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Abstract

Perturbations to brain network dynamics on a range of spatial and temporal scales
are believed to underpin neurological disorders such as Alzheimer’s disease (AD).
This thesis combines quantitative data analysis with tools such as dynamical sys-
tems and graph theory to understand how the network dynamics of the brain are
altered in AD and experimental models of related pathologies.

Firstly, we use a biophysical neuron model to elucidate ionic mechanisms un-
derpinning alterations to the dynamics of principal neurons in the brain’s spatial
navigation systems in an animal model of tauopathy. To uncover how synaptic
deficits result in alterations to brain dynamics, we subsequently study an animal
model featuring local and long-range synaptic degeneration. Synchronous activ-
ity (functional connectivity; FC) between neurons within a region of the cortex is
analysed using two-photon calcium imaging data. Long-range FC between re-
gions of the brain is analysed using EEG data. Furthermore, a computational
model is used to study relationships between networks on these different spatial
scales.

The latter half of this thesis studies EEG to characterize alterations to macro-
scale brain dynamics in clinical AD. Spectral and FC measures are correlated
with cognitive test scores to study the hypothesis that impaired integration of the
brain’s processing systems underpin cognitive impairment in AD. Whole brain
computational modelling is used to gain insight into the role of spectral slowing
on FC, and elucidate potential synaptic mechanisms of FC differences in AD. On
a finer temporal scale, microstate analyses are used to identify changes to the
rapid transitioning behaviour of the brain’s resting state in AD.

Finally, the electrophysiological signatures of AD identified throughout the the-
sis are combined into a predictive model which can accurately separate people
with AD and healthy controls based on their EEG, results which are validated on
an independent patient cohort. Furthermore, we demonstrate in a small prelimi-
nary cohort that this model is a promising tool for predicting future conversion to
AD in patients with mild cognitive impairment.






Acknowledgements

| would like to thank my supervisors Dr Marc Goodfellow and Dr Jon Brown for
their support, guidance and encouragement. Marc has always been extremely
supportive of my ideas and pushed me to grow as a researcher, and | am particu-
larly grateful for his always being available and providing a friendly environment in
which to learn and develop my skills. When | began my PhD, | had no academic
background in biology, neuroscience, or Alzheimer’s disease, so I'd particularly
like to thank Jon for being a valuable source of knowledge in these fields and
making this thesis possible. Finally, both Marc and Jon have always enthusiati-
cally encouraged me to follow my passion of applied, interdisciplinary research,
encouraging me to surround myself by a broad network of experimental and clin-
ical collaborators, go to conferences, and giving me the opportunity to perform
some experimental research. For this | am extremely grateful. Thank you both.

Whilst it would be impossible to acknowledge every academic who has sup-
ported me throughout the course of my PhD, there are a number of people who
deserve a special mention. I'd like to thank Kyle Wedgwood for his great expertise
and mentorship in the field of dynamical systems theory. | also thank Krasimira
Tsaneva and Jamie Walker for our yearly assessments - your feedback and guid-
ance have been invaluable. | thank Wessel Woldman for our many academic
discussions, for his advice and support, and for always being a source of laugh-
ter. For many insightful discussions about modelling and analysis of EEG, | thank
Marinho Lopes, Leandro Junges, Lauric Ferrat, and once again Wessel Wold-
man. I'd additionally like to acknowledge Prof John Terry and the Quantitative
Biology and Medicine at Exeter group for the guidance, support, friendships, and
opportunities being part of this team has offered.

For their support with the clinical and experimental aspects of my research and
providing data for me to work with, | thank my collaborators George Stothart, Nina
Kazanina, Elizabeth Coulthard, Francesco Tamagnini, Edoardo Barvas, and Prof
Andrew Randall. | additionally thank the Alzheimer’s Society for their support and
opportunities for public engagement, and the members of the Alzheimer’s Society
Doctoral Training Centre for being excellent source of knowledge about dementia
and Alzheimer’s disease throughout my PhD.

Finally I thank my family and friends for their constant love, encouragement

3



and support. | couldn’t have got to where | am without support from my parents
and grandparents, and | can’t express my gratitude enough for everything you do.
Thanks to Charlee for his friendship and support, not just through my PhD, but for
as long as | remember. Finally, thank you Katherine for believing in me, for your
love and encouragement, and for keeping me sane through the process of writing
this thesis. | couldn’t have done it without you.



Contents

1

Introduction
1.1 Introduction and overview of thesis . . . . . . .. .. ... .....
1.2 Alzheimer’s disease anddementia . . . . .. ... ... ......
1.3 Electrophysiology and Alzheimer’s disease . . ... .. ... ...
1.4 Dynamical systems and qualitative modelling of the neuron . . . .
1.4.1 Modelling the neuron during quiescence . . . . . ... ...
1.4.2 Action potentials in one-dimensional models: Class 1 ex-
citability and the SNIC bifurcation. . . . . ... ... .. ..
1.4.3 Planar systems: complex eigenvalues allow for subthresh-
old oscillations and class 2 excitability . . . ... ... ...
1.4.4 Calculating periodic orbits with Poincaré return maps . . . .
1.4.5 Bistability and fast-slow bursting . . . ... ... ... ...
1.4.6 Spike adding through flip bifurcations and the flip cascade .
1.5 Biophysical modelling of the neuron . . . . . . ... ... .....
1.6 Modellinganeuralmass . . . . ... ... ... ... ........
1.7 Whole brainmodelling . . . . . ... ... ... ... ... ...
1.8 Quantifying neuraldynamics . . . . ... .. .. ... .......
1.8.1 Powerspectrum . .. .. ... ... ... .. .. ...,
1.8.2 Functional connectivity . . . . . . ... ... ...
1.8.3 Graphtheory . . .. ... ... ... . ... ..
1.8.4 EEGmicrostates . . . . . . ... ... ... ... ...

Modelling single cell dynamics in tauopathy

2.1 Introduction . . . . . .. .. ... ...

2.2 Materialsandmethods . . . . .. .. ... ... ... ........
2.2.1 Mathematicalmodel . . ... ... ... ... ........
2.2.2 Bifurcationanalysis . ... ... .. .. ... ... ...

23 Results . . .. .. . ..
2.3.1 ldentifying parameter regimes of clustered firing . . . . . .
2.3.2 Fast-slow analysis of deterministic clustering . . . . . . ..
2.3.3 Subthresholddynamics . . ... ... ... .. .......

2.4 Discussion . . . . ... e



2.4.1 Derivation of the model, approximation of noise, and rela-

tionship to the Markov chainmodel . . . . . ... ... ... 84
2.4.2 Action potential clustering . . . . . ... .. ... ... ... 85
2.4.3 Subthreshold thetaresonance . ... ............ 86
2.4.4 Implications fordementia . . ... ... ... ... ..... 88
245 Conclusions. . . ... ... ... L 89

3 Multi-scale analysis of brain networks in an animal model of dementia 91

3.1 Introduction . . . . . .. ... 91
3.2 Materialsandmethods . . . . . . ... ... ... L. 93
3.2.1 Experimentalmethods . . . . ... ... ... ... ..... 93
3.2.2 Two-photon calcium imaging analysis . . . . ... ... .. 94
3.2.3 EEG preprocessingand analysis . . . ... ... ...... 97
3.2.4 Computational model of the mouse brain . . . .. .. ... 97
3.2.5 Statisticalanalysis . . . . . ... ... ... oL 98
33 Results . ... ... .. 99
3.3.1 Two-photon calcium imaging analysis . . . . ... ... .. 99
3.32 EEGanalysis . . . .. .. ... . 99
3.3.3 Computational modelling . . .. ... ... ......... 102
3.4 Discussion . . ... 105

4 Network substrates of cognitive impairment in Alzheimer’s disease 109

41 Introduction . . . . . . ... 109
4.2 Materialsandmethods . . . . . ... ... ... . 111
421 EEGacquisition . .. ... ... ... ... 0oL, 111
422 EEGpreprocessing . ... ... ... ... ......... 112
4.2.3 Sourcereconstruction . . . .. ... 112
4.2.4 Powerspectralanalysis . . ... ... ... .. .. ..... 114
4.2.5 Functional connectivity analysis. . . . . .. ... ... ... 116
4.2.6 Computationalmodel . . . ... ... ... ......... 116
4.2.7 Statisticalanalysis . . . . . ... ... .. L 117
43 Results . . . .. . 118

4.3.1 Global power spectrum and functional connectivity analysis 118
4.3.2 Relationships between functional network measures and

cognition . . . ... 120

4.3.3 Local topology changes influence small-worldness . . . . . 122
4.3.4 Modelling the mechanisms of changes to functional con-

nectivity . . . . . . .. 124

4.4 Discussion . . . . .. 129

441 Methodology . . ... ... ... ... ... 131



4.4.2 Electrophysiological and network markers of Alzheimer’s Dis-

BASE . . . . i e 133
4.4.3 Temporal lobe disconnection, phenotype, and the potential

role of tau pathology . . . . . . ... ... ... .. ..... 137
4.4.4 Summary and conclusions . . . . ... ... 138

5 Reduced EEG microstate sequence complexity and altered cortical

generators in Alzheimer’s disease 139
5.1 Introduction . . . . . . . ... 139
5.2 Materialsandmethods . . . . ... ... ... ... o oL 141
5.2.1 EEG acquisition and preprocessing . . . . ... ... ... 141
5.2.2 Microstate extraction . . . . .. ... ... L. 141
5.2.3 Microstateanalysis. . . .. .. ... ... ... ....... 142
5.2.4 Cortical source localization . . . ... ... ......... 144
5.2.5 Additional EEG complexity measures . . .. ... ... .. 145
53 Results . . .. .. . 146
5.3.1 Parietal inactivation alters the topography of class D in AD . 146
5.3.2 Increased microstate durationin AD . . ... ... ..... 147
5.3.3 Microstate sequence complexity reducesin AD . . . . . .. 148
5.3.4 Comparisons with classical measures of EEG complexity . 149
5.4 Discussion . . . . . ... e 150
5.4.1 Methodology . . ... ... ... ... ... ... ... 150
5.4.2 Microstate complexity measure . . . . ... ... ... ... 151
5.4.3 Alterations to class D and the frontoparietal network . . . . 152

5.4.4 Alterations to microstate duration and switching statistics . 153
545 Conclusions. . . . .. . ... ... 154

6 Combining temporal scales of the EEG for a robust predictor of AD 157

6.1 Introduction . . . . . . . ... ... 157

6.2 Materialsandmethods . . . . . . ... .. ... L oL 158

6.2.1 EEGacquisition . . ... ... ... ... oL 158

6.22 EEGpreprocessing . .. ... ... ... ... ...... 160

6.23 EEGanalysis . . . ... ... ... . oL 160

6.2.4 Classification . . . ... ... ... ... ... ... ... .. 161

6.3 Results . ... .. . . . ... 161

6.3.1 Participantdemographics . . . . . .. ... ... ... ... 161
6.3.2 Microstate complexity and theta relative power are robust

and generalizable biomarkersof AD . . . . ... ... ... 162

6.3.3 Using the classifier to predict future progressionto AD . . . 165

6.4 Discussion . . .. ... 165



7 General discussion 167

7.1 Summaryofkeyfindings. . ... ... ... .. .. ......... 167
7.2 Limitations and futurework . . . . .. .. ... oL 169
7.2.1 Bridging the gap between experimental model and clinical

disease . . . . . . ... 169

7.2.2 Extensions to multi-modal research . . . . ... ... ... 170
7.2.3 Brain dynamics as a clinical biomarker of AD . . . . .. .. 172

7.3 Conclusions . . . . ... 173



List of Figures

1.1 Brain networks at multiple spatialscales . . . . . .. ... ... .. 18
1.2 Topographical stagingof ABplaques . . . . . . .. ... ... ... 21
1.3 Topographical staging of tau neurofibrillary tangles . . . . . .. .. 22
1.4 Topographical staging of cortical atrophy . . . . . . ... ... ... 23
1.5 Generation of an action potentialinaneuron . . .. ... ... .. 25
1.6 Oscillations arise from networks of spiking neurons . . . . . . . .. 27
1.7 Bifurcations in neural dynamics - from resting to spiking . . . . . . 32
1.8 Hopf bifurcations . . . . . .. ... ... 38
1.9 Poincaré return maps and linearization . . . . . ... ... ... .. 40
1.10 Bistability in fast-slow bursters and the homoclinic bifurcation . . . 43
1.11 Flip bifurcations . . . . . . . . . . .. . 46
1.12 Quantitative description of action potential generation in the Hodgkin-

Huxley model . . . . . . ... . ... ... . .. 47
1.13 Hopf bifurcations in neuralmass models . . . . . .. ... ... .. 53
2.1 Pc and AHP amplitude are altered in dorsal mMEC-SCs . . . . . .. 67
2.2 Calculationof Po . . . . . . . . . . . 69
2.3 Effectof noisevarianceon P . . . . . .. ... ... ... ..... 70
2.4 Clustered parameter regimes in two parameter space. . . . . . .. 72
2.5 Effect of noise variance on P heatmaps . . . . . . ... ... ... 73
2.6 Spikes per cluster in the stochastic system is correlated with spikes

per cluster in the deterministicsystem . . . . .. .. ... ... .. 74
2.7 Bifurcations in two parameterspace. . . . . . ... ... ... ... 75
2.8 Transition from tonic firing to period 5 bursting. . . . . . . ... .. 76
2.9 Paths through parameter space that can result in reduced cluster-

ing observed in the rTg4510 model of dementia . . . . . . . .. .. 77
2.10 Fast-slow analysis of deterministic bursting . . . . . ... ... .. 79
2.11 Bifurcation diagram for mygp for a single value of Akas . . . . . . . . 80
2.12 Analysis of subthreshold oscillations . . . . . ... ... ... ... 81
2.13 Subthreshold theta fluctuations in a system with noise variance

o/C=0.135mV-ms™' . . ... ... 82
2.14 Bifurcations in Ippp . . . . .. ..o 83
2.15 Response of model stellate cell to currentramp . . . . . . . .. .. 83

9



3.1 Method of calculating synchrony between calcium transients

3.2 Regions of interest used in simulations of mouse whole brain dy-
NAMICS . .« v o o e e e e e e e e e e e e e e

3.3 Analysis of two photon calcium imagingdata . . . ... .... ..

3.4 Power spectral analysis of CHMP2B™™™ EEGdata .. ... ...

3.5 Spatial distributions of power and functional network degree in the
CHMP2B™™ data . . . . . . ..o

3.6 Functional networks derived from the CHMP2B™°" EEG data

3.7 Simulations of the mouse brain and EEG experiment . . . . . . ..

4.1 Template head model used for source reconstruction . . . . . . ..
4.2 Powerspectralanalysis . ... ... ... .. ... ... ... ...
4.3 Global graph theoretical measures for 6 band networks . . . . . .
4.4 Correlation between MMSE score and global EEG measures . . .
4.5 Correlation between MMSE subscores and small-worldness . . . .
4.6 Closeness centrality of ROIs in theta band networks . . . . . . ..
4.7 Modelling methods to explore whether local power spectral differ-
ences can account for functional network changesin AD . . . . . .
4.8 Simulated networkswithG =1 ... ... ... ... ........
4.9 Comparisons of HOA and AD in simulated functional networks
4.10 Spatial distribution of effect sizes for changes of degree in AD in the
simulated networks are reflective of those in the empirical networks
4.11 Simulated networks with G optimized . . . . . . .. ... ... ...
4.12 In the simulated networks, temporal lobe disconnection is required
for similar spatial distributions of changes in closeness to the data
4.13 Effect sizes for closeness centrality forarangeofa . . . . . . . ..

5.1 Calculation of LZC fromastring. . . . . ... ... ... ......
5.2 Microstate topographies for the fourclasses . . . . . . .. .. ...
5.3 Cortical source generators underpinning alterations to microstate

classDInAD . . . . ... ..
5.4 Microstate and complexity statistics are significantly altered in AD .

6.1 Methodology for building and testing the classifier. . . . . .. ...
6.2 SVM regions for the 6RP+C classifier . . . . ... ... ... ...

10

114
119
120
121
121
123

125
126
126

127
128

129
130

144
146

147
149



List of Tables

1.1

2.1

41
4.2
4.3
4.4
4.5

4.6
4.7

4.8

4.9

Review of electrophysiological imaging techniques . . . . . . . .. 28
Parameters used in the stellate cellmodel . . . . . . .. ... ... 70
Age, gender, and cognitive data for HOA and AD cohorts . . . . . 113
Mini-mental state exam sub-scores for HOA and AD cohorts . . . . 113
Frequency bands used inthe analysis . . . ... ... ... .. .. 113
ROls for parcellation of sourcedata . . . . ... ... ....... 115
Correlations and p-values for power spectral and graph theoretical

measuresvs MMSE score . . . . . ... ... o 121

Correlations and p-values for MMSE subscores vs small-worldness 121
Bonferroni corrected p-values for local power and graph theoretical
MEASUIES. . . . v v o vt e e e e e e e e e e e e e 123
Bonferroni corrected p-values for closeness centrality in the simu-
lated networks with no temporal lobe disconnection (o« = 1) and
temporal lobe disconnection (« =0.5). . . . . ... ... ... ... 128
Bonferroni corrected p-values for local and global effeciency. . . . 135

4.10 Bonferroni corrected p-values for local efficiency in the simulated

5.1
5.2
5.3

6.1
6.2
6.3
6.4

6.5
6.6

networks with no temporal lobe disconnection (o« = 1) and temporal

lobe disconnection (« =0.5). . . .. .. ... ... ... ... ... 135
Two-way ANOVA table for mean duration of microstates . . . . . . 148
Two-way ANOVA table for coverage of microstate classes . . . . . 148
Two-way ANOVA table for Markovian switching between microstate

classes . . . ... 148

Age and gender of HOA and AD cohorts in the San Marino data . 159

Age, gender, and cognitive data for the MCl cohort . . . . . . . .. 160
p-values for pairwise comparisons of the six cohorts forage . . . . 161
p-values for pairwise comparisons of the South West of England

cohortsforMMSE score . . . . . . ... ... ... ... 162
Classification statistics from EEG measures in the training set . . . 162
Classification statistics from EEG measures in the test and MCI

datasets . .. .. .. . . .. ... 164



12



Author’s Declarations

| declare that the work in this thesis was carried out in accordance with the re-
quirements of the University’s Regulations and Code of Practice for Research
Degree Programmes and that it has not been submitted for any other academic
award. Except where indicated by specific reference in the text, the work is the
candidates own work. Work done in collaboration with, or with the assistance of,
others, is indicated as such. Any views expressed in the dissertation are those of
the author.

13



14



List of Abbreviations

AB

AD
AHP
AP
CHMP2B
EC
EEG
eLORETA
FC
FFT
fMRI
FTD
HOA
iIAAFT
LFP
LZC
MCI
MD
mEC
mEC-SC
MEG
MMSE
NFT
NMM
ODE
PET
PLF
PSC
PSP
QIF
ROI
SC

Amyloid-beta

Alzheimer’s disease

After hyperpolarization

Action potential

Charged multivesicular body protein 2b
Effective connectivity
Electroencephalography

Exact low resolution brain electromagnetic tomography
Functional connectivity

Fast Fourier transform

Functional magnetic resonance imaging
Frontotempotal dementia

Healthy older adult

Iterative amplitude adjusted Fourier transform
Local field potential

Lempel-Ziv complexity

Mild cognitive impairment

Mean degree

Medial entorhinal cortex

Medial entorhinal cortex stellate cell
Magnetoencephalography

Mini-mental state examination
Neurofibrillary tangle

Neural mass model

Ordinary differential equation

Positron emission tomography

Phase locking factor

Post-synaptic current

Post-synaptic potential

Quadratic integrate-and-fire

Region of interest

Structural connectivity

15



SDE
SN
SNIC
SNP
SVM
SW
TG
WT

Stochastic differential equation
Saddle-node bifurcation

Saddle-node on invariant circle bifurcation
Saddle-node of periodics bifurcation
Support vector machine

Small-worldness

Transgenic

Wild-type

16



Chapter 1

Introduction

1.1 Introduction and overview of thesis

Theoretical physicist and popular science writer Michio Kaku wrote that:

“There are 100 billion stars in the Milky Way galaxy, roughly the same
as the number of neurons in our brain. You may have to travel twenty-
four trillion miles, to the first star outside our solar system, to find an
object as complex as what is sitting on your shoulders.”

— Kaku (2014)

What makes the human brain so complex? Containing 86 billion neurons (Azevedo
et al., 2009) wired up to form a heirarchical network at multiple spatial scales
(Sporns et al. (2005); Betzel and Bassett (2017); Figure 1.1), any network sci-
entist would agree that the structural connectome of the brain is highly complex
(Rubinov and Sporns, 2010). Adding to this complexity are the multi-scaled elec-
trical dynamics on this network (Deco et al., 2008); from the spiking dynamics
of single neurons (lzhikevich, 2007), to the emergence of oscillations in neuronal
ensembles (Wallace et al., 2011) and the synchronization of brain regions at a
whole-brain scale (Smith et al., 2009).

Neurological disorders such as Alzheimer’s disease (section 1.2) can result in
perturbations to brain dynamics and connectivity on all spatial scales (reviewed
in section 1.3). By combining electrophysiological brain imaging data (Wick-
enden, 2014) with mathematical analysis techniques such as time series analy-
sis (Kantz and Schreiber, 2004; Dauwels et al., 2011) and graph theory (Rubinov
and Sporns, 2010), these perturbations to dynamics can be characterised quan-
titatively to gain insight into how brain function is altered in disease (reviewed
in section 1.8). Furthermore, mathematical models of neuronal systems (sec-
tion 1.5-1.7) are a powerful tool for gaining insight into the biological mechanisms
underpinning alterations to brain dynamics in disease (de Haan et al., 2012a;
Abuhassan et al., 2014; Dermitas et al., 2017), examining the interplay between
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Introduction

Figure 1.1: Brain networks at multiple spatial scales (A) At the microscale,
neurons are wired up through synaptic connections. Groups of neurons with sim-
ilar properties (represented by colours in the figure), are organized in layers. Con-
nections can be excitatory (arrows) or inhibitory (circles). (B) At the meso-scale,
we can consider populations of neurons with similar properties as a neural mass,
and the connectivity between neural masses has weights dependent on the num-
ber and strength of connections between neurons within the population. (C) At
the whole brain macro-scale, we can consider different regions of the brain as
a neural mass. The macro-scale network is the density of connections between
regions of the brain. Brain networks at all scales can additionally be functional,
i.e. defined by synchronous activity instead of strength of synaptic connections.

dynamics and coupling at different spatial scales of the brain (Deco et al., 2014;
Schmidt et al., 2014; Ness et al., 2018), and understanding the relationship be-
tween complex network structure and emergent dynamics (Barahona and Pecora,
2002; Lopes and Goltsev, 2019). Computational models have so much potential
to unravel the complexity of brain dynamics that there are currently many large-
scale research projects dedictated to building realistic brain models such as The
Virtual Brain (Ritter et al., 2013), the Blue Brain Project (Markram, 2006), and the
Human Brain Project (Markram et al., 2015).

In this thesis, we combine mathematical modelling and data analysis to un-
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Introduction and overview of thesis

derstand alterations to the brain’s electrical dynamics in Alzheimer’s disease. In
chapters 2-3, we study how neuronal dynamics are perturbed in two transgenic
rodent models of dementia pathologies (Goétz and litner, 2008; Roberson, 2012;
Webster et al., 2014). Animal models allow for the use of invasive neuroimaging
at high spatial resolution (Suter et al., 1999; Stosiek et al., 2003; Buzsaki, 2004),
giving insight into cellular and synaptic mechanisms of altered neuronal dynamics
due to specific dementia-related pathologies and genetic defects (Brown et al.,
2011; Chong et al., 2011; Tamagnini et al., 2015; Busche et al., 2015a,b; Wit-
ton et al., 2016; Booth et al., 2016a). In chapter 2, we use biophysical models
of a neuron to understand the ionic mechanisms underpinning altered dynam-
ics of stellate neurons in the entorhinal cortex of an animal model of Alzheimer’s
pathology' (Booth et al., 2016a). In chapter 3, functional connectivity (co-activity,
quantified by statistical similarities in dynamics) between networks of neurons
on a local and whole-brain scale is then explore through computational analysis
of functional brain imaging data recorded on distinct spatial scales in an animal
model of frontotemporal dementia to understand synaptic deficits.

Despite the experimental practicality of using animal models to research elec-
trophysiological dysfunction in dementia, there are also many limitations to con-
sider. No animal models at present are able to fully capture the Alzheimer’s dis-
ease pathologies and disease progression (Drummond and Wisniewski, 2017),
and clinical trials have often demonstrated poor translationality in pharmacologi-
cal intervention between rodents and humans (Drummond and Wisniewski, 2017;
King, 2018), with a failure rate of clinical drug trials of 99.6% in the decade of
2002-2012 (Cummings et al., 2014). Whilst animal models are therefore useful
tools to study how particular pathologies related to Alzheimer’s disease will affect
neural tissue, it is important to test whether electrophysiological alterations are
translational between humans and animals.

Therefore chapters 4-6 apply computational modelling and data analysis to
data recorded from people with Alzheimer’s disease. This data is non-invasive,
recording the electric potential on the scalp due to the electrical activity of the
brain using a method called electroencephalography (EEG). Chapter 4 uses tech-
niques from physics to estimate the brain activity based on the EEG data (Michel
et al., 2004), and then combines time series analysis, graph theory, and whole-
brain dynamic modelling to estimate alterations to the large scale network struc-
ture of the brain?. By combining these results with cognitive test scores, insight
into the relationship between neuronal function and behaviour is uncovered. This
work studies properties of the brain on a temporal scale of the order of tens of
seconds, so in chapter 5 we study the how EEG microstates (Khanna et al.,
2015), which are periods of stability on a temporal scale of tens to hundreds of

'This work was published in the Journal of Theoretical Biology as Tait et al. (2018)
2This work was published in Clinical Neurophysiology as Tait et al. (in press)
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Introduction

milliseconds, change in Alzheimer’s disease.

In chapter 6 we combine the electrophysiological signatures of Alzheimer’s
disease identified in chapters 4-5 to build a statistical model predicting the like-
lihood of a person having the disorder. We show that using a small number of
quantitative measures derived only from non-invasive electrophysiological data,
the model can predict to 85% accuracy whether a person has Alzheimer’s dis-
ease. These results are validated in an independent test set of clinical data.
Finally, using the model we find we can also predict conversion to Alzheimer’s
disease within four years for 10 out of 11 peole with mild cognitive impairment,
giving promising preliminary results suggesting that EEG is a potentially useful
tool for aiding early diganosis of Alzheimer’s disease.

The remainder of this chapter is laid out as follows. In the next section (sec-
tion 1.2), we introduce Alzheimer’s disease and dementia, and their characteristic
pathologies. The following section (section 1.3) introduces concepts in neuro-
science and electrophysiology and reviews literature on the field of Alzheimer’s
disease. Particularly, this section introduces some of the types of data that will
be analysed and modelled throughout the thesis. Sections 1.4-1.7 focus on the
quantitative methods and tools used throughout the thesis, giving a general back-
ground to dynamical systems modelling, modelling of neuronal systems at mul-
tiple spatial scales, and some of the models used in this thesis. Finally, we in-
troduce analysis techniques used in the thesis to quantify neuronal dynamics
(section 1.8).

1.2 Alzheimer’s disease and dementia

Dementia is an umbrella term for a group of neurological disorders affecting 50
million people worldwide, a number which is expected to triple to 152 million by
2050 (Alzheimer’s Disease International, 2018). Alzheimer’s disease (AD) is the
leading cause of dementia, causing between 50 and 70% of all dementias (Burns
and lliffe, 2009; World Health Organization, 2017). The other three primary dis-
eases causing dementia are vascular dementia (approximately 25% of cases),
Lewy body dementia (15%), and frontotemporal dementia (<5%) (Burns and lliffe,
2009). These numbers account for the fact that some people exhibit mixed de-
mentia (caused by more than one underlying disease), explaining the >100%
sum of prevalences of aetiologies. Each of these dementia subtypes has different
underlying pathologies and symptomatic progressions, but are all characterised
by progressive cognitive decline (Agronin, 2014). This thesis focuses on AD and
related pathologies.

Common symptoms of AD in the early stages include memory loss, difficulties
with language, and disorientation to space and time. Cognition declines pro-
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Alzheimer’s disease and dementia

Stage C

Figure 1.2: Topographical staging of AP plaques. Stages A-C of the AB plaque
progression in AD as defined by Braak and Braak (1991), showing only cortical
pathology. Grey regions have no plaques, and darker blues show progressively
higher severity of the pathology. Stage A is preclinical, whilst B and C are progres-
sive staging of clinical dementia (Braak and Braak, 1991). This figure is largely
based upon Figure 4 of Braak and Braak (1991), mapped onto the ICBM152 MNI
average brain (Mazziotta et al., 2001) with regions discretized according to the
Desikan-Killiany atlas (Desikan et al., 2006).

gressively throughout later stages (Agronin, 2014). There is currently no cure for
AD, and disease progression eventually leads to death in many cases; using the
World Health Organization’s guidelines (Becker et al., 2006), the UK Office for Na-
tional Statistics (2018) has reported that for the years 2015-2017, dementia was
the leading cause of death in the UK (with later statistics currently unavailable).

Braak and Braak (1991) described the neuropathological staging of AD, char-
acterized by two primary pathologies. The first pathology characteristic of AD is
extracellular amyloid-beta (AB) plaques or deposits. AP are peptides formed from
cleavage of the amyloid precursor protein (APP) via the amyloidogenic pathway.
The healthy function of APP is not well understood (Hiltunen et al., 2009). The
topographical progression of AB plaques is shown in Figure 1.2. Whilst the sever-
ity of AR plaque deposits are reasonably uncorrelated with symptomatic severity,
soluble AP pools preceeding plaque formation correlate with clinical state (Mur-
phy and LeVine lll, 2010), suggesting it may be earlier staged soluble forms of AR
that are causative of cognitive symptoms of AD. This hypothesis has had valida-
tion in rodents, where it has been demonstrated that soluble - but not insoluble -
AP caused synaptic impairments (Shankar et al., 2008). Impairments in cognitive
domains such as spatial working memory and recognition memory have been
observed in transgenic animal models with AP pathologies (Webster et al., 2014).
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Figure 1.3: Topographical staging of tau neurofibrillary tangles. Stages of
the tau tangle progression in AD as defined by Braak and Braak (1991), showing
only cortical pathology. Grey regions have no tangles, and darker reds show
progressively higher severity of the pathology. Stages I-Il are preclinical, 1lI-IV
show incipient AD, and V-VI are end-stage AD (Braak and Braak, 1995). This
figure is largely based upon Figure 1 of Braak and Braak (1991), mapped onto
the ICBM152 MNI average brain (Mazziotta et al., 2001) with regions discretized
according to the Desikan-Killiany atlas (Desikan et al., 2006).

The second primary pathology characteristic of AD is intracellular neurofibril-
lary tangles (NFTs) caused by hyperphosphorylated tau proteins. Tau is a protein
coded by the microtubule associated protein tau (MAPT) gene, and plays a role in
cytoskeleton stabilisation in neurons (Guo et al., 2017). Hyperphosphorylated tau
and NFTs are associated with impaired axonal transport and synaptic dysfunction
(Guo et al., 2017), and can be a pathology of not only AD, but also other neurode-
generative disorders such as frontotemporal dementia (Shiarli et al., 2006) and
Parkinson’s disease (Zhang et al., 2018).

The topographical progression of NFTs in AD is shown in Figure 1.3. Tau
pathology in AD starts in the entorhinal regions of the brain, which acts as a
bridge between the cortex and hippocampus (Canto et al., 2008) and plays a
crucial role in the spatial memory and navigation systems (Moser et al., 2008).
An early stage symptom of AD is impaired orientation to space (Lithfous et al.,
2013; Allison et al., 2016), and animal models of tauopathy have demonstrated
impaired spatial memory (Ramsden et al., 2005; Yue et al., 2011; Blackmore
et al.,, 2017; Fu et al., 2017) and electrophysiological alterations to the neuronal
map of space (Booth et al., 2016a; Fu et al., 2017). Chapter 2 focuses on the
dynamics of neurons in the entorhinal cortex which play a crucial role in spatial
memory (Tennant et al., 2018), and how they are altered in an animal model of
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Figure 1.4: Topographical staging of cortical atrophy. Grey regions have
no significant atrophy, whilst percentage reduction in grey matter volume is pre-
sented by the colour scale. This figure is largely based upon Table 2 of Frisoni
et al. (2009), mapped onto the ICBM152 MNI average brain (Mazziotta et al.,
2001) with regions discretized according to the Desikan-Killiany atlas (Desikan
et al., 2006).

tauopathy.

Progressive neurodegeneration is known to occur in AD, resulting in grey mat-
ter atrophy including cortical thinning and reduced volume (Pini et al., 2016).
There is evidence to suggest tau neurofibrillary tangles play a crucial role in cor-
tical atrophy and neurodegeneration. Tau pathology is found in a broad range of
neurological disorders featuring neurodegeneration including AD, frontotemporal
dementia, amyotrophic lateral sclerosis (ALS), and Parkinson’s disease (Spillan-
tini and Goedert, 2013). In animal models of AD, those featuring tauopathy often
exhibit severe cortical atrophy while models of amyloidopathy do not (Gétz and
Ittner, 2008; Jankowsky and Zheng, 2017). Furthermore, the topographical pro-
gression of cortical atrophy (Frisoni et al. (2009); shown in Figure 1.4) correlates
with tau pathology (Pini et al., 2016). Particularly, at the incipient stages of AD the
spatial distribution of atrophy closely resembles that of tau NFTs at Braak stages
3-4 (Figure 1.3), which correspond to incipient AD (Braak and Braak, 1995), and
spreads throughout the rest of the cortex at later stages. Medial temporal struc-
tures, including the entorhinal cortex and hippocampus, are crucially some of
the earliest regions to atrophy. Subcortical structures are also known to exhibit
varying degrees of grey matter atrophy (Pini et al., 2016). Crucially, neurodegen-
eration also includes severe loss of synapses as well as neurons (Selkoe, 2002),
which is believed to result in cognitive impairment in AD (Morrison and Baxter,
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2012).

1.3 Electrophysiology and Alzheimer’s disease

In this section, we will introduce some important concepts in neuroscience, partic-
ularly electrophysiology and neural dynamics, and briefly review how these prop-
erties of the brain change in Alzheimer’s disease.

The neuron is the basic functional unit of the brain (Young et al., 2015). A neu-
ron is a type of cell found throughout the nervous system which, through electrical
dynamics, can recieve and transmit nerve impulses. The electrical dynamics of a
neuron are regulated by transmembrane currents which are the result of flow of
charged ions through channels in the membrane (Figure 1.5).

A crucial property of neurons is excitability (Izhikevich, 2007). At rest, charged
ions are distributed across the neuronal membrane such that the neuron is neg-
atively polarised, usually with a membrane potential in an approximate range of
-40 to -90 mV, but which varies depending on the neuron (Tripathy et al., 2014).
Small perturbations to a neuron at rest - for example input from a neighbouring
neuron - will cause a small perturbation to the membrane potential of the neuron,
which will then return to rest. However, when the input to the neuron is sufficiently
depolarising, the membrane potential of the neuron reaches a threshold and the
neuron rapidly depolarises. This is called an action potential (AP), or colloquially
a spike, and causes the neuron to send electrical signals to its own neighbours.
Hodgkin and Huxley (1952) quantitatively and experimentally described the gen-
eration of APs in terms of ions passing through the membrane of the squid giant
axon by a process which is outlined in Figure 1.5. The spiking activity of a neuron
is therefore often modelled as a binary point process (at any given time the neu-
ron is spiking or not), and such spiking dynamics in single cells and populations
of neurons is believed to be crucial for information encoding (Panzeri et al., 2015).

Experimental methods exist to record membrane dynamics of neurons - see
Suter et al. (1999) for a review. Since these methods are highly invasive, usu-
ally requiring a slice of brain, research to understand how neuronal dynamics are
altered in AD is predominantly performed in rodent models of AD pathology. Spa-
tially heterogeneous alterations to cortical and hippocampal neuronal excitability
have been reported in animal models of tauopathy (Rocher et al., 2010; Crimins
et al., 2012; Menkes-Caspi et al., 2015; Booth et al., 2016a,b) and amyloidopathy
(Brown et al., 2011; Tamagnini et al., 2015; Heggland et al., 2019). Particularly
relevant to chapter 2 of this thesis are alterations to excitability of stellate cells in
the medial entorhinal cortex (MEC-SCs) in a mouse model of tauopathy reported
by Booth et al. (2016a). mEC-SCs play a crucial role in the spatial navigation
systems of the brain (Tennant et al., 2018) which are disrupted in AD (Lithfous
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Figure 1.5: Generation of an action potential in a neuron, as described by
Hodgkin and Huxley (1952) for the squid giant axon. (Left) The neuronal mem-
brane, and the flow of charged ions. (Right) A plot of membrane potential against
time. (A) At rest, charged Na* (extracellular) and K* (intracellular) ions are dis-
tributed across the membrane to cause depolarization of the membrane. (B)
During action potential initiation, Na* channels in the membrane open and cause
an influx of Na* ions into the cell, causing depolarisation. (C) When the cell
is depolarised, Na* channels close and K* channels open, causing membrane
repolarisation. (D) Following this, all ion channels inactivate and ions cross the
membrane aided by sodium-potassium pumps (not shown in figure) to return to
the initial equilibrium in A. This period is knows as the refractory period.
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et al., 2013; Allison et al., 2016) and animal models of tauopathy (Fu et al., 2017).
In an experimental tauopathy model, Booth et al. (2016a) reported alterations to
‘clustered’ AP patterns in which multiple APs are fired consecutively between long
quiescent periods, which are studied using mathematical techniques in chapter 2.

When a neuron fires an AP, it sends an electrical signal to neighbouring neu-
rons via synapses. The pre-synaptic neuron releases a neurotransmitter which
binds to receptors in the post-synaptic neuron. The outcome of this can be in-
hibitory (causing the post-synaptic neuron to temporarily hyperpolarise and be-
come less excitable) or excitatory (causing the post-synaptic neuron to temporar-
ily depolarise and become more excitable) (Bérgers and Kopell, 2005). Whether
a signal is excitatory or inhibitory depends primarily on its neurochemical basis;
excitatory signals are predominantly mediated by glutamate, whilst inhibitory sig-
nals are mediated by GABA. Neurons which predominantly release glutamate are
therefore often referred to as excitatory cells, whilst those which predominantly re-
lease GABA are often referred to as inhibitory cells. Ensembles of excitatory and
inhibitory neurons within a region of the cortex are synaptically connected in a
laminar structure, in which layers are organized by neurons with similar morpho-
logical and electrophysiological properties (Mountcastle, 1997). This balance of
excitation and inhibition may result in synchronous AP firing patterns of locally
synaptically connected neurons (Whittington et al., 2000). Synchronous AP ac-
tivity or post-synaptic potentials (PSPs) can be imaged in slices or in vivo using
multi-electrode arrays (Buzsaki, 2004) or two-photon calcium imaging (Stosiek
et al., 2003) and quantified using statistical measures of synchrony (Dombeck
et al., 2009; Goncalves et al., 2013). In trangsenic models of amyloidopathy,
spontaneous hyperactivity and increased coactivation between local cortical neu-
rons has been observed (Busche and Konnerth, 2016), however in tauopathy and
combined amyloid-tau models neurons have been found to be silenced (Busche
et al., 2019). These results suggest different synaptic deficiencies in amyloid and
tau models of AD pathology, dominated by tau pathology (Busche et al., 2019).
In chapter 3, two-photon calcium imaging data is used to uncover alterations to
local neuronal synchrony in a mouse model of frontotemporal dementia.

Synchronous activity in local networks of neurons can give rise to neuronal os-
cillations at multiple temporal scales (Buzsaki, 2006). The resulting post-synaptic
currents (PSCs) onto the dendrites of pyramidal cells aligned vertically along the
cortical column (represented by the pale orange neurons in Figure 1.1A) sum-
mates, and measurements of the local extracellular potential due to these trans-
membrane PSCs (Eccles, 1951; Olejniczak, 2006; Einevoll et al., 2013; Mazzoni
et al., 2015) display oscillatory activity (Buzsaki, 2006). An example of this oscilla-
tory activity arising from simulated spiking neurons is shown in Figure 1.6, using
the model of hippocampal theta (4-12 Hz) and gamma (30-80 Hz) rhythms de-
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Figure 1.6: Oscillations arise from networks of spiking neurons. Simulations
of spiking neurons generating theta (4-12 Hz) and gamma (30-80 Hz) rhythms
seen in hippocampal LFPs in rodents in vivo. A description of the model used
to generate this figure and examples of experimental data can be found in Wulff
et al. (2009). (A) Simualted hippocampal LFP (black). The same LFP is shown
filtered into the theta (blue) and gamma (red) bands. (B) The power spectrum of
this LFP shows there are peaks at around 7 Hz and 40 Hz, demonstrating that
organized oscillations have arisen from the spiking neurons. (C) Raster plot of
the spiking neurons generating this oscillation. Black dots represent the instant a
neuron has fired an AP.

scribed in (Wulff et al., 2009) (data showing these rhythms in vivo is also demon-
strated in the cited paper).

These local field potentials (LFPs) may be recorded intracranially, for example
in rodents (Booth et al., 2016a) or humans having undergone surgery for clinical
purposes (e.g. for presurgical evaluation in epilepsy (Goodfellow et al., 2016)).
Due to the invasive nature of these techniques, intracranial LFP studies have
been predominantly performed in experimental rodent models of Alzheimer’s dis-
ease. In the entorhinal-hippocampal circuit, rodent models of tauopathy have ex-
hibited alterations to frequencies and power of organized neuronal oscillations
related to memory consolidation during sleep (Witton et al., 2016), and spa-
tial memory and learning (Booth et al., 2016a,b; Ciupek et al., 2015; Nakazono
et al., 2018). Similar alterations have been observed in models of amyloidopathy
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Modality Invasive Signal Space Spatial resolution ~ Temporal resolu-
tion
Patch clamp Yes Membrane poten- Source Single ion channel Sub-millisecond
tial of neuron to whole cell
MEA Yes Extracellular PSCs Sensor Ensembles of neu- Sub-millisecond
rons in parallel
Two-photon Yes Calcium dynamics Source Ensembles of neu- Milliseconds to
Ca?* imaging rons in parallel to seconds
cortical columns
LFP Yes Extracellular PSCs Source Cortical column Milliseconds
EEG No Electric field on Sensor ~10 mm Milliseconds
scalp due to
extracellular PSCs
MEG No Magnetic field due Sensor ~5 mm Milliseconds
to electric field
No Metabolic activity Source ~5mm Tens of seconds
No Blood oxygen level Source 1-5mm Seconds

Table 1.1: Review of electrophysiological imaging techniques. Spatial and
temporal resolutions are approximate, and are based on ranges given in Suter
et al. (1999), Litcke et al. (2013), and Boly et al. (2015). Measures marked
as source space directly measure from their respective source, whilst measures
marked sensor require some analysis to establish origins of signals.

(Goutagny et al., 2013; Zhang et al., 2016; Nakazono et al., 2018).

Whilst these invasive LFP recordings in rodents can give insight into potential
mechanisms of Alzheimer’s disease, for example those underpinning memory im-
pairments and disorientation to space, there are limitations to using rodent mod-
els of disease (discussed in section 1.1). In order to study electrophysiological
properties in human AD, non-invasive measurements must be used. There are
a large number of non-invasive functional neurocimaging technologies available
each with their own advantages and limitations. For brevity, a detailed review
of these methods is not included here, and we divert the reader to reviews by
Crosson et al. (2010) and Boly et al. (2015), as well as a summary of modalities
in Table 1.1. Here, we will focus on resting-state electroencephalogram (EEG),
which is the focus of chapters 4-6.

EEG is generated by the same transmembrane post-synaptic currents as the
LFP (Olejniczak, 2006). Synchronous PSCs in cortical neural masses generate
electric fields which conduct onto the scalp. By placing electrodes onto the scalp,
neural oscillations can be recorded in a non-invasive manner. EEG has the ad-
vantage over other commonly used neuroimaging techniques such as fMRI or
PET of recording signals directly generated by electrical neuronal activity, mean-
ing dynamics are fast and allow for high temporal resolution (Boly et al., 2015).
However, due to electric field spread, EEG has low spatial resolution (Boly et al.,
2015) and additional techniques such as source localization must be used to esti-
mate the anatomical origin of the electrical field (Michel et al., 2004). Furthermore
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EEG is limited by predominantly recording cortical dynamics (Olejniczak, 2006),
and cannot easily record deep structures. Depending on the hypotheses to be
tested and analytical techniques to be used, as few as eight (Khanna et al., 2014)
or as many as 256 (Hassan et al., 2014) electrodes may be placed on the scalp.
EEG also has the advantage over fMRI, PET, or MEG of being relatively inexpen-
sive (Crosson et al., 2010). Inexpense, combined with EEG’s current implemen-
tation in healthcare systems for diagnosis of epilepsy (Smith, 2005), makes it a
prime candidate for both research and clinical environments, such as aiding early
diagnosis of AD (Poil et al., 2013).

In the EEG of people with AD, slowing of neuronal oscillations beyond the level
typically seen in aging has consistently been reported for over thirty years (Duffy
et al., 1984; Strik et al., 1997; Adler et al., 2003; Lindau et al., 2003; Dauwels
et al., 2011; Hatz et al., 2015a; Liu et al., 2016; Wang et al., 2015; Engels et al.,
2016; lanof et al., 2017; Goossens et al., 2017). A number of computational
studies have explored mechanisms of how oscillations in neural ensembles may
change frequency. Alterations to membrane and synaptic time constants of neu-
rons within the population can alter the frequency of emergent oscillations (David
and Friston, 2003; Moran et al., 2007). Whilst slowing can additionally be a re-
sult of increasing both excitation and inhibition proportionally (Jansen and Rit,
1995), severe loss of synapses has been reported even at early stages of AD
(Selkoe, 2002) so increased connectivity is unlikely except perhaps as a com-
pensatory mechanism (Abuhassan et al., 2014). Disruption to the balance of ex-
citation and inhibition has been described as a potential mechanism for slowing
of neuronal oscillations, including degeneration in either inhibitory (Moran et al.,
2007; Zavaglia et al., 2010) or excitatory synapses (Moran et al., 2007; de Haan
et al., 2012a; Abuhassan et al., 2014). Alternatively, global or long range mech-
anisms are also possible. David and Friston (2003) suggested that increased
propogation delays between cortical regions can slow the neuronal oscillations
of both regions. Whilst David and Friston (2003) presented this in the context of
increased tract lengths, demyelination of white matter in AD (Nasrabady et al.,
2018) could also result in increased propogation delays. Degeneration of corti-
cothalamic or thalamocortical synapses result in slowing of thalamic oscillations,
but are not sufficient to explain slowing of cortical oscillations recorded by EEG,
which instead require local corticocortical synaptic impairment (Abuhassan et al.,
2014).

In addition to slowing of cortical oscillations, alterations to synchronization of
neural oscillations across the brain have been reported in AD, reviewed by Ba-
biloni et al. (2016). However, reports of altered synchronization vary; whilst many
studies report reduced synchrony in people with AD (Adler et al., 2003; Pijnen-
burg et al., 2008; Wang et al., 2014, 2015; Hata et al., 2016), others have reported
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increases in synchrony (Koenig et al., 2005a; Cantero et al., 2009; Gallego-Jutgla
et al., 2015). Potential reasons for these inconsistencies are discussed in more
detail in chapter 4 (section 4.4.2). More consistent have been reports of less
efficient topologies of whole brain synchronization networks in AD (Stam et al.,
2007a; de Hann et al., 2009; Wang et al., 2014; Berlot et al., 2016; Afshari and
Jalili, 2017; Vecchio et al., 2017; Sami et al., 2018). Evidence for impaired con-
nectivity between regions of the brain in AD can also be extended to other func-
tional neuroimaging modalities such as MEG (Stam et al., 2009), fMRI (Badhwar
et al., 2017), and PET (Cope et al., 2018), structural imaging of white matter
tracts (Rose et al., 2000; Mito et al., 2018), and neuropsychological studies (Del-
beuck et al., 2003). A leading hypothesis for how cognitive impairment arises
in AD is that alterations to the macro-scale functional connectome compromises
the ability of distributed processing systems to integrate or exchange information
(Delbeuck et al., 2003; Uhlhaas and Singer, 2006). This disconnection hypothesis
is discussed in further detail in chapter 4.

1.4 Dynamical systems and qualitative modelling
of the neuron

In the previous section, we introduced the concept of neuronal excitability and
the action potential. In this section, we will describe how an area of mathematics
called dynamical systems theory can be used to build a computational model of a
neuron which qualitatively exhibits these properties (whilst more biophysically and
quantitatively realistic models of the neuron are discussed in section 1.5). This
chapter aims to give a brief introduction to key methods and tools from dynam-
ical systems theory in the context of neuroscience (Izhikevich, 2007; Gerstner
et al., 2014), with a focus predominantly on microscale neuronal dynamics. More
detailed overviews of dynamical systems theory are given in textbooks such as
Glendinning (1994), Kuznetsov (1998), Robinson (1998), and Hirsch et al. (2003).
Furthermore, more in depth reviews of applications of dynamical systems theory
to neuroscience are given by Izhikevich (2007) and Gerstner et al. (2014), whilst
broader applications of dynamical systems theory in science and engineering are
given by Strogatz (2014).

Dynamical systems theory is the study of the mathematical description of a
temporally evolving system (a dynamical system). This can be anything from an
object under the influence of gravity as described by Isaac Newton in 1687, to
the dynamics of the membrane potential of a neuron or oscillations in the local
field potential. There are two key mathematical formulations for a dynamical sys-
tem; continuous dynamical systems are formulated by a system of differential
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equations, whilst discrete dynamical systems are formulated by iterative maps or
difference equations (Strogatz, 2014). The primary tool used in this thesis is the
former, although a specific application of maps as a tool for studying continuous
dynamical systems will be briefly introduced in section 1.4.4

A continuous dynamical system of dimension m can be described by the first

order differential equations

. dx

where x € R™ and f : R™ — R™. The flow of the system is defined as follows:

Definition 1. The flow ¢(t,x) of a system of differential equations of the form
Equation 1.1 is the set of solutions of these equations such that o(t,x) is the
solution at time t with initial condition (att = 0) xo = x(0) - Glendinning (1994).

In lay terms, we define the flow as the solution to the dynamical system for a
given initial condition. Typically when modelling electrophysiological dynamics of
a neuron, the membrane potential V' is a variable in the system of equations, so a
one-dimensional neuronal model might be of the form V = f(V'). However, this is
not guaranteed; for example, phase models of the neuron do not explicitly model
V' (Ermentrout and Kopell, 1986). For this reason, throughout this section we will
keep the discussion to general systems of equations as described in Equation 1.1
unless discussing a specific neuronal model.

1.4.1 Modelling the neuron during quiescence

To build a model neuron, we can consider a current clamp experiment such as
the one shown in Figure 1.73. In this section, we will study the neuron during
quiescence, so let us consider only the values of input current I that are not suffi-
ciently depolarizing to initiate action potentials (i.e. the current is below rheobase,
I1,). For a particular current I, the membrane potential of the neuron V' evolves
towards a fixed value and then does not move away from this value. From a dy-
namical systems perspective, this fixed value would be described as an invariant
set, formally defined as

Definition 2. A set M is invariant if for all x, € M, p(t,x¢) € M for all t -
Glendinning (1994).

That is, a flow initially in an invariant set M remains in M for all time (Strogatz,
2014). In the case of the neuron at rest, the membrane potential reaches a fixed
value and then does not chage, meaning this invariant set consists of a single

3The data presented in Figure 1.7 was collected by the author of this thesis from a neuron in
layer 2/3 of the mouse entorhinal cortex.
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Figure 1.7: Bifurcations in neural dynamics - from resting to spiking. This fig-
ure shows an example of a current clamp experiment in a neuron. A step current
(bottom left) is applied across the membrane of the neuron, and the membrane
potential V' of the neuron is recorded (top left). For currents I below some critical
value I,, called rheobase, V' reaches a steady state. Above this critical value, the
neuron fires action potentials. Therefore a key feature of mathematical models of
neurons is that they may be described by V = f(V;: 1) and undergo a bifurcation
at I = I,. A simple example of this is the quadratic integrate-and-fire (QIF) neuron
(see section 1.4.2 for a description of the QIF neuron and the integrate-and-fire
reset condition), in which f(V; I) is a quadratic function. The plots at the top right
show that in such a system, there exists a stable and an unstable steady state
for I < I,, which collide to form a non-hyperbolic equilibrium at I = I,, and are
abolished for I > I,. Therefore this model of a neuron transitions to spiking via
a saddle node bifurcation (described further in section 1.4.1). By resetting V' to
some value Vieset When it reaches a value Vpeax, regular spiking can be achieved
for I > I,. An example simulation of the data using a quadratic integrate-and-fire
neuron is shown in the bottom right figure in black, overlaid on the data (grey) for
comparison purposes.
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point x* € R™. This particular type of invariant set is known as a steady state,
fixed point, or equilibrium of the system, which satisfies

f(x*) = 0. (1.2)

Therefore a neuron model x = f(x; ) with parameter I < I, might be chosen
such that there exists some x* that satisfies f(x*; I) = 0 to qualitatively describe
the non-spiking dynamics of the membrane potential.

However, this condition alone is not sufficient to ensure that the behaviour of
the steady state matches the behaviour of the quiescent neuron. Neurons reg-
ularly receive small perturbations away from the steady state due to stochastic
ion channel gating and post-synaptic potentials (White et al., 2000). An exam-
ple of the latter is marked by a red star in Figure 1.7. Note that following the
perturbation, the membrane potential stays in the neighbourhood of the steady
state and eventually returns to it. From a dynamical systems perspective, this
means the steady state is stable. Whilst there exist various definitions of stability
(Glendinning, 1994), the most useful definition in the context of this thesis is

Definition 3. An invariant set M is stable if it satisfies both of the following con-
ditions:

i. Lyapunov stability: Flows in the neighbourhood of M remain in the neighbour-
hood of M,

ii. Asymptotic stability: There exists some neighbourhood U > M where all
flows initially in U tend to M ast — oc.

- Kuznetsov (1998); Strogatz (2014).
Stability of a steady state can be established by the following theorem:

Theorem 1. Let x* be a steady state of a dynamical system of the form Equa-
tion 1.1. Let A = J(f)|x~ be the Jacobian matrix of f(x) evaluated at x*. Then
x* s stable if all eigenvalues \; € C, j = 1,2,...,m of A satisfy R(\;) < 0. -
Kuznetsov (1998)

This outcome is a result of the Hartman-Grobman theorem, which states that

Theorem 2. Hartman-Grobman Theorem. Let x* be a hyperbolic (all eigen-
values of J(f)|x- have non-zero real part) steady state of a non-linear dynamical
system of the form Equation 1.1. Then the non-linear system is locally topologi-
cally equivalent near x* (see Definition 4) to the linearized system & = J(f)|x-€. -
Kuznetsov (1998)

A more rigorous statement and proof of this theorem can be found in Robinson
(1998). Topological equivalence is defined as
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Definition 4. A dynamical system is topologically equivalent to another dynam-
ical system if there exists a homeomorphism h : R™ — R™ that maps orbits of the
first system onto the second system. - (Kuznetsov, 1998)

Local topological equivalence near a steady state restricts this to a small neigh-
bourhood of the steady state.

Perturbations to a linear system of differential equations & = A¢ grow or decay
proportional to exp A;t in the direction of the jth eigenvector of A (Strogatz, 2014),
where ); is the jth eigenvalue of A, meaning that the linearization of a dynamical
system about a steady state satisfies Definition 3 if ®(\;) < 0 Vj. Therefore
the steady steady state of the original non-linear system is also stable, by the
Hartman-Grobman theorem.

We have now described properties of a simple dynamical system describing
a neuron in the non-firing regime when a small current I < I, is applied. When
the input to the neuron is sufficiently depolarising (I > I,; Figure 1.7), the neuron
enters a spiking regime in which action potentials are fired and the membrane
potential no longer tends to a fixed value. In dynamical systems theory terms, this
means that at / = I, the steady state is either abolished or loses stability. This
sudden qualitative change in dynamics of the system as a parameter is varied is
known as a bifurcation (Strogatz, 2014), more formally defined as

Definition 5. A bifurcation is the appearance of a topologically nonequivalent
phase portrait under variation of parameters. - Kuznetsov (1998)

When describing bifurcations, it is often useful to discuss the normal form of the
bifurcation,

Definition 6. The normal form of a bifurcation is locally topologically equivalent
to any generic system which undergoes the same bifurcation in the neighbour-
hood of the bifurcation parameter - Kuznetsov (1998); Izhikevich (2007); Strogatz
(2014).

Figure 1.7 shows an example of a bifurcation in a one-dimensional system
which satisfies the case in which the steady state is abolished as I is increased
above I,, replicating the loss of stable steady state in the membrane potential of
the neuron. This bifurcation, called the saddle-node (SN) bifurcation, has the
normal form

T=ax*4p (1.3)

(Strogatz, 2014). For p < 0, there is a stable steady state at z* = —,/—u and
an unstable steady state at % = +,/—u. As p — 0 from the negative side, these
steady states move together and at 1+ = 0 collide to form a single non-hyperbolic
steady state. For i, > 0, there are no real solutions so no steady states.
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The saddle node bifurcation qualitatively captures the loss of quiescence in
the neuronal membrane potential. To obtain a more quantitatively accurate rep-
resentation of the membrane potential, a transformation of variables can be made
such that the steady states match the values of the membrane potential and the
bifurcation occurs at i = I,, whilst remaining topologically equivalent to Equa-
tion 1.3 (Izhikevich, 2007; Gerstner et al., 2014).

1.4.2 Action potentials in one-dimensional models: Class 1
excitability and the SNIC bifurcation

The previous section described how a saddle node bifurcation can be used to
mathematically model the resting state of the neuron and its sudden disappear-
ance as the current injected into the neuron reaches and exceeds a critical value
I,. However, this bifurcation is unable to capture the spiking dynamics of the
neuron when I > [, as for p > 0 in Equation 1.3 z — oo ast — oo. In the
neuron, which we will assume here fires tonic APs for I > I,,, the membrane po-
tential repeats itself periodically in the spiking regime. From a dynamical systems
perspective, this is a periodic orbit, defined as

Definition 7. The trajectory I' = {p(t,x)|0 < t < T'} is called a periodic orbit
of period T if p(t + T,x) = p(t,x) and p(t + S,x) # (t,x) for0 < S < T. -
Glendinning (1994); Hirsch et al. (2003)

Periodic orbits cannot exist in one-dimensional systems defined on the line
(Strogatz, 2014). However, one dimensional systems defined on a periodic phase
space, known as an invariant circle, are able to exhibit periodic orbits. Examples
of invariant circles can be formed by considering the variable = to be the phase
of an oscillator, or by restricting the phase space to the interval [z,,z,) and then
forming a loop from this interval with a requirement if x > «z,, then z < z,. The
latter is an integrate-and-fire reset condition (Izhikevich, 2007).

Consider a one-dimensional model of the neuronal membrane potential based
on the normal form of the saddle node bifurcation (Equation 1.3), with an integrate-
and-fire type reset condition. This model is known as the quadratic integrate-and-
fire (QIF) model (lzhikevich, 2007; Gerstner et al., 2014). At u = 0 the system
undergoes a saddle node on an invariant circle (SNIC) bifurcation. As with the
SN bifurcation, as ;. — 0 from the negative, a stable and unstable steady state
collide and disappear. However, in the case of the SNIC bifurcation, the system
has a periodic orbit on an invariant circle for © > 0. The QIF neuron can be made
a quantitatively more realistic representation of the membrane potential through
a transformation of variables (Izhikevich, 2007; Gerstner et al., 2014), and a sim-
ulation of a current clamp experiment using the QIF model is shown in Figure 1.7.
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Alternatively, Equation 1.3 can be written as the normal form of the SNIC bifur-
cation through the transformation of variables = = tan(¢/2), which is known as
the Ermentrout-Kopell or theta model (Ermentrout and Kopell, 1986; Izhikevich,
2007; Gerstner et al., 2014). The theta model is particularly useful due to its low
computational expense since, unlike the QIF model, no manual reset is required.

The SNIC bifurcation has a key role in neuroscience as the method by which
class 1 excitable neurons, which can fire APs at an arbitrarily low frequency de-
pending on the strength of the applied current, transition into the spiking regime
(Hodgkin, 1948; Izhikevich, 2007). Conversely class 2 excitability, which corre-
sponds to a minimum AP frequency that is relatively insensitive to changes in the
strength of applied current (Hodgkin, 1948; Izhikevich, 2007), cannot be modelled
by a SNIC bifurcation. Planar neuronal models exhibit a much broader range of
dynamics including class 2 excitability (Izhikevich, 2007) so these are the focus
of the following section.

1.4.3 Planar systems: complex eigenvalues allow for subthresh-
old oscillations and class 2 excitability

The one-dimensional QlF/theta neuron models are limited in their range of dy-
namics; for a given current injection I they either fire APs tonically or are at rest.
Extensions to planar (two-dimensional) models are able to greatly broaden the
range of neuronal dynamics (lzhikevich, 2007). Particularly, the addition of a
second variable allows complex eigenvalues of the Jacobian matrix, which are
related to phenomena not possible in one-dimensional phase space such as sub-
threshold oscillations/resonance and class 2 excitability (Izhikevich, 2001, 2007).

Let us begin by defining a focus as a steady state which has a pair of complex
conjugate Jacobian eigenvalues,

Definition 8. Letx* be a steady state of an m > 1 dimensional dynamical system
in the form Equation 1.1, and let A = J(f)|x- be the Jacobian matrix of f(x)
evaluated at x*. Then x* is a focus steady state if there exists a pair of complex
conjugate eigenvalues )\ € C of A.

We can characterize the effect of the complex conjugate eigenvalues following
Glendinning (1994). In a planar system, the Jacobian matrix evaluated at a focus
can be written as

A= J(E)|xe = [“ _”] , (1.4)
where a = R(\1) and w = 3(\.). The linearization of the system ¢ = A¢ can
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therefore be rewritten in polar coordinates as the uncoupled system

0 =w. (1.5)

Hence trajectories are a logarithmic spiral with frequency w into (a < 0; stable
focus) or away from (a > 0; stable focus) the origin (Glendinning, 1994). It is
clear that since « = R(\y) characterizes the stability of the focus, Theorem 1
holds for complex eigenvalues. By the Hartman-Grobman theorem, these results
hold for a non-linear system in the neighbourhood of the focus. Furthermore
these results can be generalized to two-dimensional manifolds of higher order
systems (Glendinning, 1994). Stable focuses can be used to model subthreshold
resonance and stochastically driven subthreshold oscillations (Izhikevich, 2001,
2007), which have been observed in biological neurons (Alonso and Klink, 19983;
White et al., 1998; Izhikevich, 2001; Dorval and White, 2005). Including reso-
nance in planar neuron models can be crucial for explaining organization of net-
work dynamics related to cognitive processes (Hasslemo and Shay, 2014).

Planar models with complex eigenvalues can also give rise to class 2 excitabil-
ity via a Andronov-Hopf or Hopf bifurcation (Izhikevich, 2007). The normal form
of the Hopf bifurcation is

jjl = (CL + 6(%% + x%))xl — WT9

@y = (a+ B(x] +23))Ts + war, (1.6)

where § = +1 defines whether the Hopf bifurcation is supercritical (3 = —1) or
subcritical (6 = +1) (Kuznetsov, 1998). For the entire (a,w,5) parameter space,
there is a single steady state at the origin. The Jacobian of the system is equiv-
alent to Equation 1.4, meaning that for « < 0 (a > 0 resp.) the steady state is a
stable (unstable resp.) focus. Written in polar coordinates, Equation 1.6 is

7 =r(a+ Br?)
0 =w. (1.7)

From these equations, it becomes clear that in the case of the supercritical
Hopf bifurcation (5 = —1), there is a stable limit cycle with radius /a for a > 0
corresponding to a stable steady state in the equation for ». Conversely in the
case of the subcritical Hopf bifurcation (8 = +1) there is an unstable limit cycle
with radius /—a for a < 0. Bifurcation diagrams for the Hopf bifurcations are
shown in Figure 1.8.

In both cases, close to the bifurcation the limit cycle has frequency w. There-
fore neuron models that transition from quiescence to spiking via a supercritical
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Figure 1.8: Hopf bifurcations. In all plots, solid/dashed black lines are sta-
ble/unstable steady states, green/blue lines or surfaces are stable/unstable limit
cycles, and red lines are trajectories of the system starting with a given initial con-
dition. (A) The bifurcation diagram for a supercritical Hopf bifurcation in the (a, 1)
plane. Shapes correspond to initial conditions of trajectories shown in B. (B) The
bifurcation diagram for a supercritical Hopf bifurcation in the (a, z1, z5) space and
example trajectories of the system. (C-D) As for A-B, but for the subcritical Hopf
bifurcation.

Hopf bifurcation exhibit class 2 excitability (Izhikevich, 2007). A well known ex-
ample of a planar neuron model exhibiting class 2 excitability by this mechanism
is the FitzHugh-Nagumo model (FitzHugh, 1961; Nagumo et al., 1962; Gerstner
et al., 2014). Furthermore, the supercritical Hopf bifurcation has been suggested
as a mechanism by which sustained subthreshold oscillations in a neuron are
generated (White et al., 1995). Additionally, whilst the focus of this section is
in single-cell dynamics, the supercritical Hopf bifurcation plays a crucial role in
generating macro-scale neuronal oscillations and is the basis of the macro-scale
models presented in this thesis; this macro-scale modelling is discussed further
in section 1.6.
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1.4.4 Calculating periodic orbits with Poincaré return maps

A crucial feature of the supercritical/subcritical Hopf bifurcation discussed in the
previous section is the generation of a stable/unstable periodic orbit. Whilst the
existence and stability of a periodic orbit in the normal form of the Hopf bifurcation
could be conveniently calculated through the use of polar coordinates, in general
this is not tractable, particularly for high dimensional dynamical systems such as
the biophysically realistic neuron model presented in chapter 2. Therefore in this
thesis, numerical solutions are used to find periodic orbits using the concept of a
Poincaré return map.

The Poincaré return map converts a continuous dynamical system to a dis-
crete dynamical system. Let us define the Poincaré section as follows:

Definition 9. Let " be a periodic orbit of an m-dimensional dynamical system of
the form Equation 1.1. A Poincaré section S is an m — 1 dimensional smooth
hypersurface which intersects ' at a point x € T' transverse to the flow, i.e. no
trajectories starting at S flow parallel to S. - Kuznetsov (1998); Strogatz (2014).

The simplest choice of S is often a hyperplane orthogonal to I" at x, (Kuznetsov,
1998). For modelling a spiking neuron, the choice of Poincaré section might be
defined around a particular value of V' through which the neuron passes during
the course of the action potential (Channell et al., 2007).

A Poincaré return map can then be defined:

Definition 10. Let S be a Poincaré section as described in Definition 9. A tra-
jectory starting at x € S sufficiently close to x at time t will return to pointy € S
attimet+ 7. Themap P : S — S, x — y = P(x) := ¢(t + 7,%), is called the
Poincare return map. - Kuznetsov (1998); Strogatz (2014)

It is clear from this definition that a periodic orbit I' of the flow is equivalent to a
fixed point x of the map, which satisfies

P(R) = %. (1.8)

An example of a Poincaré section and Poincaré return map is shown in Figure 1.9.

It is often useful to use index notation to denote iterations of a map, such
that x[k + 1] = P(x[k]) and x[k + N] = PN (x[k]). Fixed points of the map can
be computed numerically by calculating consecutive iterations of the map and
testing for convergence (Burden and Faires, 2010), or through use of a numerical
boundary value problem solver (Shampine and Kierzenka, 2001). An example
iterative scheme is shown in Figure 1.9B.

Since a periodic orbit of the flow (or fixed point on the map) is an invariant set,
the definition of stability is given in Definition 3. Much like with steady states of the
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Figure 1.9: Poincaré return maps and linearization. (A) An example flow for
the system of equations Equation 1.6 with (a, 5) = (1, —1) is shown in black. An
example Poincaré section for this system is shown in blue. Red dots represent
returns to the Poincaré section, i.e. iterations of the Poincaré return map. (B)
The value of x, at each iteration of the map. Note that as the 2-dimensional flow
in A converges to the stable limit cycle, the 1-dimensional map converges to a
steady state. (C) Linearization of the steady state of the map can be performed
by perturbing the system and calculating the return map. The dotted black line is
the stable limit cycle of the system and the solid black line is the flow of a system
perturbed from the steady state z, on the Poincaré section by h. Note h should
be small, and is greatly scaled up in the figure for illustrative purposes. The
linear derivative about the steady state is (p(Z2 + h) — Z3)/h. If this derivative has
magnitude greater than 1 then the system is unstable, and less than 1 the system
is stable. This can be generalized to higher dimensional systems by perturbing in
each dimension and building a Jacobian matrix. All eigenvalues of the Jacobian
must have a magnitude less than 1 for stability. (D) Visualisation of an example
3D flow, with corresponding 2D Poincaré section.
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flow, stability of a fixed point on the map can be assessed through linearization of
the map about the fixed point. First, let us define the multipliers of a system.

Definition 11. Let x be a fixed point of a discrete dynamical system x — p(x),
where x € R™ and p is a smooth map. Let A = J(p)|x be the Jacobian of p
evaluated at x. The multipliers of the system at x are the eigenvalues 1, € C,
j=1,2,...,m of A.

The stability of the fixed point can be characterized by the following theorem.

Theorem 3. A fixed point x of a discrete dynamical system is stable if all multipli-
ers . of the system at x satisfy || < 1 - Kuznetsov (1998)

Since a Poincaré return map is often not explicitly defined, numerical methods
must be used to compute the J(P)|x. In this thesis, A = J(P)|x was calculating
using the Fréchet derivates of the map about x (Levedev and Vorovich, 2002) as

follows:
P()_( + h/e]‘)i — )_(i

ij = 3 ;
In short, a small perturbation with magnitude » was applied to the fixed point in
the direction of the unit vector e; and the map calculated. The distance of the
return point in the ith direction from the fixed point, normalized by #, is the (i, j)th
entry to the Jacobian (Levedev and Vorovich, 2002). Figure 1.9C shows an exam-
ple calculation of Fréchet derivatives for a two-dimensional flow/one-dimensional
Poincaré return map.

A

(1.9)

The methods described here can be applied to identify and characterize sta-
bility of periodic orbits of a continuous dynamical system such as spiking regimes
in neuron models. Bursting can also be characterized, since periodic bursts of
n APs are equivalent to a fixed point on the map Q(x) = P™(x), which will be
discussed in more detail in section 1.4.5. Furthermore, whilst chaotic dynamics
are not described in detail here for brevity (see e.g. Robinson (1998), Hirsch et al.
(2003), Sprott (2003), or Strogatz (2014) for a review of chaos), chaotic spiking
can also be characterized from the Poincaré return map by calculating the maxi-
mum Lyapunov exponent on the map (Sprott, 2003). Use of such methods plays a
crucial role in understanding neuronal dynamics and their alteration in an animal
model of AD in chapter 2.

1.4.5 Bistability and fast-slow bursting

In nature, many neurons exhibit values of input current for which both spiking and
resting coexist. In these parameter regimes, from a dynamical systems perspec-
tive the neuron is bistable.
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Definition 12. A dynamical system is called monostable if it has a single stable
invariant set. A dynamical system is bistable (or multistable) if two (or more)
stable invariant sets coexist. - (Izhikevich, 2007)

Bistability can play a crucial role in neuronal bursting, where a number of APs
are fired in rapid succession followed by a quiescent period. In general, a bursting
neuron can be considered an example of a fast-slow dynamical system, where
the AP dynamics occur on a fast time scale and the transition between spiking
and quiescent periods occurs on a slow time scale (Izhikevich, 2007). A fast-slow
system can be defined as follows:

Definition 13. A dynamical system of the form Equation 1.1 is a fast-slow sys-
tem if it can be rewritten as

y =g(y,u)
u = ph(y,u), (1.10)

where
lop<l
ii. The fast subsystem is described by y € R™/ and g : R™f — R™f

iii. The slow dynamics are described by u € R™s and h : R™s — R™s such that

mys—+ms=m
- (Izhikevich, 2007).

For brevity here we shall discuss only the case of a single slow variable (m, =
1) which constitute the majority of fast-slow bursters (Izhikevich, 2000). To make
this explicit, we will henceforth write the slow equation in the scalar form 4 =
ph(x,u). For mg = 1, all bursters are bistable (Izhikevich, 2000) (described in
more detail below). However, it is worth noting that for m, > 1, monostable
bursters can exist (Izhikevich, 2000).

Typically the fast subsystem of a bursting neuron will have a dynamic structure
such that for v < u.; there is a stable steady state or low amplitude periodic or-
bit (sustained subthreshold oscillations), for « > ., there is only the stable high
amplitude periodic orbit (spiking), and for u.; < u < . there is bistability (Fig-
ure 1.10A). The slow evolution of « drives the fast subsystem through a hysteresis
loop, periodically switching between the steady state/low amplitude periodic orbit
and high amplitude periodic orbit branches as each branch loses stability (I1zhike-
vich (2000); Figure 1.10A). Izhikevich (2000) (Table 3) defined a classification of
such bursters based on the bifurcations which occur at u = u.; and v = up.
For brevity, we will focus here on the case where the subthreshold dynamics are
described by a steady state.
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Figure 1.10: Bistability in fast-slow bursters and the homoclinic bifurcation.
In figures A-C, solid/dashed black lines are stable/unstable steady states. Solid
green/dotted blue lines are the maxima and minima of a periodic orbit. (A) A
generic bifurcation diagram for a bistable fast-slow burster with one slow variable.
Typically there is a stable steady state for the slow variable v < u.,, a stable pe-
riodic orbit for u > u. 5, and bistability for u.1 < u < u.». As the variable u evolves
slowly, the system moves through a hysteresis loop (shown in red). (B-C) Bifurca-
tion diagrams for the supHopf/SNP and SN/homoclinic bursters found commonly
in neuronal dynamics. (D) Phase portraits for the SN/homoclinic burster. Green
lines are periodic orbits. Blue lines are homoclinic orbits. Black lines are example
trajectories. Filled circles are stable steady states. Black/blue/red unfilled circles
are unstable/saddle/non-hyperbolic steady states. The bottom row shows the SN
bifurcation which occurs at u.» as « is decreased, with no qualitative change to
the periodic orbit. In the bistable regime, trajectories moving from the unstable
manifold of the saddle either tend towards the periodic orbit or the stable steady
state. As u is decreased to u.; (top right), the periodic orbit collides with the
unstable manifold of the saddle to form a homoclinic orbit. Trajectories from the
unstable manifold of the saddle either move along this orbit or move to the stable
steady state. Finally as « is decreased further (top left) the periodic orbit is broken
and all trajectories along the unstable manifold of the saddle move to the stable
steady state.
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The bifurcations at u = u.» are bifurcations of steady states such as SN, SNIC,
and sub-/super- critical Hopf bifurcations (Izhikevich (2000) Table 3). Conversely,
the bifurcations at v = ., are bifurcations of stable periodic orbits. Whilst the
SNIC and supercritical Hopf bifurcations also fall into this category, we shall fur-
ther introduce two new bifurcations of periodic orbits which are commonly found
in neurons exhibiting bistable behaviour.

The first bifurcation of periodic orbits we shall introduce is called the saddle
node of periodics (SNP) bifurcation. Much like the saddle node bifurcation for
steady states, the SNP bifurcation is characterized by a stable and an unstable
periodic orbit colliding and disappearing (Kuznetsov, 1998; Izhikevich, 2007; Stro-
gatz, 2014). The SNP is therefore analogous to the SN bifurcation for fixed points
on a Poincaré return map. The Hodgkin-Huxley model, which is the first biophysi-
cally realistic quantitative description of the membrane potential (see section 1.5),
has bistable regimes of the subHopf/SNP class due to the SNP bifurcation at u. ;
and a subcritical Hopf bifurcation at u.» (called subHopf/fold cycle in the classi-
fication by Izhikevich (2000)). Bistability of the subHopf/SNP type has also been
identified as a mechanism underpinning the generation of sustained subthreshold
oscillations in a neuron (Rotstein et al., 2006), and used to model transitions into
pathological hypersychrony of macro-scale neuronal network oscillations (Petkov
et al., 2014). A bifurcation diagram of the subHopf/SNP burster is shown in Fig-
ure 1.10B.

The second bifurcation of periodic orbits is called the homoclinic bifurcation.
All of the previously discussed bifurcations have been local bifurcations, meaning
they can be detected from studying linearizations of a system in the neighbour-
hood of a steady state (or fixed point on a Poincaré return map) and are locally
topologically equivalent to a normal form in the neighbourhood of the bifurcation.
The homoclinic bifurcation cannot be treated this way, and is an example of a
global bifurcation (Kuznetsov, 1998). Here we only include a qualitative descrip-
tion of the homoclinic bifurcation, but a more mathematically rigorous description
can be found in Glendinning (1994) and Kuznetsov (1998).

On one side of the homoclinic bifurcation, there exists a stable periodic orbit
and a saddle steady state. At the bifurcation, the periodic orbit and steady state
collide to form a homoclinic orbit:

Definition 14. LetI" be a an orbit of a dynamical system of the form Equation 1.1,
starting at the pointx,. I is a homoclinic orbit if p(t,x,) — x* ast — +oo, where
x* IS a steady state of the system.

On the other side of the bifurcation the periodic orbit has been annihilated. The
key feature of the homoclinic bifurcation is the behaviour of the unstable mani-
fold of the saddle. An example of the homoclinic bifurcation is shown graphically
in Figure 1.10C-D. At the bifurcation, the unstable manifold joins with the sta-
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ble manifold to form the homoclinic orbit, but either side of the bifurcation the
manifold splits one way or another. Whilst bursters with a homoclinic bifurcation
at u.; can exhibit any of the four bifurcations of steady states at u..», bistability
of the SN/homoclinic type (called fold/homoclinic in Izhikevich (2000)) is found
in the Hindmarsh-Rose and reduced Morris-Lecar models (lzhikevich, 2000). A
bifurcation diagram and phase space of SN/homoclinic bistability are shown in
Figure 1.10C-D.

1.4.6 Spike adding through flip bifurcations and the flip cas-
cade

Often in models of bursting neurons there are sudden changes in the number of
spikes per burst as a parameter is smoothly varied. An important mechanism
by which this can occur is the flip bifurcation (Channell et al., 2007; Barrio and
Shilnikov, 2011; Tsaneva-Atanasova et al., 2010). The flip bifurcation is a local
bifurcation of periodic orbits, meaning it can be studied locally on fixed points of
the Poincaré return map corresponding to periodic orbits of the flow. The normal
form of the flip bifurcation is the map

v P(r) = —(1+a)z + 2%, (1.11)

for |a| < 1 (Kuznetsov, 1998). There is a fixed point at z = 0 which is stable for
a < 0 and unstable for o > 0, hence it is clear a bifurcation occurs at o = 0. To
fully understand the dynamics of the flip bifurcation, we can also study the second
iterate z — P?(x) = P(P(z)), which naturally has the same fixed point at the
origin with the same stability as P(x). However, for a > 0, P?(x) additionally has
fixed points at z ~ ++/a (Kuznetsov, 1998). The points are stable and correspond
to a period two cycle of the map x — P(x). For this reason, the flip bifurcation is
often also called the period doubling or spike adding bifurcation. The bifurcation
diagram for P?(x) is shown in Figure 1.11A.

An interesting phenomenon is the flip cascade (Kuznetsov, 1998), which is an
additional route to changing the numbers of spikes in a burst of neurons through
chaos (Channell et al., 2007; Tsaneva-Atanasova et al., 2010), and plays a key
role in spike-adding in chapter 2. In a flip cascade, a series of flip bifurcations
occur, changing the period of the orbit on the map until the dynamics become
chaotic. An example of this is shown for the logistic map = — p(z) = az(1 —
x) (Strogatz, 2014) in Figure 1.11B. Crucially, there are intermittent periods of
regular, non-chaotic orbits on the map, with a period that differs from the period of
the previous non-chaotic orbit (Strogatz, 2014). Therefore a flip cascade through
chaos can act as a path between orbits of the map with different periods.
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Figure 1.11: Flip bifurcations. (A) Bifurcation diagram for the flip bifurcation.
Solid/dashed black lines are stable/unstable fixed points on the second iterate
of the map (P?(x)). Since the flip bifurcation holds in the limit of small |a]
(Kuznetsov, 1998), shown here is the case for |o| < 0.2 and neglecting O(z)
terms (Kuznetsov, 1998). (B) Orbit diagram demonstrating a flip cascade into
chaos and intermittent regions of non-chaotic orbits, demonstrating how a flip
cascade can be a path through chaos to a change of period of an orbit. For
demonstration purposes, the orbit diagram shown here is for the logistic map.

1.5 Biophysical modelling of the neuron

Section 1.4 introduced qualitative descriptions of neuronal excitability from a dy-
namical systems perspective, and introduced some low dimensional models of
the neuron based upon this bifurcation behaviour. This type of model is known as
a phenomenological model, meaning it is grounded in replicating dynamic phe-
nomena without a detailed biophysical description. Such models are highly useful
for simulating large populations of synaptically connected neurons in parallel to
study network dynamics (lzhikevich, 2003; Borgers and Kopell, 2005). However,
phenomenological models are of limited use for understanding ionic mechanisms
of neuronal dynamics - for example how changes to the flow of charged ions
across the membrane alter the dynamics of neurons in disease. For this purpose,
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Figure 1.12: Quantitative description of action potential generation in the
Hodgkin-Huxley model. (A) The cell membrane acts as a resistor-capacitor cir-
cuit, with the membrane acting as a capacitor and the voltage gated ion channels
acting as variable resistors allowing for the flow of current. (B) The full circuit dia-
gram of the membrane as described by Hodgkin and Huxley (1952). (C) Equilib-
rium functions for the Hodgkin-Huxley gating variables m (Na™ activation), i (Na*
inactivation), and n (K™ activation). (D) Time constants for the gating variables.
(E-F) Bifurcation diagram and simulations for the Hodgkin-Huxley model. In E,
Solid/dashed black lines are stable/unstable steady states, solid green/dotted
blue lines are stable/unstable periodic orbits. For low input current I, the neu-
ron is at rest (triangle). As [ is increased, stable and unstable limit cycles appear
through a SNP bifurcation, and a region of bistability exists (enhanced in the
inlay), i.e. both resting and spiking regimes coexist (circle). As I is increased
further, the steady state becomes unstable via a subcritical Hopf, i.e. the neuron
can only spike (square). As I is increase beyond physiological ranges, the limit
cycle tends towards low amplitude oscillations (star), which eventually disappear
via supercritical Hopf bifurcation (diamond).
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more detailed biophysical models of the neuron must be used.

Hodgkin and Huxley (1952) famously studied the squid giant axon to build a
biophysical quantitative description of the membrane potential of the neuron. The
membrane of the neuron was described as an electrical circuit (shown in Fig-
ure 1.12A-B), describing the insulating membrane as a capacitor and ion chan-
nels as variable resistors allowing the flow of current. This resistor-capacitor cir-
cuit is described by the equation

CV =1 — Iion, (1.12)

where [ is the applied current across the membrane, I, is the ionic current, C
is the capacitance of the membrane and V' is the membrane potential. The ionic
currents are described by

[X:9X¢X(V—EX)7 (1.13)

where X is an element in the set of ionic currents (e.g. X € {Na™, K"} for the
Hodgkin-Huxley model described below and in Figure 1.5), gx is the maximal
conductance of the current X, ¢ x is the fraction of channels in the conducting
state, and FEx is the equilibrium potential of the current.

A simple example of a model in this form is the leaky integrate-and-fire neu-
ron (Deco et al., 2008), where I, is an Ohmic ‘leak’ current, i.e. lign = I, =
g(V — Er). This one-dimensional model can be used to study how proper-
ties such as the membrane resistance (R = 1/g;), membrane capacitance (C),
and membrane time constant (7 = RC) influence the subthreshold dynamics of
neurons in a computationally inexpensive manner. Whilst this model does not
simulate an action potential, an AP threshold may be assigned in an integrate-
and-fire fashion (section 1.4.2). A crucial advantage of this model is that the
frequency-current relationship can be analysed analytically (Deco et al., 2008).
Additional biophysical currents of the form Equation 1.13 can be added to the
leaky integrate-and-fire model to analyse their roles in modulating the dynamics
of a neuron where a detailed knowledge of the mechanisms of action potential
generation is not required e.g. the role of the hyperpolarisation activated I, cur-
rent on the generation of subthreshold oscillations (Rotstein et al., 2006) and
spatial firing patterns (Bonilla-Quintana et al., 2017).

Hodgkin and Huxley (1952) used this electrical circuit description to model the
mechanisms of AP generation. To do so, the activation of sodium and potas-
sium currents were quantified using a voltage clamp technique. Their results are
described qualitatively in Figure 1.5. Firstly, voltage gated ion channels for the
different types of ions were described in terms of gating functions. Namely, Na*
ion channels were modelled by three activation gates (m) and one inactivation
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gate (h), such that
Una = Mm>h. (1.14)

K* ion channels were modelled by four activation gates, so
Yk = n'. (1.15)

Here, ¢ x are described in Equation 1.13. Assuming that the proportion of gates
which are opening or closing is voltage dependent, each of these gating variables
can be modelled as

b= oy (V)(1—2) = B(V)a, (1.16)

where o, (V) and §,(V) are rate constants and = € {m, h,n}. By writing

. (V)
(V)= )+ B (1-17)
(V) = ! (1.18)

az (V) + B:(V)’
equation 1.16 can be rewritten as

. 2xo(V)—x
=" 1.1
TRV (1.19)
This equation can be interpreted as follows: z..(V) is the voltage dependent
steady state value of =, and 7,.(V) is the voltage dependent time constant for x.

By holding the neuron at a given membrane potential and recording the con-
ductance of Na* and K* currents, equations for these rates of changes of gating
variables could be calculated. Plots of z., and 7, for each of the gating variables
described by Hodgkin and Huxley (1952) are shown in Figure 1.12C-D. Under this
biophysical formulation of the neuron model, action potentials can be generated
which closely match those seen in the data (Hodgkin and Huxley, 1952). This
type of ODE formulation makes an analysis of the mechanisms of AP generation
possible using dynamical systems theory. Figure 1.12E shows an example bifur-
cation diagram for the Hodgkin-Huxley model, demonstrating the bifurcations by
which spiking arises as the input current is changed. Simulations of examples
of dynamics in the Hodgkin-Huxley model are shown in Figure 1.12F. Biophys-
ically realistic models are often more high dimensional and computationally ex-
pensive than their phenomenological counterparts, but can be used to study the
roles of different ionic currents in modulating neuronal dynamics. In chapter 2,
we use a 12-dimensional model in the Hodgkin-Huxley formulation to study the
mechanisms underpinning altered temporal firing patterns in an animal model of
tauopathy.

The models outlined above are all deterministic. In reality, there are two pri-
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mary biological sources of noise in neurons, synaptic noise and channel noise
(White et al., 2000). Synaptic noise due to incoming spikes from neighbouring
neurons can be modelled as a point Poisson process run through a synaptic re-
sponse kernel acting on the membrane potential of the neuron (Fernandez and
White, 2008). Channel noise arises due to spontaneous fluctuations in the open-
ing and closing of ion channels in the neuron and can be modelled in a biophys-
ically realistic manner using continuous time Markov chain approaches (White
et al., 2000) in which the rate constants «, (V') and 5,(V') of Equation 1.16 are de-
scribed by a Markov model instead of an ODE. This is computationally expensive,
so to reduce computational expense phenomenological SDE approximations of
channel noise ranging from white noise currents on the membrane potential to
detailed coloured noise on the ion channels may be used (Goldwyn and Shea-
Brown, 2011).

1.6 Modelling a neural mass

In section 1.3, we introduced the concept of emergent neuronal oscillations in
large connected ensembles of neurons. There are two main approaches to mod-
elling such a system. The first approach is to simulate a large number of neurons
in parallel using the types of single cell model presented in section 1.5 (Izhikevich,
2003; Borgers and Kopell, 2005; Wulff et al., 2009; Solanka et al., 2015). An ex-
ample of such a simulation is shown in Figure 1.6. Advantages to this approach
include the ability to explore how single cell dynamics or network topologies can
influence network dynamics (Bdrgers and Kopell, 2005; Pastoll et al., 2013), but
a crucial disadvantage of this approach is that the system typically ends up ex-
tremely high dimensional as typically each neuron requires at least one equation
to describe membrane dynamics (section 1.5) and at least one equation to de-
scribe synaptic dynamics. This high dimensionality results in great computational
expense and a system that is intractable for quantitative analysis such as bifurca-
tion analyses.

An alternative approach is to develop a lower dimensional system which repli-
cates the dynamics of neural populations without directly modelling each neuron
in the population, referred to here as a neural mass model (NMM). To do so, Wil-
son and Cowan (1972) modelled the firing rate of a neural mass consisting of an
excitatory and inhibitory population of neurons. Each population is modelled by
a single firing rate variable bounded between zero (no neurons in the population
firing) and one (all neurons in the population firing). The Wilson-Cowan model
works on the assumption that with no external input the firing rate of the popula-
tions decay to zero, and that input to the populations is transformed to a firing rate
via a sigmoid function. As input to the inhibitory or excitatory population is var-
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ied, oscillations emerge in the model via a Hopf bifurcation, making the model an
appropriate low dimensional model of cortical neuronal oscillations (Hlinka and
Coombes, 2012).

Jansen and Rit developed a more biologically plausable model of a neural
mass (Jansen et al., 1993; Jansen and Rit, 1995). Jansen-Rit type NMMs con-
tain two blocks. The density of incoming pulses of APs to a post-synaptic pop-
ulation (e.g. the firing of a neighbouring pre-synaptic population) is transformed
into an average membrane potential for the post-synaptic population by convolu-
tion with a synaptic response kernel. This population’s mean membrane potential
is then transformed to a firing rate using a sigmoid function, which can then be
used as an input to neighbouring populations. To calculate these transforma-
tions, each block of PSPs is represented by a second-order ODE (Jansen and
Rit, 1995). Jansen and Rit originally described three populations in their model,
namely pyramidal cells, inhibitory interneurons, and stellate/excitatory interneu-
rons. Many extensions have since been made to the Jansen-Rit model. Fast
gamma rhythms have been accounted for in models by including recurrent inhibi-
tion among the inhibitory population (Moran et al., 2007), or through the addition
of a neurophysiologically realistic fast inhibitory subpopulation (Wendling et al.,
2002). This inhibitory feedback in the Wendling model is thought to be impor-
tant in the generation of pathological dynamics in epilepsy (Wendling et al., 2002;
Ferrat et al., 2018). Ursino et al. (2010) extended the Wendling model further
to include recurrent inhibition on the fast inhibitory population, allowing for the
generation of gamma oscillations in an isolated network of inhibitory neurons in
line with data. Further extensions have included as many as fourteen populations
(Sotero, 2016).

A second approach to developing biophysically derived models of a neural
mass is to start with a high dimensional model of many neurons synaptically con-
nected and use mean field theory to develop a low dimensional reduction of the
mean firing rate of such a population. The method for building such a mean field
neural mass model for a population of leaky integrate-and-fire neurons is reviewed
by Deco et al. (2008). A widely used mean field model based on leaky integrate-
and-fire neurons is that of Wong and Wang (2006) and its reduction made by Deco
et al. (2013). More recently, mean field models have been developed from het-
erogeneous networks of quadratic integrate-and-fire and the related theta neuron
models (Luke et al., 2013; Montbrié et al., 2015; Coombes and Byrne, 2019), and
used to model interneuron network gamma (ING) (Devalle et al., 2017) and both
strong and weak pyramidal-interneuron network gamma (PING) rhythms (Keeley
et al., 2019). These models allow for tracking of the degree of synchrony within
the population (Devalle et al., 2017; Coombes and Byrne, 2019), which Coombes
and Byrne (2019) suggested makes them a prime candidate for the next gener-
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ation of neural mass models. Mean field models have additionally been derived
from higher dimensional neuron models exhibiting more broad repertoirs of firing
behaviour such as the Izhikevich neuron (Visser and Van Gils, 2014).

Alternatively, neural oscillations can be modelled from a purely phenomeno-
logical point of view, with no basis in the biophysics of neural systems. For ex-
ample, the Kuramoto model describes the phase dynamics of an oscillator in a
one-dimensional equation, but has been demonstrated to be useful for study-
ing pathological synchronization of neural oscillators in epilepsy (Schmidt et al.,
2014) and understanding the dynamics of travelling waves on a cortical sheet
(Breakspear et al., 2010). In this thesis, we use a phenomenological model of the
neural mass given by the equations

v = (a —v* —u®)v —wu+ on(t)

= (a —v* —u?)u + wo, (1.20)
where (n) = 0 and (n(t),n(s)) = 0. In the deterministic case o = 0, this model
is the normal form of the supercritical Hopf bifurcation (Equation 1.6). There-
fore the stochastic system is characterized by noisy perturbations on the limit
cycle if a > 0, whilst for a < 0 the the origin corresponds to a focus, resulting in
noisy output with a preferential frequency at w. If a is negative with a magnitude
close to zero, the system essentially exhibits noise induced oscillations as the
steady state is only weakly attractive. As the magnitude of a < 0 increases, the
steady state becomes more strongly attractive and the resonance phenomena is
damped, resulting in the output appearing more noisy. A similar model has been
used by Deco and colleagues (Deco et al., 2017a,b; Dermitas et al., 2017) to
model neural oscillations.

A key motivation for the use of this model is that many more biophysically de-
rived neural mass models undergo a supercritical Hopf bifurcation as local con-
nectivity is increased; for low connectivity the populations do not synchronize and
the system tends to steady state, but as connectivity between (or within) excita-
tory and inhibitory populations is increased a bifurcation will occur and the system
will oscillate. Examples of the Hopf bifurcation as local coupling is increased in
the Wilson-Cowan model (Wilson and Cowan, 1972), Jansen-Rit model (Jansen
and Rit, 1995), and quadratic integrate-and-fire mean field model of hippocampal
gamma (Keeley et al., 2019) are shown in Figure 1.13 alongside the bifurcation
diagram for the Hopf model. Therefore the parameter a can be viewed as a proxy
for the degree of local coupling in the model (Dermitas et al., 2017). This is impor-
tant for chapter 3, where macro-scale LFP data is integrated with local two-photon
calcium imaging data of neuronal circuits to study the interplay between local cou-
pling and global synchrony. A second motivation for use of the Hopf model is that
the frequency of oscillations is determined explicitly by a single parameter. This
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Figure 1.13: Hopf bifurcations in neural mass models. Bifurcation diagrams
for the Wilson-Cowan (Hlinka and Coombes, 2012), Jansen-Rit (Jansen and Rit,
1995), and mean-field model of hippocampal gamma (Keeley et al., 2019) as
coupling between populations is varied. For the Wilson-Cowan and mean-field
models, all parameters that couple populations are multiplied by a scaling con-
stant G. For the Jansen-Rit model, the parameter C is as described in Jansen
and Rit (1995). All other parameters are the same as those described in their re-
spective citations. Each model undergoes a supercritical Hopf bifurcation as the
local coupling is increased and the populations begin to synchronize and oscil-
late. These results motivate the use of a phenomenological model based on the
normal form of the Hopf bifurcation (bottom right) described in Equation 1.20, and
justify the interpretation of parameter a as a measure of local coupling between
populations.

was useful in chapter 4 for exploring how heterogeneous oscillatory slowing in
AD might affect synchrony between neural oscillators without the requirement
of biophysical interpretations of the local mechanisms underpinning the slowing
(e.g. altered local coupling (Jansen and Rit, 1995) or membrane/synaptic time
constants (David and Friston, 2003)).
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1.7 Whole brain modelling

In this section, we discuss how spatially extended networks of neural mass mod-
els (section 1.6) can be used to model whole brain dynamics such as those
recorded by multi-electrode EEG. In whole brain models, anatomically or func-
tionally defined regions of the brain are represented by a neural mass model, and
these neural masses are coupled via a connectome to study brain-wide synchro-
nization (Finger et al., 2016; de Haan et al., 2017; Dermitas et al., 2017; Zim-
merman et al., 2018). A simplified representation of such a whole brain model is
shown in Figure 1.1C. The connectome can be derived from structural imaging
data (Finger et al., 2016; Zimmerman et al., 2018) (structural connectivity; SC)
or estimated based on functional data using parameter optimization techniques
(Friston et al., 2003; Freestone et al., 2014; Shan et al., 2017) (effective con-
nectivity; EC). Multimodal approaches may involve estimating EC from functional
data but using structural connectomes to form prior estimations or to constrain
the effective connectivity (Dermitas et al., 2017).

In this thesis, a whole brain model of the human brain is presented in chapter 4
and the mouse brain in chapter 3. Both models place the phenomenological
model of a supercritical Hopf bifurcation described in Equation 1.20 onto each
brain region. The equations for region i are therefore described by

0 = (a —v? —ud)v; — wiu; + G Z Kij(v; —v;) + oni(t)
J#i

W = (a—vf —uf)ui—i—wivi, (1.21)

where G is a global coupling constant and matrix K is the connectome, where
element K;; is the influence of node j on node i. K is a weighted matrix, and
can be either symmetric (undirected connections) or asymmetric (directed con-
nections). All other parameters and variables are as described in Equation 1.20.
Note the parameter a does not have an index i in these equations; in this the-
sis we assume the same value of a for each node, and introduce heterogeneity
through the intrinsic frequencies w;. This is justified for the specific hypotheses
being tested within their relevant chapters, but essentially reduces the already
large parameter space of the model.

Coupling between neural masses can additionally be performed on intermedi-
ate spatial scales. Jansen and Rit (1995) studied the generation of evoked poten-
tials in two cortical columns, each represented by a neural mass model, located
within the visual cortex. Schmidt et al. (2014) coupled oscillators within regions
of the brain to generate a multi-scaled whole brain model to describe how both
local and global coupling can influence pathological brain dynamics. Extending
the neural mass from a point source to a spatially extended field results in neural
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field models (Deco et al., 2008) which can be simulated on a grid over the cortex
(Spiegler and Jirsa, 2013; Sanz-Leon et al., 2015) and used to study dynamics
such as travelling waves and bumps on the cortical surface (Coombes, 2005).
Whilst these extensions of whole brain neural mass models on intermediate spa-
tial scales may increase biophysical realism and result in a broader repertoire of
dynamics, this comes at the cost of greatly increased computational expense and
a larger parameter space making the model less tractable for numerical analysis.
Some of this local coupling may furthermore be captured phenomenologically
within the description of the point neural mass dynamics, for example in parame-
ter a of the Hopf model used in this thesis, as described in section 1.6.

1.8 Quantifying neural dynamics

This section introduces methods used to quantify neural dynamics used in this
thesis. The primary focus of this section is methods used to quantify dynamics of
the EEG used in chapters 3-6 but some methods are more broadly applicable; for
example, functional connectivity and graph theoretical analyses (sections 1.8.2-
1.8.3) are applied to two-photon calcium imaging data in chapter 3. Conversely,
some methods such as microstate analysis (section 1.8.4) are strictly defined as
properties of the EEG.

1.8.1 Power spectrum

A simple univariate measure of the EEG is the power spectrum, which aims to
characterize the contribution of different frequencies of neuronal oscillations to
the EEG. An EEG time series can be expressed as a sum of sine waves, each
wave characterized by an amplitude, frequency, and phase (Nunez and Srini-
vasan, 2006) by performing a Fourier transform on the EEG time series, for ex-
ample using the fast Fourier transform (FFT) algorithm (Frigo and Johnson, 1998).
The resulting power (amplitude squared)-frequency relationship is known as the
power spectrum of the EEG (Buzsaki, 2006; Nunez and Srinivasan, 2006), and is
a representation of the EEG in the frequency domain. Power spectra computed
directly from the FFT of the signal are often noisy due to finite and stochastic
data, so methods such as Welch’s method (Welch, 1967), multi-tapered Fourier
transforms (Percival and Walden, 1993), and Fourier analysis of estimated autore-
gressive model parameters (Akin and Kemal Kiymik, 2000) can be used to reduce
the noise on the spectrum. The power spectrum of EEG is known to change in
different cognitive states, which has lead to the classification of a small number of
frequency bands commonly studied in the EEG (Buzséaki, 2006; Nunez and Srini-
vasan, 2006), for example by studying total or relative power within a given band.
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Power spectral analyses have been crucial in EEG research in AD for studying the
characteristic slowing of oscillations in people with AD, reviewed in section 1.3.

1.8.2 Functional connectivity

Functional connectivity between two time series (e.g. signals recorded by two
EEG electrodes) quantifies statistical similarities between those time series. Most
measures of FC are examples of bivariate measures, which take a pair of time
series x and y and quantifies coactivity of this pair of time series. Using bivariate
measures for each pair of time series in a multivariate EEG, a functional network
can be constructed where the nodes of the network correspond to a time series
(e.g. an EEG electrode) and edge (i, j) corresponds to the strength of the func-
tional connectivity between nodes i and ;. Alternatively, some measures are mul-
tivariate (accounting for all signals simultaneously) or global (giving information
on synchrony in the whole network without information on edges) (Dauwels et al.,
2010). For brevity, a small number of relevant bivariant measures will be dis-
cussed here, but excellent reviews of functional connectivity measures are given
by David et al. (2004) and Dauwels et al. (2010).

A simple measure of functional connectivity between time series = and y is the
correlation coefficient,

1 i (x(k) = ) (y(k) = 5) (1.22)

where N is the number of time points, = denotes the mean of z, and o, denotes
the standard deviation of = (and similar for y). Correlation is a linear measure
quantifying the degree to which fluctuations of the signals about the mean are
linearly related.

When working in sensor space (i.e. the analysed time series are those directly
recorded by an EEG electrode), volume conduction must be considered. The ac-
tivity of a point on the brain will conduct to multiple electrodes on the scalp, and
this mixing is assumed to be linear and approximately instantaneous (Nunez and
Srinivasan, 2006). Therefore volume conduction can result in spurious corre-
lations in sensor space due to common sources. Source space reconstruction
(Michel et al., 2004) can be used to account for the effects of volume conduction,
but since the inverse problem is highly ill-posed these methods are often regular-
ized and hence spurious instantaneous linear correlations may instead arise due
to source leakage effects (Pascual-Marqui et al., 2011). Instead, approaches are
often taken to study time lagged measures of functional connectivity.

One such measure is the maximum of the cross-correlation function (the cor-
relation between x and y, shifted by lag 7, as a function of 7) rejecting peaks
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at zero lag (Schmidt et al., 2014). Taking the Fourier transform of the cross-
correlation function results in the coherence between signals, which can be viewed
as a frequency domain measure of linear correlation (Nunez and Srinivasan,
2006). Whilst it is not possible to explicitly remove zero lag correlations when
using coherence, Nolte et al. (2004) showed that the imaginary part of coherence
tends to zero as the phase difference tends to zero and hence cannot give rise to
spurious connections due to linear mixing. However, the imaginary part of coher-
ence will also underestimate functional connectivity for small but non-zero phase
lags, so Pascual-Marqui et al. (2011) presented a lagged coherence measure
normalized by the real part of coherence which reduces this underestimation of
FC for small lags (Pascual-Marqui et al., 2011).

Coherence as a measure of synchrony mixes phase and amplitude effects
(Lachaux et al., 1999). To test for phase binding without amplitude effects at a
given frequency within a narrow frequency band, Lachaux et al. (1999) presented
the phase locking factor (PLF),

T

3 itnl®)

k=1

1

Cay = 7 : (1.23)

where 7' is the number of sampling points and A¢,, (k) is the difference between
the instantaneous phases of signals x and y at sampling point % (e.g. calculated
by the Hilbert transform). As with the cross-correlation function, zero lag connec-
tions can be manually removed. Alternatively, measures such as the phase lag
index (PLI) (Stam et al., 2007b) which averages over the sign of the phase differ-
ence at each time point are small if the lag fluctuates around zero, making them
insensitive to zero lag connections. However, it should be noted that PLI does not
quantify the degree of phase locking in the same manner as PLF; instead, PLI
quantifies consistency in which time series is leading/lagged. The weighted PLI
is @ measuring which combines PLI and imaginary coherence to reduce sample-
size bias, reduce sensitivity to uncorrelated noise, and increased power to detect
phase synchronization (Vinck et al., 2011).

Following calculation of a functional network, it is important to test whether
edges in the network are significant or an effect of finite window size in the data.
A method to do so is to generate surrogate data which preserves the univariate
properties of the data (e.g. amplitude distribution, power spectrum), but elimi-
nate multivariate dependencies (Schreiber and Schmitz, 1996; Sun et al., 2012;
Lancaster et al., 2018). By calculating a large number of surrogate data sets
and computing the functional connectivity between these surrogates, a null dis-
tribution of edges can be generated to compare the empirical edges against and
test for significance (Rummel et al., 2011; Sun et al., 2012; Schmidt et al., 2014).
In this thesis, namely chapters 3 and chapter 4, the iterative amplitude adjusted
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Fourier transform (IAAFT) method (Schreiber and Schmitz, 1996) is used to gen-
erate surrogates for testing significance of edges in a functional network (Rummel
et al., 2011; Schmidt et al., 2014). IAAFT surrogates preserve the distribution of
amplitudes and the power spectrum of the data, whilst removing any phase rela-
tions in the multivariate data (Schreiber and Schmitz, 1996).

Additionally, model based measures can give directed information, known as
effective connectivity. Multivariate autoregressive (MVAR) models assume that
the dynamics of a node are a stochastic process modulated by a linear mixture
of its own history and the history of all other nodes in the networks, meaning it
is an example of a multivariate measure. There exist a large number of ways
to construct directed functional connectivity matrices from the coefficients of an
MVAR model in both the frequency and time domain, reviewed by Dauwels et al.
(2010). Models based in biophysics can also be used to estimate effective con-
nectivity; for example, dynamic causal modelling involves placing neural mass
models at each node and using Bayesian methods to infer the effective connec-
tivity between regions (Friston et al., 2003). Dynamic causal modelling is not the
only such technique, a range of parameter optimization methods are available to
estimate the effective connectivity of a model based on functional data (Freestone
et al., 2014; Shan et al., 2017; Dermitas et al., 2017).

Different functional (or effective) connectivity measures can give very different
results for the same data (David et al., 2004; Dauwels et al., 2010; Jalili, 2016;
Hassan et al., 2017), so it is important an appropriate measure be chosen for the
data. Many other factors can also affect the resulting functional network structure,
including epoch length (Fraschini et al., 2016), network size (Joudaki et al., 2012),
and choice of whether to binarize the network (e.g. by thresholding the network)
or keeping weighted edges (Jalili, 2016).

1.8.3 Graph theory

Once a functional network has been calculated using the methods from the previ-
ous section, the field of graph theory can be used to quantify properties of these
networks. A detailed review of graph theoretical measures of macro-scale brain
networks is given by Rubinov and Sporns (2010). Consider a weighted, undi-
rected functional network or graph G = (V, E, W), where V is a set of NV nodes,
E is a set of edges, and IV is the set of weights for the edges. We shall represent
this graph by the weighted adjacency matrix C, where element ¢;; is the FC value
(correlation, coherence, PLF, etc) between nodes i and j.
The degree of node i is the sum of weighted connections of the node (Rubinov
and Sporns, 2010), given by
d(i) =) ey, (1.24)

JFi
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and is a measure of how synchronized node i is to the rest of the network. Degree
is an example of a local measure, with a value for each node. The mean degree
of the network is then given by

MD = lZd(@'), (1.25)

and is a global measure (one value for the whole network) of how synchronous the
network is on average. The mean degree gives no information on the topological
structure of the network, so a number of other graph theoretical measures can
be used to further quantify topology. There exist a large number of local and
global measures of topology of a network (Rubinov and Sporns, 2010), so here
we restrict our discussion to those used in this thesis and related measures.

Two vital subsets of measures quantify integration and segregation. A node
that is highly integrated is likely to be closely connected to all nodes in the net-
work, such that the node has a short average path length

N

1

(N=1) Z /

where §;; is the path length between nodes i and j, and is calculated using the
Dijkstra algorithm (Dijkstra, 1959). The closeness centrality of node i is L;*. A
related measure is the efficiency of a node i,

1 1
Ei:(N_DZJj, (1.27)

N
j=

which is a measure of how efficiently information is transferred between node i
and all other nodes in the network on average (Latora and Marchiori, 2001). A
node with short average path length (high closeness centrality) and high efficiency
are said to be integrated with the rest of the network. A globally integrated net-
work is then a network with short characteristic path length (Rubinov and Sporns,
2010)

1 N
L_N;Li (1.28)

and high global efficiency (Latora and Marchiori, 2001)
1 N
E= N;E (1.29)

Segregation of a network refers to the formation of groups or clusters of highly
connected nodes. The clustering coefficient (Watts and Strogatz, 1998) of a node
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i is given by
Zj;ﬁi Zk;éi,j(cijcikcjk)l/g
ki(ki — 1) ’
where k; is the number of connections made by node i (the binary degree of
i). The clustering coefficient can be interpreted as the probability that given two
nodes j and k are neighbours of node i, nodes j and k are neighbours of each
other (weighted by strengths of edges) (Watts and Strogatz, 1998; Rubinov and
Sporns, 2010). A second measure related to segregation of a network is the local
efficiency (Latora and Marchiori, 2001), which is defined for node i (£,;) as the
global efficiency of a sub-network consisting of only the neighbours of i. Therefore
a network has groups and clusters of nodes with efficient information transfer
within these clusters (i.e. is segregated) if it has high mean local efficiency (Latora
and Marchiori, 2001)

Ci:

(1.30)

E—lZN:E» (1.31)
Z—Ni:1 0yi .

and high global clustering coefficient (Watts and Strogatz, 1998; Rubinov and
Sporns, 2010)

1 N
C= Zlc (1.32)

Integration and segregation of a network are not mutually exclusive. A small-
world network (Watts and Strogatz, 1998) is both integrated and segregated, with
high global clustering coefficient and low characteristic path length (Humphries
and Gurney, 2008), or, equivalently, high local and global efficiency (Latora and
Marchiori, 2001). Humphries and Gurney (2008) introduced a measure of small-
worldness, ©/c)

0

SW = @/ (1.33)
where C' and L are defined as in Equations 1.32 and 1.28 respectively, and Cy/L,
are the global clustering coefficient/characteristic path length of a random network
with the same edge distribution and mean degree as the empirical network. Func-
tional and structural brain networks are believed to have a small-world structure
(Bullmore and Sporns, 2009; Stam, 2014; Bassett and Bullmore, 2017), where
the high segregation gives rise to the ability for specialized processing in strongly
connected segregated brain regions and integration allowing for the brain to com-
bine this specialized information (Rubinov and Sporns, 2010).

1.8.4 EEG microstates

Accurate estimation of the functional connectivity and graph theoretical measures
discussed above require epochs of EEG data on the order of seconds in length
(Gudmundsson et al., 2007; Fraschini et al., 2016), and assumes stationarity of
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the brain dynamics over this epoch. In reality, it is believed the resting state of
the brain is composed of a number of ‘resting state networks’ each correspond-
ing to different cognitive domains (Lehmann et al., 1998; Britz et al., 2010; Michel
and Koenig, 2018), and that these networks remain stable for a tens to hundreds
of milliseconds (allowing for changes in polarity) before rapidly transitioning to
another network (Koenig et al., 1999; Khanna et al., 2015; Michel and Koenig,
2018). EEG microstate analysis is a method used to study this switching be-
haviour of the resting state (Khanna et al., 2015; Michel and Koenig, 2018) by
studying the instantaneous topographic maps of the EEG.

The first microstate analyses used a method of adaptive segmentation in
which the maxima and minima of consecutive EEG topographic maps were com-
pared; a microstate was defined as the epoch for which the local maxima and
minima stayed within a given window (Lehmann et al., 1987). Wackermann et al.
(1993) followed this procedure and then performed a post-hoc clustering of the
centroid locations of each microstate to find that almost all segments belonged to
2-6 (mean 3.7) microstate classes. This information that brain microstates formed
a small number of classes lead to the development of k-means clustering meth-
ods (Koenig et al., 1999), which not only account for the maxima and minima of
the field but the entire spatial topography. Furthermore, these methods allow for
definition of regularly occuring maps. A large number of studies using different
numbers of electrodes, participants, and filter settings have identified the same
four canonical maps in the resting state EEG (see Figure 3 of Michel and Koenig
(2018) for a review). These four classes have been labelled A, B, C, and D in the
literature, and have been correlated with resting state networks related to vari-
ous cognitive domains (Britz et al., 2010). These maps have also been validated
using other clustering methods such as topographic atomize and agglomerate
hierarchical clustering (TAAHC) (Khanna et al., 2014).

Microstates are known to change in healthy development and aging (Koenig
et al., 2002) and neurological disorders including dementias (Ihl et al., 19983;
Dierks et al., 1997; Strik et al., 1997; Stevens and Kircher, 1998; Nishida et al.,
2013), schizophrenia (Koenig et al., 1999; Lehmann et al., 2005; Nishida et al.,
2013), and depression (Strik et al., 1995; Atluri et al., 2018). The majority of
microstate studies in AD were performed prior to the development of k-means
type methods (Ihl et al., 1993; Dierks et al., 1997; Strik et al., 1997; Stevens and
Kircher, 1998), meaning alterations to specific classes have not been well char-
acterised. Furthermore the differences between temporal scales of microstates
and spectral/functional network measures make EEG microstates a prime can-
didate for additional information as an electrophysiological biomarker. Therefore
understanding changes to EEG microstates in AD and using these alterations as
a biomarker is the focus of chapter 5.
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Chapter 2

Modelling single cell dynamics in
tauopathy

This chapter is based on the work published the Journal of Theoretical Biology as
Tait et al. (2018) in collaboration with Dr Marc Goodfellow (supervision, method-
ological design), Dr Jon Brown (supervision, conceptualization), Dr Kyle Wedg-
wood (conceptualization, methodological design), and Prof Krasimira Tsaneva-
Atanasova (supervision, conceptualization). The author’s contribution to this chap-
ter includes development and formal analysis of the model, visualization of the
results, and writing of the chapter.

2.1 Introduction

The entorhinal cortex occupies a key role in the cortical-hippocampal circuit, act-
ing as a gateway between the neocortex and hippocampus (Canto et al., 2008)
and playing a pivotal role in working memory processing and spatial navigation
(McNaughton et al., 2006; Moser et al., 2008). Many different functional cell types
involved in the coding of spatial representation are found in the entorhinal cortex,
including grid cells, border cells, head direction cells and speed cells (Hafting
et al., 2005; Solstad et al., 2008; Giocomo et al., 2014; Kropff et al., 2015). Spa-
tial information from these cells is transferred from layer Il of the entorhinal cortex
to place cells in the hippocampus, which in turn feed back into the entorhinal
cortex (O’Keefe et al., 1998; Deng et al., 2010; Barak et al., 3015).

The principle neurons in layer Il of the medial entorhinal cortex are reported
to be predominantly (60-70%) stellate cells (MEC-SCs) (Alonso and Klink, 19983;
Booth et al., 2016a). Analysis of recordings of mEC-SCs in brain slices demon-
strates a number of key identifying electrophysiological properties, including a
large membrane potential sag mediated by a hyperpolarisation activated cation
current (1), subthreshold oscillations in the theta (4-12 Hz) range and clustered
action potential firing (Alonso and Klink, 1993). Dorsoventral gradients in these
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electrophysiological properties (Giocomo et al., 2007; Garden et al., 2008; Gio-
como and Hasselmo, 2008, 2009; Dodson et al., 2011; Booth et al., 2016a) reflect
similar dorsoventral gradients in grid cell spacing (Hafting et al., 2005), implying
a key role in spatial memory.

The disruption of memory systems is one of the hallmarks of dementia (Mc-
Gowan et al., 2006). The most common cause of dementia, Alzheimer’s dis-
ease, has been shown to affect the entorhinal cortex early in disease progression
(Braak and Braak (1991); Figure 1.3). Experimental models of tau pathology
have suggested a relationship between neurofibrillary tangles and spatial mem-
ory deficits (Fu et al., 2017) that may be underpinned by alterations in the intrin-
sic cellular dynamics described above (Booth et al., 2016a; Fu et al., 2017). It
is therefore crucial if we wish to develop treatments and therapies to build our
understanding of the mechanisms underlying mEC-SC dynamics so that we can
further elucidate the cellular and network bases of spatial memory, and ultimately
the causes and consequences of Alzheimer’s disease.

There are many potential dynamical frameworks within which to mathemati-
cally model clustered firing of neurons or the generation of subthreshold oscilla-
tions (sections 1.4-1.5). Phenomenological models have used extrinsic rhythmic
inputs to drive integrate-and-fire type neurons across bifurcations (Pastoll et al.,
2013; Solanka et al., 2015), thus producing temporal periods of quiescence in-
terspersed with bursts of action potentials, that may be reminiscent of clustered
firing. Low dimensional neuronal models such as the Izhikevic neuron (which is
a non-linear integrate-and-fire type neuron) have been used to model mEC-SC
firing patterns (Izhikevich, 2007; Shay et al., 2016) but are also constructed from
a phenomenological dynamical systems perspective and do not offer mechanistic
insight at the single neuron level. For example, they do not allow understanding
of the relationship between properties of membrane channels and the aforemen-
tioned dynamic firing patterns.

In order to develop a mechanistic, biophysical understanding, Fransén et al.
(2004) developed a detailed, compartmental model of an mEC-SC, based on
the Hodgkin-Huxley formulation (section 1.5). In addition to standard Hodgkin-
Huxley ion channels, hyperpolarisation-activated, cation non-selective channels
(In) were incorporated along with calcium-gated potassium channels including a
potassium-mediated after-hyperpolarisation (AHP) current. It was demonstrated
that this combination of channels was sufficient to describe limit cycle subthresh-
old oscillations in the theta (4-12 Hz) range and clustered action potential firing.
A simulation study of the noise driven system demonstrated a dependence of
clustered firing on the AHP conductance and the time scale of the slow I, com-
ponent (Fransén et al., 2004). To investigate the role that stochastic effects could
play in generating stellate cell dynamics, Dudman and Nolan (2009) formulated
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a high dimensional, Markov chain model of stochastic ion channel gating and
demonstrated that this model could reproduce the aforementioned dynamics due
to intrinsic ion channel noise. Clustered action potential firing was generated by a
transient increase in probability of action potential firing during recovery from the
AHP. This required the Iy current, since simulations and experimental investiga-
tion of an I, knockout resulted in loss of clustering.

These models have provided insight into the potential biophysical mechanisms
underpinning the clustered action potential firing and subthreshold oscillations of
mEC-SC. However, the dynamic mechanisms underpinning clustered action po-
tential firing were not elucidated, which precludes a thorough understanding of
the ways in which changes in parameters affect dynamics. Such understanding
would help to build a more complete picture of the reasons why different firing
patterns can emerge, for example due to diseases such as Alzheimer’s disease.
Furthermore, previous models have been cumbersome, either due to their de-
pendence on calcium gated-channels or stochastic simulations. A simpler model
would allow us to extend more readily into neuronal networks in the future in or-
der to better understand the spatial structures underpinning memory processing
in health and disease.

In order to advance such a framework, in this chapter, the model of Dudman
and Nolan (2009) is converted to the deterministic Hodgkin-Huxley formulation.
This results in an ordinary differential equation (ODE) model that retains the key
components of I, and Ianp. As a single compartment model with only voltage-
gated ion channels, this model is simpler than the multi-compartment model of
Fransén et al. (2004) which includes both voltage- and calcium-gated ion chan-
nels. Upon introducing extrinsic noise to the membrane potential in a stochastic
differential equation (SDE) framework, numerical simulations are used to demon-
strate that this model is capable of generating clustered action potential firing as
well as subthreshold membrane potential fluctuations with peak power in the theta
band, in line with experimental results. Numerical bifurcation analyses demon-
strate that clustered firing in the model arises due to a flip bifurcation (Chan-
nell et al. (2007); Barrio and Shilnikov (2011); section 1.4.6). Clustered action
potential firing can, in turn, be understood in terms of a fast-slow system (sec-
tion 1.4.5), in which the activation of the persistent sodium (NaP) and inactivation
of the slow A-type potassium (Kas) channels act as slow variables, driving the fast
sub-system through a hysteresis loop via subcritical Hopf and homoclinic bifurca-
tions. Thus, in terms of the underlying dynamics, this model can be classified as a
subcritical Hopf/homoclinic burster (Izhikevich, 2000). This model allows for clus-
tered action potential firing to be controlled, making it a suitable model to study the
role of dorsoventral gradients in clustering. It is thereby proposed that alterations
to AHP or I, conductances could mediate the quantitative changes in clustering
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observed experimentally. In experimental models of dementia (rTg4510), loss of
clustered firing is found to correlate with significant changes to AHP amplitude
(Booth et al. (2016a); Figure 2.1) but no change in I, mediated sag (Booth et al.,
2016a). Hence our results suggest a possible path through parameter space that
account for the differences in patterned firing in rTg4510.

2.2 Materials and methods

2.2.1 Mathematical model

The stochastically gated Markov Chain model of layer Il medial entorhinal cortex
stellate cells (MEC-SCs) presented by Dudman and Nolan (2009) was converted
to a system of stochastic differential equations (SDEs) in the Hodgkin-Huxley
formulation (Hodgkin and Huxley (1952); section 1.5). For a given ion channel,
Markov Chain models calculate the voltage dependent probability of a closed
gate opening, «(V), and an open gate closing, 3(V) in order to estimate the
fraction of gates open at a given time. Under the assumption that the number of
ion channels is sufficiently high, we can make a density approximation; i.e. the
fraction of gates open is equal to the probability of gates being open, and hence
we can write the equations for the gating variables in the form of Equation 1.16.
The presence of noisy fluctuations in the dynamics due to the intrinsic stochastic
channel gating are not modelled explicitly, but approximated through the addition
of extrinsic additive noise on the membrane potential.
The membrane potential is given by
av

C% = lapp — INaT — INaP — Ikar — Ikat — Ikas — Ih — lamp — I +on(t)  (2.1)

where the term on(t) is the extrinsic noise term, where ¢ is the noise variance
and (n(t)) = 0 and (n(t),n(t")) = §(t — ¢'). Each ionic current is written in the form
of Equation 1.13. The fraction of open gates for each channel is given by

UNaT = MiarPNaT, YNaP = MNaPNapP
Vkdr = Mikrs YKaf = MKathKaf
wKas = mKashKa57 wh = Nh
3
YAHP = NP, P =1, (2.2)
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Figure 2.1: P and AHP amplitude are altered in dorsal mEC-SCs. Figure
reproduced and modified from (Booth et al., 2016a) under the CC-BY 4.0 licence.
(A) Example recordings of WT and rTg4510 dorsal mEC-SCs and raster plots,
with clustered spikes appearing red in the raster plot. Calibration: 20 mV, 2 s. (B)
Boxplots of P (see Figure 2.2) in WT and rTg4510 dorsal mEC-SCs demonstrate
that rTg4510 cells were significantly less likely to fire APs in clusters. (C) Average
AHP waveforms in dorsal mEC-SCs elicited by a train of 5, 10, 15, 20, and 25
(light through to dark colours respectively) depolarising current injections. Note
that the AHP studied in this chapter is the medium AHP (mAHP), whilst this figure
additionally shows the slow AHP (sAHP). (D) mAHP amplitude in dorsal mEC-
SCs was significantly increased in rTg4510 animals for 5-25 depolarising current
injections (all values tested).
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with gating functions
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All equations are adapted from Dudman and Nolan (2009).

The transient sodium (NaT) and potassium delay rectifier (Kdr) are those of the
classic Hodgkin-Huxley model and mediate action potential initiation and recovery
respectively. Also included in the model are a persistent sodium (NaP) current,
fast and slow potassium A-type currents (Kaf and Kas respectively), an Ohmic
leak (L), and an inward hyperpolarisation activated (h) current.

Furthermore, a phenomenological spike-dependent outward after hyperpolar-
isation (AHP) current is included in the model. This current is modelled with
a(V) = 1.5exp(—(t —tspike)/7) @and B = 1.6. Here, tgike is the time of the last spike
(defined as membrane potential rising through OmV) and 7 = 60 such that the
AHP lasts approximately 100ms (Booth et al., 2016a).

Noise variance was selected as follows. Having fixed all parameters but those
being studied (g, and ganp), these remaining two free parameters of the determin-
istic system were chosen such that the inter-spike interval of the model reflected
experimental results (Booth et al., 2016a) (g, = 2.8, ganp = 0.425). The system
was simulated for a range of noise values to identify plausible values with realistic
clustering dynamics as quantified by P (Nolan et al., 2007) (see Figure 2.2 and
2.3, and description below). This yielded a value of ¢ = 0.197uA - cm~2, or equiv-
alently o/C = 0.135 mV-ms~!. This value was used in all stochastic simulations
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Figure 2.2: Calculation of P.. (A) Example 10s simulation with raster plot of
spikes (below), defined as the point at which V' = 0 and dV/dt > 0. Spikes marked
in red are classified as clustered spikes, whilst spikes marked in black are not
clustered. Clusters are defined as two or more spikes with an ISl of < 250ms and
preceeded and followed by quiescent periods of > 300ms. P is calculated as the
ratio of clustered spikes to total number of spikes; in this example Po = 13/20 =
0.65. (B-E) Shaded grey regions in A. In the raster plots below the traces, red dots
are clustered spikes and black dots are non-clustered spikes. Blue lines represent
epochs of > 300ms, black lines are epochs of < 300ms but > 250ms, and red lines
are epochs of < 250ms. (B) Three clustered spikes. (C) Non-clustered spikes due
to an ISI of > 250ms (black line in raster plot) excluding them from being classed
as a cluster. (D) Non-clustered spikes since the ISI of the first and second spike
is > 250ms and < 300ms. The second and third spike cannot constitute a cluster
of two spikes since they are not preceeded by a period of > 300ms. (E) One
sporadic spike and a cluster of two spikes. The first spike is classified as sporadic,
but because the 2nd and 3rd spikes are now both preceeded and followed by a
quiescent period of > 300ms, they constitute a cluster of two spikes. All time
series shown here are simulations; for comparison purposes, examples of real
data showing clustered AP firing are shown in Figure 2.1A.
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Figure 2.3: Effect of noise variance on P.. Variance of noise ¢/C in mV-ms~!
against P for the (gn, ganp) = (2.8,0.425) regime. P in the experimental data for
the WT animals was found to be 0.69, so noise variance was chosen to be 0.135
mV-ms~1.

unless stated otherwise.

Simulations use the stochastic Heun method with a time step of 0.01ms.
Parameters are those given in Table 2.1 unless stated otherwise. For spectral
analyses, the multitapered power spectrum was calculated using the CHRONUX
toolbox (http://chronux.org/, Mitra and Bokil (2008)) with 9 tapers and time-
bandwidth product of 5.

Parameter Value Parameter Value
C 1.46 uF.cm™2 gNaT 24 mS.cm—2
T 0.3 pA-cm—2 gNaP 0.075 mS-cm—2
ENa 55 mV IKdr 11 mS-cm~—2
Ex -85 mV JKat 0.1 mS-cm—2
Eq -30 mV IKas 0.5 mS-cm~2
E. -88.5 mV gL 0.15 mS.-cm~2

Table 2.1: Parameters used in the stellate cell model

A cluster of action potentials is defined as two or more spikes with an inter-
spike interval of < 250ms, preceeded and followed by a quiescent period of >
300ms. Clustering is quantified by P, which is the ratio of spikes defined to be
within a cluster to total number of spikes (Nolan et al., 2007). Calculation of P¢ is
demonstrated in Figure 2.2.

2.2.2 Bifurcation analysis

In order to understand the underlying dynamics, the ordinary differential equation
(ODE) formalism is given by the above system with ¢ = 0 in Equation 2.1. This
ODE formalism allows for a bifurcation analysis of the system. To conduct the
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bifurcation analysis, a number of methods were used. Equilibria were found us-
ing either XPPAUT (Ermentrout, 2002) or Matlab’s fsolve functions in a reduced
system with no AHP current. This reduction is made since the AHP current is
spike dependent and decays to zero in the absence of spikes.

Periodic orbits in the full model with AHP could not be analysed in XPPAUT
due to the non-smooth nature of the AHP current. Instead, the Poincaré return
map on the Poincaré section at V' = 0 (at which non-smoothness due to the AHP
current arises) was identified using Matlab. For tonic spiking, high precision nu-
merical solutions were found using a boundary value solver in Matlab. Due to
the high dimensionality and complexity of the model, for doublets and other multi-
plets this could not be implemented. Instead solutions were found using Matlab’s
ode45 (with tolerances set to 107!2) with high precision event detection, and the
return map identified using Picard iterations; i.e. for each crossing of the Poincaré
section, the Euclidian distance to all past crossing of the Poincaré section was
calculated and a periodic orbit identified as this distance being less than 1072
The Jacobian of the map was constructed by calculating Fréchet derivatives, and
eigenvalues of the Jacobian used to assess stability and identify bifurcations in
the map. Lyapunov exponents of the Poincaré return map were calculated to
identify chaotic regimes (Sprott, 2003), where a negative maximum Lyapunov ex-
ponent (MLEn4p) represents a steady state on the map (corresponding to a stable
limit cycle in the flow) and a positive MLE 4, represents a chaotic regime.

2.3 Results

2.3.1 Identifying parameter regimes of clustered firing

A number of experimental and modelling studies implicate the after hyperpolari-
sation (AHP) and hyperpolarisation activated current (/) in playing a role in clus-
tered action potential firing (Booth et al., 2016a; Nolan et al., 2007; Dudman and
Nolan, 2009; Fransén et al., 2004). Motivated by these studies, the effect of the
AHP and h-current conductances (ganp and g, respectively) on clustering was
studied in our model.

To do so, we simulated 10 model neurons for 20s over a range of values of
ganp and gn. Pc, which quantifies the proportion of clustered firing (see section 2.2
and Figure 2.2), was calculated for each parameter set. A summary of our results
depicted as a heatmap of P- values and illustrated via exemplar membrane po-
tential traces is shown in Figure 2.4A-B. For low values of g, the model cells only
fire sporadic action potentials due to noise occasionally bringing the membrane
potential above threshold (dark blue regions in Figure 2.4A). For very low ganp,
as gy is increased the system moves into a regime of tonic firing (yellow region in
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Figure 2.4: Clustered parameter regimes in two parameter space. (A)
Heatmap of P over a range of values of gaup and gn. Points marked by red
shapes correspond to the time series in B. (B) Time series demonstrating exem-
plar simulated cells for the regimes marked in A. The red shapes to the right of
the time series correspond to the location in parameter space in A. (C) Heatmap
of spikes per cluster in the underlying deterministic system. In the colourbar, ‘SS’
refers to a steady state, ‘T’ refers to tonic firing, and ‘C’ refers to chaotic/irregular
firing and integers indicate number of spikes per cluster. (D) Time series demon-
strating the deterministic dynamics underlying the stochastic traces in B. The red
shapes to the right of the time series correspond to the location in parameter
space in C.
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Figure 2.5: Effect of noise variance on P> heatmaps. Two parameter sweeps
showing Pr for gaup VS gn, for different noise values. Whilst the tonic and steady
state regimes (in the underlying deterministic system) are largely unaffected by
changing noise, in a clustering regime noise has the affect of adding more spo-
radic spikes and hence scaling PC . The general pattern of PC values in the
sweep remains the same.

Figure 2.4A). For intermediate values of ganp, @s gn is increased clustered param-
eter regimes occur (orange regions in Figure 2.4A) . For values of ganp sufficiently
high for clustering to occur, as g, is increased the system moves from very low
Pc towards a peak at P ~ 0.8, and then back down to lower P (Figure 2.4A).
Therefore, spontaneous activity in the model arises due to a combination of noise
and the applied current. Time courses associated with these values can be seen
in Figure 2.4B. For these simulations, noise variance was set to ¢/C = 0.135
mV-ms~! (see section 2.2). Figure 2.5 demonstrates that these results are robust
to different values of noise, with noise values scaling P in the clustered regimes.
The effect of noise on P, for a single parameter regime is shown in Figure 2.3.

In order to understand these dynamics, the deterministic system was also sim-
ulated over the same range of parameters. A heatmap representing the number
of spikes per cluster and exemplar membrane potential traces are plotted in Fig-
ure 2.4C-D. To directly compare the dynamics of the determinstic system to the
stochastic system, in Figure 2.6 we present the heatmap of the deterministic sys-
tem juxtaposed with heatmaps for the stochastic system at three different levels

73



Modelling single cell dynamics in tauopathy

A B
4 1 5

53 0/C = 0.06 mV-ms ,,,
|72} Q
3 4= o
5 3.5 Smm
38 3
g 2 , 89
X [N
2._ > Q
) 3 <

—

Non-clustered
Non-clustered

Iamp
D
-1 4
0/C = 0.135 mV-ms 5 g/c 0.20 mV-ms™ 5
3 3
4 x X
3 @ 43 g
"5 3.5 (Z20%7]
3 gE r= 3 gE
g7 i
292 282
< 3 <
1 1
Non-clustered Non-clustered
0 1
Iamp

Figure 2.6: Spikes per cluster in the stochastic system is correlated with
spikes per cluster in the deterministic system. (A) For comparison with B-D,
spikes per cluster in the clustering regimes of the deterministic model (previously
shown in Figure 2.4C) are shown. Dark blue regions represent either tonic firing,
steady state, or chaotic regimes and are not included in the analysis. (B-D) Mean
number of spikes per cluster in the stochastic system with three different levels of
noise. Only clustered spikes were included (sporadic spikes ignored) in calcula-
tion. Text shows the noise level and correlation of number of spikes per cluster
over the parameter sweep between each system and the deterministic system.

of noise variance. It can be seen in Figure 2.6 that the heatmaps for the deter-
minstic and stochastic system appear qualitatively similar in terms of the number
of spikes per cluster (similar positioning of coloured regions in the heatmaps). In
order to quantify this similarity we calculated the Pearson’s correlation between
the number of spikes per cluster in the simulations of the determinstic system
with the average number of spikes per cluster in the stochastic system. These
values, which are indicated in the left hand corner of panels B-D of Figure 2.6,
were above 0.86, suggesting that an understanding of the deterministic cluster-
ing dynamics can be informative for understanding the clustering dynamics of the
stochastic system.

A two-parameter bifurcation analysis was performed over g, and ganp (Fig-
ure 2.7). For low values of g, the deterministic system is in a stable steady state.
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Figure 2.7: Bifurcations in two parameter space. (A) The heatmaps from Fig-
ure 2.4C is overlayed with lines indicating locations of bifurcations in the deter-
minsitic system as gapp and g, are varied. The dashed red line represents the
location of a saddle node bifurcation. Dotted red lines show flip bifurcations that
move the system from a period n to a period n + 1 orbit, for n > 1. The solid red
line shows a flip bifurcation that moves the system from tonic firing to period 2 fir-
ing, before transitioning into a period adding cascade. (B) The same bifurcations
are overlayed on the P~ heatmap of Figure 2.4A to enable a visualisation of the
behaviour of the stochastic system relative to the bifurcations in the deterministic
system.

This corresponds to the region of subthreshold sporadic excitability that gener-
ates occasional spiking in the stochastic system. As g, is increased, a homoclinic
bifurcation occurs at gH® = 2.5477, resulting in bistability between the steady state
and a periodic orbit (not shown in Figure 2.7). This periodic orbit may be either
period 1 (corresponding to tonic action potentials) or period > 1 (corresponsing to
clustering in the stochastic system) depending on ganp. AS gn is increased further
to gSN = 2.7484, the stable steady state collides with an unstable steady state in
a saddle node bifurcation, resulting in periodic solutions corresponding to action
potential firing being the only stable solutions. The location of the saddle node
and homoclinic bifurcations are independent of gapp. The saddle node bifurcation
g>N is indicated by a dashed red line in two parameter space in Figure 2.7.

For gn > g2V, only a stable periodic orbit exists, generated by the homoclinic
bifurcation at gH°. Orbits with a range of number of spikes per period can be
found beyond this bifurcation. Period 1 orbits correspond to tonic action poten-
tials, whilst period > 1 orbits correspond to firing in multiplets, i.e. bursting. By
comparing Figure 2.7A and B, one can observe that the regimes of period > 1
in the deterministic system correspond to clustered action potential firing in the
stochastic system. The transitions between orbits of different periods (eg. from
period 2 doublets to period 3 triplets) occur via flip bifurcations (Channell et al.
(2007); Barrio and Shilnikov (2011); section 1.4.6), drawn in Figure 2.7 by dot-
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Figure 2.8: Transition from tonic firing to period 5 bursting. Each column
represents a different parameter value as g, is decreased. For all simulations,
ganp = 1.2 and all other parameters are those in Table 2.1. Numbers shown at
the top of each column are value of g, and maximum Lyapunov exponent on the
map (MLEmap). MLEms > 0 indicates chaos. For each parameter value, the
top row demonstrates the flow in the (V| nn, napp) subspace about the Poincaré
section V' = 0 (shaded in grey) and the bottom row is the Poincaré return map for
np. For the chaotic regimes, the system was simulated for 30 seconds to reach
the attractor and then a further 30 seconds of simulations are shown. From a
tonic regime, as gy, is decreased the system undergoes a flip cascade into chaos
before transitioning into a period 5 (bursting) orbit.

ted red lines. The transition between period 1 oribits (tonic spiking) and orbits
with period > 1 (bursting) is indicated by a solid red line in Figure 2.7. Seen in
terms of decreasing values of g, the bifurcation underlying this transition is a flip
bifurcation of the period 1 orbit into period 2 regime. As g, is decreased further,
the system undergoes a flip or spike adding cascade into chaotic dynamics, be-
fore a stable period 5 orbit is established. Poincaré return maps and Lyapunov
exponents demonstrating an example of this transition are shown in Figure 2.8.
Moving beyond this bifurcation to high values of g, and low values of gaup
yields P~ = 1 in the stochastic system. This observation could be explained by a
highly stable periodic orbit and therefore diminished effects of noise. However, in
this case a high value of clustering arises due to the way P, is calculated, essen-
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Figure 2.9: Paths through parameter space that can result in reduced
clustering observed in the rTg4510 model of dementia (A) Heatmap of
|Pc — Powr|, where Powr = 0.69 is the mean value of clustering seen in dorsal
mEC-SCs in wild type animals (Booth et al., 2016a). Red indicates regions in
which P. of the model is close to Pc w1, whereas blue indicates regions where
the model is farthest from P 1. (B) Heatmap of | Po — Pc r¢|, where Porg = 0.37
is the mean value of clustering seen in dorsal mEC-SCs in rTg4510 transgenic
(i.e. dementia) animals (Booth et al., 2016a). (C) The heatmap of Figure 2.4A is
overlayed with arrows indicating potential paths through the (gaup, gn) parameter
space that could lead to the changes in P- obsvered in the rTg4510 experimental
model. (D) The heatmap of Figure 2.4C is overlayed with arrows indicating poten-
tial paths through the (ganp, gn) parameter space that could lead to the changes
in P obsvered in the rTg4510 experimental model.

tially tonic firing with an ISl < 250ms is classified as a single cluster (Figure 2.2).
As the flip bifurcation is approached from above and left, the orbit becomes less
stable allowing noisy perturbations to cause deviations away from individual ac-
tion potentials. This induces quiescent intervals that become large enough to
fall in the range [250, 300]ms, thus causing the Po value to drop substantially in
magnitude, giving rise to the light blue upper region of low Py in Figure 2.4A.

Experimental observations have shown dorsal P to be approximately 0.69 in
healthy animals and approximately 0.37 in rTg4510 transgenic animals (Booth
et al. (2016a); Figure 2.1B). We used these values to define possible paths
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through parameter space that may account for differences observed in rTg4510
(Figure 2.9). Given that experimental recordings found no differences in I, but
found differences in AHP amplitude (Booth et al. (2016a); Figure 2.1C-D), paths
E and F in Figure 2.9C-D are the most likely changes in parameter space occur-
ing in rTg4510. The dynamics of path F recreate firing patterns seen in data most
realistically, since firing frequency in parameter sets in path E is much higher than
in data (Booth et al., 2016a). This could be explained by the fact that in path E,
clustering arises due to noise cancelling action potentials in a tonic firing regime,
as opposed to underlying dynamics causing clustered firing. Path F suggests
that the underlying noise-free system is undergoing a flip bifurcation from period
3 bursts to period 2 bursts, resulting in the reduced clustering seen in rTg4510.

2.3.2 Fast-slow analysis of deterministic clustering

The analysis above suggests that clustered firing patterns may arise due to noise
perturbations to a periodic bursting regime. In order to further understand these
dynamics, a fast-slow analysis was performed on the deterministic system within
this regime. We chose parameters to be ganp = 0.425 and g, = 2.8, which results
in periodic bursts of three action potentials. We first examined simulations, which
revealed two variables operating with a slow time scale, namely myap and hgas
(Figure 2.10A). Keeping the two slow variables fixed, the remaining (fast) subsys-
tem was subjected to a numerical bifurcation analysis, which revealed two bifur-
cations of importance for describing the bursting dynamics (see Figure 2.10B).
For low values of mngp, there exists a stable steady state which loses stability via
a subcritical Hopf bifurcation (denoted SCH1) as mnap is increased (marked by
a dashed red line in Figure 2.10B). For high values of myap there exists a stable
periodic orbit of period 1, which disappears via a homoclinic bifurcation (denoted
HC1 and marked by a dotted red line in Figure 2.10B) as mngp is decreased. Be-
tween these two bifurcations there is a region of bistability between the steady
state and the periodic orbit. These bifurcations in my,p are drawn over a range
of values of hgas in Figure 2.10B. A full bifurcation diagram and example bistable
region for myap for hkas = 0.19 is shown in Figure 2.11.

Plotting the periodic solution of the full subsystem in the two variables (mnap
and hgas, Figure 2.10B) is sufficient to describe the bursting dynamics. The tra-
jectory follows a hysteresis loop through the fast subsystem. Beginning in the
quiescent period between bursts, the two slow variables will be at a position in
phase space such that the fast subsystem is on the steady state branch. The pe-
riodic solution’s trajectory then moves along the steady state branch until SCH1
is reached, at which point the fast subsystem moves to the periodic orbit branch.
This initiates the burst, with action potentials firing while slow variables move
along the periodic orbit branch towards HC1. Once HC1 is reached, the burst

78



Results

A 50
£ of
> _50 s
L 0615
1]
Z 06
e
0.585 |
0.198 |
8
¥ 0.19 &
0.182 t _ ; . :
0 Time [s] 5 0.59 m0.6 0.61
C 40 : - D
201 HC2
SNP1 _
> 0 =
£ SCH3_+/ E
> .20t _-——T7 7" o> —
(\
40 )SCHZ
-60 — — -
i 0 1 2 3 4 0.59 0.6 0.61
m m
slow slow

Figure 2.10: Fast-slow analysis of deterministic bursting (A) Membrane po-
tential (top) and slow variables (mnap, middle and hkas, bottom) through four cy-
cles of bursting in the deterministic system. (B) Bifurcations in the fast subsys-
tem overlayed on the model trajectory in the (mnap, hkas) plane. The red dashed
line indicates a subcritical Hopf bifurcation (SCH1), whereas the dotted red line
indicates a homoclinic bifurcation (HC1). The black dashed line shows the lin-
ear model that combines hkas and mygp into a single slow variable, mgow. (C)
Bifurcation analysis of the fast subsystem of the model using mgow as a bifurca-
tion parameter. A stable equilibrium (solid black line) is shown to lose stability
(dashed black line) via a subcritical Hopf bifurcation (SCH2). The stable periodic
orbit (solid green line) disappears in a homoclinic bifurcation (HC2). A region of
bistability exists (shaded region, zoomed in panel D). See text for a description
of the remaning bifurcations. (D) A close up of the bifurcations occuring in the
region of bistability shown in grey in panel C. The blue line indicates a trajectory
of the full system through a single period of bursting, with arrows indicating the
direction of time. Dashed and dotted red lines correspond to the bifurcations of
the fast subsytem introduced in panel B.
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Figure 2.11: Bifurcation diagram for mpyap for a single value of /kas (A) Full
bifurcation diagram of the fast subsystem whilst ik,s = 0.19. (B) Zoom in on the
bistable region of A (shaded in grey) to demonstrate HC1 homoclinic and SCH1
subcritical Hopf bifurcations.

ends as the fast subsystem returns to the steady state branch.

Figure 2.10B suggests that the slow system can be reduced to a single slow
variable mgw With the approximation myap = Mmgow aNd hkas = —0.7657TMgow +
0.6477. This linear approximation of the two slow variables is shown in Fig-
ure 2.10B. The full bifurcation diagram for the fast subsystem as mg is varied
is shown in Figure 2.10C. As before, the stable steady state is lost via subcrit-
ical Hopf bifurcation (SCH2), and the stable periodic orbit is lost via homoclinic
bifurcation (HC2). Figure 2.10C shows the remaining bifurcations. The unsta-
ble periodic orbit generated by SCH2 is lost via a homoclinic (HC3). The un-
stable steady state following SCH2 becomes stable via another subcritical Hopf
(SCH3). The unstable periodic orbit generated by SCHS3 collides with the stable
periodic orbit generated in HC2 and both periodic orbits disappear via a saddle
node of periodics (SNP1). As in the case of the two dimensional slow subsys-
tem, there is bistability between the stable equilibrium and the stable periodic
orbit (Figure 2.10D) resulting in traditional fast-slow hysteresis loop bursting. The
trajectory of a single burst is shown in Figure 2.10D.

2.3.3 Subthreshold dynamics

In order to validate the model, we tested whether it reproduced experimental re-
sults that were not used in the development of the model; i.e. when choosing
parameter regimes that allow for mEC-SC-like clustering dynamics. Subthresh-
old oscillations in the theta (4-12 Hz) range are another key electrophysiological
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Figure 2.12: Analysis of subthreshold dynamics (A) Spectrogram of exem-
plar 20 second subthreshold simulations. (B) Power spectrum of 20s simula-
tions (averaged over 10 cells). The shaded region shows standard error. (C)
Exemplar simulations with Ip, = 0.054A-cm~2 (top), 0.15¢A-cm~2 (middle), and
0.25A-cm~2 (bottom). Vertical and horizontal scales are consistent for all values
of Iapp- (D) Theta spectral ratio, defined as the ratio of total theta power to total
broadband (1-300 Hz) power, plotted as a function of I,pp.

feature of MEC-SCs, so in this section we explore whether theta band subthresh-
old activity appears in the model.

The bottom trace of Figure 2.4B demonstrates the noise driven response of
the model in its subthreshold regime. mEC-SCs have been shown to generate
subthreshold membrane potential fluctuations with dominant frequencies in the
theta band (Alonso and Klink, 1993). We therefore quantified the power spectrum
of dynamics generated by our noise driven system. The stochastic system, with
parameters chosen as in section 2.3.2, Iy, set below action potential threshold
(0.25,A-cm~2), and white noise added to the membrane potential, was simulated
for 20 seconds with low noise variance (o/C = 0.005 mV-ms~!). Figure 2.12A
shows an example spectrogram, demonstrating high power between 0-20 Hz with
a peak in the theta (4-12 Hz) range. The mean power spectrum over an ensemble
of simulations (Figure 2.12B) shows peak power to be in the theta band, with peak
frequency found to be at 10.40 + 1.09 Hz (mean + standard error). Whilst low
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Figure 2.13: Subthreshold theta fluctuations in a system with noise variance
o/C = 0.135mV-ms~! (A) Example membrane potential trace for system close
to threshold (Ia = 0.254A-cm~2). (B) Example membrane potential trace for
system far from threshold (Z,p, = 0.050A-cm~2). (C) Power spectrum for each
value of I,,p, averaged over 10 cells for 20 seconds. Close to threshold, the theta
peak is greater, as seen in experiments.

noise variance was used in these simulations in order to elucidate mechanisms,
Figure 2.13 shows simulations using the same amount of noise as in previous
sections (o/C = 0.135 mV-ms~!) to demonstrate that theta range fluctuations still
arise in the system with more realistic noise levels.

To further understand the origin of this subthreshold preferential theta power,
we analysed the deterministic system. Figure 2.14 shows a bifurcation diagram
in Ipp. The deterministic system undergoes a saddle node bifurcation at I3}, =
0.2738uA-cm=2; for I5 < I35 @ stable steady state exists. A supercritical Hopf bi-
furcation occurs at Ife?" = 42.10uA-cm~2, generating a stable periodic orbit that is
lost via a homoclinic bifurcation at I:p% = (0.2401pA-cm~2 demonstrating bistability
between spiking and steady state in the range I}S < I, < I35, No other Hopf
bifurcations occur in I,p,, hence the deterministic system does not exhibit stable
subthreshold oscillations within this parameter regime. We note that noise per-
turbations can drive the membrane potential above threshold even for Ip5, < I5%
(see Figure 2.15 for anlaysis of spike onset in relation to injected current and dif-
fering noise variance). This justifies our choice of I, = 0.25uA-cm™2 as this is

sufficiently below threshold that no action potentials are observed.

In the absence of noise, the system is in a steady state and therefore no
deterministic theta band oscillations arise. A potential mechanism by which white
noise on a steady state can result in power spectral peaks is if the steady state is a
focus. The resonant frequency of a focus can be calculated as the imaginary part
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Figure 2.14: Bifurcations in Iy, for values of g, and ganp used in sections 2.3.2-
2.3.3. (A) Full bifurcation diagram for I,,. (B) Flip bifurcations cause periodic
bursting regimes to occur.
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Figure 2.15: Response of model stellate cell to current ramp (A) Time of
first spike of stochastic neurons (boxplot) during current ramp relative to time of
first spike in the deterministic neuron (black dotted line, time = 0). Stochastic
neurons fire earlier than the deterministic model in the current ramp experiment
due to noise pushing the membrane potential above threshold. The larger the
noise, the earlier the neuron fires due to excitability. (B) Each trace represents
the mean of 10 simulations with a given noise level. Shaded regions represent
standard error over the 10 simulations. Aligning time of first spike (time = 0), the
stochastic system tends to exhibit a lower mean mebrane potential prior to the
spike, particularly with large noise. This is because the first spike is, on average,
earlier in the current ramp (see A), so input current is lower.
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of the complex conjugate eigenvalues of the Jacobian normalised by a value of
2m. A pair of complex conjugate eigenvalues demonstrated that the steady state
is a focus with a resonant frequency of 6.32 Hz. The effect of changing applied
current was also tested (Figure 2.12C-D). In experimental recordings, theta power
is seen to increase as I,p, approaches threshold for action potential generation
(Alonso and Klink, 1993). Figure 2.12C shows time series traces for a range of
values of I, demonstrating theta power increasing as Iy, is increased. Theta
band spectral ratio was calculated as the ratio of total power in the theta band
to total power in the 1-300 Hz broad band, shown in Figure 2.12D. This figure
demonstrates the clear emergence of peak theta power as Iy, is increased and
threshold is approached. A Kruskal-Wallis test confirms a significant effect of
applied current on spectral ratio (y? = 44.97, p = 1.47 x 107%).

2.4 Discussion

In this chapter we analysed a conductance based model of a layer Il medial en-
torhinal cortex stellate cell (mMEC-SC), demonstrating that it is capable of gener-
ating clustered action potential firing with a range of quantitative P, values that
are observed in experiments. We demonstrated that these dynamics arise due to
a subcritical Hopf/homoclinic bursting mechanism (section 1.4.5), which causes
multiple period limit cycles that when perturbed by extrinsic noise display action
potential clustering. We further demonstrated that the same model can gener-
ate experimentally observed subthreshold membrane potential fluctuations with
power spectral peak in the theta band.

2.4.1 Derivation of the model, approximation of noise, and re-
lationship to the Markov chain model

Dudman and Nolan (2009) presented a biophysically realistic Markov chain (MC)
gated model of enthorhinal cortex stellate cells. MC models account for random
fluctuations in the opening and closing of ion channels intrinsic to neurons (White
et al., 2000; Goldwyn et al., 2011) by assigning them a voltage dependent prob-
ability of opening or closing. However, dynamic analysis of Markov chain models
is challenging. Furthermore, Markov chain models are computationally expen-
sive. For these reasons, in this paper, the MC gated model was converted to the
deterministic Hodgkin-Huxley formulation for ion channel gates (Equation 1.16;
Hodgkin and Huxley (1952)) under the assumption that the number of ion chan-
nels is sufficiently high that a density approximation can be justified, resulting in
a system of ordinary differential equations (ODEs). Channel noise in the neuron
was not explicitly modelled, but approximated by extrinsic, Gaussian noise on the
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membrane potential. We demonstrated that this was sufficient to produce clus-
tered action potential dynamics and theta range subthreshold fluctuations in line
with experiments (Alonso and Klink, 1993).

2.4.2 Action potential clustering

Clustered action potential firing, in which two or more action potentials are fired
in succession before a long quiescent period, is a feature of in vitro recordings
of layer Il medial entorhinal cortex stellate cells. Action potential clustering is hy-
pothesised to depend on the AHP and I, currents based on computational stud-
ies and correlated gradients in dynamics associated with these currents (Booth
et al., 2016a; Giocomo and Hasselmo, 2008; Nolan et al., 2007; Fransén et al.,
2004; Pastoll et al., 2012; Yoshida et al., 2013; Garden et al., 2008; Giocomo
and Hasselmo, 2009). Motivated by this, the dependence of these two parame-
ters on clustering was tested in the model. A two parameter bifurcation analysis
(Figure 2.4A) demonstrated that regions of quiescence, tonic firing, and clustered
firing coexist. Furthermore, a range of values of P. were found, allowing for con-
trol over the amount of clustering in the model.

Analysis of the deterministic model allowed for understanding of the mecha-
nisms behind clustering (Figure 2.4C). Regions corresponding to tonic firing in the
stochastic model correspond to regions of tonic firing in the deterministic model.
As the regions of clustering are approached from the regions of tonic firing, a
period doubling cascade occurs until stable multiplets (‘bursts’ of action poten-
tials) are reached. Flip bifurcations (Channell et al. (2007); Barrio and Shilnikov
(2011); section 1.4.6) occur, changing the number of spikes per burst. Eventu-
ally, firing is lost althogether via a homoclinic bifurcation as gy is decreased. It is
worth noting that a region of bistability exists before the homoclinic is reached in
which the stable periodic orbit coexists with a stable steady state. In this region
of bistability, it was found that simulations of the stochastic system starting on or
near the periodic orbit are soon driven by noise towards the stable steady state,
and hence sustained action potential firing in this region of the stochastic system
is rare. Similar results occur for changes in Iy, if gy is held constant in certain
parameter regimes (Figure 2.14), reflecting results in data that increasing applied
current will increase number of spikes per cluster before moving the system into
tonic firing (Alonso and Klink, 1993). This suggests that the different dynamics
due to alterations in g, may arise because of a change in resting membrane po-
tential as g, is varied. No such change in resting membrane potential is observed
as ganp is altered. Analysis of a bursting regime demonstrated that bursting arises
due to a fast-slow mechanism in which two slow variables drive the fast subsys-
tem through a hysteresis loop. In terms of bifurcations in the fast sub-system, the
bursting mechanism in this model can be classified as subcritical Hopf/homoclinic
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type (Izhikevich, 2000).

The generation of clustered action potential firing by deterministic, periodic
bursting perturbed by extrinsic noise differs from past interpretations of cluster-
ing. In the Markov chain formalism of the model, Dudman and Nolan (2009)
suggested clustering was the result of a transient increase in probability of fir-
ing during recovery from the AHP due to the stochastic mechanisms, and they
demonstrated that clustering was not possible in the deterministic version of the
model. In our study, we systematically explored the consequences of changing gn
and ganp, and found different dynamic regimes in the deterministic system, includ-
ing steady state and tonic firing regimes that do not correspond to clustered firing
in the stochastic model. It is possible that further exploration of the dynamics of
the model of Dudman and Nolan (2009) would reveal similar bursting regimes to
those reported herein. Although experimental verification of these interpretations
is difficult, there are some agreements in mechanisms between these two mod-
els, however. The effect of changing ganp in the MC model has not been studied,
but within a clustered parameter regime the affect of reducing g, in the SDE model
largely agrees with the results of reducing g, in the MC model - a reduced value
of Po. The interpretation of increased probability of firing during recovery from
AHP also emphasises the importance of the AHP current in clustering in the MC
model.

A number of other parameters are likely to play a role in clustering. AHP
halfwidth and I, time constants may be important, as dorsoventral gradients in
these properties also correspond to gradients in clustering (Giocomo et al., 2007;
Giocomo and Hasselmo, 2008, 2009; Boehlen et al., 2010; Pastoll et al., 2012;
Booth et al., 2016a), but these have not been studied here. Figures 2.3 and 2.5
demonstrate that the variance of noise chosen will also dictate the amount of
clustering; increasing noise variance increases the likelihood of sporadic spiking
or action potential cancellation, thus affecting the patterned firing.

2.4.3 Subthreshold theta resonance

Stellate cells in Layer Il of the medial Entorhinal Cortex are known to exhibit sub-
threshold oscillations in the theta (4-12 Hz) range that increase in power as ac-
tion potential threshold is approached (Alonso and Klink, 1993). Whilst no alter-
ations to subthreshold oscillations were identified in the rTg4510 rodent model of
tauopathy (Booth et al., 2016a), we studied subthreshold dynamics in the model
to serve as validation that realistic mEC-SC like dynamics were captured.

It is believed that mEC-SC subthreshold oscillations are noise driven (White
et al., 1998). In our deterministic (noise free) model, subthreshold oscillations do
not exist, since we operated in a steady-state regime. However, the steady state
is a focus with resonant frequency of 6.32 Hz, suggesting that with the addition
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of noise, a spectrum with preferential power in the theta band may arise. We
found that a small amount of white noise on the membrane potential is sufficient
to give rise to subthreshold dynamics with multiple peaks within the theta range
and peak power at around 10 Hz. The difference in peak frequency found in
simulations compared to the prediction from the linearisation of the focus may be
due to noise in the simulated spectrum as well as noise induced frequency shifts
(Bonnin and Corinto, 2013). Furthermore it was shown that the relative power in
the theta band is significantly larger close to threshold than far below threshold.

To model the dynamics of subthreshold activity of stellate cells, two classes of
model have previously been proposed. The first class of model utilises noisy per-
turbations to deterministic limit cycle dynamics. In this case, the output of the de-
terministic model would be regular, periodic oscillations and the related stochastic
model would exhibit strongly periodic dynamics contaminated by noise. Previous
models of subthreshold oscillations in stellate cells that fall into this class include
those of Fransén et al. (2004); White et al. (1995); Dickson et al. (2000); and Rot-
stein et al. (2006). In the second class of model, such as the one presented in this
study and the Izhikevich model (Izhikevich, 2007), theta band fluctuations arise
due to noisy perturbations on a focus steady state, which results in a resonant
response. In contrast to the aforementioned class of limit cycle models, fluctua-
tions exist only in the presence of noise. Furthermore, in the noisy focus class
of model, the dynamics appear less obviously periodic than in limit cycle models,
resembling a stochastic process with peak power in the theta range. Experimen-
tal and modelling studies have suggested that removing channel noise results in
loss of subthreshold oscillations (Dudman and Nolan, 2009; White et al., 1998;
Dorval and White, 2005) and that stellate cell subthreshold dynamics are more
reflective of a stochastic process with theta peak than a periodic process with
additive noise (Dodson et al., 2011). These results are consistent with the noisy
focus class of model, which the model we present belongs to. However, we note
that the mechanisms of the two classes of model are closely related, since in the-
ory, one expects to find a focus steady state close to a Hopf bifurcation into a limit
cycle (White et al., 1995) with resonant frequency close to that of the limit cycle.

For biological insight into the currents involved in the generation of subthresh-
old limit cycles or resonance, reduced models, which remove currents that are
predominantly active during action potential initiation or recovery, can be of inter-
est. Iy + Inap + IL models have been shown to generate theta band limit cycle
oscillations (Fransén et al., 2004; Dickson et al., 2000; Rotstein et al., 2006). As
discussed above, the alternative mechanisms of noise-perturbed focus and limit
cycle dynamics are related, so it is of interest to test whether making similar re-
ductions in our model maintains the theta band resonance. Setting all currents
but I, and Iygp to their steady state value, we found that the corresponding steady
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state becomes a node and hence theta band resonance is lost. A detailed study
of the mechanisms underlying the noise response of our model is an avenue for
future work.

2.4.4 Implications for dementia

The entorhinal cortex is one of the first areas to be affected in dementias fea-
turing a tau pathology such as Alzheimer’s disease (Braak and Braak, 1991). In
the rTg4510 mouse model of tauopathy, dorsoventral gradients in action potential
clustering in layer Il entorhinal cortex stellate cells were abolished (Booth et al.,
2016a). A motivating application for a mathematical model of mMEC-SCs in which
action potential clustering can be controlled is to understand the mechanisms be-
hind the dysfunction in clustered firing in animal models of dementia. Future work
will involve exploring this relationship in more detail, but some key points can be
stated from the work presented here. In the wild type animals, dorsal mEC-SCs
fired highly clustered action potentials. This clustering was greatly reduced in the
rTg4510 animals. Whilst I, mediated sag amplitude was unaffected (suggesting
no changes in gy), an increase in amplitude of the AHP was seen in rTg4510
dorsal cells. The AHP amplitude, which scales with AHP conductance, has been
demonstrated to be mechanistically related to P in this model and previous stud-
ies (Fransén et al., 2004; Fernandez and White, 2008). A possible mechanism for
the reduced P in rTg4510 is an increase in ganp, resulting in the system under-
going a flip bifurcation resulting in fewer spikes per cluster. An example of this is
the path through parameter space marked F in Figure 2.9, which results in real-
istic mMEC-SC like clustering dynamics, with a change in parameters that reflects
those seen in rTg4510. Future work will involve fitting parameters to the data to
explore this in more detail.

Network activity was also seen to be disrupted in rTg4510 (Booth et al., 2016a).
Dorsoventral gradients in phase-amplitude coupling (PAC) between theta and
gamma rhythms in the local field potential was found to be disrupted in rTg4510
animals. Similar to clustering patterns, dorsoventral gradients in PAC were dis-
rupted. Networks of modelled stellate cells, spatially extended along the dorsoven-
tral axis, may be used to explore whether disruption in patterned action potential
activity alone is sufficient to replicate deficiencies in PAC, or whether network
properties such as dorsoventral gradients in inhibitory projections also come into
play (Beed et al., 2013). Past computational studies of theta-gamma PAC have
involved use of simple models that do not intrinsically fire in clusters such as
the exponential integrate-and-fire (Solanka et al., 2015) or Hodgkin-Huxley (Wulff
et al., 2009) models. Dorsoventral gradients in clustering intrinsic to cells cannot
be studied using these models, and hence are not suitable to test whether intrin-
sic clustering is related to theta-gamma coupling. The model presented here is
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more suited to this type of study, as clustering can be controlled via biophysically
realistic mechanisms.

2.4.5 Conclusions

In this chapter, we have presented a stochastic differential equation (SDE) model
of Layer Il medial entorhinal cortex stellate cells based on the Markov Chain for-
malism of the model presented by Dudman and Nolan (2009), but driven by ex-
trinsic white noise to the membrane potential. We demonstrated that this model
captures the key dynamics of mEC-SCs seen in electrophysiological recordings
including subthreshold oscillations in the theta range and clustered action poten-
tial firing (Alonso and Klink, 1993). To understand the mechanisms underpinning
clustered action potential firing, a numerical bifurcation analysis was performed
on the underlying system of ordinary differential equations. Clustering was shown
to arise due to flip bifurcations in the AHP and h-current conductance parameters,
and is driven by two slow variables (mynap and hgas) driving the remaining fast
subsystem through a subHopf/homoclinic type hysteresis loop. Furthermore, ex-
ploration of parameter space demonstrates that control of the AHP and h-current
conductances allows for control of P, which quantifies the amount of action po-
tential clustering exhibited by the model. The model provides an important tool
for further understanding alterations to mEC spatiotemporal dynamics that arise
in dementias featuring a tau pathology (Booth et al., 2016a).
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Chapter 3

Multi-scale analysis of brain
networks in an animal model of
dementia

The work presented in this chapter was performed in collaboration with Dr Jon
T Brown (EEG data acquisition, supervision, methodological design (data)), Dr
Jon Witton and Prof Andrew Randall (two-photon calcium imaging data acquisi-
tion, methodological design (data)), and Dr Marc Goodfellow (supervision). Some
of the work presented here was published as an abstract in the International
Journal of Psychophysiology (Stothart et al., 2016). The author’s contribution
to this chapter includes preprocessing and formal analysis of the data, develop-
ment of the method for network analysis of two-photon calcium data, development
and analysis of the model, formulation of hypotheses and methodological design
(modelling), interpretation of results, visualization of the data, and writing of the
chapter.

3.1 Introduction

In the previous chapter, dynamics of single cells within a cortical slice were stud-
ied in an animal model of dementia. However, the cerebral cortex of the mouse
contains 22 million neurons (Erd et al., 2018), which is scaled up to 16 billion
cortical neurons in the human brain (Azevedo et al., 2009). These neurons are
synaptically connected to form a complex multi-scaled network (section 1.1; sec-
tion 1.3; Figure 1.1). Synaptic connectivity between neurons is known to be cru-
cial for cognitive processing (Morrison and Baxter, 2012), allowing for the func-
tional integration of brain regions, forming spatially distributed networks related
to cognitive functioning (Britz et al., 2010; Reineberg et al., 2018). The discon-
nection hypothesis (section 1.3; chapter 4; Delbeuck et al. (2003)) proposes that
the symptoms of dementia arise due to functional and structural disconnection
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between brain regions such that different processing systems of the brain can no
longer integrate. It is therefore of crucial importance for the development of treat-
ments and therapies for dementia to study neuronal network dynamics as well as
single cell dynamics.

In humans, there is much evidence for the disconnection hypothesis on the
macro-scale, including structural (Rose et al., 2000; Mito et al., 2018) and func-
tional (Stam et al., 2009; Babiloni et al., 2016; Badhwar et al., 2017; Cope et al.,
2018) neuroimaging. This is discussed in greater detail in chapter 4. Local synap-
tic loss has also been observed in people with dementia and animal models of
dementia related pathologies (Davies et al., 1987; Selkoe, 2002). Computational
modelling has suggested that alterations to the degree of local coupling can to
some extent explain the breakdown of macro-scale functional networks (Dermitas
et al., 2017), so to fully understand the mechanisms by which integration between
systems of the brain is impaired in AD it is crucial to study networks at multiple
spatial scales.

The low spatial resolution of most non-invasive functional neuroimaging tech-
niques (reviewed in Table 1.1), means animal models of dementia are crucial if
local networks of neurons are to be directly imaged. In this chapter, we study a
transgenic mouse model expressing a mutant form of the CHMPZ2B gene (Ghazi-
Noori et al., 2012), which encodes the charged multivesicular body protein 2b
(CHMP2B). CHMP2B is a protein that plays a crucial role in regulating synaptic
function in the brain (Chassefeyre et al., 2015). As a core subunit of the enso-
somal sorting complex required for transport-Ill (ESCRT-1II) (Ghazi-Noori et al.,
2012), the primary role of CHMPZ2B is in transport of proteins to lysosomes dur-
ing the process of autophagy (Rusten and Stenmark, 2009; Ghazi-Noori et al.,
2012). CHMP2B proteins form clusters around the dendrites of neurons in the
brain (Chassefeyre et al., 2015), and are believed to regulate many aspects of
synaptic function including synaptic morphology, density, plasticity and electro-
physiology (Chassefeyre et al., 2015).

Mutations to the CHMPZ2B gene have been identified in patients living with
neurodegenerative disorders such as frontotemporal dementia (FTD) (Skibinski
et al., 2005; Isaacs et al., 2011; Cruts et al., 2012), ALS (Cox et al., 2010), and
Alzheimer’s disease (Hooli et al., 2014). One particular mutation found in people
with FTD occurs due to mis-splicing in the sixth splicing site, resulting in intron 5
(+201 bp) being retained (Skibinski et al., 2005). Mouse models expressing mu-
tant human CHMP2B™°™ have shown progressive local and long-range synaptic
degeneration (Ghazi-Noori et al., 2012; Gascon et al., 2014) which are believed
to contribute to behavioural and motor deficits reminsicent of those seen in FTD
or ALS (Gascon et al., 2014; Vernay et al., 2016; Clayton et al., 2017). Therefore
the CHMP2B™™ model is suitable to study functional connectivity on the local
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and whole-brain scales in the context of cognitive impairment in dementia due to
synaptic deficiencies.

In this chapter, we study functional connectivity between neurons in the brain
of CHMP2B™™ animals on both the local and whole brain scales in vivo. To
test whether there exist impairments to synaptic communication between neu-
rons within a local neighbourhood, we quantify synchronous neuronal activation
in spontaneous two-photon calcium imaging data (Stosiek et al., 2003) recorded
from the whisker barrel cortex during sedation' to construct a local scale func-
tional network. To additionally test for impairments in long range communication
between regions of the brain, synchronous neuronal oscillations in cortical in-
tracranial skull-screw electroencephalogram (EEG)? are quantified. Finally, to try
to understand whether there exists an interplay between functional networks on
different spatial scales, we use a computational model of the mouse brain based
on the Allen Mouse Brain Atlas (Lein et al., 2007) using a tractography derived
connectome (Wook Oh et al., 2014) to control global coupling and which contains
a local coupling parameter (sections 1.6-1.7).

3.2 Materials and methods

3.2.1 Experimental methods

All experiments and work described in section 3.2.1 were performed externally
by collaborators™2. Procedures were performed in accordance with the Animals
(Scientific Procedures) Act 1986 and EU directive 2010/63/EU, and were subject
to internal ethical reviews. Transgenic animals were bred at the University College
London Institute of Neurology. EEG experiments were performed at the Univer-
sity of Exeter Medical School. Two-photon calcium imaging experiments were
performed at the University of Bristol School of Physiology and Pharmacology.
Experimental procedures are outlined below.

Two-photon calcium imaging

Surgery was performed on 4 male transgenic CHMP2B™°™ and 4 male WT lit-
termates aged 12-13 months. A virus containing the DNA for the genetically en-
coded flourescent calcium indicator GCaMP6s (Chen et al., 2013) was injected
into layer 2/3 of the right whisker barrel cortex, and a glass cranial window im-
planted (Holtmaat et al., 2009). Following a four week post-surgical recovery,

'Data acquisition performed by Dr Jon Witton at the University of Bristol School of Physiology,
Pharmacology, and Neuroscience
2Data acquisition performed by Dr Jon Brown at the University of Exeter Medical School
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widefield imaging was used to locate the whisker barrel cortex based on floures-
cence in response to whisker stimulation, and the identified region tagged for
two-photon imaging. A total of 11 WT and 9 CHMP2B™*°™ cortices were identi-
fied and imaged.

Immediately following the identification of a barrel cortex, two-photon calcium
imaging proceeded. Spontaneous GCaMP6s signals were recorded for 520s
sampled at 8 Hz. Regions of interest (ROIs) were identified similar to previous
methods (Smith and Hausser, 2010), and a flourescent time series calculated by
averaging the time series of all pixels in the ROI, and was corrected for neuropil
flourescence (Chen et al., 2013). The relative neuronal flourescence time series
AF/F was calculated (Dombeck et al., 2009).

Transients were identified using a template matching algorithm (Clements and
Bekkers, 1997), in which the template was fit from the average of approximately
300 visually identified transients. Inactive neurons (time series not containing a
transient) were removed.

EEG experiment

Eight microscrews were surgically implanted into the skulls of 6 male transgenic
CHMP2B™°"™ mice and 4 male WT littermates aged 11-12 months. Microscrews
were placed bilaterally above the primary motor cortex (M1; stereotaxic coordi-
nates ML + 1.3, AP +1.5 mm), primary somatosensory cortex (S1; ML + 2.2,
AP -0.9 mm), primary visual cortex (V1; ML + 2.2, AP -3.2 mm), and cerebel-
lum (ML + 1.9, AP -6.0 mm). Following a one week, postsurgical recovery, EEG
recordings were taken via the Neuralynx digital recording system, referenced to
the channel in the right cerebellum, lowpass filtered at 400 Hz and sampled at a
rate of 1 kHz. Two LEDs were recorded (sampled at 25 Hz) to track motion of the
animals.

Animals were subject to a 12 hour light, 12 hour dark cycle. During light
periods, animals were placed in their home cage with lid removed and allowed
to move freely. EEG was recorded for up to 60 minutes. Three 20s artifact free
epochs per subject were chosen in which the mouse was stationary and assumed
to be sleeping.

3.2.2 Two-photon calcium imaging analysis

Previous studies have used zero-lag correlation on the raw AF'/F traces to con-
struct functional networks from two photon calcium imaging data (Dombeck et al.,
2009; Goncalves et al., 2013). However, correlation between raw AF/F traces is
affected by a number of factors unrelated to synchrony between the firing times of
the neurons. These factors include low signal-to-noise ratio (Litcke et al., 2013),
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periods in which neither neuron is firing which are neither indicative of synchrony
or asynchrony between sparely firing neurons, and different cells within an ani-
mal potentially having slightly different calcium rise and decay times. Spike train
synchrony methods avoid these issues but assume there is no information given
within the spike itself (Kreuz et al., 2007), and hence these are unsuitable since
the amplitude of transients is modulated by bursts of action potentials (Chen et al.,
2013).

To avoid these issues, the method outlined in Figure 3.1 was used to con-
struct functional networks. Data was mathematically reconstructed into a suitable
format for correlation analysis. A template matching algorithm (Clements and
Bekkers, 1997) was used to extract spike trains of transient onsets from the data®
(Figure 3.1A). Each calcium event, intiated at time ¢,, was modelled as an expo-
nential rise and decay (Clements and Bekkers, 1997; Lutcke et al., 2013),

AF/F = AH(t — ty)(1 — e~ t-t0)/mr)=(t=t)/ma (3.1)

where A is the transient amplitude, H (t) is the Heaviside function, and 7, and 7,
are rise and decay time constants. Then the reconstructed trace is

N
AFJF =Y AH(t —t;)(1 — e U/m)emt=t/m, (3.2)
=1
where N is the number of spikes in the extracted spike train, A; is the amplitude
of the ith transient (calculated as the best fit for the model at each transient), and
t; is the onset time of the ith transient. Figure 3.1B shows that the reconstructed
traces mostly perform well, however the primary limitation to reconstruction is the
spike time extraction algorithm as some transients were missed (e.g. cell 3 in
Figure 3.1B).

To calculate correlation between a pair of reconstructed traces, we first re-
moved periods of inactivity from the traces (Figure 3.1C-D). Windows of activity
were defined as regions in which one or both cells were ‘spiking’; that is, from the
onset of a transient until the trace had decayed to 1% of its amplitude. Periods
of inactivity were defined as all time points that do not fall within a window of ac-
tivity for one or both cells. Finally, we set the traces to unit variance. Correlation
between the resulting traces x; and x; was calculated as

o Z; - .flfj
Cij W (3.3)

Connections were tested for significance through the generation of 99 multi-
variate shift surrogate data sets. Surrogate functional networks were constructed

3Spike time extraction performed by Dr Jon Witton
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Figure 3.1: Method of calculating synchrony between calcium transients. (A)
Spike times were extracted from the data using a template matching algorithm.
(B) A mathematical model was used to reconstruct the data, removing noise and
effects of irregularly shaped transients. (C-D) When calculating pairwise corre-
lation between two time series, periods of inactivity in both cells were removed.
(C) shows the reconstructed traces before removal, where areas shaded in grey
are those classes as periods of inactivity in both cells, and (D) shows the traces
following removal of periods of inactivity. (E) Networks were constructed by cal-
culating the normalized vector product (correlation without demeaning) between
reconstructed traces. (F) The network was then tested against shift surrogates,
and non-significant edges were removed.
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and edges in the empirical networks tested to 5% significance against those in
surrogate networks. Edges with stronger indirect connections were additionally
set to zero, using the Dijkstra algorithm to identify shortest path lengths be-
tween nodes (Dijkstra, 1959). Example functional networks constructed using
this method are shown in Figure 3.1E-F.

3.2.3 EEG preprocessing and analysis

EEG preprocessing was performed using the Fieldtrip toolbox for EEG/MEG-
analysis, developed at the Donders Institute for Brain, Cognition, and Behaviour
(Oostenveld et al. (2011); http://www.ru.nl/neuroimaging/fieldtrip). Corti-
cal channels over the left and right M1, S1, and V1 cortices were used in the
analysis. To ensure the referencing procedure did not introduce connectivity bias
towards the hemisphere in which the reference electrode was placed, EEG was
re-referenced to both cerebellar channels. Data was bandpass filtered from 1-45
Hz, demeaned, and detrended.

Power spectral analysis was additionally performed using the Fieldtrip toolbox.
Spectra were extracted using a multi-tapered Fourier transform, with tapers con-
structed from discrete prolate spheroidal sequences (Percival and Walden, 1993)
with £0.5 Hz smoothing, but results were consistent for other smoothing boxes.
For each animal, spectra were averaged over the three 20 second epochs. Total
power within a band was calculated as the integral of the spectra within that band.

Functional connectivity analysis was performed with custom written Matlab
scripts. The phase locking factor (PLF) (Lachaux et al., 1999) was calculated
between pairs of channels. To test edges for significance, 99 iterative amplitude
adjusted Fourier transform (iIAAFT) surrogate time series were constructed from
the EEG using a maximum of 10 iterations (Schreiber and Schmitz, 1996) and
PLF networks constructed from these surrogate time series. Edges of the em-
pirical network were tested to 5% significance against the edges of the surrogate
networks. Zero phase lag connections were set to zero to account for spurious
correlations due to common sources. Edges with stronger indirect connections
were additionally set to zero, using the Dijkstra algorithm to identify shortest path
lengths between nodes (Dijkstra, 1959). For each animal, functional networks
were averaged over the three 20 second epochs.

3.2.4 Computational model of the mouse brain

To test hypotheses relating macro-scale neuronal dynamics to local connectivity,
we used a phenomenological model of neuronal oscillations based on the normal
form of the Hopf bifurcation (described in detail in section 1.6), which has previ-
ously been used to model slow wave sleep oscillations in humans (Deco et al.,
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Figure 3.2: Regions of interest used in simulations of mouse whole brain
dynamics. Each dot corresponds to the centroid of a region of interest used in
the simulations of mouse whole brain dynamics. Black dots only have indirect
influence on the EEG through connectivity, whilst dynamics at the red dots are
taken as EEG electrodes.

2017Db) and test changes in both local (Dermitas et al., 2017) and global dynamics
(Dermitas et al., 2017; Tait et al., in press) in Alzheimer’s disease patients.

Connectivity between regions of the brain is given by GK;;, where G is a global
coupling constant and K; gives the weight of connections between regions ¢ and
j. Whilst only a small number of regions of the brain were recorded by the EEG, it
is likely that a broader range of brain regions play a role in the generation of orga-
nized neuronal oscillations during sleep/sedation (Neske, 2016). For this reason,
we perform large scale simulations of the whole mouse brain, consisting of 213
regions per hemisphere defined by the Allen Mouse Brain Atlas (Lein et al., 2007)
using an open access connectome derived from tractography data (Wook Oh
et al., 2014) for the coupling matrix K;.

Intrinsic oscillator frequencies were uniformly distributed within the 1-4 Hz
delta band, which is the dominant rhythm during sleep in mice (Lee et al., 2004)
and was the dominant frequency in our data. To explore the effects of local
and global coupling, parameters a and G were varied respectively. Simulated
EEG was taken as the simulation output of the nodes most closely corresponding
anatomically to the regions in which EEG electrodes were implanted, referenced
to the output of the cerebellar nodes anatomically corresponding to the empirical
reference electrodes. Figure 3.2 shows the centroids of each simulated region as
defined according to the Allen Mouse Brain Atlas (Lein et al., 2007), with red dots
showing the regions taken as EEG.

3.2.5 Statistical analysis

Due to the small sample sizes in this study, non-parametric tests were used un-
less otherwise stated. All values are reported as mean + standard error on the
mean (SEM). Pairwise comparisons were performed using the Mann-Whitney U
test. When correction for multiple hypotheses is reported in the results, correction
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was performed using Bonferroni corrections. The choice of Bonferroni correction
was motivated by the small number of hypotheses being tested (usually 6 corre-
sponding to 6 electrodes); for numbers of hypothesis of the order 10, Bonferroni
correction has similar statistical power as false discovery rate measures and has
lower likelihood of false positives (Krzywinski and Altman, 2014).

3.3 Results

3.3.1 Two-photon calcium imaging analysis

To explore whether the local integration of neurons in the brain was impaired
in CHMP2B™°"™ spontaneous neuronal activity in the whisker barrel cortex of
WT and CHMP2B™°™ transgenic mice was recorded using two-photon calcium
imaging. There were significantly fewer cells in the CHMP2B™°"™ animals than
the WT animals (p = 0.0044, WT 67.0 + 4.2, TG 45.2 4+ 4.5), and whilst there
was additonally significantly fewer active cells in the CHMP2B™°™ animals (p =
0.0155, WT 41.0 + 3.2, range 20 — 61; TG 25.6 &+ 4.4, range 11 — 51), there was no
change in the fraction of cells which were active (p = 0.3744, WT 62.0 +4.4%, TG
54.1 + 5.3%).

To quantify alterations in neuronal activity in CHMP2B™™ only the active
cells were included in the analysis. In these cells, there were no differences in
frequency of calcium events (p = 0.9717, WT 0.55 + 0.04 events per minute, TG
0.55 + 0.07 events per minute). Functional networks were calculated using the
method outlined in section 3.2.2 (Figure 3.3A-B). Synchrony of calcium dynamics
between neurons was increased in CHMP2B™°"™ animals, quantified by mean
degree normalized by the number of active cells (p = 0.0302, WT 0.046 + 0.005,
TG 0.074 4+ 0.012, Figure 3.3C).

To test whether topological reorganization of the network, for example through
synaptic plasticity, might be related to this increased mean degree in CHMP2B™"°"™
animals, we binarized the functional network by setting all non-zero edges equal
to one and calculated the synchronizability as the Laplacian eigenratio A\s/Ayx
of this adjacency matrix (Pecora and Carroll, 1998; Tahaei et al., 2012). Syn-
chronizability significantly increased in CHMP2B™°™ animals (p = 0.0209, WT
0.023 +0.004, TG 0.120 + 0.063, Figure 3.3D).

3.3.2 EEG analysis

We next tested whether there existed alterations to long range integration be-
tween regions of the brain by analysing cortical skull screw EEG. Power spectra
were calculated for each electrode, shown in Figure 3.4. All electrodes demon-
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Figure 3.3: Analysis of two photon calcium imaging data. (A-B) Example
representitative WT (A) and CHMP2B™°" (B) functional networks. Networks with
similar number of cells, mean degree, and synchronizability to their respective
group means are shown. (C) Mean degree, normalized by the number of cells
in the network, was significantly increased in CHMP2B™°" TG animals. (D)
Synchronizability, quantified by the Laplacian eigenratio \;/Ay of the binarized
adjacency matrix, significantly increased in CHMP2B™°" animals. Stars denote
significance (p < 0.05).

strated dominant rhythms in the 1-4 Hz delta band, which is known to be the dom-
inant neuronal rhythm during sleep. Visual inspection demonstrates that frontal
electrodes, namely those above the primary motor (M1) and somatosensory (S1)
cortices, demonstrated a reduced power in these slow rhythms, whilst no signifi-
cant differences were observed in electrodes above the visual cortex (V1). Spatial
distributions of delta power are shown in Figure 3.5A, demonstrating reductions
in power predominantly in the frontal cortex. To test whether this reduced frontal
lobe delta power was significant, spectra for the M1 and S1 electrodes in both
hemispheres were averaged, and total delta power was calculated from this aver-
age spectrum. Total delta power was found to significantly reduce in the TG ani-
mals (p = 0.0381, WT 37.5 £ 3.2 uV?, TG 22.5 & 2.6 uV?). The spectrum for each
electrode was subsequently tested, identifying significant reductions (p < 0.05)
in total delta power for the M1., M1y, and S1y electrodes (where subscript L/R
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Figure 3.4: Power spectral analysis of CHMP2B™°"™ EEG data. Channelwise
power spectrum between 1-15 Hz. Figure titles show the location of the electrode,
with subscripts L/R for left/right hemispheres respectively. The vertical dotted blue
line shows 4 Hz, so power to the left of this line demonstrates the delta band.
Black show wild-type (WT) spectra, whilst red show CHMP2B™°™ transgenic
spectra (TG). Shaded regions are standard error of the mean.

denotes left/right hemisphere). Following Bonferroni post-correction for multiple
hypotheses, only M1 remained significant (corrected p-value 0.038).

To test whether functional connectivity between regions was altered in this
dominant delta band, EEG was bandpass filtered into the 1-4 Hz band and phase
locking factor (PLF) was used to construct functional networks, shown for each
animal in Figure 3.6. The functional network structure was stereotypical for the
four WT animals, with high phase locking between frontal regions and less well
connected visual regions, particularly V1g. In CHMP2B™°™ transgenic animals,
however, there was no stereotypical structure and frontal connectivity appeared
to be greatly reduced. To test this hypothesis, the mean degree of the functional
networks were calculated and found to significantly decrease (p = 0.0381, WT
2.94 +0.15, TG 2.52 £ 0.12).

As with power, both frontal M1 channels demonstrated reduced degree (Fig-
ure 3.5B; Left M1: p = 0.0095, WT 2.90+0.15, TG 2.01+0.26; Right M1: p = 0.0190,
WT 3.38+0.13, TG 2.83 +0.24). Furthermore, all remaining left hemisphere chan-
nels were found to reduce in degree (Left S1: p = 0.0095, WT 3.29 + 0.09, TG
2.85 +0.11; Left V1: p = 0.0095, WT 3.08 + 0.10, TG 2.53 + 0.14). Whilst none of
these values were significant following Bonferroni correction, this is likely a result
of low sample size and the low statistical power of Bonferroni correction since
trends were common over all left hemisphere and frontal channels.
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Figure 3.5: Spatial distributions of power and functional network degree in
the CHMP2B™™°" data. Shown in circles are the locations of the EEG elec-
trodes. For all plots, colour denotes true value shown in the colour bars, whilst
size of the circle shows absolute value as a fraction of the maximum in the sub-
figure. (A) Left - delta power, averaged over WT animals. Middle - delta power,
averaged over TG animals. Right - Cohen’s d showing effect sizes of differences
in delta power between WT and TG animals. (B) As for A, but with degree of the
functional network.

3.3.3 Computational modelling

To test whether there is a relationship between the degree of local coupling and
long range coupling, a computational model of the mouse brain was used, in
which a tractography derived connectome (Wook Oh et al., 2014) was used to
couple regions of the brain which were simulated by a stochastic oscillator (sec-
tion 3.2.4). As described in section 1.6, the parameter a was used as a proxy
for local connectivity and the parameter G was used as a proxy for the degree of
global coupling in the model.

Figure 3.7A-B shows the results of a two parameter sweep of G and a. For a >
0, the decrease in MD of the macro-scale functional networks in CHMP2B™"°"
(moving from regions of white to regions of red in Figure 3.7A-B) can be fully
explained by an increase in parameter a. An example of such an alteration is
demonstrated by path P1 in Figure 3.7B, where the start point of P1 represents
realistic WT MD and the end point represents realistic CHMP2B™°" MD. How-
ever, for all « > 0 the simulated time series have a delta band signal-to-noise
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Figure 3.6: Functional networks derived from the CHMP2B™"°™ EEG data
PLF networks for each animal from which EEG was recorded. (A) Wild-type an-
imals demonstrated a stereotypical network structure, in which there was high
frontal (M1 and S1) connectivity. (B) This stereotypical structure was lost in the
CHMP2B™""transgenic animals.

ratio (8SNR; quantified as the ratio of variance of the delta band filtered signal to
the variance of the broadband signal) approximately equal to one (Figure 3.7C).
In the empirical data, the EEG has a 6SNR of 0.41 + 0.02 (averaged over both
WT and TG data), with no significant differences between WT and TG (p = 0.48,
Mann-Whitney U test). Therefore the parameter regime underpinning path P1
results in unrealistic dynamics, as can be seen by comparing example empirical
time series (Figure 3.7D) to simulated time series (Figure 3.7E).

An alternative possible path through parameter space explaining the reduced
MD in CHMP2B™*°"™ coinciding with increased local coupling is given by path P2
in Figure 3.7B. The start point of P2 represents realistic WT MD with realistic
dSNR. At the point in parameter space, increasing a results in an increase in MD,
meaning that the increase in local coupling in CHMP2B™°™ does not explain the
reduced MD seen in the data. However, it is known that in CHMP2B™™™ animals,
there are severe white matter impairments (Ghazi-Noori et al., 2012), which would
correspond to a drop in G. Therefore path P2 shows a path involving a drop in
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Figure 3.7: Simulations of the mouse brain and EEG experiment. (A) Effects
of varying global coupling G and local coupling a in the model on the mean degree
of the functional networks in the simulated EEG. Regions of white in the model are
where the mean degree of the simulated functional network (MD) is approximately
equal to the mean degree of the empirical average WT functional connectivity
(MDwr). (B) The figure in A, smoothed with a Gaussian filter to reduce the effects
of noise. P1 and P2 are potential paths through parameter space explaining
alterations to MD in CHMP2B™™°" (see text), which should feature an increase in
a (due to increased local coupling) and possibly a decrease in G (due to known
white matter deficits in CHMP2B™*°"™), and should move from white to pale red.
(C) Delta band SNR, quantified as the ratio of variance of the filtered (delta band)
signal to variance of the broadband signal. SNRs close to those of the data
are shown in white. (D) Representative empirical EEG data and the average
empirical functional networks. In grey is the original signal, whilst black shows the
1-4 Hz filtered signal. (E) Simulated EEG data and resulting simulated functional
connectivity for path P1 in B. (F) Simulated EEG data and functional connectivity
for path P2 in B. In D-F, time series and functional networks are shown with the
same order of electrodes as in Figure 3.6.
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G and an increase in a, resulting in realistic CHMP2B™°" MD, with 8SNR in a
realistic parameter regime. Examples of the simulated time series and functional
networks for P2 are shown in Figure 3.7F.

3.4 Discussion

This chapter studied perturbations to multi-scale functional networks in a trans-
genic animal model expressing a mutant form of the CHMP2B gene (Skibinski
et al., 2005; Lindquist et al., 2008; Ghazi-Noori et al., 2012) which exhibits local
and long range synaptic impairments (Ghazi-Noori et al., 2012; Gascon et al.,
2014) and behavioural deficits reminiscient of those seen in dementias (Gas-
con et al., 2014; Vernay et al., 2016; Clayton et al., 2017). To study functional
connectivity between neurons within a region of the brain (local FC), we anal-
ysed data from experiments imaging calcium dynamics of networks of neurons in
layer Il of the whisker barrel cortex under sedation and light anaesthesia. Func-
tional networks demonstrated significantly higher synchrony and a topology with
greater synchronizability in the transgenic CHMP2B™°"™ (TG) animals than the
non-transgenic wild-type (WT) animals. A potential explanation for these func-
tional network differences at the cellular scale may be alterations to the structure
of the excitatory network, since the non-mutant form of the CHMPZ2B gene is in-
volved in the maintence of excitatory synapses, and regulation of post-synaptic
excitatory dendritic morphology, number of synapses, and plasticity of excitatory
PSC amplitudes via LTP (Chassefeyre et al., 2015). Furthermore, in a transgenic
model expressing CHMP2B™°"™  excitatory (but not inhibitory) post-synaptic den-
sity was found to increase (Gascon et al., 2014). Particularly, topological reorga-
nization of the structural network through synaptic plasticity may explain both the
alterations to both mean degree and topology of the functional network.

To study whole brain functional connectivity, we analysed data from skull-
screw EEG recorded from six locations on the cortex during sleep. The domi-
nant activity observed in the EEG was in the delta (1-4 Hz) band, consistent with
past studies of EEG during sleep in mice (Lee et al., 2004). Reduced power of
delta oscillations was observed in the frontal channels in the TG animals. This
reduction in power is potentially a result of neuronal loss, as spatial distribution of
these changes is consistent with reduced cortical volume due to neuronal loss in
the CHMP2B™™™ model (Clayton et al., 2017).

To avoid amplitude effects due to heterogeneous loss of spectral power when
calculating functional connectivity between regions of the brain, phase locking
factor was used to quantify synchrony of delta oscillations (Lachaux et al., 1999).
Functional connectivity in this long range network was found to reduce, partic-
ularly in frontal and left hemispherical channels. Severe pathologies related to
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axonal degeneration have previously been reported in the corpus callosum and
other white matter tracts in the CHMP2B™°™ model, which is a likely mechanism
underpinning this impairment to long range functional connectivity.

Computational modelling was used to gain insight into potential interplay be-
tween local and long-range functional connectivity. Using a model of coupled os-
cillators (section 1.7) and a realistic tractography derived connectome (Wook Oh
et al., 2014), whole brain simulations of mouse delta activity were performed in
which global coupling and local coupling were varied. The model exhibited pa-
rameter regimes in which an increase in local coupling was sufficient to explain
the decrease in mean degree of the whole brain functional networks, but these
regimes gave rise to hypersynchronous delta oscillations which did not reflect the
data. In regimes for which the simulated dynamics more closely matched those
of the data, increases/decreases in local or global connectivity were found to in-
crease/decrease the mean degree of the functional network, which is consistent
with both theoretical and computational results from analyses of multi-scaled cou-
pled oscillator networks (Schmidt et al., 2014). A possible interpretation of these
results is that increases in local coupling may be a compensatory mechanism for
impairments to long-range coupling (or vice versa) to restore global integration
of regions of the brain through functional connectivity. An example path through
parameter space was shown, demonstrating that a severe loss of global coupling,
for example through white matter impairments (Ghazi-Noori et al., 2012), will re-
sult in a severely reduced MD which can be compensated for through an increase
in local coupling. Enhancements of local neuronal circuits through alterations to
neurotransmitters and synaptic plasticity as a compensatory mechanism for net-
work dysfunction in neurodegenerative disorders has in the past been suggested
(Palop et al., 2006; Abuhassan et al., 2014). The increased synchronizability of
the topology of the local networks studied in this chapter suggest that increases
in local connectivity may arise due to topological reorganization of synapses into
a more efficient structure.

A limitation of the model used here was homogeneity - the local coupling pa-
rameter was homogeneous across all nodes of the network, and impairments to
white matter were simulated via a global coupling parameter which altered all
edges homogeneously. This is a potential explanation of why the topology of
the functional network was not significantly altered in our macro-scale simula-
tions of the CHMP2B™™°"™ dynamics compared to the simulations of WT dynam-
ics. Whilst the empirical WT functional networks showed a stereotypical pattern
across all animals, the CHMP2B™°™ animals did not, suggesting that not only
are the synaptic impairments spatially heterogeneous, these alterations are not
homogeneous across animals. More detailed exploration of the parameter space
must be performed to fully model this heterogeneity in alterations to the functional
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network. However, the simulations presented here are sufficient to uncover links
between average synchrony in the local and global functional networks, and how
these change in a rodent model of neurodegeneration.

Whilst no electrophysiological studies have been performed on human pa-
tients living with dementia due to mutations in CHMPZ2B, impaired functional con-
nectivity between regions of the brain has been reported in human disorders with
related phenotypes such as frontotemporal dementia (Pijnenburg et al., 2008) and
Alzheimer’s disease (Delbeuck et al., 2003) . Additionally, our results are similar to
those of Busche et al. (2015a,b), where long range functional disconnection and
increased local functional connectivity was identified in a model of amyloidopa-
thy, one of the primary pathologies in Alzheimer’s disease. These results broadly
suggest a common mechanism among differing dementia aetiologies, and that
whilst the CHMP2B™™™ genotype differs from those of other dementias there are
mechanistic similarities which potentially explains the behavioural similarities of
progressive cognitive impairment.

Through studying the electrophysiological properties of integration between
neurons on both the local and whole brain scales in an animal model expressing
CHMPZ2B mutations (Ghazi-Noori et al., 2012), we have gained insight into mech-
anisms that may underpin neurodegenerative disorders such as frontotemporal
dementia (Skibinski et al., 2005), amyotrophic lateral sclerosis (Cox et al., 2010),
and Alzheimer’s disease (Hooli et al., 2014). We hypothesise that white mat-
ter degeneration in CHMP2B™™ transgenic animals (Ghazi-Noori et al., 2012)
results in functional disconnection between regions of the brain. Increases in
functional connectivity in local networks of neurons, potentially through topologi-
cal reorganization of synapses, may be a compensatory mechanism to enhance
whole brain integration in the presence of axonal degeneration. This hypothe-
sis was supported by computational modelling of the mouse brain. Experimental
testing of these hypotheses is an avenue for future study.
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Chapter 4

Network substrates of cognitive
impairment in Alzheimer’s disease

This chapter is based on the work published in Clinical Neurophysiology as Tait
et al. (in press) in collaboration with Dr George Stothart (data acquisition, con-
ceptualization), Dr Nina Kazanina (data acquisition, conceptualization), Dr Eliz-
abeth Coulthard (clinical interpretation), Dr Jon T Brown (supervision), and Dr
Marc Goodfellow (supervision, conceptualization, methodological design). The
author’s contribution to this chapter includes preprocessing and analysis of the
data, development and analysis of the model, formulation of hypotheses and
methodological design (modelling/analysis), interpretation of the results, visual-
ization of the data, and writing of the chapter.

4.1 Introduction

In the previous chapter we studied a rodent model of neurodegeneration which
exhibits long range synaptic impairments and behavioural alterations reminiscent
of those seen in diseases causing dementia. Whilst the study used a rodent
model of a very rare mutation causing frontotemporal dementia, it demonstrated
that long range synaptic impairment can compromise the ability of distributed neu-
ronal networks in the brain to synchronize (functional connectivity). This mech-
anism potentially underpins the behavioural alterations seen in these animals,
due to the inability of different processing systems in the brain to integrate. In
humans, a prevailing hypothesis is that cognitive impairment in AD is due to sim-
ilar mechanisms of disrupted structural and functional connectivity; known as the
disconnection hypothesis (Delbeuck et al., 2003).

Evidence for the disconnection hypothesis in human studies of AD comes from
a wide range of behavioural, functional, structural, and effective connectivity stud-
ies. Structural imaging methods such as diffusion weighted imaging (DWI) and
diffusion tensor imaging (DTI) have been used to identify reduced white matter
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integrity in AD (Rose et al., 2000; Mito et al., 2018), suggestive of long range
synaptic disconnection. Although structural connectivity provides a substrate for
functional integration, it does not allow for study of dynamic integration of nodes in
brain networks (Honey et al., 2009), and therefore cannot fully explain emergent
spatiotemporal brain dynamics (Tsang et al., 2017). In order to quantify co-activity
between regions of the brain, functional networks can be elucidated from time se-
ries data (section 1.8.2). Disconnection in AD has been identified in functional
networks derived from imaging modalities such as EEG (Babiloni et al., 2016),
MEG (Stam et al., 2009), functional MRI (Badhwar et al., 2017), and PET (Cope
et al., 2018). An advantage of using EEG/MEG is that it is primarily generated by
post-synaptic potentials (Olejniczak, 2006) and is therefore more directly linked to
neuronal activity than other functional imaging modalities such as functional MRl
which tracks haemodynamic response to neuronal activity and thus operates on
a much slower time scale (Crosson et al., 2010). Because of this high temporal
resolution, EEG is able to shed light on disruptions to local dynamics such as
slowing of neuronal oscillations in AD (Brueggen et al., 2017).

To bridge the gap between synchronized neuronal activity and synaptic con-
nectivity, effective connectivity studies combine computational models with both
structural and functional imaging to elucidate how changes in both intrinsic dy-
namics and structural connectivity alter functional networks. In AD, effective con-
nectivity studies have been used to relate structural and functional disconnection
(Dermitas et al., 2017; de Haan et al., 2012b), further supporting the disconnec-
tion hypothesis of AD. However, it is unclear whether observations of functional
disconnection could be explained by alterations to local dynamics, such as ob-
served in people with AD (Brueggen et al., 2017).

Intuitively, disconnection would lead to an impaired ability of brain regions to
exchange information (Uhlhaas and Singer, 2006). However, the exact links be-
tween specific disruptions to connectivity and resulting cognitive deficits of AD
have not been well characterised. Cognitive function can be quantified in demen-
tia clinics via the mini-mental state examination (MMSE) (Folstein et al., 1975).
The MMSE includes tests of cognitive abilities such as spatial and temporal ori-
entation, attention, memory, language, recall, and motor skills, giving scores for
ability in each area. A number of studies have correlated structural and functional
disconnection with cognitive test scores in people with AD, typically focusing on
global network properties and the total MMSE score (Wu et al., 2011; Stam et al.,
2007a; Lo et al., 2010; de Hann et al., 2009). However, MMSE is a broad cog-
nitive screen probing memory, language and visuospatial function, each of which
are thought to depend on distinct neuroanatomical circuitry. A quantitative link
between specific network deficits and individual cognitive domains might yield
more precise information about the mechanisms of cognitive decline in AD, and
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therefore potentially inform treatment.

In this chapter, we study functional connectivity derived from the EEG of peo-
ple with AD and healthy controls, and examine the relationship between network
topology and cognitive ability. We hypothesise that in AD, specific alterations to
functional networks will correlate with impairments in particular cognitive domains
due to disruption of integration between brain areas related to these domains, in
line with the disconnection hypothesis of AD. To test this hypothesis, local and
global properties of the functional networks are quantified and correlated with
MMSE subscores. To provide validation that changes to functional networks are a
result of alterations to the structural connectome and not distributed heterogene-
ity in the intrinsic node dynamics, we use a computational model which reflects
realistic changes in the frequency spectrum observed in the data. Our results
give crucial insight into the role of functional and effective disconnection in dete-
rioration of ability in specific cognitive domains in AD. Since subjects in the study
were free from medication, our results provide valuable diagnostic biomarkers of
AD that are not attributable to effects of medication.

4.2 Materials and methods

4.2.1 EEG acquisition

All data acquisition and work described in section 4.2.1 was performed externally
by collaborators’. All appropriate approvals for the procedures were obtained
from the National Research Ethics Service Committee South West Bristol (Ref.
09/H0106/90). Participants provided written informed consent before participat-
ing and were free to withdraw at any time. People with AD were recruited from
memory clinics in the South West of England on a consecutive incident patient
basis. The diagnosis of AD was determined by clinical staff using neurological,
neuroimaging, physical and biochemical examination together with the results of
family interview, neuropsychological and daily living skills assessment accord-
ing to DSM-IV (American Psychiatric Association, 2000) and NINCDS-ADRDA
guidelines (McKhann et al., 1984). All patients were free from any medication
known to affect cognition, e.g. cholinergic medications prescribed to treat de-
mentia symptoms, anti-psychotics, anti-depressents, benzodiazepines, Warfarin,
etc. The HOA control group was recruited from the memory clinics’ volunteer
research panels and were in normal general health and had no evidence of a
dementing or other neuropsychological disorders, according to NINCDS-ADRDA
guidelines (McKhann et al., 1984). Exclusion criteria for all groups included poor

'Data was acquired by Dr George Stothart (University of Bath Department of Psychology) and
Dr Nina Kazanina (University of Bristol School of Psychological Science)
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general health or a history of transient ischemic attack or stroke, significant head
injury and any other significant psychological disorder or neurological disease.
Data on subjects is given in Tables 4.1 and 4.2. Resting-state, eyes open EEG
(64 channel) was recorded from all subjects prior to the beginning of a battery of
cognitive tasks. This period, and the subsequent battery of tasks, were consistent
across the two groups. All recordings had an onset time in the period between ap-
proximately 10am and 4pm, with no significant differences in time of day between
groups (range of time of recording onset, reported as hours:minutes after mid-
night: HOA 09:48-16:08, AD 10:05-15:53; p = 0.1434, two sample Kolmogorov-
Smirnov test). A single 20 s epoch of EEG, sampled at 1 kHz, was extracted per
subject.

4.2.2 EEG preprocessing

Independent component analysis was used to remove visual and cardiac arti-
facts. There were no significant differences in the number of artifacts removed
between HOA and AD (HOA: 3.69 + 0.46, range 0-10; AD: 4.09 + 0.42, range
1-8; p = 0.4747, Mann-Whitney U-test). Line noise at 50 Hz was removed and re-
placed by linear interpolation of the power spectrum. Data was bandpass filtered
at 1-200 Hz, demeaned, slow non-physiological trends up to third order polyno-
mials removed, and re-referenced to average. These preprocessing steps were
performed using the Fieldtrip toolbox for EEG/MEG-analysis, developed at the
Donders Institute for Brain, Cognition and Behaviour (Oostenveld et al. (2011);
http://www.ru.nl/neuroimaging/fieldtrip).

4.2.3 Source reconstruction

Source reconstruction was performed using the Fieldtrip toolbox (Oostenveld
et al. (2011); http://www.ru.nl/neuroimaging/fieldtrip). A template 3 layer
boundary element method volume conduction model (Oostenveld et al., 2003)
was used in conjunction with a template cortical source model consisting of 5124
point sources on a canonical cortical surface taken from Statistical Parameter
Mapping 8 (SPM8; https://www.fil.ion.ucl.ac.uk/spm/software/spm8/) and
implemented in Fieldtrip. Use of template models has previously been demon-
strated to perform well compared to individual models derived from MRI (Fuchs
et al., 2002). Dipoles were oriented normal to the surface of the cortical sheet
(Hassan et al., 2014). Figure 4.1 shows the template model.

Exact low resolution brain electromagnetic tomography (eLORETA) was used
to solve the inverse problem and reconstruct source activity at each of the 5124
source points (Pascual-Marqui, 2007, 2009). eLORETA is a linear, regularized,
weighted minimum norm inverse solution with theoretically exact, zero error lo-

112


http://www.ru.nl/neuroimaging/fieldtrip
http://www.ru.nl/neuroimaging/fieldtrip
https://www.fil.ion.ucl.ac.uk/spm/software/spm8/

Materials and methods

HOA AD
Age (+ SEM; years) 76 (+7) 79 (+9)
MMSE (+ SEM) 29 (£1) 23 (£3)
n 26 21
Male 14 8
Female 12 13

Table 4.1: Age, gender, and cognitive data for HOA and AD cohorts

HOA AD P
Orientation to time  4.83 (+ 0.41) 3.19 (+ 1.42) 0.0074
Orientation to place 5.00 (+ 0.00) 4.13 (+ 0.72) 0.0084
Immediate recall 3.00 (+ 0.00) 2.94 (+ 0.25) 0.6098
Serial 7s 483 (+0.41) 3.75(+1.61) 0.1346
World backwards 5.00 (+ 0.00) 4.81 (+ 0.40) 0.2923
Registration recall  2.67 (+ 0.52) 0.44 (+ 0.81) 0.0003
Language 7.83 (£ 0.41) 6.44 (+1.09) 0.0081
Pentagons 1.00 (+ 0.00) 0.81 (+ 0.40) 0.2923

Table 4.2: Mini-mental state exam sub-scores for HOA and AD cohorts. Values
reported are mean + SEM. Additionally, we report (uncorrected) p-values for each

subscore.

Band name Frequency range [Hz]

Relative Power p-value AD vs. HOA

o 1-4 0.6849
0 4-8 0.0187*
a 8-13 0.8052
B 13-30 0.4446
¥ 30-45 0.5310

Table 4.3: Frequency bands used in the analysis. For each band, a Mann Whitney
U test was performed on relative power within that band, testing AD vs HOA (see
section 4.3.1).
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Figure 4.1: Template head model used for source reconstruction. (Top) Tem-
plate cortical surface is shown in grey. Black dots represent source points dis-
tributed along the surface. Red arrows show dipole orientation, normal to the
surface. (Bottom) Template boundary element method volume conduction model.
Black dots are the same as those shown in the top row of figures, representing
source points. Pink (inner layer) is conductive brain tissue. Dark grey (middle
layer) is skull tissue, and light grey (outer layer) is scalp tissue.

calization even in the presence of structured biological or measurement noise
(Pascual-Marqui, 2007), is suited to the study of whole brain phase synchroniza-
tion (Pascual-Marqui et al., 2011; Finger et al., 2016), and the LORETA family
of solutions have been validated against numerous imaging modalities (Dierks
et al., 2000; Vitacco et al., 2002; Mulert et al., 2004; Pizzagalli et al., 2004; Zum-
steg et al., 2005, 2006; Olbrich et al., 2009) and simulations (Pascual-Marqui
et al., 2011; Finger et al., 2016).

4.2.4 Power spectral analysis

All power spectra were extracted by computing the Fourier transform of the data.
The five frequency bands of interest are given in Table 4.3 (Buzsaki, 2006), whilst
the broadband was defined as 1-45 Hz as this encompasses the range of these
bands. Total power in a band [fi, fo] was computed as >, . P(f)Af, where
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ROI N (right) N (left)
Frontal Lobe

Superior frontal gyrus 174 168
Medial frontal gyrus 188 158
Inferior frontal gyrus 76 77
Orbital gyrus 171 160
Precentral gyrus 168 133
Paracentral gyrus 37 40
Temporal Lobe

Superior temporal gyrus 142 85
Middle temporal gyrus 71 91
Inferior temporal gyrus 90 87
Fusiform gyrus 108 102
Parahippocampal gyrus 96 91
Posterior superior temporal sulcus 40 34
Parietal Lobe

Superior parietal lobule 107 100
Inferior parietal lobule 285 301
Precuneus 116 126
Postcentral gyrus 152 131
Occipital Lobe

Medioventral occipital cortex 125 168
Lateral occipital cortex 132 196
Others

Insular gyrus 86 89
Cingulate gyrus 199 224

Table 4.4: ROls for parcellation of source data. N is the number of source points
from the 5124 original cortical sources within the ROI, and the label left/right
represents hemisphere.

P(f) is the power at frequency f and Af is the frequency resolution of the data.
The relative power spectrum (Wang et al., 2015) is defined as the power spectrum
normalized by total broadband power and acts as a probability distribution over
frequencies, i.e. the relative power at a given frequency is the contribution of that
frequency to the overall power.

In order to calculate the peak frequency of a spectrum P(f) in a band f €
[f1, [2], the spectrum was smoothed with a moving average filter of order 1 Hz
(20 frequency points in this data). Peaks of the spectrum with widths at half
prominence greater than 0.5 Hz were then extracted. These steps reduced the
likelihood that peaks were due to noise in the spectrum. The peak frequency
was then the extracted peak with maximum amplitude within the band of interest
(Klimesch, 1999).
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4.2.5 Functional connectivity analysis

To build functional networks, source reconstructed data was parcellated into 40
regions of interest (ROIs) based on the Brainnetome atlas (Fan et al. (2016);
http://atlas.brainnetome.org/). Alist of ROIs is given in Table 4.4. The Brain-
netome atlas contains 48 regions of the brain; however, source points were re-
stricted to the cortical surface and hence the 8 subcortical nuclei (amygdala, hip-
pocampus, basal ganglia, and thalamus in the left and right hemispheres) were
omitted.

Parcellation was performed by taking the first principal component of all source
points within a given ROI in order to construct a single time series for that ROI
(Hassan and Wendling, 2018). For eLORETA solutions, which constrain spatial
smoothness and are low resolution, the activity of local voxels is highly correlated.
The time course of the first principal component of all voxels in the ROl is a single
time series whose value at each time point is minimally different to the activity of
all voxels, i.e. it maximises the spatial variance explained. Functional networks
were constructed by calculating the phase locking factor (PLF) (Lachaux et al.
(1999); Equation 1.23) between pairs of ROI time series. PLF was calculated
using custom written routines using MATLAB R2017b (www.mathworks.com).

To test edges against the null hypothesis that functional connections are due
only to power spectral composition and distribution, each edge was tested to
5% significance vs 99 iterative amplitude adjusted Fourier transform surrogates
(Schreiber and Schmitz, 1996). Due to the low resolution nature of eLORETA and
therefore the potential for source leakage, PLF values with zero phase lag con-
nection were set to zero (section 1.8.2). Furthermore, spurious indirect functional
connections may arise due to strong indirect connections. For example, if node
A strongly influences both node B and node C, we might observe a functional
connection between nodes B and C due to common drive. Therefore, edges be-
tween pairs of nodes for which there existed a shorter indirect path were set to
zero (Schmidt et al., 2014). The shortest path between nodes was calculated us-
ing the Dijkstra algorithm (Dijkstra, 1959), where the symmetric, direct distance
between nodes i and j is given by 1/¢;;.

Graph theoretical measures outlined in section 1.8.3 were used to quantify
statistical properties of the functional network structure.

4.2.6 Computational model

To model whole brain networks, we used the phenomenological Hopf model
based on that of (Dermitas et al., 2017) described in sections 1.6 and 1.7. The
dynamics of each of the 40 ROls described in Table 4.4 was described by Equa-
tion 1.20. Here, we set 0 = 0.02 and a = —0.05 for all nodes in line with Dermitas
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et al. (2017), as these values were found to give the best fit to empirical functional
connectivity matrices.

We optimized the effective connectivity matrix K such that the simulated func-
tional connectivity recreated target empirical functional connectivity using a sim-
ple procedure based on that of Dermitas et al. (2017). Our target empirical func-
tional connectivity matrix was the median of all HOA functional connectivity ma-
trices. The optimization was performed by setting the natural frequency for each
node, i, (w;) to the corresponding median peak frequency for each ROl in HOA
subjects. The effective connectivity was initialized with K;; = 1 if there exists
some anatomical connection between ROlIs ¢ and j and K;; = 0 otherwise, based
on template structural imaging data from the Brainnetome atlas (Fan et al. (2016);
http://atlas.brainnetome.org/). An iterative algorithm was used to optimize
the weights on this matrix, where the effective connectivity at iteration n is given
by

Kij[n] = Kij[n — 1] + O.Q(C'fjmp - cf]'m[n —1]), (4.1)
where ¢ is the target empirical functional connectivity, whilst ¢§™[n] is the sim-

ulated functional connectivity at iteration n.

To choose an optimum matrix K, an error function was defined as Error[n] =
1 —r(c5™[n], c®™P), where r(A, B) is the correlation of the edges of functional con-
nectivity matrices A and B. Due to the stochastic nature of the Hopf simulations
resulting in noise on the error, instead of choosing the iteration with minimum er-
ror as optimum (Dermitas et al., 2017), we apply a moving average filter of order
25 iterations to the error function and select the minimum of this. Effective con-
nectivity is chosen as the mean effective connectivity of the 25 iterations averaged
over at the minimum.

During all subject specific simulations, the effective connectivity matrix re-
mained at this value unless otherwise stated. Natural frequencies of the os-
cillators were the individual subject’s peak power spectral frequencies. In sim-
ulations for which global connectivity G was optimized, Matlab’s fzero function
(https://www.mathworks.com/help/matlab/ref/fzero.html) was used with the
difference between the empirical and simulated mean degrees as the error func-
tion.

4.2.7 Statistical analysis

All p-values reported here were computed using the Mann-Whitney U-test, which
is non-parametric and therefore makes no assumptions about the distribution of
the data. Families of tests were corrected for multiple hypotheses using the Bon-
ferroni correction - specifically, p-values were multiplied by the number of hypothe-
ses being corrected for. Significant results were those with Bonferroni adjusted
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p-values less than 0.05. Effect sizes for the Mann-Whitney U-test are given by the
rank biserial correlation (Cureton, 1956; Wendt, 1972), which is equivalent to the
Mann-Whitney U statistic normalized between zero and one, given by

2U

b
ning

U=1- (4.2)
where U is the rank biserial correlation, U is the U-statistic, and n, is the number
of subjects in cohort i. To help interpret this measure, we can consider an alter-
native (but equivalent) formulation of rank biserial correlation. If we make some
hypothesis on the statistic being tested (e.g. the statistic will be larger for HOA
than AD), then take all pairs of AD and HOA subijects, rank biserial correlation is
the absolute value of the fraction of pairs that support the hypothesis (in our ex-
ample, pairs where the statistic is larger for the HOA subject than the AD subject)
minus the fraction that are against the hypothesis (pairs where AD is larger than
HOA). If all pairs support or all pairs are against the hypothesis (large effect size),

U = 1, whilst if an equal number are for and against (no effect size), U = 0.

4.3 Resulis

4.3.1 Global power spectrum and functional connectivity anal-
ysis

As a first step, we aimed to characterise changes in dynamics and functional
networks in people with AD, relative to healthy older adults. To do this, EEG
from HOA and people with AD was projected into source space using eLORETA
and downsampled to 40 ROIs (Table 4.4, section 4.2.3). To investigate potential
slowing of the EEG in people with AD (Strik et al., 1997; Adler et al., 2003; Lindau
et al., 2003; Dauwels et al., 2011; Hatz et al., 2015a; Liu et al., 2016; Wang et al.,
2015; Goossens et al., 2017), we calculated the power spectrum of the EEG for
each subject, averaged over all ROIs. There was no significant difference in total
broadband (1-45 Hz) power between AD and HOA subjects (p = 0.3745). To
explore the contributions of different rhythms to the overall EEG, we calculated
the relative power spectrum averaged over all ROls (Figure 4.2A). It can be seen
that slower frequencies, between around 3 and 10 Hz, are more prominent in the
people with AD than the HOA. Furthermore, faster frequencies (above around 15
Hz) are less prominent in the people with AD, suggesting a slowing of the EEG
in AD. To further quantify these observations, we calculated total relative power
in each of the five classic frequency bands, given in Table 4.3, (Figure 4.2B).
Delta, theta and alpha relative power was found to increase on average in people
with AD, whilst beta and gamma rhythms decreased on average. However, the
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Figure 4.2: Power spectral analysis. (A) Average relative power over all ROls.
The black line is HOA, and the red is AD. Shaded regions are standard error on
the mean. (B) Boxplots of total relative power in each frequency band. Black
boxes are HOA, red is AD. The only significant change in AD is the increase in
the 6 (4-8 Hz) band. (C) Ratio of the within-group mean ¢ relative power in AD vs
HOA for each ROI shows an increase over all ROls. (D) Effect size of increase in
0 relative power for each lobe (see Table 4.4). Frontal and parietal lobes in both
hemispheres were significant to p < 0.05 after Bonferonni adjustment of p-values.
In C and D, views are (from left to right) top down with subject facing towards top
of page, right hemisphere, left hemisphere and from underneath looking up with
subject facing towards top of page.

only significant difference was the increase in theta relative power (6RP) (p =
0.0187; see Table 4.3 for p-values in other bands). For this reason, we focused our
remaining analysis on the theta band. Figure 4.2C-D show spatial distributions
and effect sizes for changes in theta power, suggesting that the observed slowing
of the EEG is predominantly driven by the frontal and parietal lobes.

We extended this analysis into the spatial domain by constructing theta band
functional networks, calculating the phase locking factor (PLF; Equation 1.23)
between the activity of each pair of ROIs. To quantify average synchrony in the
network, mean degree (MD; Rubinov and Sporns (2010); Equation 1.25) was
calculated. To complement this, we used small-worldness (SW; Humphries and
Gurney (2008); Equation 1.33) as a quantification of topological organization of
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Figure 4.3: Global graph theoretical measures for ¢ band networks. In all
cases, black is HOA and red is AD. (A) Mean degree increases significantly in AD.
(B) Small-worldness decreases significantly in AD. A star denotes significance
(Bonferroni corrected p < 0.05).

the networks. MD was found to increase significantly (p = 0.0111) in people with
AD, suggesting the presence of enhanced synchrony on average in AD. However,
SW was found to decrease significantly (p = 0.0318) in people with AD, suggesting
that the topology of the network AD networks are organized less efficiently for
information transfer (Latora and Marchiori, 2001). Figure 4.3 shows boxplots of
each of these measures for HOA vs AD.

4.3.2 Relationships between functional network measures and
cognition

The relationship between specific changes to functional networks in AD and the
phenotype of the disease is not well understood. To investigate this, we calculated
the correlation between spectral and functional network measures and cognitive
test scores. 20 out of the 21 AD subjects we analysed undertook the mini mental
state examination (MMSE), which provides a score out of 30 based on cognitive
tasks (Folstein et al., 1975). Average scores for both the HOA and AD cohorts
are given in Table 4.1.

The Pearson’s correlation between MMSE score and each of the measures
(ARP, MD, SW) was calculated. The only measure that exhibited a significant cor-
relation with MMSE score was SW (Figure 4.4), suggesting that functional net-
work topology is associated with cognitive decline in AD. A full list of correlations
and p-values can be found in Table 4.5.

To develop a deeper understanding of the relationship between functional net-
work topology and cognitive deficits in AD, we tested whether small-worldness
correlates with particular aspects of cognition using the MMSE subscores, which
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Figure 4.4: Correlation between MMSE score and global EEG measures.
Plots of MMSE score against (A) theta band relative power, (B) mean degree,
(C) small-worldness. Each black dot represents a single subject. Blue lines show
linear model fit in the case of significant correlation.

r p
Relative Power -0.1203 0.6133
Mean Degree -0.3150 0.1761

Small-Worldness 0.5921 0.0060*

Table 4.5: Correlations and p-values for power spectral and graph theoretical
measures vs MMSE score.
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Figure 4.5: Correlation between MMSE subscores and small-worldness.
Plots of theta band small-worldness against orientation to time (A), attention by
serial 7s (B), and language (C) for the people with AD. Each black dot repre-
sents a single subject. Blue lines show linear model fit in the case of significant
correlation.

r p
Orientation to time 0.4360 0.0905
Attention 0.3995 0.1252
Language 0.6132 0.0115*

Table 4.6: Correlations and p-values for MMSE subscores vs small-worldness.
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were available for 16 of the 21 people with AD (the missing subscores were due to
some recruiting clinics only provided total MMSE score). Subscores were orien-
tation to time, orientation to place, immediate recall, attention, memory, language,
and drawing overlapping pentagons. Table 4.2 shows subject scores for each of
these subscores. There was almost no variance in the 16 AD subjects for orien-
tation to place, immediate recall, memory, or pentagons; for this reason we ruled
these subscores out of further analysis. We therefore calculated the correlation
of orientation to time, attention (by serial 7s), and language with small-worldness.
Of these three subscores, only language was significantly correlated with small-
worldness, suggesting that changes to the topology of the functional networks in
AD is more predominantly associated with language deficits than attention or ori-
entation to time. Table 4.6 and Figure 4.5 show correlations and p-values of each
of these subscores against small-worldness.

4.3.3 Local topology changes influence small-worldness

In order to add insight into how the pathology of AD relates to behaviour, we
sought to further understand how the changes in small-worldness that are asso-
ciated with language deficits arise in AD. We therefore examined the causes of
the observed changes in small-worldness at the level of nodes of the functional
networks.

Small-worldness is defined as the ratio of clustering coefficient to characteris-
tic path length (Humphries and Gurney, 2008). To understand whether reduced
small-worldness in AD is due to a reduction in clustering coefficient, increased
characteristic path length, or both, we quantified each of these measures for
the networks. Clustering coefficient demonstrated a small but non-significant de-
crease in AD (p = 0.1223), whilst characteristic path length significantly increased
(p = 0.0303), suggesting that changes to small-worldness are primarily driven by
larger path lengths in the functional network. To identify whether this is a global
effect or whether it is driven by certain regions of the brain, we calculated the
closeness centrality for each node, which can be interpreted as a local counter-
part to (inverse) characteristic path length (section 1.8.3). That is, nodes with
small closeness contribute to a larger characteristic path length.

On average, closeness centrality was found to decrease in all ROIs (Fig-
ure 4.6A). To gain understanding at the higher level of organisation of lobes of
the brain, we averaged closeness centrality into eight lobes (left and right frontal,
temporal, parietal, and occipital lobes), and then compared the resulting measure
in AD vs HOA for each lobe, via non-parametric statistical testing (Mann-Whitney
U test). Effect sizes for the Mann-Whitney U test (quantified by the rank bise-
rial correlation (Cureton, 1956; Wendt, 1972)) for each lobe are shown in Fig-
ure 4.6B. After Bonferroni correction for multiple hypotheses, only the closeness
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Figure 4.6: Closeness centrality of ROIs in theta band networks Decreases
in closeness are likely to drive reduced small-worldness in AD. Here, we show (A)
the ratio of within-group mean 6 closeness in AD vs HOA for each ROI shows a
decrease in all ROls, and (B) effect sizes for each lobe. Effect sizes are largest in
the temporal lobes, with the right temporal lobe being significant to p < 0.05 after
Bonferroni adjustment. For the left temporal lobe, p = 0.0579.

Relative Power Degree Closeness

Right Frontal Lobe 0.0307* 0.2521 0.1014
Left Frontal Lobe 0.0150* 0.0138* 0.4224
Right Temporal Lobe 0.7780 0.7441 0.0343*
Left Temporal Lobe 0.1926 0.1143 0.0579
Right Parietal Lobe 0.0206* 0.1076 0.5918
Left Parietal Lobe 0.0118* 0.0579 1.0000
Right Occipital Lobe 0.1539 0.0243* 1.0000
Left Occipital Lobe 0.1539 0.0418* 1.0000

Table 4.7: Bonferroni corrected p-values for local power and graph theoretical
measures.
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of the right temporal lobe is significantly different for AD vs HOA (Bonferroni ad-
justed p = 0.0343). However, the effect size for the left temporal lobe is also high
(Bonferroni adjusted pvalue p = 0.0579), and we note that Bonferroni correction is
highly conservative, carrying increased chance of type Il errors (false negatives)
(Perneger, 1998). Figure 4.6 and Table 4.7 demonstrate that the temporal lobes
both have a much larger effect size than the rest of the brain. We therefore sug-
gest that it is likely that path length increases in both temporal lobes drive the
increased small-worldness in AD.

4.3.4 Modelling the mechanisms of changes to functional con-
nectivity

In order to better understand the dynamic and network mechanisms that underpin
the observed changes to functional connectivity in AD, we used a computational
model to simulate brain activity across the ROls. Figure 4.2C-D demonstrated
heterogeneous slowing of the power spectrum across ROIs in HOA and AD. Since
the distribution of intrinsic frequencies of coupled oscillators plays a vital role in
phase locking (Gambuzza et al., 2016; Stam et al., 2007a; Lowet et al., 2017), we
sought to uncover whether these distributed local power spectral changes alone
could account for the observed changes in functional connectivity. To do this,
a computational model of coupled stochastically driven oscillators (each repre-
senting an ROI) was simulated (see section 4.2.6). In the model, spatially het-
erogeneous alterations to the power spectrum were incorporated via the intrinsic
natural frequencies of the oscillators, which are free parameters of the model.
For each subject, the intrinsic frequency of each oscillator was inferred from the
data by computing the frequency of the power spectral peak in the 6-13 Hz alpha-
theta band for its respective ROI (see section 4.2.6). Coupling between oscillators
was represented by an effective connectivity (EC) matrix. To focus on the con-
sequences of changes to node frequencies, a representative HOA EC was com-
puted using the median natural frequency distribution for HOA for local dynamics
and the median HOA FC as the optimization target (see section 4.2.6). Using this
EC matrix for all subjects, but individual distributions of frequencies across nodes,
we then simulated the model for each subject and examined whether the model
revealed differences in FC across cohorts. This method is outlined in Figure 4.7.

Figure 4.8 shows the simulated networks for all 47 subjects, and Figure 4.9A
shows an analysis of mean degrees for HOA and AD. The mean degree of the
simulated AD networks was significantly larger than in the HOA networks (p =
0.0152), suggesting that power spectral slowing may be responsible for the ob-
served increased mean degree in the AD networks. Furthermore, the spatial
distributions of the alterations in degree largely replicate those seen in the empir-
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Figure 4.7: Modelling methods to explore whether local power spectral dif-
ferences can account for functional network changes in AD. (A) The natural
frequency distribution for each subject was given for each ROI by the frequency
with peak power in the 6-13 Hz band in the data. (B) To generate a representi-
tative HOA EC, the natural frequencies of each ROI were given by their median
value from the HOA subjects. EC was optimized using an iterative algorithm in or-
der to replicate the median HOA FC. (C) For each subject, time series were sim-
ulated using individual natural frequencies and the template EC. Comparisons
were then made between HOA and AD simulations to test whether changes to
local dynamics explain FC differences in the data.
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Figure 4.8: Simulated networks with G = 1. (A) Simulated HOA networks. (B)
Simulated AD networks. For all networks, the underlying structural connectivity
remains the same, with the only difference being the natural frequencies of the
Hopf oscillators adjusted to the peak power spectral frequencies in the data for
their respective ROIs. All networks are plotted on the same colour scale (bottom
right).
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Figure 4.9: Comparisons of HOA and AD in simulated functional networks.
(A) Initially, networks were simulated with the same effective connectivity, with the
only differences between subjects in the model was the natural frequency of the
Hopf oscillators, set to the subject specific power spectral peak frequency. Mean
degree of these networks significantly increased. (B) Global coupling strength in
the networks was then altered such that the mean degree of a given subject’s
simulated network equaled the mean degree of the subject’s empirical network.
G was found to decrease non-significantly. (C) Small worldness does not signif-
icantly decrease in the simulated networks, however, the effect size of the de-
crease is large (p = 0.0507).
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Figure 4.10: Spatial distribution of effect sizes for changes of degree in AD
in the simulated networks are reflective of those in the empirical networks.
(A) Effect sizes for increase in degree in each lobe in the data. (B) Same as A,
but in the simulated networks where the only difference between AD and HOA
are the frequency distributions. The distribution is largely similar, with exception
of a much larger increase in degree in the left temporal lobe in the simulated AD
networks than in the data.

n4a

ical data (Figure 4.10), with an exception of a large increase in degree of the left
temporal lobe not observed in the data. However, the effect size for the increase
in MD was notably larger in simulations than in the data. In order to correct this,
the global coupling constant in the model was adjusted for each subject until the
mean degree of the simulated functional networks matched the mean degree of
the empirical functional networks. Figure 4.11 shows the simulated networks for
all 47 subjects with global coupling adjusted. The resulting estimates of global
coupling strength were smaller in the AD cohort, though not significantly different
from the HOA (Figure 4.9B, HOA =4.124+0.45, AD = 2.91 +£0.53; p = 0.1016). This
supports the disconnection hypothesis of AD, since lower global coupling strength
was required in the AD cohort to recreate the observed differences in FC mean
degree.

In the simulated functional networks, small-worldness was found to decrease,
but not significantly (p = 0.0502), in AD compared to HOA. However, we exam-
ined the spatial distribution of changes to closeness centrality in AD compared
to HOA, and found this did not replicate the subject data. For example, in the
subject data, the largest effect sizes were found in the temporal lobes, whilst
simulated networks exhibited large effect sizes in the right frontal, temporal, and
parietal lobes (Figure 4.12A, Table 4.8). Therefore, we found that changes to the
intrinsic dynamics alone, via the incorporation of the distribution of intrinsic fre-
guencies across nodes, was not sufficient to describe topological changes to the
functional network; particularly increased path lengths in the temporal lobes. This
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Figure 4.11: Simulated networks with G optimized. In these simulations, global
coupling constant G was optimized using Matlab’s fzero function such that the
mean degree of the simulated network matched the mean degree of the empir-
ical network. (A) Simulated HOA networks. (B) Simulated AD networks. For
all networks, the underlying structural connectivity remains the same, with the
only difference being the global coupling strengths and natural frequencies of the
Hopf oscillators adjusted to the peak power spectral frequencies in the data for
their respective ROls.

a=1 a=0.5
Right Frontal Lobe 0.0320* 1.0000
Left Frontal Lobe 0.1814  1.0000
Right Temporal Lobe 0.0051* 0.0003*
Left Temporal Lobe 1.0000 0.0004*
Right Parietal Lobe  0.0320* 0.4893
Left Parietal Lobe 0.2660 1.0000
Right Occipital Lobe 0.4224  0.5386
Left Occipital Lobe 0.0794 0.48932

Table 4.8: Bonferroni corrected p-values for closeness centrality in the simulated
networks with no temporal lobe disconnection (« = 1) and temporal lobe discon-
nection (o = 0.5).
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Figure 4.12: In the simulated networks, temporal lobe disconnection is re-
quired for similar spatial distributions of changes in closeness to the data.
(A) Effect sizes of closeness centrality in simulated networks (no temporal lobe
disconnection). The largest effect sizes for changes in closeness centrality were
found in the frontal, parietal, and temporal lobes. (B) Effect sizes of closeness
centrality in simulated networks (with temporal lobe disconnection). The largest
effect sizes were found in the two temporal lobes, which more accurately repre-
sents the results seen in the data.

suggested that alterations to the effective connectivity would be required in order
for the model to fully explain the data.

To test this, we simulated a reduction in temporal lobe connectivity by multiply-
ing all effective connections to ROls in the temporal lobes by a constant0 < o < 1.
We simulated the model for a range of values of « and found that the spatial dis-
tributions of changes in closeness centrality in AD networks demonstrated large
effect sizes constrained to the temporal lobes, therefore closely replicating the
data. Figure 4.12B and Table 4.8 demonstrate these results for a = 0.5. Simula-
tions over a range of values of o« showed consistency in the results, particularly
for « < 0.8 (Figure 4.13). These results suggest that the observed changes in
functional connectivity are due to reduced effective connectivity (likely due to loss
of synaptic connectivity) between the temporal lobes and the rest of the brain,
combined with alterations to the intrinsic frequencies of oscillations within nodes.

4.4 Discussion

In this chapter, EEG from people with AD and HOA controls was analysed in or-
der to uncover disruptions to connectivity in the brain and altered local dynamics.
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Figure 4.13: Effect sizes for closeness centrality for a range of «. For each
simulation, subject specific intrinsic frequencies were used in the model, and for
the AD group all temporal lobe connections in the effect connectivity matrix were
multiplied by a constant a. Closeness centrality for the resulting functional net-
works was calculated and reported here are the effect sizes for differences be-
tween AD and HOA.

Through correlations with cognitive tests scores, we studied how the extent of
these alterations were reflected in cognitive decline in the AD cohort. We found
that whilst significant alterations to the power spectrum and average synchrony
between regions of the brain were identified, these were not indicators of the level
of cognitive decline in people with AD. However, topological organization of the
networks, as quantified by small-worldness, was found to significantly and posi-
tively correlate with MMSE score, particularly the language sub-score. Reduced
small-worldness was found to be driven predominantly by reduced closeness of
the temporal lobes, which computational modelling suggests was likely driven by
impaired synaptic connectivity between the temporal lobes and other regions, in
combination with heterogeneous spectral slowing. These results give potential
insight into the role that disruption to temporal lobe connectivity plays in language
impairments in AD, and more generally advances our understanding of how the
disconnection hypothesis of AD relates to the phenotype of the disease.
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4.4.1 Methodology

A major methodological difference between the study presented here and the ma-
jority of previous EEG studies in AD is that the EEG presented here was recorded
in an eyes open, as opposed to an eyes closed state. It has been shown that both
the power spectrum and functional networks are different in eyes open and eyes
closed conditions (Wu et al., 2010; Tan et al., 2013; Miraglia et al., 2016; Kan
et al., 2017). Therefore our work provides insight into a different active network
than the large literature on EEG in AD recorded in eyes closed resting state con-
ditions (Strik et al., 1997; Adler et al., 2003; Lindau et al., 2003; Dauwels et al.,
2011; Hatz et al., 2015a; Wang et al., 2015; Liu et al., 2016; Goossens et al.,
2017; lanof et al., 2017). Since cognitive deficits in AD predominantly relate to
the awake and alert states, it is possible that studying eyes open data gives key
insight into how network deficits drive cognitive decline. This could underpin our
finding that network small-worldness correlated with MMSE score in the AD co-
hort, whereas previous studies conducted in the eyes closed paradigm found no
such correlations in both EEG and fMRI (Stam et al., 2007a; Sanz-Arigita et al.,
2010). An additional key strength of the data used in this study is that all subjects
were free from dementia related medications, meaning the results presented here
can not be an artifact of medication induced alterations to network states.

Another methodological step taken was to map the EEG into source space.
Source space analyses have the advantage of being able to attribute activity to
specific regions of the brain, thereby allowing for anatomical interpretation of the
results (Michel et al., 2004). This is particularly useful when studying neurolog-
ical disorders, as it allows for study of the spatial distribution of neuropathology.
However, the method of source mapping we used relies on a number of key as-
sumptions. Firstly, a simplifying assumption in building the forward model was to
consider the head as being constructed of three homogeneously conducting lay-
ers of tissue (Fuchs et al., 2002; Oostenveld et al., 2003). Secondly, we worked
with the assumption that a template head model would provide a sufficient map-
ping for all subjects. A range of methods for building the forward model, from
a single homogeneously conducting sphere to highly detailed, realistic models
containing many layers of anisotropically conducting tissue, are available (Hallez
et al., 2007), but a trade-off between computational expense and accuracy of the
results must be made when deciding on a method to generate a forward model.
In the absence of individual MRI scans, the three (homogeneous and isotropic)
layer boundary element method template head model used in this study has been
shown to perform to a much higher standard than a three layer spherical head
model and to a comparable level as individually derived three layer head models
(Fuchs et al., 2002). Furthermore, boundary-element method models are reason-
ably computationally inexpensive (Hallez et al., 2007). For these reasons, there
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is a trend in studies such as ours where individual MRIs are unavailable, to use
a template head model consisting of three homogeneously and isotropically con-
ducting layers (Cantero et al., 2009; Canuet et al., 2011; Aoki et al., 2015; Hata
etal., 2016; lanof et al., 2017; Ikeda et al., 2017; Vecchio et al., 2017; Smith et al.,
2018; Medvedeva and Yanho, 2018; Farina et al., 2018). It is, however, unclear
to what extent the effect of aging and potential cortical atrophy in people with AD
may have on the validity of this template head model. Nonetheless, there exists
much precedent for use of a template head model in studies concerning older
adults and people with AD (Canuet et al., 2012; Vecchio et al., 2014, 2017; Hata
et al., 2016; lanof et al., 2017; Medvedeva and Yanho, 2018). For people with
AD, data was recorded within days of diagnosis, so whilst severe cortical atrophy
is unlikely, this cannot be ruled out without validation using an MRI. Regardless,
because of the use of a template head model that may not capture individual
differences, changes in head shape due to aging, and the fact we can not with
certainty rule out the presence of atrophy, all statistical analyses were performed
on the level of lobes of the brain, meaning results are likely to be robust to small
errors in localization.

Furthermore, the functional networks derived from the source space data are
dependent on the combination of reconstruction method and functional connec-
tivity method (Hassan et al., 2014, 2017; Finger et al., 2016). Here, our choice of
eLORETA was motivated by desire to map 64 channel EEG to large-scale source
dynamics (see e.g. Schirner et al. (2015); Finger et al. (2016)). Estimation of
spatially smooth current source density by inverse modelling is dependent on
the number of electrodes used (Hassan et al., 2017); due to discrete sampling
of electrodes on the scalp, the information that can be used to describe source
dynamics is limited by the number of electrodes. For studies with a similar num-
ber of electrodes to the one presented here (60-71 electrodes), eLORETA has
been demonstrated to outperform other linear inverse methods such as minimum
norm estimates and linearly constrained minimum variance beamforming at lo-
calizing sources and network estimation in studies with known source origin such
as simulations (Pascual-Marqui et al., 2011; Finger et al., 2016), deep brain stim-
ulation (Mideksa et al., 2016), and comparisons of resting state networks with
fMRI (Liu et al., 2018), further motivating our use of the eLORETA algorithm to
perform source reconstruction. The choice of PLF was motivated by simulations
demonstrating the eLORETA/PLF combination could accurately recreate ground
truth functional connectivity matrices (Finger et al., 2016). Since eLORETA incor-
porates spatial smoothness constraints, neighbouring source points will demon-
strate strong instantaneous correlations (Pascual-Marqui et al., 2011). To mitigate
these source leakage effects zero-lag PLF values were disregarded in our study
(Schmidt et al., 2014).
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A methodological point of note in this study is the use of 20 seconds of data.
Typically, EEG studies use epoch lengths of the order seconds to minutes (Gud-
mundsson et al., 2007). For epoch lengths of these orders of magnitude, studies
of spectral measures have found little information to be gained from using epochs
longer than approximately 20 seconds (Gasser et al., 1985; Salinsky et al., 1991;
Gudmundsson et al., 2007), whilst studies of small-worldness properties of func-
tional networks derived from phase measures have demonstrated reliability at
around 6 seconds epoch length (Fraschini et al., 2016). However, it is worth not-
ing that long term EEG, intracranial, and simulation studies have demonstrated
that over periods of hours and days there are fluctuations in functional network
measures (Honey et al., 2007; Kunhert et al., 2010; Chu et al., 2012) such as
small-worldness derived from phase locking networks (Kunhert et al., 2010).

4.4.2 Electrophysiological and network markers of Alzheimer’s
Disease

Power spectral slowing in the EEG of people with AD has been established for
over 20 years (Strik et al., 1997), and has been consistently identified as in-
creases in low frequency power (Strik et al., 1997; Adler et al., 2003; Lindau
et al., 2003; Dauwels et al., 2011; Hatz et al., 2015a; Liu et al., 2016; Wang et al.,
2015), decreases in high frequency power power (Strik et al., 1997; Lindau et al.,
2003; Dauwels et al., 2011; Liu et al., 2016; Wang et al., 2015), and reduced
peak frequency (Goossens et al., 2017). Our power spectral results were largely
consistent with this literature, particularly identifying increases in the contributions
of slow (theta) rhythms and reductions to peak power spectral frequency. How-
ever, many of these past studies were performed in sensor space, therefore very
few studies have identified regions of the brain responsible for this power spec-
tral slowing, information which may potentially be insightful for the development
of treatments and understanding disease progression. In this study, increases
in the relative power of slow oscillatory activity was localized to the frontal and
parietal lobes, which is largely in agreement with the results of lanof et al. (2017).
Interestingly, we found no correlation between theta band relative power and cog-
nition as measured by MMSE. Engels et al. (2016) also found cortical theta power
did not correlate with MMSE score in people with AD, but source reconstructed
hippocampal theta power did. This suggests that while we found no correlation
between slowing and MMSE scores, this could be due to our restricting source
space to the cortical surface.

Disconnection between regions of the brain is believed to play an important
role in cognitive decline in AD (Delbeuck et al., 2003). An EEG marker of this
is reduced synchrony between regions of the brain (Adler et al., 2003; Pijnen-
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burg et al., 2008; Wang et al., 2014, 2015; Hata et al., 2016). However, in this
study and others (Koenig et al., 2005a; Gallego-Jutgla et al., 2015; Cantero et al.,
2009), increases in functional connectivity were identified in AD, here quantified
by a significantly increased weighted mean degree. It is possible that these in-
consistencies are due to variations in methodology; choice of functional connec-
tivity and use of weighted or unweighted networks can result in differences in the
functional network structure, topology, and sensitivity to changes in AD (Dauwels
et al., 2010; Joudaki et al., 2012; Jalili, 2016). Important to note, however, is
that the increased mean degree may not be in opposition to the disconnection
hypothesis; using computational modelling, we found that changes in mean de-
gree (as well as localized changes in degree) were well explained by intrinsic
changes in dynamics, namely power spectral slowing (Figure 4.10). In fact, to
accurately recreate mean degrees on a subject-by-subject basis, global coupling
strength decreased (albeit non-significantly) in AD, suggestive of global discon-
nection. The slowing itself may also be evidence for disconnection in AD, since
modelling studies have suggested power spectral slowing may arise from discon-
nection between the cortex and thalamus (Abuhassan et al., 2014) identified in
fMRI studies (Wang et al., 2012). Changes in mean degree did not correlate
with cognitive test scores, which may also be supportive of the hypothesis that
power spectral changes are driving the differences in MD since power spectral
differences showed no correlation to MMSE.

Small-worldness was used as a measure of network topology (Humphries and
Gurney, 2008), since a small-world network is structured for efficient information
transfer on both a local and global scale (Watts and Strogatz, 1998; Latora and
Marchiori, 2001), and small-worldness of the functional network has consistently
been reported to reduce in AD (Stam et al., 2007a; de Hann et al., 2009; Wang
et al., 2014; Vecchio et al., 2017). Our results were in line with this past litera-
ture, finding that small-worldness was reduced in the AD cohort. Furthermore,
we found that the reduction in small-worldness was driven by an increased char-
acteristic path length, which is also in line with previous literature (Stam et al.,
2007a; Vecchio et al., 2014). To understand better how these changes arose,
closeness centrality of each node (which is a local counterpart to the inverse of
characteristic path length) was calculated, and found to decrease in the tempo-
ral lobes, suggesting that increased path lengths in the temporal lobes are likely
highly important for the changes in global network topology seen in AD. Further-
more, small-worldness was found to significantly correlate with MMSE score in
the AD cohort, which suggests that network topology, as opposed to the amount
of synchrony in the network, is highly important for cognition and is likely a key
driver of cognitive deficits in AD.

A small-world network has both high local and global efficiency (Latora and

134



Discussion

Efficiency
Right Frontal Lobe 0.0740
Left Frontal Lobe 0.1116

Right Temporal Lobe  0.0538
Left Temporal Lobe 0.0435*
Right Parietal Lobe 0.0740
Left Parietal Lobe 0.1263
Right Occipital Lobe  0.3410
Left Occipital Lobe 0.0574
Global 0.0297*

Table 4.9: Bonferroni corrected p-values for local and global effeciency.

a=1 a=0.5
Right Frontal Lobe 0.0243* 0.3115
Left Frontal Lobe 0.2028 0.6201
Right Temporal Lobe 0.0299* 0.0029*
Left Temporal Lobe 0.1014 0.0110*
Right Parietal Lobe  0.0197* 0.1443
Left Parietal Lobe 0.2389 0.4893
Right Occipital Lobe  0.3453  0.9665
Left Occipital Lobe 0.0954 0.1814

Table 4.10: Bonferroni corrected p-values for local efficiency in the simulated net-
works with no temporal lobe disconnection (o« = 1) and temporal lobe disconnec-
tion (a = 0.5).

Marchiori, 2001). Many more recent studies have used efficiency based mea-
sures to study AD (Berlot et al., 2016; Afshari and Jalili, 2017; Sami et al., 2018),
since global efficiency is a measure of how efficiently information can be trans-
ferred through the network (Latora and Marchiori, 2001) and local efficiency is
suited to study local effects of neurodegeneration as a measure of tolerance of
the network to dysfunction at a given node (Latora and Marchiori, 2001; Rubinov
and Sporns, 2010; Sami et al., 2018). For these reasons, we also ran the topo-
logical analysis with global and local efficiency replacing small-world and close-
ness (see Table 4.9). Global and local patterns of efficiency reflected those of
small-worldness and path length; notably global efficiency was found to reduce
significantly and the largest effect sizes for reductions in local efficiency were in
the temporal lobes. Much like for small-worldness, there was a positive corre-
lation between global efficiency and MMSE score, but this was smaller than the
correlation for small-worldness vs MMSE and non-significant. In the modelling
study, spatial distributions of alterations to local efficiency closely matched those
of closeness centrality (Table 4.10), also requiring temporal lobe disconnection to
drive similar spatial patterns as in the data. Importantly, this allows us to interpret
our results in terms of information transfer in the network, suggesting that in AD

135



Network substrates of cognitive impairment in Alzheimer’s disease

the temporal lobes play less of a role in aiding the efficient flow of information
through the brain than in HOA. This, combined with the highly related increased
closeness, suggest that the temporal lobes are becoming functionally less inte-
grated with the rest of the brain in AD.

A computational model based on that of Dermitas et al. (2017) was used to
explore the mechanisms underpinning functional network differences in the AD
cohorts. Dermitas et al. (2017) used individual structural MRIs to derive initial EC
matrices for the iterative optimization algorithm. It was therefore reasonable to
assume the optimized EC is representative of synaptic EC, and to use these to
make inferences on changes of the structure of the brain in AD. In this study, a
template, unweighted structural MRI was used for initial EC, and hence the sim-
ple iterative algorithm used for optimization is unlikely to give a global optimum.
Hence, we do not aim to interpret the EC matrices derived here as representative
of structural differences between regions of the brain. Instead, the only interpre-
tation we make is that the effective connectivity matrices are sufficient to generate
realistic functional connectivity. For this reason, all analyses of the model output
are related to the simulated functional connectivity, and we do not analyse individ-
ual effective connectivity in a similar manner to Dermitas et al. (2017). That said,
the effective connectivity presented here can still give important insight into how
effective connectivity changes in AD. Our modelling results suggest that given a
generative model of HOA functional connectivity, alterations to long range effec-
tive connections in the temporal lobe are required to cause functional connectivity
representative of the AD cohort.

A key assumption of the modelling procedure is that power spectral differences
are intrinsic to regions of interest and not a result of altered connectivity. Whilst
the accuracy of this assumption is unclear, provided we view the model as a way
to generate realistic functional connectivity patterns and not a biophysically real-
istic representation of neuronal activity, this assumption does not alter the results.
However, it is important that we interpret results such as those shown in Fig-
ure 4.9 and Figure 4.10 as showing that intrinsic power spectral differences are a
potential and sufficient mechanism to drive certain changes to functional connec-
tivity in AD, but without further experimental evidence we can not know whether
this is the true mechanism. Regardless, this does not change the key result
presented here, which demonstrates that even intrinsic power spectral changes
would not be sufficient to drive the changes in small-worldness and closeness
observed in the data, and that further synaptic mechanisms (such as temporal
lobe disconnection) are required.

Whilst other neurodegenerative disorders or dementia aetiologies were not
examined in this study, the methods used here are likely to be applicable. Spec-
tral slowing and functional network alterations have been reported in vascual de-
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mentia (Neto et al., 2015; van Straaten et al., 2015), dementia with Lewy bodies
(Kai et al., 2005; Andersson et al., 2008; Bonnani et al., 2008; Roks et al., 2008;
Dauwan et al., 2016), and frontotemporal lobar degeneration (Lindau et al., 2003;
de Hann et al., 2009; Yu et al., 2016; Sami et al., 2018). Many of these studies
have found differences in the sensor space topography of spectral and network
alterations that can discriminate between AD and other types of dementia (Bon-
nani et al., 2008; Nishida et al., 2011; Neto et al., 2015; Dauwan et al., 2016; Yu
et al., 2016; Sami et al., 2018), but very few have applied source reconstruction
(Nishida et al. (2011) being a notable exception) to study the spatial differences
in terms of cortical generators. Therefore it would be of interest for future work
to apply the source space and computational modelling approaches used here to
study other dementias.

4.4.3 Temporal lobe disconnection, phenotype, and the po-
tential role of tau pathology

In this chapter, we augmented our functional network study with computational
modelling and correlation with cognitive test scores. This allowed us to relate
functional network changes with pathological mechanisms, and increase our un-
derstanding of how specific network disruptions can drive exact cognitive deficits
characteristic of AD.

Small-worldness of the functional network was found to significantly correlate
with both total MMSE score and the language subscore, suggesting topology of
the functional network plays a key role in driving language deficits in early stage
AD. Local graph theoretical analysis and computational modelling suggested that
changes in small-worldness were a result of long range structural and functional
disconnection in the temporal lobes. Language impairment in AD has previously
found to be linked to temporal lobe atrophy in structural MRI, functional MRI,
SPECT, PET, CT and post-mortem studies (Harasty et al., 1999; Galton et al.,
2000; Domoto-Reilly et al., 2012), and language impairments have been linked
to neuronal death and functional connectivity in the temporal lobe in other neu-
rological disorders such as temporal lobe epilepsy (Bartha et al., 2005; Trimmel
et al., 2018). Whilst past studies in AD have identified temporal lobe network de-
ficiencies in both functional (Medvedeva and Yanho, 2018; Canuet et al., 2012)
and effective networks (Dermitas et al., 2017), this is the first study the authors
are aware of that have complemented this with cognitive test scores and found a
direct link with language deficiencies in AD.

The pathological mechanisms driving the effective connectivity, functional con-
nectivity, and cognitive changes reported here are still unclear, but we hypothe-
sise tau pathology plays a critical role. AD has two primary pathologies, namely
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amyloid plaques and neurofibrillary tangles due to hyperphosphorlyated tau pro-
tein (Querfurth and LaFerla, 2010). In AD, tau pathology originates in and around
the temporal cortex (Braak and Braak, 1991), and temporal lobe tau pathology
has consistently been reported in people with AD in both post-mortem and neu-
roimaging studies (Saint-Aubert et al., 2017; Galton et al., 2000). From the EEG,
it is not possible to directly measure tau burden in our cohort of subjects. How-
ever, functional network measures such as closeness and local efficiency have
been identified to negatively correlate with tau burden (Cope et al., 2018), mean-
ing interpreting these as a potential proxy for tau burden would suggest temporal
lobe tauopathy in our subjects. PET imaging has correlated the severity of tempo-
ral lobe tau burden with language impairments in AD (Bejanin et al., 2017), whilst
post-mortem studies have demonstrated particularly strong tau burden in the tem-
poral cortex of aphasic people with AD (Galton et al., 2000). Therefore, there is
much evidence alluding to tauopathy as a pathological driver for the network and
cognitive changes reported here. Whilst amyloidopathy is also likely important
for cognitive changes in AD, this link appears to be less direct, with many studies
finding tau burden correlates more strongly with cognitive test scores than amy-
loid (Nelson et al., 2012) - more specifically, a PET study found that temporal lobe
tau burden correlates with language deficiencies in AD, but temporal lobe amyloid
burden does not (Bejanin et al., 2017).

4.4.4 Summary and conclusions

In this chapter, we propose long range synaptic disconnection in the temporal
lobes as a potential mechanism directly underpinning cognitive and language
deficits in AD. The results presented here suggest that this synaptic disconnec-
tion manifests itself in the form of reduced effective connectivity between the tem-
poral lobes and other anatomical regions of the brain. This reduced effective con-
nectivity results in reduced functional integration of the temporal lobes and less
efficient global network organization (reduced ‘small-worldness’), in turn leading
to cognitive deficits in the form of language dysfunction. Increased mean degree
is also observed in the networks, but computational modelling suggests that this
change, unlike the topological network measures, can be well described by het-
erogeneous power spectral slowing; in fact, global disconnection was required
to accurately replicate the mean degree of each network. The results presented
here give key insight into a specific link between disconnection, namely functional
and effective disconnection of the temporal lobes, and language deficiencies in
the early stages of AD. The anatomically localized nature of the findings and links
with a specific cognitive domain mean that these results have the potential to
inform treatments and therapies for people diagnosed with Alzheimer’s disease.

138



Chapter 5

Reduced EEG microstate sequence
complexity and altered cortical
generators in Alzheimer’s disease

The work presented in this chapter was performed in collaboration with Dr George
Stothart (data acquisition), Dr Nina Kazanina (data acquisition), Dr Jon T Brown
(supervision), and Dr Marc Goodfellow (supervision). The author’s contribution
to this chapter includes preprocessing and analysis of the data, formulation of
hypotheses and methodological design (analysis), interpretation of results, visu-
alization of the data, and writing of the chapter.

5.1 Introduction

Spectral slowing and functional disconnection between EEG time series are widely
reported in AD (Babiloni et al. (2016); section 1.3; chapter 4), and the focus of
the previous chapter. These data are typically measured on a time scale of the
order of seconds to minutes in order to obtain reliable estimates (Gudmundsson
et al., 2007; Fraschini et al., 2016). However, it is believed that information pro-
cessing in the brain happens on a millisecond scale (Koenig et al., 2002; Khanna
et al., 2015; Michel and Koenig, 2018), and thus the brain’s resting state is com-
posed of rapid transitioning between a number of distinct resting state networks
corresponding to different cognitive domains (Lehmann et al., 1998; Britz et al.,
2010; Michel and Koenig, 2018). EEG microstate analysis is a method proposed
to study this switching behaviour of the resting state (Khanna et al. (2015); Michel
and Koenig (2018); section 1.8.4).

Microstate analysis involves studying the instantaneous topographic maps of
the EEG (Lehmann et al., 1987; Koenig et al., 1999). Past studies of EEG mi-
crostates have remarkably found the EEG to be comprised of only a small num-
ber of topographic classes, such that the EEG remain stable in a given class
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for periods of the order tens or hundreds of milliseconds before rapidly switching
to another class (Koenig et al., 1999; Khanna et al., 2015; Michel and Koenig,
2018). These rapidly switching periods of quasi-stability are hypothesised to be
the electrophysiological correlates of the brain’s resting state networks relating
to different functions underpinning information processing (Lehmann et al., 1987;
Michel et al., 2001; Koenig et al., 2005b; Britz et al., 2010; Musso et al., 2010;
Khanna et al., 2015; Milz et al., 2016), earning microstates the nickname “atoms
of thought” (Lehmann et al., 1998). Alterations to microstates have been ob-
served in healthy development and aging (Koenig et al., 2002) and a range of
neurological disorders including dementia (lhl et al., 1993; Dierks et al., 1997;
Strik et al., 1997; Stevens and Kircher, 1998; Nishida et al., 2013), schizophrenia
(Koenig et al., 1999; Lehmann et al., 2005; Nishida et al., 2013), and depression
(Strik et al., 1995; Atluri et al., 2018) - see Khanna et al. (2015) for a comprehen-
sive review.

In Alzheimer’s disease research, EEG microstates have received relatively lit-
tle attention. Early in the history of microstates, a number of studies identified
alterations to EEG microstate statistics in people with Alzheimer’s disease (lhl
et al., 1993; Dierks et al., 1997; Strik et al., 1997; Stevens and Kircher, 1998), but
these studies used adaptive windows as opposed to the more modern clustering
methods to define microstates (see subsection 1.8.4 for a discussion on adap-
tive windowing vs clustering tools), meaning that alterations to the well studied
‘canonical maps’ (Khanna et al. (2015); Michel and Koenig (2018); section 1.8.4)
have not been characterised in AD. Since the functional significance of these
maps in cognition have been uncovered in recent years (Britz et al., 2010; Brod-
beck et al., 2012; Milz et al., 2016; Seitzman et al., 2017), characterization of
EEG microstates using clustering methods can potentially give crucial insight into
the mechanisms underpinning impaired cognition in AD.

Much interest has been given to how properties such as duration of a mi-
crostate, percentage of time within a class (coverage of the class), and topogra-
phy of microstate maps are altered in neurological disorders (Strik et al., 1995,
1997; Dierks et al., 1997; Stevens and Kircher, 1998; Koenig et al., 1999, 2002;
Lehmann et al., 2005; Irisawa et al., 2006; Kikuchi et al., 2007; Kindler et al., 2011;
Nishida et al., 2013; Andreou et al., 2014; Tomescu et al., 2015; Gao et al., 2017;
Zappasodi et al., 2017). Patterns of transitions between classes have also been
shown to alter in neurological disorders (Lehmann et al., 2005; Nishida et al.,
2013; Tomescu et al., 2015), suggesting that studying transitioning behaviour of
microstates may give further mechanistic insights into cognition and neurological
disorders as well as increase sensitivity of electrophysiological biomarkers. How-
ever, the ‘syntax analysis’ (Lehmann et al., 2005; Nishida et al., 2013) used to
analyse transitioning behaviour in these studies assumes stationary and Marko-
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vian transitioning, whilst recent work has brought into question the validity of these
assumptions (Van De Ville et al., 2010; von Wegner et al., 2017). Therefore novel
methodologies for studying the transitioning behaviour of EEG microstates that do
not rely on these assumptions could give new insights into alterations to informa-
tion processing and switching between active networks in AD on the millisecond
scale, and potentially act as a more sensitive neurophysiological signature of AD
in the EEG.

In this chapter, we analyse EEG microstates in unmedicated people with early
stage AD with the objectives to characterize alterations to microstates such as
altered topographies, coverage, and duration. Furthermore, we present a novel
measure of the transitioning behaviour of EEG microstates which does not as-
sume this to be Markovian or stationary, by applying the Lempel-Ziv complexity
(LZC) algorithm (Lempel, 1976) to the microstate sequences. We hypothesise
that there will be alterations to the transitioning dynamics and topographies of
the canonical maps in AD. Since these maps are related to information process-
ing in different cognitive domains, this can give crucial insight into mechanisms
underpinning cognitive impairment in AD.

5.2 Materials and methods

5.2.1 EEG acquisition and preprocessing

EEG acquisition was performed externally by collaborators and is described in
section 4.2.1. Preprocessing is described in section 4.2.2. EEGs were bandpass
filtered at 1-30 Hz in line with past microstate studies (Koenig et al., 1999; Khanna
et al., 2014).

5.2.2 Microstate extraction

Microstates were extracted using a k-means clustering method based on that of
Koenig et al. (1999). The method is briefly outlined here. The global field potential
(GFP) of the EEG at each time point is given by the standard deviation over
all electrodes at that time point (Koenig et al., 1999). Topographic maps at the
peaks of the GFP were extracted as these have the highest signal-to-noise ratio
(Lehmann et al., 1987). GFP peak maps were then clustered using the k-means
clustering algorithm described in Koenig et al. (1999), with a k-means++ algorithm
used to select the initial £ maps (Arthur and Vassilvitskii, 2007). For a given value
of k, the clustering algorithm was repeated 20 times and the resulting cluster
maps that explained most variance were chosen to be the optimum (Koenig et al.,
1999). Microstates were defined to switch at the midpoints between GFP peaks,
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and all time points within a microstate were assigned to the class of the GFP
peak.

The choice of k is non-trivial. For each subject, we used the Krzanowski-
Lai criterion (Krzanowski and Lai, 1988) to assess the optimum number of mi-
crostates (Hatz et al., 2015a). In this data, there were no significant differences
between the optimum number of microstates in AD and HOA as identified by a
non-parametric Mann-Whitney U test. The median optimum over all subjects was
four, so k = 4 maps were used for all subjects.

Since k-means clustering is performed on a subject-wise basis, it is important
for statistical purposes that the four classes are comparable both within and be-
tween cohorts. Firstly, for each cohort (HOA or AD), a global clustering algorithm
was performed (Khanna et al., 2014) to relabel classes such that classes were
comparable between subjects within a cohort. Secondly, visual inspection and
calculation of correlation coefficients of the four globally clustered centroid maps
per cohort were used to align classes such that class labels were comparable
between cohorts.

5.2.3 Microstate analysis
Basic microstate statistics

Mean microstate duration for each class and percent time spent within a class
(coverage) were calculated (Strik et al., 1995, 1997; Dierks et al., 1997; Stevens
and Kircher, 1998; Koenig et al., 1999, 2002). For each measure, a two-way
ANOVA was performed to asses statistical differences, including terms for dis-
ease group, microstate class, and an interaction term. Since ANOVA tests are
parametric and rely on assumptions of normality, significant results were post-
hoc validated using a non-parametric Mann-Whitney U test; namely significant
interaction terms were tested with Mann-Whitney U tests for each class, whilst
significant disease group terms were assessed by averaging over classes and
performing a Mann-Whitney U test between groups.

Analysis of microstate syntax, i.e. Markovian transitioning, was performed by
extracting the transition matrix from the data by counting the number of transitions
from class i to class j and normalizing by the total number of transitions (Lehmann
et al., 2005; Kikuchi et al., 2011; Nishida et al., 2013). Edges of the matrix were
tested (Kikuchi et al., 2011) using a two-way ANOVA including terms for edge and
the interaction between edge and disease group.

Topographic differences between groups were assessed with class-wise one
way topographic analyses of variance (TANOVA) (Strik et al., 1998; Milz et al.,
2016), comparing the topographic dissimilarity (Strik et al., 1998) against 999
non-parametric surrogates computed by permutation of group labels. TANOVA
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p-values are then computed vs this null distribution by rank ordering the dissim-
ilarities of the surrogates and original data in descending order, then computing
the position of the original data set in this distribution. Finally, this is divided by
1000 (999 surrogates + 1 original data set). Therefore a minimum possible p-
value of 0.001 is available, deemed sufficient to identify significant differences in
topographies.

Microstate complexity

Here we present a novel measure of EEG microstate transitioning that, unlike
the Markovian syntax analysis, does not rely on assumptions of stationarity or
Markovianity (von Wegner et al., 2017). The measure involves calculating the
Lempel-Ziv complexity (LZC) (Lempel, 1976) of the microstate sequence. The
LZC of a string is defined as the number of different substrings within the string
when read from left to right. A string is said to have low complexity if there are
a small number of frequently repeating sequences. The algorithm for computing
LZC, which is outlined in Figure 5.1, is the basis of a number of lossless compres-
sion algorithms (Ziv and Lempel, 1977, 1978; Welch, 1984) that identify distinct
substrings in the data that are repeated frequently, allowing for these strings to
be replaced by a marker (Lempel, 1976) reducing the size of the data.

LZC has in the past been used to calculate the complexity of a univariate EEG
signal (see subsection 5.2.5), but we believe use of this measure to explore the
complexity of the microstate sequences is novel. We refer to this measure of mi-
crostate LZC as C. For calculation of C', the EEG was converted to a discrete text
sequence by computing the microstate sequence for the data, thereby mapping
each time point from R% to a single, discrete value in the set of microstate classes
{A, B,C, D}, creating a single string of length equal to that of the original EEG
time series. LZC was then computed on the transitioning sequence (e.g. a se-
quence AAABBCCCDAADD would be reduced to ABCDAD, and LZC calculated
on the reduced sequence). The choice of computing LZC on the transitioning
sequence instead of the raw microstate sequence was motivated by the fact the
latter is likely to be strongly influenced by the increase in microstate duration.
Since LZC tends to increase with sequence length, only the only first IV entries of
the switching-sequence were used to calculate C' . Here, we chose N = 250 as
this number is small enough that all subjects had a switching sequence of length
greater than or equal to this number.

All statistical comparisons of microstate LZC between groups was performed
using a non-parametric Mann-Whitney U test.
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() AABABABA
(i) AJABABABA New string: A c=1

(i) AJABABABA
WY _
(iv) A|JABABABA New string: B Cc=2

(v) AAB|ABABA New prefix: AAB

(vi) AAB|ABABA
X
(vi) AAB|ABABA Newstring:AB C=3

\Jv
(vii) AAB|ABABA
\ N
(ix) AAB| A
A

v
(X) AAB]

Figure 5.1: Calculation of LZC from a string. (i) We aim to calculate the LZC
from a string S consisting of A’s and B’s. The k’th entry of S is denoted S[k|.
(if) We begin with a prefix of length one, demonstrated by the vertical green line
separating the prefix from the rest of the string. The aim is to describe S in terms
of a small number of substrings of the prefix (pointers). LZC (C) is the number
of distinct substrings in the data. The initial prefix (A) is a new substring, so we
initialize C' = 1. (iii) Working from left to right, the pointer matches S[2] (both
are the letter A), so complexity does not increase. (iv) However, S[3] is the letter
B and hence does not match the pointer. Therefore a new substring has been
identified (B), and C increases to 2. (v) Since the current prefix is not sufficient
to describe the whole data, we then move it right to the point at which there is no
match, making a new prefix AAB. (vi) Pointer AAB does not match S[4, 5, 6], so
we next explore substrings of the prefix as the pointer. (vii) Pointer AB matches
with S[4,5], so a new string is defined and complexity increases (C' = 3). (viii)
Furthermore the pointer AB also matches with S[6, 7]. (ix) The pointer A matches
with S[8]. (x) S is fully described by these 3 substrings, meaning the LZC of S is
3.

5.2.4 Cortical source localization

Cortical source localization was performed using the eLORETA algorithm (Pascual-
Marqui, 2007, 2009) implemented in the sLORETA/eLORETA software package
(http://www.uzh.ch/keyinst/loreta.htm). This package uses a 3 layer BEM
head model (Fuchs et al., 2002) based on the Montreal Neurological Institute av-
erage MRI brain map (MNI152) (Mazziotta et al., 2001) and a 6239 voxel source
space limited to a cortical grey matter surface. This model has been validated
and demonstrated to perform to a similar standard as individual MRI derived head
models (Fuchs et al., 2002). Visualization of results was performed using custom
written Matlab routines and used the ‘Colin27 2016’ template MRI and cortical
surface implemented in Brainstorm (Tadel et al., 2011), which is documented
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and freely available for download online under the GNU general public license
(http://neuroimage.usc.edu/brainstorm).

To compare two topographic maps, for example the cluster average for a class
between groups, the difference between maps was computed and then source
localized using eLORETA. The source space representation of the topographic
difference map shows the difference between cortical generators underpinning
the two maps, since the forward model assumes linear mixing, i.e. ¥ = &X
therefore Y, — Y) = (X, — X;), where Y is the topographic map in sensor space,
® is the leadfield, and X is the set of cortical sources generating the map. To
gain a measure of statistical effect size between groups, the subject-wise maps
are source localized and then a t-statistic computed on a voxel-wise basis (Milz
et al., 2016).

5.2.5 Additional EEG complexity measures

To compare how our novel measure of EEG complexity based on the LZC of
microstate sequences performs compared to classical measures of EEG com-
plexity, we additionally computed two such measures often used in the literature.
Firstly, past literature has used an alternate method for calculation of the LZC of
the EEG (Abasolo et al., 2006; Hornero et al., 2009; Sabeti et al., 2009; Dauwels
et al., 2011; Fernandez et al., 2011; Liu et al., 2016), which we label time-series
LZC. For a given EEG time series (i.e. a single channel), each time point is
mapped from R to a value from a discrete set, by binarizing the data based on
the median. LZC of this binary sequence is then computed as outlined above.
Here, this was computed for each channel and averaged to give a single value of
time series LZC for each subject.

An advantage of microstate LZC over time series LZC is that microstate LZC
accounts for multivariate patterns in the data. Therefore we also compare against
Q-complexity, which is a widely used multivariate measure of EEG complexity
(Saito et al., 1998; Molnar et al., 2006; Irisawa et al., 2006; Czigler et al., 2008;
Dauwels et al., 2010, 2011) based on information theory, and uses information
contained in the covariance matrix to estimate the complexity of the path of the
EEG through N dimensional space, where N is the number of channels. Given
EEG with a covariance matrix I" which has eigenvalues \; (where i = 1,..., N
and N is the number of EEG electrodes), Q-complexity is given by

Q:exp(—zjvl<%-log(%>)>, (5.1)

1

where, A = SV \;. Q-complexity is close to zero if all channels follow a highly
similar time course, whilst it is close to one if the channels follow very different
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Figure 5.2: Microstate topographies for the four classes. (Top) Globally clus-
tered maps for HOA cohort, for classes A-D from left to right. (Bottom) As above,
but for the AD cohort. Black circles mark the electrode locations.

time courses.

5.3 Results

5.3.1 Parietal inactivation alters the topography of class D in
AD

Microstate topographies for each of the four classes in HOA and AD are shown in
Figure 5.2, and for the HOA subjects largely align with the four canonical classes
(Khanna et al., 2015; Michel and Koenig, 2018), which are electrophysiological
correlates of the auditory (A), visual (B), saliency (C), and frontoparietal work-
ing memory/attention (D) resting state networks (Britz et al., 2010; Michel and
Koenig, 2018). To test for alterations to the topographies in AD, a topographic
analysis of variance (TANOVA) (Strik et al., 1998; Milz et al., 2016) was performed
for each microstate class. Class D was found to be significantly different in AD
(class A, p = 0.0690; B, p = 0.1980; C, p = 0.8980; D, p < 0.001; Figure 5.2).
Source reconstruction was used to explore cortical source generators underpin-
ning this alteration (Pascual-Marqui et al., 2014; Milz et al., 2016; Atluri et al.,
2018). Figure 5.3A shows the eLORETA solution of the instantaneous map given
by the difference of the global class D maps for HOA and AD (i.e. the difference
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Figure 5.3 Cortical source generators underpinning alterations to mi-
crostate class D in AD. (A) eLORETA solution to the instantaneous topography
given by taking the difference between the global class D maps for HOA and AD.
(B) t-statistic for voxel-wise comparisons of the subject-wise class D maps for
HOA vs AD. Red indicates HOA > AD, whilst blue is AD > HOA. (C) Voxels with
t-values such that p < 0.05. Red voxels indicate HOA > AD, and blue voxels are

AD > HOA.

between the top and bottom rows of column D of Figure 5.2). We subsequently
calculated the eLORETA solution on a subject wise basis and calculated voxel-
wise t-statistics to quantify spatially distributed alterations in AD to find that pari-
etal sources were less active in the people with AD, particularly weighted more
towards the left hemisphere (Figure 5.3B-C).

5.3.2 Increased microstate duration in AD

Having found changes to the topography and underlying cortical generators to
class D in AD, we next explored whether the transitioning behaviour of the mi-
crostate sequences were altered. For each subject and microstate class, mean
duration, coverage, and the Markovian syntax transition matrix were extracted.
Tables 5.1-5.3 show the two-way ANOVA tables for testing for differences in groups
and class. For mean duration, there was a significant disease group term (p =
0.0019) but a non-significant interaction term, suggesting that mean duration of
microstates changes in AD, and this is a global trend over all microstate classes.
For this reason, we do not perform pairwise comparisons of classes. Since
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Source SumSgq. DF MeanSq. F P
Class 237.2 3 791 0.67 0.5674
Group 1162.7 1 1162.7 9.95 0.0019
Class*Group  430.7 3 143.6 1.23 0.3007
Error 21029 180 116.8

Total 22809 187

Table 5.1: Two-way ANOVA table for mean duration of microstates. The class
term refers to the four microstate classes, whilst the group term refers to clinical
diagnosis, i.e. AD vs HOA.

Source SumSgq. DF MeanSq. F P
Class 0.0256 2 0.0128 1.72 0.1803
Class*Group  0.0040 2 0.0020 0.27 0.7657
Error 1.3478 182 0.0074

Total 1.3791 187

Table 5.2: Two-way ANOVA table for coverage of microstate classes. The
class term refers to the four microstate classes, whilst the group term refers to
clinical diagnosis, i.e. AD vs HOA.

Source Sum Sgq. DF Mean Sq. F P
Edge 0.0037 6 6.1e-4  0.5891 0.7391
Edge*Group 0.0067 6 0.0011  1.0725 0.3777
Error 0.5688 546 0.0010

Total 0.5835 563

Table 5.3: Two-way ANOVA table for Markovian switching between mi-
crostate classes. The edge term refers to the edges of the Markovian transition
matrix, whilst the group term refers to clinical diagnosis, i.e. AD vs HOA.

ANOVA is a parametric test and relies on assumptions of normality, we verified
this change in mean microstate duration with a non-parametric Mann-Whitney U
test (p = 0.0214). Hence mean microstate duration (7°) significantly increased in
AD (HOA 41.42 + 0.90 ms; AD 46.42 4+ 1.89 ms), shown in Figure 5.4A. No signifi-
cant results were found for coverage of microstates.

All analyses were additionally conducted on a pairwise basis for class D to
further verify that changes to the topography of this class in AD did not alter
switching statistics. No differences were found for any test.

5.3.3 Microstate sequence complexity reduces in AD

Whilst there were no differences in Markovian transitioning, it is likely that mi-
crostate transitioning is non-Markovian (Van De Ville et al., 2010; von Wegner
et al., 2017). We therefore next calculated the Lempel-Ziv complexity (LZC) of

148



Results

A 70 B 105
* + T k%%
— T
£ 60 | 100 i]
§ + N
7 50 * o 95 1
= lil = +
2 40 T 90
1 +
30 85
HOA  AD HOA  AD
c 15 D 900
* * +
U —_
800
£ 10 n N .
S é E - 700
e (]
o (2]
® 5 1 I o 1
S + = 600 + l
0 500
HOA  AD HOA  AD

Figure 5.4: Microstate and complexity statistics are significantly altered in
AD. (A) Mean duration of microstates. (B) Microstate LZC. (C) Q-complexity. (D)
Time series LZC. Stars denote significance of Mann-Whitney U test: *p < 0.05,
**p < 0.01, **p < 0.001.

the microstate transitioning sequence (C), a measure which does not assume
Markovianity.

We found a significant reduction in C' in AD (HOA 101 +2; AD 99 + 3; p =
0.0023. Since C' takes on integer values, statistics reported here are median +
interquartile range.) (Figure 5.4B), suggesting that higher order or non-Markovian
alterations to microstate transitioning are present in the EEG of people with AD,
to which a Markovian transitioning analysis is not sensitive.

5.3.4 Comparisons with classical measures of EEG complex-
ity

We next compared how C' performed against classical EEG complexity measures

which have been previously reported to reduce in AD; namely Q-complexity (Saito

et al., 1998; Molnar et al., 2006; Irisawa et al., 2006; Czigler et al., 2008; Dauwels

et al.,, 2010, 2011) and time-series LZC (Abasolo et al., 2006; Hornero et al.,
2009; Sabeti et al., 2009; Dauwels et al., 2011; Fernandez et al., 2011; Liu et al.,
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2016). The former measure predominantly captures spatial complexity, being
founded in covariance of the time series, whilst the latter predominantly captures
temporal complexity and is a univariate measure. Whilst both of these measures
were found to significantly decrease in our data set (Q-complexity p = 0.0191; time
series LZC p = 0.0127; Figure 5.4C-D), the effect size of these differences were
notably lower than for C, suggesting that additional information can be gained
by capturing both spatial and temporal patterns. Whilst no significant correlation
existed between C' and time series LZC (r = 0.1363, p = 0.3611), there was a small
but significant correlation between Q-complexity and C' (r = 0.3002, p = 0.0403).

5.4 Discussion

In this chapter, a microstate analysis was performed on the EEG of HOA con-
trols and people with AD. We will now discuss aspects of the methodology and
implications of the results presented here.

5.4.1 Methodology

A key methodological factor that may affect results and therefore must be ad-
dressed is the use of eyes-open EEG. The majority of past EEG microstate stud-
ies have been performed on eyes-closed resting state data. A detailed study of
differences in EEG microstates between eyes-open and eyes-closed conditions
was performed by Seitzman et al. (2017). This article did not study optimum num-
ber of microstates, but percentage of variance was studied for 2-22 microstate
classes. Whilst for a given number of microstates eyes-open data typically had
less variance explained than the eyes-closed state, the curves of variance ex-
plained vs number of classes had almost identical forms. This suggests that
optimization criteria such as Krzanowski-Lai (Krzanowski and Lai, 1988) (used
here to choose the optimum number of microstates), which typically search for
the ‘elbow’ in such a curve, would identify optima at the same point in both states.
Furthermore, Seitzman et al. (2017) found that, given four classes, the eyes-open
classes largely matched those of the four classical eyes-closed classes. There-
fore the results of Seitzman et al. (2017) support our results that in eyes open
data, four microstate classes are optimum and the topographies of these classes
should largely match those reported in eyes closed data.

A further potential effect of using eyes-open data is reduced microstate dura-
tion. The microstates presented here are shorter than those typically seen in the
literature, which are usually more than 80 ms (Lehmann et al., 1987). von Wegner
et al. (2017) found that microstate duration is closely related to frequency of neu-
ronal oscillations in the EEG, and Khanna et al. (2014) predicted that factors such
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as eyes-open data and aging would result in reduced microstate durations due to
different dominant frequencies. Comparisons of eyes-open and eyes-closed mi-
crostates further supports this, demonstrating reduced microstate durations in
the eyes-open data (Stevens and Kircher, 1998; Seitzman et al., 2017). There-
fore it is possible that an identical study in eyes-closed data may result in different
durations to this study.

There are a number of strengths to the data presented here. Firstly, all pa-
tients were unmedicated. Past studies have shown that drugs can alter EEG
microstate statistics such as duration and topography (Lehmann et al., 1993;
Yoshimura et al., 2007), so by recording data from unmedicated people with AD
it is ensured that any differences between cohorts are not artifacts of medica-
tion. Secondly, the data presented here was recorded on 64 channel EEG. Whilst
reliable EEG microstate estimates can be obtained from as few as eight elec-
trodes (Khanna et al., 2014), use of high density EEG allows for more reliable
source space reconstructions (Song et al., 2015), allowing for estimation of corti-
cal sources underpinning microstate topographies. This gives the opportunity to
gain more mechanistic insights into the disruption of spatiotemporal brain dynam-
ics in AD.

5.4.2 Microstate complexity measure

In this work we present a novel application of Lempel-Ziv complexity (LZC) (Lem-
pel, 1976) to microstate sequences. LZC was chosen to study microstate tran-
sitions over classical syntax analysis approaches due to underlying assumptions
of each of the methods. Syntax analysis assumed transitioning behaviour is first
order Markovian (Lehmann et al., 2005). Stationarity of the data is also assumed
to enable the use of transitions over the whole data set to generate the transition
matrix (Lehmann et al., 2005; Nishida et al., 2013). Mechanistically, this method
is unlikely to give full information of the switching dynamics of microstates since
EEG microstate switching is neither Markovian nor stationary (Van De Ville et al.,
2010; von Wegner et al., 2017). Therefore methods of analysing microstate tran-
sitioning that account for higher order properties may give greater insight into
alterations in information processing in neurological disorders.

LZC bypasses these issues by making no underlying assumptions in terms of
whether the data is Markovian or stationary. LZC aims to calculate the number of
sub-sequences within a sequence (Lempel, 1976), and hence highly structured
first order Markovian data or repetitive stationary data will lead to low LZC due
to repeating sub-sequences, whilst higher order transitions or non-stationarity
will lead to a wider range of sub-sequences and hence increased LZC. In this
study, we demonstrated that the LZC of microstate transition sequences had a
notably larger effect size in separating people with AD from controls than Marko-
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vian syntax analysis, suggesting higher order alterations to transitioning between
microstates in AD.

LZC has in the past been used to identify reduced complexity of the EEG in
people with AD (Abasolo et al., 2006; Gomez et al., 2006; Hornero et al., 2009;
Dauwels et al., 2011; Liu et al., 2016). For these studies, the methodology in-
volved binarizing a univariate EEG time series based on a threshold such as the
median of the data, and then calculating the LZC of this binary sequence. Appli-
cation of LZC to the microstate sequences is an improvement over this method
for a number of reasons. Firstly, the choice of binning is less arbitrary. By using
microstates, binning of the EEG is chosen based on repeating spatiotemporal pat-
terns and quasi-stable states which have some neurophysiological basis related
to active networks (Michel et al., 2001; Milz et al., 2016). This further means that
microstate LZC accounts for the multivariate nature of the EEG, not accounted for
in classical time series LZC. In essence, microstate LZC is a spatially extended
version of the LZC method classically used in EEG literature.

Time series LZC is strongly dependent on a dominant frequency, such that
a relationship between slowing of EEG and loss of LZC in AD has been shown
(Dauwels et al., 2011). This is unsurprising since the binarized time series will be
largely driven by the dominant frequency of the original time series, and slowing
of this frequency will lead to less frequent switching between states, resulting in
more repetitive sequences and hence reduced LZC. Assuming a relationship be-
tween oscillatory frequency and microstate duration (von Wegner et al., 2017),
the same can be said of microstate LZC when performed on raw microstate
sequences. However, if the microstate sequence is reduced to a transition se-
guence, the measure is independent of microstate duration and slowing. A similar
reduction cannot be made for time series LZC, since a binary sequence reduced
to a switching sequence results in simple switching between two states. Since
slowing is consistently reported in the EEG of people with AD (Babiloni et al.,
2016), an orthogonal EEG biomarker could have great application for aiding di-
agnosis of the disease, which is the focus of the next chapter.

5.4.3 Alterations to class D and the frontoparietal network

Our results suggest that microstate class D has an altered topography in AD.
It is difficult to compare this result with previous studies, since many studies of
microstates in AD were published prior to development of £-means methods of
microstate extraction and used adaptive segmentation (lhl et al., 1993; Dierks
et al., 1997; Strik et al., 1997; Stevens and Kircher, 1998), so therefore do not
study class D specifically. One study of AD microstates in the literature uses k-
means clustering, in which no alterations to any of the four microstate classes
were observed in AD (Nishida et al., 2013). It is unclear why this discrepency
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between the results presented here and past literature occurs, although there are
a number of potential explanations. Whilst a key difference between studies is
the number of channels - our study used 64 channel EEG vs the 19 channel EEG
used by Nishida et al. (2013) - and hence increased spatial resolution, this seems
an unlikely explanation for differences in results as microstates are reliable with as
few as eight channels (Khanna et al., 2014). The fact that this data was recorded
in the eyes-open state is a potential factor, but Seitzman et al. (2017) found no
differences in the topography of class D in eyes-open and eyes-closed in healthy
adults and during attentional tasks, so it is unclear to what extent the topography
of class D in eyes-open data would be altered in AD compared to eyes-closed.
Methodology may play a role; it is unclear in Nishida et al. (2013) how classes are
aligned between subjects and whether global clustering algorithms (Khanna et al.,
2014) were used, but it appears that all subjects across all groups were used for
defining the topographies of the four classes, whereas in this study classes are
defined independently for each group.

It has been suggested that class D is related to the frontoparietal network
and the attention/working memory cognitive domains (Britz et al., 2010; Nishida
et al., 2013; Khanna et al., 2015; Seitzman et al., 2017). Source space recon-
struction of class D maps demonstrated that the change in topography in AD was
due to reduced parietal activation, supporting the hypothesis of alterations to the
frontoparietal network in AD. It is worth noting at this point that the differences
shown in Figure 5.3C were not corrected for multiple hypotheses, instead using a
cutoff value of p < 0.05 following the steps of Milz et al. (2016). Under Benjamini-
Hochberg post correction for 6239 hypotheses, no voxels remained significant.
However, since the topographic analysis demonstrated significant differences in
AD, it is still of interest to see which voxels displayed the largest effect sizes and
hence were most likely candidates for altered cortical generators in AD. A possible
mechanism by which altered spatial topography of the frontoparietal network may
arise is disruptions to long range synaptic connectivity, since alterations to func-
tional and effective connectivity in the frontoparietal network have been reported
in recent fMRI studies of people with AD (Neufang et al., 2011; Zhao et al., 2018).

5.4.4 Alterations to microstate duration and switching statis-
tics

After studying microstate topographies in AD, we next studied how microstate du-
ration was altered in AD. Mean microstate duration was found to increase in AD.
Reports of microstate duration are inconsistent in the past literature, which has
found increased mean duration in AD (lhl et al., 1993), reduced duration of the
longest microstate (Dierks et al., 1997; Strik et al., 1997), a reduced mean du-
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ration in dementia (non-specific) (Stevens and Kircher, 1998), or no changes in
duration in AD (Nishida et al., 2013). Methodology may account for differences
between this study and those of Dierks et al. (1997), Strik et al. (1997), and
Stevens and Kircher (1998) which used adaptive windowing as opposed to k-
means clustering, however this would not explain why the results of Nishida et al.
(2013) differ from the results presented here. Furthermore Ihl et al. (1993) used
adaptive window segmentation and found results that match those presented in
this study. An additional potential factor that could account for these differences
is the use of eyes-open data, as this has been shown to effect microstate duration
(Seitzman et al., 2017), however Stevens and Kircher (1998) found a decrease
in duration in both eyes-open and eyes-closed states in non-specific dementia.
Interestingly, we might expect microstate duration to increase in AD due to slow-
ing of the EEG (von Wegner et al., 2017) which is well established in AD (Strik
et al., 1997; Adler et al., 2003; Lindau et al., 2003; Dauwels et al., 2011; Hatz
etal., 2015a; Liu et al., 2016; Wang et al., 2015; Goossens et al., 2017; Tait et al.,
in press) - this was the original hypothesis made by Dierks et al. (1997), who
expressed their surprise that a decreased microstate duration was found instead.

We found no changes in the Markovian transition matrices between HOA and
AD, but did find a significant reduction in microstate transitioning complexity in
AD. These results suggest that microstate LZC is sensitive to higher-order or
non-Markovian alterations to transitioning in AD. Reduced transitioning LZC is
suggestive of more repetitive switching between active networks in AD, possibly
indicating less complex information processing. This gives key insight into the
mechanisms underpinning cognitive deficits in AD.

5.4.5 Conclusions

In this chapter, a number of key results that give crucial insight into the mech-
anisms underpinning cognitive impairment in AD have been identified. Parietal
inactivation was shown to relate to a changing topography in microstate class D.
This microstate class is related to the frontoparietal network and attention/working
memory (Britz et al., 2010; Nishida et al., 2013; Seitzman et al., 2017), which are
impaired early in the AD staging (Perry and Hodges, 1999). Microstate duration
was found to increase in AD, whilst a novel application of Lempel-Ziv complexity
to the EEG microstate switching was found to decrease in AD. These results are
suggestive of slower, more repetitive, and less complex microstate transitions,
which likely reflects similar attributes to the switching between active brain net-
works associated with a range of cognitive domains (Lehmann et al., 1987; Michel
et al., 2001; Koenig et al., 2005b; Khanna et al., 2015; Milz et al., 2016). A key
advantage to the measure presented here is that it is independent to slowing of
neuronal oscillations in the EEG, and therefore has the potential as a biomarker
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to greatly increase the ability of the EEG to diagnose AD when combined with
measures of EEG slowing, which is discussed further in the following chapter.
Medication has in the past been shown to alter microstate statistics (Lehmann
et al., 1993; Yoshimura et al., 2007), so the mechanistic insights presented in the
manuscript may potential aid future drug development for AD.
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Chapter 6

Combining temporal scales of the
EEG for a robust predictor of AD

The work presented in this chapter was performed in collaboration with Dr George
Stothart (data acquisition), Dr Nina Kazanina (data acquisition), Dr Edoardo Bar-
vas and the San Marino Neurological Unit (data acquisition), Dr Francesco Tam-
agnini (conceptualization), Dr Jon T Brown (supervision), and Dr Marc Goodfellow
(supervision, conceptualization, methodological design). The author’s contribu-
tion to this chapter includes preprocessing and analysis of the data, methodolog-
ical design, interpretation of results, visualization of the data, and writing of the
chapter.

6.1 Introduction

Early diagnosis of AD has a wide range of clinical, social, and economic benefits
(Leifer, 2003; Dubois et al., 2016; Alzheimer’s Association, 2018), but at present,
diagnosis of AD is made at the clinical stage based on already prevalent cognitive
deterioration (Agronin, 2014). Therefore development of tools to aid in the early
or prodromal diagnosis of AD is a crucial task in dementia research.

The focus of chapters 4 and 5 was the use of EEG as a tool to understand
mechanistically the alterations to the brain’s electrical activity in AD. However,
since EEG is non-invasive, relatively inexpensive compared to functional imaging
methods such as fMRI or MEG, and is currently implemented in healthcare sys-
tems for diagnosis of epilepsy, EEG is a suitable candidate as a tool for aiding
AD diagnosis. Previous EEG studies have demonstrated potential for aiding early
diagnosis of AD (Dauwels et al., 2010; Poil et al., 2013; Nakamura et al., 2018).
However, at present no single measure is able to accurately classify early stage
AD, and hence a combination of measures containing complementary informa-
tion must be used to achieve greater classification accuracy (Poil et al., 2013;
Simpraga et al., 2017).
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The majority of studies using M/EEG to aid with diagnosis focus on spectral
and functional network measures (Dauwels et al., 2010; Maestu et al., 2019),
which are typically assessed on a time scale of the order of seconds to minutes
in order to obtain reliable estimates (Gudmundsson et al., 2007; Fraschini et al.,
2016). Such measures were studied in chapter 4. We hypothesise that by com-
bining these measures with analyses at a much finer temporal scale, namely an
EEG microstate analysis (chapter 5), novel information can be gained to improve
the ability of the EEG to classify AD. To test this hypothesis, in this chapter we
combine the spectral measure described in chapter 4, namely theta band relative
power, with the measure of microstate sequence complexity described in chap-
ter 5 to develop a classifier for AD.

An important but rarely taken step is to validate the model on an indepen-
dent data set to ensure generalizability and robustness. Whilst cross validation
of the classifier on the training set theoretically tests these properties, supervised
feature selection is often based on the full cohort resulting in overestimates of
generalizibility and robustness (Smialowski et al., 2010). Therefore it is crucial to
assess the performance of a classifier against independent data not used in fea-
ture selection (Smialowski et al., 2010). Here, the classification model is therefore
validated against a set of clinical EEG recorded by independent neurologists from
an independent and geographically distant cohort of patients.

All subjects in the development and validation of the classifier were either
healthy older adults (HOA) or had a clinical diagnosis of (early stage) AD. A
key clinical challenge in AD research is early diagnosis at the prodromal stages
(Nakamura et al., 2018), in which patients display mild cognitive impairment (MCI)
due to AD pathology but do not have dementia (Dubois et al., 2014). The ability
to differentiate between prodromal AD and MCI due to non-AD aetiologies is cru-
cial for correctly administering pharmacological intervention at the early stages to
prevent the pathological progress of the disease (Sperling et al., 2014). In this
chapter, we therefore additionally test the ability of the model to predict future
conversion to AD (within four years of EEG acquisition) on a cohort of cognitively
heterogeneous people with MCI.

6.2 Materials and methods

6.2.1 EEG acquisition
Training data

Acquisition of the training EEG was performed externally by collaborators and is
described in section 4.2.1.
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HOA AD
Age (+ SEM; years) 69 (+2) 72 (+2)
n 7 9
Male 4 3
Female 3 6

Table 6.1: Age and gender of HOA and AD cohorts in the San Marino data

Test data

All data acquisition and work described in section 6.2.1: Test data was performed
externally by collaborators’. All appropriate approvals for the procedures were
obtained from the Republic of San Marino Ethical Committee for Research and
Experimentation (Ref. 0015 SM) and the University of Exeter Medical School Re-
search Ethics Committee. Participants provided written informed consent before
participating and were free to withdraw at any time. People with AD were recruited
on a consecutive incident patient basis. Diagnosis of AD was given by neuropsy-
chologists and neurologists at the Republic of San Marino State Hospital using
neurological, neuroimaging, physical and biochemical examination and a battery
of neuropsychological tests according to the IWG-2 criteria (Dubois et al., 2014).
Age matched healthy controls were recruited from caregivers of patients and were
in normal general health and neurological and neuropsychological assessment
showed no evidence of dementing or other neuropsychological disorders. Exclu-
sion criteria were those described in the IWG-2 criteria (Dubois et al., 2014). Data
on subjects is given in Table 6.1. Resting-state EEG (19 channel, sampled at 512
Hz) was recorded from all subjects including eyes-open and eyes-closed epochs,
which were consistent accoss the two groups.

MCI data

All data acquisition and work described in section 6.2.1: MCI data was performed
externally by collaborators?. Recruitment and other procedures, including partici-
pant consent, guidelines for inclusion, and ethical approvals, were as described in
section 4.2.1. The diagnosis of MCI was given to individuals who had made a for-
mal, corroborated complaint of memory impairment and exhibited objective mem-
ory decline greater than at least one standard deviation from age and education-
appropriate norms, but who were not demented and had preserved functions of
daily living and general intellect on clinical examination. Four years following data
acquisition, dementia status was reassessed by clinical assessment. Subjects
who did not receive a dementia diagnosis during this four year period were clas-

'Data was acquired by Dr Edoardo Barvas and the Neurological Unit at the San Marino State
Hospital

2Data was acquired by Dr George Stothart (University of Bath Department of Psychology) and
Dr Nina Kazanina (University of Bristol School of Psychological Science)
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MCls MClc
Age (+ SEM; years) 80 (+2) 76 (+6)
MMSE (+ SEM) 25(+1) 26(+1)

n 7 4
Male 5 4
Female 2 0

Table 6.2: Age, gender, and cognitive data for the MCI cohort

sified as MCl-stable (MCls). Subjects who had a diagnosis of AD during the four
year period were classified as prodromal AD or MCI-converters (MClc). The re-
maining subjects (n = 14) were either unavailable for clinical follow-up, deceased,
or had a diagnosis of non-AD or mixed dementia within four years of data ac-
quisition and were excluded from the analysis. Data on MCI subjects is given in
Table 6.2. EEG acquisition is as described in section 4.2.1.

6.2.2 EEG preprocessing
Training and MCI data

Preprocessing for the training and MCI data sets is as described in section 4.2.2.
When the classifier was validated on the test data, the training data was first
spatially downsampled to the same 19 channels as the test data and temporally
downsampled to 512 Hz using linear interpolation and the classifier was retrained
on this downsampled training data.

Test data

For 14 of the 16 test subjects, EEG data was sampled at 512 Hz. Data for the
remaining two subjects was sampled at 128 Hz and resampled to 512 Hz using
linear interpolation. For all subjects, data was recorded with 19 electrodes in the
standard 10-20 format. Epochs of eyes open data at least 20 seconds in length
were manually extracted from the full EEG recordings. These epochs were then
processed with TAPEEG to identify a single optimal 20 second epoch of resting
state data per subject (Hatz et al., 2015b). These epochs were then preprocessed
as described in section 4.2.2.

6.2.3 EEG analysis

Two features were extracted from the data for each subject; namely the theta
relative power (6RP) and microstate complexity (C'). 6RP and C were calculated
as described in sections 4.2.4 and 5.2.3 respectively. These two features were
chosen as biomarkers for AD based on the results of chapters 4 and 5. Note
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HOA(train) AD(train) HOA(test) AD(test) MCls MClc

HOA(train) 0.1695 0.0338 0.1720 0.1781  0.6238
(0.3339) (0.1015) (0.3339) (0.3339) (0.6743)
AD(train) 0.0155 0.0233 0.9364 0.2346
(0.1015) (0.1015) (0.9364) (0.3911)
HOA(test) 0.4191  0.0338 0.4909
(0.5714) (0.1015) (0.6136)
AD(test) 0.0194 0.6294
(0.1015) (0.6743)
MCls 0.2909
(0.4364)

MClc

Table 6.3: p-values for pairwise comparisons of the six cohorts for age. Un-
corrected p-values are reported, with false discovery rate corrected p-values in
brackets accounting for multiple hypotheses.

that for calculation of C', data was first bandpass filtered into the 1-30 Hz band
as described in chapter 5. All analyses were performed in sensor space, so no
cortical source localization was performed prior to calculation of 6RP.

6.2.4 Classification

Classification models were built using a binary support vector machine (Christian-
ini and Shawe-Taylor, 2000), implemented in Matlab’s function ‘fitcsvm’ (https:
//uk .mathworks.com/help/stats/fitcsvm.html). The box constraint and kernel
scale were optimized, whilst all other parameters were set to default. All clas-
sification rates, sensitivities, and specificities reported for the training set were
calculated using 10-fold cross validation, whilst the full training set was used to
build the classification model which was tested on the test and MCI data sets.

6.3 Resulis

6.3.1 Participant demographics

Participant demographics are given in Tables 4.1, 6.1, and 6.2. Across the six
cohorts (HOA training / AD training / HOA test / AD test / MCls / MClc), there was
a significant effect of age (x? = 12.63, p = 0.0271, Kruskal-Wallis test). Pairwise
Mann-Whitney U-tests demonstrated that the HOA test cohort was different to the
HOA training, AD training, and MCls cohorts at a level of p < 0.05. Additionally,
the AD test cohort was different to the AD training and MCls cohorts at a level
of p < 0.05. However, following correction for multiple hypotheses, no differences
were significant. The p-values for all pairwise comparisons of age are given in
Table 6.3.
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HOA(train)  AD(train) MCls MClc

HOA(train) 1x107" 3x10~* 0.0138
(7x10"7) (0.001) (0.0207)
AD(train) 0.0032  0.0253
(0.0065) (0.0304)
MCls 0.7939
(0.7939)

MClc

Table 6.4: p-values for pairwise comparisons of the South West of England
cohorts for MMSE score. Uncorrected p-values are reported, with false discov-
ery rate corrected p-values in brackets accounting for multiple hypotheses.

C 6RP (C+6RP
CR 68.1 72.3 85.1
Sens. 61.9 66.7 81.0
Spec. 73.1 76.9 885

Table 6.5: Classification statistics from EEG measures in the training set.
Classification rate (CR), sensitivity (Sens.), and specificity (Spec.) for SVM clas-
sification models using EEG measures as predictors. Measures are given as
percentages. Statistics were derived using 10-fold cross validation and a binary
SVM classifier.

Mini-mental state examination scores were available for the data collected in
the South West of England, namely the HOA training / AD training / MCls / MClc
data. Across thse four cohorts, there was a significant effect of MMSE score
(x? = 37.35, p = 3.89x10~®). Pairwise testing found that, with the exception of MCI
stable vs converters, there were differences in MMSE scores between all pairs of
cohorts to p < 0.05. These results remained significant following correction for
multiple hypotheses. The p-values for all pairwise comparisons of MMSE are
given in Table 6.4.

6.3.2 Microstate complexity and theta relative power are ro-
bust and generalizable biomarkers of AD

We first applied the neurophysiological biomarkers of AD identified in the previous
chapters for aiding diagnosis of AD. A support vector machine (SVM) classifier
was built combining 6RP and C, and 10-fold cross validated on the training data
set (Figure 6.1A). Table 6.5 shows statistics for this classifier. Classification rate,
sensitivity, and specificity were all greater than 80%, with a classification rate of
85.1%.

For comparison purposes, we also studied SVMs using each measure inde-
pendently as a feature, also shown in Table 6.5. 6RP had higher classification
rate, sensitivity, and specificity than C, but all statistics were notably lower in
either one-feature model than the combined model, supporting the hypothesis
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Figure 6.1: Methodology for building and testing the classifier. (A) Training
data (RG: 64 channel, 1 kHz sampling rate) was used to build and optimize a
classification model based on C and 6RP. The model was 10-fold cross validated
to assess performance. (B) Independent test data (clinical grade: 19 channels,
512 Hz sampling rate) was used to assess generalizability and robustness of
the model. First, the training data was spatially and temporally downsampled to
clinical grade and the model retrained for clinical grade data. Then the test data
was assessed by the trained model and the prediction of the model compared to
clinical diagnosis. (C) MCI data (RG) was additionally assessed by the trained
RG classification model. Prediction of the models were compared against the
patients’ dementia status four years following EEG acquisition. Abbreviations:
RG, research grade; C, microstate LZC; ORP, theta band relative power; MCI, mild
cognitive impairment; CR, classification rate; Sens., sensitivity; Spec., specificity;
MClc, MCI converters to AD; MCls, MCI stable non-demented.
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Figure 6.2: SVM regions for the 6RP+C classifier. The SVM predictor classifier
points within the pale red region as AD and points within the gray region as HOA.
(A) Training data set overlaid on 64 channel model. (B) Test data set overlaid on
19 channel classifier model (trained to the training set downsampled spatially and
temporally). (C) MCI data set overlaid on 64 channel model. All models were
trained on the data set shown in A. Blue circles in A show the support vectors for
training in the 64 channel model.

Test data MCI data

CR 81.3 90.9
Sens. 88.9 100
Spec. 71.4 85.7

Table 6.6: Classification statistics from EEG measures in the test and MCI
data sets. Classification rate (CR), sensitivity (Sens.), and specificity (Spec.)
for SVM classification models using EEG measures as predictors. Measures
are given as percentages. Statistics were derived using a binary SVM classifier
trained to the training data set.

that use of two measures on separate time scales can increase the accuracy of
classification. Figure 6.2A shows each subject in the (6RP,C') plane, overlaid on
predictions of the classifier for all of this space.

Whilst the use of 10-fold cross validation and a small number of features en-
sures the model is not overfit to the data, feature selection was based on group
level statistics of the full training set. This means a true independent data set
must be used to ensure that the model is generalizable and robust (Smialowski
et al., 2010). We therefore tested the C+8RP model on an independent and geo-
graphically distinct cohort of data (Figure 6.1B). Table 6.6 shows the classification
statistics for this model, whilst Figure 6.2B shows the locations of subjects in the
(6RP,C) plane. 13/16 of the test subjects were correctly classified, with high sensi-
tivity (8/9 AD patients correctly classified) and high specificity (5/7 HOA subjects
correctly classified). These results suggest the C+6RP classifier is robust and
generalizable to clinical data sets with lower spatial and temporal resolution than
research grade EEG, as well as geographically generalizable.
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6.3.3 Using the classifier to predict future progression to AD

We next tested the prognostic value of the classifier. EEG from a cohort of people
with MCI was tested on the trained model, and classified as HOA or AD by the
classifier. This classification was compared to the dementia status of the patients
four years following data acquisition (Figure 6.1C). The location of each subject
in the (BRP,C) plane is shown in Figure 6.2C. Four of the four subjects who con-
verted to AD (MClc) were classified as AD by the model, whilst six of the seven
subjects who did not receive a dementia diagnosis in the four years following EEG
acquisition (MCls) were classified as HOA. One subject from the MCls cohort was
incorrectly predicted to have an AD diagnosis. Therefore the model correctly pre-
dicted the four year diagnosis of 10/11 people with MCl in this preliminary cohort
(90.9% classification rate). These results are summarised in Table 6.6. A crucial
point of note is that there was almost no differences in MMSE score between the
MCls and MClc cohorts (Tables 6.1 and 6.4), suggesting that these patients were
cognitively heterogeneous at the time of data acquisition.

6.4 Discussion

One of the key motivations for use of EEG microstates to study AD was due to
a much finer temporal resolution (Koenig et al., 1999) than spectral and func-
tional network analyses (Gudmundsson et al., 2007) often performed on EEG.
We hypothesised that by combining temporal scales in a classifier, additional in-
formation could be gained for improved classification. Indeed, we found that by
combining results from chapter 4 (theta band relative power; 6RP) with results
from chapter 5 (microstate LZC; C), classification rate, sensitivity, and specificity
in the training set were greatly increased compared to using these measures
alone.

A crucial methodological step was choice of the features 6RP and C'. Altered
spectral features have been consistently reported in the EEG of people with AD
(Babiloni et al., 2016) and has been identified as a powerful tool for classification
of AD from the EEG (Adler et al., 2003; Lindau et al., 2003; Poil et al., 2013; Hatz
et al., 2015a; Wang et al., 2015; Simpraga et al., 2017). In chapter 4, 6RP was
identified as a spectral measure which is able to separate AD patients from HOA
patients with large effect size. In chapter 5, both C' and mean microstate duration
were identified as biomarkers of AD. C' was chosen over mean microstate dura-
tion as a complementary biomarker for two reasons. Firstly, in chapter 5, C' was
able to separate AD and HOA with a much larger effect size than microstate du-
ration. Secondly, microstate duration is potentially dependent on the frequency of
neuronal oscillations (von Wegner et al., 2017), suggesting that mean microstate
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duration may not be orthogonal to 6RP. Whilst theta-band functional networks
were also identified as a biomarker of AD in chapter 4, functional network mea-
sures are dependent on the size of the network (Joudaki et al., 2012), suggesting
that clinical EEG montages may give different results to the higher density re-
search grade montage presented in chapter 4.

A key advantage to this study was testing the classifier on an independent
test cohort to ensure generalizability and robustness. Whilst cross validation of
the classifier on the training set theoretically tests these qualities, supervised fea-
ture selection was based on group statistics of the full training cohort, meaning
cross validation is likely to overestimate the generalizability and robustness of
the model (Smialowski et al., 2010). Therefore it is crucial to assess the perfor-
mance of the classifier against independent data not used in feature selection
(Smialowski et al., 2010). In this data set, the model was validated against a set
of clinical EEG recorded by independent neurologists from an independent and
geographically distant cohort of patients. Not only did this serve as validation of
the model against an independent test set, it demonstrated that whilst features
were chosen based on research grade EEG with high spatial and temporal re-
sultion (64 channels, 1 kHz sampling rate), the model was generalizable to lower
resolution clinical EEG (19 channels, 512 Hz sampling rate). This suggests that
the model is potentially useful in a clinical setting.

A key clinical challenge in AD is early diagnosis at the prodromal stages
(Nakamura et al., 2018). All subjects in the training data set were free from
dementia related medications and EEG was recorded within days of diagnosis,
suggesting this data is useful for diagnosis of early stage AD. To test whether this
data could be used to aid with prodromal diagnosis (i.e. whether patients with mild
cognitive impairment due to an AD aetiology had EEG similar to those with early
stage AD), EEG from a test set of four MCI patients who converted to AD within
four years of data collection was run through the classification model. All four
subjects were classified as AD patients by the classifier, giving 100% specificity.
Additionally, we found that patients with MCI who did not receive an AD (or other
dementia) diagnosis within four years of data acquisition were mostly (for six out
of seven patients) classified as healthy in the model. It is important to note that
there were no differences in cognitive test scores between these patients, and all
patients within this group were classified as MCI following a battery of cognitive,
neuroimaging, and biochemical tests, suggesting that EEG could be a powerful
tool for identification of AD aetiology in MCI. However, it should be stated that this
cohort was small, so whilst these results are promising, future work is required to
validate these results on a larger cohort.
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Chapter 7

General discussion

7.1 Summary of key findings

In this thesis, we have studied how the dynamics of the brain are altered in clini-
cal Alzheimer’s disease and experimental models of related pathologies to under-
stand mechanisms underpinning AD and develop electrophysiological biomarkers
for aiding early diagnosis. The key findings of this thesis are summarised below.

In chapter 2, a biophysical model of layer Il medial entorhinal cortex stellate
cells (MEC-SCs) was used to uncover the ionic mechanisms underpinning clus-
tered AP firing patterns observed electrophysiological data. mEC-SCs are crucial
for spatial navigation and memory (Tennant et al., 2018), which are known to
be impaired in clinical AD (Lithfous et al., 2013; Allison et al., 2016) and animal
models featuring AD pathologies (Ramsden et al., 2005; Yue et al., 2011; Black-
more et al., 2017; Fu et al., 2017). Booth et al. (2016a) identified alterations to
the clustering dynamics of mEC-SCs in the rTg4510 animal model of tauopathy,
motivating our use of a biophysical neuron model to understand the underpinning
ionic mechanisms.

By performing a bifurcation analysis on the deterministic formulation of the
model, we found that the clustering dynamics in the stochastic model were due
to noisy perturbations on a deterministic burster. Bursting was of the fast-slow
subHopf/homoclinic type (Izhikevich, 2000) with the persistent sodium and slow
A-type potassium currents driving the slow dynamics. Alterations to the AHP and
h-currents were sufficient to alter the clustering dynamics by changing the num-
ber of spikes per cluster via flip bifurcations, or into tonic firing or resting regimes.
Experimental data suggested that there were no changes to the h-current but an
increase in AHP amplitude in the rTg4510 animals (Booth et al., 2016a), so we
concluded it was likely (based on inspection of realistic dynamic regimes) that
reductions in the proportion of clustered APs in rTg4510 mEC-SCs (Booth et al.,
2016a) arose due to increased conductance of the AHP current driving the un-
derlying dynamics through a flip (spike-subtracting) bifurcation. An independent

167



General discussion

model validation was the finding that the model additionally displayed theta (4-12
Hz) range subthreshold resonance in realistic AP firing regimes, which is in line
with experimental data (Alonso and Klink, 1993).

In chapter 3, functional connectivity was analysed from multi-scaled electro-
physiological data recorded in the CHMP2B™°"™ model of frontotemporal de-
mentia which exhibits neurodegeneration, synaptic loss, and behavioural impair-
ments. Within a region of the brain (whisker barrel cortex), local functional net-
works had a significantly increased average synchrony and synchronizable topol-
ogy. Conversely, macro-scale functional networks derived from skull-screw EEG
electrodes placed at six locations on the cortex demonstrated a reduction in syn-
chrony, particularly in the frontal electrodes. A computational model of the mouse
brain was used to study potential interplay between macro-scale and local syn-
chrony. Whilst regimes did exist in which an increase in local coupling alone could
explain reductions in macro-scale synchrony, the simulated EEG signals in these
regimes exhibited unrealistic signal-to-noise ratios suggestive of locally hypersyn-
chronous delta band activity that did not reflect the data. In regimes with more
realistic dynamics, increases in local coupling resulted in increases in macro-
scale synchrony. We therefore suggested that white matter impairments in these
transgenic animals (Ghazi-Noori et al., 2012) reduced the long range coupling in
the network and observed increases in local functional connectivity are potentially
a compensatory mechanism by which long range functional connectivity may be
restored (Abuhassan et al., 2014).

Chapter 4 studied EEG recorded from human AD patients. Compared to con-
trols, the AD patients exhibited increases in slow spectral power and decreases
in fast power, with largest effect size in the theta frequency range. This spectral
slowing was spatially heterogeneous, most predominantly affecting the frontal
and parietal cortices. Functional networks had reduced small-worldness, sug-
gesting less efficient topology for information transfer through the network. In
the AD patients, small-worldness correlated with general MMSE scores and the
language subscore. Interestingly, an analysis of local properties of the functional
networks attributed the reduced small-worldness to decreased closeness central-
ity of the temporal lobes, one of the regions of the brain responsible for language
processing. To ensure that heterogeneous spectral slowing, a potentially local
mechanism, was not solely responsible for these spatially distributed alterations
to the functional network, a computational model of the whole brain was used.
We found that slowing alone could not replicate alterations to the functional net-
work structure, but reduced effective connectivity between the temporal lobes and
rest of the brain was sufficient to accurately describe the empirical data. When
combined, these results suggest that loss of synaptic connectivity between the
temporal lobes and the rest of the brain is a potential mechanism by which cog-
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nitive impairment, specifically language deficiencies, arise in AD.

Alterations to EEG microstates in AD were next studied in chapter 5. The to-
pography of canonical class D, which is related to the frontoparietal working mem-
ory/attention network (Britz et al., 2010), was found to be altered in AD. Cortical
source localization suggested these alterations were due to reduced activation of
the parietal lobe in class D. The duration of microstates significantly increased
in AD, which may be related to the slowing of neuronal oscillations identified in
chapter 4 (von Wegner et al., 2017). Finally, whilst no alterations were found to
the Markovian transitioning matrix between AD and HOA, a novel application of
the LZC algorithm identified less complex transitioning (i.e. more repetitive, with
fewer distinct sequences of transitions).

Finally, chapter 6 combined the electrophysiological biomarkers of AD identi-
fied in chapters 4 and 5 to build a predictive classifier for AD. The data set studied
in chapters 4-5 was used to train a model using theta band relative power (6RP)
and microstate LZC (C') as features, which had a classification rate of 85% when
10-fold cross validated on the training set. An independent and geographically
distinct set of clinical EEG was used as a test set to validate the classifier and
test generalizability and robustness. The accuracy of the classifier on the test set
remained high, with classification rate of 81%. In a small preliminary cohort of
11 MCI patients, the classifier was additionally able to predict whether a patient
would convert to AD within four years of EEG acquisition accurately for 10/11 pa-
tients (91% accuracy), suggesting the EEG is potentially a powerful prognostic
tool.

7.2 Limitations and future work

7.2.1 Bridging the gap between experimental model and clin-
ical disease

This thesis was structured in two parts; chapters 2-3 studied rodent models of
dementia pathologies, whilst chapters 4-6 studied clinical AD in humans. Trans-
lational research is crucial for fully uncovering the mechanisms of Alzheimer’s
disease and development of treatments and therapies. An example relevant to
this thesis is impaired orientation to space in human AD (Lithfous et al., 2013;
Allison et al., 2016), which can lead patients into unsafe situations due to the
tendancy to get lost and wander (Jones, 2017). Due to the deep localization
of the spatial navigation networks in the brain, recording of spatially modulated
grid cell or place cell activity requires invasive depth electrodes (Ekstrom et al.,
2003; Jacobs et al., 2010, 2013), presenting a challenge for understanding the
neuronal mechanisms underpinning impaired orientation to space in human AD
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and electrophysiological effects of pharmacological interventions. However, an-
imal models provide the opportunity to study the effect that pathologies related
to AD have on spatial navigation systems (Booth et al., 2016a; Fu et al., 2017;
Tait et al., 2018), potentially leading to future development of targeted pharma-
cological interventions to counteract these alterations to neuronal dynamics and
eventually treat impairments to spatial orientation in human AD.

Chapters 4-5 identified a number of electrophysiological biomarkers of AD in
humans, which are likely apparent even in the prodromal stages of the disease
(chapter 6). A focus of this work was to correlate electrophysiological changes
with cognitive dysfunction. Future work should involve the use of animal models
to futher understand the biophysical mechanisms underpinning these biomarkers,
with aims towards development and testing of interventions at the early or prodro-
mal stages of AD to treat or slow the progression of cognitive impairment. Many
of these biomarkers are constructed from whole brain dynamics (e.g. functional
networks, microstates), so a first step may be the use of high-density extracra-
nial microarray EEG combined with source reconstruction (Lee et al., 2013), as
opposed to low resolution invasive EEG such as the data presented in chap-
ter 3. Such data could allow for whole brain functional connectivity studies in
rodents which replicate those performed in humans in this thesis. Furthermore, it
is currently unclear whether rodents exhibit EEG microstates, so this could be an
avenue for future work. Invasive recordings could supplement this work, acting
as validation of source reconstruction and to study local mechanisms.

7.2.2 Extensions to multi-modal research

A primary focus of this thesis was the use of EEG to characterize alterations to
neuronal dynamics in clinical AD. Future work should involve integrating the EEG
with a range of other data sets including neuropsychological test scores, fluid
biomarkers, structural/diffusion neuroimaging, and other functional neuroimaging
modalities to obtain more accurate results and more mechanistic insight into the
disease (as discussed below).

The absence of individual structural MRIs was a key limitation of chapter 4
(and was discussed in detail in section 4.4.1), since it is unclear what the effects
of aging and cortical atrophy in AD have on the accuracy of the source recon-
struction. Combining the EEG with structural MRI is a method to avoid this issue.
Furthermore, volumetric or surface based analyses of the structural MRI can be
used to quantify the degree of atrophy in the brain in AD patients (Frisoni et al.,
2009). An analysis which may be of interest to AD research combining these
results with the EEG would be to study the effects of localized atrophy on whole
brain neuronal dynamics, for example either through correlation analysis of re-
gional EEG statistics and regional atrophy, or through the use of computational
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models to simulate dynamics with atrophy (e.g. reductions in coupling parame-
ters (de Haan et al., 2017)) at nodes proportional to the regional atrophy of those
nodes. Additionally, by simulating brain dynamics on individual (potentially at-
rophied) brains and forward mapping to the EEG, then source reconstructing to
a template, errors in the source reconstruction due to atrophy can be studied.
Diffusion and functional MRI can additionally be used to generate more accurate
source reconstructions and computational models, for example as prior estimates
for source localization algorithms (Ou et al., 2010) or model parameterization
(Schirner et al., 2015; Dermitas et al., 2017). These are all potential avenues for
future work.

Many of the results of this thesis relied on computational models of neuronal
dynamics. Wherever possible, results of computational models should be vali-
dated against experimental data, highlighting the importance of multiple imaging
modalities. Modelling results may be used to inform future experiments for model
validation; examples motivated by this thesis include the use of dynamic clamp to
validate our model predictions that alteration to the AHP in entorhinal cortex stel-
late cells affect clustering dynamics, and the collection of diffusion weighted imag-
ing to test model predictions that the temporal lobes are effectively/structurally
becoming disconnected in people with AD.

Multi-modal research can give greater mechanistic insight than uni-modal ap-
proaches. In chapter 4, EEG was combined with neuropsychological cognitive
test scores to gain insight into possible relationships between functional discon-
nection and cognitive impairment in AD. As discussed above, correlations be-
tween graph theoretical/spectral/microstate statistics and regional atrophy as-
sessed by structural MRI analyses could give insight into the extent to which
atrophy can explain these alterations to dynamics. Furthermore, correlation anal-
ysis with PET or CSF biomarkers for tau and amyloid beta can give insight into
how the different pathologies related to AD mediate the alterations to neuronal
dynamics seen in the EEG of AD patients. This extension of the analysis to mul-
tiple modalities is an avenue for future work, and at present we are working with
collaborators at the San Marino State Hospital Neurological Unit to collect and
analyse EEG, MRI, CSF biomarker, and broad neuropsychological assessments
of healthy controls, people with AD, and people with MCI.

Combining multiple experimental conditions in a single imaging modality can
additionally give greater insight into the mechanisms underpinning AD. For exam-
ple, the focus of this thesis (chapters 3-6) has been resting state EEG. Stothart
et al. (2016) demonstrated that visual evoked potentials (VEPs) are altered in AD.
Using the dynamical systems and source space reconstruction approaches ap-
plied in this thesis, combined with more biophysically realistic neural mass models
(section 1.6), future work will study how meso-scale network dysfunction (Fig-
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ure 1.1) underpin these alterations to VEPs. There is additionally potential to
apply parameters of such models as a biomarker for AD to gain additional di-
agnostic accuracy, and to correlate these meso-scale network parameters with
features of the resting state data such as spectral slowing to gain deeper insight
into the local mechanisms underpinning spectral slowing which were not biophys-
ically modelled in chapter 4.

Multi-modal analysis in experimental rodent models can additionally be used
to gain insight into the relationship between single cell dynamics and network dy-
namics, which are often not accounted for in detail in neural mass models. An ex-
ample motivated by this thesis is uncovering the role of action potential clustering
in mMEC-SCs in generating theta nested gamma rhythms and grid cell firing. This
will involve development of a low dimensional model which qualitatively captures
the clustered AP dynamics of mEC-SCs such as the Izhikevich neuron (Izhike-
vich, 2007; Hasslemo and Shay, 2014) and simulation of large scale networks of
neurons to observe the LFP. In rodent models of tauopathy, theta nested gamma
and grid cell firing are disrupted (Booth et al., 2016a; Fu et al., 2017), so a key
question is whether the alterations to single cell dynamics in tauopathy studied
in chapter 2 or synaptic deficits are reposible for these alterations. An alterna-
tive approach to simulating a large network of neurons is to use a neural mass
model for tractable bifurcation analysis; for example, use of a mean-field model
of networks of Izhikevich neurons (Visser and Van Gils, 2014) which can capture
mEC-SCs dynamics (Izhikevich, 2007; Hasslemo and Shay, 2014). This work
can give crucial insight into the mechanisms underpinning impaired orientation to
space in people with AD.

7.2.3 Brain dynamics as a clinical biomarker of AD

In chapter 6, we focused on using the dynamics of the EEG as a tool for aiding
diagnosis of AD and as a prognostic tool for people with MCI. Whilst the results
were promising, the analyses were performed in reasonably small preliminary
cohorts of data. A crucial extension for future work is therefore demonstrating
success in larger clinical cohorts. The prognostic analysis in people with MCI
compared the results of the model to clinical follow-up at a single time point, so
an additional extension for this work should be to perform longitudinal data acqui-
sition with regular clinical assessment such that the limitations of the prognostic
value of brain dynamics as a clinical biomarker of AD can be explored.

A consideration for any potential clinical biomarkers is cost. Whilst EEG is
relatively inexpensive compared to fMRI, PET, or MEG (Crosson et al., 2010)
and is currently implemented in healthcare systems for the diagnosis of epilepsy
(Smith, 2005), it is costly in comparison to neuropsychological and cognitive tests
such as the MMSE. Therefore an EEG based biomarker must have value over
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cognitive test scores that justify the additional cost. Indeed, in chapter 6 we
showed that our biomarker had prognostic value for cognitively homogeneous
(as quanitified by MMSE score) people with MCI. Furthermore, relatively inex-
pensive commercial EEG headsets can potentially be used to lower the cost of
EEG recordings (Stamps and Hamam, 2010). However, it is important that ac-
curacy of the biomarkers be maintained when using these commercial headsets.
Future work will involve quantifying the extent to which commerical Emotiv EEG
headsets (www.emotiv.com) replicate the results of research and clinical grade
EEG to assess viability of these headsets as a biomarker for AD. Alternatively,
task related EEG may require fewer electrodes to record localized evoked poten-
tials, so future work will additionally involve the study of visual evoked potentials
which are known to change in AD (Stothart et al., 2016).

As discussed above, at present we are working with collaborators who are
collecting EEG, MRI, tau and amyloid CSF biomarkers, and neuropsychological
assessments. Future work should involve combining these various modalities
to increase diagnostic accuracy and explore which modalities have the greatest
diagnostic/prognostic value. Additionally, future work will include longitudinal col-
lection and analysis of data to study the progression of AD.

7.3 Conclusions

Computational modelling and analysis of electrophysiological data on multiple
spatial scales is a powerful tool for understanding the mechanisms underpinning
cognitive impairment in AD. In this thesis, we have uncovered ionic mechanisms
underpinning alterations to single cell dynamics in the spatial navigations systems
of the brain in a rodent model of dementia pathology, and future work should in-
volve exploring the relationship between these single cell dynamics and network
dynamics. Furthermore, we studied the relationship between local and whole
brain functional networks in a rodent model of neurodegeneration to demonstrate
how synaptic degenerations on multiple spatial scales manifest in terms of in-
tegration between the brain’s processing systems. We uncovered alterations to
whole brain dynamics recorded by EEG. These alterations include spectral slow-
ing, reduced small-worldness of the brain’s functional networks, and changes to
the EEG microstates in people with AD, and that EEG is a useful tool for aiding
with early and prodromal diagnosis of AD. The primary focus of future work should
be integrating this resting state EEG with task related EEG (e.g. VEPSs), imaging
modalities, CSF biomarkers, and neuropsychological assessment to gain further
insight into AD, increase diagnostic and predictive accuracy of models, and serve
as validation of computational modelling results.
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