extracted from the maximum gradients in (g) and (h). Addition of the nickase 

significantly increases the resection rate, highlighting that the nickase activity is detected. Error bars 

represent SEM; n=3 in all cases; *p<0.05, ****p<0.0001.  
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Nicks and gaps are introduced as intermediates in DNA repair mechanisms, yet they 

need to be rapidly processed to prevent the accretion of double-strand breaks at 

replication forks, possibly leading to cell death (182,433). Due to the physiological 

relevance of nicks and gaps, the nucleolytic activity of ExoIII and T7 Exo on these 

structures was explored. In order to test this, a combination of substrates was used 

that had been designed to contain a nick or gap, in conjunction with blocking at both 

ends (both 5’ or 3’, respectively) to prevent resection from the terminal ends. A 

recently-purified nickase, Nt.CviPII (410) which is known to possess inherent 

exonuclease activity, was also included. Nickases cleave just one strand of duplex 

DNA, breaking the phosphodiester backbone. Nt.CviPII preferentially cuts CCA and 

CCG, but cuts less efficiently at CCT (410). One strand of the dsDNA substrate 

contains five evenly distributed CCA motifs, while the opposite strand only contains 

two CCT motifs, and therefore most of ExoIII’s activity should be directed on the first 

strand (Fig. 5a). To minimise the exonuclease activity of Nt.CviPII, a low dilution of the 

nickase was used. 

 

These results found that ExoIII functions marginally better on gaps rather than nicks 

(p<0.0001) (Fig. 5d and 5f), and this may reflect its role in base excision repair where 

it resects from an abasic site (408). ExoIII is nevertheless able to resect from a nick, 

and the rate is comparable to its activity on blunt ends, as previously observed (434). 

ExoIII also resected from the nickase-induced nicks at an almost equal rate to the 

substrates designed to contain a single nick (Fig. 5e–f). These data demonstrate that 

Nt.CviPII is a very fast acting nickase against its preferred substrate sequences as 

there is no delay in the start of ExoIII-mediated resection.  

 

As with ExoIII, T7 Exo also resects from both nicks and gaps. It has a more defined 

preference for gaps, showing a rate approximately 2.5-fold greater than for nicks 

(p<0.0001; Fig. 20g and 20i). T7 Exo also resects from nicks generated by a nickase 

almost as efficiently as from a substrate already presenting a single nick (Fig. 5h–i). 

Typically, T7 endonuclease cleaves at nicked sites during infection to generate DNA 

double-stranded breaks that are susceptible to T7 Exo. As such, it is perhaps a 

redundant property of T7 Exo to resect from a nick (435). 
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4.12 Additional DNA enzymes that degrade or synthesise dsDNA can also be 

studied using this assay. 

 

FIGURE 6 

 

Figure 6 | Validation of the assay for alternative enzymes that digest ssDNA and generate dsDNA 

a, Mammalian Trex2 digestion of single stranded DNA quantified using the PG assay. Single-stranded 

60-mer (orange), 40-mer (green) and 20-mer (purple) DNA substrates were treated with 100 and 200 

nM Trex2. Robust digestion was observed in each case. b, Time (seconds) until reaction completion 

based on the point at which the graphs plateau in (a). c, Rate of digestion per nM Trex2. Trex2 degrades 

DNA at a similar rate irrespective of the length of the DNA substrate. d, The polymerase activity of the 

Klenow fragment polymerase determined using the PG assay. Three substrates with a 20-, 40- and 60- 

and overhang with a total 80 bases were incubated with 1 nM Klenow fragment. e, Calculated 

polymerisation rate of the Klenow fragment. A clear preference is shown for longer overhangs. Error 

bars represent SEM; n=3 in all cases; ****p<0.0001. 

 

PG has been demonstrated to be an effective dye that can be used to study dsDNA 

nucleases from viruses and bacteria. Given the low, but not insignificant, fluorescent 

signal observed for the single-stranded 80-mer control in the standard curves, it was 

reasoned that this assay may have the sensitivity to address ssDNA nucleases, such 

as human Trex2 (436). This was confirmed by showing that the assay is sensitive 

enough to detect a Trex2 concentration-dependent decrease in fluorescence from 

ssDNA substrates ranging in size from 60 to 20 nts (Fig. 6a). This indicates that this 

assay has considerable potential for an even wider range of DNA nucleases, and very 
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high levels of sensitivity in order to capture such activity in detail. As expected, it takes 

longer for Trex2 to digest longer substrates (Fig. 6b). In terms of reaction kinetics, rate 

of resection is generally consistent, ranging between 1.7 x 10-4 – 3.4 x 10-4 nt sec-1 

(Fig. 6c), which is comparable to previously published rates (437). 

 

Since this assay has been shown to be powerful tool for observing nuclease activity, 

an attempt was made to study whether this assay could capture the reverse activity 

and visualise an increase in fluorescence upon addition of polymerase. To investigate 

this, the use of the well-characterised Klenow fragment polymerase (KF) was 

employed. KF requires a short DNA primer fragment hybridised to a ssDNA fragment 

along which it can replicate. A selection of 80-mer oligomers hybridised to a 20-, 40-, 

60- and 80-mer oligomer were used (Fig. 6d). The data clearly indicate that KF-

dependent blunting of the 20mer 5’-overhang is possible to visualise in the context of 

this real-time assay. KF appears to be unable to extend the 20- and 40-mer primers 

to produce the full-length 80 bp dsDNA product. KF-elongation of both substrates are 

inhibited once the primers have been extended to 50- or 55-mer lengths (Fig. 6d). It is 

understood that KF is sensitive to secondary structures in the ssDNA template, and 

the presence of a small hairpin adjacent to this region may be responsible for inhibiting 

polymerisation past this point. Previously, a terminal hairpin was not observed to inhibit 

KF processivity,  although an internal hairpin, such as in this case, may have a different 

impact on KF (438). Analysis of the rate of replication suggests a preference for a 

longer ssDNA template, as KF polymerises at a much faster rate on the 60mer 5’-

overhang, while the 40- and 20-mer 5’-overhangs are processed at a three-fold lower 

rate (Fig. 6e). 
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4.13 Discussion 

A highly-sensitive, fluorescence-based nuclease assay was further developed to study 

nuclease activity in a continuous manner. In addition, a library of substrates was 

validated to investigate a wide number of single- and double-stranded DNA nucleases 

and polymerases. This assay can be used to calculate reaction kinetics and reaction 

completion times, providing a powerful quantitative tool for characterising enzymes 

active on nucleic acids. This technique has been successfully validated using well-

studied enzymes and, in the process, identified previously unreported details of their 

mechanisms.   

 

The continuous nuclease assay developed herein has important applications in 

comparing the relative activities of enzymes; both known nucleases and – more 

importantly – yet uncharacterised DNA metabolizing proteins. In our assay, ExoIII was 

validated to hydrolyse the DNA substrate at a faster rate than DNase I. DNase I 

exhibits a relatively low affinity for DNA, and higher affinity strains have been 

engineered for treatment of cystic fibrosis (439,440). DNase I may have evolved to be 

less efficient as it can digest all structures of DNA, irrespective of whether it is single- 

or double-stranded, and deregulation of this activity could be disastrous for the cell. 

This limitation in its binding may exert some control to prevent inappropriate activity 

from causing cellular damage. ExoIII shows a greater rate of resection per enzyme 

protomer, yet this is counteracted by its very limited structural specificity. The product 

of ExoIII resection during E. coli base excision repair is a single-stranded tract of DNA 

that can be much more easily repaired than the damage caused by DNase I (441,442).   

 

Substrate specificities were also compared, as indicated by the preference of ExoIII 

for 3’-overhangs shorter than 4-nt and T7 Exo’s predilection for 5’-overhangs of 10-nt 

or fewer. As T7 Exo typically resects DNA from short 5’-overhangs introduced by T7 

endonuclease during the infection process in E. coli, the results are consistent with its 

behaviour in vitro and in vivo (13,435).  

 

In addition to substrate structures, other physiologically relevant substrates containing 

single-nucleotide mismatches and methylcytosines were considered. Unexpectedly, 

we found that ExoIII and T7 Exo exhibited a preference for one strand of the DNA 

substrate. There is evidence of a nucleotide preference for ExoIII; C>A~T>G, although 
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it seems that it depends on the sequence context (170). Nevertheless, the results of 

their mismatched counterparts do coincide with published ExoIII preferences (170). 

As such, this confirms previously reported preferences in both a qualitative and 

quantitative way. Work is continuing in the Chahwan lab to understand the 

mechanisms of ExoIII, and so it is hoped that its nucleotide preferences will be 

thoroughly elucidated.  

 

As for the methylated substrates, lower concentrations of ExoIII were observed to be 

slightly inhibited by the presence of multiple methyl-cytosines in that resection is 

delayed. The rate of resection, however, remains consistent on all substrates. At 

higher concentrations, ExoIII does not appear to distinguish the methyl-cytosines. T7 

Exo also shows no alteration in activity from the methyl groups. Its host, E. coli, 

contains a small percentage of methylated adenines and cytosines, and it appears 

that T7 Exo does not discriminate against them. This is in spite of a smaller percentage 

of methylated DNA ending up in the bacteriophage’s progeny DNA than is present in 

the E. coli genome (443).  

 

While this assay is predominantly useful for studying processive enzymes, it is 

possible to combine a nickase with an enzyme that resects from nicks, as indicated 

with nickase Nt.CviPII in conjunction with either ExoIII or T7 Exo. This is a powerful 

method to identify nicking or endonuclease activities, and study their efficiency based 

on when resection commences.  

 

The superior sensitivity of PG in this assay also expanded the repertoire of enzymes 

to include ssDNA nucleases, such as Trex2. Trex2 is one of at least eight autonomous 

exonucleases in human cells, and is likely recruited to 3’-termini to alleviate blocks 

during replication arrest (179). It binds DNA very tightly, and this affinity for its 

substrate has been captured here due to its very high processivity. In addition to the 

study of enzymes that digest DNA, the study was extended to enzymes that 

polymerise DNA, such as the nuclease-deficient Klenow fragment polymerase. Its 

polymerase activity is ten-fold more rapid, for example, than ExoIII is at resecting DNA 

in their respective buffers. Therefore, the assay was used successfully to measure 

and differentiate between these vastly different protein kinetics. 
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Characterisation of DNA nucleases is integral for demystifying their roles in 

maintenance of genomic integrity. Loss of nucleases, or mutations in their structural 

or functional domains, can have disastrous effects on the health of an organism.  For 

example, CTIP nuclease has been associated with Jawad and Seckel Syndromes 

(444), Exo1 is involved in mutated in some cancer patients (445–447) and loss of 

TREX1 mediates an auto-immune disease known as Aicardi-Goutières Syndrome 

(448,449). The impact of these mutations could affect resection rates or binding affinity 

to the DNA or interacting partners, and it is posited that this assay may be sensitive 

enough to capture and compare these characteristics. Interacting proteins may also 

influence nuclease activity, as has been observed in the MRN complex (15), or indeed 

by the addition of auxiliary RPA for optimal activity of the RecQ helicase (396,450). 

Nucleases may also represent anticancer targets, and this assay could offer an 

alternative method for studying the effect of future anticancer drugs on the activity of 

their target nuclease (451). In a similar instance, a discontinuous assay using PG was 

successfully performed to study the inhibitory role of actin on DNase I (406).  

 

Many nucleases have been well-characterised, including those used in the 

optimisation of this assay, while many more have yet to be characterised at all, let 

alone identified. As such, this assay represents a safe, easy, rapid, robust, continuous 

study of dsDNA and ssDNA nucleases and polymerases. It is believed that it has the 

potential to revolutionise quantitative assessment of nucleic acid-active enzymes in a 

vast range of applications. Moreover, it is postulated that this assay would be even 

more applicable in studying RNA nucleases, which are historically less known than 

DNA nucleases even though they are more abundant throughout various genomes 

(452–456).  
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5 Chemical inhibition of Kat5 impacts efficiency of class switch 

recombination 

 

5.1 Summary 

Class switch recombination (CSR) is a process of secondary antibody diversification 

whereby the preliminary antibody isotype IgM is exchanged for an alternative isotype. 

This grants B cells different effector functions and is therefore vital for immunity. CSR 

is dependent on both transcription and DNA repair and is orchestrated by key histone 

modifications that recruit appropriate factors to specific sites along the antibody locus. 

Kat5 acetylates histone H4 at numerous sites in its N-terminal tail to unwind the local 

chromatin and make it accessible to transcription factors. Kat5 is also involved in 

canonical DNA repair through activation of DDR signalling (18,26,200). Taken 

together, this evidence suggests that Kat5 may have a role in CSR. An in vitro system 

was used to test this hypothesis. Chemical inhibitors differentially targeting Kat5 

binding and catalytic activities were tested in the context of DNA repair and were 

subsequently used to inhibit Kat5 in cells stimulated to undergo CSR. Results indicate 

that inhibition of Kat5 using the inhibitors iChromo and TH1834, respectively, do affect 

class switching efficiencies, providing evidence for a role for Kat5 in B cell maturation.  

 

5.2 Kat5 is involved in transcription, canonical DNA repair, and antibody 

diversification 

Kat5 is responsible for the acetylation of histones, particularly H2A, H3 and H4 

(200,457). The association of histone acetylation with transcriptionally active regions 

has been well documented. In particular, Histone H4 N-terminal acetylation (H4ac) 

increases sharply at active yeast promoters (202), and early reports found yeast cells 

unable to acetylate their target lysine (K) residues on the H4 tails exhibited altered 

patterns of transcription. Kat5 has been mapped to promoter regions of active genes 

in mouse embryonic stem cells (203), and treatment of mammalian cells with histone 

deacetylase inhibitors enhances gene expression (204).   
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During canonical DNA repair, Kat5 is involved in de-compaction of chromatin during 

canonical homologous recombination (HR). It is thought to play a substantial role 

influencing DNA repair through HR (26), yet mutations in the S. cerevisiae NuA4 

complex, the homologue of mammalian Kat5 complex, renders cells hypersensitive to 

DNA-damage reagents and impairs DSB repair by NHEJ (201). Kat5 has also been 

associated with DSB repair in mammalian cells through nucleosome binding and 

activation of ATM kinase (40,42).   

 

Kat5 may be implicit for CSR through its roles in transcription and DNA repair. Indeed, 

active transcription provides the single strand DNA substrate for AID-induced mutation 

(458–460). Acetylating histones in this vicinity of antibody promoters allows 

transcription machinery clear access to antibody loci; thereby enhancing the 

mutagenic process of AID (246,461).  

 

Equally, CSR is dependent on DSB repair though NHEJ (98,462). Through ATM, Kat5 

mediates phosphorylation of H2AX (γH2AX), which represents a typical marker for 

DNA repair both at DSBs to initiate DDR signalling, and during CSR to stimulate class 

switching (200,224). Furthermore, a histone target of Kat5, H3K9ac, is known to 

associate with S regions that undergo recombination. It precedes AID-dependent 

mutations, and therefore Kat5 may even support AID recruitment (463). One curious 

observation links loss of AID expression with a concomitant depletion of H4ac in B 

cells stimulated for CSR, providing some suggestion of an intimate relationship 

between Kat5 acetylation and AID (464). Additionally, Kat5 is specifically upregulated 

in the GC B cell environment. While, comparatively, the increased expression of AID 

in B cells is far more extreme, the upregulation of Kat5 is potentially biologically 

significant in the context of CSR (319) (Fig. 1). Finally, an unpublished genome-wide 

co-immunoprecipitation CSR screen (Edelmann, Scharff, and Chahwan; unpublished) 

has identified many of the Kat5 complex components to be crucial for antibody 

diversification. 
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FIGURE 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 | Kat5 is marginally upregulated in B cell germinal centres  

Histogram illustrates the relative expression of Kat5 and AID in B cell populations denoted from left to 

right according to their developmental maturity. ProB populations represent cells undergoing primary 

diversification processes of V(D)J recombination, as shown by the increased expression of RAG2. AID 

is specifically upregulated in germinal centre (GC) B cells to drive secondary antibody diversification 

processes, and slightly upregulated post-V(D)J recombination. Kat5 expression fluctuates between 

different B cell populations but is slightly upregulated at later stages of V(D)J recombination and in the 

GC (319). 

 

5.3 Kat5 signalling cascade during DSB repair and implications for cancer 

Immediately following the generation of a DSB, the repressive chromatin complex, 

Suv39h1/kap-1/HP1, is recruited to limit the mobility of the broken ends and hold them 

in close proximity (24,465,466). Kat5 is recruited to the break site by Ago2 and a DSB-

induced RNA guide (467). Kat5 is acetylated by acetyl-CoA, permitting its subsequent 

acetylation of various lysine residues along the H4 tail (H4ac) (468). Alternatively, Kat5 

can be phosphorylated at Tyr44 within its chromodomain by the global, hyperactive c-

Abl kinase (469). The chromodomain is a specialised binding motif that recognises 

methyl groups on lysine residues, particularly on histone proteins (25). This 
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modification permits Kat5 binding to H3K9me3 (469) (Fig. 3). Concordantly, treatment 

with Kat5 preparations from IR-treated cells with λ-phosphatase reduces binding 

affinity of Kat5 to this motif (469). Phosphorylation of the Kat5 chromodomain in turn 

enables Kat5-dependent acetylation of ATM kinase, triggering its monomerisation to 

its active form. Interestingly, the phosphorylation status of Kat5 bears no effect on its 

acetylation of H4, yet interaction between Kat5 and H3K9me3 is necessary to 

stimulate Kat5-mediated acetylation of ATM at Lys-3016 (469). Therefore, H3K9me3 

binding functions as an allosteric regulator by increasing Kat5 catalytic activity (28,43). 

Mutations within the chromodomain that prohibit this interaction also attenuate Kat5 

acetylation of ATM. Correspondingly, mutation of the ATM acetylation site inhibits 

activation of ATM’s kinase activity, indicating Kat5 is required for its activation (43). 

Monomeric ATM phosphorylates a number of targets, including H2AX, which is a 

common marker for DSB repair and also functions as a binding site for repair proteins 

(44,470–472). ATM also phosphorylates the kap-1 chromodomain, removing it from 

H3K9me3, and thus generating more binding sites for Kat5 (24,28). 

 

Dysregulation of Kat5 has been implicated in various cancers. This relationship with 

tumorigenesis is likely due to its interactions with signalling proteins involved in 

maintaining genome integrity (21,28) as well as transcription factors known to 

participate in oncogenic pathways (21,473). Reduced expression of Kat5 has been 

observed in prostate cancer (474) and in 65% of metastatic prostate cancer biopsies 

(475). Similarly, low levels of Kat5 or its aberrant cellular localisation has been linked 

to breast cancer (476,477). 
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FIGURE 2 

 

 

 

Figure 2 | Kat5 DNA damage repair signalling cascade to mediate effective DSB repair 

Following a DSB, Kat5 is recruited to break sites. Phosphorylation by c-Abl kinase permits Kat5 binding 

to H3K9me3 via its chromodomain. This exerts an allosteric effect on Kat5 to acetylate ATM, triggering 

ATM autophosphorylation and monomerization into its active form. ATM then phosphorylates H2AX, 

which recruits downstream DNA repair factors. Independently of c-Abl, Kat5 acetylates H4 induce local 

chromatin unwinding and to ensure the underlying DNA is accessible to transcription and DNA repair 

proteins. 

 

No known role for Kat5 in CSR has yet been described. Due to compounding evidence 

whereby histone acetylation is associated with active transcription and canonical DNA 

repair (Fig. 3), in addition to the specific upregulation of Kat5 in GC B cells (Fig. 1), a 

role for Kat5 in antibody diversification is proposed (18). A role for Kat5 will be tested 

using a well-characterised in vitro mouse model of CSR and chemical inhibitors. This 
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chapter describes the chemical separation of function of Kat5 activities by, 1) inhibiting 

its binding to methylated histone residues via the chromodomain by using inhibitors 

Imatinib (42,478) and iChromo (Kaidi A, unpublished), and 2) inhibiting its catalytic site 

which mediates protein acetylation by using the inhibitor TH1834 (207). In the 

associated Chapter 6, the development of a related genetic model to study the role of 

Kat5 in both mouse and human cells will be discussed.  

 

FIGURE 3 

 

Figure 3 | Kat5 STRING network depicting the protein interaction of Kat5 in mouse cells 

The STRING network for mouse Kat5 identifies a number of interacting proteins that are themselves 

involved in DNA repair (ATM, H2afx), transcription (Crebbp), and chromatin remodelling (RuvBL1, 

RuvBL2). The thickness of the connecting lines represents the level of confidence in the 10 Kat5 protein 

interactions. The interactions appear to have been clustered into histones and histone 

modifiers/chromatin remodelling proteins. 
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5.4 Materials and Methods 

 

5.4.1 CH12F3 cell culture 

CH12F3 B Cells were cultured in RPMI medium (cat. 11875, Gibco,), supplemented 

with 10% FBS (lot. 08F9038K, cat. 10500064, Hyclone), 5% NCTC 109 (cat. N1140, 

Sigma), 5% L-glutamine (cat. 25030024, Gibco), 5% pen/strep (cat. P4333, Sigma) 

and 1% β-mercaptoethanol. (cat. 21985023, Gibco). 

 

5.4.2 DNA damage assays 

For the DNA damage assays, cells were transferred to a 24-well plate (cat. 662160, 

Greiner Bio-One) and pre-treated with either imatinib (cat. ALX-270-492-M025, Enzo 

Life Sciences) for 1 hour, iChromo for 16 hours, or TH1834 (cat. 2339, Axon Med 

Chem) for 1 hour. Stock imatinib was prepared according to manufacturer’s 

instructions; iChromo was reconstituted in DMSO to a final molar concentration of 30 

mM; stock TH1834 was reconstituted in DMSO to a final molar concentration 50 mM. 

Cells were incubated at 37ºC and 5% CO2. Following pre-treatments of inhibitors, 0.25 

or 1 µM CPT (cat. C9911, Sigma) was subsequently added to the cells for 30 minutes 

prior to fixation.  

 

5.4.3 CSR assays 

To activate CH12F3 B cells for the CSR assays, anti-CD40 (1:200, cat.15258437, 

Fisher Scientific), IL-4 (1:1000, cat. 404-ML-050, R&D Systems) and TGF-β (1:1000, 

cat. 240-B-010, R&D Systems) were added to relevant wells alongside appropriate 

concentrations of iChromo or TH1834. IL-4 and TGF-β were prepared according to 

manufacturer’s instructions. iChromo was replenished every 24 hours. TH1834 was 

replenished every 12 hours. Anti-CD40, IL-4 and TGF-β were replenished alongside 

the inhibitors as necessary over the first 48 hours.  

 

5.4.4 Cell fixation and immunofluorescence staining 

Antibodies used were FITC-conjugated anti-γH2AX (1:200 dilution, cat. ab26350, 

Abcam), APC-conjugated anti-IgM (1:200, cat. 17-5790-82, Fisher Scientific) and 

FITC-conjugation anti-IgA (1:200, cat. 559354, BD Biosciences). For DNA damage 

assays, cells were fixed and stained using Fixation/Permeabilization Solution Kit (BD 

Biosciences, 554714); aliquots were extracted (4 µL) and mounted on a slide with 
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DAPI mounting medium (4 µL, cat. ab104139, Abcam). Cells were analysed on ZEISS 

LSM 880 with Airyscan confocal microscope. Excitation wavelength was set at 488 nm 

for GFP-tagged anti-γH2AX antibody and 405 nm for DAPI. All images were recorded 

using Plan-Apochromat 100x/1.4 Oil DIC M27 and processed using ImageJ. For class 

switching assays, cells were stained in 0.01 M PBS and centrifuged 300 x g, 5 mins.  

 

After staining, cells for the flow cytometer were washed in 0.01 M PBS and 

resuspended in 400 µL 0.01 M PBS. Fluorescence was measured using the BD Accuri 

C6 plus according to the manufacture’s specifications (BD Biosciences). Live cells 

were gated for analysis.  

 

5.4.5 Data analysis 

Sequence alignments and building the phylogenetic tree were run on Jalview 

bioinformatics software (479). Flow cytometry results were analysed and presented 

using FlowJo 10.5.0 software. For presentation and statistical analysis of the data, 

one-way ANOVA with Dunnett’s multiple comparisons tests were used. This was 

implemented using GraphPad Prism v7.03. Confocal images were processed on 

ImageJ software (480). 
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5.5 Results 

Kat5 has been highly conserved throughout evolution, as highlighted in the sequence 

alignment (Fig. 4a). Mus musculus (mouse) and Homo sapiens (human) Kat5 protein 

sequences are highly similar, reaching 99.81% sequence identity, and this sequence 

identity perseveres throughout evolution; in Gallus gallus (chicken; 84.27%), Danio 

rerio (Zebrafish; 76.84%), D. melanogaster (57.92%), C. elegans (46.12%), S. 

cerevisiae (41.47%), S. pombe (39.57%) and U. maydis (38.92%) (479). 

 

The sequence alignment of Kat5 from yeast to humans idetifies key domains. As a 

founding member of the MYST (MOZ, Ybf2/Sas3, SAS2, Tip60/Kat5) family of histone 

acetyltransferases, this region is highly conserved (Fig. 4a, pink) (481). MYST family 

members share functional and structural similarities, and all participate in a diverse 

range of cellular processes, including transcription regulation, DNA damage repair and 

apoptosis (481).  

 

The acetyl-CoA binding groups and active site have also been highlighted (Fig. 4a, 

yellow and burgundy), and these sites are all very well conserved, indicating the crucial 

function of this activity. The acetyltransferase reaction requires deprotonation of 

Cys304 by Glu338, generation of a acetyl-Cys304 intermediate, deprotonation of the 

histone lysine residue by Glu338, and transfer of the acetyl moiety to the lysine 

substrate (482). In support of this model, individual mutations in Cys304 and Glu338 

eliminated acetyltransferase activity of Esa1 in vitro, and co-crystals of Esa1 and 

Acetyl-CoA revealed the transfer of the acetyl group from Acetyl-CoA to Csy304. 

Failure of this transfer was observed in co-crystals of Esa1-E338Q and Acetyl-CoA 

(482,483). Critically, both Cys304 and Glu338 remains conserved throughout 

evolution (Fig. 4a, yellow and burgundy). 

 

The zinc finger domain is a curious feature shared between Kat5 in all organisms, 

except for S. cerevisiae. Each protein contains the common CxxxCX12HxxxC motif 

(482). This particular zinc finger motif is associated with forging DNA-protein, RNA-

protein and protein-protein interactions, which all coincide with Kat5’s role in 

transcription, and the observation that Kat5 is often a member of large multiprotein 

complexes (26,203). Deletion studies of Sas3 revealed that this region is required for 

histone acetyltransferase activity (484). Interestingly, structural analysis of the yeast 
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protein indicates that the zinc finger region instead forms a classical TFIIA-type zinc 

finger hold, and zinc fingers of this subtype are also able to mediate DNA-protein and 

protein-interactions (485).  

 

Chromodomains are well-studied functional domains that bind to methylated histones 

(486–488). Nevertheless, some reports have claimed an additional RNA or DNA 

interaction capabilities (489–491). Previously, the yeast Kat5 was presumed to encode 

a chromodomain, and structural analysis identified a well-folded structure that 

exhibited 3–10-fold greater binding affinity for RNA than DNA (492). Loss of this region 

sensitises yeast to DNA damage reagents, alters transcriptional activities and, 

crucially, the RNA-binding activity was found to be essential for viability (492). Whether 

this is the case for mammalian Kat5 is unknown. Critically, the Tyr44 residue is present 

in each organism (Fig. 4a, orange). This site requires phopshorylation for 

chromodomain binding (42).  

 

One interesting feature that appeared in the search for protein domains was the 

identification of DNA polymerase III subunits gamma and tau. Gamma and tau are 

ATPases involved in loading and unloading the DNA polymerase replisome in bacteria 

(493). Based on the diverse range of motifs associated with this domain and the 

functions of gamma and tau, this find is quite dubious. Kat5 does not exhibit ATPase 

activity (494), however it may share some of the DNA-binding properties of these 

subunits.  

 

Each phylogenetic tree of the individual domains within Kat5 shows the evolutionary 

relationships between selected species (Fig. 4b–g). Generally, the outcomes of each 

branch are to be expected; S. pombe and S. cerevisiae appear to share a more similar 

evolutionary history, as does mouse, human, dog and chicken. However, the 

phylogenetic tree formed on DNA polymerase III subunits gamma and tau domain 

shows an unexpected evolutionary history, particularly whereby D. melanogaster and 

S. pombe, and C. elegans and S. cerevisiae, share more common ancestors 

respectively.   

 

Crucially, based on the sequence similarity specifically between mouse and human 

Kat5, it is highly probable that the Kat5 inhibitors will recognise both with equal affinity, 
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and any results captured in the mouse CSR model CH12F3 B cell line should be 

replicable in human B cells. 
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FIGURE 4 
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Figure 4 | Kat5 protein sequence is highly conserved throughout evolution 

a, Sequence alignment of Kat5 lysine acetyltransferase across evolution. Analysed using the Pairwise 

Alignment tool on the Jalview Java alignment editor – version 2 (479) and presented with Percentage 

Identity multiple sequence alignment colour scheme based on 30% minimum conservation.  Conserved 

domains are labelled: RNA-binding Tudor-knot of the chromodomain (turquoise), chromodomain 

(green), site of tyrosine phosphorylation (orange), query DNA polymerase III subunits gamma and tau 

(blue), conserved MYST domain present in MYST histone acetyltransferases (pink), Zinc finger domain 

(purple), Acetyl-CoA binding domains (yellow) and the active site (burgundy). These regions generally 

exhibit higher conservation than other regions. b–g) Phylogenetic trees on the full-length protein 

sequence of Kat5 (b), the MYST domain (c), the Tudor-knot (d), chromodomain (e), zinc finger (ZnF), 

f) and a possible hit for DNA polymerase III subunits gamma and tau. Each tree was rendered using 

MUSCLE multiple sequence alignment, PhyML for phylogenetic reconstruction and TreeDyn for image 

generation. All sequences used the Gblocks programme to eliminate poorly aligned positions and 

divergent regions, except (f) (495).  
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5.6 Imatinib inhibition of c-Abl kinase triggers spontaneous damage and 

eventual cell death 

CH12F3 B cells were treated with small molecule inhibitors; either imatinib, iChromo, 

or TH1834. Each inhibitor mechanistically interacts with Kat5 differently, allowing for 

sensitive analysis of Kat5’s activity during DNA repair and, ultimately, in CSR. The 

mode of action of each inhibitor is further elaborated below. First, these inhibitors were 

tested in the context of DNA repair to study the effect of Kat5 inhibition on DNA 

damage response signalling and, following a clear phenotype, the inhibitors were then 

employed in a class switching assay using the CH12F3 mouse B cell line. CH12F3 

cells express IgM antibodies prior to activation by anti-CD40 and IL-4 and TGF-β 

cytokines, at which point they switch specifically to IgA-presenting cells.  B cells were 

treated with the topoisomerase I inhibitor, camptothecin (CPT), to introduce DSBs 

during S-phase.  

 

Phosphorylation by c-Abl kinase permits Kat5 binding to H3K9me3, eventually 

triggering H2AX phosphorylation (469). Treating CH12F3 B cells with imatinib 

prevents this phosphorylation event, permitting the investigation of this modification 

on DNA repair signalling. Initial treatment with imatinib was based on experiments 

involving fibroblasts whereby the cells had been treated with 0.1, 1 and 10 µM 

concentrations of imatinib (496,497). Following imatinib treatment, it was expected that 

there would be a reduction in gH2AX signalling, preventing the recruitment of 

downstream repair proteins. It should not impact Kat5-dependent chromatin 

remodelling, thereby permitting separation of function analyses of Kat5. Other 

mechanisms are in place to drive H2AX phosphorylation, such as by ATR (ataxia-

telangiectasia and Rad3 related) and DKA-PK (498), so a total loss of γH2AX was not 

expected. 

 

In an attempt to replicate these conditions, cells were pre-treated with 0 or 1 µM 

imatinib.  In these conditions, irrespective of CPT treatment, this concentration of 

imatinib was toxic as observed by the dead cell distribution (100% and 99.98% dead 

cells) in the flow cytometry analysis (Figure 5a; left). Following successive rounds of 

optimisation, a narrow range of imatinib pre-treatments proved to have limited effect 

on Kat5 inhibition and downstream H2AX phosphorylation (Fig. 5b–d). This is not 

entirely unexpected as imatinib is used in treatments against B cell lymphomas (499–
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501), and therefore very effective against B cell malignancies which our cell line 

CH12F3 is a model of (96). However, within a tight range of very low concentrations, 

a trend is observed whereby imatinib shows limited inhibition of DNA repair signalling 

before itself causing spontaneous cell damage and increasing H2AX phosphorylation 

independently from genotoxic treatments (Fig. 5b–d). An approximate 20% reduction 

in γH2AX is observed following treatment with 0.006 µM imatinib (p<0.01) compared 

to the mock treatment, yet with 0.01 µM imatinib, damage signalling is reduced by only 

10%, although this reduction is not significant. Following treatment with 0.05 µM 

imatinib, 70% spontaneous DNA damage is observed independently of CPT treatment 

(Fig. 5b–d). As such, imatinib is clearly not suitable for this assay. Furthermore, c-Abl 

is a hyperactive kinase that phosphorylates a broad range of target proteins (502). 

Without Kat5 specificity, it is impossible to attribute any effect observed in these results 

being solely due to Kat5 inhibition. That is why it was decided to use alternative 

inhibitors which could give a more specific response and a better separation of function 

analysis.  

 

Imatinib was briefly considered as an additional DNA damaging reagent alongside 

CPT. However, this was dismissed because imatinib targets a multitude of proteins 

that are involved in cell growth and survival, oxidative stress and DNA-damage 

responses, and actin-dynamics and cell migration (502). Potentially altering the 

behaviour of many cellular pathways could mask the activity of Kat5, which would 

impede any attempt to isolate its role in DNA repair.  
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FIGURE 5 

 

Figure 5 | Imatinib treatment causes extensive cell death 

a, CH12F3 B cells were treated with 0 or 1 µM imatinib for 1 hour prior to incubation with 1 µM CPT for 1 hour. Cells were fixed and stained with GFP-tagged 

anti-γH2AX antibody. The light and dark purple populations on the scatter plot represent live cells and the light and dark teal populations represent dead cells 

that have ben treatmed with 1 µM imatinib. Values indicate the percentage of live cells in each population. b and c, Performed flow cytometry on cells treated 

with a range of concentrations of imatinib (0.001 – 0.05 µM). d, Histogram representing γH2AX positive populations across all samples tested and quantified 

as a percentage of the total damage inflicted on mock cells treated with CPT. Error bars represent SEM, n=3 in all cases; **p<0.01.
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5.7 iChromo treatment inhibits DNA damage signalling 

iChromo is a competitive inhibitor of c-Abl kinase, and effectively protects the Kat5 

chromodomain against phosphorylation by preventing the docking of c-Abl (A. Kaidi, 

personal communications). In doing so, Kat5 fails to be recruited to sites of DNA 

damage – via the recognition of its chromodomain to H3K9me3 histone mark – thereby 

failing to activate ATM kinase which triggers the DDR signalling cascade. The 

iChromo-Kat5 complex however, is still able to acetylate H4 N-terminal tails (42) 

thereby allowing us to study the separation of function between Kat5 recruitment and 

acetylation activity. iChromo is a far more effective inhibitor than imatinib, successfully 

reducing γH2AX signalling by >20% between 20-50 µM iChromo, and nearly a further 

70% at 75 and 100 µM iChromo, without inducing spontaneous damage (Fig. 6a–b).  

However, it appears that at the higher concentrations of inhibitor, cellular viability is 

significantly reduced (p<0.0001) to approximately 20% live cells, compared to a 

consistent 60–80% live at lower concentrations of iChromo (Fig. 6c). 

 

CH12F3 B cells were subsequently visualised using immunofluorescence microscopy 

(Fig. 6d). It appears that CPT treatment induces DNA damage, and also causes the B 

cells to shrink in size to <10 um in the mock treatment. As iChromo concentration 

increases from 10–50 µM, the diameter of the cells visibly increases to >10 um. At 75 

and 100 µM iChromo, the cells again appear very condensed (Fig. 6d). In addition, as 

iChromo concentration increases, the B cell nuclei appear fragmented in a 

phenomenon described as ‘blebbing,’ and this becomes much more prevalent at 

higher concentrations (p<0.0001; Fig. 6f).  
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FIGURE 6
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Figure 6 | Increasing concentrations of iChromo reduces DNA damage signalling 

a, CH12F3 B cells were pre-treated for 16 hours with 0–100 µM iChromo prior to 30 minutes incubation 

with 0 or 0.25 µM CPT. Cells were stained with GFP-tagged anti-γH2AX antibody and analysed on the 

flow cytometer. b, Histogram quantifies the results in (a) from replicate experiments; results are 

normalised against total damage accrued in the mock treatment. c, Histogram indicates the % of live 

cells remaining following incubation with iChromo and CPT treatment; results are normalised against 

total damage accrued in the mock treatment. d, CPT-treated aliquots from (a) were visualised under a 

cofocal microscope with th addition of DAPI mounting dye for nuclear staining. e, Histogram represents 

the quantification of the observations in (d), normalised as a percentage of total damage accumulated 

in the mock treatment. f, Histogram indicates the % of cells presenting nuclear blebbing in each 

treatment. Error bars represent SEM, n=4 for each condition; *p<0.05, **p<0.01, ***p<0.001 and 

****p<0.0001. 

 

5.8 TH1834 treatment inhibits DNA damage signalling by blocking Kat5 

acetylation function 

TH1834 is a Kat5-specific histone acetyltransferase (HAT) inhibitor. Its in silico design 

was based on the structures of acetyl-CoA and the non-specific HAT inhibitor, 

pentamidine (207). An in vivo HAT assay indicates that TH1834 inhibition reduces 

γH2AX formation to a greater extent than pentamindine in DT40 cells (207). As 

TH1834 mimics its natural ligand acetyl-CoA it prevents Kat5-dependent acetylation 

of both H4 tails and ATM, thereby impacting on both the DNA repair and chromatin 

decompaction activities of Kat5.  

 

To test the efficacy of the inhibitor, B cells were treated with 0–100 µM TH1834. 

Incubation with 25 and 50 µM TH1834 significantly reduces H2AX phosphorylation 

(p<0.0001; Fig. 7a–b). In addition, cellular survival during this period remains 

unchanged across the different treatments (Fig. 7c).  

 

Following subsequent confocal microscopy (Fig. 7d), the quantification of damaged 

cells were not as significant as the data extracted from the flow cytometer. 

Nevertheless, there is a general trend whereby TH1834 does reduce DNA damage 

signalling (Fig. 7e). Another complementary explanation here could be the technical 

readout between fluorescence imaging and flow cytomerty. Whilst the former 

technique scores individual cell for their average positive or negative value for the 

green γH2AX fluorescence signal, flow cytomery looks at the average γH2AX 

fluorescence signal throughout the cell population. In that vein, it is possible that 
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TH1834 decreases γH2AX fluorescence signal overall per cell but without being able 

to deplete it completely. While iChromo could be more effective in specific cells, 

perhaps during a certain phase of the cell cycle, thereby causing a complete depletion 

of γH2AX signal in those particular cells. This aspect will be elaborated upoin in more 

detail in the discussion below. Unlike the iChromo-treated cells, very few occurences 

of nuclear blebbing were observed, suggesting that TH1834 does not contribute 

towards any morphological changes in B cells for the duration of this assay (Fig. 7f). 
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FIGURE 7 
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Figure 7 | Treatment with TH1834 reduces DNA damage signalling 

a, CH12F3 B cells were pre-treated for 1 hour with 0–100 µM TH1834 prior to 30 minutes incubation 

with 0 or 0.25 µM CPT. Cells were stained with GFP-tagged anti-γH2AX antibody and analysed on the 

flow cytometer. b, Histogram quantifies the results in (a) from replicate experiments; results are 

normalised against total damage accrued in the mock treatment. c, Histogram indicates the % of live 

cells remaining following incubation with TH1834 and CPT treatment; results are normalised against 

total damage accrued in the mock treatment. d, CPT-treated aliquots from (a) were visualised under a 

cofocal microscope with th addition of DAPI mounting dye for nuclear staining. e, Histogram represents 

the quantification of the observations in (d), normalised as a percentage of total damage accumulated 

in the mock treatment. f, Histogram indicates the % of cells presenting nuclear blebbing in each 

treatment. Error bars represent SEM, n=4 for each condition; *p<0.05, **p<0.01, ***p<0.001 and 

****p<0.0001. 

 

5.9 Kat5 DNA damage recruitment ability contributes to CSR efficiency 

Having determined the appropriate concentrations of iChromo that exert a phenotypic 

response to the inhibitor, the B cells were induced to class switch in the presence of 

0–30 µM iChromo.  

 

By 72 hours, it was clear that 20 and 30 µM iChromo reduces class switching efficiency 

by approximately 25 and 50% on gated live cells, respectively (p<0.0001). 10 µM 

iChromo enhanced class switching efficiency by nearly 20% compared to activated B 

cells in the absence of inhibitor (Fig. 8a). To gain further insight into this inconsistency, 

the survival rate was calculated over the course of the 72 hours (Fig. 8b). The extent 

of cell death substantially increased with iChromo concentration, and the flow 

cytometer counted  a maximum of 400 cells in 30 µM  iChromo at 48 and 72 hours, 

casting doubt on the validity of the results at this concentration.  
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FIGURE 8 

 

 

Figure 8 | Inhibition of Kat5 chromodomain with iChromo affects CSR efficiency 

a, CH12F3 B cells were activated and treated with 0, 10, 20 and 30 µM iChromo. At 25, 48 and 72 

hours post-activation, cells were stained with APC-tagged anti-IgM and FITC-tagged anti-IgA 

antibodies. Cells were analysed on the flow cytometer. The histogram quantifies the IgA in each 

condition from replicate experiments as a % of the activated control at each time point. b, Graph 

represents the % live population of cells at 24, 48 and 72 hours post-activation. Error bars represent 

SEM; n=4 in all cases; *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001. 

 

5.10 Kat5 acetylation activity independently contributes to CSR efficiency 

Cells were treated with TH1834 at a range of concentrations; 0, 10, 25 and 50 µM. As 

observed with iChromo, 10 µM TH1834 appears to stimulate CSR by a further 20–

25% compared to the activated controls at each time point, while 25 and 50 µM 

TH1834 reduces CSR efficiency (Fig. 9a).  

 

This assay was first performed in 2016 with very dissimilar results. Indeed, 10 µM 

TH1834 had a minor 15% reduction in class switching at each time point, and both 20 

and 30 µM TH1834 exerted a 30–40% reduction in CSR (Fig. 9c). There is a clear 

dosing effect between 10 µM and 20 µM TH1834, yet it appears that increasing the 

concentration further to 30 µM does not further impede CSR, suggesting that Kat5 

supports CSR to a certain extent, but perhaps other redundant pathways are also 

active to ensure that CSR is not completely abolished upon loss of Kat5-dependent 

acetylation. 
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To tease out the cause of these stark differences between the experiments in 2018 

and 2016, survival rates were compared over the course of each assay.  The survival 

rates for the assay carried out in 2018 mimic those of the iChromo, in which extensive 

cell death occurs swiftly over the course of 72 hours (Fig. 9c). The cell counts however 

counted <50 cells at 48 and 72 hours, casting doubt on the reliability of those results, 

and hence have been omitted from the histogram. However, in 2016, the live 

population remained stable throughout the 96 hours post-activation (Fig. 9d), 

indicating the either the cells are responding differently to the inhibitor, or the media is 

impacting cellular behaviour due to a different batch of FCS. 
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FIGURE 9 

 

 

Figure 9 | Inhibition of Kat5 acetyltransferase activity affects CSR efficiency 

a, CH12F3 B cells from 2018 were activated and treated with 0, 10, 25 and 50 µM TH1834. At 25, 48 

and 72 hours post-activation, cells were stained with APC-tagged anti-IgM and FITC-tagged anti-IgA 

antibodies. Cells were analysed on the flow cytometer. The histogram quantifies the IgA in each 

condition from replicate experiments as a % of the activated control at each time point. b, CH12F3 B 

cells from 2016 were activated and treated with 0, 10, 20 and 30 µM TH1834. At 48, 72 and 96 hours 

post-activation, cells were stained with APC-tagged anti-IgM and FITC-tagged anti-IgA antibodies. Cells 

were analysed on the flow cytometer. The histogram quantifies the IgA in each condition from replicate 

experiments as a % of the activated control at each time point. c, Graph represents the % live population 

of cells at 24, 48 and 72 hours post-activation from the 2018 assay. d,  Graph represents the % live 

population of cells at 48, 72 and 96 hours post-activation from the 2016 assay. Error bars represent 

SEM; n=4 in all cases; *p<0.05, **p<0.01, ***p<0.001 and ****p<0.0001. 

 

5.11 Discussion 

These results are the first evidence for Kat5 having a fundamentally critical role in CSR 

and immune diversification. Using a range of chemical inhibitors, Kat5 inhibition 
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reduced DNA repair signalling by prohibiting H2AX phosphorylation and affected CSR 

efficiency.  

 

The small molecule inhibitor imatinib targets c-Abl kinase. By preventing c-Abl kinase 

mediated phosphorylation of Kat5 at Tyr44, Kat5 is rendered incapable of binding 

H3K9me3, and is therefore unable to activate ATM kinase and propagate DNA repair 

signalling (469). Whilst imatinib was capable of reducing H2AX phosphorylation, this 

took place within a very narrow range of concentrations and did not have a particularly 

strong effect. Increasing the concentration further then induced spontaneous damage, 

restricting any dose-ranging studiess. CH12F3 B cells are particularly susceptible to 

imatinib as it is used in treatments against B cell lymphomas (499–501). Furthermore, 

c-Abl kinase has many downstream targets including Kat5 and, as such, any 

observations made could not be attributed to only Kat5 inhibition (502). While imatinib 

could have been used as a DNA damage reagent in the same way that cells were 

treated with camptothecin, camptothecin has only one downstream target and 

produces DSBs as a result. Targeting c-Abl kinase would confuse the results as it has 

several protein targets that may impact DNA repair and Kat5 unpredictably and may 

produce a range of DNA damage structures that are not accounted for in the design 

of the assay. Based on these factors, imatinib was rejected as a potential inhibitor of 

Kat5 in subsequent class switching inhibition assays. It could be interesting to 

incorporate imatinib in the fluorescence assay to determine if it interacts with other 

nucleases or helicases to alter their activities, or indeed to determine whether imatinib 

causes DNA damage directly.  

 

iChromo and TH1834 are other inhibitors of Kat5. As their mechanisms of targeting 

Kat5 differ, it was expected that the extent to which its acetylation activities in DNA 

repair or chromatin decompaction is most vital for efficient CSR. iChromo, similarly to 

imatinib, prevents Kat5 binding to H3K9me3. iChromo is a competitive inhibitor of the 

trimethyl group recognised by the Kat5 chromodomain (personal communications). 

iChromo had a much greater impact on DNA damage signalling, reducing the 

indicidence of H2AX phosphorylation, without inducing any spontaneous damage. It 

did, however, cause nuclear blebbing at higher concentrations, which is indicative of 

apoptosis. 
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TH1834 was designed in silico to bind to the Kat5 HAT domain (207), impeding 

acetylation of both ATM and H4 lysines (207,468), and thus having the combined 

effect of hindering DNA damage signalling and chromatin relaxation. This inhibitor 

successfully reduced the occurrence of γH2AX and, unlike iChromo, did not disrupt 

the integrity of the cell and the nucleus.  

 

For both iChromo- and TH1834-mediated inhibition of Kat5, it would be expected that 

TH1834 treatment would produce a stronger phenotype as it influences both ATM and 

H4ac repair mechanisms, in contrast with iChromo which only affects the pathway 

through ATM. This is indeed the case for the DNA damage assay as TH1834 reduced 

γH2AX signalling by 40% compared to 20% by inhibiting chromodomain binding alone. 

Whether this is to be replicated in regards to class switching will wait to be seen. 

Furthermore, an additional chemical inhibitor which alters the tertiary structure of Kat5, 

while maintaining its catalytic functions, will help to expand our understanding of Kat5’s 

catalytic and structural functions. 

 

Both iChromo and TH1834 affect the Kat5 signalling pathway upstream of H2AX 

phosphorylation as the number of cells exhibiting DNA damage signalling was 

reduced, but the size of γH2AX foci in all conditions appeared very similar to controls. 

This suggests that DNA repair is not inhibited downstream of γH2AX as otherwise the 

γH2AX foci would have continued to expand, trapped in a positive feedback loop, as 

the break is left unrepaired (503).  

 

In the presence of TH1834, there is adose-dependent decrease in class switching, 

with approximately 80% CSR taking place in 10 µM TH1834 and 60–70% in  

20–30 µM TH1834. The rates of CSR are very similar between 20 and 30 µM TH1834, 

indicating that inhibition of Kat5 may only reduce CSR by a certain extent, and that the 

cells are not solely reliant on Kat5 for antibody diversification as other pathways must 

be in place to ensure a certain level of class switching takes place. A dose-dependent 

decrease in CSR is also observed with iChromo over the 72 hours, with 30 µM 

iChromo causing a 50% reduction CSR at 72 hours post-activation. Once the 

experimental conditions are optimised to ensure the high level of cell death is avoided, 

it would be interesting to repeat these CSR assays to determine whether TH1834 has 
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a greater impact on CSR than iChromo as observed in the earlier DNA damage 

assays.  

 

It is worth noting that the incomplete DNA damage and CSR phenotype we observe 

in Kat5 inhibition could be attributed to various interpretations. 1) The chemical 

inhibitors used do not offer complete functional inhibition of Kat5 in B cells. There is 

some evidence in the literature that this could be the case. Although the TH1834 

publication (207) suggests that this may not be case for this specific drug, it has not 

been tested specifically in B cells to confirm whether that is the case or not. 2) There 

is potential redundancy in Kat5 recuitment to DDR sites by factors other than 

H3K9me3. The putative RNA binding activity of Kat5 may support this possibility. 

Excitingly, a recent publication offered an interesting link between RNA and chromatin 

remodelling (467). DSB-induced RNAs (diRNAs) are ~21 nt small RNAs generated by 

Dicer and Drosha proteins. They are complementary to the sequences surrounding 

the break site in both plant and human cells (504,505). Ago2 (of the RNA-induced 

silencing complex) interacts with short RNAs, and was proposed to interact with Kat5 

(467). Interestingly, these diRNAs are dispensible for Ago2 binding to Kat5, however, 

knockdown of Ago2 reduced Kat5 binding to the DSB, and the diRNAs were required 

for recuitment of Kat5 to the DSB (467). Ago2 has a much higher affinity for RNA than 

Kat5 (492,506), and it is possible that Kat5’s RNA binding capabilities serve either to 

reinforce or the interaction, or as a contingency. 3) there is potential redundancy in 

ATM acetylation via other non-Kat5 HAT proteins. Some evidence to support this 

hypothesis stems from the role of another HAT protein called INO80 in DDR signaling 

(507) and in CSR (508). In the future it might be interesting to check the inhibition of 

both INO80 and Kat5 to address this question.  

Once the conditions for studying class switching have been optimised, it will be 

possible to determine whether it is the role of Kat5 in DNA repair or transcription that 

is integral for CSR. This can be further determined by first looking into the proportion 

of the activated B cell population that is IgM- and IgA-negative. Accumulation of 

double-negative B cells would suggest transcriptional flaws. If this population of 

double-negative cells does not change significantly, then it is more likely that Kat5 

functions predominately in DNA repair. To confirm this observation, RT-qPCR would 

need to be performed on B cell samples to confirm the transcriptional levels of Kat5, 



 

137 
 

AID, IgM and IgA S regions. Due to time limitations, the results for this experiment 

were never obtained. 

 

As it stands, it is clear that inhibition of Kat5 activity has an effect on class switching. 

The extent to which it supports or hinders CSR remains unclear, including its 

mechanism. Nevertheles, these preliminary results are very promising and indicate 

that Kat5 does play an essential role in the development of highly versatile antibodies. 

And we thereby have contributed yet another piece of the histone code that regulates 

antibody diversification; starting with our protein/histone acetylation by Kat5, followed 

by histone phosphorylation by ATM/ATR/DNA-PKcs (102,328,509), ubiquitination by 

RNF8 (5,510), and poly-ubiquitination by RNF168 (511). Culminating in the 

recruitment of 53BP1 to bridge the 2 ends of DNA and mediating DNA repair (112). 
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6 Design of mouse and human Kat5 degron knockout constructs 

 

6.1 Summary 

Kat5 is essential for cellular viability. As such, generating Kat5 knockout cell lines is 

likely an impossible task. Confirming Kat5 knockdown is equally challenging as 

commercial antibodies raised against Kat5 bind with very low affinity. Generation of 

an inducible Kat5 knockout degron system overcomes both these concerns.  As such, 

the stepwise design of an inducible Kat5 knockout degron system is described herein, 

including a discussion on the potential applications of this approach in terms of quickly 

and reversibly switching the protein expression of Kat5 on or off. 

 

6.2 Kat5-depleted cells are inviable 

As introduced in the previous chapter, Kat5 is an important and essential histone 

acetyltransferase protein. Kat5 is a challenging protein to manipulate intracellularly. 

Kat5 deletions have been found to be lethal in both mice and yeast (205,476,512). 

Indeed, Kat5+/- mice are viable and develop as normal, however double knockout Kat5-

/- mice experience early embryonic lethality (205). As such, developing a Kat5 

knockout CH12 B cell line was not feasible as any successful knockouts would have 

perished. In addition, commercial antibodies raised against Kat5 typically have poor 

affinity (personal communications). As a result, it is troublesome to visualise the 

success of an siRNA/shRNA knockdown via Western blot.  

 

The aim is therefore to design an inducible and reversible system that allows for cell 

survival and Kat5 visualisation. In the system (described below), Kat5 is tagged with 

an intrinsically disordered protein, called a degron, that targets Kat5 for proteasomal 

degradation unless stabilised.  

 

6.3 Tagging Kat5 with an inducible degron should prevent extensive cell death 

To circumvent the issues of visualisation and viability, it was posited that generating a 

cell line with Kat5 tagged with an inducible, reversible degron could prevent extensive 

cell death. Degrons are specific, unstructured degradation systems that target proteins 

to the proteasome for degradation (513). The E. coli dihydrofolate reductase (eDHFR) 

is one example of a degron, and it allows for rapid manipulation of endogenous 
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mammalian proteins by altering their stability (208). As eDHFR is an intrinsically 

disordered protein, proteins tagged with eDHFR are constitutively degraded 

irrespective of their half-lives, unless they are stabilised by the addition of trimethoprim 

(TMP), which is innocuous in human cells (514,515). The aim is to tag the inducible 

eDHFR degron to the C-terminus of the Kat5 locus, integrating it into the genome using 

CRISPR/Cas9 genome-editing (208). While it is possible to generate an N-terminal 

degron, a large insertion at the initiation codon in one of the first exons is more likely 

to disrupt splicing than an insertion at the termination codon, and C-terminal tagging 

is amenable to degron insertion at an innocuous position downstream of the SV40 

ply(A) site at the 3’ end of the cassette (208). This inducible eDHFR degron is 

preferable to siRNAs or shRNAs due to the reversible nature of the system. This is 

especially useful for studying proteins such as Kat5 which are critical for cellular 

viability. This degron system is further advantageous due to the addition of an HA-tag 

inserted between the C-terminus of the protein of interest and the N-terminus of the 

eDHFR. HA is historically very immunogenic, and highly specific antibodies are 

available against this epitope, superseding the dependence on a suitable anti-Kat5 

antibody. Indeed, FLAG-tagged/FLAG-HA-tagged Kat5 proteins are commonly used 

for protein tagging and visualisation (516–519). 

 

6.4 Components of the degron cassette 

The eDHFR degron cassette encodes for: 

 

3xHA – eDHFR – P2A – puroR/blastR – SV40 

 

This cassette will be integrated into the C-terminus of Kat5 in the mouse and human 

cell lines. The HA tags are a highly immunogenic protein that will allow for Kat5 staining 

by proxy (516–519). eDHFR is the intrinsically disordered dihydrofolate reductase that 

is responsible for targeting Kat5 to the proteasome for degradation and concomitant 

reduction in cellular protein levels (208). Both puromycin and blasticidin resistance 

(puroR/blastR) is essential for antibiotic selection. The antibiotic resistance genes will 

be carried in difference eDHFR cassettes to ensure that each eDHFR degron is 

successfully integrated into the two Kat5 alleles. P2A is a self-cleaving peptide that, 

once expressed, separates the degron from the antibiotics (520). P2A derives from 
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the porcine teschovirus-1, and cleaves the C-terminal proline (NPG | P) (521).  Finally, 

SV40 functions as a terminator signal for RNA polymerase II (522).  

 

The design of both the mouse and human Kat5 degron constructs was carried out by 

Emily Sheppard. The experimental data was produced under instruction by Laura 

Reffo and Erasmus student Miriam Lohr, and ligation protocols had previously been 

optimised by Erasmus student Angelina Bloch.  
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6.5 Materials and Methods 

 

6.5.1 Celery juice assay 

A modified version of the Surveyor assay, the celery juice assay, typically screens for 

Cas9 on-target activity. The CRISPR/Cas9 genome editing tool functions as RNA-

guided molecular scissors to introduce a cut at the desired site on the genome. Error-

prone DNA repair mechanisms target this damaged site for repair and may produce a 

frameshift mutation or stop codon to result in a truncated, inactive protein. DNA 

purified from wild type and Cas9-targeted Kat5 is extracted and mixed together to form 

heteroduplexes. Treatment with a mismatch-specific nuclease will cleave the DNA if 

mutation has been successful.  

 

Analysis of the effects of Cas9 at the DNA level is based on a mismatch-specific 

nuclease. The assay consists of four steps; 1) PCR and PCR purification, 2) 

heteroduplex formation, 3) digest with mismatch-specific nuclease, and 4) 

visualisation of the reaction on a gel. The mismatch-specific nuclease was extracted 

from celery using the TILLING protocol (523). 

 

6.5.2 Design of guide RNAs for the pX260 CRISPR/Cas9 and Kat5 knockout cell 

lines 

Kat5 guide RNAs were designed based on scores generated by the  

gRNA prediction software CRISPRdirect (524) and Zhang lab’s Target Finder 

(http://crispr.mit.edu/). The designed gRNAs were synthesised according to the 

Church hCRISPR gRNA synthesis protocol (http://addgene.org/crispr/church/) and 

ligated into the gRNA_Cloning Vector (525) (Addgene, 41824).  

 

mKat5 gRNA F: AAACTGAGTGGCGTGAGTGACGTCGT 

mKat5 gRNA R: TAAAACGACGTCACTCACGCCACTCA 

  

6.5.3 Transfection of 3T3 cells for Kat5 deletion  

3T3 cells were cultured in DMEM media. Transfections for CRISPR/Cas9-mediated 

Kat5 deletion were performed using Lipofectamine 3000® (cat. L3000001, 

ThermoFisher,). Cells were extracted at 48- and 96-hours post-transfection, and 
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genomic DNA purified using GeneJET Genomic DNA Purification Kit (cat. K0721, 

Fermentas Stores).   

 

 6.5.4 Kat5 PCR primer design  

PCR Primers were designed for the mouse Kat5 DNA sequence using Primer3 (526).  

Primers with suitable melting temperatures and location flanking the gRNA site in the  

sequence were chosen.    

 

mKat5 F: GGAAGTGACGTCTCCCAGAG  

mKat5 R: TAGAAAAGCTTTCGGCCACT 

 

6.5.5 Design of guide RNAs for pX330 CRISPR/Cas9 for development of the 

inducible Kat5-degron knockdown cell lines 

Kat5 sequences, primers and guide RNAs were designed using Benchling [Biology 

Software]. 2018. Retrieved from https://benchling.com. Benchling’s CRISPR guides 

tool identified a Cas9 target site adjacent to the stop codon. The gRNAs were selected 

by virtue of distance from the stop codon, low off-target predictions and high on-target 

predictions. The forward gRNA sequence was prefixed with ‘CACCg’ and the reverse 

gRNA sequence was prefixed with ‘CAAA’ and suffixed with ‘c’. The pX330 vector is 

digested by Bbs1 and the annealed gRNA oligos can cloned scarlessly into the vector. 

 

mKat5 gRNA F: CACCgCACGAGAGCTGGCCGAACCA 

mKat5 gRNA R: CAAATGGTTCGGCCAGCTCTCGTGc 

 

hKat5 gRNA F: CACCgCCAAGACGGCAGCAGGACTG 

hKat5 gRNA R: CAAACAGTCCTGCTGCCGTCTTGGc 

 

 

 

 

6.5.6 Design of mouse and human Kat5 gBlocks® Gene Fragment homology 

region 

Kat5 DNA sequence was downloaded onto Benchling. Retrieved a 1000 bp sequence 

spanning approximately 500 nucleotides either side of the Kat5 stop codon. Its 

https://benchling.com/
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complexity is tested prior to order (https://www.idtdna.com/site/Order/gblockentry). 

Benchling’s CRISPR guides tool identified a Cas9 target site adjacent to the stop 

codon. The PAM sequence in homology region was edited from NGG to NGA and the 

stop sequence was deleted. Either side of the homology region were short overhangs 

with complementarity to the pUC18 vector.  

 

5’ overhang: gattacgaattcgagctcggta 

3’ overhang: agttgcgcagcctgaatggcga 

 

The total length of the homology arms was 1000 bp and was synthesised by IDT. The 

mutated PAM site in both homology regions are highlighted in red.  

 

  

https://www.idtdna.com/site/Order/gblockentry
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Table 1: Mouse and Human Kat5 homology region gBlocks® Gene Fragments 

Target Homology Region Sequence (5’–3’) 

mKat5 GATTACGAATTCGAGCTCGGTAAAGTGAGCCCAAATGCCCACCTGGGGGTTGTGGTTTGG 

TCTGTCTGTTCCTGGGGTTTCTGGGGACAGATGAATATCTTCAGGGGACTGAACTTTCCCC 

CACTTCCACCCCCACAGTGAGATCAGTGAAATCACTAGTATCAAGAAAGAAGATGTCATCT 

CCACACTGCAGTATCTCAACCTCATCAATTACTACAAGGTTAGGAGGCATGCTCAGGGGAT 

AGATGAGATATGGATGCAGGCTCTGAGCTGACATGAGCTGGCTCTATCTCTTGCTCAGGG 

CCAGTATATCCTAACTCTGTCAGAAGACATCGTGGATGGGCATGAGCGGGCTATGCTCAA 

GCGGCTCCTTCGGATTGACTCCAAGTGTCTGCACTTCACTCCCAAAGACTGGAGCAAGAG 

AGGAAAGTGGCACACACTACCCATTGCCATACCACGAGAGCTGGCCGAACCATGTCTAGCAC 

CCTGTCTTGTCCCATTTGAGCTTCGAAGAGGCACGCAAAGTGAGACAGGCCGAAGAACAG 

ACCCAAGAGGAGAAGAGGCCTAGGAGGGGCCCACTAGTGGCCAGTGCCAAGGCAAGCTC 

AGGTCTAGGCCAACTCCGAGGATAACTGGCTTACTGGCCCAGGTCCGCTCTGAACACGTG 

GACCAAAGGGATCCAGGCAGCTGTGTACATTAAGATGGGTGGGGAGCATTCTGTACAGGA 

CCGGTGATTGTAAAAATTTCTTTTATAAAGGAGGAGCTGGAGGGTGGGGTGGGCGCTGGTT 

GCAAAGTTCTGGCCCCTCTTGCCCCCAGAAATAAATTGTTTATATAGGCAGAGCTATCAGGA 

GTTCTTACCAAACTGGGTGCCATGTAATGGCAGCTTCAGGGTGCTAAGGTGCCCACAGACT 

CAGGCATTGTGAAGATCTCATTTATTGGGATAGAAACAGTCGCTCCAAGTGGTGAGAAGGG 

ATCTGTGACAGTTGCGCAGCCTGAATGGCGA 

hKat5 GATTACGAATTCGAGCTCGGTACAGGGCTCCTGGGGACAGATAAAGGTCCTCAGGGAACCT 

GACCTGTGCTCTCCCACAGTGAGATTAGTGAAATCACCAGCATCAAGAAGGAGGATGTCATC 

TCCACTCTGCAGTACCTCAATCTCATCAACTACTACAAGGTAGGGAGGCAGGCAGGGGAGA 

CAGGTGTGTGGGATGCAGAGTGCAGTCCTCTGTGGGCTGACCACCTGCTGAACCCATCTCC 

TCTGCCCAGGGCCAGTACATCCTCACACTGTCAGAGGACATCGTGGATGGCCATGAGCGGG 

CCATGCTCAAGCGGCTCCTGCGGATCGACTCCAAGTGTCTGCACTTCACTCCCAAGGACTG 

GAGCAAGAGGGGGAAGTGGCCAGACACTGCCCACTGCAGTGCCAAGACGGCAGCAGGACT 

GGGACTGATAGCCCACCCCGCCCCCACTGCAGCTCCCACAAAGCACTCTAAGGGAGATGG 

GGCTGAGGACAGCTCAAAAAGGAGAGGACAGGCCTGGCAGGGGCCCACTGGTGCCCAGC 

ACCAAGGCGAGCTCCGGGCTCAGACCAACTCCAAGGTCAGCTGGCCACAGGCCCAGGCCT 

CCTCTGAAGCAGGGACCAGAGGGAGCCAGGCAGCTGTGTACAGTGAGAAGGGATCCGGAT 

GGGGGAGCTCTGTACAGAGGGCTGGTGATTGTAAAAATTTCTTTTGTAAAGTAGAAGTTGGG 

GGTGGGGTGGGTGCTGGCTGCAAAAATTTCTGGCTTCTCTTACCCCTATTGCCCCCGGCAA 

TAAATTGTTTCTATATGCCAGAGCCATGCAAAGTTCTTGGTGGGGAGGGGGAAAGGGCCCAT 

GCTGGCTTAGGGGCTCTAAGGCGCCCAGACTCACAGGTGCTGTGAAGAGCTCCTTTATTGG 

GGTGATGGAATCGGTTCCAAAGAGCTGGTTTACTGCTGTGAAGGGATCGCAGCTTTGAATTT 

CAAGAGTTGCGCAGCCTGAATGGCGA 
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6.5.7 Primers used in the synthesis and validation of the degron constructs 

Plasmid constructs and primers were designed using SnapGene software (from GSL 

Biotech; available at www.snapgene.com). 

 

Table 2 

Template Primer Sequence 

pUC18 Linearise F AGTTGCGCAGCCTGAATGGCGA 

pUC18 Linearise R TACCGAGCTCGAATTCGTAATC 

pUC18-mKat5 

HR 

Linearise F AAACTCATCAATGTATCTTACACACACTACCCATTGCCATACC 

pUC18-mKat5 

HR 

Linearise R TCGTATGGGTAACCGCCTCCGCCGCTGCCCCACTTTCCTCTCTTGCTCCAG 

eDHFR 

(mKat5) 

Amplification F GGAGCAAGAGAGGAAAGTGGGGCAGCGGCGGAGGCGGTTACCCATAC 

 

eDHFR 

(mKat5) 

Amplification R ATGGCAATGGGTAGTGTGTGTAAGATACATTGATGAGTTTGGAC 

pUC18-hKat5 

HR 

Linearise F AAACTCATCAATGTATCTTACCAGACACTGCCCACTG 

pUC18-hKat5 

HR 

Linearise R TCGTATGGGTAACCGCCTCCGCCGCTGCCCCACTTCCCCCTCTTGCT 

eDHFR 

(hKat5) 

Amplification F GGAGCAAGAGGGGGAAGTGGGGCAGCGGCGGAGGCGGTTACCCATAC 

eDHFR 

(hKat5) 

Amplification R CTGCAGTGGGCAGTGTCTGGTAAGATACATTGATGAGTTTGGAC 

Screen for 

final Kat5-

eDHFR 

product 

F (inside 

puroR) 

CCTGGTGCATGACCCGCAAG 

Screen for 

final Kat5-

eDHFR 

product 

R (inside 

puroR) 

GCTCGGTGACCCGCTCGATG 

Screen for 

final Kat5-

eDHFR 

product 

F (inside 

blastR) 

AGTGATGGACAGCCGACGGC 

Screen for 

final Kat5-

eDHFR 

product 

R (inside 

blastR) 

GCCCAGCACCACGAGTTCTGC 

 

 

http://www.snapgene.com/
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6.5.8 Overview of cloning Kat5-degron constructs 

 

FIGURE 1 

 

a 
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b  1 
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Figure 1 | Illustrations of the steps involved in cloning the pUC-18 m/hKat5 degron constructs 

a, An overview of the steps required to synthesise the Kat5 degron plasmid. b, Flow chart depicting the 

sequential process that leads to the synthesis of the pUC18-m/hKat5-degron constructs. The numbered 

boxes match the numbered steps in (a).  

Linearise the pUC18 plasmid and perform Gibson assembly to anneal the 

linearised pUC18 with the mouse or human Kat5 homology region. 

The overhangs either side of the homology region are complementary to the 

terminal ends of the linearised pUC18 to facilitate accurate annealing. 

This generates a pUC18-mKat5 or pUC18-hKat5 plasmid. 

Linearise the pUC18-m/hKat5 plasmid.  

 

The primers for this step have overhangs that are complementary to the degron 

cassette, and therefore the linearised product will carry these overhang sequences. 

 

The degron cassette is amplified out from its plasmid using primers with overhangs 

that are complementary to the 5’ and 3’ mKat5 or hKat5 homology regions. 

 

The degron cassette with encode an antibiotic resistance gene. To ensure that both 

mouse and human Kat5 alleles are targeted, two antibiotic resistance markers will be 

necessary for selection. As such, this step will need to be repeated with a second 

degron cassette carrying a different antibiotic resistance gene. 

 

The linearised pUC18-mKat5 or pUC18 hKat5 plasmid and the degron cassette are 

annealed via Gibson assembly to produce the final vector. 

 

Electroporate the final constructs into the mouse CH12F3 and primary human RPE 

cells lines alongside the CRISPR/Cas9 construct that targets the Kat5 locus. 

 

After 24 hours, commence antibiotic selection. 
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6.6 Results 

 

6.7 CRISPR/Cas9 Kat5-targeted knockout 

In the gel below (Fig. 1) A and L are positive control sequences that are provided by 

the Surveyor assay. They are fully complementary except for a single nucleotide 

mismatch. Incubation of A alone with the celery juice enzyme does not form 

mismatches (Lane A). However, mixing A and L forms heteroduplexes that are 

recognised by the enzyme, resulting in 3 bands (Lane A/L), each a product of 1) 

homoduplex formation and 2) the two products that come from cleaving the mismatch 

following heteroduplex formation. It is clear from the single bands observed in Lanes 

4–7 that either Kat5 has not been successfully targeted and cleaved by Cas9, or that 

those cells that have been targeted and cleaved by Cas9 are not viable. Irrespective, 

Kat5 is not a suitable target for Cas9.  

 

FIGURE 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2 | Gel of the Kat5-gRNA targeted CRISPR/Cas9  

R, is the GeneRuler, A and A/L, Negative and positive combinations of control sequences showing 

efficacy of the celery juice nuclease. 1, 2 and 3, Genomic DNA extracted from untransfected 3T3 cells 

at 0, 48 and 92 hours. 4 and 5, Genomic DNA extracted and mixed from untransfected and 

CRISPR/Cas9 transfected 3T3 cells at 48 and 96 hours. 6 and 7, Genomic DNA extracted from 

CRISPR/Cas9 transfected 3T3 cells at 48 and 96 hours. Kat5 PCR amplification product is 600 bp. 

DNA stained with midori green.  
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6.8 Linearisation of the pUC18 plasmid 

The first step in the design of the inducible degron system is to linearise the pUC18 

plasmid. This will incorporate the Kat5 homology regions and the 3xHA-eDHFR-P2A-

puroR/blastR-SV40 cassette in a sequential manner.  

 

FIGURE 3 

a            b 

 

 

 

 

 

 

 

 

 

 

Figure 3 | Gel to show the successful linearisation of the pUC18 plasmid 

a, Vector map of pUC18. The size of the plasmid is 2686 bp, and the linearization primers have been 

highlighted. b, The size of the band in the gel corresponds to the size of the pUC18 plasmid, showing 

successful linearization. DNA stained with midori green. 

 

6.9 Isolation of pUC18-mKat5 HR and pUC18-hKat5 HR constructs 

The linearised pUC18 and the mKat5 and hKat5 homology regions are cloned together 

using Gibson assembly. The products were transformed into DH5α E. coli. Colony 

PCR was performed on individual colonies, and the products were screened with 

linearising primers from within the mKat5 or hKat5 homology regions.  
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FIGURE 4 

a           b 

 

 

 

 

 

c                                                        Mouse 

 

 

 

 

 

 

 

 

d                                             Human 

 

 

 

 

 

 

 

 

Figure 4 | Screening of the mouse and human pUC18-Kat5 HR 

a and b, Plasmid vector maps denoting the pUC18-mKat5/hKat5 HR. The forward and reverse 

linearization screening primers have been highlighted. c and d, Gels show the successful incorporation 

of the mKat5 and hKat5 homology regions in Lanes 13 and 4, respectively. DNA stained with midori 

green. 
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6.10 Confirmation of the puC18-mKat5/hKat5 HR plasmids 

To confirm the results on the gel (Fig. 4), the selected colonies were cultured and run 

again on a gel using the linearization primers as screening primers.  

 

FIGURE 5 

 

a      b 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 | Screening of the pUC18-mKat5/hKat5 HR plasmids 

a and b, Clones 13 and 4 from Fig. 4 were cultured and re-run on the gel to confirm their integration 

into the pUC18 vector. DNA stained with midori green.  
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6.11 Amplification of the degron cassette 

Next, the degron cassette, comprised of the 3xHA-eDHFR-P2A-puroR/blastR-SV40 

sequences, was amplified using primers carrying overhangs that are complementary 

to the mouse or human Kat5 homology regions.  

 

Figure 6 

a        b 
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Figure 6 | Amplification of the degron cassette 

a and b, Plasmid maps of the degron cassette carrying blasticidin (a) and puromycin (b) antibiotic 

resistance genes. c, Gel to show the successful amplification of the degron using amplification primers 

containing overhangs that are complementary to the mKat5/hKat5 homology regions within the pUC18-

mKat5/hKat5 HR constructs. Gels stained with midori green.  
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6.12 Planned pUC18-mKat5/hKat5-3xHA-eDHFR-P2A-puroR/blastR-SV40 

constructs 

The next stage in this process will be to use Gibson assembly to anneal the degron 

cassette into the linearised pUC18-mKat5 HR and pUC18-hKat5 HR plasmids.  

 

FIGURE 7 

 

 

Figure 7 | Plasmid maps of the final mouse and human Kat5 degron constructs 

a–d, Plasmid maps of the final Kat5 degron in both mouse and human, carrying either puroR or blastR.    
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6.13 Construction of mouse and human CRISPR-Cas9 targeting plasmid: pX330-

mKat5/hKat5  

The pX330 plasmids containing mKat5 and hKat5-targeted gRNAs will also need to 

be prepared. The purpose of the CRISPR/Cas9 system is to introduce a DSB break 

near the stop codon of genomic Kat5. The corresponding complementary Kat5 

sequences in the pUC18 degron cassettes will provide a template for homologous 

recombination, and integration of the degron into the genome. 

 

FIGURE 8 

 

 

Figure 8 | Plasmid map of the pX330 vector encoding the mouse gRNA sequences 

a and b, pX330 vector encoding the mouse (a) and human (b) gRNA sequences.  
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6.14 The final intracellular Kat5-degron product 

Once the mouse CH12F3 B cells and primary human RPE cells have been 

successfully transfected and selected, the intention is for one Kat5 allele to integrate 

the degron cassette containing the puromycin resistance gene, and the other to 

integrate the blasticidin resistance gene, which ensures that both Kat5 proteins will be 

tagged with the degron.  

 

FIGURE 9 

 

 

 

Figure 9 | Full length Kat5-degron protein construct 

Once integrated into the genome, the translated protein construct composed of the Kat5, 3xHA, eDHFR 

degron and P2A self-cleaving peptide will total 731 amino acids, 513 belonging to Kat5, and 218 from 

the entire degron.  
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6.15 Discussion 

Kat5 is essential for cellular viability, which has made it challenging to generate a Kat5 

knockout cell line using CRISPR/Cas9 technology. Furthermore, it cannot be easily 

visualised as antibodies raised against it typically have very low affinity. As such, 

siRNA or shRNA-depletion of Kat5 would be difficult to study without being able to 

confirm the knockdown. As such, the degron system appears to offer an option that 

would save the cell line from perishing due to the reversible nature of the system 

(514,515), and the presence of an HA tag would make the Kat5 visible for Western 

blot, immunofluorescent staining for confocal, and possibly immunofluorescent 

staining for flow cytometry (516–519).  

 

Good progress has been made so far in developing the pUC18 and pX330 constructs 

necessary for this degron system to be electroporated into the mouse CH12F3 and 

human RPE cell lines. However, there are a few concerns about this system as the 

degron is a bulky, not insignificant, addition to tag next to Kat5. Indeed, the degron 

itself is large protein made up of 218 amino acids, which is not much shorter than the 

513 amino acid Kat5. Kat5 participates in DNA repair and transcription, and in doing 

so it has numerous interaction partners (16–18). Disrupting its ability to forge these 

interactions could have subtle and widespread implications on the cell (19–23,492), 

and therefore it is essential that the cell lines generated are validated such that any 

data obtained that suggests a role for Kat5 in CSR is reliable. Any successful 

transfections of CH12F3 and primary human RPE cell lines will need careful 

consolidation. A survival assay will be essential. As Kat5 is required for cellular 

survival, any disruption in its ability to function should have noticeable consequences, 

and its proliferation rate and survival rates would be expected to decrease. 

Additionally, Kat5 is involved in transcription activation, and therefore rt-qPCR to 

ascertain mRNA levels of its target proteins will help to validate the inducible degron 

technique (527). The effect of heterozygous incorporation of the eDHFR degron has 

been considered, and the presence of the degron on just one copy of Kat5 may offer 

a more subtle phenotype that could be studied without the risk of cell death, however 

heterozygous knockouts of Kat5 in mice have been reported to exhibit only minor 

defects in DDR signalling in a sensitised, pre-tumoural background (476). As such, it 

is possible that the activity of just one copy of Kat5 is enough to compensate for the 

loss of the other Kat5 protein. Yet again, the partial redundancy in that system could 
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be attributed to compensation of chronic haplo-insufficiency. We hope our DHFR 

system will provide an acute haplo-insufficiency which a cell may not have enough 

time to adapt to in the short span of time during our experiment; ideally between one 

and twelve hours. 

 

In the event that this system is found to be suitable it is hoped that, in combination with 

the Kat5 inhibitors, it should provide an additional element to understand Kat5’s role 

in both DNA repair and immune diversity. The iChromo and TH1834 inhibitors affect 

Kat5’s catalytic activities but have no effect on the structure of the protein (207). As 

such, if Kat5 possesses a structural role in the support of CSR, as in the case for DNA 

uracil glycosylase, then the total loss of Kat5 offer a more holistic, all-encompassing 

view of its involvement in class switching. This would then also allow for the of 

compensation of the inducible deletion cells with point mutant Kat5 plasmids that could 

mimic and extrapolate further the data obtained from the chemical separation-of-

function of Kat5 in genomic maintenance and immune diversity. 
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7 Discussion and future work 

 

7.1 Overall conclusion 

The research presented in this thesis has achieved the overall aim of the project by 

furthering our understanding of the mechanisms involved in the DNA damage 

response. Moreover, the specific research objectives have been completed by 1) 

developing a fluorescence-based assay that can study a wealth of proteins that affect 

the structural integrity of DNA, and 2) by investigating the Kat5 pathway in both 

canonical and non-canonical DNA repair using a combination of chemical inhibitors, 

and with genetic methods on the horizon. Much of the work within has contributed to 

published articles or is currently in submission.  

 

7.2 Design and improvement of the PicoGreen-based nuclease toolkit 

The development of a fluorescence-based toolkit has established itself as a safe, 

robust, rapid and highly sensitive technique for studying nucleases and polymerases. 

It has the capacity to capture reaction kinetics, and the flexibility to expand the DNA 

substrate library and physiologically relevant modifications to include more complex 

structures, including Y-structures, Holliday junctions, hydroxymethylated DNA, 

methylated DNA and hemimethylated dsDNA for characterisation of a wider variety 

enzymes.  

 

PG had previously been used in discontinuous assays measuring the fluorescence 

read-out from dsDNA. Stabilising the dye with glycerol proved to maintain the 

fluorescent signal and slow the effect of photobleaching, allowing for it to be used for 

monitoring nuclease activity in real-time. This, in combination with sequence 

optimisation of the DNA substrates, produces a suitably strong fluorescent signal that 

accurately captures dsDNA nuclease activities, allowing for sensitive analysis of 

reaction kinetics and substrate preferences. 

 

As evidenced, this fluorescence-based assay has much potential. The activities of 

dsDNA nucleases, ssDNA nucleases, nickases and polymerases can all be 

investigated using this system and, theoretically, should encompass all DNA 

denaturing enzymes, such as helicases or splicing proteins (253–255), as well as DNA 
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polymerising enzymes, including translesion polymerases. It is fortunate that, while 

hydrolysis of the phosphodiester bonds in DNA requires different divalent metal ions, 

none of the nuclease activity studied here was altered in the presence of PG (528). 

Indeed, any enzyme that impacts the structural integrity of DNA should be a suitable 

candidate for study using this method. In addition to the technological novelty of this 

new toolkit, it is expected to also offer new mechanistic and kinetic insights into DNA 

metabolizing enzymes in real time. This could generate a step change in the 

understanding of enzyme reaction speeds, transition states, subtle substrate 

preferences, and co-factor preferences and interferences. 

 

7.3 Incorporating an RNA dye could further generate a universal nuclease assay 

Several RNA dyes are available that could be used to characterise RNA nucleases 

(454,529–531). Confirming their utility with well-characterised enzymes, such as 

RNase A (532), would be essential but then have the potential to identify and study a 

wealth of RNA nucleases (452,453,455,456). RNA nucleases are particularly 

interesting as they are often associated with providing antimicrobial and antiviral 

immunity in viruses, bacteria and eukaryotes (452,533–540), in some cases, cancer 

(538,541–543). Ultimately, staining RNA delivers the opportunity to stain RNA/DNA 

hybrid structures and their degradation by RNA and DNA nucleases, such as RNase 

H and DNase I (452,544).  

 

7.4 Nucleases in immunity and tumourigenesis 

The ability to study both DNA and RNA nucleases is vital. Mutations in nucleases that 

impact either catalytic properties or interaction capabilities can have devastating 

effects on immune function and tumourigenesis. CTIP nuclease has been associated 

with Jawad and Seckel Syndromes (444), Exo1 is mutated in some cancer patients 

(445–447), a loss of function mutation in the human Trex1 gene causes the 

autoimmune disorder Aicardi-Goutières syndrome (545), and mutations in human 

WRN cause the autoimmune progeria disorder Werner Syndrome. Understanding the 

nature of the mutations affecting nuclease or helicase activities, protein interactions 

and/or protein stability will provide an accurate assessment of how these autoimmune 

syndromes have developed. Furthermore, meta-analyses have identified key 

polymorphisms in human RNase L that are associated with increased prostate cancer 

risk (546,547), and that RNase L antiviral activity targets Hepatitis C virus, West Nile 
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Virus and HIV (548). Its role in innate immunity can be modulated, and it therefore 

represents a possible target for therapeutic intervention (548).  

 

With so many RNA and DNA nucleases as targets, the fluorescence-based assay can 

be utilised to study potential inhibitors or modulators of nuclease activity. Actin is a 

naturally occurring inhibitor of DNase I, and its inhibitory effects have been studied 

using a discontinuous fluorescence-based method (406).  

 

7.5 Characterisation of nucleases and polymerases involved in SHM and CSR 

with the fluorescence-based nuclease toolkit 

DNA repair is integral for the successful secondary antibody diversification processes 

of SHM and CSR. In canonical DDR, mechanisms are in place to ensure the delayed 

recruitment of error-prone translesion polymerases so as to promote error-free DNA 

replication at the break site (549). Due to a second mechanism dependent on the 

monoubiquitination of PCNA at Lys164, translesion polymerases, such as θ, η and ζ, 

are recruited to the V region during SHM to introduce a swathe of A and T mutations 

to enhance immune diversity (78,550).  It would be worthwhile to compare the activities 

of all error-prone and error-free nucleases, and potential regulatory binding partners, 

to elucidate whether their kinetics of polymerisation represent another form of 

regulatory control.  

 

As for CSR, although the DNA substrates used in the assay were optimised to reduce 

secondary structure formation and improve fluorescence, the assay is not restricted to 

relying on these sequences. Alternative substrates could be synthesised to mimic the 

G-rich S regions for analysis of nucleases involved in CSR. Moreover, R loops, G4- 

DNA and -RNA quadruplex structures are critical for efficient CSR (64,551,552). 

Processing G4 RNA structures, which target AID to transcribed S regions, presumably 

requires 5’ and 3’ RNA nucleases which have yet to be either isolated or characterised 

(144). The assay would be an excellent candidate for such genome wide high 

throughput screens. Possibly integrating it into microfluidics chips that combines 

protein expression droplets with fluorescent spectroscopy readouts in a high 

throughput manner. 
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7.6 Kat5 has a fundamental role in CSR 

Histone “writers” play a crucial role in building the “histone code” which is essential in 

propagating adequate cell function. Evidence herein shows that Kat5, a histone 

acetylation “writer” has an important role in the DNA damage response in general and 

in immune diversification (CSR) in particular. Clearly, optimisation is required to 

quantify the extent to which Kat5 supports or downregulates CSR; nevertheless, 

inhibition of Kat5 distinctly alters CSR efficiency. Both inhibitors, iChromo (Kaidi A, 

unpublished) and TH1834 (207), target Kat5 and impede its activities in subtly different 

ways. iChromo prevents Kat5 propagating H2AX phosphorylation though the 

acetylation and activation of ATM (44,46,47,469,470).  This prevents the subsequent 

phosphorylation of H2AX and recruitment of downstream repair proteins. TH1834 

mimics Kat5’s natural ligand, Acetyl-CoA, functioning as a competitive inhibitor to 

prevent Kat5 acetylating either ATM or histone H4 (207), thereby reducing H2AX 

phosphorylation and histone H4 acetylation, and impacting both DNA repair and 

transcription. As such, the combination of these two inhibitors should help to determine 

the extent to which each function participates in CSR. Further studies using primary 

mouse B cells would consolidate the observed results. 

 

It is exciting that another collaborator has developed another inhibitor of Kat5 that 

distorts Kat5’s tertiary structure but permits its catalytic activities. As Kat5 exists in a 

large protein complex, it would be intriguing to discover how much its function as a 

scaffold helps to drive CSR compared to its catalytic activities. This would offer a third 

separation-of-function element to develop a thorough understanding of the role Kat5 

plays. Indeed, other proteins present in CSR are present as scaffolding proteins, rather 

than for their roles in catalysis, as is expected during canonical DNA repair. The uracil 

DNA glycosylase (UNG) typically contributes in base excision repair to remove 

misincorporated uracil in the DNA, which produces U:A mismatches (553), and UNG-

deficient mice present with drastically reduced CSR. However, its primary purpose in 

CSR may instead be to function as a non-canonical scaffold that recruits essential 

repair proteins for S region recombination (554). The nuclease function of Exo1 is 

similarly dispensable for CSR, yet Exo1-null mice exhibit defective CSR, suggesting a 

non-canonical structural role (124).  
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On the basis that the Kat5 inducible degron constructs for mouse and human cell lines 

are a success, it will be possible to selectively knockdown Kat5 for studies of CSR 

efficiency (208). Combined with the chemical inhibitors, it will offer yet another level of 

detail that combines both the loss of Kat5 catalysis and its structural features. If this 

system works, following successful transfection and selection of a stable cell line, this 

could be a very powerful tool for studying Kat5 and other essential proteins. These 

human and mouse constructs could be introduced to any human or mouse cell line, 

and perhaps could be combined with degrons or inhibitors that target other proteins to 

build up a more complex system of protein depletion. If this system is deemed 

unreliable, and the presence of the degron impedes Kat5 binding to its partners, then 

a more straightforward method of HA- or FLAG-tagging Kat5 may be an option. This 

will enable visualisation of Kat5 during siRNA knockdown as antibodies recognise HA 

and FAG with very high affinity (516–519). While siRNA knockdown is a valuable and 

effective technique, there are a number of disadvantages including, but not limited to, 

the risk of off-target effects (555); furthermore, protein depletion via siRNA is indirect 

and depends on the stability of the target protein itself (556), and allows for 

upregulation of redundant pathways to counteract reduction in the levels of the target 

protein (555). In comparison, the eDHFR degron causes protein knockdown within a 

matter of a few hours as opposed to days. Neither system produces a total knockout, 

but a knockdown, which in the case of Kat5 may be more beneficial pending the low 

levels of Kat5 may be enough for cell survival (514).   

 

7.7 The role of Kat5 in SHM 

As in the case of CSR, a role for Kat5 in SHM has not yet been established. SHM can 

be monitored in Ramos human B cells which constitutively undergo SHM. Using 

FACS, it will be possible to measure the rate of loss of fluorescence released from an 

mCherry reporter protein inserted within the V region through the somatic mutation of 

its DNA sequence.  
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FIGURE 1 

 

 

Figure 1 | Ramos cell line with mCherry reporter. 

Diagram shows the structure of the Ig V region with the mCherry reporter inserted into the V region of 

the Ramos cell line.  

 

Whilst a study into Kat5 and its involvement in SHM was not possible due to time 

constraints, treating Ramos cells with the inhibitors available should indicate whether 

Kat5 has a function in SHM, and whether this influence contributes to immune 

diversity. Interestingly, a role for Kat5 in inducing synthesis of free DNA nucleotides 

(dNTPs) necessary for DNA repair has been proposed (557). dNTP synthesis is 

increased in S phase to meet the demands of DNA replication. Occasionally, dNTP 

levels are insufficient for repair outside of S phase. The enzyme ribonucleotide 

reductase (RNR) controls the rate-limiting step in dNTP synthesis (558). Transcription 

of many RNR subunits is highly inducible in response to DNA damage and replication 

stress in eukaryotes (559). Mutations that reduce yeast RNR activity, or fail to induce 

it, exhibit increased sensitivity to DNA damage. In response to DNA damage, RNR is 

acetylated by Kat5, and is localised to damaged sites in a Kat5-dependent manner 

(560). It is suggested that this produces high local concentrations of dNTPs at the 

damage site, and therefore may provide high local concentrations of dNTPs required 

for optimal function of error-prone translesion polymerases (558). As translesion 

polymerases contribute towards the accumulation of mutations along the V region, 

Kat5 may therefore support SHM. DNA repair factors involved in immune 

diversification fall under four categories: the ones not affecting either SHM or CSR (not 

relevant in this discussion), the ones affecting both SHM and CSR, and the one that 

affect either SHM or CSR. It would be extremely interesting to see in which of the three 

categories Kat5 falls under. 
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7.8 Concluding statement 

There were two main aims for this thesis; 1) to develop a fluorescence-based toolkit 

that has the potential to study dsDNA nucleases in real-time, and to deliver highly 

sensitive kinetic analyses, and 2) to establish a role for Kat5 in CSR.  

 

Having validated the method for well-characterised nucleases, the nuclease assay 

also incorporated studies of ssDNA nucleases, nickases, and polymerases. It is hoped 

that this method will act as a valuable alternative to conventional methods. It should 

be capable of characterising all enzymes that affect the integrity of DNA, and it would 

be interesting to study point-mutants that have been linked to autoimmune disorders 

and cancer.  

 

As for determining the role of Kat5 in CSR, the results suggest that Kat5 does have 

an important function for efficient CSR, yet the specific details remain elusive. 

Nevertheless, these studies have contributed another piece of the histone code that 

orchestrates secondary antibody diversification. Further study should determine 

whether Kat5’s DNA repair, transcription, or scaffolding function is most influential for 

CSR. 
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Appendix 

 

Analysis of nuclease rates  

 

Part 1: Converting fluorescence units to length of duplex DNA 

Raw data from a DNase I-mediated digestion of 80-bp dsDNA: 

 

First the raw data was converted from the standard curve to a measurement of length 

of duplex DNA. To do this, the average fluorescence for each data set was calculated, 

and each column was labelled with the length of dsDNA they each represent. The 

standard curve was produced from the following oligonucleotides: 

 

80 bp = S (556/557) 

60 bp = S60 (556/611) 

40 bp = S40 (556/610) 

20 bp = S20 (556/609) 

 

The latter assays which incorporated substrate variants were normalised as a 

percentage to their controls (no enzyme) before the standard curve was generated. 
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Next, we used these averaged values to determine the equation of the line, as 

indicated in Fig. 1c in the main text. We had to find the values for the gradient (m) and 

intercept (c) in the linear equation y = mx + c.  

 

Equation to calculate the gradient (m): “=SLOPE(known_y’s, $known_x’s)” 

 

E.g., the first equation at 0 seconds is: “=SLOPE(S43:W43,S$42:W$42)” 

 

The “$” locks the known_x’s values, as these values remain constant in all iterations 

of this equation.  

 

Equation to calculate the intercept (c): “=INTERCEPT(known_y’s, $known_x’s)” 

 

E.g., the first equation at 0 seconds is: “=INTERCEPT(S43:W43,S$42:W$42)” 
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Using the calculated values for the slope and intercept, it was possible to convert the 

raw fluorescence values to length of dsDNA. In doing so, we had to solve for ‘x’ in the 

equation y = mx + c at each time point, where ‘y’ = a raw fluorescence value, ‘m’ = the 

gradient, calculated previously, and ‘c’ = the intercept.  
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This data can then be analysed to calculate maximal reaction rates using the equation 

‘x = (y - c) / m) as shown in the above figure.  

 

 

 

 

 

 

 

 

Part 2: Rate analysis 

It is possible to calculate the rate of the reaction by calculating the gradient of the 

substrate vs DNase I concentration at its steepest. This is the maximal velocity at 

which the enzyme digests or resects the DNA substrate. Below, the rate at the highest 

concentration of DNase I (150 nM) and in the absence of DNase I (0 nM DNase I) is 

shown.  
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The rate for this reaction is calculated for each individual sample. An average of the 

rate when there is 0 nM DNase I is taken (0.010493) and this is subtracted from each 

calculation of the slope. This is termed ‘baseline interpolation’ and is a form of data 

normalisation. 

 

The rate is then divided by the concentration of DNase I in nM. Each value is divided 

either by 150 (when treated with 150 nM DNase) or 0 (when treated with 0 nM DNase). 

When divided by 0, the result is ∞, however the result will be reported as 0 as there is 

no reaction when the enzyme is absent.  
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The rate is negative, as we are calculating the decrease in florescence over time. 

However, the rate can be presented in terms of positive integers, and so the negative 

values are multiplied by -1. 

  

Error is represented by standard error of the mean. The equation for this is: 

 

 

σ = standard deviation 

Σ = sum of 

x = term 

х̅ = mean 

n = total number of terms 

 

In excel, this formula is entered as: 

“=STDEV(range)/SQRT(COUNT(range))”. 
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Kat5 FASTA sequences for protein alignment analyses 

 

>Mouse_Kat5 

MAEVGEIIEGCRLPVLRRNQDNEDEWPLAEILSVKDISGRKLFYVHYIDFNKRLDEWVTHER

LDLKKIQFPKKEAKTPTKNGLPGSRPGSPEREVPASAQASGKTLPIPVQITLRFNLPKEREA

IPGGEPDQPLSSSSCLQPNHRSTKRKVEVVSPATPVPSETAPASVFPQNGSARRAVAAQPGR

KRKSNCLGTDEDSQDSSDGIPSAPRMTGSLVSDRSHDDIVTRMKNIECIELGRHRLKPWYFS

PYPQELTTLPVLYLCEFCLKYGRSLKCLQRHLTKCDLRHPPGNEIYRKGTISFFEIDGRKNK

SYSQNLCLLAKCFLDHKTLYYDTDPFLFYVMTEYDCKGFHIVGYFSKEKESTEDYNVACILT

LPPYQRRGYGKLLIEFSYELSKVEGKTGTPEKPLSDLGLLSYRSYWSQTILEILMGLKSESG

ERPQITINEISEITSIKKEDVISTLQYLNLINYYKGQYILTLSEDIVDGHERAMLKRLLRID

SKCLHFTPKDWSKRGKW 

 

>Human_Kat5 

MAEVGEIIEGCRLPVLRRNQDNEDEWPLAEILSVKDISGRKLFYVHYIDFNKRLDEWVTHER

LDLKKIQFPKKEAKTPTKNGLPGSRPGSPEREVPASAQASGKTLPIPVQITLRFNLPKEREA

IPGGEPDQPLSSSSCLQPNHRSTKRKVEVVSPATPVPSETAPASVFPQNGAARRAVAAQPGR

KRKSNCLGTDEDSQDSSDGIPSAPRMTGSLVSDRSHDDIVTRMKNIECIELGRHRLKPWYFS

PYPQELTTLPVLYLCEFCLKYGRSLKCLQRHLTKCDLRHPPGNEIYRKGTISFFEIDGRKNK

SYSQNLCLLAKCFLDHKTLYYDTDPFLFYVMTEYDCKGFHIVGYFSKEKESTEDYNVACILT

LPPYQRRGYGKLLIEFSYELSKVEGKTGTPEKPLSDLGLLSYRSYWSQTILEILMGLKSESG

ERPQITINEISEITSIKKEDVISTLQYLNLINYYKGQYILTLSEDIVDGHERAMLKRLLRID

SKCLHFTPKDWSKRGKW 

 

>Dog_Kat5 

MAEVGEIIEGCRLPVLRRNQDNEDEWPLAEILSVKDISGRKLFYVHYIDFNKRLDEWVTHER

LDLKKIQFPKKEAKTPTKNGLPGSRPGSPEREVPASAQASGKTLPIPVQITLRFNLPKEREA

IPGGEPDQPLSSSSCLQPNHRSTKRKVEVVSPATPVPSETAPASVFPQNGSARRAVAAQPGR

KRKSNCLGTDEDSQDSSDGIPSAPRMTGSLVSDRSHDDIVTRMKNIECIELGRHRLKPWYFS

PYPQELTTLPVLYLCEFCLKYGRSLKCLQRHLTKCDLRHPPGNEIYRKGTISFFEIDGRKNK

SYSQNLCLLAKCFLDHKTLYYDTDPFLFYVMTEYDCKGFHIVGYFSKEKESTEDYNVACILT

LPPYQRRGYGKLLIEFSYELSKVEGKTGTPEKPLSDLGLLSYRSYWSQTILEILMGLKSESG

ERPQITINEISEITSIKKEDVISTLQYLNLINYYKGQYILTLSEDIVDGHERAMLKRLLRID

SKCLHFTPKDWSKRGKW 
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>Chicken_Kat5 

MAEAAEVSEGCRLPVLRRNQDNEDEWPLAEILSVKDISGRRLFYVHYIDFNKRLDEWVTPER

LDLQRVQGPRKEAKTPTKNGLPGSRPDSPERDPKRKVEVVSPATPVPAATETSQASVFPQNG

SARRAVAAQPGRKRKSACLGTDEDSQDSSDGAPSAPRMTGSLVSDRSHDDIVTRMKNIECIE

LGRHRLKPWYFSPYPQELTALPVLYLCEFCLKYGHSLRCLQRHLTKCDLRHPPGNEIYRKGT

ISFFEIDGRKNKSYSQNLCLLAKCFLDHKTLYYDTDPFLFYVMTEYDCKGFHIVGYFSKEKE

STEDYNVACILTLPPYQRRGYGKLLIEFSYELSKVEGKTGTPEKPLSDLGLLSYRSYWSQTI

LEILMGLKAEGGERPQITINEISEITSIKKEDVISTLQYLNLINYYKGQYILTLSGDIVEGH

ERAMLKRVLRIDAKCLHFTPKDWSKRGKWC 

 

>Western_Clawed_Frog_Kat5 

MAEAEIVEGCRLPVLRKNQDNEVEWPLAEILSIKELTGKKLFYVHYIDFNKRLDEWVTHDRL

DLKKIQFPKKEAKTPTKNGLPGSRPSSPEREVRKIPELIPPPVVPPAAGGKSLPVPKRKVDI

VSPATPVPPPPETTQVTVFPQQAPCDVAGVSAHTVMLSQNGAVRRPSAPAVQPGRKRKSNCL

SADEDSQDSSDGIPSAPRMTGSLVSDRSHDDIITRMKNIECIELGRHRLKPWYFSPYPQELT

VLPVLYLCEFCLKYVKSLKCLQRHLTKCNLRHPPGNEIYRKGTISFFEIDGRKNKSYSQNLC

LLAKCFLDHKTLYYDTDPFLFYIMTEYDCKGFHIVGYFSKEKESTEDYNVACILTLPPYQRR

GYGKLLIEFSYELSKVEGKTGTPEKPLSDLGLLSYRSYWSQTILEILMELKTETGERPQITI

NEISEITSIKKEDVISTLQYLNLINYYKGQYILTLSEDIVEGHEKAMQKRVLRIDSKCLHFT

PKDWSKRGKW 

 

>Zebrafish_Kat5 

MAEPTVEIVEGCRLPVLRKNQENEDEWPLAEILSVKDIPGRKLYYVHYIDFNKRLDEWVTPD

RLDLKKLQFPKKEAKTPTKNGLPGSRPSSPEREVRKSLDLNVQSASAPSRGKTLPTPKRKAE

SVSLATQVTAATPVPSLPSSAEASQASVYPAMRDSSFSIKAREEHEQLTSLTTNGTTRRLIP

SQPGRKRKNCVGTEEIVKVFQNNSPRSSTVYLPPGEDSQDSSDGIPSAPRMTGSLVSDRSHD

DIITRMKNIDCIELGRHRLKPWYFSPYPQELTTLPILYLCEFCLKYLKSLKCLQRHLTKCNL

RHPPGNEIYRKGTISFFEIDGRKNKMYSQNLCLLAKCFLDHKTLYYDTDPFLFYVMTEYDSK

GFHIVGYFSKEKESTEDYNVACILTLPPYQRRGYGKLLIEFSYELSKVEGKTGTPEKPLSDL

GLLSYRSYWSQTILEILMNLKSENGERPQMTINEISEITSVKKEDVISTLQYLNLINYYKGQ

YILTLSEDIVEGHERAMHKRHLRIDSKCLHFTPKDWSKRGKW 

 

 



 

173 
 

>D_melangoster_Kat5 

MKINHKYEFDDDVASICESTAALTEGCRLPVRMHKTDDWPLAEIVSIKELDGRRQFYVHYVD

FNKRLDEWVNEEDLYTRKVQFPRRDGSQTGTSTGVTTPQRHHSLAGSVSRPTSPQHPGSGAL

AAIPQTPTGASGSVPPPAGIPNSVAPPGTPSSGGELVNGNNLAAALQKRINRKRKNHGGSAH

GHHSLTSQQQQSHPHPTTPQTPTATPVHVTGDGLISGAANDDGDGSQDGKTPTPRQSGSMVT

HQDDVVTRMKNVEMIELGRHRIKPWYFSPYPQELCQMPCIYICEFCLKYRKSRKCLERHLSK

CNLRHPPGNEIYRKHTISFFEIDGRKNKVYAQNLCLLAKLFLDHKTLYYDTDPFLFYVMTEF

DSRGFHIVGYFSKEKESTEDYNVACILTMPPYQRKGYGKLLIEFSYELSKFEGKTGSPEKPL

SDLGLLSYRSYWAQTILEIFISQNPSTDGEKPTITINDICECTSIKKEDVISTLQNLNLINY

YKGQYIVCINRVIIEQHRRAMDKRKIRIDSKCLHWTPKDWSKRSK 

 

>C_elegans_Kat5 

MTEPKKEIIEDENHGISKKIPTDPRQYEKVTEGCRLLVMMASQEEERWAEVISRCRAANGSI

KFYVHYIDCNRRLDEWVQSDRLNLASCELPKKGGKKGAHLREENRDSNENEGKKSGRKRKIP

LLPMDDLKAESVDPLQAISTMTSGSTPSLRGSMSMVGHSEDAMTRIRNVECIELGRSRIQPW

YFAPYPQQLTSLDCIYICEFCLKYLKSKTCLKRHMEKCAMCHPPGNQIYSHDKLSFFEIDGR

KNKSYAQNLCLLAKLFLDHKTLYYDTDPFLFYVLTEEDEKGHHIVGYFSKEKESAEEYNVAC

ILVLPPFQKKGYGSLLIEFSYELSKIEQKTGSPEKPLSDLGLLSYRSYWSMAIMKELFAFKR

RHPGEDITVQDISQSTSIKREDVVSTLQQLDLYKYYKGSYIIVISDEKRQVYEKRIEAAKKK

TRINPAALQWRPKEYGKKRAQIMF 

 

>S_cerevisiae_Kat5_(ESA1) 

MSHDGKEEPGIAKKINSVDDIIIKCQCWVQKNDEERLAEILSINTRKAPPKFYVHYVNYNKR

LDEWITTDRINLDKEVLYPKLKATDEDNKKQKKKKATNTSETPQDSLQDGVDGFSRENTDVM

DLDNLNVQGIKDENISHEDEIKKLRTSGSMTQNPHEVARVRNLNRIIMGKYEIEPWYFSPYP

IELTDEDFIYIDDFTLQYFGSKKQYERYRKKCTLRHPPGNEIYRDDYVSFFEIDGRKQRTWC

RNLCLLSKLFLDHKTLYYDVDPFLFYCMTRRDELGHHLVGYFSKEKESADGYNVACILTLPQ

YQRMGYGKLLIEFSYELSKKENKVGSPEKPLSDLGLLSYRAYWSDTLITLLVEHQKEITIDE

ISSMTSMTTTDILHTAKTLNILRYYKGQHIIFLNEDILDRYNRLKAKKRRTIDPNRLIWKPP

VFTASQLRFAW 

 

>S_pombe_Kat5 

MSNDVDDESKIETKSYEAKDIVYKSKVFAFKDGEYRKAEILMIQKRTRGVVYYVHYNDYNKR

LDEWITIDNIDLSKGIEYPPPEKPKKAHGKGKSSKRPKAVDRRRSITAPSKTEPSTPSTEKP
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EPSTPSGESDHGSNAGNESLPLLEEDHKPESLSKEQEVERLRFSGSMVQNPHEIARIRNINK

ICIGDHEIEPWYFSPYPKEFSEVDIVYICSFCFCYYGSERQFQRHREKCTLQHPPGNEIYRD

DYISFFEIDGRKQRTWCRNICLLSKLFLDHKMLYYDVDPFLFYCMCRRDEYGCHLVGYFSKE

KESSENYNLACILTLPQYQRHGYGKLLIQFSYELTKREHKHGSPEKPLSDLGLISYRAYWAE

QIINLVLGMRTETTIDELANKTSMTTNDVLHTLQALNMLKYYKGQFIICISDGIEQQYERLK

NKKRRRINGDLLADWQPPVFHPSQLRFGW 

 

>U_maydis_Kat5 

MAPRTQKSTSGTPGGSGTPGPDEGPQISPGGTYGLEDVVVGCKAFVQKPDVVTGEMEERKAE

ILSIREKPKPRLTKKQQAELADKPAPTLEETLEYYVHYCEFNKRLDEWVSGTRLITSRELEW

PKKEVTSDKTKRKVIRAGSGATTPSTPLTPTGKGYRGAGASNLLKKAAAQAAKNVQGESGLE

TPQKRKADSGDTSTAQSIRADSIDADADGEDDENGAVVAMEMLGGNDQQEKDDVATESNGGL

TASLNANQGQETFSKKQEIEKLRTSGSMTQSVSEVARVKNLNKIQMGKSEVETWYFSPYPLE

YAHIDTLYICEMCLSYFPSPFTLKRHRSKCTLLHPPGNEIYRHEDISFFEIDGRLQRTWCRN

LCLLSKCFLDHKTLYYDVDPFLYYCMVKRDDLGCHLLGYFSKEKDSAENYNVACILTLPQHQ

RAGYGKLLIEFSYELTKIEGKLGSPEKPLSDLGLLSYRAYWAEIIVELLLKTEDEISIEEIA

QKTAFTHADILHTCMALNMLKQYQGKHMIVLSDLIISKYTAKRPRKRINPQKLHWTAKNWHR

SQLNFGW 
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