
1 
 

Artificial selection on walking distance suggests a 1 

mobility-sperm competitiveness trade-off 2 

Matsumura K, Archer CR, Hosken DJ and Miyatake T, 3 

Behavioral Ecology 4 

	5 

	6 

	7 

	8 

	9 

Lay	summary	10 

Animals	 have	 a	 limited	 resource	 budget	 and	 resources	 allocated	 to	 one	 trait,	11 

cannot	be	invested	in	another.	This	drives	trade-offs	between	traits.	One	predicted	12 

trade-off	 is	 between	 male	 mobility	 (for	 mate	 searching)	 and	 sperm	13 

competitiveness.	We	tested	this	idea	by	selecting	on	walking	distance	in	red	flour	14 

beetles.	 We	 found	 that	 less	 mobile	 males	 mated	 longer,	 performed	 better	15 

copulatory-courtship	and	outperformed	mobile	males	 in	sperm	competition.	This	16 

broadly	supports	a	mate	searching,	sperm	competitiveness	trade-off.	17 

	 	18 
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Artificial	selection	on	walking	distance	suggests	a	mobility-sperm	19 

competitiveness	trade-off.	20 

	21 

Abstract	22 

Securing	matings	is	a	key	determinant	of	fitness	and	in	many	species	males	are	the	23 

sex	 that	 engages	 in	mate	 searching.	 Searching	 for	mates	 is	 often	 associated	with	24 

increased	mobility.	This	elevated	investment	in	movement	is	predicted	to	trade-off	25 

with	 sperm	 competitiveness,	 but	 few	 studies	 have	 directly	 tested	 whether	 this	26 

trade-off	occurs.	Here,	we	assessed	whether	artificial	selection	on	mobility	affected	27 

sperm	competitiveness	and	mating	behavior,	and	if	increased	mobility	was	due	to	28 

increased	 leg	 length	 in	red	flour	beetles	(Tribolium	castaneum).	We	found	that	 in	29 

general,	 males	 selected	 for	 decreased	 mobility	 copulated	 for	 longer,	 stimulated	30 

females	 more	 during	 mating	 and	 tended	 to	 be	 better	 sperm	 competitors.	31 

Surprisingly,	 they	 also	 had	 longer	 legs.	 However,	 how	 well	 males	 performed	 in	32 

sperm	 competition	 depended	 on	 females.	 Males	 with	 reduced	 mobility	 always	33 

copulated	 for	 longer	 than	males	with	high	mobility,	 but	 this	 only	 translated	 into	34 

greater	 fertilization	 success	 in	 females	 from	 control	 populations	 and	 not	 the	35 

selection	 populations	 (treatment	 females).	 These	 results	 are	 consistent	 with	 a	36 

mate-searching/mating-duration	 trade-off	 and	 broadly	 support	 a	 trade-off	37 

between	mobility	and	sperm	competiveness.	38 
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Introduction	43 

Movement	is	energetically	costly.	Thrushes	spend	222	calories	to	travel	each	of	the	44 

4800	 kilometres	 on	 their	 migration	 route	 (Wikelski	 et	 al.	 2003).	 Metabolic	 rate	45 

increases	 by	 almost	 four	 fold	 when	 pumas	 stop	 talking	 prey	 and	 begin	 chasing	46 

them	 (Williams	 et	 al.	 2014).	 These	 high	 costs	 mean	 that	 resources	 invested	 in	47 

moving	 rapidly,	 or	 over	 long	 distances,	 cannot	 be	 allocated	 to	 other	 traits.	 This	48 

drives	 resource	 based	 trade-offs	 between	 movement	 and	 other	 costly	 traits,	49 

including	reproduction.	Movement-reproduction	trade-offs	are	often	characterised	50 

in	 terms	 of	 dispersal,	 but	 mate-searching	 can	 also	 trade-offs	 with	 reproductive	51 

traits.	52 

	53 

Male	fitness	is	typically	limited	by	access	to	females	(Trivers	1972;	Thornhill	and	54 

Alcock	1983;	Powell	1997),	or	more	strictly	by	access	to	their	eggs,	while	 female	55 

fitness	 is	 usually	 limited	 by	 resource	 acquisition	 rather	 than	 sperm	 limitation	56 

(Trivers	1972;	Thornhill	and	Alcock	1983).	This	is	one	reason	why	it	is	frequently	57 

males	rather	than	females	that	engage	in	costly	activities	like	mate-searching	that	58 

increase	the	likelihood	of	encountering	mates	(Parker	1978;	Thornhill	and	Alcock	59 

1983;	Clutton-Brock	and	Parker	1992;	Andersson	1994;	also	see	Fromhage	et	al.	60 

2016).	 	61 

	62 

Investment	in	mate	searching	behaviours	frequently	results	in	males	having	larger	63 

home	 ranges	 than	 females,	 or	 being	more	mobile	 than	 them.	 For	 example,	male	64 

moose	and	wood	mice	have	much	larger	home	ranges	than	females	as	they	move	65 

more	 to	 find	 females	 (Attuquayefio	 et	 al.	 1986;	 Cederlund	 and	 Sand	 1994).	66 
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Furthermore,	sex-specific	selection	for	traits	associated	with	mate	searching	often	67 

results	in	sexual	dimorphism,	so	that	males	can	have	larger	eyes	to	detect	females	68 

more	effectively	(e.g.,	Thornhill	and	Alcock	1983;	Eberhard	et	al.	1998).	69 

	70 

While	mate	 searching	 is	 important,	male	 fitness	does	not	 just	depend	on	 finding	71 

females	 and	 securing	 matings,	 it	 also	 depends	 on	 successfully	 competing	 for	72 

paternity	 via	 sperm	 competition	 (Parker	 1970).	 Selection	 for	 enhanced	 mate	73 

searching	 is	 predicted	 to	 come	 at	 a	 cost	 to	 sperm	 production	 and	 hence	 sperm	74 

competitiveness	(Parker	1978).	This	is	because	resources	that	could	otherwise	be	75 

allocated	 towards	 sperm	 production	 are	 instead	 invested	 in	 mate	 searching	76 

(Parker	 1978).	 Simmons	 and	 Parker	 (1996)	 theoretically	 explored	 this	 trade-off	77 

and	 their	 analysis	 indicated	 that	when	 the	 fitness	 returns	 of	mate	 searching	 are	78 

greater,	males	 should	 invest	 less	 in	 sperm	 competiveness,	 and	 conversely,	when	79 

sperm	 competition	 risk	 is	 high,	males	 should	 invest	 less	 in	mate	 searching.	 This	80 

logic	underlies	many	models	of	male	reproductive	 investment	 that	use	 trade-offs	81 

between	 expenditure	 on	 gaining	 matings	 and	 ejaculates	 to	 reveal	 optimal	 male	82 

investment	strategies	(e.g.,	Parker	1978;	1998;	Alonzo	and	Warner	1999;	Simmons	83 

et	 al.	 2017).	 Thus,	 theory	 predicts	 that	 there	 should	 be	 trade-offs	 between	84 

ejaculate	expenditure	and	sperm	competitiveness,	and	behaviours	associated	with	85 

mate	 searching,	 like	 male	 mobility.	 This	 trade-off	 could	 potentially	 extend	 to	86 

morphological	characters	that	facilitate	mobility	such	as	leg	length	(e.g.,	Eberhard	87 

et	 al.	 1998).	 This	 is	 essentially	 what	 is	 found	 in	 species	 with	 alternative	 male	88 

reproductive	tactics,	where	some	male	morphs	invest	more	in	gaining	matings	and	89 

others	 more	 in	 sperm	 competitiveness	 (Gage	 et	 al.	 1995;	 Simmons	 et	 al.	 1999;	90 
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Simmons	et	al.	2017).	Similarly	in	moths,	phenotypes	that	disperse	to	find	females	91 

have	 larger	 flight	 muscles	 but	 smaller	 testis	 (Gage	 1995),	 which	 mirrors	 the	92 

theoretically	 predicted	 trade-off	 (Parker	 1978;	 Simmons	 and	 Parker	 1996;	93 

Simmons	 et	 al.	 2017).	 However,	 to	 date	 there	 are	 no	 studies	 directly	94 

demonstrating	 that	 selection	 on	 movement	 reduces	 investment	 in	 sperm	95 

competitiveness.	 	96 

	97 

Here,	 we	 assess	 the	 predicted	 trade-off	 between	 male	 movement	 and	 sperm	98 

competitiveness	 in	 red	 flour	 beetles	 (Tribolium	 castaneum).	 T.	 castaneum	 is	 a	99 

model	 for	 sexual	 selection	 (e.g.,	 Fedina	 and	 Lewis	 2006;	Michalczyk	 et	 al.	 2010;	100 

Demont	et	al.	2014;	Sbilordo	et	al.	2014;	Sbilordo	and	Martin	2014;	Godwin	et	al.	101 

2018).	 Several	 studies	 have	 demonstrated	 that	 T.	 castaneum	 females	 are	102 

polyandrous,	although	offspring	are	 largely	sired	by	a	 female’s	most	 recent	mate	103 

(Schlager	 1960;	 Lewis	 and	 Austad	 1990;	 Fedina	 and	 Lewis	 2004;	 Sbilordo	 and	104 

Martin	2014)	and	 there	 is	 considerable	between-male	variation	 in	 siring	 success	105 

(Arnaud	et	al.	2001;	reviewed	in	Simmons	&	Siva-Jothy	1999).	While	T.	castaneum	106 

do	disperse,	 flying	tend	to	be	used	in	long-distance	dispersal	(Ridley	et	al.	2011).	107 

Walking	is	the	mechanism	by	which	males	locally	search	for	females	(Matsumura	108 

and	 Miyatake	 2015).	 A	 previous	 study	 subjected	 beetles	 to	 bi-directional	109 

artificial-selection	 on	 walking	 distance,	 establishing	 populations	 that	 walked	110 

longer	 or	 shorter	 distances	 alongside	 control	 populations	 (Matsumura	 and	111 

Miyatake	 2015).	 Males	 from	 population	 selected	 for	 greater	 walking	 had	112 

significantly	 increased	mating	 success	 (measured	 as	 the	 number	 of	 females	who	113 

mated	with	 the	male)	 (Matsumura	 &	Miyatake	 2015).	 Collectively,	 this	 suggests	114 
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that	male	walking	is	a	key	component	of	mate	searching,	and	accordingly,	if	there	115 

is	a	trade-off	between	male	movement	via	walking	and	sperm	competitiveness,	it	is	116 

more	 likely	 to	 reflect	 a	 mate-searching,	 sperm	 competition	 trade-off,	 than	 a	117 

trade-off	between	dispersal	and	reproduction.	However,	from	hereon	we	refer	to	a	118 

general	movement	–	sperm	competitive	 trade-off	 to	allow	 for	 the	possibility	 that	119 

greater	walking	distance	has	purposes	other	than	mate	searching.	120 

	121 

If,	 as	 predicted,	 sperm	 competitiveness	 trades-off	 with	 the	 ability	 to	 search	 for	122 

mates	(Parker	1978)	and	mate	searching	effort	is	related	to	distances	males	walk	123 

(as	it	should	be:	more	walking	requires	more	energy	expenditure),	then	we	should	124 

detect	 differences	 in	 sperm	 competitiveness	 in	 populations	 selected	 for	more	 or	125 

less	movement.	Furthermore,	because	sperm	competitiveness	can	be	influenced	by	126 

mating	behavior	(Eberhard	1996;	Pitnick	and	Hosken	2010),	copulatory	behaviors	127 

may	also	vary	across	artificial	selection	regimes.	Additionally,	leg	length	may	differ	128 

in	 dispersing	 versus	 non-dispersing	 treatments	 because	 longer	 legs	 may	 be	129 

correlated	with	walking	 ability	 in	 this	 beetle	 (Arnold	 et	 al.	 2017).	 To	 test	 these	130 

ideas	we	compared	the	sperm	competitiveness,	mating	behavior	and	leg	lengths	of	131 

beetles	from	populations	artificially	selected	for	high	or	low	male	mobility.	132 

	133 

Materials	and	Methods	134 

Insects	and	culture	135 

T.	 castaneum	 is	 an	 insect	pest	of	 stored	grain.	They	are	highly	polygamous,	with	136 

both	sexes	mating	frequently	throughout	their	adult	lives.	137 

	138 
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The	 T.	 castaneum	 beetle	 culture	 used	 in	 this	 study	 has	 been	 maintained	 in	 the	139 

laboratory	for	more	than	30	years,	reared	with	a	mixture	of	whole	meal	(Yoshikura	140 

Shokai,	Tokyo)	enriched	with	brewer’s	yeast	(Asahi	Beer,	Tokyo)	and	maintained	141 

at	25°C	with	a	16	h	photoperiod	(lights	on	at	07:00,	lights	off	at	23:00).	Since	this	142 

species	 is	 a	 stored-grain	 pest,	 these	 lab	 conditions	 closely	 mirror	 the	 native	143 

environment	of	these	beetles.	 	144 

	145 

Artificial	selection	for	walking	distance	146 

To	 generate	 each	 treatment,	 replicate	 populations	were	 established.	 Each	 beetle	147 

was	sexed	at	pupal	stage,	and	males	and	females	were	separated	to	avoid	mating	148 

until	the	experiments.	Briefly,	75	virgin	males	and	75	virgin	females	(21–28	days	149 

old)	were	 randomly	 collected	 from	 a	 stock	 culture,	 and	 the	 distance	 each	 beetle	150 

walked	in	30	minutes	was	measured	using	an	image	tracker	(Digimo,	Osaka,	Japan).	151 

The	10	males	and	10	 females	with	 the	 longest	walking	distance	were	selected	 to	152 

propagate	the	longer-distance	walking	lines	(Long	searchers:	L	treatment),	and	the	153 

10	 males	 and	 10	 females	 with	 the	 shortest	 walking	 distance	 were	 selected	 to	154 

propagate	 the	 shorter-distance	 walking	 line	 (Short	 searchers:	 S	 treatment).	 To	155 

propagate	a	Control	 (C)	 treatment	 (i.e.	 a	population	without	 selection),	10	males	156 

and	10	females	were	randomly	selected	from	the	stock	culture.	For	this	procedure,	157 

10	males	and	10	females	were	housed	together	to	reproduce	until	the	emergence	158 

of	the	next	generation	of	beetles	(about	40	days)	in	a	plastic	cup	(diameter	70mm	159 

× 	 height	 25mm).	 This	 procedure	 was	 repeated,	 so	 that	 three	 replicate	160 

populations	for	each	selection	regime	(i.e.	L	x	3,	S	x	3)	were	generated	(hereafter,	161 

these	 replicate	 populations	 are	 referred	 to	 as	 treatment	 replicates).	 Selection	162 
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continued	 for	 22	 generations.	 By	 generation	 15,	 selection	 had	 successfully	163 

generated	populations	that	differed	in	walking	distance	(Matsumura	and	Miyatake	164 

2015),	 and	 this	 remained	 the	 case	 at	 generation	 22	 (L	 treatment	males	 walked	165 

further	than	S	treatment	males:	Χ1,448	=	254.54,	P	<	0.001;	Fig.	1	and	S1).	For	more	166 

information	 on	 responses	 to	 selection	 including	 direct	 responses	 (walking	167 

distances)	and	correlated	responses	(mate	searching	and	predator	avoidance),	at	168 

generation	15,	see	Matsumura	and	Miyatake	(2015).	169 

	170 

Mating	behavior	171 

Copulation	duration	and	male	behavior	during	copulation	are	major	determinants	172 

of	siring	success	 in	many	animals	(Parker	1970;	Eberhard	1996;	Singh	and	Singh	173 

2014).	In	T.	castaneum,	males	rub	females	with	their	legs	during	copulation	as	part	174 

of	 their	 copulatory	 courtship	 (Eberhard	 1994:	 Wojcik	 1969;	 Bloch	 Qazi	 2003).	175 

Accordingly,	 we	 recorded	 both	 rubbing	 behavior	 (the	 number	 of	 times	 males	176 

rubbed	 females	 on	 their	 right	 side	 per	 copulation	 -	we	 assumed	 no	 handedness	177 

difference	 across	 treatments)	 and	 copulation	 duration	 for	 males	 from	 L	 and	 S	178 

treatments	 when	 mating	 to	 C-females.	 Each	 male	 (14–21	 day	 old	 virgin)	 was	179 

placed	into	a	petri	dish	(35×10	mm)	and	habituated	for	5	min,	then	a	female	(14–180 

21	day	old	virgin)	was	added	and	the	pair	was	allowed	to	mate.	All	observations	181 

were	carried	out	at	25oC	between	12:00	to	18:00.	182 

	183 

Sperm	competitiveness	184 

To	 compare	 sperm	 competitiveness	 among	 treatments	 selected	 for	more	 or	 less	185 

movement	 (i.e.	 L	 vs.	 S),	 we	measured	 sperm	 defense	 (P1	 –	 fertilization	 success	186 



9 
 

when	 the	 focal	males	 is	 the	 first	of	 two	males	 to	mate	with	a	 female)	and	sperm	187 

offence	(P2	–	fertilization	success	when	the	focal	male	is	the	second	of	two	males	188 

to	mate	with	a	 female).	Competitor	 (non-focal)	males	were	mutants	homozygous	189 

for	 an	 autosomal,	 semi-dominant	 black	 body	 color	 allele	 –	 this	 phenotype	 is	190 

frequently	used	as	a	marker	in	sperm	competition	studies	in	T.	castaneum	(Fedina	191 

and	Lewis	2008).	Virgin	 focal	males	 (14–21	days	old)	 from	each	 treatment	were	192 

allowed	 to	mate	once	with	 a	C-treatment	 female	 (14–21	days	old)	 either	 as	 that	193 

female’s	 first	or	second	mate	(with	a	randomly	chosen	virgin	black	mutant	being	194 

the	second	or	first	mate	respectively).	After	mating	was	completed,	 females	were	195 

isolated	 in	 a	plastic	 container	 (50×50	mm	with	 enough	 food)	 and	allowed	 to	 lay	196 

eggs	for	7	days.	Progeny	were	kept	at	25°C	for	50	days	to	develop	into	adults,	and	197 

adult	body	color	was	scored	to	assign	paternity	and	generate	P1	and	P2	scores.	We	198 

used	149	males	 (L	 treatment:	N	 =	71,	 S	 treatment:	N	 =	78)	 to	 assay	P1	and	174	199 

males	 (L	 treatment:	N	 =	 82,	 S	 treatment:	N	 =	 92)	 to	 test	 P2,	 respectively.	When	200 

either	 competing	 male	 did	 not	 sire	 any	 offspring	 (i.e.	 female	 fertility	 was	 zero)	201 

triads	were	removed	from	the	analysis	as	we	could	not	be	certain	copulations	were	202 

successful	 and	 resulted	 in	 sperm	 transfer	 or	 storage	 (i.e.	 females	 may	 also	203 

influence	sperm	retention	(Lewis	&	Austad	1994)).	All	experiments	were	carried	204 

out	in	a	room	maintained	at	25°C	between	12:00	and	18:00.	205 

	206 

We	then	conducted	similar	experiments	but	where	 focal	males	were	paired	with	207 

both	 L	 and	 S	 females	 (as	 opposed	 to	 C-females)	 to	 test	 whether	 any	 effects	208 

detected	in	the	previous	experiment	were	specific	to	C-females.	Again	virgin	males	209 

aged	14–21	days	old,	from	L	or	S	treatments,	were	paired	with	females	from	each	210 
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treatment	in	a	fully	factorial	fashion	(i.e.,	L♂×L♀,	L♂×S♀,	S♂×L♀,	S♂×S♀)	and	211 

allowed	 to	mate	 once	 and	 copulation	duration	was	measured.	Here	 only	 P2	was	212 

assessed,	following	the	methods	described	above.	 	213 

	214 

Leg	morphology	215 

At	generation	22,	adults	(L	treatment:	N	=	90,	S	treatment:	N	=	100)	were	frozen	at	216 

-20°C	for	leg	measurement.	We	measured	the	length	of	all	legs	(foreleg,	middle	leg,	217 

and	hind	leg)	of	right	side,	and	we	also	measured	the	length	and	width	of	body	of	218 

each	adult	(±	0.01	mm)	using	a	dissecting	microscope	monitoring	system	(VM-60,	219 

Olympus,	 Japan).	 Because	 three	 legs	 were	 broken	 from	 beetles	 from	 the	 L	220 

treatment	and	two	legs	in	S	treatment	beetles	were	broken,	we	removed	these	data	221 

(whole	individuals)	prior	to	analyses.	The	lengths	of	each	of	the	tarsus,	tibia,	and	222 

femur,	 and	 width	 of	 the	 femur	 were	 recorded	 for	 each	 leg.	 Each	 specimen	 was	223 

carefully	positioned	so	its	longitudinal	and	dorsoventral	axes	were	perpendicular	224 

to	 the	 visual	 axes	 of	 the	 microscope	 eyepiece.	 Each	 length	 was	 measured	 as	 a	225 

straight-line	distance.	We	measured	each	leg	segment	separately.	226 

	227 

Statistical	analysis	228 

To	 compare	 leg	morphology	 among	 treatments	 (Treat:	 selection	 for	 long	 (L)	 or	229 

short	(S)	movement),	we	used	multivariable	analysis	of	variance	(MANOVA)	with	230 

treatment	(i.e.,	L	/	S),	sex	(i.e.,	M	/	F),	and	the	interaction	between	treatment	and	231 

sex	as	fixed	effects,	with	replicate	populations	included	as	a	random	effect	(and	leg	232 

segment	 as	 the	 dependent	 variable).	 Moreover,	 we	 used	 analysis	 of	 covariance	233 

(ANCOVA)	for	each	segment	(tarsus,	tibia,	and	femur	for	each	leg)	with	body	size	234 
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as	a	covariate	as	a	post-hoc	test	for	the	MANOVA.	In	each	ANCOVA,	treatment,	sex,	235 

and	 the	 interaction	 between	 treatment	 and	 sex	was	 include	 as	 fixed	 effects,	 and	236 

replicate	 population	 was	 included	 as	 random	 effect.	 If	 each	 ANCOVA	 showed	237 

significant	 effects,	 we	 conducted	 Tukey’s	 HSD	 test	 as	 post-hoc	 test.	 We	 also	238 

compared	 leg	 length	 (i.e.	 total	 of	 tarsus,	 tibia,	 and	 femur	 length)	 in	 each	 leg	239 

between	treatments	by	ANCOVA.	240 

	241 

To	compare	walking	distance	of	males	among	treatments	at	the	22nd	generation,	242 

we	 used	 a	 GLMM	 with	 treatment	 (i.e.,	 L	 /	 S)	 as	 a	 fixed	 effect,	 and	 replicate	243 

population	as	a	random	effect.	To	assess	potential	differences	in	mating	behavior	244 

when	males	mated	with	C-females,	copulation	duration	and	rubbing	behavior	were	245 

compared	among	treatments	using	a	GLMM	with	treatment	(L	/	S)	as	a	fixed	effect,	246 

and	replicate	as	a	random	effect.	To	compare	sperm	competitiveness,	fertilization	247 

success	 was	 compared	 among	 treatments	 using	 a	 GLMM	 with	 treatment	 and	248 

mating	 order	 (i.e.,	 P1	 and	 P2)	 as	 fixed	 effects,	 and	 replicate	 as	 a	 random	 effect.	249 

These	 models	 had	 a	 binomial	 error	 structure.	 To	 compare	 the	 duration	 of	250 

copulation	 and	 paternity	 success	 (P2)	 when	 focal	 males	 were	mated	 to	 females	251 

from	the	treatment	groups	(i.e.	L/S	males	mated	to	L/S	females),	we	used	a	GLMM	252 

with	male	and	female	treatment	as	fixed	effects	(e.g.,	L	/	S),	with	replicate	of	assay	253 

male	and	the	tester	female	included	as	random	effects.	All	of	these	analyses	were	254 

carried	out	using	JMP	(Ver.	12.2.0,	SAS	2015).	255 

	256 

Results	 	257 
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The	responses	to	selection	for	walking	distance	were	clear:	 in	each	replicate	line,	258 

after	 a	 few	 generations,	 walking	 distances	 were	 significantly	 longer	 in	 L	 than	 S	259 

strains	(Fig.	1	and	S1).	 	260 

	261 

In	 terms	 of	 how	 this	 affected	 leg	 morphology,	 there	 were	 significant	 effects	 of	262 

treatment,	 sex,	and	 the	 interaction	between	 treatment	and	sex	on	 legs	 (Table	1).	263 

Post	hoc	testing	showed	significant	differences	among	treatments	in	lengths	of	the	264 

tarsus	and	tibia	of	 forelegs,	and	the	tarsus	of	hind	 leg	(Table	S1,	S2,	and	Fig.	S2).	265 

Moreover,	there	was	a	significant	interaction	between	treatment	and	sex	affecting	266 

the	 lengths	 of	 various	 leg	 segments	 (Table	 S2).	 Effects	were	primarily	 driven	by	267 

males	 from	S	populations	whose	 legs	(and	the	segments	that	contribute	to	 them:	268 

Fig.	 S2)	 tended	 to	 be	 significantly	 longer	 than	 beetles	 from	 all	 other	 population	269 

(Fig.	2).	270 

	271 

When	males	were	mated	with	C-females,	mean	sperm	defense	(P1:	the	proportion	272 

of	offspring	sired	by	the	first	of	two	males	to	mate	with	females)	was	significantly	273 

lower	 than	sperm	offence	(P2:	 the	proportion	of	offspring	sired	by	 the	second	of	274 

two	males	 to	 mate	 with	 females).	 For	 both	measures	 of	 sperm	 competitiveness	275 

males	 from	 populations	 selected	 for	 reduced	 movement	 (S-males)	 were	276 

significantly	better	sperm	competitors	than	males	selected	for	greater	movement	277 

(L-males)	(Fig.	3,	Table	3).	Males	from	short	movement	populations	also	copulated	278 

for	 longer	(Χ	21,150	=	10.68,	P	=	0.001)	and	engaged	 in	more	copulatory	courtship	279 

(rubbed	 females	 more	 during	 copulation)	 than	 males	 from	 long	 movement	280 

populations	(Χ	21,148	=	5.74,	P	=	0.017)	(Fig.	4).	281 
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	282 

When	 individuals	 from	 populations	 subjected	 to	 selection	 on	 movement	 were	283 

mated	in	a	fully-factorial	design,	males	from	shorter	movement	populations	again	284 

copulated	for	longer	than	males	from	greater	movement	populations,	irrespective	285 

of	 which	 females	 they	 were	 paired	 with	 (Fig.	 5A,	 Table	 4).	 There	 were	 no	286 

significant	 effects	 of	 female	 treatment	 on	 mating	 duration,	 and	 there	 was	 no	287 

interaction	 between	male	 and	 female	 treatment	 (Table	 4).	 Qualitatively,	 P2	was	288 

marginally	 greater	 again	 for	 S-males	 (short	 movement	 populations),	 but	 this	289 

difference	was	not	significant	(Table	4).	There	were	no	significant	effects	of	female	290 

treatment	 or	 an	 interaction	 between	male	 and	 female	 treatment	 on	 P2	 (Fig.	 5B,	291 

Table	4).	292 

	293 

	294 

Discussion	295 

In	general,	we	expect	 a	 trade-off	between	 investment	 in	 reproductive	effort,	 and	296 

investment	 in	movement.	 Indeed,	 there	 is	evidence	 for	 this	 trade-off	 in	 female	T.	297 

castaneum	 (Matsumura	 and	 Miyatake	 2018).	 Theory	 also	 predicts	 a	 trade-off	298 

between	traits	associated	with	mate	searching	and	sperm	competitiveness	(Parker	299 

1978).	 Although	 this	 trade-off	 has	 been	 found	 in	 some	 species	 (e.g.,	 Gage	 1995;	300 

Simmons	et	al.	2017),	there	are	few	direct	tests	of	this	theory.	Here	we	tested	how	301 

selection	 on	 walking	 distance	 in	 red	 flour	 beetles	 affected	 male	 sperm	302 

competitiveness.	Walking	is	the	main	means	of	local	mate	searching	in	this	beetle,	303 

and	 previous	 work	 shows	 that	 males	 selected	 to	 walk	 further	 had	 significantly	304 

higher	 mating	 success	 than	 males	 that	 walk	 shorter	 distance	 (Matsumura	 and	305 
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Miyatake	 2015).	 Therefore,	 artificial	 selection	 on	walking	 distance	 provides	 one	306 

way	 to	 test	 for	 a	 trade-off	 between	mate	 searching	 (mating	 success)	 and	 sperm	307 

competitiveness	(siring	success).	In	keeping	with	theoretical	predictions	(Simmons	308 

et	 al.	 2017),	males	 selected	 to	be	more	mobile,	mated	 for	 less	 time	and	 invested	309 

less	 in	 copulatory	 courtship.	 We	 also	 found	 evidence	 that	 males	 selected	 for	310 

increased	 mobility	 were	 poorer	 sperm	 competitors,	 as	 predicted	 by	 theory.	311 

Additionally,	 males	 selected	 for	 low	 mobility	 had	 significantly	 longer	 legs	 than	312 

controls	and	males	selected	for	high	mobility,	illustrating	a	surprising	relationship	313 

between	mobility,	mating	and	morphology.	We	discuss	these	findings	in	turn.	314 

	315 

Consistent	 with	 general	 predictions,	 males	 selected	 for	 decreased	 movement	316 

outperformed	 males	 selected	 for	 increased	 movement	 in	 a	 number	 of	 mating	317 

assays.	 They	 mated	 for	 significantly	 longer	 and	 also	 rubbed	 females	 more	318 

frequently	 during	 mating,	 thereby	 performing	 better	 in	 copulatory	 courtship.	319 

Furthermore,	 when	 males	 from	 decreased	 movement	 populations	 were	 mated	320 

with	 control	 females,	 they	 also	 secured	 greater	 fertilization	 success,	 siring	more	321 

offspring	 than	 competing	 males.	 This	 is	 consistent	 with	 a	 mobility/sperm	322 

competitiveness	 trade-off	 and	 reflects	 findings	 in	 moths	 and	 species	 with	323 

alternative	mating	tactics	where	there	are	frequently	trade-offs	between	pre-	and	324 

post-copulatory	 traits	 involved	 in	 male-male	 competition	 (e.g.,	 Gage	 1995;	325 

Simmons	et	al.	1999).	While	less	mobile	males	also	mated	for	longer	with	females	326 

from	 selected	 populations	 (i.e.,	 females	 from	 the	 short	 and	 large	 movement	327 

treatments),	 this	resulted	 in	higher	sperm	offence,	especially	 in	 females	 from	the	328 

high	mobility	populations,	but	this	effect	was	not	significant.	It	is	not	immediately	329 
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obvious	 why	 there	 was	 this	 difference	 across	 experiments	 (when	 males	 were	330 

paired	with	control	vs.	selection	females).	However,	we	note	that	the	largest	siring	331 

advantage	to	males	selected	 for	 limited	movement	when	mating	with	the	control	332 

females	was	 in	 sperm	 defense	 (P1)	 rather	 than	 in	 sperm	 offence	 (P2).	 Thus	 the	333 

lack	of	P2	effect	with	selected	population	females	may	simply	be	a	power	issue:	we	334 

needed	more	populations	(the	unit	of	replication)	to	detect	the	smaller	effect	size.	335 

Importantly,	 and	as	noted,	 the	 trend	 for	a	difference	was	 in	 the	 same	direction	 -	336 

males	 selected	 to	 disperse	 less	 tended	 to	 be	 better	 at	 sperm	 offence.	 So	 while	337 

results	 were	 not	 quantitatively	 identical,	 the	 overall	 direction	 of	 effects	 across	338 

experiments	 is	 consistent	with	 a	 trade-off	 between	walking	 (which	 is	 associated	339 

with	mate	searching)	and	sperm	competitiveness.	 	340 

	341 

It	 is	 important	 to	 note	 that	 it	 is	 not	 easy	 to	 empirically	 discriminate	 between	342 

dispersal-reproduction	 trade-offs	 and	 the	more	 specific	mate-searching	 –	 sperm	343 

competiveness	 trade-off.	 However,	 on	 balance	 we	 believe	 that	 our	 experiments	344 

relate	 to	 the	 latter.	 First,	 in	males	 selected	 for	 longer	 walking	 distances	 we	 see	345 

greater	 overall	 mating	 success	 –	 males	 that	 walk	 further	 win	 more	 mates	346 

(Matsumura	and	Miyatake	2015).	This	is	not	what	we	would	expect	given	a	general	347 

reproduction-dispersal	 trade-off	 and	 shows	 that	 greater	 mobility	 improves	348 

mate-searching	 and	 mating	 success.	 The	 reduced	 sperm	 competitiveness	 we	349 

observe	 here,	 in	 combination	 with	 this	 improved	 mate-searching	 behavior	 in	350 

mobile	 males,	 suggests	 a	 mate-searching	 –	 sperm	 competitiveness	 trade-off.	351 

Second,	dispersal	 in	these	beetles	tends	to	be	via	 flight	(Ridley	et	al.	2011)	while	352 

mate	searching	tends	to	occur	via	walking	(Matsumura	and	Miyatake	2015).	353 
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	354 

We	 cannot	 definitively	 say	 why	 males	 from	 shorter-movement	 populations	355 

performed	 better	 in	 sperm	 competition	 when	 paired	 with	 control	 females	 (and	356 

tended	 to	 generally	 be	 better	 mates	 than	 longer-movement	 population	 males	357 

overall).	 One	 possibility	 is	 the	 longer	 legs	 (and	 in	 particular,	 longer	 tarsuses)	 of	358 

these	 males	 (see	 below)	 can	 better	 hold	 onto	 females,	 increasing	 copulation	359 

duration	 and	 potentially	 increasing	 how	 much	 sperm	 was	 transferred	 during	360 

mating.	 Sperm	numbers	 are	 a	 key	 determinant	 of	 success	 in	 sperm	 competition,	361 

particularly	when	sperm	competition	occurs	via	a	raffle	mechanism	(Parker	1998),	362 

and	 this	 is	 frequently	 the	 mechanism	 in	 insects	 (e.g.,	 Simmons	 et	 al.	 1996;	363 

Simmons	and	Achmann	2000;	also	 see	Birkhead	and	Moller	1998).	 In	 support	of	364 

this	 conjecture,	 longer	 legs	 improve	 how	 well	 males	 secure	 females	 in	 many	365 

species	 (e.g.,	 Zeh	et	 al.	 1992;	Emlen	2008;	 Setoguchi	 et	 al.	 2014).	However,	 in	T.	366 

castaneum	copulation	duration	may	not	be	associated	with	sperm	transfer	and	can	367 

be	negatively	related	to	paternity	success	(Bloch	Qazi	et	al.	1996),	suggesting	that	368 

longer	copulations	may	only	reflect	female	resistance	to	sperm	transfer	(Lewis	and	369 

Austad	1990;	Bloch	Qazi	et	al.	1996;	Fedina	and	Lewis	2006).	Our	data	 indicated	370 

that	longer	copulation	duration	tends	to	be	associated	with	greater	siring	success.	371 

The	 difference	 across	 studies	 may	 relate	 to	 the	 greater	 copulatory	 courtship	372 

associated	with	longer	copulations	in	our	study	(see	below).	 	373 

	374 

The	 improved	 siring	 success	 of	 less	mobile	males	 could	 also	 result	 from	 greater	375 

cryptic-female-choice	 for	 these	 males.	 Female	 T.	 castaneum	 exert	 control	 over	376 

sperm	 numbers	 transferred	 during	mating	 and	 can	 use	 this	 as	 a	mechanism	 for	377 
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biasing	 the	 fertilization	 success	 in	 favor	 of	 preferred	 males	 (Fedina	 2007).	378 

Accordingly,	 it	 is	 possible	 that	 the	 improved	 fertility	 of	 males	 from	 reduced	379 

movement	populations	represents	cryptic-female-choice	based	on	their	increased	380 

copulatory	 courtship	 -	 they	 rubbed	 females	 more	 during	 mating.	 Copulatory	381 

courtship	 is	 wide-spread	 (Eberhard	 1994)	 and	 thought	 to	 be	 a	 major	 female	382 

determinant	of	 siring	success	 (Eberhard	1996).	For	example,	male	stimulation	of	383 

females	during	mating	enhances	sperm	transfer	in	crickets	(Wulff	et	al.	2017)	and	384 

siring	 success	 in	 spiders	 (Peretti	 and	 Eberhard	 2009).	 The	 effect	 of	 rubbing	385 

behavior	on	siring	success	 is	 less	clear	 in	T.	castaneum	with	positive	correlations	386 

between	 rubbing	 rate	 and	 paternity	 success	 reported	 (Edvardsson	 and	 Arnqvist	387 

2000)	 and	 no	 association	 also	 found	 (Fedina	 and	 Lewis	 2006).	 In	 any	 case	 we	388 

generally	 find	 males	 that	 move	 less	 tend	 to	 be	 better	 sperm	 competitors	 and	389 

certainly	 copulate	 for	 longer	 and	 engage	 in	 more	 copulatory	 courtship.	390 

Irrespective	 of	 the	 mechanism	 responsible,	 our	 results	 are	 therefore	 broadly	391 

consistent	 with	 a	 trade-off	 between	 post-copulatory	 sexual	 selection	 and	 mate	392 

searching.	 Although	 as	 noted,	 our	 results	 were	 not	 entirely	 consistent	 across	393 

experiments	in	statistical	significance	terms	but	trends	were	in	the	same	direction.	394 

	395 

In	 addition	 to	 differences	 in	 movement,	 mating	 behaviors	 and	 sperm	396 

competitiveness,	selection	also	altered	leg	morphology.	Males	selected	for	shorter	397 

walking	 distances	 evolved	 the	 longest	 legs,	 but	 this	 differences	was	 not	 seen	 in	398 

females.	 This	 result	 contrasts	with	 previous	work	 in	T.	 castaneum	 showing	 that	399 

individuals	with	 greater	walking	 ability	 have	 relatively	 longer	 legs	 (Arnold	 et	 al.	400 

2017).	Our	result	 is	also	counterintuitive	because	 longer	 legs	are	associated	with	401 
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reduced	energy	expenditure	in	men	and	women	walking	quickly	(Salamuddin	et	al.	402 

2014)	 and	 leg	 length	 increases	 running	 speed	 in	 the	 fastest	 terrestrial	 animal	403 

(relative	to	its	body	size)	(Rubin	et	al.	2016).	All	else	being	equal,	long	legs	should	404 

positively	correlate	with	mobility.	However,	 theory	predicts	 that	 longer	 legs	only	405 

increase	mobility	 if	 the	 proportions	 of	 each	 leg	 segment	 do	 not	 change	 (i.e.	 the	406 

tarsus,	tibia	and	femur	all	increase	in	length	to	the	same	degree	(Leurs et al. 2011)).	407 

Here	we	see	shifts	in	the	relative	proportions	of	male	leg	segments,	suggesting	that	408 

changes	in	leg	length	may	be	for	a	purpose	other	than	improved	mobility.	 	 Legs	in	409 

the	beetles	are	also	associated	with	copulatory	courtship	(see	above),	which	could	410 

explain	 why	 selecting	 for	 more	 and	 less	 movement	 resulted	 in	 different	 leg	411 

morphology	 of	 males,	 but	 not	 in	 females.	 We	 need	 additional	 detailed	 studies	412 

examining	the	relationship	between	male’s	leg	length	and	other	reproductive	traits	413 

in	the	future.	414 

	415 

We	 should	 also	 note	 concerns	were	 raised	 that	 the	 effective	 population	 sizes	 of	416 

populations	were	small,	and	therefore	drift	may	have	played	a	role	in	the	observed	417 

responses.	 However,	 we	 subjected	 lines	 to	 direct	 selection	 and	 generated	418 

treatment-consistent	responses	to	selection,	and	correlated	responses	to	selection	419 

were	also	 largely	 consistent	 (i.e.	we	 recorded	 treatment-specific	 effects).	That	 is,	420 

we	selected	and	generated	consistent	micro-evolution	in	the	direction	of	selection.	421 

This	 is	 not	 consistent	 with	 drift.	 Employing	 experimental	 evolution	 with	 these	422 

population	 sizes	 could	 cause	 drift	 issues,	 but	 the	 consistent	 responses	 in	 the	423 

direction	of	selection	in	the	current	study	suggest	drift	was	not	a	major	concern.	424 

	425 
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In	conclusion,	selection	for	reduced	walking	distance	was	effective,	but	somewhat	426 

counter-intuitively,	this	was	associated	with	the	evolution	of	longer	legs	and	shifts	427 

in	 the	 relative	 proportions	 of	 leg	 segments.	 These	 morphological	 changes	 were	428 

correlated	 with	 improved	 male	 mating	 ability,	 increased	 copulation	 duration,	429 

greater	copulatory	courtship	and	increased	sperm	competitiveness	was	evident	at	430 

least	 some	 times.	 These	 results	 are	 more	 or	 less	 consistent	 with	 theoretical	431 

predictions	 of	 mate-searching/sperm	 competition	 trade-offs,	 but	 additional	432 

research	is	warranted	to	test	this	fundamental	prediction.	433 

	 	434 
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figure	legends	590 

	591 

Fig.	1.	Outcome	of	artificial	selection	for	walking	distance	(during	30	min:	our	592 

measure	of	movement	distance)	in	males	of	T.	castaneum	after	22	generations.	L	=	593 

males	from	populations	selected	for	longer	movement	distances,	S	=	males	from	594 

populations	selected	for	shorter	distances.	Numbers	in	parenthesis	show	sample	595 

sizes.	Error	bars	show	SE.	Individual	population	responses	are	show	in	596 

supplementary	figures.	597 

	598 

Fig.	2.	Average	lengths	for	front,	middle,	and	hind	legs.	Grey,	black,	and	open	bars	599 

show	C,	L,	and	S	treatments,	respectively.	Characters	on	the	bar	show	significantly	600 

differences	(Tukey’s	HSD	test:	P	<	0.05).	Error	bars	show	standard	errors.	601 

	602 

Fig.	3.	Sperm	defense	(P1)	and	offence	(P2)	of	focal	males	in	competition	against	603 

standard	black-bodied	males	in	control	treatment	(C)	females,	shown	as	the	604 

proportion	of	offspring	sired	(i.e.	paternity	success).	Males	from	treatments	605 

selected	for	increased	movement	(L	males)	=	black	bars	and	those	selected	for	less	606 

movement	(S	males)	=	white	bars.	Note	P1	is	less	than	P2,	but	that	males	selected	607 

to	move	less	(S	males)	are	better	sperm	competitors.	Numbers	in	parenthesis	608 

show	sample	size.	Error	bars	show	standard	errors.	609 

	610 

Fig.	4.	Duration	of	mating	and	degree	of	copulatory	courtship	(number	of	rubs)	for	611 

males	from	treatments	selected	for	increased	movement	(L	males)	and	those	612 

selected	for	less	movement	(S	males)	when	mating	with	females	from	control	613 
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populations	(C-females).	Numbers	in	parenthesis	show	sample	size.	Error	bars	614 

show	standard	errors.	615 

	616 

Fig.	5.	Results	of	fully-factorial	selection	matings	for	beetles	from	treatments	617 

selected	for	increased	movement	(L)	and	those	selected	for	less	movement	(S).	A	618 

shows	the	duration	of	mating.	B	shows	the	proportion	of	offspring	sired	(P2).	619 

Numbers	in	parenthesis	show	sample	size.	Error	bars	show	standard	error.	620 

	 	621 
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tables	and	table	legends	622 

	623 

Table	1.	Results	of	MANOVA	for	each	morphological	trait.	Significant	values	are	624 

highlighted	in	bold.	625 

Factor	 Statistic	 Value	 Num	DF	  P	

Treatment	 Wilks'	Lambda	 0.594	 28	 <	0.0001	

Sex	 F	 0.436	 14	 <	0.0001	

Treatment*sex	 Wilks'	Lambda	 0.890	 28	 <	0.0001	

	626 

	 	627 
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Table	2.	Results	of	ANCOVA	for	total	length	in	each	leg	(front,	middle,	and	hind).	628 

Leg	 Factor	 d.f.	 F	 P	

Front	 Treatment	 2	 4.2097	 0.0714	

	
Sex	 1	 56.4948	 <	0.0001	

	
Treatment*sex	 2	 15.9292	 <	0.0001	

	
Body	length	 1	 100.0629	 <	0.0001	

	
Body	width	 1	 85.4901	 <	0.0001	

	
Error	 581	

	 	
Middle	 Treatment	 2	 0.5072	 0.6256	

	
Sex	 1	 58.3787	 <	0.0001	

	
Treatment*sex	 2	 5.9092	 0.0029	

	
Body	length	 1	 96.0455	 <	0.0001	

	
Body	width	 1	 97.8003	 <	0.0001	

	
Error	 590	

	 	
Hind	 Treatment	 2	 4.255	 0.0717	

	
Sex	 1	 45.5432	 <	0.0001	

	
Treatment*sex	 2	 6.6547	 0.0014	

	
Body	length	 1	 99.4253	 <	0.0001	

	
Body	width	 1	 105.0414	 <	0.0001	

	 	 Error	 593	 	 	 	 	

	629 

	 	630 
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Table	3.	Results	of	GLMM	for	paternity	success	when	males	competed	with	631 

females	from	control	populations.	632 

Factor	 d.f.	 χ2	 P	

Treatment	 1	 4.72	 	 0.030	 	

Mating	order	 1	 131.77	 	 <	0.001	

Treatment	×	mating	order	 1	 0.34	 	 0.562	 	

Error	 319	  	  	

	633 

	634 

	 	635 
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Table	4.	Results	of	GLMM	for	duration	of	copulation	and	P2	of	males	when	636 

copulated	with	both	female’s	treatment	groups.	637 

Trait	 Factor	 d.f.	 χ2	 P	

Duration	 Male	treatment	 1	 7.44	 	 0.006	

	
Female	treatment	 1	 3.07	 	 0.080	

	
Male	treatment	×	Female	treatment	 1	 0.47	 	 0.491	

	
Error	 269	

	 	
P2	 Male	treatment	 1	 1.57	 	 0.210	

	
Female	treatment	 1	 0.45	 	 0.501	

	
Male	treatment	×	Female	treatment	 1	 0.56	 	 0.453	

 	 Error	 321	  	  	
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