FEASIBILITY OF CARDIOPULMONARY EXERCISE TESTING IN IDIOPATHIC PULMONARY FIBROSIS

Rebecca L. Wollerton^{1, 2*}, Owen W. Tomlinson^{1, 3*}, Bridget A. Knight^{2, 4}, Anna Duckworth², Alexander Spiers¹, Craig A. Williams^{1, 3}, Michael Gibbons^{1, 2}, Chris J. Scotton².

*equal contribution

- 1. Royal Devon and Exeter NHS Foundation Trust Hospital, Barrack Road, Exeter, EX2 5DW, United Kingdom.
- University of Exeter Medical School, University of Exeter, Heavitree Road, Exeter, EX1 2LU, United Kingdom.
- Sport and Health Sciences, University of Exeter, Heavitree Road, Exeter, EX1 2LU, United Kingdom.
- 4. NIHR Exeter Clinical Research Facility, Royal Devon and Exeter NHS Foundation Trust Hospital, Barrack Road, Exeter, EX2 5DW, United Kingdom.

Introduction: Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive interstitial lung disease of irreversible declining lung function. Reductions in forced vital capacity (FVC) and diffusion capacity for carbon monoxide (DL_{CO}) are the common clinical endpoints for prognostic monitoring and assessing treatment outcomes. The use of cardiopulmonary exercise testing (CPET) in IPF remains largely unexplored.

Objectives: To explore the feasibility of CPET as a clinical measure in IPF and identify associations with established clinical variables.

Methods: Seventeen patients with IPF were approached, and fifteen (88%) were recruited (13 male, 68.1 ± 7.5 years). Incremental exercise testing to exhaustion was undertaken via electronically braked cycle ergometer. Variables included: peak oxygen consumption (VO_{2peak}), peak work rate (WR_{peak}), nadir SpO₂, ventilatory drive (V_E/VCO₂), alongside standard clinical pulmonary function tests of FVC and DL_{CO}. Pearson's correlation coefficients established relationships between variables.

Results: One participant was excluded (high baseline systolic blood pressure). Eight out of fourteen (57%) participants reached volitional exhaustion. Five CPETs were terminated early due to desaturation ($SpO_2 < 88\%$) and one to an exercise-induced right bundle branch block (recovery within minutes of ceasing exercise). Mean (± SD) pulmonary and exercise results were: FVC, 84.9 ± 17.0 %; DL_{CO}, 56.5 ± 11.4 %;

VO_{2peak}, 1.4 ± 0.4 L·min⁻¹, 16.5 ± 5.5 mL·kg⁻¹·min⁻¹; WR_{peak}, 104 ± 42 W; SpO₂, 90 ± 3 %; VE/VCO₂, 27.1 ± 6.4. Significant correlations were identified between: FVC and SpO₂ (r = 0.58, p = 0.032), DLco and VE/VCO₂ (r = 0.81, p < 0.001) and WR_{peak} (r = 0.58, p = 0.03). Body-mass relative VO_{2peak} held moderate, but not significant relationships with FVC (r = 0.44, p = 0.11) and DLco (r = 0.53, p = 0.51).

Conclusions: Initial findings from this study have found CPET to be acceptable to patients with IPF and potentially feasible as a testing measure. Preliminary results identified common exercise desaturation, suggesting less conservative SpO2 termination criteria (e.g. 80% cut-off) could be considered. Although exercise parameters held limited relationships with FVC and DL_{CO}, results from VO_{2peak} identifies potential additional and dynamic prognostic information and warrants further investigation.