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Abstract  

Human activities and occupancy can induce excessive structural vibrations. Human-structure 

interaction (HSI) can significantly affect responses. However, this phenomenon is not 

accounted for in many design guidelines due to lack of experimental studies. Concurrently, 

there is increasing application of lightweight high-strength materials such as glass fibre 

reinforced polymer (GFRP). The vibration sensitivity of such structures is not yet well known, 

despite the expectation that it could be important due to high human-to-structure mass ratio. 

This paper examines the effect of HSI on the vibration response prediction of a lively 

lightweight GFRP footbridge, and it compares the results to those from a heavy concrete-

composite footbridge. An extensive ensemble of test trials was conducted, accompanied by a 

survey on vibration perception by the walkers. The influence of HSI on the lightweight bridge 

vibration response is quantified. It is found that the non-interacting moving force models 

produce poor predictions, especially for the GFRP bridge.  It is also found that vibration of the 

bridge had a strong influence on walking force, and to a lesser extent on the dynamics of the 

human-structure system. Finally, it is found that the response factor of about 2 is appropriate 

for determining the vibration tolerance level by walkers.  
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1. Introduction 

1.1 Background 

The vibration performance of many modern footbridges under human walking is a vital 

serviceability consideration. Inaccurate vibration response predictions at the design stage can 

result in the design of structures which exhibit excessive vibrations during their service. On the 

other hand, overly-conservative models of vibration response incur additional unnecessary 

costs. Concurrently, the application of high-strength lightweight materials such as fibre-

reinforced polymer (FRP) is increasing in the building and civil construction industries. 

However, so far there are limited studies on the vibration performance of such structures [1].   

 

Živanović et al. [2] compared the vibration performance of lightweight FRP bridges (i.e. 

Aberfeldy and EMPA bridges) with non-FRP (heavier) bridges (i.e. Podgorica, Sheffield, and 

Warwick Bridges). It was concluded that the relatively lower modal mass of the FRP bridges 

results in increased liveliness (i.e., accelerance) compared to the non-FRP bridges. He and Xie 

[3] studied the dynamic properties of a lightweight steel-concrete composite bridge under 

walking people, and found that the pedestrian-to-bridge mass ratio plays a key role in the 

dynamic properties of the human-bridge system. From the results of these studies, it can be 

seen that neglecting the effect of human-structure interaction (HSI), as is done in many current 

guidelines, will lead to inaccurate vibration prediction for lively lightweight structures [4]. In 

a unique series of research works, Dey and his colleagues ([5], [6], [7]) studied dynamic 

performance of lightweight aluminium footbridges and accuracy of current pedestrian load 

models. They reported that these footbridges tend to be lively due to their low damping and 

light weight, and more detailed walking load models are also required for accurate vibration 

response estimation of lightweight structures. Particularly in the case of near-resonant, the 

footbridge vibration was seen to be overestimated. However, contribution of HSI was not 

clearly specified and quantified. 
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In the context of the structural vibration serviceability, HSI is defined as the mutual dynamic 

effects of the human and the structure on one another. HSI occurs as a feedback loop when the 

structure and human are in contact. Walking causes the vibration which is perceived, in turn 

altering the walking characteristics and hence the subsequent vibration. HSI thus has two parts: 

(1) Structure-to-Human Interaction (S2HI): the effects of the structural vibration on the human 

walking forces which are also referred to as ground reaction forces (GRFs); (2) Human-to-

Structure Interaction (H2SI): the influences of the human body on the dynamic properties of 

the human-structure system. Vibration in the vertical direction is the focus of this study. 

1.2 Previous studies  

For current structural vibration response predictions in practice, the imparted human force is 

often modelled as a continuous constant-velocity moving force (e.g. OHBDC [8], U.K. 

National Annex to Eurocode 1 [9], ISO-10137 [10], Eurocode 5 [11], Setra [12], and HIVOSS 

[13]). This time-varying force is typically represented using a Fourier series representation: 

    
0

cos 2
N

p k p k
k

G t W DLF kf t 


   (1) 

where Wp = mpg; mp is the pedestrian mass; g is the acceleration due to gravity; fp is the pacing 

frequency; and DLFk is the dynamic load factor for the kth harmonic. The phase angle of the 

kth harmonic is denoted by φk, and N represents total number of harmonics considered. In this 

representation, the harmonic k = 0 corresponds to the static pedestrian weight, and so φ0 = 0 to 

give DLF0 = 1. Clearly, the DLFs are essential to this representation, and these are usually 

based upon measured walking forces on rigid surfaces ([14], [15], [16], [17]). Both the moving 

force model using equation (1) and the rigid surface-based DLFs do not allow for consideration 

of HSI. Thus, for structures where HSI significantly influences the vibration response (such as 

lightweight footbridges), this non-interacting force model will lead to inaccurate response 

predictions.  
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The importance of HSI on the accurate prediction of vibration response has attracted increasing 

attention from researchers in the last few years. Shahabpoor et al. [4] comprehensively 

surveyed the literature on HSI in the vertical direction. For the effect of the structural vibration 

on the human (i.e. S2HI), a reduction in the magnitude of walking force due to the vibrating 

surface has been reported by several authors. Ohlsson [18] found such a reduction when 

walking close to the frequency of the structure (i.e. “resonant walking”). Likewise, Baumann 

and Bachmann [19] reported a 10% reduction (approximately) in DLFs for two test subjects 

walking on a vibrating surface. Pimentel [20] matched measured vibration responses with those 

simulated from a moving force model, concluding that it is necessary to have reductions in the 

first and second DLFs. Dang and Živanović [21] used a stationary instrumented treadmill on a 

lively bridge, reporting a considerable drop (up to 53%) in DLFs around the vibration 

frequency. Ahmadi et al. ([22], [23]) conducted numerous walking trials on two lively 

footbridges, measuring walking forces on both rigid and bridge surfaces. It was found that the 

vibrating surface causes a reduction in the DLF of the walking force harmonic of frequency 

close to the vibration frequency. Specifically, for the University of Warwick Bridge (a 2.4 Hz 

16 t bridge) a significant drop (up to 10%) in the mean of first DLF was found [24], while for 

the Monash University bridge (a 5.6 Hz 900 kg bridge), a considerable drop (up to 30%) in the 

mean of the third harmonic DLF was observed [22].    

  

HSI also includes the effects of humans on the dynamic properties of the coupled human-

structure systems (H2SI) [4]. The effects of a stationary person on the mass, damping, and 

frequency of the structure are quite well known [17], [4], [25], [26]. Furthermore, walking 

people can also considerably increase the damping and reduce the frequency of the coupled 

system [18], [27], [28], [29], [30], [31]. For example, Kasperski [32] concluded that the 

damping added to the bridge by a pedestrian can be as high as 13%.  More recently, Ahmadi et 

al. [24] designed and adopted a novel experimental-numerical programme to quantify the 
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effects of HSI (including H2SI) on the response of the University of Warwick footbridge on 

which human-to-structure mass was up to 0.7% [24]. Considering the increased mass ratios on 

lightweight structures, it is postulated that the effect of H2SI (and S2HI) could be even greater 

on these structures, such as GFRP footbridges.   

1.3 Contribution 

Despite the previous work surveyed above, the influence of HSI on the vibration response of 

lively lightweight structures is not yet quantified fully. Quantification of HSI is important for 

critical evaluation and upgrading of moving force models. Furthermore, it also could provide 

insight into relationship between the HSI and the human-to-structure mass ratio. Consequently, 

the specific aims of this work are to: 

1. Aim 1: evaluate the accuracy of current non-interacting force models for a lightweight 

GFRP bridge (the Monash Bridge), and a comparatively heavier bridge (the Warwick 

Bridge). 

2. Aim 2: quantify the influence of HSI on the vibration response of the lightweight GFRP 

bridge using an experimental-numerical framework.  

3. Aim 3: ascertain whether HSI influences the vibration response of light and heavy 

structures differently for structures considered to be lively by test participants (e.g. the 

Monash and Warwick bridges used in this study). 

To address these aims, we first describe an experimental-numerical framework which provides 

the data required for the analysis (Section 2). The main experimental setup and walking trials 

are explained in Section 2; a preparatory shaker experiment for quantification of walking force 

measurements and bridge numerical modelling errors and the results are presented in Section 

3; and the results of the walking tests experiments are given in Section 4. The best-practice 

simulation of vibration response using moving force models is described in Section 5. Finally, 

Section 6 evaluates and discusses the results from the previous sections to address the three 

aims of the work. 
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2. Experimental Framework 

2.1 Experimental-numerical programme 

The traditional view describes HSI as a change in the walking force or a change in the system’s 

dynamic properties. However, this work uses the experimental-numerical programme proposed 

by Ahmadi et al. [24] for HSI classification. This new classification framework states that HSI 

can be described as a combination of the change in the walking force and the change in the 

system’s dynamic properties. This approach is very beneficial for HSI quantification in terms 

of vibration response. Referring to Figure 1, three metrics are experimentally measured:  

 GRFs on a rigid surface (RS), GRS (b); 

 GRFs on a vibrating bridge surface (BS), GBS (c), and;  

 the bridge vibration response, RM (i). 

Simulated vibration responses are found using the numerical bridge model (e) for three sources 

of walking force:  

 Non-interacting force models, GCM (a), which leads to responses, RCM (f);  

 GRFs measured on the rigid surface, GRS (b), giving responses, RRS (g), and;  

 GRFs measured on the bridge surface, GBS (c), giving responses, RBS (h).  

With reference to the aims of this work, the experimental-numerical framework described 

allows the following determinations to be made:  

 For Aim 1: Comparison of the non-interacting force model and the measured vibration 

responses, RCM and RM, indicates the accuracy of current design guidelines in vibration 

response prediction for this lightweight structure.  

 For Aim 2: Relative comparison of the vibration responses RRS and RBS demonstrates 

the influence of the vibrating bridge surface on the walking force (S2HI), since the 

numerical model remains unchanged; comparison of the bridge simulated vibration 

response, RBS, to those measured from the footbridge, RM, indicates the effect of human 

presence on the dynamic properties of the footbridge (H2SI). 
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 For Aim 3: Comparison of the HSI quantification results of the lightweight GFRP 

Monash bridge and those obtained from the heavyweight Warwick footbridge [24] 

using the same experimental-numerical programme reveals potential differing effects 

of HSI on vibration response of the two types of bridges.  

 

 
Figure 1. A schematic overview of the experimental-numerical programme used by Ahmadi et al. [24]. See the 

text for explanation of parts (a) to (i)-εa is the error in the acceleration measurement. 
  

The main sources of potential error in the experimental-numerical framework are the force 

measurement errors, εG, and the footbridge numerical model error, εNM. These two sources of 

error are quantified in Section 3. 

2.2 Human-induced vibration trials 

Walking trials were conducted on two bridges: a 16 m steel-concrete composite bridge at the 

University of Warwick, described in detail in [24]; and a 9 m lightweight GFRP laboratory 

footbridge in Monash University, Australia, described in detail in [22]. The results from the 

Warwick Bridge are used later as a comparison only, so we just describe the experiments on 

the Monash Bridge in more detail. 
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All structural elements of the Monash Footbridge, shown in Figure 2a, are connected using 

epoxy bonding to provide full composite action. The transverse and longitudinal strength and 

stiffness of the footbridge are provided by bidirectional fibre orientations in the sandwich deck 

construction of flat sheets, box section, and I-beam girders [22]. A force plate was positioned 

on the surface of the footbridge, and so it was covered with a stiff foam (XPS) and thin wooden 

sheets (MDF) to provide a flat walking surface. This simply-supported covered footbridge has 

a natural frequency in the vertical direction of about 5.6 Hz that is in the range of the third 

harmonic of walking force. The covered bridge is 1.5 wide × 9 m long with total mass of 939 kg. 

 

Experiments involving people walking over the bridge were conducted for three pacing 

frequencies: (1) resonant walking with pacing frequency about 1.87 Hz (112 beats/min of the 

metronome); (2) non-resonant walking with pacing frequency of 1.70 Hz (102 beats/min), and; 

(3) ‘normal’ walking using a pacing frequency self-determined as comfortable by test subjects. 

For each walking trial, test subjects walked a circuit including the bridge surface (BS), from 

S1 to S2, and the rigid surface (RS), from S3 to S4, as shown in Figure 2b. On both surfaces, 

the walking length was 13 m. A metronome was used during resonant and non-resonant 

walking trials so that test subjects target the desired pacing frequency. After each bridge walk, 

test subjects were asked to classify their perception of the footbridge vibration. 

 

Eighteen test subjects (9 male and 9 female) weighing from 444 N to 1489 N and 154 cm to 

190 cm tall (Table 1) took part in the experiment. The human-to-bridge mass ratio, μ, is also 

included in the table and used later to report the results for individual test subjects. Fifteen 

successful trials for each pacing frequency were collected. 
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2.3 Data acquisition 

To measure GRFs on bridge surface, GBS, and the vibration response of the footbridge, RM, a 

novel experimental setup was designed, shown in Figure 3. Three devices were used to measure 

GRFs: (1) A BERTEC FP4060-07 force plate [33] was placed on the footbridge surface 

approximately at mid-span; (2) Four C10 HBM load cells [34] supported the bridge, and; (3) 

A state-of-the-art in-shoe plantar pressure measurement system, the Tekscan F-scan ([35], [36], 

[37]), was used to measure GRFs on the bridge and rigid surfaces, GBS and GRS. The vibration 

response of the footbridge was measured using two DYTRAN 3191A1 accelerometers placed 

at the two edges of the deck at mid-span, as shown in Figure 3. A more detailed description of 

the experimental setup and quality control procedures adopted are given by Ahmadi et al. [22].   

 
Figure 2. (a) Monash GFRP footbridge: uncovered footbridge structure with end walkways shown, and (b) 

walking path during each walking trial, S1-S2 is the bridge surface, and S3-S4 is the rigid surface. 
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Table 1. Test subjects participated in this study (F and M stand for female and male respectively). 

Test Subject No. μ (%) Height (cm) Weight (N) Gender 

1 9.3 174 865 M 

2 7.8 172 718 M 

3 7.3 166 654 M 

4 4.8 154 444 F 

5 7.4 181 678 M 

6 9.4 186 862 M 

7 7.8 179 717 M 

8 10.6 175 970 M 

9 5.7 166 522 F 

10 11.6 182 1063 M 

11 7.0 171 647 F 

12 8.4 173 773 F 

13 5.4 161 495 F 

14 6.6 165 609 F 

15 5.5 164 509 F 

16 7.4 168 683 F 

17 16.2 182 1489 F 

18 12.1 190 1112 M 

Mean ± Standard Deviation 173 ± 9 767 ± 262 - 
 

 

Figure 3. Experiment setup for the footbridge walk (A1 and A2 are accelerometers). 
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A sophisticated data collection setup illustrated in Figure 4 was used for simultaneous 

recording of the GRFs on the bridge surface and the corresponding footbridge vibration. The 

data from four load cells was recorded by a 4-channel DT9838 module. The data from two 

accelerometers and force plate were collected by a 16-channel DT9857E module. The 

QuickDAQ and Teskcan data-logger unit were used to set the acquisition parameters. Each 

signal was recorded for 20 seconds with sampling frequency of 500 Hz. The 20-second interval 

was long enough to capture both the traversing the bridge and some subsequent free vibration 

decay. The DAQs were synchronised using bespoke wireless triggers to ensure simultaneous 

recording of all signals. 

 

 

Figure 4. Data collection setup for the bridge walk. 

3. Quantification and Minimisation of Errors 

3.1 Experimental Setup 

To assess the accuracy of the walking trial results, it is important to understand the influences 

of potential measurement and calculation errors (see Figure 1). Consequently, the footbridge 

numerical model error, εNM, and the accuracy of the walking force measurements, εG, are 
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quantified. The precisions of load cells and force plate were also examined by conducting a 

shaker test. Further, the Tekscan system error was examined, quantified, and minimized using 

the force plate results from the main walking experiments.  

 

Figure 5 shows the experimental setup used to determine the footbridge numerical model error 

and the force measurement errors of the load cells and force plate. The GFRP footbridge was 

excited by an APS 113 ELECTRO series electrodynamic shaker placed in the middle of the 

footbridge using an amplitude-constant sinewave of frequency ranging from 5.0-5.7 Hz with 

increment of 0.1 Hz. An accelerometer was attached to the shaker armature, ash, the reading of 

which is multiplied by the armature mass (12.3 kg) to give the shaker force applied to the 

footbridge, Gsh. Low and high-amplitude vibrations were imposed. Ten accelerometers were 

placed along the footbridge centreline to target the first bending mode. The shaker excitation 

lasted for 90 seconds to reach a steady-state response and then the footbridge entered free 

vibration for 30 seconds. Figure 6 shows an example set of readings for an excitation frequency 

of 5.4 Hz using high-amplitude vibration where ab, Glc, and Gfp are footbridge acceleration, 

load cells force, and force plate reading respectively. The first 10 seconds or so of the excitation 

shows a transient response leading to a steady-state response.  

 

Only the dominant bending mode is considered (see Figure 7). The properties of this mode are 

found using the test results, similar to Figure 6. The free decay vibration at the mid-span 

(accelerometers 5 and 6 in Figure 7) were used to determine the damping and frequency of the 

bridge-shaker system, ξbs and fbs by fitting an exponential decay curve (Figures 8a and 8b). 

Both the damping and frequency of the system can be seen to reduce with increasing vibration 

amplitude. Compared to the empty bridge, the presence of the shaker (mass of 51 kg) reduces 

the system’s first natural frequency (to 5.6 Hz) and increases its damping ratio (to around 0.6%). 

Clearly, the shaker’s spring-mounted armature acts as a damper on the system. 
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Figure 5. Accelerometers and shaker arrangement. 
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Figure 6. Time history of (a) shaker acceleration; (b) accelerometer no. 5; (c) load cells, and; (d) force plate for 
excitation frequency of 5.4 Hz (when the armature mass stops moving it causes an impulse load visible in the 

force time histories).  

 

Figure 7. Numerical model and mass distribution of the bridge-shaker system. 

 



This paper has been published under the following reference: Ahmadi, E., Caprani, C., Zivanovic, S. and Heidarpour, A. Assessment of 
Human‐Structure Interaction on a Lively Lightweight GFRP Footbridge. Engineering Structures. Vol. 199. Nov 2019. DOI: 
https://doi.org/10.1016/j.engstruct.2019.109687 

14 

To determine the mode shape, the acceleration time histories were transformed to frequency 

domain using Fast Fourier Transform (FFT), and the imaginary part of the FFTs at the vibration 

frequency (around 5.3 Hz) were used. The mode shape of the footbridge is plotted in Figure 8c, 

as estimated separately from the free decay vibration response and the steady-state response of 

the footbridge-shaker system. Due to its support arrangement, the mode shape is very close to 

that for simply-supported beams, 

  1 sin
x

x
L

    
 

 (2) 

as can be observed in Figure 8c. Figure 8 also shows that the shaker mass does not appreciably 

affect the mode shape. The modal mass of the footbridge-shaker system is calculated as 526 kg, 

treating the shaker as a lumped mass on the middle of the footbridge (Figure 7).  
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Figure 8. Bridge-shaker system: (a) frequency, (b) damping, and (c) mode shape.  
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3.2 Numerical model of the bridge 

Using the standard modal space approach (e.g. Chopra [38] or Humar [39]), the equation of 

motion for the bridge-shaker system subjected to the dynamic shaker force,  shG t , at the mid-

span (see Figure 7) is given by: 

  2
1 1 1 1

1
2

2bs bs bs sh
bs

L
q q q G t

M
         

 
   (3) 

where bs , bs , and bsM  are the bridge-shaker system’s modal damping, frequency, and mass 

respectively. For a harmonic force of frequency, ω, and amplitude, 0shG , 

(    0 sinsh shG t G t ), the steady-state response closed form solution of equation (3) is (e.g. 

Den Hartog [40]: 

 

   

2
0

2 221 2

e sh
bs

bs bs

G
a

M



  


 
 (4) 

where   is the excitation-to-system frequency ratio, bs , and 
e
bsa  is the estimated vibration 

response of the bridge-shaker system.  

 

 

The measured steady-state responses, 
m
bsa , and those estimated from equation (4), 

e
bsa , are 

shown against the frequency ratio in Figure 9a. The numerical model based on the modal 

properties obtained above are found to estimate the measured steady-state response with 

reasonable precision. The relative error between estimated and measured steady-state 

responses is: 

 100
e m
bs bs

NM m
bs

a a

a
 

  (5) 

and they are seen to fall within the range of ±10% for a range of excitation frequencies around 

resonance (Figure 9b), regardless of the vibration amplitude.  
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Figure 9. (a) Measured and estimated steady-state response, (b) relative error between measured and estimated 

steady-state responses for both low- and high-amplitude vibrations. 
 

3.3 Accuracy of force plate and load cells  

To estimate the accuracy of the load cells and force plate, the shaker’s applied force is taken as 

the reference. For the load cells, Glc (Figure 6c), the total force comprises the applied shaker 

force, Gsh, and the bridge-shaker system inertial force, GI. Similarly, for the force plate, it is 

mounted on the vibrating surface of the footbridge which influences the reading. Ahmadi et al. 

[22] described how the relevant effective masses are calculated, and the inertial forces caused 

by the footbridge vibration removed from the load cells and force plate readings. 

 

Figure 10a compares the load cells force and force plate reading with the shaker’s applied force 

for a few vibration cycles and an excitation frequency of 5.4 Hz. As seen, the frequency of both 

force plate and load cells signal are very similar to the shaker’s force, and there is a very slight 

shift in the time domain between the force plate or load cells reading and the shaker’s force (-
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0.01 and 0.01 second shift for the force plate and load cells forces), presumably due to different 

time constant for different sensors in the accelerometer on the shaker, force plate, and load 

cells. Figure 10a also shows the high accuracy of both the load cells and the force plate in the 

force amplitude measurement. The relative errors between the steady-state amplitude of these 

devices and the shaker are calculated as: 

 100 d sh
G

sh

G G

G
 

  (6) 

in which Gd is either the amplitude of the force plate reading or the load cells force, and the 

shaker’s force amplitude is taken as the reference. Figure 10b shows the amplitude relative 

error results for both the load cells and the force plate using equation (6). The errors fall within 

the range ±3% for both the load cells and the force plate for a range of excitation frequencies 

around resonance (see Figure 1, part (c)). 

 
Figure 10. (a) Comparison of shaker force with the load cells force and the force plate reading for a few 

vibration cycles, (b) relative errors of load cells and force plate force amplitude. 
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3.4 Tekscan F-scan accuracy 

As noted earlier, to measure GRFs on both rigid and bridge surfaces (Figure 1, parts (b) and 

(c)), Tekscan F-scan in-shoe pressure sensors ([37], [41]) were used (Figure 11). The sensors 

consist of many capacitors arranged in rows and columns, termed ‘sensels’. The raw sensor 

outputs are converted to pressure readings using calibration. Five methods of sensor calibration 

are possible, but the “walk calibration” was found to give higher accuracy [24], and so was 

performed every 5 trials for each test subject. The plantar pressure readings from the sensors 

are integrated to produce an estimate of the vertical component of the GRF for each foot 

individually. 

 

Figure 11. Tekscan F-scan in-shoe sensors: (a) instrument, (b) example output pressure distribution ([35]. 
  

To estimate error in the Tekscan readings, the force plate readings of single footsteps are used 

as the reference. A numerical procedure was used to identify complete footsteps on the force 

plate [22]. The sample rate is the same for both the force plate and Tekscan and so time is 

indicated by the index, i. Index j is used to denote a specific trial of which there are N ≤ 15 

trials with complete footsteps on the force plate for each test subject and pacing frequency. The 

Tekscan measurement relative error for trial j at time i is: 
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ts fp
ij ijts

ij fp
ij

G G

G



  (7) 

and the mean relative error at time i is: 

 
1

1 N
ts ts

i ij
jN

 


   (8) 

The mean relative error is used as the Tekscan error, ɛG. Figure 12 shows the recorded force 

time histories and relative error between force plate and Tekscan for each step as well as the 

mean relative error for test subject no 2 at the resonance. The figure illustrates that the 

dispersion is quite low (low standard deviation), particularly for the region of most interest 

(middle part of each footstep, i.e. when the readings are non-negligible). Analysis of Tekscan 

errors for all test subjects and pacing frequencies showed that Tekscan error changes between 

different test subjects and pacing frequencies. Therefore, a mean relative error was determined 

for each set of trials. 

 

In the numerical model that follows, it is necessary to model the true walking forces based on 

the Tekscan measurements. The following procedure is used to reconstruct a footstep GRF 

from a Tekscan GRF, allowing for the measurement error: 

1. Select an individual footstep from the Tekscan signal for the trial. 

2. Use the mean relative error to generate a representative footstep (which will be similar to 

that measured by the force plate): 

  1fp ts ts
i i iG G    (9) 

3. Repeat steps 1 and 2 for all footsteps of Tekscan GRF for each feet.  

4. Add the generated footsteps to create a full-trial walking force-time history.  
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Figure 12. (a) Force plate and Tekscan readings, (b) relative errors for test subject no. 2 at resonance. 
 

4. Experiments with People Walking 

4.1 Measured vibration response 

Figure 13a shows the auto-spectral density (ASD) of the accelerometer signals (see A1 and A2 

in Figure 3) for test subject no. 2 and trial no. 9 at the resonance (this test subject and trial are 

used as an example throughout the paper). The ASD has high amplitude at the first bending 

mode at 5.6 Hz and it is much lower at other frequencies, i.e most of the footbridge vibration 

energy is distributed in the range 5-6 Hz. The mean of the two acceleration signals is taken as 

the footbridge vibration response at mid-span (Figure 13b). To focus solely on the first bending 

mode, the footbridge vibration responses are filtered using a zero-phase 4th order band-pass 

Butterworth filter with range 5-6 Hz (Figure 13b). This filter has a fast roll-off and is thus 

appropriate for narrow frequency ranges. The response envelope exhibits a double hump shape 
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which may arise from a beat phenomenon caused by pacing frequency being close to the 

footbridge frequency [42]. This phenomenon is more noticeable in low-damping systems [43] 

such as the Monash footbridge.  
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Figure 13. (a) Auto spectral density (ASD) of the original signal, (b) footbridge mid-span acceleration response 

for the exemplary test subject (the tapering at the end of the filtered signal is an artefact of the filter). 
 

4.2 Modal parameters 

The damping and frequency of the footbridge (that includes the installed force plate) were 

determined from the free decay vibration part of the acceleration signal for each trial. Both are 

found for a moving window of five peaks. An exponential decay curve was fitted (using least-

squares) for the damping. Figure 14 shows the results for the exemplary test subject. For this 

trial, the damping does not change significantly with amplitude, while the frequency slightly 

decreases with increasing vibration amplitude.  
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Figure 14. (a) Free vibration part of the mid-span acceleration (b) amplitude-dependent damping  

 (c) amplitude-dependent frequency for the exemplary test subject. 
 

The frequency and damping determined for all trials are shown against vibration amplitude in 

Figure 15. The data were collected over six months from October 2016 to March 2017 with 

average temperature variation range 13-23 C . The wide dispersion of the results between trials 

could indicate the significance of environmental effects, such as temperature changes. It has 

been shown that temperature increase can highly reduce bridge frequency and increase its 

damping [44]. Further study is underway to quantify these effects, but to include these effects 

here, the free decay vibration frequency and damping results for each trial are used in further 

analysis. 
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Figure 15. (a) Bridge damping, (b) bridge frequencies from free decay response for all trials. 

 

The inertial mass of the footbridge alone is required to remove the effects of vibration on the 

load cells’ readings. Without the shaker (which was described earlier), the inertial mass of the 

footbridge only, MI, was found to be 610 kg using the free vibration part of the acceleration 

and load cells force signals [22]. 

 

The modal mass of the footbridge, Mb, was determined using three mutually-confirming 

approaches. First, treating the force plate as a lumped mass at mid-span and using the simply-

supported mode shape as discussed earlier gives: 
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where mb is mass per unit length of the covered footbridge excluding the force plate. The mass 

per unit length of the covered bridge without the force plate is 100.1 kg/m, see Figure 7. The 

force plate weights 38 kg, and so the modal mass is finally calculated as 489 kg. The second 

method uses the inertial mass and again treats the force plate as a lumped mass at the mid-span 

and the footbridge as a uniformly distributed mass:   

 
   1
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L

I

b fp

M m x x dx

L
m M





 
  
 
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
 (11) 

Substituting the force plate mass and the footbridge inertial mass in equation (11) gives 

mb = 99.8 kg/m, giving a modal mass of 487 kg using equation (10). For the third approach, it 

is considered that the additional covering does not add extra stiffness to the footbridge and it 

only changes the footbridge mass. Therefore: 

 
2 2

ub ub b bM f M f  (12) 

where subscript ub stands for uncovered footbridge. An experimental modal analysis of the 

uncovered bridge resulted in Mub = 417 kg and fub = 6.0 Hz, whilst the free vibration of the 

covered bridge on the same day at high-amplitude vibrations results in fb = 5.55 Hz. It then 

follows that Mb = 487 kg. The three methods led to almost the same modal mass estimates at 

487 kg, providing confidence in accuracy of the estimate. This is important since the modal 

mass parameter is most difficult of all to determine accurately [45]. Further, the consistency of 

the estimate indicates that the simply-supported mode shape and uniformly distributed mass 

are valid assumptions for the footbridge numerical model. Furthermore, the inertial mass of the 

footbridge is also seen to be consistent. 

4.3 Location of test subject’s resultant force 

For vibration response simulations using a discrete footfall moving force model, it is necessary 

to know the precise location of test subjects’ force resultant throughout the trial [46], [47]. This 

is approximately the same as the feet location assuming that the walking force acts at a point 
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not an area, tough may vary during toe-off or heel-strike somewhat. In addition, the test subject 

velocity is determined from their longitudinal trajectory and used in the moving force models 

[17], [26].  

 

The trajectory of the walking force on the footbridge surface is found from the load cell 

readings at each time instant using equilibrium (see Figure 16): 

      
 

1 2lc lc
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G t G t
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
  (13) 
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  
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where xp and yp are the longitudinal and transverse locations of the walking force;  lciG t , is 

the force at load cell i;  lcG t  is the total force  lcii
G t , and; L and W are the longitudinal 

and transverse distances between centres of the load cells. 

Figure 16. Load cells location and test subjects’ force location (red dashed lines show the vertical and horizontal 
locations of a general test subject at a specific time instant). 

 

Figures 17a and 17b show the walking force evolution for the exemplary test subject and trial. 

The corresponding Tekscan results are illustrated in Figure 17c. The calculated extrema of the 

transverse force trajectory (Figure 17a) correspond to the mid-stance phase of the gait for the 

foot in contact with the ground (see the force form the Tekscan measurements in Figure 17c). 

Therefore, the calculated values signify a discrete, i.e. single contact point, representation of 
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human foot’s location.  In this running example, the test subject’s right foot first touches the 

footbridge. The longitudinal trajectory of the test subject (see Figure 17b) is very close to a 

straight line, indicating that the test subject maintained a constant velocity during the traverse 

(1.17 m/s in this example). 

7 7.5 8 8.5 9 9.5 10

-0.1

-0.05

0

0.05

0.1

y p
 (

m
)

t (s)

(a)

 

 

Left foot location
Right foot location

7 7.5 8 8.5 9 9.5 10
2

3

4

5

6

7

x p
 (

m
)

t (s)

(b)

7 7.5 8 8.5 9 9.5 10
0

0.5

1

1.5

t (s)

G
ts

/W
p

 

 
(c) Left foot

Right foot

 

Figure 17. Approximate feet and force resultant trajectories: (a) Transverse, (b) longitudinal walking force 
trajectories, and (c) Tekscan force results for the exemplary test subject and trial at resonance. 

  

5. Vibration Response Simulation 

Following the experimental-numerical programme (Figure 1), the vibration responses of the 

footbridge due to the walking forces measured on both the bridge and rigid surfaces as well as 

current force models are simulated to assess accuracy of current force models (Aim 1) and 

quantify the different postulated forms of HSI (Aim 2).  
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5.1 Cycle-by-cycle analysis 

As the footbridge damping and frequency are amplitude-dependent (see Figures 14 and 15), 

these parameters are updated on a cycle-by-cycle basis (see section 4.2). Vibration cycle n is 

defined as the vibration response between two consecutive vibration peaks, ap,n-1 and ap,n The 

equation of motion for the nth vibration cycle is then given by the modal equation: 

        2
1 , , 1 , 12 m

b n b n b nq t q t q t G t       (15) 

where 1n nt t t    and 1nt  , nt  are the start and end time of the cycle n, respectively corresponding 

to ap,n-1 and ap,n; , ,2b n b nf   is the circular frequency for the nth cycle; ,b nf  and ,b n  are the 

footbridge frequency and damping for the nth cycle. The bridge damping and frequency data 

are determined using linear interpolation at ap,n-1 from the free decay vibration response for the 

specific trial (see Figures 14b and 14c).  

5.2 Bridge and rigid surface simulated vibration responses  

Walking force, G(t), is often modelled as a spatially-continuous constant-velocity moving force 

[9], [48]. This assumption approximates the true spatially-discrete nature of loading from 

footsteps. As such, the continuous moving force models are more suitable for longer-span 

footbridges [49]. The continuous modal force of equation (15) is then given by: 

      1m
c

b

vt G t
G t

M


  (16) 

Figure 18 compares measured and simulated responses using the continuous force model with 

parameters (force, velocity, etc) as measured for the exemplary test subject and trial. The 

difference between vibration response of Tekscan-BS and Tekscan-RS reflects the effects of 

the footbridge vibration on the walking force, since the rigid surface force measurement is 

unaffected by any vibration. A significant reduction in the vibration response is observed when 

the walking force measured on the bridge surface is used in the simulation, providing insight 

into S2HI. The difference between Tekscan-BS response and load cell-BS response simply 

indicates any inaccuracies in the Tekscan measurements. The slight difference between the 
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load cell and Tekscan-BS vibration responses shows good reliability of the procedure proposed 

in section 3.3. The load cell-BS response is very close to the measured response. This suggests 

that the human body as a dynamic system (in contrast to a moving force) is not having much 

influence on the dynamic properties of the footbridge in this example (H2SI). This is believed 

to be due to the relatively light weight of the test subject (71 kg, 7.8% mass ratio), and it 

complements the finding that the effect of the structure on the imparted force was quite 

significant (S2HI).  
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Figure 18. Acceleration envelopes of simulated and measured vibration responses for the exemplary test subject 
using continuous moving force model. 

  

5.3 Continuous versus discrete footfall moving force analysis 

Although the continuous moving force model is frequently used for vibration response 

estimation, applying the footstep forces at the location of the test subject’s measured force 

resultant (Section 4.3) correctly represents the actual loading conditions. Thus, the discrete 

moving force model gives more faithful results, particularly for short-span footbridges. The 

discrete modal force is given by: 
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where ,r iG  and ,l iG  are the ith right and the jth left GRFs; rn  and ln  are the number of right 

and left footsteps, and the footstep location at time t is: 

      *
k k k kx t H t H t            (18) 

where H[ꞏ] is the Heaviside step function, k is the start time of footstep k lasting duration k.  

The load cells directly give the total walking force, not individual footstep forces. Hence the 

Tekscan measurements (corrected for error as described earlier) are used for the footstep GRFs 

in the discrete moving force model. 

 

Figure 19a shows the simulated vibration response for both continuous and discrete force 

models for the exemplary test subject and Tekscan-measured bridge surface walking force. The 

vibration response for the discrete force model is slightly less than for the continuous force 

model. Expanding to all trials, and treating the discrete force model as the benchmark, the 

relative error is defined by: 

 
d c
BS BS

R d
BS

R R

R
 

  (19) 

where 
d
BSR  and 

c
BSR  are the maximum accelerations obtained using the bridge surface forces 

in the discrete and continuous force models, respectively. Figure 19b illustrates the histogram 

of the relative error, R , for all trials. It shows that for all test subjects the discrete force model 

gives a smaller vibration response compared to the continuous force model, and this reduction 

is up to 0.2 for heavy test subjects. This demonstrates that continuous force modelling, mostly 

used in practice, is conservative, and thus, for vibration response simulations from BS and RS 

GRFs, Tekscan force results were used along with the discrete force model as it is more faithful 

to the actual loading condition (See Figure 1, parts (b) and (c)). 
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Figure 19. (a) Continuous versus discrete moving force models for the exemplary test subject, and (b) histogram 
of relative error between continuous and discrete moving force models for all trials. 

 

6. The Influence of Human-Structure Interaction  

This section explicitly addresses the three aims of this paper in light of the preceding results. 

Firstly, the current non-interacting force models are evaluated by comparing the simulated 

response with that measured (Aim 1). Secondly, the HSI forms are quantified for the 

lightweight bridge (Aim 2). Finally, the magnitudes of the HSI results for the lightweight 

bridge are compared with those for the heavier (Warwick) bridge to determine the relationship 

between HSI and subject mass-to-structure ratio (Aim 3).  

6.1 Aim 1: Accuracy of non-interacting force models 

As noted in Section 1.2, the vibration response prediction for footbridges is commonly 

recommended to be conducted using non-interacting force models, such as the continuous 

moving force model ([8], [9], [10], [11], [12], [13]). In these models a Fourier representation 
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of the walking force is often used (Caprani and Ahmadi [17]). Here, the DLFs proposed by 

Young [50], ISO 1037 [10], Brownjohn et al. [51], and Kerr [52]  (shown in Table 2) along 

with zero phase angle are used to generate the walking force time histories. More similar 

models are available, such as Synpex and Setra, but the selected models are taken as 

representative of continuous moving force models. 

Table 2. Dynamic load factors models used in the non-interacting continuous walking force models. 
k Young [50] ISO 10137[10] Brownjohn et al. [51] Kerr [52] 

1 0.41(fp - 0.95)<0.56 0.37(fp - 1.0) 0.37fp - 0.42 -0.26fp
3 + 1.32fp

2  - 1.76fp + 0.76 

2 

3 

4 

5 

6 

0.069+0.0056 fp 

0.033+0.0064 fp 

0.013+0.0065 fp 

- 

- 

0.1 

0.06 

0.06 

0.06 

- 

0.053 

0.042 

0.041 

0.027 

0.018 

0.07 

0.05 

0.05 

- 

- 

 

Figures 20a and 20b compare the maximum acceleration response of measured signals with 

those from the non-interacting force models (using the DLFs in Table 2) for both the Monash 

(light) and Warwick (heavy) bridges. The models underestimate the vibration response for non-

resonant walking for almost all trials. However, they highly overestimate the response for 

resonant walking for all trials. The overestimation is highest for ISO 10137 [10] force model, 

particularly for the heaviest test subject on the lightweight bridge. Young’s force model [50] 

leads to a higher overestimation for the heavy bridge. The considerable difference between the 

non-interacting force models and the measured responses surely (at least partly) originates from 

ignoring human effects on dynamic properties of the human-structure system (H2SI) [24]. 

Furthermore, the DLFs in the models have been derived from measurements on treadmills or 

force plates situated on rigid surfaces whereas vibration can cause a significant drop in walking 

force (S2HI) [21], [24], [22]. Figure 20c shows the mean relative error between the simulated 

maximum acceleration responses and measurements for both footbridges for resonant walking. 

The force models have larger errors for the lightweight footbridge, up to five times the actual 

response. Further, higher overestimation of the force models for the lightweight bridge 
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compared to the heavy bridge (see Figure 20c) implies a greater influence of HSI in the 

lightweight bridge.  These results are consistent with those in [7] where the current load models 

estimate the vibration response well for the non-resonant cases, and an overestimation of the 

vibrations responses were reported for the resonant cases. 
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Figure 20. Maximum acceleration response from the considered moving force models and walking experiments 
(solid and dashed lines indicate resonance and non-resonance cases respectively): (a) lightweight Monash GFRP 

footbridge, (b) heavy Warwick steel-concrete composite bridge, and; (c) model error (overestimation) for 
different bridge-to-mass ratios for a range of test subjects. 

 

6.2 Aim 2: Significance of human-structure interaction  

To quantify the effect of HSI on the response of the Monash footbridge, the relative difference 

between the mean vibration responses obtained from the bridge and rigid surface walking 
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forces (see Figure 1) is used. Table 3 summarizes the S2HI and H2SI effects separately, and 

their combined effect using, respectively: 

  S2HI /RS BS MR R R     (20) 

  H2SI /BS M MR R R     (21) 

 HSI S2HI H2SI     (22) 

The higher drop in vibration response at resonant walking for all test subjects demonstrates a 

significant influence of S2HI on the vibration response. This drop is pronounced for the 

heaviest test subject, μ = 16.2%. The reduction in response due to H2SI is significantly lower 

than that of S2HI. This shows a comparatively stronger influence of S2HI. The lower effects 

of H2SI even for heavy test subjects could arise from the short contact time of the test subject 

with the bridge and short duration of the crossing [53]. It should be noted that the error of the 

footbridge numerical model involved in the simulations was up to ±10% (section 3.1). This 

error is often much less than the differences (ΔH2SI) presented in Table 3 for resonant cases, 

and thus the numerical model error cannot obscure meaningful conclusions on H2SI. For S2HI, 

since the same model was used for both rigid and bridge surface simulations, the vibration 

response difference can only be due to S2HI.  

6.3 Aim 3: Influence of mass ratio on HSI 

To determine influence of mass ratio on HSI, the results from the lightweight (Monash) bridge 

are compared to the heavy (Warwick) bridge. To have a correct and meaningful comparison, it 

is important to show that both bridges exhibit similar levels of liveliness since HSI is dependent 

on the bridge vibration level ([24], [22]). This is achieved by comparing the response factors 

for both bridges, which are taken as the ratios of complaint to perception thresholds [21]. For 

the Warwick Bridge, a previous study found that these response factors vary between 1.5–2.6 

depending on pacing frequency, with a mean about 2.0 [21]. A similar study of vibration 

perception is therefore conducted for the Monash Bridge. 
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Table 3. Relative and combined influence of HSI types (see equations (20), (21), and (22)). 

μ (%) 
Non-resonant Resonant

S2HI  H2SI  HSI  S2HI  H2SI  HSI  

4.8 0.03 0.04 0.07 0.12 0.22 0.34 

5.4 0.24 0.03 0.27 0.54 0.17 0.71 

5.5 0.26 0.16 0.42 0.43 0.24 0.67 

5.7 0.35 0.06 0.41 0.60 0.27 0.87 

6.6 0.02 0.07 0.09 0.22 0.15 0.37 

7.0 0.18 0.11 0.29 0.32 0.18 0.50 

7.3 0.16 0.06 0.22 0.38 0.42 0.80 

7.4 0.30 0.12 0.42 0.69 0.48 1.17 

7.4 0.19 0.11 0.30 0.50 0.56 1.06 

7.8 0.24 0.03 0.27 0.44 0.14 0.58 

7.8 0.22 0.03 0.25 0.60 0.22 0.82 

8.4 0.31 0.13 0.44 0.58 0.32 0.90 

9.3 0.42 0.02 0.44 0.60 0.23 0.83 

9.4 0.17 0.10 0.27 0.75 0.12 0.87 

10.6 0.39 0.09 0.48 0.68 0.19 0.87 

11.6 0.39 0.08 0.47 0.67 0.16 0.83 

12.1 0.41 0.10 0.51 0.85 0.10 0.95 

16.2 0.64 0.11 0.75 2.95 0.62 3.57 
 

After each walking trial on the Monash Bridge, the test subjects were asked to subjectively 

categorize their perception of the vibration into one of following classes: no perception of 

vibration (CL1), acceptable vibration and no effect on walking style (CL2), acceptable 

vibration and occasional effect on walking style (CL3), and strong and uncomfortable vibration 

and frequent effect on walking style (CL4). These class are the same as those used in Setra [12] 

and similar to those in Dang & Živanović [21]. To understand the relationship between the 

footbridge vibration response and perception classes, the maximum acceleration response of 

each acceleration signal, amax, against the actual pacing frequencies are presented in Figure 21 

for different perception classes at vibration frequency of 5.6 Hz. The red vertical dashed lines 
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show the resonant range of the footbridge [22]. Interestingly, Figure 21 is quite similar to 

Warwick Bridge results [21] if we make two regions for pacing frequencies up to 1.91 Hz 

(upper limit of resonant range): (1) non-resonant zone, fp < 1.83 Hz (lower limit of resonant 

range), and (2) resonant zone, 1.83 < fp < 1.91 Hz). Despite vibration frequency being quite 

different, the perception levels are similar for both Monash and Warwick bridges. Typically, 

as is expected, the resonant vibrations result in a higher perception of vibration than the non-

resonant vibrations. However, in some cases, test subjects’ sensitivity to vibration at non-

resonant walking is also significant. 

 

The mean maximum accelerations of the CL1 and CL2 perceptions are taken as the vibration 

perception threshold [21]; 0.98 m/s2 and 0.45 m/s2 for the resonant and the non-resonant cases 

(see Figure 21). The mean maximum accelerations for CL3 and CL4 are regarded as a 

complaint threshold [21]; 1.61 m/s2 and 0.81 m/s2 for the resonant and the non-resonant cases 

(see Figure 21). Thus, the response factors for the Monash Bridge are 1.64 and 1.80 for the 

resonant and the non-resonant cases respectively. A response factor of 2–4 is recommended for 

low probability of adverse occupant experiences during daytime vibration exposure in 

residential environments (Concrete Centre 2007 [54], ISO [10]). The results of this study 

indicate a response factor of approximately 2 is appropriate for walking. Interestingly, this 

finding is similar to those from the Warwick Bridge (1.5–2.6) [21]. Therefore, it can be 

concluded that the lightweight Monash and heavyweight Warwick Bridges are of similar 

liveliness. As such, a comparison of the level of HSI for each bridge at their resonance is more 

likely to do with the structure-to-human mass ratio, than to do with conscious vibration 

perception. 
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Figure 21. Maximum acceleration response versus pacing frequencies for test subjects’ perception 
classifications (vertical red dashed lines show resonance range) at vibration frequency of 5.6 Hz. 

 

As HSI has the highest effect for the resonant walking (see Table 3 and Ahmadi et al. [24]), 

the combined effects of HSI, ΔHSI, for the Monash Bridge, and those given in Ahmadi et al. 

[24] for the Warwick Bridge, are compared. Figure 22 shows the magnitudes of HSI against 

test subject-to-structure mass ratio for resonant walking. It is quite evident that the magnitude 

of HSI is correlated with the mass ratio, and the Monash Bridge (light) gives HSI magnitudes 

far higher than the Warwick Bridge (heavy). Indeed, even for the same test subject on both 

bridges (as highlighted in the Figure 22 by green filled circle and square), it is clear that the 

magnitude of HSI is strongly influenced (0.38 vs 0.78). It is therefore apparent that future 

models that account for HSI should also consider the subject-to-structure mass ratio. 
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Figure 22. Total HSI effect for resonant walking on both the Warwick (heavy) and Monash (light) Bridges. The 
two results for the common test subject on both bridges are indicated by a filled-in circle. 

 

7. Conclusions   

This paper investigates the contribution of human-structure interaction (HSI) to vibration 

response of a lively lightweight GFRP footbridge at the Monash University; it also compares 

some aspects of HSI with previously published results from the heavier Warwick Bridge with 

a mass per unit length about eight times larger than for the Monash bridge. An extensive set of 

walking trial tests involving 18 walkers was performed. During each trial, the footfall force 

was measured on the vibrating footbridge surface and the rigid surface along with the 

footbridge vibration response. The force measurements errors and the footbridge numerical 

model error were quantified. Moving force models were used to simulate vibration responses 

from the walking forces measured on both rigid and bridge surfaces. Three aims of the research 

have been addressed.  
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Firstly, it is found that non-interacting force models from the literature highly overestimate the 

vibration response of both Monash and Warwick footbridges at resonant walking. This 

overestimation is around three times higher for the lightweight GFRP Monash bridge 

suggesting that consideration of human-structure interaction seems indispensable for the design 

and assessment of lightweight structures. 

 

Secondly, quantification of human-structure interaction was carried out for the lightweight 

bridge using an experimental-numerical programme. The structure’s influence on human 

walking (S2HI) was found to be up to around nine times higher than the human’s influence on 

the structure (H2SI). This effect can be included in moving force models by reducing the DLF 

of the walking harmonic closest to an integer multiple of the footbridge natural frequency of 

interest.  

 

Thirdly, using analysis of walking test subject perceptions, it is concluded that the response 

factor for the lightweight footbridge is similar to that of the heavier bridge and the lower limit 

suggested for residential structures and non-walking postures. This indicates that both bridges 

have similar liveliness under human walking. Consequently, the comparison of HSI for both 

bridges shows the importance of human-to-structure mass ratio. It is found that HSI is far more 

significant in the lightweight footbridge due to this higher mass ratio. Consequently, 

consideration in the vibration serviceability assessment of lightweight structures should be 

given to HSI. Furthermore, for system identification in the presence of pedestrians and the 

design of vibration control systems, inclusion of HSI could be significant in achieving desired 

results. 
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