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Abstract 

Eukaryotic gene expression begins with transcription of DNA into RNA by 

RNA polymerases and for protein coding genes is followed by translation into 

protein in the cytoplasm. Production of functioning mature RNA relies on proper 

processing events including 5’ capping, splicing and 3’ end processing. 

Endonucleases that cleave RNA are vital for these processing events and are 

involved in degradation pathways that may also be relevant for the turnover of 

aberrant transcripts. Studies investigating transcription, processing events and 

degradation pathways of RNA have generally focused on RNA polymerase II 

transcripts, which includes protein-coding genes. Many of these pathways were 

elucidated by studies in yeast due to the high conservation of the transcription 

process between yeast and metazoans.  

The discovery and development of CRISPR/Cas9 mediated genome 

editing techniques have led to a more complete and direct approach to study 

specific protein functions, within human cells, than previous methods such as 

RNAi. In this study, a combination of CRISPR/Cas9 with protein tags including 

the auxin inducible degron and small molecule assisted shut-off, allowed rapid 

and conditional protein depletion in human cell lines for three endonucleases, 

DIS3, INTS11 and CPSF73. These endonucleases cooperate with accessory 

proteins and actively transcribing polymerase complexes to target a broad range 

of RNA transcripts, to ensure proper RNA processing and integrity of the 

transcriptome. Generation of these cell lines, coupled with high-throughput RNA 

sequencing analysis of nuclear transcriptomes, helped to elucidate specific 

substrates for each endonuclease. The following work shows the effects of 

aberrant processing in a variety of transcripts, their subsequent potential 

degradation and what happens when a major degradation pathway is disrupted. 

A major finding in this study was disruption of 3’ end processing in protein coding 

mRNA resulted in extensive readthrough and termination defects, whereas 3’ end 

misprocessing in smaller RNA species including snRNAs and replication 

dependent histones results in a much smaller extension and termination that 

occurs relatively close to the gene transcription end site.  Additionally,  this works 

shows the importance of the exosome subunit, DIS3, in maintaining appropriate 

gene expression and RNA environment, whilst suggesting aberrant RNA 

processing may commonly occur in human cells.  
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1. Introduction 

 

1.1 RNA Polymerase II and transcription 

RNA polymerase II (Pol II) is a 12 subunit complex that transcribes protein-

coding RNA (messenger RNA / mRNA) and a variety of functional non-coding 

RNA (ncRNA) including small nuclear RNA (snRNA), small nucleolar RNA 

(snoRNA), histones and a plethora of as yet uncharacterised transcripts. The 

catalytic and largest component of Pol II is Rpb1, whose C terminal domain 

(hereafter referred to as CTD), contains numerous tandem heptad repeats. 

These repeats consist of the amino acid consensus sequence Tyr1 - Ser2 - Pro3 

- Thr4 - Ser5 - Pro6 - Ser7, with humans having 52 repeats compared to yeast 

with 26 (Corden, 1990).  

 Post-transcriptional modifications occur frequently on the CTD, principally 

phosphorylation at Ser 2 and Ser 5 residues of the heptad repeats by cyclin-

dependent kinases (CDKs), although phosphorylation at other residues has been 

observed (Heidemann et al, 2013). The phosphorylation state of the CTD 

influences transcription by acting as a platform for multiple transcription factors 

and other protein complexes. This in turn regulates the three different stages of 

transcription by Pol II: initiation, elongation and termination (Hsin and Manley, 

2012).  

 

1.1.1 Initiation 

Transcription initiation requires recruitment of Pol II to the DNA promoter 

alongside transcription factors (TFs) and an open chromatin structure. Five TFs 

recognise the TATA-box domain located approximately 25 – 30 nucleotides (nt) 

upstream of many gene promoters and form the pre-initiation complex (PIC) by 

binding to the TATA-box. Pol II, with an unphosphorylated CTD, binds to the PIC 

and initiates recruitment of TFs including helicases that unwind the DNA and 

CDKs for phosphorylation (Krishnamurthy and Hampsey, 2009).  

Pol II release from the initiation complex, allowing it to move into an early 

elongation phase, is believed to be initiated by CDK7 phosphorylation of the CTD 
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at Ser5 as Pol II moves along the promoter (Glover-Cutter et al, 2009). At 20 – 

60 nts downstream of the transcription start site (TSS), Pol II is paused at a 

promoter-proximal pause site (Guenther et al, 2007; Kwak et al, 2013). Negative 

Elongation Factor (NELF) and DRB-sensitivity-inducing factor (DSIF) facilitate 

Pol II proximal-pausing in a large number of genes (Ping and Rana, 2001). During 

this pause, a 5’ cap is added to nascent RNA and positive elongation factor b (P-

TEFb) is recruited to reverse the elongation inhibition effects of NELF (Peterlin 

and Price, 2006). P-TEFb contains a kinase subunit CDK9 and is an important 

factor for Pol II release from the pause site and move to elongation. CDK9 

phosphorylates NELF, DSIF and the CTD at Ser 2. These interactions in part 

regulate the release of paused Pol II by recruiting necessary processing factors, 

releasing NELF from Pol II, converting DSIF to a positive elongation factor and 

reorganising TFs. A CTD phosphorylated at both Ser 5 and Ser 2 is a hallmark of 

Pol II transition to elongation (Liu et al, 2015; Kwak and Lis, 2013).  

 

1.1.2 Elongation 

During elongation toward the 3’ end, phosphorylation of Ser 5 is gradually 

removed whereas phosphorylation of Ser 2 accumulates, peaking towards the 3’ 

end of genes (Davidson et al, 2014; Mayer et al, 2010; Tietjen et al, 2010; Kim et 

al, 2010a). Elongation factors are recruited to Pol II and enable it to elongate at 

a high rate (approximately 4 Kb / minute) (Singh and Padgett, 2009).  However, 

throughout the gene there are variations in the transcription elongation rate and 

this may be due to a few factors. Firstly, the rate of transcription can be restricted 

by histone marks causing tightening of DNA binding around nucleosomes and 

vice versa. Secondly, transcription can be hindered by GC rich DNA areas, which 

may cause R-loops, or facilitated by elongation factors, histone chaperones and 

nucleosome remodellers maintaining elongation conducive chromatin (Jonkers 

and Lis, 2015).  

Although Pol II rapidly elongates in a 5’ to 3’ direction, Pol II also performs 

retrograde motion during elongation, known as backtracking that is triggered by 

a weak DNA-RNA hybrid. During backtracking, the active site of Pol II becomes 

dissociated from the 3’ end of RNA, leading to transcriptional arrest (Nudler et al, 

1997). These backtracking-mediated pauses in transcription are important for 
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transcriptional regulation and processing of many genes (Nudler, 2012). In 

eukaryotic cells, backtracked Pol II elongation complexes can be corrected by 

transcript cleavage factors (TFIIS / SII) (Reinberg and Roeder, 1987). These 

factors promote cleavage of the extruded 3’ transcript end to produce a new 3’ 

end that realigns with the Pol II active site, allowing transcription to continue 

(Izban and Luse, 1992). Mutations in TFIIs inhibited intrinsic Pol II transcript 

cleavage and prevented both transcription through pause sites and elongation 

(Sigurdsson et al, 2010). 

 

1.1.3 Termination 

Termination pathways of Pol II transcription vary between mRNA and 

ncRNA genes. The termination pathway is thought to be defined by specific 

termination signals on the nascent RNA and distinctive phosphorylation patterns 

of the CTD. Currently there are three main pathways of Pol II termination 

described in metazoans that generate either mRNAs, snRNAs or replication-

dependent histone encoding transcripts. However, the most studied termination 

pathway is that of mRNAs. 

It is commonly believed that the poly(A) site (PAS) is required for 

termination of mRNAs, with Pol II pausing after transcription of the PAS 

increasing transcription termination efficiency and facilitating selection of 

alternative PAS sites (Fusby et al, 2016; Eaton et al, 2018). This is supported by 

studies that observed Pol II accumulation around the PAS (Gromak et al, 2006; 

Glover-Cutter et al, 2008). As previously mentioned, toward the 3’ end of genes 

the CTD becomes highly phosphorylated on Ser 2. Inhibition of Ser 2 

phosphorylation in metazoan cells leads to impaired recruitment of processing 

factors at 3’ ends of genes and defects in mRNA polyadenylation (Ni et al, 2004). 

Therefore CTD Ser 2 phosphorylation enhances recruitment of processing 

factors.  

Recruitment of processing factors include cleavage and polyadenylation 

specificity factor (CPSF) and cleavage stimulation factor (CstF) complexes, which 

recognise the AAUAAA hexamer and G / U rich sequences, respectively, of the 

PAS (Proudfoot et al, 2011). Co-transcriptional cleavage of transcripts occurs 18 

– 30 nts downstream of the PAS by the endonuclease CPSF component, 
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CPSF73, which forms a heterodimer with CPSF100. This cleavage releases the 

nascent RNA, allowing polyadenylation factors to bind to the 3’ end.  

Observations that cleavage was required for termination lead to the 

development of the “torpedo” model of transcription termination. In this model, 

Pol II continues to transcribe a downstream transcript after cleavage. For 

termination to occur, this downstream transcript is degraded by a 5’ – 3’ 

exoribonuclease, namely Rat 1 in yeast (Kim et al, 2004) and the  homolog XRN2 

in humans (West et al, 2004). Upon the exoribonuclease reaching transcribing 

Pol II, it acts as a trigger to release Pol II from the DNA and therefore cause 

termination. XRN2 termination is enhanced by pausing of Pol II which may be 

caused by R-loops. R-loops are a nucleic acid structure consisting of two 

antiparallel DNA strands and a RNA strand, creating a DNA:RNA hybrid that 

particularly form over G-rich terminator elements (Skourti-Stathaki et al, 2011). 

Interestingly, the homolog of yeast Sen1, Senataxin (SETX), may also play a role 

in termination of some mRNAs (Suraweera et al, 2009; Wagschal et al, 2012). 

SETX is a RNA:DNA helicase and may facilitate XRN2 degradation of 

downstream transcripts by resolving R-loops and exposing DNA.  

 An alternative method for transcription termination is the “allosteric” model. 

It is proposed that transcription of the PAS causes a conformational change in 

the Pol II elongation complex. This change leads to termination by recruitment of 

termination factors and / or dissociation of elongation factors (Logan et al, 1987;). 

Support for this model has come from studies showing cleavage is not required 

for termination and thus disputing the “torpedo” model (Osheim et al, 1999; 

Osheim et al, 2002). Additionally, Zhang et al (2015a) observed PAS-dependent 

termination could occur without the requirement of cleavage. However, a more 

recent study argues against a cleavage independent method for transcription 

termination (Eaton et al, 2018). They showed CPSF73 loss caused extensive 

read-through transcription and that catalytically inactive CPSF73 could not 

restore termination to cells depleted of CPSF73.  
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1.1.4 Structure and biology of eukaryotic mRNA 

In eukaryotes, after transcription of a gene, a pre-mRNA is produced that 

then undergoes multiple processing events to become a mature mRNA, some of 

which occur co-transcriptionally (Proudfoot et al, 2002). A mature mRNA contains 

a 5’ cap, which consists of a guanine nucleotide connected to the mRNA via a 5’ 

– 5’ triphosphate linkage; the mRNA is polyadenylated at the 3’ end, where 

approximately 200 adenosine residues are added to form the poly(A) tail; and 

mature mRNA are spliced, meaning the introns are removed from the pre-mRNA 

and exons ligated together to form mature mRNA (Proudfoot et al, 2002). 

Between the cap and coding sequence of the mRNA, there is a 5’ untranslated 

region (UTR) that regulates translation of a transcript and is commonly not 

translated itself (Moore, 2005). Similarly, there is a 3’ UTR found between the 

coding sequence and poly(A) tail of mRNA. These UTRs have roles in mRNA 

export, localisation, stability and translation efficiency (Matoulkova et al, 2012).  

Mature mRNA is recognised by its processed modifications and exported 

from the nucleus into the cytoplasm, by cap binding proteins and the TREX 

complex, where it can be translated into a protein (Katahira, 2012). At the 

ribosome, the coding region of mature mRNA is translated into a protein. Upon 

the small ribosomal subunit, attached to the mRNA, reaching the start codon 

(commonly AUG) the large ribosomal subunit and the initiation tRNA join. The 

ribosome reads the coding sequence in a set of 3 nts, called a codon. A tRNA 

corresponding to the codon sequence transfers an amino acid to the growing 

polypeptide chain, continuing until the ribosomal subunits reach the stop codon 

and the polypeptide is released. The polypeptide then undergoes folding to 

become a functional protein (Cooper, 2000).  
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1.2 Diverse transcripts of Pol II  

Pol II not only transcribes mRNAs, but it also produces RNA transcripts 

that lack polyadenylation including: snRNAs and replication-dependent histones 

(RDH). snRNAs play a critical role in mRNA processing, formation of the 

spliceosome, regulation of transcription factors, expression and processing of 

histone mRNA and ribosomal RNA (rRNA) biosynthesis. The majority of RDH 

proteins, which act to package newly replicated DNA into chromatin, are encoded 

by RDH genes which are physically linked in large genome clusters (Marzluff et 

al, 2002). RDH and snRNA transcripts have alternative processing and 

transcription pathways than described above. However, some mechanisms do 

overlap, for example the CTD appears to play a role in 3’ end processing of both 

snRNAs and RDHs and CPSF73 is involved in cleavage of protein-coding 

mRNAs and RDH pre-mRNA (Jacobs et al, 2004; Hsin et al, 2011).  

 

1.2.1 RDH processing 

RDH genes are rapidly transcribed in the S-phase of the cell cycle, to 

coordinate with DNA replication and generally lack both introns and 

polyadenylation, instead having a conserved stem-loop at their 3’ untranslated 

region (UTR). Downstream of the stem-loop, RDHs contain a purine-rich histone 

downstream element (HDE) and cleavage of RDH pre-mRNA occurs in-between 

the stem loop and HDE regions. For processing to occur, a stem-loop binding 

protein (SLBP) binds to the stem-loop region and a small nuclear 

ribonucleoprotein, U7 snRNP, binds to the HDE (Dominski and Marzluff, 2007). 

U7 snRNP contains a heptameric Sm ring and U7 snRNA with a complementary 

sequence to the HDE at its 5’ end to allow base-pairing binding to the HDE. SLBP 

is thought to stabilise U7 snRNP binding to RDH pre-mRNA, possibly by 

interaction with the U7 snRNP subunit ZFP100 (Dominski et al, 2002).  

Lsm10 and Lsm11 are U7 snRNP specific subunits, replacing 

spliceosomal SmD1 and SmD2 in the Sm ring (Pillai et al, 2001; Pillai et al; 2003). 

Lsm11 contains an extended N-terminal domain that interacts with Flice-

associated huge protein (FLASH) and ZFP100 (Yang et al, 2009a; Wagner and 

Marzluff, 2006). Together, Lsm11 and FLASH form a docking platform that 

recruits the histone cleavage complex (HCC), consisting of multiple 
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polyadenylation subunits including CPSF100 (homolog to Integrator subunit 9), 

Symplekin and CPSF73 endonuclease. CPSF73 is part of the b-CASP (metallo-

b-lactamase-associated CPSF Artemis SNM1/PSO2) family, whose protein 

members contain features amicable for endonuclease function. CPSF100 is also 

a b-CASP protein, however critical residues in the active site are altered 

suggesting it is catalytically inactive (Mandel et al, 2006; Callebaut et al, 2002). 

Similar to cleavage of protein-coding mRNAs, CPSF73 is responsible for the 

cleavage of RDH pre-mRNA (Dominski et al, 2005) (Figure 1.1).  

As observed in both humans and Drosophila melanogaster, misprocessing 

of RDH pre-mRNA leads to their polyadenylation due to read-through and the 

usage of a secondary downstream polyadenylation signal (Kari et al, 2013; 

Romeo et al, 2014; Sullivan et al, 2009). In contrast to properly processed RDH 

mRNA, these polyadenylated histones are stable throughout the cell cycle 

(Levine et al, 1987).  

The description above for RDH pre-mRNA processing may not be the full 

story however. Recently, Pettinati et al (2018) found another protein that appears 

to have a critical role in RDH 3’ processing and showed that it has 

endoribonucleolytic activity in vitro. MBL domain containing protein 1 (MBLAC1) 

contains a MBL domain with similar di-zinc ion binding to CPSF73, although they 

have differing active site flanking loops and only CPSF73 contains a b-CASP 

domain. Depletion of MBLAC1 in HeLa cells caused a cell cycle defect, with 

accumulation of cells in G1 / early S phase. Additionally, read-through of 

approximately 200 bp downstream of the RDH transcription end site (TES) was 

observed when CPSF73 and MBLAC1 were depleted, with both genes 

expressing a similar transcription termination defect pattern for RDHs.  It was 

suggested that MBLAC1 and CPSF73 may selectively affect different RDH pre-

mRNA 3’ end processing or have varying impact on similar genes, with potential 

redundancy.  
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Figure 1.1: Replication-dependent histone (RDH) processing 

The stem loop binding protein (SLBP) binds to the stem-loop of RDH pre-mRNA 

and aids in stabilization of U7 snRNP binding to the RDH pre-mRNA at the 

histone downstream element (HDE). Within the heptameric Sm ring structure of 

U7 snRNP are two spliceosomal subunits, Lsm10 and Lsm11. Lsm11 interacts 

with FLASH and together they recruit the histone cleavage complex (HCC). The 

HCC includes CPSF100, Symplekin and CPSF73, the latter of which is 

responsible for cleavage of the pre-mRNA between the stem loop and HDE. 

Overall this produces unpolyadenylated mature RDH mRNAs. For simplicity, 

other potential proteins involved in this process haven’t been shown. 
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1.2.2 snRNAs 

snRNAs are uridine-rich, approximately 60 – 200 nts long and play a 

critical role in spliceosome formation. They are transcribed by Pol II, with the 

exception of U6 snRNA which is transcribed by RNA polymerase III. snRNAs are 

not polyadenylated, they do not contain a TATA-box sequence and lack introns. 

Similar to histone genes, snRNAs are also found within clusters of the genome 

and have multiple copies (Chen and Wagner, 2010). The promoter of snRNAs 

contain two elements: an enhancer-like distal sequence element (DSE) that 

recruits transcription factors Oct1 and Sp1 and a proximal sequence element 

(PSE). The PSE, as well as specific phosphorylation of the CTD and a consensus 

sequence (3’ box) located 9 – 19 nts downstream of the snRNA coding region, 

are required for 3’ end snRNA processing (Chen and Wagner, 2010).  

Transcription initiation and the phosphorylation pattern of the CTD differs 

at snRNA genes, compared to protein-coding genes as previously described. In 

brief, initiation is mediated by the snRNA activator protein complex binding to the 

PSE, which recruits Pol II to the promoter. After Pol II recruitment, Ser 5 is 

phosphorylated by the CDK7 subunit of TFIIH. In addition, CTD Ser 7 is also 

phosphorylated by CDK7, has been shown to be essential for processing and 

facilitates interactions with a snRNA processing complex (Egloff et al, 2007; 

Egloff et al, 2010). Ser 7 phosphorylation may allow interaction with RNA 

Polymerase II Associated Protein II (RPAPII), which dephosphorylates Ser 5 as 

Pol II transcribes the snRNA and recruits snRNA 3’ end processing factors (Egloff 

et al 2011).  

Conversely, Hsin et al (2014) mutated Ser 7 to an alanine in a chicken 

DT40 cell line and found no defects on snRNA levels or processing.  This 

discrepancy may be a result of the use of chicken vs human cell lines, although 

this seems unlikely as there is a high degree of conservation in snRNA genes 

and their processing factors. Alternatively, findings from Egloff et al may be linked 

to their use of a-amanitin. Treatment with a-amanitin can increase degradation 

of some proteins, including DSIF, which plays a role in snRNA expression (Tsao 

et al, 2012; Yamamoto et al, 2014; Laitem et al, 2015). Thus the observed 

phenotype may be due to a reduction in DSIF accumulation and not due to the 

Ser 7 phosphorylation state. As snRNAs are relatively short transcripts, Ser 2 

CTD phosphorylation for efficient elongation as seen in mRNAs is not required. 
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However, Ser 2 phosphorylation by P-TEFb instead plays an important role in 

snRNA 3’ end formation (Medlin et al, 2005). It is thought PTEFb phosphorylates 

Ser 2 near the 3’ end of snRNA genes and with Ser7 allows recruitment of 

necessary snRNA 3’ end processing factors, specifically INTS9 and INTS11 

subunits belonging to the Integrator complex (Zaborowska et al, 2016; Egloff et 

al 2010) (Figure 1.2).  

 

1.2.3 snRNA 3’ end processing and termination 

Integral to snRNA processing is a complex called the Integrator (Baillat et 

al, 2005; Ezzeddine et al, 2011). The Integrator is formed of 12 - 14 subunits, 

including a homolog of CPSF73 (INTS11) and a homolog of CPSF100 (INTS9). 

In humans, these proteins are numbered in order of predicted molecular mass, 

with INTS1 having the largest mass (Chen and Wagner, 2010). The Integrator is 

recruited to the snRNA promoter, possibly through RPAPII, and associates with 

the CTD, travelling with Pol II as it transcribes the snRNA. Upon transcription and 

recognition of the 3’ box, the nascent 3’ snRNA is cleaved by the catalytic 

endonuclease subunit of the Integrator, INTS11 (Baillat et al, 2005). INTS9 and 

INTS11 form a heterodimeric complex that is thought to be functionally required 

for snRNA 3’ end processing and are recruited later than other Integrator subunits 

(Dominski et al, 2005; Albrecht and Wagner, 2012; Egloff et al, 2011) (Figure 

1.2). They are also members of the b-CASP family, however INTS9 contains the 

same amino acid changes that are suggested to inactivate catalytic activity in 

CPSF100 (Chen and Wagner, 2010). Depletion of INTS9 and INTS11 has been 

shown to cause accumulation of misprocessed snRNA (Ezzeddine et al, 2011; 

Baillat et al, 2005). Recently, depletion of the integrator subunit 4 (INTS4) was 

shown to have a similar defect in snRNA processing to that observed upon INTS9 

or INTS11 depletion. It was also reported that INTS4 specifically interacts with 

the INTS9 / INTS11 heterodimer to potentially form a heterotrimeric integrator 

cleavage module (Albrecht et al, 2018).   

Cleavage of precursor snRNA into mature snRNA is linked with efficient 

transcription termination, as demonstrated by disruption of snRNA termination 

causing inefficient snRNA processing and vice versa (Ramamurthy et al, 1996; 

O’Reilly et al, 2014).  
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Figure 1.2 Pol II phosphorylation and recruitment of the Integrator at snRNA 
genes  

After recruitment of Pol II to the TSS of a snRNA gene, TFIIH phosphorylates the  

Pol II CTD at Ser 5 and Ser 7 through its CDK7 subunit. Phosphorylated Ser7 

interacts with RPAPII, which recruits the Integrator complex. It is thought that 

catalytic subunits INTS9 and INTS11 are not recruited at this time. As Pol II 

transcribes the snRNA, Ser5 is dephosphorylated by RPAPII and the CDK9 

subunit of PTEFb phosphorylates Ser2 near the 3’ end of the snRNA. This 

phosphorylation state of Pol II may then allow recruitment of the INTS9/INTS11 

heterodimer and therefore snRNA 3’ end processing. Figure adapted from Guiro 

and Murphy (2017).  
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Currently, the mechanisms of snRNA transcription termination are not fully 

understood although it has been suggested chromatin structure, polyadenylation 

factors and both DSIF and NELF play a role (Egloff et al, 2009; O’Reilly et al, 

2014; Yamamoto et al 2014). Interestingly, NELF knockdown causes Pol II to 

transcribe past the 3’ box, creating read-through transcripts and suggesting NELF 

is essential for proper transcription termination (Yamamoto et al, 2014). NELF 

was commonly believed to act only at promoter-proximal regions (Sun et al, 

2011). Consistent with this, ChIP analysis confirmed NELF signal accumulated 

around the TSS of beta-actin mRNA compared to 300 bp downstream. 

Conversely, these findings weren’t replicated in snRNA. NELF signal was higher 

at 180 and 370 bp downstream compared to the TSS of U1 snRNA, showing a 

difference in NELF localisation at these genes. In addition, NELF was found to 

interact with the Integrator and knockdown caused accumulation of uncleaved 

snRNAs (Yamamoto et al, 2014).  

 

1.2.4 Additional functions of the Integrator 

Findings from more recent studies have implicated a role for the Integrator 

in other aspects of transcriptional regulation. Firstly, Skaar et al (2015) found that 

the Integrator not only has a role in snRNA termination, but also termination of 

RDHs and genes with polyadenylated mRNAs. HIT-Seq and ChIP-Seq methods 

were utilised and the authors found extensive binding of the Integrator to the 3’ 

end of RDHs. Depletion of Integrator subunit, INTS3, caused a significant 

increase in unprocessed RDH transcripts with poly(A) tails.  Furthermore, INTS3 

knockdown resulted in an increased localisation of Pol II downstream of RDH 

genes, suggesting a defect in Pol II termination. The Integrator was also found 

localised at the TSS of various gene types, reflecting binding of DSIF and NELF 

at these same locations.  Binding of the Integrator at promoter-proximal sites was 

found to negatively regulate expression of genes with polyadenylated mRNAs 

(Skaar et al, 2015).  

 The Integrator also functions in initiation and Pol II pause-release at 

protein-coding genes. As discussed previously, P-TEFb is responsible for 

phosphorylation of multiple units at the proximal-pause site of protein-coding 

mRNAs which leads to Pol II pause-release. P-TEFb also exists as an active 
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factor of the larger multi-subunit super elongation complex (SEC) (Lin et al, 2010; 

Luo et al, 2012). Gardini et al (2014) used epidermal growth factor (EGF) in HeLa 

cells to promote transcription of immediate early genes (IEGs) by Pol II, which 

are known for their regulation through Pol II pause-release. They found the 

Integrator was necessary for recruitment of SEC-containing P-TEFb to paused 

Pol II, leading to Pol II pause-release and elongation. EGF stimulation caused a 

robust increase in Integrator occupancy at IEG TSS and 3’ ends, as well as the 

TSS and body of EGF-responsive genes, suggesting the Integrator remains 

associated with elongating Pol II at these genes. Depletion of Integrator subunits 

INTS1 or INTS11 caused a loss of EGF-response. Diminished transcriptional 

activation, decrease in Pol II occupancy of nascent RNA and abolishment of two 

SEC components to IEGs was observed upon INTS11 depletion. Overall these 

findings suggest the Integrator has additional roles at protein coding genes, by 

association with the SEC complex and facilitating initiation and pause-release.  

 In support of an Integrator role in Pol II pause-release, Stadelmayer et al 

(2014) found the Integrator regulates NELF-mediated Pol II pause-release at 

coding genes. Genes bound by NELF and INTS3 showed a decreased pausing 

index and lower Pol II occupancy at the TSS. Depletion of INTS3 reduced Pol II 

occupancy over NELF-regulated genes, whereas INTS11 depletion increased 

Pol II occupancy at promoters bound by NELF and INTS3 but not at the 3’ end. 

This resulted in defective RNA processing and is in accord with the Integrator 

recruiting SEC to promote elongation. However, Stadelmayer et al (2014) 

contrasts the findings of Gardini et al (2015) that showed INTS11 knockdown 

decreased Pol II occupancy. This may highlight the two functions of NELF in 

reducing transcription in non-induced conditions, whilst at the promoter helping 

to maintain open chromatin structure. Alternatively, this contrast may reflect the 

differences in cellular context and gene type, with Gardini investigating IEGs and 

Stadelmayer focusing on genes with increased transcription upon NELF and 

Integrator depletion. Regardless, both studies promote a role for the Integrator in 

transcriptional regulation of protein coding genes.  

 The additional functions of the Integrator discussed here are only some of 

the roles that have been postulated. Studies have reported a role of the Integrator 

in eRNA biogenesis, DNA damage response and viral miRNA biogenesis (Lai et 

al, 2015;  Skaar et al, 2009; Cazalla et al, 2011; Xie et al, 2015). This list is not 
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extensive, but it does suggest the Integrator is important for a number of 

biological processes, with mutations or altered expression changes in Integrator 

genes being linked to several diseases (Rienzo and Casamassimi, 2016).  

 

1.2.5 Cryptic transcripts 

In addition to mRNA, Pol II also transcribes other types of polyadenylated 

transcripts. A cryptic transcript is a broad term for transcribed RNA that is highly 

unstable, meaning it is normally rapidly degraded and not detected in the cell. 

Upon depletion or defects in nuclear RNA surveillance pathways, these cryptic 

transcripts are revealed. In yeast these short, capped and polyadenylated 

transcripts are known as cryptic unstable transcripts (CUTs), which were found 

to be widely stabilised upon loss of a catalytic subunit of the exosome, Rrp6, that 

is responsible for degradation of RNA. CUTs are normally targets for degradation 

by the Nrd1-exosome-TRAMP complexes, immediately after synthesis (Wyers et 

al, 2005). 

CUTs are derived from transcription of unannotated intergenic regions and 

transcription at bidirectional promoters. Studies in S. cerevisiae showed initiation 

sites for CUTs are often located in nucleosome-free regions (NFRs), which is 

common for sites around an active gene promoter. Additionally, it was shown 

many CUTs derived from transcription in the antisense direction to a protein-

coding gene, with CUT initiation beginning near the TSS of active protein-coding 

genes (Neil et al, 2009). Another initiation site was found downstream of stop 

codons, which contains NFRs (Xu et al, 2009). Therefore, NFRs at 5’ and 3’ ends 

of protein-coding genes appear to be suitable locations for CUT transcription and 

bidirectional promoters may promote this pervasive transcription by maintaining 

NFRs.   

Bidirectional promoter transcription can also be observed in humans and 

related to CUTs in yeast is the divergent transcription of Promoter Upstream 

Transcripts (PROMPTs). PROMPTs are generated between 500 and 2500 nts 

upstream of TSS of promoters for Pol II, RNA polymerase I and RNA polymerase 

III transcribed genes (Preker et al, 2011). Both CUTs and PROMPTs can be 

transcribed in a sense or antisense direction, depending on the downstream 
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gene; they are relatively small; they are polyadenylated and are only detectable 

upon depletion of components of the exosome (Preker et al, 2008).  

PROMPTs are structurally similar to protein-coding mRNA transcripts, in 

that they contain a 5’ cap and 3’ adenosine tail, suggesting they are also 

processed by similar transcription machinery. In support of this, Pol II CTD 

phosphorylation was similar between PROMPTs and mRNAs at equal distances 

(Preker et al, 2011). However, PROMPT 3’ adenylation has been shown to utilise 

PAPD5 (elsewhere referred to as Trf4-2), a homolog of yeast Trf4p that is part of 

the Trf4 / 5-Air1 / 2-Mtr4 Complex (TRAMP) (Preker et al, 2011). In yeast, the 

Nrd1-Nab3 pathway is used to terminate CUTs (Thiebaut et al, 2006). TRAMP 

polyadenylates terminated CUTs, rRNAs and snoRNAs and this facilitates their 

subsequent degradation or 3’ end processing catalysed by the nuclear exosome 

(LaCava et al, 2005; Kadaba et al, 2006; Egecioglu et al, 2006). In contrast to 

CUTs, where both the exosome and TRAMP complex are required for 

degradation, 3’ adenylation of PROMPTs is not required for their degradation by 

the exosome (Reis et al, 2007; Preker et al, 2011).  

Whilst mRNA transcription from a bidirectional promoter is predominately 

elongation competent, the opposing-direction PROMPT transcription terminates 

early. This early termination and subsequent PROMPT degradation is affected 

by the location of proximal PASs that are more abundant upstream than 

downstream of the mRNA TSS (Ntini et al, 2013). PROMPTs were found to 

harbour PAS hexamers 10 – 30 nts upstream of their 3’ end as well as CstF64 

binding sites downstream of the 3’ end (Ntini et al, 2013). In addition, 5’ splice 

site sequences which are able to suppress PAS utilisation, are accumulated in 

proximal mRNAs compared to PROMPTs and therefore protect mRNAs from 

premature termination (Kaida et al, 2010).  

Chen et al (2016) conducted genome-wide RNA profiling methods in HeLa 

cells and found a correlation of PROMPT stability and length with distance 

between mRNA promoters. Gene TSS can be closely positioned to each other, 

which can cause transcriptional overlap especially when bidirectional 

transcription occurs. The authors showed that neighbouring promoters with larger 

distances between them produce PROMPTs that are readily degraded by the 

exosome and whose 3’ ends are believed to be defined by TSS proximal PASs. 

However, neighbouring promoters in close proximity cause PROMPT 
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transcription to overlap with mRNA sequences and instead these PROMPTs 

utilise the distal PAS site of the mRNA for 3’ processing. These PROMPTs have 

been described as alternative mRNA isoforms.  

 

1.3 Co-transcriptional RNA modifications 

RNA modifications include 5’ capping, splicing, cleavage and polyadenylation 

all of which are co-transcriptional events. These events act as methods of gene 

regulation to allow precise control of gene expression. Coordinating RNA 

processing events with Pol II transcription is facilitated by the CTD. 

Phosphorylation of the CTD modulates the interactions and actions of RNA 

processing factors, with the CTD also acting as a platform for these proteins 

(Figure 1.3).  

 

1.3.1 5’ Capping 

Addition of a 5’ cap to pre-mRNA is important for multiple reasons: to 

prevent 5’ – 3’ degradation of nascent mRNA, to aid recruitment of protein factors 

for splicing, polyadenylation and nuclear export and for recognition by initiation 

factors to facilitate and maintain efficient translation (Ramanathan et al, 2016). 5’ 

capping occurs early in transcription, on Pol II transcripts specifically. 

Phosphorylation of the CTD aids this specificity by recruiting capping enzymes. 

Nascent pre-mRNAs are capped on their 5’ end as the first 25 – 30 nts extrude 

from the active site of transcribing Pol II (Zhou et al, 2012). Two enzymes are 

responsible for 5’ capping, a RNA guanylyltransferase, RNGTT, containing both 

triphosphatase and guanylyltransferase activity and a RNA guanine-7-

methyltransferase, RNMT-RAM (Ramanathan et al, 2016). Firstly the 5’ 

triphosphate end of mRNA is hydrolysed by triphosphatase activity to a 

diphosphate. The diphosphate is then capped with GMP by guanylyltransferase 

activity and finally this cap is converted to a 7-methylguanosine cap by RNMT-

RAM (Shuman, 2001; Varshney et al, 2018). This process is reversible and 

decapping can generate an entry site for XRN2 degradation as well as causing 

premature transcription termination (Davidson et al, 2012; Brannan et al, 2012).  
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1.3.2 Splicing 

Splicing involves the removal / excision of introns from pre-mRNA and 

ligation of exons, mediated by the spliceosome. For intron removal, cleavage 

occurs at conserved sequences known as splice sites, found at the 5’ and 3’ ends 

of introns (GU and AG respectively). Approximately 18 – 40 nts upstream of the 

3’ splice site is a branch point sequence (BPS) which is required for splicing, 

along with a polypyrimidine tract located between the BPS and 3’ splice site in 

humans. Major components of the spliceosome are U1, U2, U4, U5 and U6 

snRNPs and spliceosome assembly occurs anew for each splicing reaction 

(Ward and Cooper, 2010). The first step in splicing involves U1 snRNP binding 

to a complementary sequence found within the intron. This catalyses cleavage of 

the intron at the 5’ end. The cut 5’ end then forms a lariat through a 

transesterification process, pairing guanine and adenine nts of the 5’ end and 

BPS. The other spliceosome snRNPs are recruited to form a functioning 

spliceosome, which contributes to positioning of the lariat, release of the lariat by 

cleavage at the 3’ end and ligation of the adjoining exons (Herzel et al, 2017). 

Splicing occurs co-transcriptionally, with spliceosome formation relying 

upon transcription of the 5’ and 3’ splice sites (Wang and Burge, 2008). 

Therefore, Pol II elongation is a rate-limiting step of splicing and can be regulated 

to allow or prevent alternative splicing (Bentley, 2014). In fact, a slow mutant Pol 

II has been shown to increase the inclusion of alternative exons (de la Mata et al, 

2003) and it has been postulated that a specific Pol II elongation rate is required 

for alternative exon inclusion, potentially caused by nucleosome density slowing 

elongation (Saldi et al, 2016).  

Alternative splicing has been attributed for the existence of multiple mRNA 

transcripts from single genes and can explain the numerous proteins produced 

from relatively few genes. It is suggested that at least 90 % of human genes 

undergo alternative splicing, with introns being retained or exons being extended 

or skipped (Wang et al, 2008). Consequently, alternatively spliced mRNAs will 

produce proteins with different amino acids sequences and often different 

function to their constitutively spliced counterparts. Splice-site selection is 

regulated by various proteins such as SR proteins, which contain long repeats of 

serine and arginine residues, and hnRNPs (Martinez-Contreras et al, 2007; Long 

and Caceres, 2009).  



35 
 

SR proteins recognise short RNA motifs in the pre-mRNA that when bound 

to exons commonly act as splicing enhancers and conversely repress splicing 

when bound to introns (Änkö et al, 2014). In constitutive splicing, SR proteins 

promote U1 snRNP and U2 snRNP binding to the 5’ and 3’ splice sites, 

respectively. SR proteins promote alternative splicing by promoting spliceosome 

formation at weaker 5’ splice sites of alternative exons (Jeong, 2017). hnRNPs 

also recognise specific sequences of RNA but mainly act as splicing silencers, 

although some can also act as splicing activators i.e. hnRNPL (Martinez-

Contreras et al, 2007). Typically, SR proteins bind to cis-acting elements i.e. 

exonic splicing enhancers or intronic splicing enhancers to promote splicing, 

whereas hnRNPs bind to exonic or intronic splicing silencers. It is the interplay of 

hnRNPs and SR proteins binding to enhancer or silencer sites, located within the 

vicinity of exon/intron junctions, that either promote or inhibit splicing at weak 

splice sites and therefore govern alternative splicing (Wang et al, 2015).  

 

1.3.3 Cleavage and polyadenylation 

Most protein-coding genes that have undergone cleavage by CPSF / CstF 

factors are then polyadenylated.  Firstly, the pre-mRNA contains a 3’ – OH which 

is polyadenylated by the poly(A) polymerase (PAP). To increase the affinity of 

PAP, poly(A) binding protein nuclear 1 (PABPN1) binds to the newly formed short 

poly(A) tail and suppresses proximal PASs (Jenal et al, 2012). PAP continues to 

increase the poly(A) tail length by addition of adenosine monophosphate units. 

PABPN1 interacts with CPSF and PAP to control poly(A) tail length and upon 

reaching a length of approximately 250 nts, PABPN1 stops or disrupts these 

interactions (Kuhn et al, 2009). Thus, the polyadenylation factors dissociate and 

polyadenylation terminates. The poly(A) tail length is important in initiation of 

translation and in protection of mRNAs from degradation (Eckmann et al, 2011). 

Cleavage and polyadenylation has been previously discussed in this work with 

regards to termination and processing of transcripts. However, there are some 

contradictory and interesting findings that will be mentioned in this section in 

addition to what has already been described.  
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Figure 1.3 Co-transcriptional RNA modifications  

Pol II transcription consists of initiation, elongation and termination phases with 

co-transcriptional RNA modifications. At the 5’ end capping enzymes add a 

methylguanosine cap (mG); during elongation the spliceosome complex splices 

introns from the pre-mRNA and ligates exons; at the 3’ end cleavage and 

polyadenylation factors (CPA) cleave the pre-mRNA and add a poly(A) tail. 

Throughout transcription the phosphorylation state of the CTD changes to aid 

recruitment of processing factors and overcome proximal-pausing of Pol II.   

 

 

 

 



37 
 

As previously mentioned and in support of the allosteric termination model, 

an in vitro study by Zhang et al (2015a) observed cleavage was not necessary 

for Pol II termination. However, another study refutes this by observing highly 

delayed termination of protein-coding mRNA upon CPSF73 depletion, suggesting 

PAS cleavage is indeed required for termination (Eaton et al, 2018). The authors 

used ChIP experiments in CPSF73 depleted HCT116 cells and found both 

decreased Pol II signal in the gene body, suggesting a strong reduction in 

transcription, and accumulation of Pol II after the TES showing a large termination 

defect. When comparing XRN2 and CPSF73, CPSF73 loss caused a greater 

termination defect than XRN2 depletion, suggesting cleavage of protein coding 

mRNA is important for promoting Pol II termination. These contrasting results 

may be due to the experimental systems used, with Zhang et al (2015a) using an 

in vitro system compared to a human cell line in Eaton et al (2018).  

Eaton et al (2018) also found no role for XRN2 in snRNA or RDH gene 

termination, even though both undergo 3’ processing. This is supported by 

another study who showed degradation of the downstream cleavage product 

(DCP), formed from cleavage of RDH pre-mRNA, does not require XRN2 (Yang 

et al, 2009b). Instead the study suggested CPSF73 was involved in degradation. 

Degradation patterns of the DCP demonstrate the DCP is degraded in a 5’ – 3’ 

direction, therefore utilising exonuclease activity. This exonuclease activity was 

blocked by inhibiting U7 snRNP binding to the HDE and inhibiting CPSF73 

recruitment. UV cross-linking demonstrated that CPSF73 specifically interacts 

with the DCP, in a U7-dependent manner. Yang et al (2009b), concluded that 

CPSF73 exonuclease activity degraded DCP and that HDE distance 

requirements upstream and downstream of the cleavage site determine CPSF73 

endonuclease or exonuclease activity for cleavage of RDH pre-mRNA. 

Interestingly, b-lactamase fold protein, Artemis, which contains the same b-CASP 

domain as CPSF73, shows both exonuclease and endonuclease activity (Ma et 

al, 2002). These are not the only enzymes suggested to have both exonuclease 

and endonuclease activities, indeed RNase J is another example and is involved 

in RNA processing and degradation (Mäder et al, 2008; Even et al, 2005; Mathy 

et al, 2007; Daou-Chabo and Condon, 2009). However, currently CPSF73 has 

not been directly shown to have exonuclease activity.   
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It has already been mentioned that NELF localises downstream of the TSS 

of snRNAs and knockdown causes snRNA processing defects. A similar role for 

NELF in RDH pre-mRNA processing, alongside another protein complex, has 

also been reported (Narita et al, 2007). Using immunoprecipitation in HeLa cells, 

it was shown NELF interacts with two cap binding complex (CBC) subunits, 

CBP80 and CBP20. The well-characterised function of the CBC is to bind the 5’ 

cap of pre-mRNA to facilitate export for translation. Defects in cleavage of RDH 

pre-mRNA results in polyadenylated transcripts by utilising downstream PASs. 

Interestingly, knockdown of either NELF or CBC resulted in accumulation of 

polyadenylated RDHs, suggesting these proteins may play a role in 3’ processing 

of RDH pre-mRNA (Narita et al, 2007). The CBC was shown to directly interact 

with SLBP and pull-down assay confirmed that the CBC is sandwiched between 

NELF and SLBP. SLBP knockdown also resulted in abnormal RDH mRNA 

processing and therefore it was hypothesised that NELF may recruit SLBP to the 

RDH stem-loop through an interaction with the CBC (Sullivan et al, 2001; Narita 

et al, 2007).  

Similar to defects in 3’ processing of RDH pre-mRNA, misprocessed 

snRNAs often become polyadenylated. However, snRNA genes don’t commonly 

contain a PAS closely downstream of their 3’ box, where transcription termination 

predominately occurs. Yamamoto et al (2014) questioned if aberrant 

polyadenylation could occur in a similar method to mRNA 3’ end processing. 

Interestingly, CPSF73 knockdown caused a significant decrease in 

polyadenylated U1 snRNA. CPSF73 or CtsF-64 knockdown was also able to 

rescue accumulation of polyadenylated U1 snRNA caused by NELF knockdown. 

Overall this suggests that NELF, present at 3’ end of snRNAs, may play a role in 

inhibition of CPSF and CstF mediated cleavage and polyadenylation.  
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1.3.4 Other RNA modifications 

Modification of RNA can also occur internally, for example N1-

methyladenosine, 5-methylcytosine and isomerisation of Uridine (Roundtree et 

al, 2017; Desrosiers et al, 1974; Carlile et al, 2014). The most prevalent internal 

modification of both mRNA and long non-coding RNA is N6-Methyladenosine 

(m6A), where the N6 position of adenosine in mRNA is methylated (Perry and 

Kelley, 1974; Desrosiers et al, 1975; Wei et al, 1975). Lavi et al (1977) estimated 

poly(A) mRNA contained m6A modification every 1 per 700-800 nts. This 

essential modification has been found to accelerate mRNA processing and 

transport in mammalian cells (Camper et al, 1984; Finkel and Groner, 1983). The 

m6A modification is produced by a METTL3 and METTL14 heterodimer, with 

METTL3 providing catalytic activity, that is regulated by its association with a 

WTAP protein subunit (Liu et al, 2014; Ping et al, 2014; Wang et al, 2016). 

Previous research has suggested that methylation occurs preferentially in 3’ 

UTRs, around the stop codon and also within intronic sequences. This could 

show that m6A modification occurs co-transcriptionally (Liu et al, 2014; Ping et 

al, 2014).  

Biological functions of m6A are produced by interactions with m6A readers 

that specifically recognise the RNA modification. These include the YTH family of 

proteins that then allow m6A regulation of cellular processes (Dominissini et al, 

2012) For example, YTHDC1 binding to m6A modifications of mRNA increases 

the inclusion of alternative exons through interactions with SR proteins (Xiao et 

al, 2016). Additionally, hnRNP proteins also interact with m6A modified RNAs to 

regulate alternative splicing.  HNRNPC and HNRNPG recognise and bind m6A 

dependent structural switches to regulate splicing (Liu et al, 2017). These few 

examples demonstrate the importance of RNA modifications on post-

transcriptional gene regulation.  

 

 

 

 

 



40 
 

1.4 Regulation of gene expression by degradation pathways 

Degradation of RNA is an important stage in gene expression control and 

different classes of degradation can be characterised. Firstly, Pol II transcription 

generates a multitude of transcripts which undergo extensive processing. These 

processing events produce excised introns and spacer fragments that must 

undergo degradation. Secondly, regulated turnover of mRNA is important for 

gene expression control. Similarly, RDH degradation is important in cell cycle 

function; is tightly coupled to DNA replication to ensure proper chromatin 

formation and enhances recombination rates in response to DNA damage 

(Mullen and Marzluff, 2008; Hauer et al, 2017). Finally, degradation acts as a 

quality control mechanism. Due to the complexity of RNA processing 

mechanisms, errors can often occur that generate aberrant or defective 

transcripts. Additionally, mRNAs with premature translation termination codons 

are generated by alternative splicing. The levels of these defective RNAs must 

be controlled to prevent potential problems such as the saturation of RNA 

processing machinery and therefore they are rapidly degraded (Houseley and 

Tollervery, 2009).  

 There are different classes of RNA-degrading enzymes. Endonucleases 

cleave the phosphodiester bond between nucleotides, cleaving RNA internally. 

Exonucleases cleave RNA from the end, with one type hydrolysing RNA from the 

5’ end and another type hydrolysing from the 3’ end (Houseley and Tollervey, 

2009). In addition, some nucleases also exhibit kinase activity, such as NDK1 

(Yoon et al, 2005). Pol II transcripts commonly obtain a 5’ cap which protects 

RNA from degradation by 5’ exonucleases such as XRN2 (Ramanathan et al, 

2016). Therefore, RNA decapping is an important process in degradation. Dcp2 

is predominately found in the cytoplasm but is able to shuttle into the nucleus and 

interact with XRN2 and transcription termination factors. This interaction allows 

Dcp2 to catalyse hydrolysis of the 5’ cap, resulting in its removal (Piccirillo et al, 

2003). XRN2 is not only involved near transcription termination of genes, but is 

associated with transcription machinery during initiation (Davidson et al, 2012; 

Jimeno-Gonzalez et al, 2010). Pol II aborted transcripts generated by promoter-

proximal pausing, defectively spliced or capped transcripts are often retained at 

the TSS and can be degraded by XRN2. XRN2 accounts for the removal of some 
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transcripts, however other RNA transcripts are degraded by the exosome 

complex, which is one of the main focusses of this thesis.  

 

1.4.1 Exosome complex 

The human nuclear exosome has vital functions in processing, nuclear 

surveillance and degradation of nearly every class of RNA. The exosome is a 

multi-subunit complex composed of a 9 subunit barrel-like core lacking catalytic 

activity (EXO-9). These subunits are arranged as a hexamer (PH-like ring) 

capped with a trimeric S1/KH ring and they interact with 3’ – 5’ exonucleases 

DIS3 (homolog of yeast RRP44) and EXOSC10 (homolog of yeast RRP6) 

(Allmang et al, 1999; Mitchell, 2014). A central channel runs through the EXO-9 

core, with EXOSC10 localised on top of the S1/KH cap and DIS3 at the opposite 

end (Figure 1.4). The channel is essential to exosome function as it mediates 

RNA binding to allow access of RNA substrates to DIS3 and EXOSC10 (Makino 

et al, 2015). During association with the exosome, the exonuclease domain of 

EXOSC10 is exposed whereas the exonuclease domain of DIS3 faces towards 

the channel at the exit pore. It is thought that RNA passes through the central 

channel to facilitate their interaction with DIS3 (Lorentzen et al, 2008).  

EXOSC10, located at the entry pore of EXO-9, may regulate this RNA 

threading by widening the channel and thus allosterically mediating DIS3 activity 

(Wasmuth et al, 2014). Mutant catalytically-dead EXOSC10 is still able to 

enhance DIS3 activity in vitro. Additionally, mutations in the exosome complex 

that obstruct the channel inhibit DIS3 and EXOSC10 activities in yeast (Wasmuth 

and Lima, 2012), although RNA substrates can also be directed to the nuclease 

domains independently (Bonneau et al, 2009; Schneider et al, 2012). RNA 

threaded through the entire channel is degraded by DIS3, whereas RNA that 

enters the S1/KH ring before being deflected outwards is degraded by EXOSC10 

(Zinder et al, 2016).  
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Figure 1.4 Exosome structure 

The 2D structure of the exosome shows the core subunits, EXOSC1-9, that make 

up the barrel-like structure of the exosome, with EXOSC10 and DIS3 attached on 

either end. The exosome structure can exist in different formations with either 

EXOSC10, DIS3, both or neither subunits. The 3D structure shows EXOSC10 at 

the entry pore and DIS3 at the exit pore of the core, with the central channel 

running through the middle of the core. As shown, it is possible for RNA to thread 

through the central channel, facilitated by Exosc10, to allow its degradation by 

DIS3.  
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These structural exosome findings were conducted in yeast, however 

recent studies suggest the human nuclear exosome may show some slight 

differences. Through cyro-EM, Gerlach et al (2018) found the position of human 

DIS3 (hDIS3) on EXO-9 more closely resembles an open conformation of RNA 

binding directly to RRP44 in yeast than a closed conformation of RNA accessing 

the active site of RRP44 through the exosome channel. A long RNA channel path 

was still observed with RNA travelling through the EXO-9 channel to then bind 

DIS3, however the RNA path was longer in humans than yeast (Gerlach et al, 

2018; Weick et al, 2018).  

DIS3 encompasses two domains with different catalytic activities. Firstly, 

DIS3 includes a N-terminal PIN domain which is responsible for 

endoribonuclease activity and interacts with EXO-9 subunits RRP41 and RRP45. 

(Lebreton et al, 2008; Schneider et al, 2009; Schaeffer et al, 2009; Bonneau et 

al, 2009). Secondly, there is a ribonuclease domain (RNB) containing the active 

site for exoribonuclease activity (Lorentzen et al, 2008). Although knockdown of 

DIS3 is essential to cell growth (Mitchell et al, 1997), it was shown that inhibiting 

DIS3 exoribonuclease activity by mutating the RNB domain (D551N) is not lethal 

although a slower growth phenotype is observed (Dziembowski et al, 2007). 

Similarly mutating the PIN domain (D171N), thus preventing endoribonuclease 

activity, produced no obvious phenotype. However, expression of both these 

mutations together caused growth inhibition (Schaeffer et al, 2009). This 

suggests that catalytically inactive DIS3 results in a non-functional exosome 

however, at least one type of DIS3 nuclease activity is sufficient for cell viability. 

It is important to note that Schaeffer et al (2009) used RNAi methods to 

knockdown endogenous DIS3 levels whilst expressing mutant DIS3 constructs. 

Therefore, DIS3 may not have been fully depleted by RNAi and low levels of 

functioning DIS3 may be present. This could have a slight rescue effect on the 

mutant phenotypes and it is possible that mutations through genetic modification 

would instead be lethal.  

DIS3 mutations not only affect cell viability in different ways but also 

exosome function. The D171N mutant produced no degradation intermediates 

whereas D551N mutation caused accumulation of degradation and processing 

intermediates. A combination of both mutations produced a similar phenotype to 

that of D551N alone. Therefore a viable RNB domain, but not PIN domain, is 
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essential for exosome function. These differences could be explained by 

exoribonuclease and endoribonuclease domains of DIS3 acting on separate 

specific substrates. Alternatively, both catalytic domains may increase the 

efficiency of each other and act synergistically on substrates (Schaeffer et al, 

2009).  

Although mutation of the PIN domain did not prevent degradation of 

exosome substrates, it may affect the speed and efficiency of degradation. The 

RNB domain aids in hydrolysis of single-stranded RNA in a 3’ – 5’ direction. 

Nucleotides are singularly released to produce an end product of only a few 

nucleotides. Normally DIS3 can unwind secondary structures of RNA provided 

there are unstructured regions of adequate length at the 3’ end (Robinson et al, 

2015). The PIN domain could act in releasing exosome substrates where 

degradation has stalled due to their secondary structure. PIN domain function 

may enhance exoribonuclease activity of DIS3 or EXOSC10 by providing them 

with alternative 3’ end substrates and aiding exosome degradation functions 

when progression is blocked (Lebreton et al, 2008).  

In yeast, RRP6 is located solely in the nucleus but both RRP44 and RRP6 

can be found in the nucleoplasm and nucleolus. In comparison, EXOSC10 and 

DIS3 are located mainly in the nucleus of human cells, with exclusion of DIS3 

from the nucleolus and enrichment of EXOSC10 in the nucleolar compartment 

(Tomecki et al, 2010). There are 2 other isoforms of DIS3 which are found 

exclusively in the cytoplasm, DIS3L and DIS3L2. DIS3L can associate with the 

exosome but it does not exhibit endoribonuclease activity as the two catalytic 

residues within the PIN domain are absent. Conversely, DIS3L2 lacks a PIN 

domain due to splicing of exon 2 and is not known to be part of any stable 

macromolecular assembly (Tomecki et al, 2010; Kumakura et al, 2013; Staals et 

al, 2010). Overall three potential exosome complexes may exist within the human 

nucleus; EXO-9 with EXOSC10, nucleoplasmic EXO-9 with DIS3 and 

nucleoplasmic EXO-9 with EXOSC10 and DIS3 (Lykke-Anderson et al, 2011). 

The differing subcellular distributions of these exosome complexes may allow 

each to perform specialised functions within the cellular compartments (Kilchert 

et al, 2016).  

EXOSC10 and DIS3 may have specific substrates. It has been suggested 

that EXOSC10 is more involved in processing of RNAs than DIS3, specifically in 
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the processing of small RNAs. Additionally, EXOSC10 is more efficient in 

degrading substrates with more complex secondary substructures including small 

nucleolar RNAs and pre-rRNA (Januszyk et al, 2011). On the other hand, 

previous studies have suggested that DIS3 is the main catalytic subunit of the 

exosome for degrading nearly all classes of RNAs, including pervasive transcripts 

(Dziembowski et al, 2007). Szczepinska et al (2015) proposed that DIS3 also 

degrades enhancer RNAs (eRNAs) and snoRNAs.  

In addition to the degradation of aberrant transcripts, the nuclear exosome 

has an important function in degradation of cryptic transcripts known as CUTs in 

yeast and PROMPTs in humans. As described earlier, cryptic transcripts are 

derived from transcription in the opposite direction to a protein-coding gene, at 

bidirectional promoters. Due to their quick turnover, they are only detectable in 

the cell upon exosome dysfunction (Preker et al, 2008). DIS3 is suggested as the 

predominant, if not only, degradation pathway for PROMPTs in humans.   

Szczepinska et al (2015) used PAR-CLIP techniques in HEK293 cells expressing 

a catalytically-dead DIS3 mutant and found that upon DIS3 dysfunction there was 

robust accumulation of PROMPTs. PROMPT accumulation was also observed 

when other exosome components were downregulated, including EXOSC10 and 

EXOSC3 (hRRP40) (Preker et al, 2008; Flynn et al, 2011). 

 

1.4.2 Exosome co-factors  

Nuclear exosome function is modulated by various cofactors and 

interacting partners. Of high significance is the yeast TRAMP complex which aids 

the exosome in substrate specificity (Schmidt and Butler, 2013). The TRAMP 

complex contributes to exosome RNA processing through Trf4p subunit addition 

of a short poly (A) tail (3 – 50 nts) to transcripts (Wyers et al, 2005). In addition to 

Trf4p, the TRAMP complex also contains the essential helicase MTR4 (LaCava 

et al, 2005). A TRAMP-like complex has been identified in humans which contains 

a MTR4 homolog and close orthologues such as Trf4p and PAPD5. However, 

unlike yeast, the activity of the TRAMP complex in humans is predominately 

restricted to the nucleolus due to TRAMP subunit nucleolar localisation (Lubas et 

al, 2011). Consistent with this localisation is the finding that PAPD5 

polyadenylates snoRNA and pre-rRNA transcripts (Ogami et al, 2018).  
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MTR4 helicase activity is enhanced by Mpp6 binding to the EXO-9 subunit, 

RRP40. A secondary structure forms at the 3’ end of RNA substrates, which is 

unwound by MTR4. This produces single-stranded RNA that is more capable of 

threading through the channel in a 3’ – 5’ direction (Falk et al, 2017). TRAMP 

polyadenylation activity may help prepare RNA as a substrate for degradation, 

by generating poly(A) tails long enough for binding by MTR4 (Zinder and Lima, 

2017). In humans it was found that MTR4 binds to the exosome through contact 

with Mpp6 and exosome subunit EXOSC2 (Weick et al, 2018).  

Human MTR4 is also part of the nuclear exosome targeting (NEXT) and 

poly(A) tail exosome targeting complexes (PAXT) (Lubas et al, 2011; Meola et al, 

2016). The NEXT complex has been shown to promote degradation of PROMPTs 

and 3’ extended RNAs (Lubas et al, 2011; Tseng et al, 2015; Hrossova et al, 

2015), whereas PAXT promotes degradation of transcripts with larger poly(A) 

tails (Meola et al, 2016). Lubas et al (2011) found that depletion of NEXT 

components, Rbm7 and ZCCHC8, leads to accumulation of PROMPTs showing 

the importance of NEXT in exosome degradation of certain transcripts.  

The exosome has also been observed to be tethered to nascent capped 

transcripts, through NEXT and PAXT interaction with the cap-binding complex 

containing ARS2 (CBCA) (Andersen et al, 2013; Meola et al, 2016). ARS2 binds 

to the CBC and acts as a scaffold protein, recruiting various protein complexes 

involved in 3’ end processing, maturation, degradation and export to the 5’ CBC 

(Gruber et al, 2009; Hallais et al, 2013; Andersen et al, 2013).  Premature 

transcription termination produces RNA 3’ ends within the first introns of protein-

coding genes. These pervasive transcripts are exosome substrates and their 

turnover is supported by ARS2 function (Iasillo et al, 2017). In addition, Iasillo et 

al, (2017) found through ARS2 depletion in HeLa cells and RNA-Seq that ARS2 

plays a role in transcription termination downstream of short snRNA, RDH, 

PROMPTs and eRNA.  
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1.4.3 Cytoplasmic mRNA degradation  

Messenger RNAs in the cytoplasm are normally protected from 

endonucleases by their 5’ cap and 3’ poly(A) tail. The majority of cytoplasmic 

mRNAs are degraded in a deadenylation-depenent manner. Deadenylation is 

often the rate-limiting step of cytoplasmic mRNA decay and is conducted by 2 

main deadenylases, CCR4-NOT and PAN2-PAN3 (Siwaszek et al, 2014). PAN2-

PAN3 complex firstly shortens the poly(A) tail to approximately 110 nt and then 

the CCR4-NOT complex deadenylates the mRNA to a poly(A) tail length of 

approximately 10 nts (Yamashita et al, 2005; Chen et al, 2011). After 

deadenylation the mRNA may undergo decapping by DCP2, which can also 

decap mRNA in the nucleus as previously mentioned (Piccirillo et al, 2003). 

Decapped mRNA is then a substrate for 5’ – 3’ exonuclease degradation by 

XRN1 (Braun et al, 2012).  

Alternatively, cytoplasmic mRNA can be degraded in a 3’ – 5’ direction by 

the cytoplasmic exosome. The cytoplasmic exosome is similar in structure to the 

nuclear exosome, except DIS3 is not present. Instead a paralogue DIS3L, which 

does not contain endonuclease activity due to mutations in the PIN domain, is 

responsible for the catalytic activity of the cytoplasmic exosome. (Tomecki et al, 

2010). After degradation by the exosome a scavenging decapping enzyme, DcpS 

that has a specific for shorter RNA species, hydrolyses the residual 5’ cap (Chen 

et al, 2005). Interestingly, DIS3L2 is another paralogue of DIS3 and is found 

specifically in the cytoplasm, doesn’t interact with the exosome and lacks a PIN 

domain. It is found to preferentially degrade 3’ uridylated RNAs in an exosome-

independent manner (Malecki et al, 2013; Lubas et al, 2013). Depletion of DIS3L2 

causes an accumulation of a multitude of mRNAs in the cytoplasm, suggesting 

DIS3L2 may be responsible for a third cytoplasmic degradation pathway (Malecki 

et al, 2013).  
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1.4.4 Nonsense-mediated decay 

As discussed, formation of aberrant mRNAs can occur at multiple stages 

and can be hazardous to cells through the generation of potentially toxic proteins 

or by sequestering processing machinery. There are different posttranscriptional 

quality-control mechanisms to prevent this occurrence and the best characterised 

is the Nonsense-mediated decay (NMD) pathway. NMD removes aberrant 

mRNAs which contain a premature stop codon possibly due to mutations, 

transcriptional errors or splicing errors (Popp and Maquat, 2013). Translational 

termination, which involves eukaryotic release factor 1 and 3 (eRF1 and eRF3),  

is the first signal to trigger NMD.  

As a consequence of pre-mRNA splicing, an exon-junction complex (EJC) 

is found on the mRNA approximately 20 – 24 nts upstream of the exon-exon 

junction. (Le Hir et al, 2000). During the first round of translation, EJC’s are 

removed from the mRNA. After this, NMD occurs if any EJCs remain bound to 

the mRNA, which would occur if the ribosome was released before reaching the 

EJC i.e. if eRF1 and eRF3 assemble at a premature stop codon located ≥ 50 – 

55 nts upstream of a EJC then NMD is triggered (Popp and Maquat, 2013). NMD 

is mediated by up-frameshift proteins UPF1, UPF2, UPF3A and UPF3B and 

aided by suppressors with morphological effects on genitalia, SMG1, SMG5-9. 

UPF1 is an ATP-dependent RNA helicase that with SMG1 kinase binds to eRF1 

and eRF3 to form the SURF complex near a premature stop codon (Kashima et 

al, 2006; Chakrabarti et al, 2011).  

UPF2 and UPF3 are found on the EJC and their subsequent contact with 

UPF1 results in phosphorylation of UPF1 by SMG1 and release of eRF1 and 

eRF3 (Kashima et al, 2006). Phosphorylated UPF1 becomes an active helicase 

that resolves mRNA secondary structure and removes bound proteins, as well as 

recruiting SMG5-7 and other general mRNA degradation factors including XRN1 

(Fiorini et al, 2015; Okada-Katsuhata et al, 2012). SMG6 is capable of 

endonucleotytically cleaving the aberrant mRNA to generate RNA fragments that 

can be degraded by XRN1 or the cytoplasmic exosome (Huntzinger et al, 2008; 

Eberle et al, 2009).  
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1.5 Gene engineering using CRISPR/Cas9 

Precise, targeted changes to the genome are important for many 

applications across science, including systemic interrogation of genetic elements 

and development of disease models. Previous methods have used zinc-finger 

nucleases or transcription-activator like effector nucleases, but a faster, cheaper, 

highly specific and more efficient gene editing method was developed, Clustered 

Regularly Interspaced Short Palindromic Repeats (CRISPR)/Cas9 (Gaj et al, 

2013; Gupta and Musunuru, 2014; Cong et al, 2013).  

CRISPR/Cas9 was developed from a naturally occurring gene editing 

system in bacteria, with the most commonly used CRISPR/Cas9 technology in 

human cells being adapted from Streptococcus pyogenes. CRISPR/Cas9 

provides bacteria with adaptive immunity by acting as an immune memory of viral 

infections and preventing re-infection (Barrangou et al, 2007). The CRISPR loci 

consists of repetitive elements, 30 – 40 bp, which flank short sequences of DNA 

with viral and plasmid origins known as protospacers. In bacterial adaptation, new 

protospacers are introduced during infection and their DNA is homologous to 

bacteriophages or plasmids, to provide specific immunity (Mali et al, 2013a; Mali 

et al, 2013b).   

Genome engineering by CRISPR/Cas9 requires a conserved 3’ 

protospacer adjacent motif (PAM), that is associated downstream of every 

protospacer. Different CRISPR systems have various PAM sequences, for 

example the PAM sequence for Cas9 from Streptococcus pyogenes is 5’-NGG 

whereas the Cas9 ortholog in Neisseria meningiditis is 5’-NNNNGATT (Jinek et 

al, 2012; Zhang et al, 2013). For specific gene editing in mammalian cells, a 

human codon-optimised Cas9 must be expressed alongside a guideRNA 

(gRNA), consisting of DNA complementary to the genome target that associates 

with Cas9 and the genome. The Cas9 nuclease can therefore be targeted toward 

any part of the genome by altering the gRNA, as long as there is a PAM sequence 

located 3’ of the target DNA.  

	 The gRNA directs CRISPR/Cas9 to the DNA target, where Cas9 can 

cleave the DNA. Upon cleavage, a double stranded break (DSB) is formed and 

using the cell’s own DNA repair machinery, is either repaired by non-homologous 

end joining (NHEJ) or high-fidelity homology-directed repair (HDR). With NHEJ, 
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the broken DNA strands are re-ligated creating insertion/deletion (indel) 

mutations, making NHEJ repair an effective way to study genetic variation by 

introducing random deleterious mutations (Bibikova et al, 2002). On the other 

hand, HDR occurs less frequently in vivo but creates more accurate repairs by 

using a repair template to ligate the DNA. Through the design of custom repair 

templates introduced to the cell, HDR can introduce large and precise DNA 

modifications (Chen et al, 2011).  

 

1.5.1 Altering gene expression post-transcriptionally 

Regulating gene expression in eukaryotes can be achieved by altering 

transcription levels and mRNA abundance, except these methods can be limited 

by their rate of downregulation, especially for proteins with a long half-life. 

Therefore, methods have been developed that instead modify protein levels more 

directly. A commonly used technique for post-transcriptional modifications is RNA 

interference (RNAi), that utilises complementary small RNA molecules to 

specifically target and degrade mRNA transcripts via the RNA inducing silencing 

complex (RISC) and thus prevent their translation (Elbashir et al, 2001). However, 

RNAi methods have been criticised for producing off-target effects, requiring long 

periods of time for gene downregulation and causing incomplete downregulation. 

Therefore, it has been important to find other methods that may combat these 

limitations and alter gene expression levels post-translationally. For this, various 

methods have been proposed that utilise the CRISPR/Cas9 system (Zhang et al, 

2015b; Natsume et al, 2016; Lambrus et al, 2018; Chung et al, 2015). 
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1.5.2 The auxin system in plants 

Plants contain a hormone, indole-3-acetic acid (IAA or auxin), which is 

detrimental to regulation of plant cell division, expansion and differentiation 

(Teale et al, 2006). Auxin enacts its role by regulating gene expression and to do 

this a ubiquitin-dependent proteolytic system is involved. Specifically, the F-box 

protein transport inhibitor response 1 (TIR1), which contains an auxin binding 

site, forms a functional E3 ubiquitin ligase complex with Skp1 and Cullin 1 

(SCFTIR1). The SCFTIR1 recruits an E2 ubiquitin conjugating enzyme that catalyses 

ubiquitination of proteins containing an auxin inducible degron (AID) (Gray et al, 

1999). Auxin inducible genes are bound by auxin response factors (ARF), whose 

interaction with auxin transcriptional repressors (ATR) prevents gene expression 

(Tan et al, 2007). Auxin brings together the ATRs with SCFTIR1, causing 

polyubiquitination of the ATRs and leading to their degradation. This in turn 

releases the inhibition of ARFs, causing activation of gene expression at auxin 

inducible genes (Gray et al, 2001) (Figure 1.5).  

 

1.5.3 Implementation of the Auxin inducible degron system (AID) in 
eukaryotes 

The plant auxin-regulated protein degradation system has since been 

exploited in various studies to allow ubiquitination of specific substrates and their 

subsequent degradation. Although non-plant eukaryotes express the ubiquitin 

ligase SCF, in which the F-box protein determines substrate specificity, they lack 

orthologs of TIR1 and auxin inducible degrons (Holland et al, 2012). However, 

due to the highly conserved Skp1, Nishimura et al (2009) was able to express the 

Arabidopsis thaliana TIR1 gene in budding yeast and find evidence for formation 

of SCFTIR1. They also fused the AID, IAA17, to the N and C terminus of GFP and 

expressed these fusion proteins in cells expressing SCFTIR1. Both AID-GFP-NLS 

and GFP-AID-NLS were depleted in a TIR1 and auxin-dependent manner. The 

AID system has also been implemented in mammalian cells and reversible 

protein degradation within minutes of auxin removal was observed (Holland et al, 

2012; Nishimura et al, 2009) (Figure 1.6).  
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Figure 1.5: Auxin system in plants 

1) Auxin inducible genes are bound by auxin response factors (ARF), which 

interact with auxin transcriptional repressors (ATR). 2) Auxin brings together the 

ATR and a E3 ubiquitin ligase complex, SCFTIR1. SCFTIR1 recruits a E2 ubiquitin 

enzyme that causes ubiquitination of the ATR. 3) Polyubiquitination of ATR leads 

to its subsequent degradation. 4) ARFs are no longer inhibited and transcription 

of the auxin inducible gene can occur.  
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Figure 1.6: Auxin system in human cell lines 

A protein of interest (POI) is tagged to an auxin inducible degron (AID) by 

CRISPR/Cas9 technology, in cells expressing plant TIR1. Upon addition of auxin, 

the SCFTIR1 complex binds to the POI and recruits a E2 ubiquitin enzyme. The 

POI is ubiquitinated and subsequently degraded by the proteasome.  
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1.5.4 AID system and CRISPR/Cas9 

The AID system causes rapid depletion of a protein; however, its’ 

implementation can be time consuming and difficult due to the necessity of 

tagging the endogenous target protein and co-expressing TIR1 within the desired 

eukaryote system. This caveat has been improved by the use of CRISPR/Cas9 

technology. Zhang et al (2015b) used CRISPR/Cas9 genome editing to introduce 

the AID tag to a protein of interest (POI) in C.elegans and found a rapid 

degradation (20 minutes) of the POI in the presence of auxin. The authors also 

compared the AID system to RNAi depletion from a previous study (Kostrouchova 

et al, 2001) and found the AID system produced a highly pronounced phenotype 

(2 % progeny arrested in development compared to 100 %, respectively). This 

suggests that the AID system is able to produce a more robust phenotype than 

RNAi.  

Natsume et al (2016) used a similar method in mammalian cells. They 

tagged endogenous genes with the AID-tag using donor vectors containing 

synthetic short homology arms as a repair cassette for HDR. This was done in 

human colorectal cancer (HCT116) cells due to their well-established diploid 

karyotype. Other studies have also used CRISPR/Cas9 to achieve biallelic 

insertion of the AID tag into human cells, a method which can be adapted to allow 

insertion of other tags (Lambrus et al, 2018).  

 

1.5.5 Small Molecule Assisted Shutoff (SMASh) 

Small Molecule Assisted Shutoff (SMASh) is another technique that can 

be used to modulate protein activity at a post-transcriptional level using chemical 

regulation (Chung et al, 2015). In contrast to the AID system, SMASh involves 

only a single component and is selective for new proteins. SMASh suppression 

of a protein works firstly by using CRISPR/CAS9 technology to fuse a SMASh tag 

to the target of interest via a hepatitis C virus (HCV) nonstructural protein 3 (NS3) 

protease recognition site. The SMASh tag consists of a NS3 protease and 

destabilising degron. After protein folding, the internal protease activity causes 

cleavage at the HCV NS3 recognition site, resulting in an unmodified protein 

product. The cleaved SMASh tag is then degraded due its’ internal degron 

activity. Upon addition of a protease inhibitor, asunaprevir, the POI remains 
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tagged and is now targeted for proteasomal and / or autophagosomal degradation 

alongside the SMASh tag (Figure 1.7). Therefore asunaprevir causes the rapid 

degradation of newly synthesised POI.  

Regulation by asunaprevir allows for stringent control and quick recovery 

of protein production. Chung et al (2015) showed the SMASh tag can be attached 

to the POI at either the N or C terminus and that due to the absence of protein 

structural modifications after cleavage, it is expected the POI will have normal 

functionality. However, as it is the protein’s processing into a functional protein 

that is inhibited by asunaprevir, the SMASh system will work best when an 

accumulation of protein is required upon removal of asunaprevir or in cases 

where the POI is short-lived. This will prevent protein produced prior to 

asunaprevir addition from having an effect (Bondeson and Crews, 2017). This 

system has been previously used to regulate the replication of Influenza A Virus 

(IAV) in vitro and in vivo, without directly targeting viral proteins (Fay et al, 2019). 

In addition, Yan et al (2015) used the SMASh tag to alter expression of a reporter 

in a dual-reporter screen, thus increasing its statistical power and demonstrating 

endogenous yeast gene modification by the SMASh system.  

Overall both the AID system and SMASh-tag are bioorthogonal and 

produce inducible and reversible protein degradation, making them efficacious 

methods for targeted protein degradation. 
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Figure 1.7: Small Molecule Assisted Shut-Off (SMASh)  

The SMASh tag consists of a protease and degron linked to the protein of interest 

(POI) by a HCV NS3 protease recognition site. The SMASh tag internal protease 

activity cleaves the tag at the recognition site, when cells are untreated. The POI 

becomes untagged and is able to conduct its normal function whereas the 

SMASh tag is degraded due to internal degron activity. Upon addition of a 

protease inhibitor, asunaprevir, the protein remains tagged and is targeted for 

degradation. 
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1.6 Project Aims 

This introduction has discussed the role of endonucleases in cleavage and 

polyadenylation events, 3’ end processing and degradation of RNAs, with some 

endonucleases acting in more than one pathway. Although previous studies have 

attempted to elucidate the differing functions of the endonucleases CPSF73, 

INTS11 and DIS3, a lot is still unknown. Being able to determine their specific 

substrates would be beneficial in revealing functional roles.  

Aforementioned work in these areas have mainly been conducted in yeast, 

due to their smaller genomes and therefore are more easily genetically modified. 

Studies conducted in human tissues have often used RNAi techniques to regulate 

expression of proteins of interest. RNAi methods utilise small interfering RNAs 

(siRNAs) to specifically target a mRNA. siRNAs associate with the RNA-inducing 

silencing complex (RISC) which unwinds the siRNA to produce a single-strand. 

The single-stranded RNA binds to the complementary mRNA target, allowing the 

RISC complex to cleave mRNA and in effect, silence gene expression. Although 

RNAi methods made manipulation of gene activity more accessible, with 

increased specificity and relative ease-of-use to previous methods, there are 

caveats. 

 RNAi mediated-knockdown of a gene is often time-consuming, with an 

adequate level of protein reduction taking multiple days depending on the half-

life of the protein of interest. Over these long periods, RNAi has increased 

potential for off-target effects and complicates the interpretation of phenotypic 

effects. Indeed, siRNAs have been shown to have reduced specificity causing 

silencing of non-target genes (Jackson et al, 2003). In addition, RNAi does not 

always produce complete protein depletion. It was recently shown that because 

of these limitations, trace levels of protein remaining after RNAi may cause false 

negative results or a reduced phenotype (Eaton et al, 2018). Therefore gene 

editing techniques, such as CRISPR/Cas9 and the AID system, may be beneficial 

to produce an increased repertoire of protein functions. Furthermore it allows 

conditional depletion in a quicker manner than RNAi, which will be important 

when studying essential proteins.  
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The aims of this study were to further reveal the roles of three 

endonuclease proteins, DIS3, INTS11 and CPSF73, in human cells (Figure 1.8). 

Additionally, to provide insight into the substrates and mechanisms of the three 

endonucleases by investigating changes in transcription upon protein depletion. 

It was hypothesised that: 1) Using CRISPR/Cas9 technology to genetically 

modify gene targets with tags would allow conditional protein depletion; 2) 

Depletion of the exosome subunit DIS3 would cause an accumulation of RNA 

transcripts, due to loss of their degradation; 3) Depletion of CPSF73 would cause 

misprocessing and possible extension at protein-coding genes and RDHs, as 

CPSF73 is believed to play a major role in the 3’ end processing of these genes; 

4) Depletion of INTS11 would result in dysfunction of the Integrator complex, 

causing misprocessing at snRNA genes. The research questions that we asked 

throughout this study included: Are our protein-depletion cell lines capable of 

quick, specific and near complete depletion of our protein target? Can these cell 

lines, with the use of RNA-Seq, elucidate specific substrates of these 

endonucleases? If depletion of endonucleases responsible for 3’ end processing 

of specific genes results in extension, where does this extension terminate? And 

do the findings support or refute the model of transcription termination? My 

objectives to address these aims and research questions were to use 

CRISPR/Cas9 technology to produce conditional-depletion cell lines of three 

endonucleases: CPSF73, INTS11 and DIS3. Upon generation of these cell lines, 

to utilise transcriptome-wide high-throughput RNA-Seq analysis of nascent RNA 

to determine specific substrates and effects of protein depletion. Finally, to 

validate RNA-Seq findings by other methods including RT-qPCR.  
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Figure 1.8 Domain organisation of DIS3, CPSF73 and INTS11 

Domain organisations of human DIS3, CPSF73 and INTS11. The PIN domain of 

DIS3 contains endoribonuclease activity and the RNB domain contains the active 

site for exoribonuclease activity. As INTS11 and CPSF73 are homologs, their 

domain organisation is similar. CPSF73 also contains a CTD, but its sequence is 

highly divergent from INTS11 and the exact boundary is unknown (Robinson et 

al, 2015; Wu et al, 2017).   
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2. Materials and Methods 

 

2.1  Buffer compositions 

Before use, buffers were sterilised either by autoclave or filter-syringe, Millex-

GP 0.22 µm filter (Sigma). 

 

2.1.1 DNA/RNA Buffers 

• DNA Loading Buffer: Gel loading dye purple (6 x) (B7024S, NEB) 

• 1 x TBE buffer: 10 mM Tris-HCl (pH 8) (ThermoFisher Scientific), 

1 mM  EDTA (pH 8) (ThermoFisher Scientific) 

• Total RNA Extraction: TRI Reagent Solution (Sigma) 

 

2.1.2 SDS-Polyacrylamide gel electrophoresis (PAGE) and Western 
blot buffers 

• RIPA Buffer: 50 mM Tris-HCl (pH 7.4) (ThermoFisher Scientific), 

150 mM NaCl (ThermoFisher Scientific), 0.5 % Sodium 

Deoxycholate (Sigma), 1 % NP40 (ThermoFisher Scientific), 0.1 % 

Sodium Dodecyl Sulphate (SDS) (ThermoFisher Scientific) 

• 4 x SDS-PAGE sample buffer: 40 % Glycerol (ThermoFisher 

Scientific), 8 % SDS (ThermoFisher Scientific), 0.006 % 

Bromophenol Blue (Sigma), 0.25 M Tris-HCl (pH 6.8) 

(ThermoFisher Scientific). Before use, 0.5 ml was separated and 

warmed to 50 °C, then 50 µl b-mercaptoethanol added.  

• 4 x SDS-PAGE Stacking gel buffer: 0.5 M Tris-HCl pH 6.8 

(ThermoFisher Scientific), 0.4% SDS (ThermoFisher Scientific) 

• 4 x SDS-PAGE Resolving gel buffer: 1.5 M Tris-HCl pH 8.8 

(ThermoFisher Scientific), 0.4% SDS (ThermoFisher Scientific) 

• SDS-PAGE running buffer: 192 mM Glycine (ThermoFisher 

Scientific), 25 mM Tris, 0.1 % SDS (ThermoFisher Scientific) 

• Transfer buffer: 25 mM Tris, 192 mM glycine, 20% methanol (All 

ThermoFisher Scientific) 
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• 5% Blocking Solution: 2.5 g milk in 50 ml PBST  

• Enhanced Chemi-Luminescence (ECL) Solution 1: 100 mM Tris-

HCl (pH 8.5), 2.5 mM Luminol (Sigma), 400 µM p-Coumaric Acid 

(Sigma) 

• ECL Solution 2: 100 mM Tris-HCl (pH 8.5) 5.3 mM Hydrogen 

Peroxide (Sigma) 

 

2.1.3 Miscellaneous buffers 

• 1 x PBS: 137 mM NaCl (ThermoFisher Scientific), 10 mM Na2HPO4 

(Sigma), 2.7 mM KCl (ThermoFisher Scientific), 1.8 mM KH2PO4 

(pH 7.4 with HCl) (Sigma) 
• 1 x PBST: Same as 1 x PBS, except with addition of 0.05% Tween 

20 (Sigma) 
• Trypsin PBS-EDTA: 500 ml 1 x PBS, 1 mM EDTA (ThermoFisher 

Scientific), 0.25% Trypsin (Sigma) 
• 2 x Oligo annealing buffer: 100 mM NaCl (ThermoFisher 

Scientific), 20 mM Tris-HCl (pH 7.5) (ThermoFisher Scientific), 

1mM EDTA (pH 8) (ThermoFisher Scientific) 
• qPCR Master Mix: Agilent Brilliant III Ultra-Fast SYBR Green 

qPCR Master Mix (Agilent) 

 

2.1.4 RNA-Seq buffers and kits 

• HLBN: 10 mM Tris-HCl (pH 7.5) (ThermoFisher Scientific), 10 mM 

NaCl (ThermoFisher Scientific), 2.5 mM MgCl2 (Sigma), 0.5 % 

NP40 (ThermoFisher Scientific) 

• HLBNS: Same as HLBN with addition of 10 % sucrose.  

• Ribosomal RNA Depletion: Illumina Ribo-Zero Gold rRNA 

Removal Kit  

• RNA-Seq Library Generation: Illumina TruSeq Stranded Total 

RNA Library Prep Kit 

• RNA Purification: Beckman Coulter Agencourt RNAClean XP 

Beads 

• DNA Purification: Beckman Coulter Agencourt AMPure XP Beads 
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• QC Analysis of RNA and DNA: Agilent ScreenTape RNA; High 

Sensitivity RNA; D1000 Assay for TapeStation 

 

2.1.5 ChIP buffers 

• RIPA ChIP: 1 % NP40 (ThermoFisher Scientific), 150 mM NaCl 

(ThermoFisher Scientific), 0.5 % Sodium Deoxycholate (DOC) 

(Sigma), 0.1 % Sodium Dodecyl Sulfate (SDS) (Sigma), 50 mM Tris 

(pH 8) (ThermoFisher Scientific), 5 mM EDTA (ph 8) (ThermoFisher 

Scientific) 

• ChIP wash: 500 mM NaCl (ThermoFisher Scientific), 1 % NP40 

(ThermoFisher Scientific), 1 % DOC (Sigma), 100 mM Tris (pH 8.5) 

(ThermoFisher Scientific) 

• Elution buffer: 1 % SDS (Sigma), 0.1 M NaHCO3 (Sigma) 

 

2.1.6 Molecular biology kits 

• Plasmid extraction from E.coli: Qiagen QIAprep Spin Miniprep Kit 
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2.2 Antibodies 

Western Blot Analysis detected levels of proteins using the following 

antibodies: 

 

Table 2.1 Antibodies used for Western Blot 

Protein Detected Antibody name Code Manufacturer 
DIS3 Rabbit Anti-DIS3 A303-764A Bethyl 

DIS3 Rabbit Anti-DIS3 A303-765A Bethyl 

AID Mouse Anti-AID-

tag 

M214-3 MBL 

INTS11 Rabbit anti-

CPSF3L 

Abx005038 Abbexa 

CPSF73 Mouse Anti-

CPSF73 

A301-090A Bethyl 

RNA Pol II Mouse anti-RNA 

Polymerase II CTD 

MABI0601 MBL 

Alpha tubulin Mouse anti-alpha 

tubulin 

Ab7291 Abcam 

Anti-rabbit 

secondary 

Anti-rabbit IgG, 

HRP-linked 

7074 Cell Signaling 

Technology 

Anti-mouse 

secondary 

Rabbit Anti-Mouse 

IgG (HRP) 

Ab97046 Abcam 
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2.3  Vectors 

All vectors were supplied by Addgene and can be seen in Table 2.2.  

 

Table 2.2 Vectors 

Plasmid name Description 
pUC19 Cloning vector with empty backbone 

pX330-U6-Chimeric_BB-CBh-

hSpCas9 

Cloning vector for gRNA with U6 

driven expression, containing human 

codon optimised Cas9 

pBABE osTIR1 Human codon optimised TIR1 

pMK243 (Tet-osTIR1-Puro) Plasmid expressing OsTIR1 under 

control of the Tet promoter 

pCMV(CAT) T7SB100 SB-transposase 

pSBbi-Blast Empty SB-transposon with Blasticidin 

resistance gene 

 

2.4  Bacterial strains 

Molecular cloning / genetic recombination was conducted using high 

efficiency NEB 5 - alpha competent Escherichia coli, with the following conditions. 

 

2.4.1 Bacterial growth media 

Bacterial growth media was autoclave sterilised and stored at room 

temperature.  

• Luria Bertani (LB) Broth: 5 % Yeast Extract (Sigma), 10 % 

tryptone (Sigma) and 10 % NaCl (ThermoFisher Scientific) 

• LB agar: Same as LB Broth with addition of 2 % Agar (Sigma) 
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2.4.2 Antibiotic selection in bacteria 

Bacteria were grown in the presence of antibiotics, to select for positively 

transformed bacterial clones. The final concentrations of selective antibiotics 

used are as follows: 

• Ampicillin: 100 µg / ml 

• Kanamycin: 50 µg / ml 

 

2.5 Molecular Cloning 

 

2.5.1 Polymerase chain reaction (PCR) 

PCR was used to amplify specific sequences of DNA, using Q5 High-

Fidelity DNA Polymerase (NEB). Typically, a 50 µl reaction consisted of 20 ng 

template DNA, 5 µl of 5 x Q5 reaction buffer, 0.5 µl of 10 mM dNTPs (NEB), 1.25 

µl of 10 µM each primer, 0.25 µl Q5 High-Fidelity DNA Polymerase, 5 µl of Q5 

High GC Enhancer (optional), made up to 25 µl total volume with nuclease-free 

water. The PCR reaction was then set up as follows: 

 

 

Table 2.3 PCR Protocol 

Step Temperature Time Number of cycles 
Initial denaturation 98 °C 30 seconds 1 

Denaturation 

Annealing 

Extension 

98 °C 

50 – 72 °C * 

72 °C 

10 seconds 

30 seconds 

30 seconds / Kb 

 

25 - 30 

Final extension 72 °C 2 minutes 1 

Hold 4 °C -  -  

*Annealing temperature depended on optimal temperature for primers used 
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 If original template DNA was from bacteria, the PCR product underwent a 

1 hour incubation at 37 °C with 0.5 µl DPN1 (NEB), to remove bacterial template 

DNA. DNA was then purified by a DNA phenol-chloroform extraction and ethanol 

precipitation (see section 2.5.4).  

 For colony screening transformed competent cells, a PCR reaction was 

set up using Taq polymerase (NEB). In a 25 µl volume this contained: variable 

template DNA (< 500ng), 200 µM dNTPS, 0.2 µM each of forward and reverse 

primer, 1 x Standard Taq Reaction Buffer and 1.25 Units Taq DNA Polymerase. 

The same PCR protocol was used as above, except with 30 – 32 cycles, an 

annealing temperature between 50 – 65 °C and an extension temperature of 68 

°C for 1 minute / Kb.  

 

2.5.2 Agarose gel Electrophoresis 

To perform agarose gel electrophoresis, agarose gels were prepared 

using 1 x TBE buffer containing 1 - 2 % (w/v) agarose that was heated until 

dissolved. 5 % of Midori Green Advanced DNA Stain (Geneflow) was added and 

the solution was left to cool and set in a OwlTM EasyCastTM Gasketed UVT gel 

tray (ThermoFisher Scientific). Gels were placed into an electrophoresis tank 

filled with 0.5 x TBE buffer and DNA samples containing 10 % DNA loading buffer 

were loaded into the wells alongside an appropriate DNA ladder. To separate 

DNA or RNA bands, gels were run under 120 V or 180 V respectively. Afterwards, 

visualisation by UV light was conducted using a Gel Doc XR + System (Bio-Rad). 

If gel separated DNA was to be used in downstream applications, a scalpel 

was carefully used to extract the required DNA from the gel. UV light was used 

to visualise the bands of DNA and extraction conducted swiftly to minimise UV 

exposure. DNA was then filtered for 20 seconds at 10,000 rpm into a 0.5 ml 

Eppendorf. Agarose gel electrophoresis was conducted on 3 µl of eluted DNA for 

validation.  
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2.5.3 Restriction Digest 

Commercial enzymes were used to digest DNA according to 

manufacturer’s protocol, unless otherwise stated.  

 

2.5.4 Phenol-Chloroform extraction and Ethanol precipitation 

A 1:1 ratio of either DNA (pH 8) or RNA (pH 4.3) phenol-chloroform 

solution (Sigma) was added to DNA or RNA respectively, with a minimum total 

volume of 200 µl. Samples were vortexed and centrifuged for 5 minutes at 13,000 

rpm. The upper-phase solution was transferred to an Eppendorf containing 2.5 

times the volume of 100% Ethanol and a 10% volume of 3 M Sodium Acetate (pH 

5.4). Samples were vortexed again and centrifuged for 15 minutes at 13,000 rpm. 

The supernatant was completely removed and samples allowed to air-dry for 5 

minutes at room temperature. Cell pellets were resuspended in dH2O.  

 

2.5.5 Ligation with T4 DNA Ligase 

Ligation of linearised or restriction digested DNA occurred using T4 DNA 

Ligase (NEB). DNA concentrations were determined by a NanoDrop 2000 

Spectrophotometer (ThermoFisher) and 100 ng of DNA used in a 20 µl reaction 

containing T4 DNA Ligase Buffer and T4 DNA Ligase as stated in the 

manufacturer’s protocol. After incubation at 16 °C for 2 hours to overnight, 4 µl of 

reaction was transformed into competent bacterial cells.  

 

2.5.6 Gibson Assembly 

Gibson Assembly (NEB) was used to anneal DNA where vectors had been 

amplified as multiple fragments. To create blunt ended vectors, plasmid cassettes 

were amplified using divergent PCR. Cut vectors were treated with 1U Calf 

Intestinal Alkaline Phosphatase (CIP) (NEB) and 2 µl CutSmart Buffer for 30 

minutes at 37 °C to prevent re-ligation. DNA was purified by phenol-chloroform 

extraction and ethanol precipitation.  
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Insert fragments for Gibson Assembly were generated either by PCR or 

synthesised DNA oligos. In the case of small inserts, including gRNAs, DNA 

oligos were produced with homologous 5’ and 3’ arms to the blunt ends of the 

vector backbone. The complementary oligos were annealed together using 1 x 

Oligo annealing buffer and incubated for 5 minutes at 90 °C. Hybridisation 

occurred by gradual cooling to room temperature, forming a dsDNA insert. Other 

insert fragments, generated by PCR, were designed with 5’ and 3’ sequence 

complementarity with the cut vector. All insert fragments were purified by DNA 

phenol-chloroform extraction and ethanol precipitation.  

Typically for ligation, a 1:3 volume ratio (depending on relative size) of 

vector to insert was used with 1 x Gibson Reaction Master Mix (NEB). Ligations 

were incubated for 1 hour at 50 °C before subsequent transformation into 

competent bacterial cells.  

 

2.5.7 Transformation of plasmids into bacteria 

For transformation into bacterial cells, 10 - 20 ng of purified plasmid DNA 

or 4 µl of a ligation reaction was used. DNA was equilibrated to 4  °C by placing 

on ice for 5 minutes; concurrently 60 µl of bacterial cells were thawed on ice. After 

this incubation, 60 µl of thawed cells were added to the DNA and mixed once by 

pipetting. This was kept on ice for 5 minutes, before undergoing a heat-shock at 

42 °C for 90 seconds and immediately being transferred to ice for 2 minutes. 500 

µl of Super Optimal broth with Catabolite repression (SOC) medium (NEB) was 

added and mixed gently by inversion. Cells underwent a recovery step for 1 hour 

at 37 °C to allow expression of the antibiotic resistance gene, present in the 

transformed plasmid. After this time, approximately 250 µl of cells were pipetted 

onto a LB agar plate supplemented with the appropriate antibiotic and stored 

overnight at 37 °C.   

 

2.5.8 Plasmid purification from bacteria 

 Plasmids were isolated from single bacterial colonies that had grown on 

LB agar plates supplemented with the appropriate selection drug. Single colonies 
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were used to inoculate 6 ml of LB media supplemented with the relevant 

antibiotic, then stored at 37 °C overnight in a shaking incubator (180 rpm) to allow 

for bacterial growth. Following this, a cell pellet was obtained by centrifugation for 

5 minutes at 13,000 rpm. Plasmids were purified from cell pellets using the 

QIAprep Spin Miniprep Kit following manufacturer’s instructions.  

 

2.5.9 Plasmid construction for CRISPR/Cas9 

Repair templates generated for CRISPR/Cas9, were assembled using the 

empty pUC19 backbone. Homology arms for the gene of interest were 

synthesised flanking the poly(A) site using Integrated DNA Technologies (IDT) 

and ligated into pUC19. Using Gibson Assembly (NEB), a pre-synthesised (IDT) 

AID-P2A was inserted into the vector with either a hygromycin or neomycin 

resistance gene. For this incorporation, the vector was linearised between the 

penultimate and stop codon. 

IDT synthesised gRNA oligos to our gene of interest were inserted into a Cas9 

expression plasmid (pX330-U6-Chimeric_BB-CBh-hSpCas9) using Gibson 

Assembly (NEB). Sequences to create gRNA oligos were obtained using the 

online Benchling software (https://benchling.com).  

 HCT116:TIR1 cells had been previously made in the West lab by isolating 

human codon optimised TIR1 from pBABE osTIR1 and using SFI1 restriction 

sites in the pSBbi-Blast empty vector. CPSF73-AID doxycycline inducible and 

Ints11-SMASh cell lines were generated by Professor Steven West using the 

same approach as above except the Ints11-SMASh repair template contained a 

SMASh-tag instead of AID-P2A. Additionally, for the CPSF73-AID doxycycline 

inducible cell line osTIR1 was expressed under a tetracycline promoter using the 

pMK243 plasmid.  
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2.6 Tissue culture 

 

2.6.1 Cell lines 

Multiple cells lines were created using HCT116 cells, by simple 

transfection protocols or CRISPR/Cas9 genome engineering. HCT116 cells were 

used due to their obligate diploid karyotype, to increase efficiency of 

CRISPR/Cas9 methods. A description of the cell lines generated are shown in 

Table 2.4. HCT116:TIR1, INTS11-SMASh, XRN2-AID and CPSF73-AID cell lines 

were made by Steven West.  

 

Table 2.4 Cell lines 

Cell line name Description 

HCT116 Unmodified human colon carcinoma cells; parental 

cells 

HCT116:TIR1 SB - integrated TIR1 in HCT116 cells 

DIS3-AID SB - integrated TIR1; homozygous 3’ AID tagged DIS3 

INTS11-SMASh Homozygous 3’ SMASh tagged INTS11 

CPSF73-AID 

(doxycycline 

inducible) 

Homozygous 3’ AID tagged CPSF73; osTIR1 

expressed under a Tet promoter 

XRN2-AID SB-integrated TIR1; homozygous 3’ AID tagged XRN2 

 

 

For depletion of the protein of interest, 500 µM of auxin was added to DIS3-

AID for 60 minutes or XRN2-AID for 120 minutes. In CPSF73-AID doxycycline 

inducible cells, TIR1 expression was induced by addition of 2 µg / ml doxycycline 

for 16 hours, followed by 500 µM auxin addition for 2 hours to deplete CPSF73. 

In INTS11-SMASh cells, 2 µM of asunaprevir was added for 48 hours. Untreated 

controls were incubated with ethanol (solvent), for an equivalent time to treated 

cells. 
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2.6.2 Cell growth and maintenance 

All cells were incubated at 37 °C with 5 % CO2 and maintained in T75 

flasks containing Dulbecco’s modified Eagle’s medium (DMEM) supplemented 

with 10 % foetal calf serum (FCS) and 1 % Penicillin Streptomycin. Additionally, 

cells expressing TIR1 were maintained with blasticidin (5 µg / ml), to prevent loss 

of the TIR1 Sleeping Beauty (SB) plasmid.  

Once cells had grown to approximately 80 % confluency, they were 

passaged. For passaging, cells were washed with 1 x PBS, then washed with 

Trypsin PBS-EDTA and incubated for 3 minutes. 10 ml of DMEM media was 

added to cells to neutralise trypsinisation and pipetted up and down to remove 

cells from the flask wall. Approximately 1 ml of cells were seeded into a T75 flask 

containing 12 ml of DMEM media, then allowed to grow at 37 °C with 5 % CO2.  

 

2.6.3 Long-term storage of cultured cell lines 

Confluent T75 flasks (Greiner) of cultured cell lines were passaged as 

above, with cells resuspended in 10 ml of DMEM and centrifuged at 500 x g for 

5 minutes. For long-term storage at - 80 °C, cell pellets were resuspended in 1 

ml of FCS supplemented with 10 % DMSO and transferred to a cryovial. To 

recover cells from storage, cells were slowly thawed to room temperature and 

homogenised in 5 ml of DMEM. After centrifugation for 5 minutes at 500 x g, all 

media was removed and cells resuspended in 12 ml of DMEM (Sigma) and 

placed into a T75 for growth.   

 

2.6.4 Generation of the HCT116:TIR1 cell-line.  

Using the SB transposon system, HCT116 cells expressing TIR1 (HCT116:TIR1) 

were generated (Hackett et al 2010, Skipper et al 2013, Hou et al 2015). 400 ng 

of SB transposon and 50 ng of transposase plasmids were transfected using 

JetPrime Reagent according to manufacturer’s protocol. After 48 hours, cells 

were passaged into 10 cm dishes containing DMEM supplemented with 20 µg / 

ml blasticidin, until single colonies could be picked and allowed to grow.  

 



72 
 

2.6.5 Generation of stable cell-lines 

For generating CRISPR/Cas9 stable cell-lines with integration of either 3’ 

AID tag or SMASh tag, cells were split into 3 cm plates at approximately 30 % 

confluency. 2 µg of repair plasmid containing hygromycin or neomycin resistance 

and 2 µg of gRNA were transfected into cells using JetPrime Reagent (Polyplus). 

After 24 hours, media was changed and at 48 hours cells were passaged into 10 

cm plates. 

Stable cell-lines that had been successfully transfected with either a 3’ AID 

tag or SMASh tag on the target gene and, where stated, TIR1 integration at SB 

loci or doxycycline inducible TIR1 transfection, were selected using antibiotic 

resistance. Single colonies that grew in the presence of antibiotics were picked, 

transferred to 24 well plates and screened for homozygous integration. Final 

concentrations of antibiotics used are as follows: 

• Hygromycin: 150 µg / ml 

• Neomycin: 800 µg / ml 

• Blasticidin: 20 µg / ml 

• Puromycin: 1 µg / ml 

 

2.6.6 Genomic DNA isolation from stable cell-lines 

Positive cultured cells were screened for homozygous CRISPR/Cas9 

repair cassette incorporation by extracting genomic DNA using QuickExtract DNA 

Extraction Solution (Cambio). Cells were grown in 3 cm dishes to 80 % 

confluency, before being washed with 4 °C 1 x PBS. Cells were scraped and spun 

down in 1 ml of 1 x PBS, for 5 minutes at 500 x g. Supernatant was discarded 

and cell pellets resuspended in QuickExtract depending on pellet size. This was 

incubated for 6 minutes at 65 °C, then samples vortexed before incubation for 2 

minutes at 98 °C to denature the QuickExtract. Subsequently, 1 µl was used for 

future PCR and DNA stored at - 20 °C.  
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2.6.7 RNAi transfections 

To deplete proteins using RNAi methods, cells were firstly split into 6-well 

dishes at approximately 30 % confluency and grown in DMEM media without 

antibiotics. Appropriate siRNA was transfected into cells using Lipofectamine 

RNAiMax (Life Technologies) following the manufacturer’s guidelines. 

Transfection was repeated after 48 hours and RNA was isolated 24 hours later.  

 

2.6.8 Transfection by electroporation 

Antisense morpholino oligonucleotides (AMO) were transfected into cells 

by electroporation. To do this, 1 x T75 flask of cells were grown in DMEM media 

without FCS or antibiotics. Cells were trypsinised, resuspended in 10 ml of media 

and centrifuged for 5 minutes at 300 x g. The cell pellet was resuspended in 800 

µl media. 10 µM of control morpholino was added to half of the cell volume and 

10 µM of U7 snRNA AMO was added to the remaining cells, ensuring full 

resuspension. Afterwards cells were placed into a 4mm cuvette and 

electroporated at 280 V, with a capacitance of 950 µF and infinity resistance, 

using a BioRad Gene Pulser Xcell. Electroporated cells were resuspended in 6 

ml of media before allowing to grow in a 3 cm plate for 5 hours. After this time 

RNA was extracted from cells following the protocol in Section 2.7.4.  

 

 

2.7  Molecular Biology 

 

2.7.1 Protein extraction for Western blot 

A confluent 3 cm plate of cells was used for protein extraction. Cells were 

washed with PBS, then scraped off the plate in 1 ml of 1 x PBS and added to a 

1.5 ml Eppendorf. Cells were spun for 5 minutes at 500 x g to create a cell pellet. 

The cell pellet was resuspended in RIPA buffer using 10 x volume of the cell 

pellet; the samples were vortexed then placed on ice for 20 minutes. Finally, 

samples were spun for 10 minutes at 13,000 rpm. The supernatant containing 

protein was removed and stored at - 20 °C.  
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2.7.2 SDS-PAGE  

Protein samples were separated by molecular weight using Sodium 

Dodecyl Sulphate PolyAcrylamide Gel Electrophoresis (SDS-PAGE). Gels were 

made using a 5 % stacking gel and a resolving gel, with the resolving gel varying 

in percentage of acrylamide depending on the size of the POI. Most commonly a 

10 % resolving gel was made as shown in Table 2.5. After addition of TEMED 

and 10 % Ammonium Persulphate (APS), the resolving gel was poured into the 

assembled Mini-PROTEAN Tetra Cell Casting Module (Bio-Rad). 500 µl of dH2O 

was pipetted on top of the resolving gel to minimise bubbles and then left until 

set, approximately 15 minutes. The stacking gel was poured on top and a 1.5 mm 

comb inserted, then the gel left to set. After setting, the comb was removed and 

wells were washed with 1 x SDS running buffer.  

Cast gels were placed into a Mini-PROTEAN system (Bio-Rad) inside a 

Buffer tank (Bio-Rad). The Buffer tank was then half filled with 1 x SDS-PAGE 

Running Buffer. Protein samples were prepared by addition of 4 x SDS-PAGE 

sample buffer containing b-mercaptoethanol and heated at 95 °C for 3 minutes 

to denature proteins. An appropriate protein marker was loaded and up to 20 µl 

of each sample. The gel was then run at 25 mA until the dye front passed through 

the stacking gel, upon which the gel was run at 50 mA until passed through the 

resolving gel.  

 

2.7.3 Western Blot 

Following from SDS-PAGE, proteins were transferred from the gel to a 

nitrocellulose membrane (GE Healthcare) using the Trans-Blot Turbo Transfer 

System (Bio-Rad) and Transfer Buffer. For 1 hour the membrane was blocked in 

5% blocking solution, whilst shaking. After blocking, the membrane was 

incubated on a shaker with 2% blocking solution and primary antibody for 1 hour. 

The membrane was then washed 3 times for 5 minutes each in PBST. 

Membranes were incubated for 1 hour with 2 % blocking solution containing a 

1:10,000 concentration of secondary antibody. Afterwards the membrane was 

washed 3 times in PBST for 5 minutes each. To visualise proteins, an equal 

volume of ECL 1 and ECL 2 solution were added to the membrane and images 

captured on a Gel Doc XR + system (Bio-Rad).  
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Table 2.5 Solutions and amounts to make 10 ml of Resolving Gel or 6 ml Stacking 
Gel.  

 8% 10% 12% Stacking Gel 

5% 

dH2O 4.73 ml 4.07 ml 3.35 ml 3.44 ml 

4 x Resolving 

Gel 

2.5 ml 2.5 ml 2.5 ml *1.5 ml 

30 % 

acrylamide 

(Protogel) 

2.67 ml 3.33 ml 4 ml 1ml 

TEMED 100 µl 100 µl 100 µl 60 µl 

10 % APS 6 µl 10 µl 15 µl 6 µl 

* 4 x Stacking Gel was used instead of 4 x Resolving Gel 

 

2.7.4 Total RNA Extraction 

Total RNA was extracted from cells grown to 80 % confluency in a 6-well 

plate. All media was removed and cells were incubated with 1 ml of TRI Reagent 

(Sigma) for 5 minutes. Cells were transferred to a 1.5 ml Eppendorf, containing 

200 µl chloroform (Sigma). This was vortexed for 10 seconds then left at room 

temperature for 5 minutes. Afterwards, cells were centrifuged for 15 minutes at 

13,000 rpm. The upper aqueous layer was transferred to a new 1.5 ml Eppendorf 

containing a 1:1 (v/v) ratio of isopropanol (Sigma), then briefly vortexed before a 

10 minute spin at 13,000 rpm. Supernatant was completely removed and 650 µl 

of 70% ethanol added. This was centrifuged again for 10 minutes at 13,000 rpm. 

The supernatant was removed and pellet air-dried for 5 minutes to remove 

residual ethanol, before resuspension in 87 µl of dH2O. RNA samples were 

treated for 1 hour at 37 °C with 2 µl Turbo DNase (ThermoFisher), 10 µl Turbo 

DNase buffer and 1 µl RNase Inhibitor Murine (NEB) to remove contaminating 

DNA whilst preventing RNA degradation. Subsequently, DNase treatment was 

inactivated by RNA phenol-chloroform extraction and ethanol precipitation as 

described in Section 2.5.4, after which samples were stored at - 20 °C. A 3 µl 

aliquot of each RNA sample was run on a 1% agarose gel to ensure RNA 

obtained was not degraded. 
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2.7.5 Reverse Transcription (RT-PCR) 

RT-PCR was conducted on purified and genomic DNA depleted RNA, to 

produce cDNA for further use in Real-time Quantitative PCR (qPCR). 1 µg of RNA 

was used for each RT-PCR reaction, with a RT-PCR control for each sample and 

RNA concentrations being determined by a NanoDrop 2000 spectrophotometer 

(ThermoFisher). To 1 µg of RNA, 1 µl random hexamers (Bioline) were added 

and total volume made up to 10 µl. This was primed for 5 minutes at 70 °C, then 

immediately placed on ice, before addition of 10 µl reverse transcription master 

mix or reverse transcription control mix for RT-PCR controls (see Table 2.6). The 

reactions were incubated in a PCR machine for 5 minutes at 25 °C, 1 hour at 42 

°C, 20 minutes at 70 °C and held at 10 °C. Afterwards, the cDNA samples were 

diluted in 30 µl of dH2O and stored at - 20 °C. 

 

Table 2.6 Reagents and amounts required for RT-PCR 

Master mix components for 
reverse transcription 

Amount required for 1 x 10 µl 
reaction 

10 mM dNTP mix (ThermoFisher) 1 µl 

10 x DTT (NEB) 2 µl 

RNase free water 2.5 µl 

Protoscript II RT reaction buffer 

(NEB) 
4 µl 

*Protoscript II RT enzyme (NEB) 0.5 µl 

*Same component volumes used to make Reverse Transcription control mix, 

except Protoscipt II RT enzyme is omitted and instead 0.5 µl dH2O added. 

 

 

 

2.7.6 Real-Time Quantitative PCR (RT-qPCR) 

For RT-qPCR, all reactions were set-up in triplicate for both RT-PCR and 

RT-PCR control samples. In each reaction, 20 – 50 ng of cDNA was added to a 

master-mix containing the following to give a total reaction volume of 8 µl: 100 
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nM of reverse primer, 100 nM of forward primer, 4 µl of 2 x Brilliant III SYBR 

Green Master Mix (Agilent) and 2.8 µl dH2O. RT-qPCR was conducted in a Rotor-

Gene Q (Qiagen) using the incubation steps shown in Table 2.7, to detect 

amplicons of < 150 - 200 nt in length. Data acquisition occurred on the green 

channel, during the incubation for 10 seconds at 60 °C. A minus RT control was 

included in all RT-qPCR experiments to check for contaminating DNA.  

 

Table 2.7 RT-qPCR incubation steps 

Temperature Time Number of cycles 

95 °C 3 minutes 1 

95 °C 

60 °C 

10 seconds 

10 seconds 

40 - 50 cycles 

 

 For normalisation, spliced b-actin primers were used as a housekeeping 

control gene that had previously been shown in the laboratory to have stable 

expression in HCT116 cells. Rotor-Gene Q Series Software v2.3.1 was used for 

analysis to calculate fold enrichment relative to a control sample and melt curves 

were investigated to check primer specificity through the amplification of a single 

DNA product. Data was analysed to determine the delta delta CT relative 

quantitation values, with each sample normalised by comparison to the 

housekeeping gene, for the amount of template cDNA, then further normalised to 

a control sample i.e. non-treated cells. All RT-qPCR experiments were replicated 

in triplicate and figures containing RT-qPCR data show the mean of three 

independent RT-qPCR experiments.  

 

2.7.7 Cell colony formation assay 

To conduct a cell colony formation assay, 300 cells were seeded into 10 

cm plates with 8 ml of DMEM media supplemented with either 500 µM auxin or 

ethanol (solvent) for 10 days. Media was replenished every 3 - 4 days. After 10 

days, media was removed and cells placed on ice. Cell plates were washed twice 

in 4 °C PBS and cells were fixed by incubation of 10 ml methanol for 10 minutes. 

Plates were stained with 0.5 % crystal violet and 25 % methanol solution for 10 
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minutes. Excess crystal violet was removed by washing with dH2O, plates were 

air-dried and images taken. For analysis, Image J particle analyser function 

(Schindelin et al 2012) was used to count cell colonies. Colonies with a density 

range between 100-600 pixels and a circularity rating of 0.75 – 1 were counted. 

 

2.7.8 Chromatin immunoprecipitation protocol (ChIP) 

To bind antibody to Sheep Antimouse Dynabeads M280 (ThermoFisher), 

firstly 40 µl of beads per sample were rinsed in 500 µl RIPA ChIP buffer, 

resuspended in 1 ml of RIPA ChIP buffer then split equally into two tubes. The 

volume was made up to 1 ml using RIPA ChIP buffer with protease inhibitors and 

to one tube, 2 µg of RNA Polymerase II CTD antibody per sample was added. 

The Dynabeads were then rotated at 18 rpm in the cold room for 2 – 3 hours.  

Cells were seeded in 10 cm plates with DMEM media supplemented with 

10 % FCS. Cell plates were rinsed in 4°C 1 x PBS solution before addition of 10 

ml PBS directly to cells. Formaldehyde was added to a final concentration of 0.5 

% and plates were placed on a shaking platform (60 rpm) for a maximum of 10 

minutes. To quench the crosslinks, 1 M glycine was added to a final concentration 

of 125 mM, then cells left on the shaking platform for 5 minutes. Afterwards, cells 

were scraped into a 15 ml falcon tube and centrifuged at 500 x g for 5 minutes at 

4 °C. Pelleted cells were resuspended in 5 ml of PBS and centrifuged again at 

500 x g for 5 minutes at 4 °C. All supernatant was removed and cells resuspended 

in 300 µl of RIPA ChIP buffer per 30 µl cell pellet volume. The cell suspension 

was transferred to a sonication tube, before being placed in the Bioruptor Plus 

sonication device (Diagenode) for 10 minutes on high setting, 30 seconds on and 

30 seconds off. Sonicated cells were centrifuged for 10 minutes, at 13000 rpm 

and 4 °C. Supernatant was aliquoted so that two Eppendorfs contained 45 % of 

the sonicated cell volume each. The remaining 10 % cell volume was stored at - 

20 °C. For each Eppendorf, the volume was made up to 1 ml with RIPA ChIP 

buffer. 

Dynabeads incubated with or without antibody were placed in a magnetic 

rack and all supernatant removed. The beads were then resuspended in 10 µl of 

RIPA ChIP buffer per sample before 10 µl of bead suspension was added to each 
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tube, being careful to distinguish between plus and minus antibody samples. For 

immunoprecipitation, suspensions were rotated at 18 rpm in the cold room for 2 

hours. Using a magnetic rack all supernatant was removed from samples. The 

beads then underwent a series of washes performed in the cold room, as 

described in Table 2.8.  

 

Table 2.8 ChIP bead-wash protocol 

Solution Amount Repetition Rotation 

RIPA ChIP buffer 500 µl x 2 No 

ChIP wash buffer 500 µl x 1 No 

ChIP wash buffer 500 µl x 3 5 minutes of 18 

rpm rotation in 

between washes 

RIPA ChIP buffer 500 µl x 2 No 

 

 

1.5 ml of Elution buffer per sample was freshly prepared. Beads were 

resuspended in 250 µl of elution buffer and rotated on a wheel for 15 minutes at 

room temperature. Using a magnetic rack, the supernatant was transferred to a 

new Eppendorf. The elution process was then repeated, adding the second 250 

µl of eluate to the first. For an input sample control, 10 µl of the 10 % sample 

stored in the freezer previously was placed into a new Eppendorf. To all samples, 

25 µl of 4 M NaCl was added and incubated for 4.5 hours at 68 °C. DNA was 

purified by DNA phenol-chloroform extraction and ethanol precipitation before 

samples were stored at - 20 °C.  
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2.8  RNA-Seq 

 

2.8.1 Seeding cells 

Cells were seeded in 10 cm plates with DMEM media supplemented with 

10 % FCS. For CPSF73-AID doxycycline inducible HCT116 cells, 2 µg / ml of 

doxycycline was added the day of seeding and cells incubated for 16 hours. 

Following this, 500 µM auxin was added to the appropriate cells for 2 hours before 

RNA extraction. For Ints11-SMASh HCT116 cells, cells were seeded in 10 cm 

plates as above. Asunaprevir was added at a final concentration of 2 µM for 30 

hours before RNA extraction occurred.  

 

2.8.2 Nuclear RNA extraction for RNA-Seq 

Cells grown on 10 cm plates were at approximately 80 % confluency upon 

nuclear RNA extraction. Firstly all media was removed and cells washed in 4 °C 

1 x PBS solution. Cells were scraped off the plate in 10 ml of 1 x PBS and placed 

into a 15 ml falcon tube. This underwent centrifugation for 5 minutes at 500 x g. 

Cell pellets were resuspended in 4 ml of HLBN and incubated on ice for 5 

minutes. The solution was then carefully underlayed with 1 ml of HLBNS. This 

was centrifuged for 5 minutes at 500 x g to obtain a nuclear pellet. The nuclear 

pellet was resuspended in 5 ml HLBN to remove any traces of cytoplasmic 

material and centrifuged for 5 minutes at 500 x g, after which the supernatant was 

discarded. To extract nuclear RNA from the isolated nuclei, Tri Reagent (Sigma) 

was used as previously described in section 2.7.4 and samples stored at - 80 °C. 

 

2.8.3 Ribosomal RNA (rRNA) removal 

RNA quality was determined by using the TapeStation apparatus (Agilent). rRNA 

was extracted from 1 µg of genomic DNA depleted, nuclear RNA using the Ribo-

Zero Gold rRNA removal kit following manufacturers protocol.  

 

 



81 
 

2.8.4 Purify RNA beads using Agencourt RNAClean XP Kit 

Before sample library preparation, RNA samples depleted of rRNA were 

purified to remove remaining salts and buffers and to concentrate samples. To 

each sample, 160 µl of RNAClean XP beads (Beckman Coulter) were added and 

mixed by pipetting. After a room temperature incubation of 15 minutes, samples 

were placed on a magnetic stand until the beads were captured and liquid was 

clear. The supernatant was removed and beads washed with 200 µl of 80 % 

ethanol. This wash step was repeated, all ethanol removed and the pellet air-

dried for 3 minutes. Dried beads were resuspended in 11.5 µl of Resuspension 

Buffer, incubated at room temperature for 2 minutes then placed on the magnetic 

rack for 5 minutes. All supernatant was removed, placed into a 0.5 ml Eppendorf 

and stored at - 80 °C. Before proceeding, the quality and quantity of depleted 

RNA samples were checked using 2 µl from each sample on a Tapestation High 

Sensitivity RNA ScreenTape (Agilent).  

 

2.8.5 TruSeq Stranded mRNA 

Purified RNA was used to create a library of template molecules using the 

TruSeq Stranded Total RNA Sample Preparation Kits (Illumina). 8.5 µl of Elute, 

Prime, Fragment High Mix was added to each sample and mixed by pipetting. 

This was incubated for 8 minutes at 94 °C, then held at 4 °C. Following 

manufacturer’s instructions, Actinomycin was added to the First Strand Synthesis 

Act D mix to prevent spurious DNA synthesis. A master mix of Superscript II and 

First Strand Synthetic Act D was made with a volume ratio of 1:9 respectively, for 

each sample. Of this master mix, 8 µl was added to each sample then incubated 

for the following to synthesise the first cDNA strand: 10 minutes at 25 °C, 15 

minutes at 42 °C, 15 minutes at 70 °C and held at 4 °C.  

To synthesise the second strand cDNA, firstly 20 µl of Second Strand 

Marking Master Mix was added to each sample and mixed by pipetting. This was 

incubated for 1 hour at 16 °C. For separation of the double-stranded cDNA from 

the second strand reaction mix, 90 µl of AMPure XP beads (Beckman Coulter) 

were added and incubated at room temperature for 15 minutes. Beads were 

captured on a magnetic rack and supernatant discarded. Samples were washed 
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with 200 µl of 80 % ethanol twice then beads air-dried for 3 minutes. Dried beads 

were resuspended in 17.5 µl Resuspension Buffer, then placed on the magnetic 

rack and 15 µl of supernatant, now containing blunt-ended cDNA, transferred to 

a new 1.5 ml Eppendorf.  

To prevent ligation of blunt fragments, a single ‘A’ nucleotide was added 

to 3’ ends. 12.5 µl of A-Tailing Mix was added to samples and incubated at 37 °C 

for 30 minutes, 70 °C for 5 minutes and held at 4 °C. Index adaptors were then 

ligated to the ends of double stranded cDNA. Firstly 2.5 µl of Ligation Mix and 2.5 

µl RNA Adaptor Index was added to each sample and mixed by pipetting. An 

incubation of 10 minutes at 30 °C occurred before 5 µl of Stop Ligation Buffer 

was used to stop the ligation reaction. 42 µl of AMPure XP beads (Beckman 

Coulter) were added, incubated at room temperature for 15 minutes then beads 

captured on a magnetic rack. The supernatant was removed and beads washed 

with 200 µl of 80 % ethanol twice. Beads were air-dried for 3 minutes and 

resuspended in 52.5 µl of Resuspension Buffer, then placed on a magnetic rack 

and 50 µl of supernatant was transferred to a new 1.5 ml Eppendorf. Another 50 

µl of AMPure XP beads (Beckman Coulter) were added to the supernatant and 

incubated at room temperature for 15 minutes. The magnetic rack was used to 

remove the supernatant and beads washed twice with 80 % ethanol. After air-

drying the beads, they were resuspended in 22.5 µl Resuspension Buffer, then 

captured on a magnetic rack and 20 µl of supernatant transferred to a new 

Eppendorf.  

To enrich for DNA fragments with adaptor molecules on either end and 

amplify DNA amounts, 5 µl of PCR Primer Cocktail and 25 µl of PCR Master Mix 

were added to each sample. This was incubated as shown in Table 2.9. 

Afterwards, 40 µl of AMPure XP beads (Beckman Coulter) were added and 

incubated at room temperature for 15 minutes. Beads were captured on a 

magnetic rack, supernatant discarded and beads washed twice with 200 µl of 80 

% ethanol. Air-dried beads were resuspended in 32.5 µl Resuspension Buffer 

then placed on a magnetic rack. 30 µl of supernatant was transferred to a new 

tube and stored at - 80 °C to be further used in a sequencing reaction.  
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Table 2.9 DNA fragment enrichment PCR for RNA-Seq 

Step Temperature Time Number of cycles 

Initial 

denaturation 
98 °C 30 seconds 1 

Denaturation 

Annealing 

Extension 

98 °C  

60 °C  

72 °C 

10 seconds 

30 seconds 

30 seconds  

 

15 

Final extension 72 °C 5 minutes 1 

Hold 4 °C -  -  

 

 

2.8.6 Sequencing  

Before sequencing, DNA fragment size and concentration were 

determined by running each sample on a Tapestation D1000. Samples were 

given to the Exeter Sequencing Service facility to conduct a HiSeq 2500 (Illumina) 

rapid run single-end with a read length of 50 bp. 

 

Table 2.10 Total mapped reads for all RNA-Seq data using merged replicate 
libraries* 

RNA-Seq cell lines Total mapped reads  Total exon mapped 

reads 

DIS3-AID  76561054 32900452 

DIS3-AID with auxin 56625921 22512088 

INTS11:SMASh 28406998 6241067 

INTS11:SMASh with 

asunaprevir 

27875162 6563014 

CPSF73-AID 81473198 22067230 

CPSF73-AID + auxin 81136711 17050608 

*There is only one replicate for both INTS11:SMASh and INTS11:SMASh with 

asunaprevir 
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2.9 Bioinformatic analysis 

Bioinformatic software used in the analysis of sequencing data obtained 

through RNA-Seq is shown in Table 2.11. Software derived from a Bioconductor 

package in the R environment is denoted by a *. Bioinformatical analysis on RNA-

Seq data derived from the DIS3-AID cell line only, was conducted by Lee 

Davidson.  

 

2.9.1  Read alignment of RNA-Seq data 

The sequencing quality of unprocessed single-end 50 bp reads obtained 

from RNA-Seq data was determined by FastQC (Andrews, 2010). TrimGalore! 

was used to remove adaptors from reads and to discard reads shorter than 20 bp 

(Krueger, 2012). Reads were aligned to the human genome using Hisat2 with a 

known splice sites file and all analysis conducted used the Ensembl GRCh38.p10 

and GRCh38.90 human gene annotations. All non-mapped reads and reads with 

a mapping quality less than 20 were removed using SAMtools (Li, 2011).  

 

2.9.2 Differential Expression Analysis 

featureCounts was used to count all reads over a gene or transcript and 

determine expression levels, only counting reads with a minimum mapping 

quality score of 30 (Liao et al, 2014). The Integrated Genome Viewer (IGV) suite 

was used to visualise normalised coverage plots (Reads per Kilobase of 

transcript per Million mapped reads, RPKM) throughout the genome (Robinson 

et al, 2011). 
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Table 2.11 Bioinformatic software 

Software name Version Description Reference 

BamTools v2.4 Processes BAM files Barnett et al, 

2011 

BEDTools v2.2.5 Allows comparison of large 

sets of genomic features; 

tools for genomic analysis 

Quinlan and Hall, 

2010 

BEDOPS v2.4.33 Toolkit for processing 

genomic data 

Neph et al, 2012 

CutAdapt v1.14 Removes adaptor 

sequences from sequencing 

reads 

Martin, 2011 

Deeptools v3.0.2 Python tools for analysis of 

high-throughput sequencing 

Ramírez et al, 

2016 

FastQC v0.11.5 Quality control of raw 

sequence data 

Andrews, 2010 

FeatureCounts v1.6.0 Counts reads to genomic 

features 

Liao et al, 2014 

GenomicRanges* v1.30.2 Storage and manipulation of 

genomic intervals and 

variables 

Lawrence et al, 

2013 

HISAT2 v2.1.0 Alignment programme for 

mapping sequencing reads 

Kim et al, 2015 

IGV v2.4.3 Visualisation tool for 

genomic datasets 

Robinson et al, 

2011 

R v3.4.4 Software environment for 

statistics and graphics 

http://www.R-

project.org 

Rtracklayer* v1.38.3 Interface for manipulating 

annotation tracks 

Lawrence et al, 

2009 

SAMtools v1.6 Manipulates alignments in 

the SAM format 

Li, 2011 

TrimGalore! v0.4.4 Applies quality and adapter 

trimming to FastQ files (via 

CutAdapt) 

Krueger, 2012 
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2.9.3 Metagene 

Using the gene count file created via featureCounts, which counted the 

number of reads aligned to a gene or transcript, any gene or transcript with less 

than 200 reads were removed. To each gene, an increased transcriptional 

window of 1 Kb upstream of the TSS was added. Additionally either 7 Kb, 50 Kb 

or 100 Kb was added downstream of the TES depending on the metaplot graph. 

Any genes that overlapped after this extension were removed to prevent 

repetitive counting of mapped reads using BEDTools merge (Quinlan and Hall, 

2010). RPKM normalised reads from the remaining genes were used to generate 

metaplot profiles. This was conducted using the deeptools suite (Ramírez et al, 

2016) and the R environment for graphical design (http://www.R-project.org).  
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2.10 Primers and oligonucleotides 

 

Table 2.12 Primers and oligonucleotides for creation of the DIS3:AID cell line 

Primer 
name 

Sequence Description 

DIS3 

gRNA F 

CACCGTCCATGTTTGAAGTATCAGT Used to make the 

gRNA for creation of 

the DIS3:AID cell line.  DIS3 

gRNA R 

AAACACTGATACTTCAAACATGGAC 

DIS3 

screening 

primer 1 F 

TCTTTAGGCCACGGGATTCT First set of screening 

primers to determine 

insertion of the AID tag 

to the DIS3 gene. 

Designed outside of the 

homology arms and 

used in a nested PCR 

screen.  

DIS3 

screening 

primer 1 R 

TGCCTTTCTACCAATTCCCAA 

DIS3 

screening 

primer 2 F 

TCCATTCTCCTGCCTAGTCT Second set of 

screening primers to 

determine insertion of 

the AID tag to the DIS3 

gene. Designed outside 

of the homology arms 

and used in a nested 

PCR screen. 

DIS3 

screening 

primer 2 R 

CCTCAACACTGACAGCTTCC 
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Table 2.13 Homology arm sequences for DIS3:AID 

DIS3 

HDR 5’ 

CTTGAAATCAACTCTGATTCTGTCAATCACAGTGGCTCCCC 

ATTGGGAAGGCTGTTTTGTAGTTAAAAAGAACACTTCCTAA 

ATGACATGCTTCTCACCTGTTGAGACCATGTCTAGCTTTTA 

CATTTTTGAACCACTGCTACTTTGTAAAATACCTTCTGTGTA 

TAAAACCTTTAATTAGCCCCCTTTCCCCTCCCTACCACTACA 

TCCTTTTAAATTTGAAGCTGGCAGTGGGGAAGGGGAGGATG 

AGGTTGAGATGTATTCTATCCTTTAAATCACCTTATTTCCCCC 

CATTTGCATTACTTTAGATACCAGGAATAAGCATTCCTACAGA 

CACATCTAACATGGACCTTAATGGACCAAAGAAAAAGAAGAT 

GAAGCTTGGAAAA 

 

 

DIS3 

HDR 3’ 

TAGCTATATTCAACAAAAATCTTCAAAGACTGGTTTCTTTTTT 

AAAAGAAAAAACTTGAAAGAACACTTCTAAGCCTAAGTGTGT 

GATACAGTTTGTTACTTTTAAGTACATTTTAATAATTTCAGAC 

ATCTGCATTTTTATTGAACAGTTGACTGTATCTGACCCATCAT 

ACTACTATACTTCTGGGTTGAACAGAATTATTTATGCAGAATA 

ATTCAATTGAATATCCATCACTTAAATACAGTGACAGGACAGC 

AACTTCAGGG ATCTGTAAAGATCATTTAAATGGAGT 
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Table 2.14 Primers for PROMPT detection by qRT-PCR 

Primer 
name 

Sequence Description 

STK II F  GGGAGTCTAAGGAAAAGGAG Primers designed to detect a 

PROMPT upstream of the 

STKII gene TSS.  
STK II R CAGTGAAAGGAGAGCGTATC 

SERPINB8 
F 

CTACTGATCACACCCTCCTC Primers designed to detect a 

PROMPT upstream of the 

SERPINB8 gene TSS. 
SERPINB8 
R 

CATTCTGGATGCATGTGTAG 

FOX P4 F TGCACAATTTCACACCTAGA Primers designed to detect a 

PROMPT upstream of the 

FOX P4 gene TSS. 
FOX P4 R ATGTTAGTGACACCTGCACA 

RBM39 F GGAAATAGTGGAGAAAAGCA Primers designed to detect a 

PROMPT upstream of the 

RBM39 gene TSS. 
RBM39 R CATTTTTGAAGGAACGGTAG 

 

 

Table 2.15 Primers for detection of abortive transcripts by qRT-PCR 

Primer 
name 

Sequence Description 

NFU1 in1-
in1 F 

 

GGCTCAGAGACCCAGTTCTT 

 

Primers to detect 

prematurely terminated 

NFU1 transcripts, by 

measuring RNA levels over 

the first intron.  

NFU1 in1-
in1 R 

 

CCTTGGACATGTCACCTCCT 

 

NFU1 
ex2-in2 F 

 

ACACCATTAAGAAACAGCCTCT 

 

Primers measuring NFU1 

RNA levels over the exon-

intron junction as a control.  
NFU1 
ex2-in2 R 

 

TGATCCACAAAATCCTAGCACAG 

 

CLIP4 
in1-in1 F 

 

GTCAGGCTGTTCACGTCATC 

 

Primers to detect 

prematurely terminated 
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CLIP4 
in1-in1 R 

 

TTTCAAAGGCGCCCGTTTTA 

 

CLIP4 transcripts, by 

measuring RNA levels over 

the first intron.  

CLIP4 
ex2-in2 F 

 

TCCTTTGTTTGGAAGATACCCA 

 

Primers measuring CLIP4 

RNA levels over the exon-

intron junction as a control.  
CLIP ex2-
in2 R 

 

GGCGTAACAGAGAAGTCAAGT 

 

PCBP1-
AS1 ex1-
in1 F 

CCACCTCCGCGAGTTTTATG Primers to detect 

prematurely terminated 

PCBP1-AS1 transcripts, by 

measuring RNA levels over 

the first intron. 

PCBP1-
AS1 ex1-
in1 R 

ATGCTTTGGTACTGTGGGGA 

PCBP1-
AS1 ex3-
in3 F 

AATGTGACTTTGGAGCCAGC 

 

Primers measuring 

PCBP1-AS1 RNA levels 

over the exon-intron 

junction as a control. 
PCBP1-
AS1 ex3-
in3 R 

ACCGAGATGAAACTGAGGGA 

 

C2orf42 
in1-in1 F 

 

TTCCAACACCAGTCCCTTGA 

 

Primers to detect 

prematurely terminated 

C2orf42 transcripts, by 

measuring RNA levels over 

the first intron. 

C2orf42 
in1-in1 R 

 

CGACATGGGATTTGGGAAACA 

 

C2orf42 
ex2-in2 F 

 

ATTGGCTGGTGGAGAAAGGAG 

 

Primers measuring C2orf42 

RNA levels over the exon-

intron junction as a control. 
C2orf42 
ex2-in2 R 

 

TCCCTTCCATCATTCCCCAC 

 

 

 

 

 



91 
 

Table 2.16 Primers for detection of snRNAs and RNA levels downstream of their 
TES 

Primer name Sequence Description 
RNU5B-1  
300 bp F 

CCGGTAATCCCACTGCATTG Detects RNA levels 300 

bp downstream of the 

RNU5B-1 TES 
RNU5B-1  
300 bp R 

CATTGTCCATGTGTGCCGAT 

RNU5B-1   
1.5 Kb F 

AGAATCGCTTGAACCTGGGA Detects RNA levels 1.5 

Kb  downstream of the 

RNU5B-1 TES 
RNU5B-1  
1.5 Kb R 

CCAGCCTGTGTGATAAAGCC  

RNU5D-1 
200 bp F 

TGTTTGTTGCGAGGTGTGAG Detects RNA levels 200 

bp downstream of the 

RNU5D-1 TES 
RNU5D-1 
200 bp R 

GGAAAATCCCTTGAAGCCGG 

RNU5D-1   
3.5 Kb F 

TAGCTGAATGTGGTCGTGGT Detects RNA levels 3.5 

Kb downstream of the 

RNU5D-1 TES 
RNU5D-1   
3.5 Kb R 

TCCTGACCTCATGATCTGCC 

RNU1-28P 
300 bp F 

GTGCTTTCTCCAGGCCAAAG 
 

Detects RNA levels 300 

bp downstream of the 

RNU1-28P TES RNU1-28P 
300 bp R 

GGACCAGGATTAATTGCCCG 
 

RNU1-28P 
500 bp F 

TCCGGCTTAGAGGTTTAGGA Detects RNA levels 500 

bp downstream of the 

RNU1-28P TES 
RNU1-28P 
500 bp R 

AGTCTCCTGTTCTTGAGGGC 

RNU1-28P    
1 Kb F 

GAATTGCTTGAACCCGGGAG Detects RNA levels 1 Kb 

downstream of the RNU1-

28P TES 
RNU1-28P    
1 Kb R 

AATGCACATTCGGACTCAGC  

RNU1-28P    
2 Kb F 

TCCCTTCACCTGCTTCAAGT Detects RNA levels 2 Kb 

downstream of the RNU1-

28P TES 
RNU1-28P    
2 Kb R 

AATCTACACCGGGCTGCATA 

RNU1-28P 
2.5 Kb F 

TTTCACCGTGTCATCCAGGA 
 

Detects RNA levels 2.5 

Kb downstream of the 

RNU1-28P TES RNU1-28P 
2.5 Kb R 

GGGTGACAGCGAGACTTAGT 
 

RNU1-28P    
3 Kb F 

GCGGTGCAGGGTTATCTTTT Detects RNA levels 3 Kb 

downstream of the RNU1-

28P TES 
RNU1-28P    
3 Kb R 

CCCCTGTTGTTCCAGCTACT 
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RNU1-1     
500 bp F 

TCTCTGGGAAGAAAGCAGGG Detects RNA levels 500 

bp downstream of the 

RNU1-1 TES 
RNU1-1     
500 bp R 

ACGGCAGGAGATAGTAGGGA 

RNU1-1          
1 Kb F 

GGTTTTGTCCCTGCACTACA Detects RNA levels 1 Kb 

downstream of the RNU1-

1 TES 
RNU1-1          
1 Kb R 

AGGCTGGTCTTGAACTCCTG 

RNU1-1           
2 Kb F 

TCTCTGTTGGGTCGTGTTGA Detects RNA levels 2 Kb 

downstream of the RNU1-

1 TES 
RNU1-1          
2 Kb R 

GCCACTCTTGCAGATATTGACA 

RNU1-1           
3 Kb F 

CACCACGCCCAGCTAATTTT Detects RNA levels 3 Kb 

downstream of the RNU1-

1 TES 
RNU1-1          
3 Kb R 

TCAAGCATAAGGAGCCTGGG 

RNU4-2      
500 bp F 

ACACTATGTTGGGAACTGGGT Detects RNA levels 500 

bp downstream of the 

RNU4-2 TES 
RNU4-2      
500 bp R 

GGAAACAGCGAAAACTCCGT 

RNU4-2           
1 Kb F 

CACTACACCAGCCTCTTCCA Detects RNA levels 1 Kb 

downstream of the RNU4-

2 TES 
RNU4-2          
1 Kb R 

TTTTCCCAGCACCGTCTTTG 

RNU4-2           
2 Kb F 

ACTGCAATCTCCACTTCCCA Detects RNA levels 2 Kb 

downstream of the RNU4-

2 TES 
RNU4-2          
2 Kb R 

TGAGCCCAGGAGTTTGAGAC 

RNU4-2          
3 Kb F 

TATTGGTCAGGCTGGTCTCG Detects RNA levels 3 Kb 

downstream of the RNU4-

2 TES 
RNU4-2      
3Kb R 

AACCTTCTCCAGCTGTCCTC 

RNU5A-1 
precursor F 

CTGGTTTCTCTTCAGATCGCA Detects levels of RNU5A-

1 precusor RNA RNU5A-1 
precursor R 

CAGAATCTGCTAGTCACTGCT 

RNU4-1 
precursor F 

CCAATACCCCGCCGTGAC Detects levels of RNU4-1 

precursor RNA RNU4-1 
precursor R 

TGCGAACAAGTACTCTTCAACC 

RNU1-1 
precursor F 

TCCATTGCACTCCGGATGT Detects levels of RNU1-1 

precursor RNA RNU1-1 
precursor R 

ACCAACCAAGACACAAACCA 

INTS1 spliced 
F 

CCTCATGTACCTGGCCAAGA 
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INTS1 spliced 
R 

CATGAGGAGGTTACAGGCCA Detects levels of spliced 

INTS1 mRNA.  

 

Table 2.17 Primers to detect RDHs and RNA levels downstream of their TES 

Primer name Sequence Description 
HIST1H4H 
gene body F 

GTTTGGGTAAGGGAGGAGCT Primers to detect levels of 

HIST1H4H HIST1H4H 
gene body R 

TCAGAACACCACGAGTCTCC 

HIST1H4H 
uncleaved F 

GACGCACTCTTTACGGCTTC Primers to detect 

uncleaved transcripts of 

HIST1H4H 
HIST1H4H 
uncleaved R 

GCCCAAATCCTAAACATGCG 

HIST1H4H 
150 bp F 

TTACTCGTGCTTAATCTCGCA Primers to detect RNA 

levels 150 bp downstream 

of the HIST1H4H TES 
HIST1H4H 
150 bp R 

TGTCACAATCCAGCTTACTCAC 

HIST1H4H 
600 bp F 

CTACAAAAGGCAGTGTGGGG Primers to detect RNA 

levels 600 bp downstream 

of the HIST1H4H TES 
HIST1H4H 
600 bp R 

CAGCCTGGATGAAAGAGCAA 

HIST1H4H    
1 Kb F 

TCCCAAGTGACTACAGGCTC Primers to detect RNA 

levels 1 Kb downstream of 

the HIST1H4H TES 
HIST1H4H    
1 Kb R 

CACGCCTGTAATCCCAACAC 

HIST1H4H    
2 Kb F 

TAGGGTCTTGCTCTGTTGCC Primers to detect RNA 

levels 2 Kb downstream of 

the HIST1H4H TES 
HIST1H4H    
2 Kb R 

GGACCAGCCTAACCCCATAA 

HIST1H3B 
gene body F 

GGCTCGTACTAAACAGACAGC Primers to detect levels of 

HIST1H3B HIST1H3B 
gene body R 

AGCAACTCGGTCGACTTTTG 

HIST1H3B 
uncleaved F 

AGGGCTCTTTGAGGACACAA Primers to detect 

uncleaved transcripts of 

HIST1H3B 
HIST1H3B 
uncleaved R 

AGTGGGTGGCTCTGAAAAGA 

HIST1H3B 
150 bp F 

TCTTTTCAGAGCCACCCACT Primers to detect RNA 

levels 150 bp downstream 

of the HIST1H3B TES 
HIST1H3B 
150 bp R 

GCAAGACTGACCAAACCGTT 

HIST1H3B 
300 bp F 

AACGGTTTGGTCAGTCTTGC 
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HIST1H3B 
300 bp R 

TGCCTAGTAAGCGCCAGTTA Primers to detect RNA 

levels 300 bp downstream 

of the HIST1H3B TES 

HIST1H3B    
2 KB F 

ATGCTCTGCTTGTACCAGGT Primers to detect RNA 

levels 2 Kb downstream of 

the HIST1H4H TES 
HIST1H3B    
2 Kb R 

GAGAGGCAATTGTGGGAAAGT 

HIST1H3B 
3Kb F 

AGTCTCTTCTCATGCCTCGT Primers to detect RNA 

levels 3 Kb downstream of 

the HIST1H4H TES 
HIST1H3B 
3Kb R 

GGATGGGAGTGGAGTTTTGC 
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3. Results Chapter 1 : The role of DIS3 in the nucleus of human 
cells 

DIS3, also known as RRP44, is a major component of the nuclear 

exosome complex which has a vital role in the processing and degradation of a 

broad range of RNA transcripts (Allmang et al, 1999; Mitchell et al, 2014). As 

previously mentioned, DIS3 has two catalytically active domains, a RNB and a 

PIN domain, which constitute the 3’ – 5’ exonuclease and endonuclease activities 

of DIS3 respectively. DIS3 is able to act independently or as part of the exosome, 

where it associates with the exosome EXO-9 core structure at the exit pore 

(Lebreton et al, 2008; Schneider et al, 2009; Schaeffer et al, 2009; Bonneau et 

al, 2009; Lorentzen et al, 2008; Gerlach et al, 2018). At the opposing entry pore 

end of EXO-9 is where the other 3’ – 5’ exonuclease of the exosome resides, 

EXOSC10. Degradation of substrates by DIS3 is facilitated by: EXOSC10 

mediated threading of transcripts into the central channel allowing them to reach 

the active site of DIS3; MTR4 helicase unwinding of RNA; and potentially DIS3 

endonuclease function resolving complex secondary structures by cleavage, 

providing alternative 3’ ends for DIS3 and EXOSC10 (Wasmuth et al, 2014; 

Zinder et al, 2016; Falk et al, 2017; Lebreton et al, 2008).  

Whether DIS3 and EXOSC10 have their own specific substrates or work 

together is currently unclear, although it has been proposed that DIS3 provides 

the main catalytic activity of the exosome (Januszyk et al, 2011; Dziembowski et 

al, 2007). Through studies using either catalytically dead DIS3 or depleted DIS3 

levels, some clear DIS3 substrates have been elucidated. Upon DIS3 depletion, 

there is an accumulation of short transcripts derived from promoter upstream 

regions, due to bidirectional transcription. These are known as PROMPTs and 

are only detectable upon exosome dysfunction (Preker et al, 2008; Preker et al, 

2011). In addition, eRNAs, snoRNAs and prematurely terminated protein-coding 

transcripts have been suggested as DIS3 substrates (Szczepinska et al, 2015).  

Functions of the exosome have largely either been revealed in human cells 

with protein depletion by RNAi or through studies in yeast, due to the ease of 

generating gene knockout mutants. However, findings in yeast are not always 

translational to humans and RNAi methods are slow with indirect effects (Tomecki 

et al, 2010; Jackson et al, 2003; Boutros and Ahringer, 2008). Therefore, a 
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method producing rapid protein depletion would be beneficial to investigate the 

immediate effects of DIS3 loss. To this end and to further understand DIS3 

function in human cells, I aimed to generate conditional DIS3 depletion cells using 

CRISPR/Cas9 and AID technologies. This allowed rapid depletion of DIS3 and 

through the use of RNA-Seq I was able to investigate direct substrates of DIS3.  

 

3.1 Production of the DIS3-AID cell line 

For rapid and reversible knockdown of DIS3 protein we used 

CRISPR/Cas9 to produce a DIS3-AID cell line in HCT116 cells. These cells are 

derived from human colon carcinoma and have a diploid karyotype, unlike other 

standard mammalian cell culture models (Haigis et al, 2002; Horii et al, 2015). 

This allows for easier selection of homozygous tagged cell populations using only 

two drug resistance markers, making them highly suitable for genome 

manipulation. In addition, HCT116 cells have a high efficiency and ease of 

plasmid transfection. Both alleles of DIS3 were genetically modified by the 

addition of an AID tag at the 3’ end. This approach allowed us to overcome some 

of the limitations of RNAi based protein depletion.  

 

3.1.1 Plant specific TIR1 expression in HCT116 cells  

For the auxin-degron system to function in human cells, our cell line 

required the expression of the plant specific TIR1 F-box protein. This would allow 

TIR1 to recognise an AID tagged protein and promote its ubiquitination through 

the SCFTIR1 complex and recruited E2 ubiquitin ligase, leading to degradation 

(Gray et al, 1999; Nishimura et al, 2009; Holland et al, 2012). For stable TIR1 

integration into transcriptionally active loci of HCT116 cells, the sleeping beauty 

transposon system was exploited.  

The sleeping beauty (SB) system utilises a “cut-and-paste” DNA 

transposon and a transposase. Transposition of a DNA transposon is the direct 

movement of DNA through transposase-mediated excision from a donor locus 

and reinsertion into the cell genome. DNA sequences are flanked by terminal 

inverted repeats (IR) which contain transposase binding sites (Ivics and Izsvak, 

2015). Although there are several transposon delivery systems, the sleeping 
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beauty transposon was selected due to its’ ability to integrate a transposon of up 

to 10 Kb in length and is less likely to integrate into genes than HIV- or AVV-

based vectors (Izsvak et al, 2000; Izsvak and Ivics, 2004). In addition, the SB 

transposon system has been shown to produce transposon expression for a 

prolonged period of time and at an adequate level (Yant et al, 2000; Belur et al, 

2003; Kowarz et al, 2015).  

TIR1 under the control of an ON CMV promoter was expressed inside a 

SB transposon vector with flanking IR sites. For selection of transfected cells, the 

vector contained a blasticidin resistance gene. A single colony grown under drug 

selection was cultivated to produce HCT116 cells expressing TIR1, which from 

now on are referred to as HCT116:TIR1 cells. 

 

3.1.2 AID tagging of DIS3 using CRISPR/Cas9 and HDR 

To produce DIS3 protein tagged with AID, both DIS3 alleles were targeted 

for CRISPR/Cas9. Firstly, two repair templates were generated containing the 

AID tag, a self-cleaving peptide (P2A), a drug resistance selection marker of 

either hygromycin or neomycin to ensure tagging of both alleles simultaneously, 

a SV40 PAS and flanking sequences homologous to the 3’ ends of the 

endogenous DIS3 gene (Figure 3.1). Secondly a gRNA plasmid was constructed 

with sequence homology to DIS3 and containing Cas9. Both selectable marker 

constructs were integrated into the cell with the gRNA directing Cas9 specifically 

to the DIS3 gene. Cas9 cleaved the DIS3 gene resulting in a double-stranded 

break, which was then repaired using HDR and the repair templates. This 

resulted in integration of the AID tag with a P2A site, drug selection marker and 

SV40 PAS at the 3’ end of DIS3. Homozygous tagged DIS3 cell selection was 

aided by the diploid karyotype of HCT116 and obtained through drug selection. 

Transcription of the newly tagged DIS3 generates a single mRNA transcript using 

the endogenous promoter and SV40 PAS. The resulting AID-tagged protein is 

released after self-cleavage at the P2A site which removes the drug selection 

marker. The resulting cell line is referred to as DIS3-AID. 
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Figure 3.1 Generation of DIS3-AID using HDR and CRISPR/Cas9 

A gRNA with homology to DIS3 directs Cas9 to create a double-stranded break 

in the 3’ end of the DIS3 gene. The break is repaired by HDR using repair 

templates containing the AID tag, a P2A site, drug selection marker and SV40 

PAS. Both alleles are altered and mRNA is produced using the endogenous 

promoter and a SV40 PAS downstream of the selection marker. Following 

translation into a protein, the P2A peptide self cleaves to produce two distinct 

proteins: the AID-tagged DIS3 and drug resistant protein.  



99 
 

3.1.3 Genomic PCR validation of DIS3-AID 

After antibiotic selection of DIS3-AID cells, single colonies were isolated 

and allowed to grow. Homozygous integration was validated by a genomic DNA 

PCR screen. A nested-PCR approach was used with primers designed to flank 

the homology arms. All three clones investigated showed inclusion of DIS3 

homozygous modification compared to a control HCT116:TIR1 cell line. This can 

be seen by the single large band at the expected size for tag incorporation in 

DIS3 clones, compared to the single smaller PCR product only present in the 

control cell line (Figure 3.2). Overall this confirmed modification of both DIS3 

alleles and from this we decided to continue all further experiments with clone #1.  

 

3.2 Conditional depletion of DIS3 by auxin addition 

Following validation of the AID-tag being incorporated into both alleles of 

DIS3, DIS3-AID cells underwent western blot screening to determine if auxin 

treatment had an effect on DIS3 protein levels. An antibody binding to the C 

terminus of DIS3 was used in a western blot with HCT116:TIR1 or DIS3-AID cells 

treated or not with auxin (Figure 3.3A). Endogenous DIS3 was easily detected in 

HCT116:TIR1 cells and levels were unchanged by auxin addition. However, no 

DIS3 was detected in the DIS3-AID cell line. As the AID tag is present on the C 

terminus of DIS3, this absence of detection may have been due to the AID tag 

effecting the efficacy of antibody binding and leading to a false negative detection. 

To overcome this issue a different antibody to DIS3 was used that 

recognises an internal amino acid sequence, thus allowing detection of both 

endogenous DIS3 and AID-tagged DIS3 (Figure 3.3B). An unmodified parent cell 

line, HCT116:TIR1, was used as a control and the endogenous DIS3 protein was 

detected at approximately 117 kDa. In the DIS3-AID cell line a larger DIS3 

specific band was observed at approximately 150 kDa, suggesting incorporation 

of the AID-tag.  
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Figure 3.2 Genomic PCR validation of DIS3-AID 

Nested PCR of genomic DNA obtained from 3 DIS3-AID clones after undergoing 

antibiotic selection (#1 - #3) and a control HCT116 cell line (C). Products were 

produced using primers designed outside the homology arm sequences as 

shown by the arrows. A single small endogenous DIS3 band can be seen 

exclusively in the control cell line, whereas a larger band with predicted size of 

DIS3 with tag incorporation is seen in all 3 DIS3-AID colonies. The endogenous 

band is not present in the DIS3-AID colonies suggesting both alleles were 

genetically modified. Clone #1 was taken forward for all future experiments.  

- tag

+ tag

#1 #2 #3 #4 C
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This band was slightly bigger than the predicted size for AID-tag incorporation, 

however I believe it represents DIS3-AID protein as often modified proteins 

migrate during SDS-PAGE at rates inconsistent with their molecular mass, known 

as gel-shifting (Rath et al, 2009; Shi et al, 2012; Guan et al, 2015).  

The lack of an endogenous DIS3 band in the DIS3-AID cells further 

supports the previous genomic PCR screen, suggesting a homozygous tagging 

of DIS3. Upon addition of auxin to cell media for 1 hour, the higher DIS3-AID band 

observed in the DIS3-AID cells is no longer detectable. However, auxin treatment 

of HCT116:TIR1 cells had no effect. Therefore, auxin is able to specifically 

deplete AID-tagged DIS3 whilst having little / no effect on endogenous DIS3 

protein levels. For protein depletion by auxin to occur, both TIR1 expression and 

inclusion of the AID-tag at the 3’ end of the protein of interest is required. In 

addition, auxin treatment was conducted for 1 hour and was able to deplete 

tagged DIS3 levels to near complete absence. This shows that the rate of protein 

depletion following auxin treatment is rapid. Interestingly, comparing the two cell 

lines without auxin treatment there appeared be to less DIS3-AID protein 

expressed than endogenous DIS3. A qRT-PCR was conducted to investigate 

whether DIS3 mRNA levels were also altered (Figure 3.3C). In DIS3-AID cells 

there was a significant depletion of spliced DIS3 mRNA levels, probably caused 

by inclusion of the AID tag, that explains the reduced protein expression 

observed. An auxin treatment time course was not carried out, due to the near 

complete depletion of DIS3 protein levels at 1 hour. Longer auxin treatment would 

have increased the likelihood of confounding secondary / downstream effects and 

possible redundant pathway activation. Shorter auxin treatment times may not 

have been long enough for a strong DIS3 depletion, although this was not tested.  

For further validation an antibody to detect the AID-tag was used in both 

control and DIS3-AID cells (Figure 3.3D). As expected, no detectable band was 

observed in the control cell line. However, the AID-tag could be readily observed 

in untreated DIS3-AID cells with a band of corresponding size absent upon 1 hour 

of auxin treatment. This further supports our findings that auxin conditionally 

depletes AID-tagged DIS3 in a time-effective manner.  
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Figure 3.3 Western blots of endogenous DIS3, AID-tagged DIS3 and a-AID 

A,B,D) Western blots showing the levels of specific proteins in control 

HCT116:TIR1 cells and DIS3-AID cells that had either been untreated or treated 

with auxin for 1 hour. Anti-a-tubulin was used as a loading control. A) Antibody 

to the C terminus of DIS3 detected levels of endogenous DIS3 protein. B) 

Antibody to internal sequence of DIS3 protein used to detect endogenous and 

AID-tagged DIS3 protein. C) qRT-PCR detected levels of spliced DIS3 mRNA in 

HCT116:TIR1 and DIS3-AID cells, treated or not with auxin. D) Anti-a-AID 

antibody used to detect the levels of the AID-tag. The AID-tag was detected in 

DIS3-AID cells only and upon auxin addition levels became undetectable.   

A

B C

D

DIS3 

α-tubulin 

HCT116:TIR1     DIS3-AID
Aux 
(1 hour) - +       - +

HCT116:TIR1

HCT116:TIR1 
+ Aux

DIS3-AID

DIS3-AID
+ Aux

* *
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3.2.1 Rapid depletion of DIS3 leads to accumulation of PROMPTs 

Modification of DIS3 by addition of the AID tag could potentially affect DIS3 

function, by causing substrate recognition issues or reducing catalytic activity.  To 

investigate these potential issues, the function of DIS3-AID protein and its 

depletion were tested using known substrates. As previously discussed, 

PROMPTs are well-characterised substrates of the exosome and more 

specifically DIS3 (Preker et al, 2008; Szczepinska et al, 2015). The levels of four 

different PROMPTs (STK11-IP, SERPINB8, FOXP4 and RBM39) were analysed 

by qRT-PCR (Figure 3.4A). These four PROMPTs were chosen specifically, as 

their accumulation upon DIS3 depletion had been previously shown (Preker et al, 

2008). b-actin was used as a normalising gene for RT-qPCR and b-actin mRNA 

was shown to be stable in DIS3-AID cells upon auxin dependent DIS3 depletion 

by Steven West.  

 DIS3-AID and HCT116:TIR1 cells were treated or not with auxin for 1 hour. 

Auxin had no effect on PROMPT levels in HCT116:TIR1 cells. Additionally, 

untreated DIS3-AID cells showed similar PROMPT levels to controls. Therefore, 

AID modification of DIS3 does not impact on its ability to degrade PROMPTs. 

However, upon depletion of tagged DIS3 by auxin addition there is a significant 

accumulation of all four PROMPTs tested. These results show that PROMPTs 

are acutely sensitive to depletion of DIS3-AID.  

 

3.2.2  Wild-type DIS3 is able to rescue auxin-dependent effects 

As auxin dependent DIS3-AID depletion lead to a strong increase in 

PROMPT levels, I next investigated whether expression of wildtype (WT) DIS3 

could rescue these effects. WT DIS3 was transfected into DIS3-AID cells using 

the SB system and PROMPT levels were detected by qRT-PCR (Figure 3.4B). 

Expression of PROMPTs is the same in untreated DIS3-AID and DIS3-AID cells 

transfected with WT DIS3. As previously shown, PROMPTs accumulate upon 

DIS3-AID depletion by auxin. This accumulation is rescued when WT DIS3 is 

expressed, with levels returning to the same as in untreated DIS3-AID cells. It is 

important to note here that there is no evidence that the WT DIS3 protein has 

been expressed, other than the observed rescue effect.  
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Figure 3.4 qRT-PCR of PROMPT levels in DIS3-AID cells 

qRT-PCR detection of four PROMPTs (STK11-IP, SERPINB8, FOXP4 and 

RBM3). All levels were normalised to b actin, * denotes p < 0.05 and standard 

deviation is plotted by error bars. Data is the mean of three independent 

experiments with samples run in triplicate each time. A) PROMPT levels in 

HCT116:TIR1 and DIS3-AID cells treated or not with auxin (Aux) for 1 hour. 

PROMPT levels remain the same except in DIS3-AID cells treated with auxin, 

where PROMPTs significantly accumulate. Quantitation is expressed as relative 

RNA level to untreated parental HCT116:TIR1 cells. B) PROMPT levels in DIS3-

AID and DIS3-AID cells transfected with WT DIS3 and treated or not with Aux for 

1 hour. WT DIS3 is able to rescue PROMPT accumulation. Quantitation is 

expressed as fold change in RNA relative to untreated DIS3-AID cells.  
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HCT116:TIR1 + Aux
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However, overall this data suggests that it is the specific depletion of DIS3 

causing accumulation of PROMPTs and expression of WT DIS3 is able to rescue 

the effects of DIS3 loss. 

 

3.3  DIS3 is essential for cell viability 

Previous studies have shown that DIS3 is essential for cell growth in yeast 

and for cell survival in a chicken DT40 cell line (Mitchell et al, 1997; Tomecki et 

al, 2014). To establish if the same was true for DIS3 in human cells, the AID 

system allowed investigation of DIS3 protein depletion on cell viability. A cell 

colony formation assay was conducted on HCT116:TIR1 cells as a control and 

DIS3-AID cells, both in the presence and absence of auxin. After 10 days of 

growth in the presence of auxin there were no adverse effects on cell viability of 

control cells (Figure 3.5). DIS3-AID cells grown in the absence of auxin formed a 

similar number of cell colonies to controls, showing DIS3-AID does not impact 

cell viability. However, a slower growth phenotype was observed with smaller 

sized colonies. Treatment of DIS3-AID cells with auxin prevented colony 

formation, suggesting that DIS3 is essential for cell survival. Importantly, this 

lethality is specifically due to the loss of DIS3 as prolonged auxin treatment of 

HCT116:TIR1 had no effect. 
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Figure 3.5 Cell colony formation assay of DIS3-AID and HCT116:TIR1 

Approximately 300 cells of either HCT116:TIR1 or DIS3-AID were seeded and 

grown in the presence or absence of auxin. After 10 days, cells were fixed and 

stained before counting using ImageJ software. No colonies grew upon DIS3 

depletion by auxin. Number of colonies are expressed as a percentage of those 

grown from HCT116:TIR1 cells without auxin. n = 3 and standard deviation is 

shown.  
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3.4  RNA-Seq investigation of DIS3 substrates 

To elucidate direct substrates of DIS3 and the effects of DIS3 loss in 

human cells, a transcriptome-wide RNA-Seq analysis using single-end 50 bp 

reads was conducted. To generate RNA-Seq libraries, nascent nuclear RNA was 

extracted from DIS3-AID cells treated or not with 1 hour of auxin for DIS3 protein 

depletion. Reads were filtered and aligned to the genome, with the expression 

levels at each gene counted. This work was done in collaboration with Dr. Lee 

Davidson, who conducted the RNA-Seq and bioinformatic analyses of results. In 

addition, this and further work has been published in Davidson et al (2019).  

 

3.4.1 Metagene profile of DIS3 loss shows stabilisation of PROMPTs 

DIS3-dependent changes were first investigated by the production of a 

metagene read coverage profile. To do this, only annotated genes with an 

expression level higher than 50 reads per gene were used. The inclusion window 

was extended 3 Kb upstream of the TSS and 7 Kb downstream of the TES to 

ensure PROMPTs and other gene effects could be clearly visualised. Due to this 

extension, any overlapping genes were removed to decrease false-positive 

discovery of DIS3 loss effects. Therefore 4701 genes were included in the 

metagene plot, which represents the average transcription profile over these 

genes. The metagene figure only shows 3 Kb downstream of the TES for clarity 

(Figure 3.6 and 3.7).  

 From the metagene plot it can be seen that upon auxin induced DIS3 loss, 

there is an accumulation of reads before the TSS which is indicative of PROMPT 

accumulation (as shown by the red arrow in Figure 3.6). PROMPTs are 

transcribed in the opposing direction to their associated coding gene and are a 

result of bidirectional promoter transcription. Previous studies have found 

PROMPT transcription occurs up to 3 Kb upstream of the TSS (Flynn et al, 2011; 

Preker et al, 2008; Szczepinska et al, 2015). From the metagene plot, PROMPT 

expression peaked at 0.5 – 1 Kb upstream of the TSS and gradually decreased 

to near background levels at 3 Kb upstream. These findings correspond with the 

short length of PROMPTs and their termination proximal to the TSS, as well as 

further verifying loss of DIS3 function upon auxin addition. In addition, this 

widespread increase of PROMPTs validates their acute instability. 
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Figure 3.6 DIS3-AID metagene plot  

Metagene plot profile of non-overlapping expressed protein coding genes in 

DIS3-AID cells with or without auxin treatment. The inclusion window is 3 Kb 

upstream of the TSS and 7 Kb downstream of the TES, with the gene body scaled 

to 5 Kb (n = 4701). The red arrow highlights the peak corresponding to 

accumulation of PROMPTs. The black arrow highlights a peak potentially 

corresponding to prematurely terminated transcripts. Profile is representative of 

1 biological replicate; an additional replicate is shown in Figure 3.7. Produced 

from RNA-Seq analysis conducted by Lee Davidson.   
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Figure 3.7 Second replicate of DIS3-AID metagene plot 

Second biological replicate for metagene plot profile of non-overlapping 

expressed genes in DIS3-AID cells with or without auxin treatment. The inclusion 

window is 3 Kb upstream of the TSS and 7 Kb downstream of the TES, with the 

gene body scaled to 5 Kb (n = 4701). Produced from RNA-Seq analysis 

conducted by Lee Davidson.   
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Interestingly, DIS3 loss did not cause an observable effect on read density 

at the gene body or downstream of the TES. Previously it has been shown that 

PROMPT degradation enhances transcription of associated coding genes (Ntini 

et al, 2013), however an indicative increase in gene body reads was not observed 

in our data. It is possible that longer auxin treatment times, to further deplete DIS3 

and / or prolong accumulation of PROMPTs through their enhanced stability, may 

result in an observable phenotype for downregulation of gene transcription.  

 

3.4.2 DIS3 degrades prematurely terminated transcripts 

In addition to the PROMPT accumulation peak upstream of the TSS, the 

metagene plot also showed a slight increase in read density immediately 

downstream of the TSS (as shown by the black arrow in Figure 3.6). It was 

hypothesised that this peak could be caused by an accumulation of RNA derived 

from premature transcription termination. To investigate this, three genes 

analysed in the metagene plot were chosen at random: C2orf42, NFU1 and 

PCBP1-AS1. Firstly, RPKM normalised coverage tracks were used to visualise 

these genes individually (Figure 3.8). For both C2orf42 and NFU1 a PROMPT 

transcript was observable before the TSS, on the sense strand (shown in red), 

that is detectable only upon DIS3 depletion. For PCBP1-AS1 the reads 

observable on the sense strand could be either from PROMPT transcription or 

transcription of another gene, PCBP1, as shown. The origin of these reads is 

difficult to determine, although the presence of these reads at a similar level when 

DIS3 is present suggests they correspond to PCBP1 transcription. Importantly, 

all three genes showed an increased number of reads near the TSS and over 

early intronic regions, as highlighted by the dashed box. This increase did not 

continue over the full length of the gene suggesting an accumulation of 

prematurely terminated transcripts occurs upon DIS3 depletion.  

Secondly, qRT-PCR was used to validate these findings in the same three 

genes as above and in an additional gene, CLIP4. A relative RNA concentration 

was determined over the first intron of these genes, where promoter proximal 

transcripts might terminate, and over the exon – intron junction as a control 

(Figure 3.9).  
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Figure 3.8 RPKM coverage tracks showing prematurely terminated transcripts in 
DIS3-AID cells 

RPKM normalised coverage tracks of three protein-coding genes, C2orf42, 

PCBP1-AS1 and NFU1, in DIS3-AID cells treated or not with auxin. The dashed 

box shows an increase of reads near the TSS, corresponding to accumulation of 

prematurely terminated transcripts. For C2orf42 and NFU1 the sense reads 

shown in red correspond to PROMPTs. Sense and antisense strands are 

overlapped and the figure represents two replicates. The numbers in brackets 

show the RPKM normalised read count range.  
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Figure 3.9 qRT-PCR investigating levels of prematurely terminated transcripts 

In HCT116:TIR1 and DIS3-AID cells treated or not with auxin for 1 hour, the levels 

of four transcripts were compared by qRT-PCR. In CLIP4, PCBP1-AS1, NFU1 

and C2orf42 genes, qRT-PCR using primers spanning the first intron (in 1) were 

compared to primers spanning an exon – intron (ex – in) junction. Quantitation is 

expressed as relative RNA concentration to HCT116:TIR1 cells. n = 3, * denotes 

p < 0.05, standard deviation is plotted as error bars.  Data is the mean of three 

independent experiments with samples run in triplicate each time. 

HCT116:TIR1 HCT116:TIR1 + Aux DIS3-AID DIS3-AID + Aux
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For each gene, RNA levels were not significantly different between control 

HCT116:TIR1 cells, with or without auxin treatment, and untreated DIS3-AID 

cells. However, upon auxin-induced DIS3 loss there was a significant 

accumulation of RNA over intron 1. This increase was not observed over the exon 

– intron junction. Therefore, DIS3 loss caused accumulation of promoter proximal 

transcripts, explaining the peak near the 5’ site on the earlier metagene plot and 

emphasising the role of DIS3 during multiple stages of transcription. Furthermore, 

this may suggest the exosome is recruited to promoter – proximal sites, possibly 

before transcription initiation and via previously discussed mechanics such as 

interactions between MTR4, NEXT complex and ARS2, to rapidly degrade 

pervasive or abortive transcripts. The rapid accumulation of these transcripts 

within 1 hour of auxin treatment suggests a large number of genes frequently 

undergo premature termination and DIS3 normally aids in degradation of these 

transcripts.  

As no differences in RNA levels were seen over the gene body after DIS3 

loss, this corroborates that these transcripts have arisen through premature 

termination. An alternative suggestion is that upregulated early intronic regions 

may be stabilised in some genes by readthrough from nearby PROMPT 

transcription. If intron 1 levels accumulate due to overlapping upstream 

PROMPTs, it could be assumed that PROMPTs from downstream neighbouring 

genes could overlap the TES of genes.  However, no changes are observed over 

the TES as shown in Figure 3.6, suggesting our hypothesis of the described 

transcripts arising from premature transcription is more likely. This data also 

corresponds with Szczepinska et al (2015), who showed Dis3 was highly involved 

in degrading prematurely terminated protein-coding transcripts.  

 

3.4.3 DIS3 depletion causes increased levels of unannotated genes 

Szczepinska et al (2015) also found that catalytically dead DIS3 caused 

accumulation of RNAs originating from unannotated genomic regions and known 

enhancer RNAs (eRNAs). Enhancer elements are highly conserved sequences 

that bind to transcription factors and enhance gene transcription (Lee et al, 2015; 

Banerji et al, 1981). In 2010 it was discovered that Pol II transcription can occur 

at these enhancer elements, to produce eRNAs that play a role in gene 
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transcription regulation (Kim et al, 2010b; De Santa et al, 2010). eRNAs are short 

transcripts (< 2 Kb) that undergo rapid turnover by the exosome and arise from 

bidirectional promoters (Andersson et al, 2014).   

Through RNA-Seq we were able to detect de novo transcripts that 

accumulated upon DIS3 loss and did not overlap with any known transcripts. 

Potential PROMPT transcripts were removed from this list by their proximity to 

annotated genes and short length, leaving 960 transcripts originating > 3 Kb from 

an annotated gene and aligning to distal intergenic regions. From visualisation of 

a multitude of these transcripts by Genome Viewer we established that each 

transcript consisted of two separate RNAs from the same bidirectional promoter-

like region but on opposite strands (Figure 3.10A). Between the opposing 

transcripts there is a clear separation consistent with the presence of a 

nucleosome separating a promoter boundary (Andersson et al, 2014). Therefore, 

these de novo transcripts arise from regions where bidirectional transcription 

occurs, similar to enhancer sequences.  

To ensure these transcripts were not artefacts of RNA-Seq, qRT-PCR 

validation was performed for three of the de novo transcripts chosen at random 

(Figure 3.10B). Primers were designed upstream and downstream of the region 

between the sense and antisense transcripts. Relative RNA concentration were 

similar in HCT116:TIR1 cells with or without auxin and untreated DIS3-AID cells. 

Upon DIS3 loss there was a significant accumulation of RNA in both the upstream 

and downstream regions in all cases, corresponding to the de novo transcripts in 

both directions. Therefore, with the DIS3-AID system we were able to detect 

novel transcripts of DIS3 originating from genomic regions that are normally 

rapidly degraded.  

The novel transcripts we identified could potentially be uncharacterised 

eRNAs or derive from spurious transcription from open chromatin loci. Further 

work is needed to elucidate their true characterisation. Interestingly, the use of 

the DIS3-AID system was able to detect more eRNAs and novel transcripts than 

previous RNAi experiments (Szczepinska et al, 2015). These differences could 

be due to the use of different cell lines, however the AID system may be able to 

enhance detection of unstable RNAs.  
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Figure 3.10 DIS3 depletion effects levels of de novo transcripts 

A) RPKM normalised coverage tracks of three de novo transcripts from RNA-seq 

analysis of DIS3-AID cells with or without auxin. Transcripts were detected over 

intergenic intervals. B) qRT-PCRs of the same de novo transcripts with primers 

designed upstream and downstream of the region separating the opposing 

transcripts. Conducted in HCT116:TIR1 and DIS3-AID cells treated or not with 

auxin for 1 hour. Quantitation is relative RNA concentration to untreated 

HCT116:TIR1 cells. n = 3, * denotes p < 0.05, error bars plot standard deviation.  
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3.5  Summary 

In this chapter I have shown that a protein of interest can be rapidly and 

significantly degraded using the AID system (Figure 3.3). Fusion of an AID tag to 

the 3’ end of DIS3 using CRISPR/Cas9 is relatively simple and easily 

reproducible. The AID system causes conditional protein degradation with the 

necessary expression of a plant specific TIR1 F-box protein, by utilising human 

proteasome mediated degradation pathways. This inducible degradation is 

controlled by the addition of auxin and can be reversed by removal of auxin from 

growth media. 

The findings described in this chapter are largely consistent with data from 

previous studies using RNAi techniques to indirectly deplete exosome subunits 

by targeting mRNA (Szczepinska et al, 2015). However, the AID system causes 

protein depletion in a rapid manner, allowing easier investigation of the effects of 

immediate protein loss in a shorter time frame than RNAi. In addition, the AID 

system uncovered more PROMPT and other DIS3 substrate changes than 

typically reported, suggesting a more complete protein depletion by the AID 

system may be beneficial for studying RNA turnover. From our results gene 

fusion with the AID tag, expression of TIR1 or untagged cell growth in the 

presence of auxin has few deleterious effects on HCT116 cell function although 

DIS3-AID cells showed a slight defect in growth rate and reduced levels of spliced 

DIS3 mRNA (Figure 3.5 and Figure 3.3C). A potential reason that untreated DIS3-

AID cells showed a slow growth phenotype might be due to the levels of tagged 

DIS3 present. Results from the western blot suggested a reduction in DIS3-AID 

levels compared to endogenous DIS3 in HCT116:TIR1 cells (Figure 3.3B). A 

qRT-PCR was conducted to investigate this further and found DIS3-AID mRNA 

was present at approximately 50 % of the level of endogenous DIS3 mRNA 

(Figure 3.3C). Therefore, the AID tag may cause a decrease in DIS3-AID 

transcription or increase in its degradation and this reduction might explain why 

growth of DIS3-AID colonies is slower than that of HCT116:TIR1 cells.  

 To further prevent AID tag effects and improve protein stability a smaller 

mini-AID tag can be used in place of the larger AID tag (Natsume et al, 2016). A 

more recently described method involves expression of the auxin response 

transcription factor (ARF), that in the absence of auxin binds to the AID in plants 

(Sathyan et al, 2019). Expressing ARF in human cells utilising the AID system 
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resulted in a decrease of AID tag effects.  Additionally, I have shown that DIS3 is 

vital for cell survival with auxin-conditional depletion of DIS3 causing 100% cell 

death (Figure 3.5). This finding is analogous with previous reports by Mitchell et 

al (1997).  

PROMPTs originating from bi-directional promoters of protein-coding 

genes were detectable after only 60 minutes of DIS3 depletion by auxin addition. 

As previously described, these PROMPTs were transcribed in the opposing 

direction to the protein-coding gene (Preker et al, 2008; Flynn et al, 2011). From 

Figure 3.6, PROMPT transcription was observed upstream of the protein-coding 

gene TSS with a decrease in reads occurring within 3 Kb upstream. This suggests 

PROMPT transcription is not finite and transcription termination happens at 

approximately 3 Kb of length. PROMPT termination may still occur by 

conventional cleavage at the PAS, as poly(A) sites are more abundant upstream 

than downstream of the mRNA TSS, and PAS hexamers are located 10 – 30 nts 

upstream of PROMPT 3’ ends (Ntini et a, 2013). Termination could also occur by 

PROMPT readthrough into a neighbouring gene and the use of that genes’ PAS 

(Chen et al, 2016). Either way, this termination mechanism would provide a free 

3’ end allowing rapid degradation by DIS3 mediated pathways. DIS3 is vital for 

maintaining proper promoter directionality and preventing accumulation of 

redundant transcripts produced by bi-directional transcription.  

In addition to PROMPTs, RNA-Seq data revealed a small increase in 

reads immediately downstream of the protein-coding gene TSS (Figure 3.6). 

Through further investigation I was able to determine this peak corresponded to 

an increase in reads over the early intronic regions of genes, suggesting an 

overall accumulation of prematurely terminated / abortive transcripts (Figure 3.8 

and 3.9). Importantly, these findings support a role for DIS3 in multiple stages of 

transcription. Under normal conditions, it appears many genes frequently 

undergo premature termination and these abortive transcripts are rapidly 

degradation by DIS3, as shown by their accumulation within 60 minutes of DIS3 

depletion. This degradation potentially occurs co-transcriptionally and through 

close association with the transcribing Pol II complex. Exosome recruitment to 

promoter-proximal sites may occur through MTR4, NEXT and ARS2 interactions 

as previously mentioned.  
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Finally, accumulation of de novo transcripts originating from unannotated 

genome regions were observed upon DIS3 depletion (Figure 3.10). Analysis 

revealed that these transcripts potentially originate from bidirectional promoter-

like regions, similar to eRNAs. These de novo transcripts may be as yet 

unidentified enhancers, however further work is required for their 

characterisation. Overall, in this chapter I have been able to identify the 

importance of DIS3 in the degradation of a multitude of transcripts and its vital 

role in maintaining appropriate gene expression. In the following chapter I will 

assess the role of DIS3 and other endonucleases, including the Integrator, in the 

transcription of small nuclear RNAs (snRNAs). 
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4. Results Chapter 2: Endonuclease function in snRNA 
transcription and processing 

Pol II transcribes a number of non-coding transcripts including snRNAs. 

snRNAs are commonly 60 – 200 nts in length, are not polyadenylated and lack 

introns. They have a primary function in splicing of mRNA through formation of 

the spliceosome and U7 snRNA has a major role in the 3’ end formation of RDH 

mRNA (Chen and Wagner, 2010). Processing of pre-snRNAs into mature 

snRNAs involves endonuclease activity, in particular from the Integrator complex. 

The Integrator consists of 12 – 14 subunits, with catalytic activity provided by the 

endonuclease subunit INTS11. INTS11 is a homolog of CPSF73 and forms a 

heterodimer with another Integrator subunit INTS9, which is thought to be 

necessary for snRNA 3’ end processing (Dominski et al, 2005). INTS9 is similar 

to CPSF100, possessing an incomplete catalytic centre. Recent findings suggest 

INTS4 is also necessary for snRNA processing and may in fact form a 

heterotrimeric structure with INTS11 and INTS9 (Albrecht et al, 2018). Either way, 

the Integrator is able to recognise the 3’ box consensus sequence located 9 – 19 

nts downstream of the snRNA coding region and it is thought that INTS11 is then 

responsible for cleavage of snRNA near this site (Baillat et al, 2005).  

As previously described, 3’ end processing of Pol II protein-coding genes 

is tightly coupled to their transcription termination. Similarly, snRNA 3’ end 

processing has been linked to efficient termination, however the actual 

mechanisms of snRNA termination are not fully understood (Ramamurthy et al, 

1996; O’Reilly et al, 2014). Polyadenylation factors have also been suggested to 

play a role in snRNA termination (O’Reilly et al, 2014). In addition to snRNAs, the 

Integrator has been implicated in other aspects of transcriptional regulation 

including transcription initiation at protein-coding genes, termination of RDHs and 

Pol II pause-release (Gardini et al, 2014; Skaar et al, 2015; Stadelmayer et al, 

2014). 

To investigate snRNA transcription and termination, as well as the further 

characterisation of Integrator function we utilised RNA-Seq methods in a number 

of cell models allowing conditional depletion of specific endonuclease proteins 

including INTS11, CPSF73 and as discussed in the previous chapter, DIS3.  
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4.1 Production of the Ints11-SMASh cell line 

To investigate the role of INTS11 we aimed to generate an inducible 

INTS11 knockdown cell line, similar to the production of the DIS3-AID cells. 

However, the last 10 amino acids of INTS11 are necessary for its interaction with 

INTS9. Abrogation of this heterodimer formation has effects equivalent to 

mutations disrupting the active site of INTS11, including interference of Integrator 

function (Wu et al, 2017). Therefore, the addition of an AID-tag to the C terminus 

of INTS11 might disrupt INTS11 function, even without addition of auxin. To 

overcome this issue, we decided to utilise the SMASh-tag system, which contains 

a NS3 protease, HCV NS3 recognition site and a destabilising degron. Using 

CRISPR/Cas9 techniques as previously described (Figure 3.1), the SMASh-tag 

was genetically integrated at the C terminus of both INTS11 alleles to produce 

INTS11-SMASh cells (Figure 4.1). The protease function of the SMASh-tag 

cleaves the NS3 recognition site under normal conditions, causing INTS11-

SMASh to become untagged and allowing normal INTS11 function. Thus, solving 

the potential issues around INTS11 protein interactions if having used the AID-

tag. Upon addition of a protease inhibiting drug, asunaprevir (asn), the SMASh-

tag is no longer cleaved causing tagged INTS11 to be degraded due to SMASh-

tag internal degron activity (Figure 1.5). Generation of the INTS11-SMASh cells 

was conducted by Steven West.  

 

4.1.1 Genomic PCR validation of Ints11-SMASh 

INTS11-SMASh colonies were grown under hygromycin and neomycin 

drugs to select for homozygous integration of the SMASh-tag. After selection, the 

cells were validated by genomic PCR with primers flanking the homology arms 

(Figure 4.2). HCT116:TIR1 cells were used as a control and show a band at the 

expected endogenous INTS11 size. Whereas the INTS11-SMASh cells show a 

much larger band of a size expected for SMASh-tag inclusion. As no other bands 

were observed for the INTS11-SMASh cells, it was concluded that both INTS11 

alleles had been successfully modified.  
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Figure 4.1 Generation of INTS11-SMASh using CRISPR/Cas9  

INTS11 homologous gRNA directs Cas9 to create a double-stranded break in the 

3’ INTS11 gene. The break is repaired using repair templates consisting of a 

SMASh-tag, P2A site, selection marker and SV40 PAS. After translation, the P2A 

peptide self cleaves to produce the SMASh-tagged INTS11 protein. Under 

normal conditions, the protease activity of the SMASh-tag cleaves at the NS3 

recognition site to produce an untagged INTS11 protein capable of normal 

function. Upon addition of asunaprevir (asn), the protease activity is inhibited and 

the tagged INTS11 protein is targeted for degradation due to the internal degron 

activity of the SMASh-tag.  
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Figure 4.2 Genomic PCR validation of INTS11-SMASh 

Nested genomic PCR in control HCT116 cells (C) and INTS11-SMASh cells 

grown under drug selection (#1) using primers flanking the INTS11 homology 

arms, as shown in the diagram by the arrows. A strong band is present in the 

control cells corresponding to endogenous INTS11. In the INTS11-SMASh cells 

a much higher band is present at the predicted size for INTS11 with SMASh-tag 

incorporation. No endogenous INTS11 band is observed in the INTS11-SMASh 

cell line, suggesting both alleles were genetically modified. Figure from Steven 

West.  
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4.1.2  Conditional depletion of INTS11 by asunaprevir addition 

Following validation of homozygous integration in INTS11-SMASh cells, I 

wanted to determine if addition of asunaprevir to cell media caused inducible 

INTS11 depletion. A western blot using an antibody to INTS11 was conducted for 

HCT116:TIR1 cells as a control and INTS11-SMASh cells, both with and without 

48 hours of asunaprevir treatment (Figure 4.3). An INTS11 specific band was 

detected at approximately 65 kDa and an antibody to alpha tubulin was used as 

a loading control. In HCT116:TIR1 cells the levels of INTS11 did not alter upon 

asunaprevir addition, showing asunaprevir alone does not affect INTS11 protein 

levels. INTS11-SMASh cells without asunaprevir showed similar INTS11 protein 

levels to control cells. After 48 hours of drug treatment there was a near complete 

depletion of INTS11 protein. Therefore, inducible INTS11 protein depletion is 

capable upon addition of asunaprevir to INTS11-SMASh cells. Asunaprevir 

induced INTS11 depletion is not as rapid as AID protein depletion, i.e. 1 hour of 

auxin treatment significantly depletes DIS3 in the DIS3-AID cell line. The reason 

for this is asunaprevir treatment prevents protease cleavage at the NS3 

recognition site of newly synthesised tagged INTS11 protein. This results in rapid 

degradation of tagged INTS11 protein, however untagged INTS11 that had been 

previously cleaved from the SMASh tag is still present. Therefore, the half-life of 

untagged INTS11 protein is important for complete degradation and explains the 

longer treatment times necessary for this methodology. As 48 hours of 

asunaprevir treatment produced a significant depletion of INTS11 protein levels, 

all further experiments were conducted for this length of time. Longer asunaprevir 

treatment time courses to produce further INTS11 depletion were not investigated 

due to the increased possibility of any observed depletion effects being due to 

secondary effects and not the immediate loss of INTS11. Although not shown 

here, shorter treatment times were analysed by western blot and did not produce 

as pronounced a decrease in INTS11 protein levels.  
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Figure 4.3 Western blot of INTS11 

Western blot showing the levels of INTS11 protein in HCT116:TIR1 and INTS11-

SMASh cells, treated or not with asunaprevir for 48 hours. INTS11 levels are 

comparable between HCT116:TIR1 cells in both conditions and INTS11-SMASh 

cells without asunaprevir. Asunaprevir significantly and specifically reduced 

INTS11 protein levels in INTS11-SMASh cells after 48 hours. Alpha tubulin was 

used as a loading control.  
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4.1.3 Depletion of INTS11 causes accumulation of extended snRNAs 

Before further investigation into the endonuclease function of INTS11 by 

RNA-Seq, it was determined whether INTS11 depletion by asunaprevir caused 

an effect on snRNA processing. Previous studies found a coupling between 

transcription termination and Integrator cleavage of snRNAs, with disruption of 

one negatively affecting the other (Ramamurthy et al, 1996; O’Reilly et al, 2014). 

Therefore, RNA levels downstream of three snRNAs chosen at random, RNU5B-

1, RNU5D-1 and RNU1-28P, were investigated using qRT-PCR (Figure 4.4). 

HCT116:TIR1 cells were used as a control to INTS11-SMASh cells, treated or 

not with asunaprevir.  

There were no significant differences in RNA levels between 

HCT116:TIR1 cells with and without asunaprevir or untreated INTS11-SMASh 

cells (Figure 4.4). Upon depletion of INTS11, there is a significant accumulation 

of RNA immediately downstream of the TES of all three snRNAs (200 – 300 bp). 

As INTS11 would normally cleave snRNAs at their 3’ end, this accumulation of 

misprocessed snRNA is likely due to INTS11 depletion. RNA levels are 

comparable to the control by 1.5 Kb - 3.5 Kb downstream of the snRNA TES, 

suggesting that readthrough of these snRNAs is not finite and that they still 

undergo transcriptional termination when processing is impaired. Overall, INTS11 

depletion in INTS11-SMASh cells is sufficient for Integrator dysfunction as shown 

by the aberrant processing of snRNAs. Unfortunately, RNA levels downstream of 

these snRNAs could not be determined at other intervals, such as 500 bp, 1Kb 

etc, due to primer design issues with primer specificity. Therefore the locations 

downstream of the snRNAs analysed were determined by using only primers that 

had high specificity as shown through RT-qPCR melt curve analysis.  
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Figure 4.4 RNA concentration downstream of snRNAs 

qRT-PCR detection of RNA levels downstream of the TES of three snRNAs: 

RNU5B-1, RNU5D-1 and RNU1-28P. Conducted in HCT116:TIR1 and INTS11-

SMASh cells with and without 48 hour asunaprevir treatment. Quantitation of 

RNA is expressed as fold change relative to untreated HCT116:TIR1 cells. All 

levels were normalised to b actin. n = 3, * denotes p < 0.05, error bars show 

standard deviation.  Data is the mean of three independent experiments with 

samples run in triplicate each time. 

 

+300bpRNU5B-1 +1.5Kb
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4.2 INTS11 depletion does not prevent snRNA termination 

To further investigate the effects of INTS11 on snRNA transcription, RNA-

Seq with single-end 50 bp reads was conducted on nuclear RNA obtained from 

INTS11-SMASh cells with or without asunaprevir treatment. Reads were aligned 

to the genome and filtered, with Table 4.1 showing details of the sequencing 

depth and coverage. To conduct a snRNA metagene plot, I firstly removed any 

genes with low expression (< 50 reads per gene). Not all snRNAs were enriched 

for in the RNA-Seq dataset which utilised 50 nt reads, reducing the resolution for 

small transcripts such as snRNAs (median length = 150 nt). Another reason why 

not all snRNAs are represented in the dataset is because there are variants of 

almost all snRNAs that have very similar sequences to one another 

(Kyriakopoulou et al, 2006; Sontheimer and Steitz, 1992; O’Reilly et al, 2013). 

This can prevent unambiguous mapping of reads, which are instead removed. 

Therefore, after filtering genes for expression levels, 95 non-overlapping snRNAs 

were used to generate the metagene plot with an inclusion window of 100 bp 

upstream of the snRNA TSS and 5 Kb downstream of the TES (Figure 4.5). For 

clarity, only 2 Kb downstream of the snRNA TES is shown.  

 

Table 4.1 RNA-Seq statistical information for INTS11:SMASh cells 

 

 

 

 

 

Sequencing depth over all exons = (Total number of mapped reads * average 

read length (bp)) / total length of exons 

Sequencing coverage over all exons = (Total number of mapped reads to exons 

* average read length (bp)) / total length of all exons 

 

 

 INTS11:SMASh 

without asunaprevir 

INTS11:SMASh 

with asunaprevir 

Sequencing depth over 

all exons 

10.0 9.8 

Sequencing coverage 

over all exons 

0.9 1.0 
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Figure 4.5 shows an obvious increase in RNA reads immediately 

downstream of the snRNA TES upon INTS11 depletion, corresponding to 

readthrough of snRNA due to disruption of their cleavage by the Integrator. The 

number of reads then decrease, returning back to baseline values by 2 Kb and 

often much sooner. This suggests that extended snRNAs are terminated 

relatively close to the TES, even when not endonucleolytically cleaved by 

INTS11. To further validate these findings, individual RPKM normalised coverage 

tracks of the three snRNAs analysed in Figure 4.4, RNU5D-1, RNU5B-1 and 

RNU1-28P, were used to better visualise snRNA 3’ extension and further validate 

RT-qPCR findings (Figure 4.6). For all three snRNAs there is a slight extension 

of reads past the TES. However, this readthrough stops by 2 Kb downstream 

suggesting snRNA termination occurs within this downstream window and 

corroborates both the metagene and qRT-PCR findings (Figure 4.5 and 4.4). 
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Figure 4.5 INTS11-SMASh snRNA metagene plot  

Metagene coverage plot for 95 non-overlapping snRNAs from RNA-Seq data of 

INTS11-SMASh cells treated or not with asunaprevir. Inclusion window contains 

100 nt upstream of the snRNA TSS and 2000 bp downstream of the TES, with a 

gene body scaled to 100 bp (n = 95). Figure represents one biological replicate.  
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Figure 4.6 INTS11-SMASh RPKM coverage tracks for snRNAs 

RPKM coverage tracks for snRNAs RNU5B-1, RNU5D-1 and RNU1-28P. Upon 

depletion of INTS11 there is a 3’ extension of all three snRNAs that stops by 

approximately 2 Kb downstream of the snRNA TES. The numbers in brackets 

show the average RPKM normalised read count range. 

 

INTS11-SMASh INTS11-SMASh + asn
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4.3 Depletion of the largest Integrator subunit does not prevent snRNA 
termination 

The current findings of snRNA termination after INTS11 depletion were 

slightly unexpected, due to previous reports of the close coupling between snRNA 

3’ end processing and termination. Following this I decided to investigate whether 

disrupting Integrator complex function as a whole, instead of only the 

endonuclease subunit, would inhibit snRNA termination. INTS1 is the largest 

subunit of the Integrator with 2190 amino acids (Baillat et al, 2005; Baillat et al, 

2015). A knockout mice model of INTS1 has been shown to have growth arrest 

in early blastocyst stage embryos and apoptotic cell death (Hata and Nakayama, 

2007). Additionally, INTS1 has been suggested to function as a scaffold protein 

for Integrator assembly and therefore disruption of INTS1 in human cells results 

in a loss of Integrator complex function (Hata and Nakayama, 2007; Baillat et al, 

2005).  

INTS1 was depleted in HCT116:TIR1 cells using INTS1 siRNA. To check 

levels of INTS1 depletion by RNAi a qRT-PCR was conducted showing an 

average reduction of 84% (Figure 4.7B). As before, RNA levels downstream of 

three snRNAs (RNU1-1, RNU4-2 and RNU1-28P) were investigated in 

HCT116:TIR1 cells that had been treated with either control siRNA or INTS1 

siRNA (Figure 4.7A). Different snRNAs were used to those in Figure 4.4, to allow 

investigation of RNA levels downstream of the TES at set intervals, that was 

previously not possible due to non-specific primers. Depletion of INTS1 produced 

a similar effect to conditional depletion of INTS11 in INTS11-SMASh cells. There 

was a significant accumulation of unprocessed snRNA following INTS1 depletion, 

thus showing RNAi depleted INTS1 levels were sufficient to cause Integrator 

dysfunction. As seen with INTS11 depletion, snRNA readthrough was relatively 

short with levels returning to background by 1 – 3 Kb downstream of the snRNA 

TES. This result shows that disrupting Integrator formation causes production of 

unprocessed extended snRNAs that are still capable of termination within a 

window close to the TES. It is possible the small amount of INTS1 remaining after 

INTS1 siRNA depletion may be sufficient for extended snRNA termination. 

However, the presence of detectable snRNA readthrough demonstrates that 

Integrator function has been significantly impaired by INTS1 depletion.  
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Figure 4.7 RNA levels downstream of snRNAs after INTS1 depletion 

All levels were normalised to b actin. * denotes p < 0.05, error bars show standard 

deviation. Data is the mean of three independent experiments with samples run 

in triplicate. A) qRT-PCR detection of RNA levels downstream of three snRNAs: 

RNU1-1, RNU4-2 and RNU1-28P. Conducted in HCT116:TIR1 cells treated with 

control siRNA or INTS1 siRNA. Quantitation of RNA is expressed as fold change 

relative to non-depleted HCT116:TIR1 cells. B) qRT-PCR detection of INTS1 

levels in HCT116:TIR1 cells treated with control siRNA and INTS1 siRNA.  

B

A

HCT116:TIR1 + con siRNA HCT116:TIR1 + INTS1 siRNA

+500bpsnRNA +3Kb+1Kb +2Kb
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4.4 Depletion of INTS11 causes a further reduction in snRNA precursor 
transcript levels after inhibition of transcription 

I next wanted to investigate the impact of INTS11 on snRNA transcript 

turnover. To do this, INTS11-SMASh cells were grown in the presence of 

actinomycin D for 0 minutes or 15 minutes and treated or not with asunaprevir 

(Figure 4.8). Actinomycin D acts as a transcription inhibitor by intercalating into 

GC rich DNA sequences and preventing RNA polymerase elongation (Trask and 

Muller, 1988). This process is fast and acts on all three RNA polymerases, as 

well as causing hyperphosphorylation of the Pol II CTD (Cassé et al, 1999). In 

untreated INTS11-SMASh cells, inhibition of transcription caused a reduction in 

the three uncleaved snRNA precursor transcripts of RNU5A-1, RNU4-1, RNU1-

1, as measured by qRT-PCR. These snRNAs were investigated due to relevant 

primers to detect precursor transcripts already being available in the laboratory. 

The relative RNA concentration decreased to between 46 – 59% of RNA levels 

at 0 minutes of Actinomycin D treatment. This is expected as normal turnover of 

RNA occurs whilst the production of new transcripts is inhibited, overall resulting 

in a reduction of transcript levels. In comparison, when INTS11 was depleted a 

further decline in all three snRNA precursor transcripts was observed. This 

resulted in a mean RNA concentration that was reduced to between 25 – 36 % 

of levels at 0 minutes of Actinomycin D treatment. This apparent decrease in 

snRNA precursor transcript levels when INTS11 is depleted could be caused in 

a couple of ways. Firstly, INTS11 may not be depleted sufficiently to completely 

inhibit snRNA processing. Secondly, inhibiting INTS11 cleavage results in 

unprocessed snRNAs which may have increased efficacy for degradation by the 

exosome, for example. Finally, INTS11 depletion may cause a reduction in 

transcription of snRNAs. 
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Figure 4.8 Precursor snRNA transcript levels after Actinomycin D treatment in 
INTS11-SMASh cells 

qRT-PCR detection of RNA concentrations for three uncleaved precursor 

snRNAs (RNU5A-1, RNU4-1 and RNU1-1) in INTS11-SMASh cells treated or not 

with asunaprevir (asn), with 0 minutes or 15 minutes of Actinomycin D (Act D) 

treatment. Primers spanning the snRNA TES and immediately downstream of the 

TES were used. Quantitation is expressed as a percentage relative to 0 minutes 

of Actinomycin D treatment in both asunaprevir treated and untreated conditions. 

All levels were normalised to b actin. * denotes p < 0.05, error bars show standard 

deviation. Data is the mean of three independent experiments with samples run 

in triplicate each time. 

* * *

INTS11-SMASh - asn; 0 mins Act D treatment 

INTS11-SMASh - asn; 15 mins Act D treatment

INTS11-SMASh + asn; 0 mins Act D treatment

INTS11-SMASh + asn; 15 mins Act D treatment
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4.5 Effect of DIS3 depletion on snRNA transcription 

To assess whether the exosome is responsible for degradation of snRNA 

precursors, I decided to investigate the effects of DIS3 depletion on snRNAs.  

This would potentially explain snRNA reduction when transcription was inhibited, 

even when INTS11 is not present (Figure 4.8), Labno et al (2016) previously 

reported an accumulation of longer snRNA transcripts when both the 

endonuclease and exonuclease activity of DIS3 had been abolished by mutations 

in the PIN and RNB domains respectively. They hypothesised these transcripts 

were readthrough snRNAs that had not been cleaved by the Integrator and 

therefore extended downstream of the TES. In addition, DIS3 was found to 

degrade mature snRNA and the extended snRNA transcripts, with a slight 

increase in levels of mature snRNA transcripts observed with catalytically dead 

DIS3. In contrast, Szczepinska et al (2015) found little to no accumulation of 

snRNAs in either DIS3 PIN, RNB or both domain mutants suggesting DIS3 may 

not be part of the main pathway for snRNA degradation. Using qRT-PCR and 

DIS3-AID RNA-Seq data I aimed to examine these contrasting findings in more 

detail.  

 

4.5.1 DIS3 depletion also produces extended snRNAs 

Firstly, RNA-Seq data of DIS3-AID cells was analysed to visualise the 

effects on three individual snRNAs: RNU5B-1, RNU5D-1 and RNU1-28P (Figure 

4.9A). These snRNAs were investigated as they had been used previously to 

validate the INTS11-SMASh cell line, show INTS11 depletion effects snRNA 

processing and confirm the observed extension of snRNAs (Figure 4.4 and 4.6) 

In all three examples there was an observable extension of the snRNA past the 

TES upon DIS3 depletion. There also appeared to be a slight increase in the 

amount of reads over the gene body. An explanation for this is that depletion of 

DIS3 may prevent degradation of snRNAs and result in their accumulation. 

Importantly, all three snRNAs showed extension that terminated before 1500 bp 

downstream of the TES, similar to our findings with INTS11 and INTS1 

knockdown.  
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Figure 4.9 RNA levels downstream of snRNAs in DIS3-AID cells 

A) RPKM coverage tracks for snRNAs RNU5B-1, RNU5D-1 and RNU1-28P in 

DIS3-AID cells treated or not with auxin. The numbers in brackets show the 

average RPKM normalised read count range.  B) qRT-PCR detection of RNA 

levels downstream of three snRNAs: RNU5B-1, RNU5D-1 and RNU1-28P. 

Conducted in HCT116:TIR1 and DIS3-AID cells with and without auxin treatment. 

Quantitation of RNA is expressed as fold change relative to untreated 

HCT116:TIR1 cells. All levels were normalised to b actin. * denotes p < 0.05, error 

bars show standard deviation. Data is the mean of three independent 

experiments with samples run in triplicate each time. 

A

B

HCT116:TIR1

HCT116:TIR1 + Aux

DIS3-AID

DIS3-AID + Aux

DIS3-AID DIS3-AID + Aux
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For validation, we measured RNA levels downstream of these snRNAs by qRT-

PCR (Figure 4.9B). Similar to the RPKM coverage tracks, extended snRNAs were 

detected upon DIS3 loss and these snRNAs terminated within 1.5 – 3.5 Kb 

downstream of the snRNA TES. 

I next wanted to determine whether DIS3 depletion had a global effect on 

snRNAs or whether the effects observed were specific to the three snRNAs 

investigated. A snRNA metagene plot was conducted using the same list of 95 

snRNAs as for the INTS11-SMASh metagene plot (Figure 4.5). For this metagene 

an inclusion window of 100 bp upstream of the snRNA TSS and 1000 bp 

downstream of the TES was used (Figure 4.10 and 4.11). There were no 

apparent differences upstream of the TSS upon DIS3 depletion, however there 

was an increased number of reads immediately downstream of the TES showing 

extension of snRNAs. This extension was not as long as seen previously upon 

INTS11 depletion (approximately 1 – 2 Kb), instead an increase in reads was 

observed up to approximately 500 bp downstream of the TES before returning to 

background levels. Additionally, there was a slight increase in reads over the 

snRNA gene body as similarly seen in RPKM coverage tracks of individual 

snRNAs (Figure 4.9). Overall these findings suggest DIS3 has a role in snRNA 

transcription. It is possible that DIS3 specifically degrades misprocessed or 

prematurely terminated snRNA transcripts, however the exact mechanism is yet 

unclear.  

 

4.5.2 Depletion of DIS3 causes an accumulation of snRNA precursor 
transcripts when transcription is inhibited 

To determine if DIS3 dysfunction had an effect on transcription of snRNA 

precursors, Actinomycin D was used to inhibit transcription in the same way as 

described previously with INTS11-SMASh cells using the same snRNA precursor 

primers (Figure 4.8). DIS3-AID cells, treated or not with auxin, underwent 0 

minutes or 15 minutes of Actinomycin D treatment (Figure 4.12). As expected, 

inhibition of transcription in untreated DIS3-AID cells caused a reduction in 

RNU1-1, RNU4-1 and RNU5A-1 uncleaved snRNA precursors.  
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Figure 4.10 DIS3-AID snRNA metagene plot 

Metagene coverage plot for 95 snRNAs from RNA-Seq data of DIS3-AID cells 

treated or not with auxin. Inclusion window contains 100 bp upstream of the 

snRNA TSS and 1000 bp downstream of the TES, with a gene body scaled to 

200 bp (n = 95). Figure represents one biological replicate, a second replicate is 

shown in Figure 4.11.  
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Figure 4.11 Second replicate of DIS3-AID snRNA metagene plot 

Second biological replicate of a metagene coverage plot for 95 snRNAs from 

RNA-Seq data in DIS3-AID cells treated or not with auxin. Inclusion window 

contains 100 bp upstream of the snRNA TSS and 1000 bp downstream of the 

TES, with a gene body scaled to 200 bp (n = 95).  

DIS3-AID
DIS3-AID + Aux
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Figure 4.12 snRNA precursor levels after Actinomycin D treatment in DIS3-AID 
cells 

qRT-PCR detection of RNA concentrations for three uncleaved precursor 

snRNAs (RNU5A-1, RNU4-1 and RNU1-1) in DIS3-AID cells treated or not with 

auxin and with 0 minutes or 15 minutes of Actinomycin D treatment. Primers 

spanning the snRNA TES and immediately downstream of the TES were used. 

Quantitation is expressed as a percentage relative to 0 minutes of Actinomycin D 

treatment in both auxin treated and untreated conditions. All levels were 

normalised to b actin. * denotes p < 0.05, error bars show standard deviation. 

Data is the mean of three independent experiments with samples run in triplicate 

each time. 

 

RNU1-1 RNU4-1 RNU5A-1 
0

50

100
R

el
at

iv
e 

R
N

A
 c

on
ce

nt
ra

tio
n 

(%
)

DIS3 - asn 0 mins

DIS3 - asn 15 mins

DIS3 + asn 0 mins

DIS3 + asn 15 mins

DIS3-AID - aux; 0 mins Act D treatment 

DIS3-AID - aux; 15 mins Act D treatment

DIS3-AID + aux; 0 mins Act D treatment

DIS3-AID + aux; 15 mins Act D treatment

* *



141 
 

On the other hand, depletion of DIS3-AID caused a reduction in snRNA precursor 

transcript levels which was much less pronounced than when DIS3 was present. 

This difference was significant for both RNU1-1 and RNU4-1. This could be 

explained by the normal function of DIS3 degrading snRNA precursor transcripts, 

causing a reduction in transcript levels when transcription is inhibited. However, 

upon loss of DIS3 the snRNA precursor transcripts are no longer degraded and 

instead accumulate. These findings support a major role of DIS3 in the 

metabolism of snRNA precursors. 

 

4.6 Depletion of INTS1 and DIS3 together has an accumulative effect on 
snRNA processing 

As both loss of Integrator and DIS3 function causes accumulation of 

extended snRNAs, I investigated the effects of eliminating both. Using DIS3-AID 

cells with auxin and a siRNA to INTS1 allowed depletion of DIS3 and INTS1 

simultaneously. RNA levels downstream of RNU4-2, RNU1-28P and RNU1-1 

snRNAs, shown previously to extend upon INTS1 depletion (Figure 4.7), were 

measured using DIS3-AID cells with a non-targeting siRNA as a control (Figure 

4.13). As now expected, loss of DIS3 caused accumulation of extended snRNAs.  

Similarly to previously demonstrated, loss of INTS1 by siRNA produced a 

readthrough effect on all three snRNAs in DIS3-AID cells. Readthrough RNA 

concentrations decreased to control levels by 1 – 2 Kb downstream of the TES. 

When DIS3-AID cells were treated with both auxin and INTS1 siRNA there was 

an enhanced accumulation of extended snRNAs compared to INTS1 depletion 

alone. Depletion of INTS1 causes loss of Integrator function, meaning snRNAs 

are no longer cleaved and explains the observed readthrough effect. As DIS3 

loss has a cumulative effect on INTS1 depletion, it may be that DIS3 can degrade 

these extended snRNAs and that loss of DIS3 results in their further 

accumulation. This supports findings by Labno et al (2016) who suggested DIS3 

degrades both mature snRNA and extended snRNA transcripts. Interestingly 

although DIS3 and INTS1 depletion alone resulted in extended snRNAs, an 

accumulative effect was not observed for extended snRNA transcript length with 

termination occurring at around 1 – 2 Kb. This shows that independent 

termination pathways are present for extended snRNAs. 



142 
 

 

Figure 4.13 RNA levels downstream of snRNAs after INTS1 siRNA depletion in 
DIS3-AID cells 

qRT-PCR detection of RNA levels downstream of three snRNAs: RNU1-1, RNU4-

2 and RNU1-28P. Conducted in DIS3-AID cells treated or not with auxin and 

either control siRNA or INTS1 siRNA. Quantitation of RNA is expressed as fold 

change relative to non-depleted DIS3-AID cells with control siRNA. All levels were 

normalised to b actin. * denotes p < 0.05, error bars show standard deviation. 

Data is the mean of three independent experiments with samples run in triplicate 

each time. 

DIS3-AID + con siRNA

DIS3-AID + Aux + con siRNA

DIS3-AID + INTS1 siRNA

DIS3-AID + Aux + INTS1 siRNA

+500bpsnRNA +3Kb+1Kb +2Kb
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4.7  Termination of extended snRNAs is likely to occur without cleavage 

The results discussed so far suggest that snRNAs are still terminated in 

the absence of Integrator function. However, it is unknown whether this 

termination is caused by a downstream cleavage event by another endonuclease 

or through independent RNA Pol II dissociation from the genome. If the extended 

snRNAs were cleaved downstream of their TES, it is plausible that RNA Pol II 

would continue to extend downstream before dissociating and therefore create a 

small RNA fragment that may not have been detected in our data so far due to 

rapid degradation. XRN2 is the major 5’ – 3’ exoribonuclease in the nucleus and 

may be responsible for degradation of such a transcript, in a way that is similar 

to that suggested in the torpedo model of mRNA termination.  

XRN2-AID cells had been previously generated in our lab, as described in 

Eaton et al (2018) and were used to investigate RNA levels around the 3’ end of 

extended snRNAs that had shown extension upon Ints1 and DIS3 depletion, 

RNU1-1, RNU4-2 and RNU1-28P (Figure 4.14). XRN2 was depleted or not by 2 

hours addition of auxin and cells were either treated with control siRNA or INTS1 

siRNA. No significant differences were observed upon XRN2 depletion alone. As 

described in other cell lines, INTS1 siRNA treatment caused an accumulation of 

extended snRNAs that terminated before 2 Kb – 3 Kb downstream of the snRNA 

TES. These extended snRNAs were similarly detected upon depletion of both 

INTS1 and XRN2, however there were no significant differences in their levels 

between INTS1 depletion alone and both XRN2 and INTS1 depletion together. In 

addition there was no accumulation of RNA at 3 Kb downstream of the extended 

snRNAs and in the case of RNU4-2 at 2Kb downstream, therefore suggesting 

XRN2 does not degrade a transcript formed by Pol II extension after extended 

snRNA cleavage. From this I conclude that independently of a cleavage event, 

Pol II dissociation between 2 – 3 Kb downstream of snRNAs occurs when 

Integrator function is impaired and is the probable cause of extended snRNA 

termination. 
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Figure 4.14 RNA levels downstream of snRNAs after INTS1 siRNA depletion in 
XRN2-AID cells 

qRT-PCR detection of RNA levels downstream of three snRNAs: RNU1-1, RNU4-

2 and RNU1-28P. Conducted in XRN2-AID cells treated or not with auxin and 

either control siRNA or INTS1 siRNA. Quantitation of RNA is expressed as fold 

change relative to non-depleted XRN2-AID cells with control siRNA. All levels 

were normalised to b actin. * denotes p < 0.05, error bars show standard 

deviation. Data is the mean of three independent experiments with samples run 

in triplicate each time. 

XRN2-AID + con siRNA

XRN2-AID + Aux + con siRNA

XRN2-AID + INTS1 siRNA

XRN2-AID + Aux + INTS1 siRNA

+500bpsnRNA +3Kb+2Kb
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4.8 Summary 

In this chapter I have used RNA-seq analysis and qRT-PCR validation to 

emphasise the importance of endonuclease functions in snRNA transcription. 

Firstly, it was shown that depletion of the Integrator causes global extension of 

snRNAs downstream of their TES, with the metagene plot suggesting snRNA 

readthrough is still terminated by 2 Kb (Figure 4.5). INTS1 and INTS11 depletion 

results in dysfunction of the Integrator by disrupting proper Integrator formation 

or through loss of Integrator endonuclease activity, respectively. Both of these 

effects resulted in loss of Integrator cleavage at the 3’ end of snRNAs upon 

recognition of the 3’ box and therefore resulted in extended snRNA transcripts. 

Furthermore, neither INTS11 nor INTS1 depletion prevented termination of 

readthrough snRNAs. Instead it was observed that extended snRNAs caused by 

Integrator dysfunction are terminated within a window of 1 – 3 Kb downstream of 

the TES (Figure 4.6 and Figure 4.7). Inhibition of transcription showed that 

INTS11 depletion caused a reduction in the levels of snRNA precursors (Figure 

4.8). Potentially these findings could be the result of increased degradation 

efficiency of extended snRNAs or an overall reduction in transcription of snRNAs 

upon INTS11 depletion.  

Secondly, I showed that DIS3 depletion was sufficient to cause extension 

of snRNAs and DIS3 plays a role in degradation of snRNA precursors / extended 

snRNA transcripts. Interestingly, DIS3 dependent snRNA extension did not 

continue further than 1 – 3 Kb downstream of the snRNA TES, similar to snRNA 

readthrough observed upon Integrator dysfunction (Figure 4.9 and Figure 4.10). 

Whether DIS3 depletion also effects snRNA processing is unclear. In addition, 

the findings observed upon transcription inhibition suggested that DIS3 depletion 

does not affect the levels of snRNA transcription (Figure 4.12). Accumulation of 

snRNA precursor transcripts occurred upon DIS3 depletion as in normal 

conditions DIS3 would degrade snRNAs. I hypothesise that DIS3 also degrades 

extended snRNAs rather than having a function in their processing. This is 

supported by the accumulative effect seen when both DIS3 and Integrator 

function are impaired, compared to either DIS3 depletion or INTS1 depletion 

alone (Figure 4.13). INTS1 depletion resulted in accumulation of extended 

snRNAs through loss of their 3’ end cleavage, which was intensified by DIS3 

depletion causing defective degradation of extended snRNAs and resulting in 
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their accumulation. DIS3 degradation of extended snRNAs has been reported 

previously by Labno et al (2016).  

Thirdly, another prominent finding throughout this chapter was that 

extended snRNAs are terminated relatively close to the snRNA TES. As 

mentioned previously this termination could be induced by Integrator independent 

transcript cleavage. It was suggested that Pol II would continue transcription 

slightly downstream of a cleavage event, as seen with protein-coding genes, and 

therefore a short transcript would be produced. This transcript would likely be 

rapidly degraded by a 5’ – 3’ exonuclease like XRN2. However, upon XRN2 

depletion there was no observed significant differences in RNA levels 

downstream of the extended snRNAs (Figure 4.14). Therefore for a downstream 

cleavage event to occur, an endonuclease other than the Integrator and a 

different 5’ – 3’ exonuclease would potentially be required. As XRN2 is the major 

exonuclease in the nucleus, it appears termination of extended snRNAs is more 

likely a result of Pol II dissociation without cleavage. The lack of an XRN2 effect 

in this data supports the work of Eaton et al (2018), who found no role for XRN2 

in snRNA termination.   

Overall I have highlighted the function of both the Integrator and exosome 

in snRNA metabolism, whilst also exploring the association between snRNA 3’ 

cleavage and termination. Although I have shown Integrator cleavage of snRNA 

is not necessary for transcription termination, it is possible that cleavage 

promotes more efficient termination and therefore disruption of the Integrator 

causes termination delay. In the following chapter I will investigate the role of 

CPSF73, an endonuclease that is also known for its role in cleavage at the 3’ end 

of some genes, in particular protein coding mRNA.  
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5. Results Chapter 3: The role of the endonuclease CPSF73 in 
processing of protein-coding genes and transcription of 

snRNAs 

Transcription has been most studied at protein-coding genes and CPSF73 

is known to have a major role in mRNA processing. CPSF73 recognises the 

AAUAAA hexamer sequence of the mRNA PAS and co-transcriptionally cleaves 

the mRNA 18 – 30 nts downstream of the PAS. This releases the nascent RNA 

and allows binding of polyadenylation factors (Proudfoot et al, 2011; Ryan et al, 

2004). In the torpedo model of transcription termination at protein coding genes, 

it is CPSF73 cleavage that enables transcription termination of mRNA. In this 

model it is believed that cleavage at a PAS site is required for mRNA transcription 

termination, with Pol II pausing after PAS transcription to enhance transcription 

termination efficiency (Fusby et al, 2016; Eaton et al, 2018). In the allosteric 

model of transcription termination, it is thought that transcription of the PAS 

results in a conformational change in the Pol II elongation complex leading to 

termination. This model is supported by data showing cleavage is not required 

for termination (Osheim et al, 1999; Osheim et al, 2002; Zhang et al, 2015a). 

Similar to the Integrator endonuclease activity at snRNAs, CPSF73 is responsible 

for 3’ end cleavage of mRNA. Therefore, I wanted to investigate whether CPSF73 

depletion would cause a processing defect on protein coding genes, like that seen 

with extended snRNAs upon INTS11 and INTS1 depletion. Additionally, these 

findings could potentially support or dispute the torpedo termination model. For 

these experiments, CPSF73 was genetically modified in HCT116 cells to bring it 

under inducible control.  

 

5.1 Production of the CPSF73-AID cell line 

To investigate the role of the endonuclease CPSF73, an inducible 

CPSF73 knockdown cell line had been previously produced by Steven West. The 

aim was to generate CPSF73-AID cells using HCT116:TIR1 parent cells and the 

same CRISPR/Cas9 protocol as for DIS3-AID cell production. However, this 

method yielded no cell colonies. It was hypothesised that the constitutively active 

TIR1 expression in HCT116:TIR1 cells might have an effect on the levels of 

tagged CPSF73. Therefore, HCT116 cells with inducible TIR1 expression under 
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a tet promoter were instead generated (HCT116:TIR1tet) and then utilised for 

CPSF73 genetic modification with the AID-tag to produce CPSF73-AID cells. 

Putting TIR1 under the control of a tet promoter allowed TIR1 inducible 

expression by addition of doxycycline, a synthetic tetracycline alternative, to cell 

media. After which addition of auxin should be able to deplete CPSF73 in 

CPSF73-AID cells.  

 

5.1.1 Full depletion of AID-tagged CPSF73 is dependent on TIR1 
expression 

To ensure the CPSF73-AID cell line was capable of inducible CPSF73 

depletion, a western blot was conducted. Using HCT116:TIR1 cells as a control, 

the levels of CPSF73 were analysed in CPSF73-AID cells treated or not with 

doxycycline (dox) for 16 hours, auxin for 2 hours or both (Figure 5.1). In untreated 

conditions CPSF73-AID cells showed similar levels of tagged CPSF73, as shown 

by the higher band, to endogenous levels of CPSF73 in HCT116:TIR1 cells. An 

endogenous CPSF73 band was not present in CPSF73-AID cells, suggesting 

both alleles of CPSF73 had been successfully tagged with the AID. Importantly, 

addition of auxin alone did not have an effect on tagged CPSF73 levels showing 

that TIR1 expression is required for CPSF73 depletion in this cell line. Auxin and 

doxycycline treatment together resulted in a near complete depletion of CPSF73. 

All further studies requiring CPSF73 depletion were then conducted by 16 hours 

doxycycline treatment and 2 hours auxin treatment in CPSF73-AID cells.  

Interestingly, doxycycline treatment alone in CPSF73-AID cells caused a 

reduction in tagged CPSF73 levels. Others have reported auxin-independent 

depletion of AID tagged proteins in human, chicken and yeast cells (Zasadzinska 

et al, 2018; Nishimura and Fukagawa, 2017; Morawska and Ulrich, 2013). This 

finding gives support to the hypothesis that TIR1 expression affects tagged 

CPSF73 levels and helps explain why generation of CPSF73-AID cells in a 

parental HCT116:TIR1 background was unsuccessful. In support of this, 

Mendoza-Ochoa et al (2019) found that in yeast, auxin independent depletion of 

the tagged protein could be caused by high levels of TIR1 expression. 

Proteasome-mediated AID tagged protein degradation in the absence of auxin 

was also reported by Sathyan et al (2019).  
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Figure 5.1 Western blot of CPSF73 

Western blot showing the levels of endogenous CPSF73 in HCT116:TIR1 cells 

(lower band) and AID-tagged CPSF73 in CPSF73-AID cells (higher band), 

treated or not for 16 hours with doxycycline to induce TIR1 expression, 2 hours 

auxin treatment or both. Alpha tubulin was used as a loading control. Full 

depletion of tagged CPSF73 requires TIR1 expression.  
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To overcome this issue they expressed an auxin response transcription factor 

(ARF), which in plants binds to AID in the absence of auxin (Figure 1.3). 

Expression of ARF rescued constitutive degradation of AID tagged proteins and 

increased the rate of degradation upon auxin addition. 

 

5.2 CPSF73 depletion causes extensive readthrough of protein coding 
mRNA.  

As it is known that CPSF73 is responsible for cleavage of mRNA, I 

investigated the effects of CPSF73 depletion on transcription and termination of 

protein-coding genes. RNA-Seq was conducted on CPSF73-AID cells, using 

single-end 50 bp reads. To generate RNA libraries, nascent nuclear RNA was 

extracted from cells after 16 hours of doxycycline and 2 hours auxin treatment, 

or no treatment. For analysis, reads were aligned to the genome after filtering. 

RPKM normalisation coverage plots were used to visualise read changes 

throughout the genome. Table 5.1 shows the RNA-Seq sequencing depth and 

coverage for both replicates of CPSF73-AID cells treated or not with auxin.  

 

Table 5.1 RNA-Seq statistical information for CPSF73-AID cells 

 

 

 

 

 

Sequencing depth over all exons = (Total number of mapped reads * average 

read length (bp)) / total length of merged exons 

Sequencing coverage over all exons = (Total number of mapped reads to exons 

* average read length (bp)) / total length of all exons 

 

 

Merged replicate 

sequence libraries  

CPSF73-AID without 

auxin 

CPSF73-AID 

with auxin 

Sequencing depth over 

all exons 

28.6 28.5 

Sequencing coverage 

over all exons 

3.3 2.6 
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To produce metagene plots, all annotated genes were filtered by 

expression and low or unexpressed genes were discarded. An inclusion window 

around each gene consisting of 3 Kb upstream of the TSS and 7 Kb downstream 

of the TES was utilised (Figure 5.2A). Any genes that overlapped other genes 

due to this inclusion window were removed from the analysis, to ensure a minimal 

false-positive discovery of CPSF73 depletion effects. Therefore 4702 genes were 

included in the metagene plot analysis, showing the average transcription profile 

of these genes.  

From Figure 5.2A there appeared to be no effect on transcription levels 

upstream of the TSS when CPSF73 was depleted. On the other hand a major 

accumulation of reads extending downstream of the TES, that did not terminate 

before 7 Kb, were observed specifically upon CPSF73 depletion. This finding 

shows CPSF73 is required for protein-coding mRNA cleavage and that CPSF73 

depletion results in extended mRNA transcripts due to continuation of Pol II 

transcription. In addition, a decrease in the average read density over the gene 

body is observed upon CPSF73 depletion. This could suggest that CPSF73 

depletion has an effect on Pol II occupancy at protein-coding genes. In fact, Eaton 

et al (2018) found a general reduction in transcription upon CPSF73 loss and in 

support Mapendano et al (2010) reported an impairment in transcription with PAS 

mutations or polyadenylation factor depletion. One explanation for this is that 

upon CPSF73 depletion, Pol II will not dissociate from the genome and instead 

continues transcribing. This results in less recycled Pol II and therefore a 

reduction in transcription of the gene (Mapendano et al, 2010) 
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Figure 5.2 Metagene profiles of protein coding genes in CPSF73-AID cells 

Metagene profile plots of non-overlapping protein-coding genes in CPSF73-AID 

cells with or without doxycycline and auxin treatment. A) Metagene of 4701 

protein-coding genes. Inclusion window is 3 Kb upstream of the TSS and 7 Kb 

downstream of the TES, with the gene body scaled to 5Kb. B) Metagene of 1715 

genes, showing 50 Kb downstream of the TES. C) Metagene of 689 genes, 

showing 100 Kb downstream of the TES. All represent one biological replicate; a 

second replicate is shown in Figure 5.3.  

A

B

C
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Figure 5.3 Second replicate of protein-coding gene metagene profiles in 
CPSF73-AID cells 

Second biological replicate for metagene profile plots of non-overlapping protein-

coding genes in CPSF73-AID cells with or without doxycycline and auxin 

treatment. A) Metagene of 4701 protein-coding genes. Inclusion window is 3 Kb 

upstream of the TSS and 7 Kb downstream of the TES, with the gene body scaled 

to 5Kb. B) Metagene of 1715 genes, showing 50 Kb downstream of the TES. C) 

Metagene of 689 genes, showing 100 Kb downstream of the TES.  

A

B

C
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As mRNA readthrough caused by CPSF73 depletion was still present at 7 

Kb downstream of the TES, metagene plots with increased inclusion windows 

were generated with the aim to observe the length of extension. A metagene plot 

showing 50 Kb (Figure 5.2B) and 100 Kb (Figure 5.2C) downstream of the TES 

were generated, ensuring any overlapping genes were then removed. This 

resulted in the analysis of 1715 and 689 protein-coding genes for each metagene 

plot, respectively. Analysis of 1715 protein-coding genes showed that upon 

CPSF73 depletion there is an accumulation of extended transcripts that have 

readthrough of at least 50 Kb. Although the 100 Kb metagene plot had a slightly 

reduced average read density, showing less RNA transcripts extended to this 

length, there was still an obvious increase in the amount of extended transcripts 

upon CPSF73 depletion. The increased average read density did not reduce to 

levels comparable to those observed in the presence of CPSF73, showing that 

CPSF73-dependent readthrough can extend further than 100 Kb for some 

transcripts. Overall this data shows it is unlikely that Pol II terminates on these 

genes without CPSF73.  

 

5.2.1 Unprocessed mRNAs can show more than 400 Kb readthrough 

It is clear from the metagene plot analysis that CPSF73 depletion causes 

readthrough that can extend to 100 Kb and beyond, however it was still unclear 

when and if this extension would terminate. Using the list of 689 non-overlapping 

genes at 100 Kb, genes were randomly selected for further visualisation by RPKM 

coverage tracks. Three of these genes, AGTPBP1, GPD2 and NEK7 are shown 

in Figure 5.4. The pink area in this figure highlights the readthrough caused by 

CPSF73 loss. For all three genes extension was observed beyond approximately 

400 Kb downstream of the TES. It is possible that with an increased auxin 

treatment time (> 2 hours) and therefore longer depletion of CPSF73, this 

extension could continue further than 400 Kb. Overall these findings suggest that 

Pol II transcription termination of protein-coding genes is tightly coupled to mRNA 

cleavage by CPSF73. As mRNA extension can be observed for thousands of 

base pairs it could be argued that CPSF73 is necessary for termination. Therefore 

giving further support to the XRN2 model / torpedo model for transcription 

termination. 
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Figure 5.4 RPKM coverage tracks of extended mRNAs in CPSF73-AID cells 

RPKM normalised coverage tracks showing three protein-coding genes, 

AGTPBP1, GPD2 and NEK7, from CPSF73-AID cells treated or not with 

doxycycline and auxin. The pink box area highlights the extension readthrough 

caused by CPSF73 depletion. The numbers in brackets show the average RPKM 

normalised read count range. Figure represents one biological replicate, a 

second is shown in Figure 5.5.  

A

B

C

CPSF73-AID CPSF73-AID + dox + aux
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Figure 5.5 Second replicate RPKM coverage tracks of extended mRNAs in 
CPSF73-AID cells 

Second biological replicate for RPKM normalised coverage tracks showing three 

protein-coding genes, AGTPBP1, GPD2 and NEK7, from CPSF73-AID cells 

treated or not with doxycycline and auxin. The pink box area highlights the 

extension readthrough caused by CPSF73 depletion. The numbers in brackets 

show the average RPKM normalised read count range. 

A

B

C
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5.2.2 mRNA readthrough can extend into neighbouring genes 

CPSF73-dependent readthrough occurred at an extensive number of 

protein-coding genes, with extension often passing through other expressed 

genes. In these types of situations and from the RNA-Seq data alone, it was 

difficult to differentiate from which gene the readthrough originated from or 

whether increased reads over a gene were caused by readthrough into that gene 

or transcription upregulation. Instead I investigated readthrough into non-

expressed neighbouring genes (Figure 5.6). In Figure 5.6B, CPSF73 depletion 

caused readthrough of a protein-coding gene, SPIN1, that extended 

approximately 300 Kb downstream of the TES. This readthrough extended into 

another previously non-expressed protein-coding gene, NXNL2, as well as a long 

intergenic non-coding RNA (lincRNA), AL592486.1.  

Figure 5.6C shows a similar example, with readthrough from either HIF1A 

or the long non-coding RNA AL137129 extending into SYT16 which was not 

expressed in CPSF73-AID cells under no treatment conditions. In Figure 5.6A 

readthrough that may occur from multiple genes leads to the upregulation of 

reads over lincRNA AL162414 and protein-coding gene MUSK. Overall it is clear 

that readthrough does not easily terminate and instead can continue into 

neighbouring genes, passing through their PAS sites and continuing onwards. 

This is not just true for expressed or non-expressed protein-coding genes, but 

also for readthrough extending into lncRNAs and potentially causing their 

upregulation. CPSF73 depletion causes issues with gene expression and 

regulation, which is likely to lead to unviable cells. This would explain why we 

were unable to obtain tagged-CPSF73 in a constitutively TIR1 expressing cell 

background (HCT116:TIR1 cells). As shown previously, TIR1 expression causes 

a reduction in tagged CPSF73 levels (Figure 5.1). If these reduced levels were 

sufficient to cause readthrough as shown here, gene expression would be highly 

altered and would potentially affect cell survival.  
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Figure 5.6 RPKM coverage tracks showing CPSF73 depletion dependent 
readthrough into neighbouring genes 

RPKM normalised coverage tracks from CPSF73-AID cells treated or not with 

doxycycline and auxin. A, B and C each show different genes with readthrough 

of various length extending into neighbouring genes that weren’t expressed under 

normal conditions. The numbers in brackets show the average RPKM normalised 

read count range. Figure represents one biological replicate, a second biological 

replicate is shown in Figure 5.7.  

CPSF73-AID CPSF73-AID + dox + aux

A

B C
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Figure 5.7 Second replicate RPKM coverage tracks showing CPSF73 depletion 
dependent readthrough into neighbouring genes 

Second biological replicate for RPKM normalised coverage tracks from CPSF73-

AID cells treated or not with doxycycline and auxin. A, B and C each show 

different genes with readthrough of various length extending into neighbouring 

genes that weren’t expressed under normal conditions. The numbers in brackets 

show the average RPKM normalised read count range. 

 

 

A

B C
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5.3  CPSF73 does not appear to play a role in snRNA processing  

Although previous studies have shown the endonuclease component of 

the Integrator is responsible for cleavage of snRNAs, due to the homology 

between CPSF73 and INTS11 I wanted to investigate if CPSF73 had any effect 

on snRNA transcription. Using the same list of snRNAs to create the INTS11-

SMASh snRNA metagene plot (Figure 4.5), a metagene plot was generated for 

CPSF73-AID cells (Figure 5.8A). From the metagene there were no observable 

differences, suggesting depletion of CPSF73 has no effect, at any level, on 

snRNA transcription and processing. To further confirm this finding I investigated 

some individual snRNAs, including RNU5B-1 and RNU5D-1, as shown in Figure 

5.8B. RPKM coverage plots supported the finding that CPSF73 does not play a 

role in snRNA maturation, as no differences were observed upon CPSF73 

depletion. These results were not unexpected as no role for CPSF73 in snRNA 

processing has been found previously, except in plants (Liu et al, 2016). 

Additionally, although the fission yeast CPSF73 homolog, YSH1, was found to 

bind to snRNAs it was not necessary for snRNA transcription termination, unlike 

the XRN2 homolog, DHP1 (Larochelle et al, 2018). However, in humans CPSF73 

is known to interact with mature snRNAs, i.e. u7 snRNP, to regulate 3’ end 

processing of RDH pre-mRNA (Yang et al, 2013).  
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Figure 5.8 CPSF73-AID snRNA metaplot and snRNA RPKM coverage tracks 

One biological replicate represented; see Figure 5.9 for an additional replicate. 

A) Metagene coverage plot for 95 snRNAs in CPSF73-AID cells, with an inclusion 

window 100 bp upstream of the TSS and 2000 bp downstream of the TES. The 

gene body was scaled to 100 bp. B) RPKM coverage tracks for snRNAs RNU5B-

1 and RNU5D-1 in CPSF73-AID cells treated or not with doxycycline and auxin. 

The numbers in brackets show the average RPKM normalised read count range. 

 

B

A
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Figure 5.9 Second replicate CPSF73-AID snRNA metaplot and snRNA RPKM 
coverage tracks 

Second biological replicate. A) Metagene coverage plot for 95 snRNAs in 

CPSF73-AID cells, with an inclusion window 100 bp upstream of the TSS and 

2000 bp downstream of the TES. B) RPKM coverage tracks for snRNAs RNU5B-

1 and RNU5D-1 in CPSF73-AID cells. The numbers in brackets show the average 

RPKM normalised read count range. 

B

A

n = 95
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5.4 Summary 

RNA-seq data from CPSF73-AID cells was able to demonstrate the major 

role of CPSF73 in protein-coding mRNA processing. Upon CPSF73 depletion 

numerous protein-coding genes show aberrant transcription termination resulting 

in Pol II readthrough (Figure 5.2). In some cases this readthrough was able to 

extend past 400 Kb downstream of the TES, showing impairment of Pol II 

dissociation from the genome when mRNA cleavage is impaired (Figure 5.4). 

Additionally, readthrough was not perturbed by neighbouring genes, with 

extension causing an accumulation of reads in genes that were previously lowly 

or not expressed (Figure 5.6). The global and major readthrough effect at protein 

coding genes when CPSF73 cleavage is inhibited, demonstrates the close 

relationship between 3’ end cleavage of mRNAs and their termination. These 

findings are in line with previous work from the West laboratory (Eaton et al, 

2018), giving support to the torpedo model of transcription termination and 

disputing such studies that suggested cleavage was not essential for termination 

(Osheim et al, 1999; Osheim et al, 2002; Zhang et al, 2015a). Additionally, in this 

work no function for CPSF73 was found in snRNA transcription (Figure 5.8). 

Overall these findings are similar to those of Eaton et al (2018) who 

generated a conditional CPSF73 depletion cell line in HCT116 cells by tagging 

the C terminus of CPSF73 with a Echerichia coli DHFR-based degron. With this 

system, withdrawal of trimethoprim from cell media caused depletion of CPSF73. 

Western blot confirmed near complete depletion of tagged CPSF73 after 10 

hours, which is slower than the AID system utilised in this work. As the work of 

Eaton et al (2018) was conducted in my lab, we aimed to produce a cell line 

capable of a quicker depletion of CPSF73 than the DHFR system. In support of 

the findings within this work, Eaton et al (2018) found a significant reduction in 

PAS cleavage at MYC and ACTB genes by RT-qPCR. As I conducted RNA-Seq 

on the CPSF73-AID cells I was able to show this defect in PAS cleavage was 

more widespread. The main difference in this work compared to Eaton et al 

(2018) was the use of CPSF73-AID cells to investigate the more immediate 

effects of CPSF73 depletion and the ability to analyse thousands of genes by 

conducting RNA-Seq.  

Eaton et al (2018) performed ChIP on CPSF73-DHFR cells. They found 

that loss of CPSF73 caused a general reduction in transcription and extensive 
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transcription readthrough at MYC and ACTB, which also supports the findings in 

this chapter. Additionally, Eaton et al (2018) was able to show that a CPSF73 

active site mutant could not support efficient transcriptional termination of MYC 

or ACTB, which was something not investigated within this work.  

 In the next chapter the function of CPSF73 is explored further, by 

investigating its role in the transcription and processing of RDHs, alongside DIS3 

and the Integrator.   
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6. Results Chapter 4: Endonuclease function in replication 
dependent histone transcription and processing 

Replication-dependent histones (RDHs) aid in packaging of newly 

synthesised DNA and are often found in clusters. They are transcribed by Pol II, 

are not polyadenylated and have a unique processing pathway (Figure 1.1). 

RDHs contain a 3’ stem-loop and 5’ purine-rich histone downstream element 

(HDE). Cleavage of RDH pre-mRNA occurs between the stem loop and HDE by 

the histone cleavage complex (HCC) which includes CPSF73, CPSF100, CstF64 

and Symplekin (Marzluff and Koreski, 2017). Recruitment of the HCC requires 

binding of U7 snRNP to the HDE as well as the stem-loop binding protein (SLBP) 

aiding in stabilisation of U7 snRNP on the RDH pre-mRNA, potentially through 

interactions with FLASH (Skrajna et al, 2017). Similar to spliceosomal snRNPs, 

U7 snRNP contains a binding site for a Sm ring. The core U7 snRNP consists of 

U7 snRNA bound to five Sm proteins found in spliceosomal snRNAs. However, 

it also contains Lsm10 and Lsm11 proteins which replace SmD1 and SmD2. It is 

Lsm11 binding to FLASH that creates a docking platform for the HCC (Yang et 

al, 2013; Burch et al, 2011).  

RDH pre-mRNA 3’ end cleavage occurs rapidly upon transcription of the 

processing signal and unlike polyadenylated genes, where Pol II occupancy 

continues 4 – 6 Kb downstream of the TES, transcription terminates shortly after 

as shown by a quick drop in Pol II occupancy after the RDH TES (Anamika et al, 

2012). CPSF73, as part of the HCC, is believed to be the main endonuclease 

responsible for RDH pre-mRNA cleavage and has been shown to be cross-linked 

to the RDH pre-mRNA cleavage site (Dominski et al, 2005). This endonuclease 

also has a major role in cleavage / polyadenylation of protein-coding mRNA 

(Mandel et al, 2006).  

As U7 snRNA plays a major role in RDH pre-mRNA processing, it appears 

likely that disruption of Integrator function could indirectly affect RDH transcription 

through decreased levels of processed U7 snRNA. Interestingly, the Integrator 

has also been suggested to have a direct role in RDH processing. Skaar et al 

(2015) found the Integrator binds to the 3’ end of RDH genes and knockdown of 

Integrator subunit 3 (INTS3) caused accumulation of unprocessed 

polyadenylated RDH transcripts. However, in Drosophila experiments no link 
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between Integrator dysfunction and histone pre-mRNA processing or cleavage 

and polyadenylation were found. In comparison, knockdown of CPSF73, 

CPSF100, Symplekin or SLBP was sufficient to affect RDH RNA processing 

(Ezzeddine et al, 2011). Therefore it is still not known what role, if any, the 

Integrator may have in RDH transcription. Unfortunately, RDH transcripts were 

not fully detectable in my INTS11 RNA-Seq dataset meaning I was unable to 

draw conclusions on the direct effect of Integrator depletion.  

So far I have shown DIS3 is responsible for degradation of a multitude of 

transcripts and therefore it is possible DIS3 may also play a role in RDH mRNA 

or RDH precursor degradation. In support, Mullen and Marzluff (2008) found that 

disrupting exosome function caused a reduction in histone mRNA degradation.  

In a follow-up study, Slevin et al (2014) elucidated a pathway for histone 

degradation. Firstly a 3’ – 5’ exonuclease, 3’hExo, binds to SLBP and degrades 

the histone mRNA into the stem-loop. This forms a degradation intermediate with 

SLBP still bound. Upon removal of SLBP which would otherwise block further 

degradation, the exosome is able to degrade the histone mRNA. In addition, 

depletion of DIS3 showed readthrough histone transcripts produced by CstF64 

knockdown were degradation targets of the exosome (Romeo et al, 2014). Thus, 

DIS3 as part of the exosome could be crucial for RDH mRNA and / or RDH 

precursor degradation. In this chapter I investigate the role of endonucleases on 

RDHs. 

 

6.1 CPSF73 depletion doesn’t affect RDH pre-mRNA processing 

As mentioned in the previous chapter, CPSF73-AID cells underwent RNA-

Seq to elucidate direct substrates of CPSF73. Using this data, I firstly wanted to 

elucidate the effect of CPSF73 knockdown on RDH mRNA, due to its major 

function as part of the HCC. RDH genes often cluster on the genome and 

therefore a cluster of 5 RDHs (HIST1H3A, HIST1H4A, HIST1H4B, HIST1H3B, 

HIST1H2AB) could be easily visualised together (Figure 6.1 and 6.2). 

Interestingly, no differences were observed in these five RDH transcripts upon 

CPSF73 depletion. CPSF73 may function at a specific subset of RDHs, therefore 

I further analysed another cluster of RDH genes. RPKM coverage tracks were 

used to visualise HIST1H4D, HIST1H1PS1, HIST1H3D, HIST1H2AD, 
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HIST1H2BF and HIST1H4E (Figure 6.3 and 6.4). Again, no apparent differences 

were observed.  

One possible explanation for observing no effect on RDH transcription, 

may be that another endonuclease is sufficient for RDH pre-mRNA cleavage 

upon CPSF73 depletion. For example, MBLAC1, which when depleted has been 

shown to cause accumulation of unprocessed RDH transcripts (Pettinati et al, 

2018). Another explanation is that remaining levels of CPSF73 after doxycycline 

and auxin treatment are sufficient for RDH pre-mRNA processing. However, due 

to the absence of a visible band on the western blot when cells were treated with 

doxycycline and auxin, I am confident that this is unlikely (Figure 5.1). In addition, 

the massive effects I observed of CPSF73 depletion on mRNA genes suggest a 

sufficient depletion of CPSF73 (Chapter 5).  

Pettinati et al (2018) observed an approximate readthrough of 200 bp on 

multiple, but not all, RDH genes when CPSF73 was depleted by RNAi. To ensure 

this small readthrough effect had not been visually overlooked when analysing 

the RDH genes in cluster, I investigated several genes individually. Three of these 

genes (HIST1H3B, HIST1H4B and HIST1H2BC), which were shown to have a 

major readthrough effect upon MBLAC1 depletion and similar effect upon 

CPSF73 depletion in Pettinati et al (2018), are shown in Figure 6.5. In contrast to 

the findings of Pettinati et al (2018), no readthrough effect was observed on these 

RDH mRNAs when CPSF73 was depleted in our CPSF73-AID cells.  

The differences between these two works may be due to the 

methodologies used. For example, Pettinati et al (2018) used siRNA in HeLa cells 

for depletion of CPSF73 compared to my use of the AID system in HCT116 cells. 

In addition, their study utilised cells synchronised in early S-phase during which 

RDH genes are rapidly transcribed and they specifically analysed chromatin 

associated RNA, in comparison to nuclear RNA extracted for my investigations. 

Therefore, readthrough RDH transcripts may not have been detected in this work 

due to their rapid turnover at the end of S phase of the cell cycle (Marzluff et al, 

2008). However, defective processing of RDH pre-mRNA has been shown to 

cause their aberrant polyadenylation by use of a downstream PAS (Kari et al, 

2013; Romeo et al, 2014). These polyadenylated transcripts are stable 

throughout the cell cycle and therefore more likely to be detected (Levine et al, 

1987). 
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Figure 6.1 CPSF73-AID RPKM coverage track of a RDH gene cluster 

RPKM normalised coverage track showing five RDH genes (HIST1H3A, 

HIST1H4A, HIST1H4B, HIST1H3B and HIST1H2AB) in CPSF73-AID cells with 

or without doxycycline and auxin treatment. No apparent differences are 

visualised. The numbers in brackets show the average RPKM normalised read 

count range. Figure is representative of one biological replicate, a second 

biological replicate is shown in Figure 6.2.  

 

 

CPSF73-AID CPSF73-AID + dox + Aux
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Figure 6.2 Second replicate CPSF73-AID RPKM coverage track of a RDH gene 
cluster 

Second biological replicate for RPKM normalised coverage track showing five 

RDHs (HIST1H3A, HIST1H4A, HIST1H4B, HIST1H3B and HIST1H2AB) in 

CPSF73-AID cells with or without doxycycline and auxin treatment. No apparent 

differences are visualised. The numbers in brackets show the average RPKM 

normalised read count range. 

 

 

CPSF73-AID CPSF73-AID + dox + aux
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Figure 6.3 CPSF73-AID RPKM coverage track of a second RDH gene cluster 

RPKM normalised coverage track showing six RDH genese (HIST1H4D, 

HIST1H1PS1, HIST1H3D, HIST1H2AD, HIST1H2BF, HIST1H4E) in CPSF73-

AID cells with or without doxycycline and auxin treatment. No apparent 

differences are visualised. The numbers in brackets show the average RPKM 

normalised read count range. Figure is representative of one biological replicate, 

a second biological replicate is shown in Figure 6.4.  

 

 

CPSF73-AID CPSF73-AID + dox + Aux
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Figure 6.4 Second replicate CPSF73-AID RPKM coverage track of a second 
RDH gene cluster 

Second biological replicate for RPKM normalised coverage track showing six 

RDHs (HIST1H4D, HIST1H1PS1, HIST1H3D, HIST1H2AD, HIST1H2BF, 

HIST1H4E) in CPSF73-AID cells with or without doxycycline and auxin treatment. 

No apparent differences are visualised. The numbers in brackets show the 

average RPKM normalised read count range. 

 

CPSF73-AID CPSF73-AID + dox + aux
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Figure 6.5 RPKM coverage tracks of individual RDHs in CPSF73-AID cells 

A closer visualisation of RPKM normalised coverage tracks for HIST1H4B, 

HIST1H3B and HIST1H2BC in CPSF73-AID cells treated or not with doxycycline 

and auxin. No apparent differences are visualised. The numbers in brackets show 

the average RPKM normalised read count range. Figure represents one 

biological replicate, a second replicate is represented in Figure 6.6.  

 

CPSF73-AID

CPSF73-AID + dox + Aux
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Figure 6.6 Second replicate RPKM coverage tracks of individual RDHs in 
CPSF73-AID cells 

Second biological replicate of RPKM normalised coverage tracks for HIST1H4B, 

HIST1H3B and HIST1H2BC in CPSF73-AID cells treated or not with doxycycline 

and auxin. No apparent differences are visualised. The numbers in brackets show 

the average RPKM normalised read count range. 

CPSF73-AID

CPSF73-AID + dox + aux
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6.2 DIS3 depletion causes accumulation of RDH PROMPTs 

As previously mentioned, the exosome has been found to degrade mature 

RDH transcripts. However, whether EXOSC10, DIS3 or both subunits provide 

this degradation activity is unclear. Therefore, I analysed the same cluster of 

histones as in Figure 6.1 using DIS3-AID RNA-Seq data (Figure 6.7 and 6.8). 

DIS3 depletion caused an increase in reads upstream of the TSS of some RDHs, 

including HIST1H4B and HIST1H2AB as highlighted by the arrows. These reads 

show PROMPT accumulation in the opposite transcription direction to the 

associated RDH gene, as confirmed by split strand visualisation (Figure 6.9). This 

demonstrates that PROMPTs can also derive from RDH genes and accumulate 

upon DIS3 depletion. Aside from PROMPT accumulation, no other changes in 

read levels were observed. Therefore, DIS3 may not be responsible for RDH 

mRNA degradation as an accumulation of mature RDH transcripts might have 

been expected if their degradation had been inhibited. Although DIS3 depletion 

appears to show no effects on RDH mRNA degradation, the exosome may still 

play a role. Instead, the other catalytic subunit EXOSC10 may be responsible for 

RDH degradation or may show redundancy to DIS3. Alternatively, 1 hour of DIS3 

depletion may not have been sufficient for RDH transcript accumulation. S-phase, 

when RDH genes are rapidly transcribed, lasts for approximately 8 hours and 

RDHs are quickly degraded afterwards (Hahn et al, 2009; Harris et al, 1991). 

Therefore, effects on RDH transcripts observed upon DIS3 depletion may be 

dependent on the cell cycle phase.  

  

6.3 Preventing U7 snRNA binding to the HDE of RDH genes causes 
defective RDH processing 

The role of the Integrator in RDH processing is currently unclear, although 

both a direct and indirect effect have been postulated (Skaar et al, 2015; 

Ezzeddine et al, 2011). As the Integrator is responsible for proper processing of 

snRNAs as shown in the previous chapter, Integrator dysfunction would affect U7 

snRNA processing and therefore could indirectly cause misprocessing of RDH 

transcripts. To specifically investigate the effects of Integrator dysfunction on 

RDHs through U7 snRNA misprocessing, I used an antisense morpholino 

oligonucleotide (AMO) to U7 snRNA.  
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Figure 6.7 DIS3-AID RPKM coverage track of a RDH gene cluster 

RPKM normalised coverage track showing five RDH genes (HIST1H3A, 

HIST1H4A, HIST1H4B, HIST1H3B and HIST1H2AB) in DIS3-AID cells with or 

without auxin treatment. The black arrows highlight reads corresponding to 

PROMPT transcription in the opposing direction to transcription of the associated 

RDH gene. The numbers in brackets show the average RPKM normalised read 

count range. Figure represents one biological replicate, a second biological 

replicate can be found in Figure 6.8.  
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Figure 6.8 Second replicate DIS3-AID RPKM coverage track of a RDH gene 
cluster 

Second biological replicate of RPKM normalised coverage track showing five 

RDHs (HIST1H3A, HIST1H4A, HIST1H4B, HIST1H3B and HIST1H2AB) in DIS3-

AID cells with or without auxin treatment. The numbers in brackets show the 

average RPKM normalised read count range. 

 

 

DIS3-AID DIS3-AID + aux
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Figure 6.9 DIS3-AID RPKM split strand coverage track of a RDH gene cluster 

RPKM normalised coverage track showing five RDHs (HIST1H3A, HIST1H4A, 

HIST1H4B, HIST1H3B and HIST1H2AB) in DIS3-AID cells (first replicate) with or 

without auxin treatment. Strands have been separated, with the sense strand in 

red and antisense strand in blue. The black arrows highlight reads corresponding 

to PROMPT transcription in the opposing direction to transcription of the 

associated RDH gene. The numbers in brackets show the average RPKM 

normalised read count range. 

 

Sense Antisense

DIS3-AID

DIS3-AID
+ Aux
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This allowed easy occlusion of U7 snRNP, thus inhibiting its function, in various 

cell lines and further analysis of the effects. 

 

6.3.1 Occlusion of U7 snRNP causes extension of RDHs 

After using a AMO to bind to and occlude U7 snRNP in HCT116:TIR1 cells, 

I first examined the effects on RDH pre-mRNA processing. To do this, qRT-PCR 

was conducted to measure uncleaved and downstream RNA levels of two RDH 

genes, HIST1H4H and HIST1H3B (Figure 6.10A and 6.10B). Blocking of U7 

snRNP binding caused a strong accumulation of uncleaved HIST1H4H and 

HIST1H3B in comparison to HCT116:TIR1 cells transfected with a control AMO. 

Therefore, preventing U7 snRNP binding to the HDE causes impaired cleavage 

of RDH pre-mRNA. Lsm11, a subunit of U7 snRNP, normally forms a docking 

platform with FLASH for the HCC. The defective RDH cleavage upon U7 snRNA 

inhibition is therefore likely caused by impaired recruitment of the HCC (Yang et 

al, 2013; Burch et al, 2011).  

To determine how far unprocessed RDH transcripts would extend past the 

TES when U7 snRNA was bound by AMO, RNA levels downstream of the TES 

were measured by qRT-PCR (Figure 6.10A and 6.10B). For HIST1H4H an 

increase in reads 150 bp downstream of the TES was observed, with a decline 

to background levels by 1 Kb. For HIST1H3B the observed readthrough was 

longer, with a significant increase in RNA levels at 2 Kb downstream. However, 

there were no significant differences by 3 Kb past the TES. These findings 

suggest that abrogating RDH pre-mRNA cleavage produces extended RDH 

transcripts which terminate relatively close to the TES and shows their extension 

is not finite.   

Interestingly, this extension of RDH mRNA is similar to the extension of 

snRNAs observed upon INTS11 or INTS1 depletion (Figure 4.5 and 4.7). Both 

RDH and snRNA misprocessed transcripts show extension that is not finite, with 

termination occurring by 3 Kb downstream of the TES. Therefore, correct 

processing may not be required for termination of these extended transcripts.  
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Figure 6.10 RNA levels downstream of RDHs after U7 snRNP depletion 

qRT-PCR detection of RNA levels downstream of HIST1H4H or HIST1H3B in 

HCT116:TIR1 cells treated with either control antisense morpholino 

oligonucleotide (AMO) or a U7 snRNA AMO. Levels of uncleaved (UC) histones 

were measured using primers homologous to the upstream (forward primer) and 

downstream (reverse primer) region of the TES. Quantitation of RNA is 

expressed as fold change relative to HCT116:TIR1 cells with control AMO. 

Standard deviation is plotted by error bars, * denotes a p value < 0.05. A) 

Normalised to b actin. B) Normalised to gene body.  

HCT116:TIR1 + con AMO HCT116:TIR1 + U7 AMO

A

B

+150bpUC +3Kb+1Kb +2Kb+600bp

+300bpRDH
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6.3.2 No significant differences in Pol II occupancy were found on 
RDH genes after blocking U7 snRNP binding 

To determine whether using a U7 snRNP AMO affected RDH transcription 

rates, Pol II occupancy was analysed downstream of HIST1H4H and HIST1H3B 

genes by chromatin immunoprecipitation (ChIP) (Figure 6.11). This experiment 

was conducted in HCT116:TIR1 cells electroporated with either a control AMO or 

U7 snRNA AMO. For HIST1H3B there were no significant differences in Pol II 

occupancy, with levels decreasing to near zero by 2 Kb. However, HIST1H4H 

showed a significant increase of Pol II occupancy of uncleaved transcripts when 

U7 snRNA binding was obstructed. This significant increase did not continue 

downstream of the TES although levels remained higher in the U7 snRNA AMO 

condition compared to controls. At 1 Kb downstream of the TES, Pol II occupancy 

had decreased to low levels when either U7 snRNA AMO was present or absent. 

These findings suggest that Pol II occupancy is unchanged on RDH genes when 

U7 snRNA binding is inhibited, although there was a slight increase over 

uncleaved HIST1H4H transcripts. Further experimental analysis would therefore 

be required at other RDH genes to determine the full effects of U7 snRNA on Pol 

II occupancy at RDH genes.  

 

6.3.3 DIS3 depletion has no effect on RDH processing  

DIS3-AID RNA-Seq data suggested DIS3 depletion had no effect on RDH 

transcription (Figure 6.7). To validate this finding, qRT-PCR was used to 

determine levels of two RDH transcripts and RNA levels downstream of their TES 

(Figure 6.12). Primers designed over the gene body (gb) of both HIST1H3B and 

HIST1H4H showed no differences in transcript levels of these histones upon 

DIS3 depletion. In fact, for HIST1H3B levels appeared to decrease although the 

result was not significant. This corroborates the RNA-Seq findings and suggests 

RDH mRNA may not be a substrate of DIS3 or that another nuclease shows 

redundancy when DIS3 is depleted. Additionally, DIS3 depletion had no effect on 

the levels of uncleaved RDHs, showing DIS3 does not affect RDH processing 

mechanisms. In further support, RNA levels downstream of the TES were not 

significantly different.  
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Figure 6.11 ChIP of RDHs in HCT116:TIR1 cells with U7 snRNP depletion 

ChIP results measuring the relative levels of Pol II occupation to gene body 

levels, of uncleaved (UC) and downstream regions of HIST1H4H and HIST1H3B 

RDH genes. Conducted in HCT116:TIR1 cells treated with either a control AMO 

or a U7 snRNP AMO. Error bars plot standard deviation and * denotes a p value 

< 0.05. Data is the mean of three independent experiments with samples run in 

triplicate each time. 

HCT116:TIR1 + con AMO HCT116:TIR1 + U7 AMO

+150bpUC +2Kb+1Kb+600bp

+300bpRDH
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Figure 6.12 RNA levels downstream of RDHs in DIS3-AID cells 

qRT-PCR detection of RNA levels over the gene body (gb), uncleaved (UC) or 

downstream regions of HIST1H3B and HIST1H4H. Conducted in HCT116:TIR1 

cells and DIS3-AID cells treated or not with auxin. Quantitation of RNA is 

expressed as fold change relative to HCT116:TIR1 cells. All levels are normalised 

to b actin. Error bars plot standard deviation. Data is the mean of three 

independent experiments with samples run in triplicate each time. 

HCT116:TIR1 HCT116:TIR1 + Aux

DIS3-AID DIS3-AID + Aux

+300bpUC +3Kb+1Kb+600bp

RDH

+2Kbgb
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6.3.4 DIS3 depletion and U7 snRNP occlusion has a cumulative 
effect on extended RDHs 

Extended RDH transcripts have been previously reported in a CstF64 

knockdown cell model (Romeo et al, 2014). These transcripts were also found to 

be degraded by the exosome. Therefore, I used DIS3-AID cells to determine if 

DIS3 could be responsible for degradation of extended RDHs produced by U7 

snRNA occlusion. DIS3-AID cells were electroporated with either control or U7 

snRNA AMO, before treatment or not with auxin for 2 hours. RNA levels 

downstream of the TES for HIST1H4H and HIST1H3B were determined by qRT-

PCR (Figure 6.13A and 6.13B).  

As seen previously, depletion of DIS3 by auxin addition had no effect on 

RDH mRNA processing. Similar to the results in HCT116:TIR1 cells, U7 snRNA 

AMO in DIS3-AID cells produced an increase in uncleaved histones which 

showed extension that terminated by 1 – 2 Kb downstream of the TES. 

Interestingly, when U7 snRNA binding was inhibited and DIS3 depleted together 

a cumulative effect could be seen as an even bigger increase in uncleaved and 

extended RDH transcripts. The extension length of these transcripts was only 

slightly, if at all, increased by DIS3 depletion. Due to this and having observed no 

effect of DIS3 on RDH processing previously in this work, it is likely that the 

accumulation of extended RDH transcripts is due to loss of their degradation by 

DIS3.  

From the data it is currently unclear whether DIS3 degrades mature RDH 

RNA. However, from these findings it can be concluded that DIS3 is able to 

degrade unprocessed extended RDHs. It is possible that DIS3 degrades both 

mature and extended transcripts and that another nuclease shows redundancy 

for mature RDH degradation or that 1 hour of DIS3 depletion is not enough for 

mature RDH accumulation. Alternatively, DIS3 may only degrade the extended 

RDH transcripts and this discrepancy may be related to polyadenylation. Mature 

RDHs are not polyadenylated whereas it has been shown that unprocessed 

RDHs become polyadenylated by use of downstream PASs (Kari et al, 2013; 

Romeo et al, 2014; Sullivan et al, 2009). It is not understood how DIS3 recognises 

targets for degradation, but polyadenylation may be involved in some way.  
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Figure 6.13 RNA levels downstream of RDHs with DIS3 depletion and U7 snRNP 
occlusion 

qRT-PCR detection of uncleaved (UC) and extended HIST1H4H and HIST1H3B 

transcripts in DIS3-AID cells electroporated with either control AMO or U7 snRNA 

AMO and treated or not with auxin. Quantitation of RNA is expressed as fold 

change relative to non-depleted Dis3-AID cells with control AMO. * denotes p < 

0.05, error bars plot standard deviation. Data is the mean of three independent 

experiments with samples run in triplicate each time. A) Normalised to b actin. B) 

Normalised to gene body. 

DIS3-AID + con AMO DIS3-AID + aux + con AMO

DIS3-AID + U7 AMO DIS3-AID + aux + U7 AMO

A

B

+150bpUC +2Kb+1Kb+600bp

+300bpRDH
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The accumulative effect produced by DIS3 depletion was also observed 

for snRNAs, which showed increased levels of unprocessed transcripts upon 

DIS3 and INTS1 depletion (Figure 4.13). In similarity to RDHs, DIS3 depletion did 

not alter the length of these extended snRNA transcripts. This demonstrates the 

major role of DIS3 in degrading misprocessed transcripts from a variety of genes. 

 

6.4 Summary  

Firstly, in this chapter I have shown that conditional depletion of CPSF73 

in HCT116 cells appears to have no transcriptional effect on RDH genes as 

inferred from RNA-Seq analysis. Two clusters of RDH transcripts were analysed, 

to help rule out the possibility of CPSF73 acting on only a subset of RDHs (Figure 

6.1 and 6.3). As it had been expected that CPSF73 depletion would cause 

misprocessing and readthrough of RDH transcripts, it is possible another 

endonuclease may show redundancy. One candidate for this is the endonuclease 

MBLAC1, which was shown to selectively target RDH pre-mRNA for processing 

and abrogate cell cycle progression upon its depletion (Pettinati et al, 2018). From 

the same study it was shown that either MBLAC1 or CPSF73 depletion caused 

readthrough at numerous RDH genes of approximately 200 bp in length. 

Therefore, I analysed three of the same genes used in the study that had shown 

“major” misprocessing. However, no effect was observed in this work (Figure 6.5). 

These differences may be due to variances in methodology, such as using 

unsynchronised cells as RDHs are produced and degraded during S phase 

(Marzluff et al, 2008). However, U7 snRNP AMO experiments described here 

were also conducted on unsynchronised cells and showed extension of RDH 

transcripts, suggesting that the lack of CPSF73 effect is unlikely to be caused by 

cell phase synchronisation differences. Additionally I cannot rule out the 

possibility of an incomplete depletion of CPSF73 in our cell line, although the 

western blot data and strong effect on mRNA transcripts would argue against 

this.  

Secondly, DIS3 depletion caused accumulation of RDH associated 

PROMPTs but had no effect on transcript levels or processing of RDH pre-mRNA 

(Figure 6.7 and 6.12). This finding suggests DIS3 may not be responsible for 

RDH mRNA degradation but doesn’t rule out the exosome entirely, as EXOSC10 
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may play a role. However a reason for no changes in RDH transcript levels may 

be due to the small depletion time of Dis3 at only 1 hour, as levels of RDHs are 

tightly regulated by the cell cycle.  

On the other hand, inhibition of U7 snRNA binding to RDH genes with an 

AMO was able to disrupt the normal transcription of RDHs. U7 snRNP is 

responsible for recruitment of the HCC. Interestingly, as the Integrator is 

responsible for correct production of U7 snRNA, Integrator dysfunction may have 

an indirect effect on RDHs. Unfortunately, RDH transcripts were not fully 

detectable in the Ints11 RNA-Seq data and therefore I was unable to look into 

these effects more directly. In this work, use of a U7 snRNA AMO resulted in 

accumulation of extended RDH transcripts (Figure 6.10). This misprocessing of 

RDH pre-mRNA did not have finite extension, with extended transcripts 

terminating by approximately 2 Kb downstream of the TES. However, Pol II 

occupancy levels appeared unchanged on two RDH transcripts (Figure 6.11). 

One RDH transcript, HIST1H4H, did show a significant increase in Pol II 

occupancy over the TES. This significant change did not continue further 

downstream although levels remained higher in the U7 snRNA AMO condition 

compared to controls. Therefore, the investigation of Pol II occupancy at further 

RDH transcripts is required to elucidate the full effects of U7 snRNA occlusion on 

transcription levels of RDHs.  

Finally, although DIS3 reduction appeared to have no effect on RDH 

transcription, it was able to have an accumulative effect with U7 snRNA AMO on 

RDH extended transcript levels, with little effect on extension length (Figure 6.13). 

Although it is not clear whether DIS3 can degrade mature RDH transcripts, as I 

showed DIS3 had no effect on RDH pre-mRNA processing, this data suggests 

DIS3 is responsible for degrading unprocessed RDH transcripts. If DIS3 

specifically degrades extended RDHs, a possible mechanism for differentiating 

between them and properly processed RDHs may be attributed to differences in 

polyadenylation.  

From the data in chapters 2 and 4, there are a few similarities between 

RDH and snRNA misprocessed transcripts. For example, both RDHs and 

snRNAs do not appear to require cleavage for termination of extended transcripts 

(Figure 6.10 and 4.5). Additionally, DIS3 depletion causes a further increase in 

levels of RDH and snRNA extended transcripts, with either occlusion of U7 
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snRNP or Integrator dysfunction respectively (Figure 6.13 and 4.13). However, 

DIS3 depletion alone was capable of causing an increase in misprocessed 

snRNAs whereas there was no apparent effect on RDH transcripts. It is possible 

that misprocessing commonly occurs at snRNAs and DIS3 is responsible for 

degrading such transcripts. Therefore upon DIS3 depletion, misprocessed 

transcripts accumulate. Whereas processing of RDH pre-mRNA could be more 

tightly regulated or controlled, reducing the number of misprocessed transcripts 

in normal conditions. 14 different subunits have been found in the Integrator 

complex and RNAi depletion of nearly any subunit was found to disrupt snRNA 

processing in Drosophila (Ezzedine et al, 2011). This suggests Integrator subunit 

interactions are highly sensitive to disruption and could explain common 

misprocessing of snRNAs. Alternatively, DIS3 may have a role in snRNA 

processing although there is no current evidence for this. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



188 
 

7. Discussion 

Endonucleases play an important role in the maintenance of the RNA 

environment, as well as the processing and termination of different RNA species. 

In particular, work has shown that the catalytic subunit of the exosome, DIS3, is 

important for degradation of a multitude of RNA species including those that 

currently don’t have a known role and may be a bi-product of efficient 

transcription, such as PROMPTs (Mitchell et al, 2014; Preker et al 2011). Another 

endonuclease, CPSF73, is known to have an important role in 3’ end cleavage of 

protein-coding mRNA and has been linked to efficient transcriptional termination 

(Proudfoot et al, 2011; Fusby et al, 2016; Eaton et al, 2018). Additionally, the 

catalytic subunit of the Integrator, INTS11, has an important role in 3’ end 

cleavage of snRNAs known to form the spliceosome (Baillat et al, 2005). However 

a lot is still unknown about the substrates of these endonucleases, as well as 

their exact roles and contributions to maintaining the RNA environment.  

Previous work to elucidate endonuclease roles in transcriptional 

termination and RNA metabolism have been limited by the available methodology 

such as RNAi, which can be slow, have indirect effects and incomplete levels of 

gene downregulation. In this work I have utilised the AID and SMASh systems to 

generate cell lines capable of conditional, rapid and specific target protein 

depletion of either DIS3, INTS11 or CPSF73. I was then able to investigate the 

roles of the target endonuclease by analysing RNA effects after protein depletion, 

through RNA-Seq. In so doing, this work has provided a broad view of the 

immediate substrates for these three endonucleases in human cells. Additionally, 

the results from RNA-Seq of CPSF73-AID cells has provided further support for 

the importance of CPSF73 cleavage of protein-coding mRNA in transcription 

termination, giving support to the torpedo model of transcriptional termination.  

 

7.1 Rapid and conditional protein depletion 

The auxin inducible degron system was first discovered in plants, whereby 

it is used to mediate gene expression to regulate plant growth and development 

(Dharmasiri et al, 2005). The AID system utilises the plant specific F-box protein, 

TIR1, which forms a E3 ubiquitin ligase complex with SCF. As the SCF complex 

is also expressed in non-plant species, through the expression of TIR1 in human 
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cells, the AID system can be employed for ubiquitin-mediated proteome 

degradation and as a genomic manipulation tool (Nishimura et al, 2009; Holland 

et al, 2012). Due to developments in CRISPR/Cas9 technologies, it is now 

possible to integrate the AID tag into human target genes and thus allow their 

conditional protein depletion (Natsume et al, 2016).  

In this thesis I have shown that incorporation of an AID tag to a gene of 

interest, in human cells expressing TIR1 protein, results in a rapid, specific and 

inducible depletion of the target protein. Protein depletion occurs upon auxin 

addition and utilising this system I was able to significantly decrease DIS3 levels 

in DIS3-AID cells after 1 hour of auxin treatment (Figure 3.3) (Davidson et al, 

2019). Importantly, only AID-tagged protein levels are affected by auxin addition 

and this requires TIR1 expression, as shown by auxin having no effect on 

untagged protein levels nor when TIR1 is not expressed (Figure 3.3 and 5.1). 

Furthermore, auxin does not affect cell survival of untagged cells and AID-tagging 

the DIS3 protein also had no effect on cell survival, although a slower growth 

phenotype was observed (Figure 3.5).  

There are several reasons why the AID system may be more beneficial 

that RNAi. Firstly, as previously mentioned, the AID system has a faster rate of 

protein depletion than RNAi methods. Secondly, RNAi methods are known to 

have limitations due to off-target effects. Using connectivity maps, Smith et al 

(2017) found that RNAi protein depletion resulted in stronger and more pervasive 

off-targets than generally appreciated, whereas off-target effects from CRISPR 

methods were negligible. Additionally, RNAi methods have been found to 

produce false negative results or reduced phenotypes due to incomplete 

depletion of the target protein (Eaton et al, 2018). Finally, as shown by RNA-Seq 

on my DIS3-AID cells, the AID system was capable of elucidating more RNA 

targets than previous RNAi experiments (Szczepinska et al, 2015). Overall the 

AID system may be able to enhance our knowledge of specific gene targets and 

functions, through easier investigation of immediate depletion effects, that have 

so far been unnoticed by RNAi.  
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7.2 DIS3 is responsible for degradation of a multitude of RNA transcripts 

DIS3 is a major catalytic component of the exosome, consisting of both 

exonuclease and endonuclease activity (Schaeffer et al, 2009; Schneider et al, 

2009). EXOSC10 is the other catalytic subunit of the exosome and it has been 

proposed that both EXOSC10 and DIS3 degrade separate RNA transcripts. For 

example, DIS3 has been shown to degrade numerous unstructured RNA 

transcripts whereas EXOSC10 may specifically degrade smaller RNAs including 

pre-rRNA and snoRNAs (Szczepinska et al, 2015; Januszyk et al, 2011). As part 

of the exosome, these two proteins may also show redundancy for each other 

and as such it has been difficult to elucidate and categorise specific substrates 

for either nuclease. In an attempt to overcome such issues, I utilised the AID 

system to enable rapid depletion of DIS3. This allowed investigation of the 

immediate effects of DIS3 loss, potentially before activation of redundancy 

pathways that could be mediated by EXOSC10.  

Through RNA-Seq analysis, I was able to identify accumulation of 

numerous RNA targets upon DIS3 depletion (Chapter 3). These included 

PROMPT RNAs that derived from bidirectional transcription at protein-coding 

gene promoters and RDH promoters (Figure 3.6 and 6.7). Levels of short RNAs 

derived from premature transcription termination also accumulated upon DIS3 

loss. Additionally, an upregulation of de novo transcripts from intergenic 

transcriptome regions where bidirectional transcription occurs and were similar 

to eRNAs, was observed. This experiment detected more DIS3 dependent 

accumulation of potential eRNAs and novel transcripts than previously reported 

(Szczepinska et al, 2015). The diverse range of DIS3 sensitive RNA substrates 

shown throughout this work supports previous suggestions that DIS3 is 

responsible for the majority of RNA degradation by the exosome (Dziembowski 

et al, 2007; Szczepinska et al, 2015).  

Interestingly, DIS3 may not be responsible for RDH mRNA degradation. 

DIS3 depletion had no effect on mature RDH levels but instead had a cumulative 

effect with U7 snRNA occlusion on extended RDH transcript levels (Figure 6.12 

and 6.13). Therefore, DIS3 may specifically degrade misprocessed RDH 

transcripts. These findings do not necessarily mean that the exosome is not 

involved in mature RDH degradation however. Instead, EXOSC10 may be the 

nuclease responsible for exosome mediated RDH mRNA degradation. Andersen 
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et al (2013) found mature RDH transcripts accumulate upon depletion of a core 

exosome subunit, RRP40. Similarly, depletion of another core exosome subunit, 

RRP41 or EXOSC10 slowed histone mRNA degradation (Mullen and Marzluff, 

2008). Furthermore, data from Slevin et al (2014) suggests mature RDHs are 

degraded in two phases. Firstly, degradation into the stem loop by the 3’ – 5’ 

exonuclease 3’hExo, resulting in the formation of a degradation intermediate. 

Secondly, the intermediate is degraded by the exosome containing EXOSC10. 

These findings suggest the exosome does have a role in degradation of mature 

RDHs and therefore EXOSC10 may be responsible instead of DIS3.  

 

7.3 The role of DIS3 in snRNA transcription and degradation 

Through RNA-Seq analysis and qRT-PCR I was able to show that DIS3 

plays a role in snRNA metabolism. Depletion of DIS3 alone resulted in an 

accumulation of extended snRNAs (Figure 4.9 and 4.10). An explanation for this 

would be a role of DIS3 in snRNA 3’ end processing; however I believe this is 

unlikely. There are no previous reports showing evidence of a role for DIS3 in 3’ 

end snRNA processing, except for in budding yeast (Allmang et al, 1999). 

Additionally, the average snRNA extension effect observed upon DIS3 depletion 

(approximately 500 bp downstream) is not as pronounced as when INTS11 is 

depleted (approximately 1 Kb downstream) (Figure 4.10 and Figure 4.5). 

Although there is an increased accumulation of extended snRNA transcripts upon 

DIS3 and INTS1 depletion together, compared to either alone, the length of 

extension is unaltered (Figure 4.13).  Instead I hypothesise DIS3 has a major role 

in degradation of snRNA precursor or misprocessed transcripts. This is supported 

by the data showing a greater accumulation of precursor snRNAs upon DIS3 

depletion when transcription is inhibited by actinomycin D, compared to the 

presence of DIS3 (Figure 4.12). Depleting DIS3 causes a reduction in snRNA 

precursor degradation, resulting in their increased levels.  

This does not fully explain why extended snRNAs are apparent upon DIS3 

depletion. I propose that the Integrator is not fully efficient at cleaving snRNA at 

their TES and that due to this, extended snRNAs are commonly generated. DIS3 

is responsible for degradation of these misprocessed transcripts, hence why they 

aren’t normally visible in the cell and their accumulation is observed upon DIS3 
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depletion. Rapid degradation of misprocessed snRNAs is important to prevent 

them entering the normal snRNA biogenesis pathways and sequestering 

mechanisms from correctly processed snRNAs. It is possible that the Integrator 

may still cleave extended snRNAs upon DIS3 depletion, just further downstream 

than at mature snRNAs. Whereas upon INTS11 depletion, the Integrator cannot 

cleave the snRNA and so readthrough is longer. This might explain why the 

observed extended transcripts are on average shorter upon DIS3 depletion than 

INTS11 depletion.  

In support of this hypothesis is the work by Labno et al (2016), who 

investigated the role of DIS3L2. DIS3L2 has a similar sequence to DIS3, however 

it lacks the PIN domain, is not known to be a subunit of a macromolecular 

complex and localises to the cytoplasm where it degrades RNA in an exosome-

independent manner (Lubas et al, 2013). Labno et al (2016) generated HEK293T 

cell lines expressing shRNAs that were capable of silencing endogenous DIS3L2 

and either had inducible expression of WT DIS3L2 or a catalytically dead mutant. 

Upon DIS3L2 dysfunction there was an accumulation of cytoplasmic extended 

snRNAs, without a change in mature snRNA levels. As DIS3L2 is not present in 

the nucleus, it is likely that it has a major role as a surveillance pathway for 

cytoplasmic misprocessed precursors. This and the presence of extended 

snRNAs in the cytoplasm without Integrator dysfunction, gives support to 

misprocessing of snRNAs being a common occurrence. If snRNA readthrough is 

frequent, the cell may have adapted mechanisms to ensure termination of 

misprocessed snRNAs and might help explain why termination still occurs close 

to the TES upon Integrator subunit depletion.  

 

7.4 How does DIS3 recognise target substrates for degradation?  

How DIS3 recognises specific RNA substrates and prevents accumulation 

of aberrant mRNAs and potentially toxic protein products, is currently unclear. 

This is an important question when considering transcripts that undergo the same 

processing steps and have a similar structure to mature RNAs, for example 

PROMPTs which have a 5’ cap and are polyadenylated (Preker et al, 2011). As 

previously described in Chapter 1, human cells contain a NEXT complex that has 

been shown to promote degradation of PROMPTs and 3’ extended RNAs and a 
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PAXT complex that promotes degradation of long poly(A) tailed transcripts 

(Lubas et al, 2011; Tseng et al, 2015; Hrossova et al, 2015; Meola et al, 2016). 

Both of these complexes contain the RNA helicase MTR4, that acts as a complex 

scaffold and can also associate with EXOSC10 (Lubas et al, 2011; Meola et al 

2016). Therefore, through MTR4 mediated exosome interaction with the PAXT or 

NEXT complex, the exosome may be targeted to specific RNA substrates. 

Specifically, DIS3 may be targeted to prematurely terminated transcripts by PAXT 

or NEXT, which associate with ARS2 (Anderson et al, 2013; Meola et al, 2016). 

ARS2 further associates with the CBC (to form CBCA) to recruit protein 

complexes involved in 3’ end processing, maturation and degradation (Gruber et 

al, 2009; Hallais et al, 2013; Andersen et al, 2013). Iasillo et al (2017) found 

pervasive transcript turnover was supported by ARS2 function and that ARS2 

also had a role in termination downstream of short snRNAs, RDHs, PROMPTs 

and eRNAs. Depletion of CBCA components ARS2 and CBP80, resulted in 

accumulation of 3’ extended RDH transcripts and PROMPTs. Polyadenylated, 

longer replication-independent histone gene levels were not significantly altered 

by this depletion (Andersen et al, 2013). Andersen et al (2013) also demonstrated 

a physical link between the NEXT complex and CBCA and therefore suggested 

a link from the cap to the exosome. These findings demonstrate that exosome 

interactions with associated accessory factors may mediate exosome target 

specificity. 

 In addition, the work presented in this thesis suggested DIS3 may 

specifically degrade extended RDH transcripts and not mature RDHs (Figure 6.7, 

6.12 and 6.13). As mature RDHs are not polyadenylated but extended RDH 

transcripts are, it is possible that hyperadenylation may induce DIS3-mediated 

decay (Narita et al, 2007; Romeo et al, 2014). Misprocessing of snRNAs has also 

been shown to result in their polyadenylation (Skaar et al, 2015; Yamamoto et al, 

2014). Interestingly, Bresson and Conrad (2013) suggested that the nuclear 

poly(A) binding protein promotes hyperadenylation and decay of unstable 

transcripts. In support of our findings, Romeo et al (2014) observed exosome 

mediated degradation of extended polyadenylated RDH transcripts. As many 

histone genes contain PASs downstream of their cleavage sites, they suggested 

that polyadenylation of misprocessed RDH transcripts might be a mechanism to 

prevent readthrough into neighbouring RDH genes. Due to the closely clustered 
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location of RDH genes, readthrough could generate deleterious fusion proteins. 

Polyadenylation may therefore be a signal for misprocessed transcript 

degradation.  

It has also been shown that PROMPT poly(A) signals are functional but 

linked to degradation (Ntini et al, 2013). There is a higher amount of PASs located 

upstream of protein-coding gene promoters than downstream, allowing efficient 

Pol II progression along the protein coding gene and helping to prevent 

bidirectional transcription (Ntini et al, 2013). Interestingly mRNA-like PASs are 

also frequently found downstream of snRNA and RDH genes (Almada et al, 

2013). It is possible that polyadenylation of small transcripts such as RDHs, 

snRNAs and PROMPTs, which all showed DIS3 sensitivity in this work, results in 

their termination, whereas polyadenylation of longer transcripts, such as mRNAs, 

increases stability. Ntini et al (2013) found that promoter-proximal PASs more 

efficiently couple to exosome mediated degradation than RNAs with longer 

transcription units. Additionally, Hallais et al (2013) suggested that cap-proximal 

PASs processed by CBCA lead to RNA degradation through recruitment of NEXT 

and the exosome. As PROMPTs, snRNAs and RDH transcripts are all relatively 

short, this might explain how their polyadenylation could link to their efficient 

degradation. As previously mentioned, ARS2 may help couple the exosome to 

target transcripts and ARS2 binding was found to be enriched at terminator 

regions of RDH and snRNA genes (Andersen et al, 2013).  

 

7.5 snRNA cleavage by the Integrator and transcription termination 

It is known that the Integrator has a pivotal role in 3’ end processing of 

snRNA and that the endonuclease subunit, INTS11, is thought to be responsible 

for snRNA cleavage (Baillat et al, 2005; Ezzedine et al, 2011; Dominski et al, 

2005; Abrecht and Wagner, 2012). Depletion of Integrator subunits including 

INTS11 and INTS1 causes accumulation of misprocessed snRNAs and in this 

work I have provided further support for these findings (Figure 4.5 and 4.7) 

(Ezzedine et al, 2011; Baillat et al, 2005; Hata and Nakayama, 2007). Although 

the mechanism of snRNA termination is not fully understood, previous work has 

suggested a strong link between snRNA processing and efficient transcription 

termination (Ramamurthy et al, 1996; O’Reilly et al, 2014). However, my results 
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are contradictory to these findings. Instead I found that extended snRNAs, 

caused by INTS11 or INTS1 depletion, are still capable of termination (Figure 4.5, 

4.6 and 4.7). This termination occurs within 1 – 3 Kb downstream of the snRNA 

TES, suggesting that integrator cleavage of snRNAs is not tightly linked to snRNA 

termination. One possible explanation for these apparent differences in my work 

compared to O’Reilly et al (2014) could be due to methodology.  

O’Reilly et al (2014) depleted INTS11 and INTS9 Integrator subunits using 

RNAi methods in HeLa cells. They then investigated Pol II occupancy levels 

downstream of the TES for U1 and U2 snRNAs, however they only investigated 

0.9 Kb and 1.2 Kb downstream respectively. An increase in Pol II % input was 

found downstream of the snRNA genes upon Integrator subunit depletion. 

Comparing these results with my data, I observed increased RNA levels 

downstream of snRNAs, often up to 1.2 Kb. This would corroborate with an 

increased Pol II occupancy at these locations, as seen by O’Reilly et al (2014). 

However, my data suggests termination of extended snRNAs by 1 – 3 Kb 

downstream of the TES and as such would expect Pol II occupancy to deplete 

within this window. Therefore it is possible that extended snRNA termination, as 

shown by reduced Pol II occupancy, may have been observed by O’Reilly et al 

(2014) if they had investigated further downstream of the snRNA TES. Overall, 

both of our findings show an extension of snRNA transcription upon defective 3’ 

end snRNA processing, although I have shown termination still occurs. 

Therefore, Integrator cleavage of snRNAs may promote efficient transcription 

termination but not be necessary.   

 

7.6 Is there a secondary endonuclease responsible for RDH cleavage? 

RDH pre-mRNA is cleaved at the 3’ end by the HCC complex, to form 

mature RDHs. The HCC is composed of multiple proteins including CPSF73, 

CPSF100 and Symplekin (Yang et al, 2013; Kolev et al, 2005). It is thought that 

CPSF73 endonuclease activity is responsible for histone processing, with 

cleavage occurring between the stem loop and HDE regions of the RDH gene 

(Yang et al, 2013; Dominski et al, 2005; Kolev et al, 2008; Sullivan et al, 2009). 

However, in this work I unexpectedly observed no effects on RDH pre-mRNA 

processing when CPSF73 was depleted in the CPSF73-AID cell line (Figure 6.1, 
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6.3 and 6.5). This is in contrast to findings by Pettinati et al (2018) who found at 

least 27 RDHs were misprocessed upon CPSF73 depletion.  

Comparing my data with Pettinati et al (2018) I could directly analyse the 

same RDHs as in their study. Pettinati et al (2018) found a major effect of CPSF73 

depletion on the processing of the following histone genes that I did not see any 

effect for in my CPSF73-AID cell line: HIST1H4B, HIST1H3B, HIST1H2BC, 

HIST1H2BF and HIST1H4E (Figure 6.1 and 6.3). As the observed misprocessing 

of these RDHs was approximately a 200 bp extension, I further analysed three 

histones (HIST1H4B, HIST1H3B and HIST1H2BC) more closely to ensure I had 

not visually overlooked any effect (Figure 6.5). However, I was still not able to 

detect any misprocessing effect at these RDHs upon CPSF73 depletion.  

The discrepancies between these two works could be due to a number of 

reasons. Firstly the methodology used, with Pettinati et al utilising RNAi methods 

to deplete CPSF73 in HeLa cells synchronised in early S-phase. Readthrough 

RDH transcripts may not have been detected in my work due to the use of 

unsynchronised cells and the rapid turnover of RDHs at the end of S phase 

(Marzluff et al, 2008). However, the major effect on RDH pre-mRNA processing 

observed with occlusion of U7 snRNA in the same cells would argue against this. 

Additionally, misprocessing of RDHs results in polyadenylated transcripts that are 

stable throughout the cell cycle and thus making their detection easier (Kari et al, 

2013; Romeo et al, 2014; Levine et al, 1987).  Another possible reason is 

CPSF73 was not fully depleted upon doxycycline and auxin addition, however the 

depletion appeared near complete by western blot and was sufficient for major 

aberrant processing of mRNA (Figure 5.1 and 5.2).  

From my results, CPSF73 may not be the main endonuclease for RDH 3’ 

end cleavage, although many studies have shown otherwise (Yang et al, 2009; 

Dominski et al, 2005; Yang et al, 2013; Sullivan et al, 2009; Kolev et al, 2008). 

Therefore it may be more likely another protein shows redundancy upon CPSF73 

depletion or that CPSF73 and another endonuclease act at individual sets of 

RDHs. A potential candidate for this is MBLAC1, an endoribonuclease that has a 

similar MBL domain to CPSF73 but with distinctive structural features, including 

the absence of a b-CASP domain found in CPSF73 (Pettinati et al, 2018). These 

differences could reflect specific substrate recognition. Depletion of MBLAC1 by 
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CRISPR/Cas9 techniques or siRNA resulted in readthrough RDH transcripts, 

showing a similar profile of effects to CPSF73 depletion (Pettinati et al, 2018).  

 

7.7 Endonuclease depletion results in extended RNA transcripts that 
terminate at different lengths, depending on the RNA species. 

Throughout this work I have shown that extended transcripts are 

generated when processing is disrupted or accumulate upon dysfunction of 

degradation pathways. Specifically I have shown there is an accumulation of 

extended snRNA transcripts upon DIS3 or INTS11 depletion; accumulation of 

extended RDH transcripts upon U7 snRNA occlusion, which is exacerbated by 

DIS3 depletion; and continuous readthrough of protein-coding genes upon 

CPSF73 depletion. This extension of snRNAs, RDHs and mRNAs is due to 

disruption in their processing, specifically the 3’ end cleavage of these transcripts. 

Although misprocessed snRNA and RDH transcripts extend, they terminate 

relatively close to their TES; whereas misprocessed mRNA transcripts show 

readthrough that can continue for > 400 Kb (Figure 4.5, 6.10 and 5.4). It may be 

that 3’ end cleavage and processing is tightly coupled to termination of mRNA 

transcripts, but not as much with snRNAs or RDH mRNA.  

For RDHs, it has been shown that misprocessing results in 

polyadenylation of extended transcripts (Narita et al, 2007; Romeo et al, 2014). 

In this work, CPSF73 depletion did not appear to affect processing of RDHs, 

however preventing U7 snRNA binding to the HDE caused RDH mRNA 

extension. As previously described another endonuclease may be responsible 

for RDH pre-mRNA cleavage: MBLAC1 (Pettinati et al, 2018). Either way, U7 

snRNA-dependent extended RDH transcripts terminated closely to the TES and 

this may be due to the presence of a downstream PAS site. As CPSF73 is still 

present it may cleave extended RDH transcripts at downstream PASs, resulting 

in both polyadenylation and termination. PASs have been found downstream of 

both snRNAs and RDH genes with misprocessed snRNAs also showing 

polyadenylation (Almada et al, 2013; Skaar et al, 2015; Yamamoto et al, 2014). 

Therefore, snRNAs may undergo a similar process where disrupting their 

canonical Integrator mediated cleavage instead causes CPSF73-mediated 

cleavage at a downstream PAS and termination. It is also possible a nuclease 



198 
 

other than CPSF73 enacts at these downstream PAS sites. Overall, this would 

explain the short extension of both RDHs and snRNAs observed throughout this 

work. Whereas long mRNA extension cannot be terminated at downstream PASs 

due to the loss of CPSF73, hence extension continues until RNA Pol II 

dissociates from the genome.  

The fact that mRNAs show profuse extension upon CPSF73 depletion 

strongly suggests that PAS cleavage and CPSF73 are detrimental for 

termination. This supports the XRN2 torpedo model of transcription termination 

and previous work from the West lab (Eaton et al, 2018). Interestingly, although 

snRNAs are cleaved by the Integrator, resulting in an entry site for a 5’ – 3’ 

exonuclease, there is currently no evidence that XRN2 has a role in snRNA 

transcription termination (O’Reilly et al, 2014; Eaton et al, 2018). Likewise, RDH 

pre-mRNA cleavage provides possible entry for XRN2, but no role for XRN2 in 

RDH termination has been observed (Eaton et al, 2018).  

Another reason why extended snRNAs may terminate close to their TES 

is due to the higher number of nucleosomes present 1 Kb downstream of the 

snRNA coding region (Egloff et al, 2009; O’Reilly et al, 2014). Nucleosomes can 

prevent efficient transcription and have been shown as early mRNA transcription 

quality checkpoints, causing premature termination through cleavage at cryptic 

PASs close to the TSS (Chui et al, 2018). This mechanism may be responsible 

for the production of prematurely terminated transcripts that accumulated upon 

DIS3 depletion (Figure 3.6 and 3.8). Alternatively, other work has shown intronic 

cryptic PASs can prematurely terminate mRNA transcription (Kaida et al, 2010; 

Berg et al, 2012). The nucleosome-free region in mRNA is only approximately 

100 nts from the TSS, whereas it spans the entire snRNA transcription unit 

(Schones et al, 2008; Segal et al, 2006; Egloff et al, 2009). As described in the 

introduction, NELF promotes Pol II pausing at promoter-proximal mRNA sites and 

NELF phosphorylation, along with CTD and DSIF phosphorylation, is required for 

the transition to productive elongation (Ping and Rana, 2001; Peterlin and Price, 

2006; Kwak and Lis, 2013). In contrast, at snRNA genes NELF is recruited to Pol 

II as it reaches the nucleosome dense area, coinciding with the end of the 

transcription unit. Depletion of NELF causes extension of snRNAs past the TES, 

although these transcripts still terminate (Egloff et al, 2009; O’Reilly et al, 2014). 

NELF mediated Pol II pausing on snRNAs and / or nucleosomes acting as a 
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barrier to transcription may promote snRNA transcription termination over 

continued elongation. This process of termination may not require Integrator-

mediated snRNA cleavage and therefore may also be sufficient for termination of 

extended snRNA transcripts.  

 

7.8 Future work and limitations 

This work provided a clearer role for three individual ribonucleases, DIS3, 

INTS11 and CPSF73, through the analysis of genome-wide substrate effects 

upon their depletion. In terms of DIS3 and CPSF73, as little as 2 hours of 

depletion was sufficient for significant observable substrate perturbation in 

processing, termination and degradation events. This demonstrates both the 

effectiveness of the AID system to study functional genomics and the essential 

role of these endonucleases. However, the findings within this study have left 

some unanswered questions and generated new ones.  

One issue of this study is that of protein redundancy, in particular when 

discussing DIS3 function in the exosome complex. As DIS3 is not the only active 

nuclease in the exosome complex, it is difficult to determine whether no effect 

upon DIS3 depletion translates into a non-exosome mediated degradation 

pathway. Specifically, an accumulation of mature RDH transcripts was not 

observed upon DIS3 depletion. However I cannot rule out the possibility that 

EXOSC10 and, therefore the exosome, plays a role. In addition, it has been 

shown that the exosome can exist in different isoforms, with either DIS3 binding, 

EXOSC10 binding or both together (Lykke-Andersen et al, 2011). Therefore, 

further work is required to elucidate the specific composition of the exosome 

when degrading different classes of RNA substrates. This would potentially aid in 

determining degradation pathways for specific RNAs.  

 In this discussion I have speculated on how extended transcripts may still 

terminate when their 3’ end processing pathways are disrupted. A potential 

mechanism I described was that of downstream PAS cleavage by CPSF73 in 

RDH and snRNA extended precursors. It would therefore be interesting to further 

investigate this through depletion of CPSF73 coupled with the depletion of 

necessary proteins for 3’ end cleavage of snRNAs and RDHs, for example 

INTS11 and U7 snRNA respectively. If a longer extension of transcripts was 
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observed, this may suggest PAS cleavage is responsible for misprocessed 

transcript termination.  

Although I was able to look at indirect effects of Integrator dysfunction 

through the occlusion of U7 snRNA, it would be interesting to determine if direct 

depletion of Integrator subunits affected RDH pre-mRNA processing. In particular 

due to previous reports of Integrator subunit binding to the 3’ end of RDHs and 

accumulation of misprocessed RDH transcripts upon INTS1 depletion (Skaar et 

al, 2015). Unfortunately, this was something not addressed in this work due to a 

lack of RDH mRNA expression in the INTS11-SMASh RNA-Seq dataset.  

As CPSF73 depletion did not appear to have an effect on RDH pre-mRNA 

processing in this work, it will be important to further determine the role of 

CPSF73 in RDH transcription. Whether a protein such as MBLAC1 shows 

redundancy to CPSF73 or unsynchronised cells caused the lack of an observed 

effect, may need to be elucidated. Furthermore, whether prolonged periods of 

CPSF73 depletion could help determine CPSF73 function. Prolonged auxin or 

asunaprevir treatment may be beneficial for all three endonucleases investigated 

here, to provide a greater insight into the impact of their depletion over multiple 

rounds of transcription. This may also uncover potential redundant pathways for 

endonuclease function, that are not apparent when investigating nascent 

transcripts upon short protein depletion times.  

Although this study has provided insight into the role and substrates of 

three endonucleases, there are limitations to the methodology and results. Firstly, 

it is important to note that due to the expense of RNA-Sequencing, I was only 

able to conduct 2 repeats of RNA-Seq for both DIS3 and CPSF73 depletion, or 

in the case of INTS11 only 1 repeat. In particular for INTS11 this makes the 

results less reliable as I am not able to show reproducibility. Additionally, a further 

repeat would have allowed investigation of statistical significance of findings for 

DIS3 and CPSF73. However, where possible I have aimed to provide another 

method to investigate the accuracy and significance of results found by RNA-

Seq, often through the use of RT-qPCR. This method has its own caveats, as in 

this study I only used one housekeeping gene to normalise RT-qPCR results. To 

improve the reliability of RT-qPCR results, multiple housekeeping genes could 

have been utilised.  
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Secondly, in this work there has been a focus on both protein-coding 

genes and smaller transcripts such as snRNAs and RDHs. I initially aimed to look 

at the global effects of the target protein depletion on RNA through RNA-Seq and 

therefore utilised 50 nt reads for the RNA sequencing library preparation. 

However, this resulted in limitations for detection of smaller RNAs, as they were 

not always expressed in the RNA-Seq data. To overcome this issue and for 

further investigation specifically into changes of small RNA expressions I would 

suggest a small nuclear RNA-Seq method was instead used. Furthermore, due 

to the original aims of the research, expression levels of RDHs were not enriched 

for in experiments. This made some of my findings on RDH transcription and 

termination difficult to differentiate between an actual effect or due to natural 

fluctuating RDH transcript levels in relation to cell cycle phase. To investigate, in 

particular, the findings of CPSF73 depletion having no effect on RDH 

transcription, I would in the future ensure synchronisation of cells in S phase for 

all experiments. Finally, all research conducted in this work only utilised one cell 

type, those of a human colorectal carcinoma cell line, HCT116 cells. Therefore it 

is possible that some or all results are artefacts of this particular cell line. Further 

work should be undertaken to validate these findings in other human cell lines, 

before results are determined to be accurate in all human cells.  

 

7.9 Conclusions 

 Overall, the findings within this work have shown that disruption of 

cleavage at the 3’ end of multiple transcripts results in aberrant extended 

transcripts of differing lengths. Some of these extended transcripts may not only 

be produced when cleavage is disrupted but may also occur under normal 

circumstances. For example, extended snRNA transcripts were observed to 

accumulate upon depletion of DIS3 (Figure 4.10). Although this could be due to 

DIS3 having a role in snRNA 3’ end cleavage and termination, as previously 

mentioned it is more likely that DIS3 normally degrades these extended snRNAs. 

An interesting finding in this study is the length of extension observed for 

transcripts upon cleavage disruption. It appears disruption of cleavage 

mechanisms for longer RNA transcripts, such as CPSF73 depletion effects on 

protein-coding mRNAs, show extension past the TES that continues for 

thousands of Kb (Figure 5.4). In comparison, shorter transcripts show extension 
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that terminates relatively close to the TES and does not continue indefinitely i.e. 

extension of snRNAs and RDHs upon Integrator and U7 snRNA dysfunction 

(Figure 4.5 and 6.10).  

There are a couple of mechanisms that may explain these differences in 

extension between different RNA species. In summary, it is possible that 

transcription of shorter transcripts, such as snRNAs, commonly produce 

extended transcripts due to inefficient cleavage and / or termination and are 

normally rapidly degraded. Therefore, cells may have innate mechanisms in 

place to prevent termination extending indefinitely at these transcripts. For 

example the use of redundant cleavage mechanisms, such as CPSF73 and 

MBLAC1 at RDHS, or possible feature found downstream of the TES including 

an increased number of nucleosomes that could impede further Pol II 

transcription. Furthermore, during transcription of shorter transcripts the 

transcribing Pol II does not enter an elongation phase and the resulting 

phosphorylation state of Pol II differs to that of elongating Pol II on protein-coding 

genes (ref). Due to this, Pol II may be capable to more readily dissociate at shorter 

transcripts if extension / inefficient transcription termination does occur. On the 

other hand, Pol II transcribing longer transcripts results in an elongation state that 

may not be as easily terminated if normal termination mechanisms fail or falter, 

therefore extension readily occurs and continues.  

Finally, this work further supports findings that the exosome, and in 

particular the DIS3 subunit, is responsible for degradation of a number of RNA 

substrates including de novo transcripts found in this study. Using conditional 

protein depletion cell lines I have been able to elucidate specific roles and 

substrates of DIS3, INTS11 and CPSF73. Although future work is necessary to 

investigate several unanswered questions, the results throughout this study show 

the effectiveness of using CRISPR/Cas9 techniques with an AID system for 

functional genomic studies.  
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