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ABSTRACT 

There is a growing practical interest in the ability to increase the sea states at which marine operations 

can be safely undertaken by exploiting the quiescent periods that are well known to exist under a wide 

range of sea conditions. While the actual prediction of quiescent periods at sea for the control of 

operations is a deterministic process, the long term planning of future maritime tasks that rely on these 

quiescent periods is a statistical process involving the anticipated quiescence properties of the forecasted 

sea conditions in the geographical region of interest. It is in principle possible to obtain such data in 

tabular form either large scale simulation or from field data. However, such simulations are 

computationally intensive and libraries of appropriate field data are not common. Thus, it is clearly 

attractive to develop techniques that exploit standard wave spectral models for describing the quiescence 

statistics directly from such spectra. The present study focuses upon such techniques and is a first step 

towards the production of a computationally low-cost quiescence prediction tool and compares its 

efficacy against simulations. Two significant properties emerge for a large class of wave spectral models 

that encompasses the ubiquitous Neumann and Pierson Moskowitz or Bretschneider forms. Firstly, the 

auto-correlation function of the wave profile that are required to produce the quiescence property can be 

obtained analytically in terms of standard special functions. This considerably reduces the computational 

cost making desktop computer-based planning tools a reality. Secondly, for each class of these parametric 

spectra, the probability of a given number of consecutive wave heights (normalised to the significant 

wave heights) less than some critical value is in fact independent of absolute wave height. Thus, for a 

broad class of practically interesting wave spectra all that is required to obtain the statistical distribution 

of the quiescent periods is simple rescaling.   

Keywords - Deterministic sea wave prediction (DSWP), quiescent period prediction (QPP), wave runs.   

1. Introduction 

There is a rapidly growing applications interest [1] – [3] in the ability to exploit the successions of 

small waves, termed quiescent periods (QPs) that are well known to exist in otherwise large seas. The 

ability to deterministically predict such QPs even a few tens of seconds into the future offers the prospect 

of allowing a marked increase in the sea states under which a variety of maritime operations can be safely 

performed. As the short-term deterministic prediction of sea waves and its applications is a new field in 

applied oceanography it is sensible to briefly describe the basis of the technique and to provide illustrative 

applications. This is especially important because the time-scales of interest are tens of seconds which 

would appear as trivially short and of no practical value in traditional oceanographic terms. 

The underpinning new discipline behind quiescent period prediction (QPP) is termed Deterministic 

Sea Wave Prediction (DSWP) [4] – [7]. This should be distinguished from the more conventional 

statistical description of sea waves. DSWP involves firstly measuring the sea surface profile over a region 

around the site of interest out to a few km distant, typically using the new generation of wave profiling 

radars [6,7]. The resulting two dimensional wave data sets are then used as the initial condition for a wave 

propagation model. The predict-ahead time available is given by the time taken for the measured waves to 
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propagate from the measured location to the prediction site, typically 30 to 120 seconds. Given that all the 

calculations involved must be completed in times short compared to this predict ahead period, the wave 

models used in DSWP are usually linear. Non-linear DSWP [8] is only viable in real time for highly one 

dimensional seas. As discussed in the DSWP literature, e.g., [4,5], this linear constraint is less restrictive 

than might appear and allows useful exploitation of the technique. The main aim of DSWP is in 

predicting the quiescent periods, i.e., runs of successive waves less than some critical height. Such QPs 

can be thought of as a generalisation of the phenomenon of beats; and for moderately narrow-band 

phenomena like fully developed sea waves, the duration of these periods is approximately inversely 

proportional to the bandwidth of the wave spectrum. This is a useful property because for the reasonably 

well developed seas that are of most relevance in DSWP based applications the bandwidth reduces with 

increasing size of the wave system, so larger seas where QPP is of most value exhibit increasingly longer 

QPs.  

The short prediction horizon of DSWP, and hence QPP, is useful because there are many lengthy 

marine operations where the sub-task which sets the acceptable limiting wave height is actually of very 

short duration, often prolonging this sub-task rapidly increases risk. Many such applications involve 

choosing the best time to initiate this wave-height-critical phase of the overall operation. Examples are: 

cargo hoists from a vessel to a fixed offshore platform (when to start hoisting), recovery of a helicopter 

(when to land from the over–deck hover), the final critical stages of recovery of remotely operated small 

submersibles vehicles (when to hoist over the vessel side) and the final connect and lift stages of 

recovering a small surface craft onto a mother-ship. Most of these tasks involve either stationary vessels 

under dynamic positioning control or vessel moving at low speed. This means that encounter frequency 

effects are relatively insignificant and can typically be ignored, the main significance of ship motion 

being changes in the location of the prediction site during the propagation duration of the waves from 

where they are measured to the prediction site.    

  Thus, for QPP to be of practical value, two aspects are required. The first is knowledge of the 

statistical properties of QPs, i.e. knowledge of the probability of QPs under the anticipated or prevailing 

sea conditions. This is a vital operational forward planning requirement because clearly one cannot rely 

on exploiting QPs if they have a very low probability of occurrence and have durations that are too short 

to be useful. The second aspect is the deterministic side of QPs, i.e. the DSWP described above, which 

provides the ability to deterministically predict at sea in real time when they will actually occur and what 

their durations are.  

Any vessel wishing to exploit QPP will of necessity be equipped with vessel motion sensors and 

clearly just prior to executing a mission it is a simple matter to continuously measure the statistics of QPs 

of the vessel (which is the actual operational requirement rather than merely the QPs of the wave system). 

However, to produce reliable estimates, a long observation window is required especially for the low 

probability events of long QPs. Additionally, a major benefit stemming from the availability of QPs 

information is its use in future mission planning. Consequently it would be highly desirable to be able to 

describe QPs statistics far in advance of the proposed maritime operation for the typical sea 

characteristics for the regions and seasons of interest.  
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Apart from the direct empirical determination of the statistical distribution of QPs at sea at the time of 

interest there are three further possible approaches to obtain the statistics of QPs. The first is a semi-

analytical technique where mathematical models of the power spectral density of the sea type are 

employed in conjunction with analytic statistical models of the bivariate successive wave heights 

probability distributions. In this case somewhat surprisingly the bulk of the computations can be 

accomplished analytically producing a computationally cheap approach. The analysis employed in 

developing this semi-analytic approach will be shown to reveal that for a wide class of wave spectra the 

probability distribution of QPs is independent of wave absolute wave height. This property enables 

further reduction in the computational costs associated with the technique. The second approach to 

determining the probabilities of QPs is to use purely empirical models of the wave power spectral 

densities. In this case all of the necessary computations are performed numerically. This method is clearly 

broader in the scope of sea conditions it can deal with but it is more computationally intense than the 

semi-analytic method. The third methodology is to collect data from a large scale sea simulation based 

numerical experiment. This is even more computational intensive than the second methodology described 

above. The present report deals with the semi-analytic approach which also provides the mathematical 

basis for the second (numerically evaluated) approach. The latter methodology is the subject of a 

companion communication.  

It transpires that the general background theory required has been extensively covered in what are in 

the main rather mature publications dating from the 1960’s to the 1980’s dealing with statistical wave 

theory. However, the predominant practical motivation which drove such research was in the 

complementary problem, i.e., sequences of consecutive large rather than small waves. The present 

treatment will explore the most appropriate results from this literature, modifying and extending these 

where necessary, and applying the results obtained to the problem of producing the properties of QPs 

based upon typical spectral wave models. 

2. Runs Theory for Sea Waves 

In statistical terms a run is a sequence of outcomes that all share some property, in this case waves 

either greater than or less than some critical value ℎ𝑐. For entirely obvious engineering reasons the 

majority of the previous research interest has been focussed on sequences of consecutive large waves 

which are typically termed, High Runs.  The simplest approach to modelling runs of sea waves was 

developed by Goda [9] who assumed that consecutive waves are statistically independent. As alluded to 

above Goda’s work concentrated upon what at the time was the most important case i.e., High Runs. 

However using Goda’s formalism a Low Run, of length j can be represented in the following manner: the 

run commences with a first wave having an height less than ℎ𝑐,  which has a probability of  𝑝(ℎ𝑐), and 

ends with a wave of height more than ℎ𝑐, which has a probability of  1 − 𝑝(ℎ𝑐). Thus, the probability 

𝑃𝑗(ℎ𝑐) of such a low run , which is j waves long, is simply given by: 

𝑃𝑗(ℎ𝑐) = 𝑝𝑗(ℎ𝑐)[ 1 − 𝑝(ℎ𝑐) ]                                                                                  1  

Equation (1) is evaluated using the standard Rayleigh marginal probability distribution for wave heights. 

Goda’s simple approach ignored the short term correlations that are well known to typically exist over up 
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to three “half waves” ahead [10] – [12]. This prompted two more sophisticated approaches in the 

literature to describe the runs statistics of sea waves. One class of technique termed Wave Envelope 

methods was based directly upon Rice’s work [13,14], on narrow band random signals. This area was 

reviewed in [15] and is essentially a signal processing technique that endeavours to model the properties 

of narrow band stochastic processes in terms of generalised amplitude modulation (i.e., envelopes). It 

relies on the simple property that any dynamical system whose frequency response function is localised 

around the frequency 𝑓0 with a spread 𝛿𝑓0 where, 𝛿𝑓0/𝑓0 ≪ 1, is capable of exhibiting oscillatory 

behaviour at frequencies close to, 0f , which is modulated by an envelope that fluctuates over timescales 

of the order of 1/𝛿𝑓0.   This envelope reflects the statistical dependence that affects runs. For sea waves 

the bandwidth is measured by the parameter 𝑣 = √(𝑚0𝑚2/𝑚1
2) − 1, where the 𝑚𝑖 is the 

thi  moment of 

the power density spectrum. Such envelope behaviours are encapsulated in the theory of Analytic Signals, 

e.g., [16] which uses the Hilbert Transform in the determination of the envelope functions of interest and 

has been explored in sea wave applications by Longeut-Higgins [15].  

The second alternative to Goda’s approach, developed by Kimura [17], employs a Markov Chain 

model which incorporated the appropriate conditional probability functions that depended upon the 

correlation between successive wave heights. Using simulated wave data, Kimura was able to 

demonstrate that incorporating such successive wave correlations significantly improved the ability to 

model runs as compared to [9]. As expected the findings agreed with those of Goda [9] in the 

uncorrelated limit.  Validation using actual sea data was subsequently provided by Battjes [18] who tested 

Kimura’s results using North Sea wave buoy data rather than simulations.  

Both Longuet-Higgins [15] and Kimura [17] used the probability distribution developed by Rice 

[13,14] and hence the narrow band restrictions apply to both methods. The issue of the legitimacy of 

employing the narrow band approximation is discuss subsequently with the points made by Arhan [19] in 

this respect being particularly pertinent. 

As stated, Kimura [17] (and Longuet-Higgins [15]) used Rice’s [13,14] bivariate Rayleigh probability 

density function,  2, 1p h h , for consecutive wave height parameters, 1h , and, 2h  which in Kimura’s 

formalism  is given by: 

  
   

 
 

2 2

1 21 2 1 2
2 1 022 4 2 2 2

1
, exp 2

21 1 1rmsrms rms

h hh h h h
p h h I

hh h



  

      
    

        

  

The parameter 0I  is the modified Bessel function of order zero and the parameter written   in Kimura’s 

original treatment is replaced by the more conventional   wave-wave correlation which is equal to 2 .  

The phrase, “wave height parameters” for , 1h , and, 2h , does not mean surface elevation but as Longuet-

Higgins [15] points out in Kimura’s [17] analysis , 1h , and, 2h , are trough to crest values.  
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The conditional probabilities required for estimating the probability of a run of low waves that 

constitutes a quiescent period can be obtained from (2). The family of marginal and conditional 

probabilities that are relevant are given by: 

 

                  𝑝1 = 𝑃(ℎ < ℎ𝑐) = ∫ ∫ 𝑓(ℎ1, ℎ2)𝑑ℎ1𝑑ℎ2                                                     
ℎ𝑐

0

∞

0
                     3                                         

𝑃(ℎ > ℎ𝑐) = 1 − 𝑝1 

𝑝1,1 = 𝑃(ℎ2 < ℎ𝑐 |ℎ1 < ℎ𝑐  ) = ∫ ∫ 𝑓(ℎ1, ℎ2)𝑑ℎ1𝑑ℎ2 
ℎ𝑐

0

ℎ𝑐

0

𝑝𝐿 ,⁄  

𝑝2,1 = 𝑃(ℎ2 < ℎ𝑐 |ℎ1 > ℎ𝑐  ) = ∫ ∫ 𝑓(ℎ1, ℎ2)𝑑ℎ1𝑑ℎ2 
∞

ℎ𝑐

ℎ𝑐

0

(1 − 𝑝𝐿),⁄  

𝑝1,2 = 𝑃(ℎ2 > ℎ𝑐 |ℎ1 < ℎ𝑐  ) = ∫ ∫ 𝑓(ℎ1, ℎ2)𝑑ℎ1𝑑ℎ2 
ℎ𝑐

0

∞

ℎ𝑐

𝑝𝐿 ,⁄  

𝑝2,2 = 𝑃(ℎ2 > ℎ𝑐 |ℎ1 < ℎ𝑐  ) = ∫ ∫ 𝑓(ℎ1, ℎ2)𝑑ℎ1𝑑ℎ2 
∞

ℎ𝑐

∞

ℎ𝑐

(1 − 𝑝𝐿),⁄  

 

It can then be readily shown that: 

                                                           𝑝1,2 = 1 − 𝑝1,1                                                                 4 

and directly or via Bayes theorem that: 

                                                           𝑝2,1 =
𝑝1

1−𝑝1
(1 − 𝑝1,1)                                                       5 

 

2.1 Kimura Approach 

Longuet-Higgins re-presented Kimura’s Markov Chain approach with no transmission matrices and we 

adopt this formalism here for simplicity. Longuet-Higgins started by assuming that a high wave has 

occurred where ℎ > ℎ𝑐. The probability that the next wave also exhibits the property ℎ > ℎ𝑐 is given by 

the conditional probability 𝑝2,2. A run of j   such large waves was terminated by a small wave, the 

conditional probability of a large wave being followed by a small wave being 
2,1p . The approximate 

independence of wave peaks beyond three half periods [10,12] allowed consecutive pair probabilities to 
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be treated as statistically independent producing an expression for the overall probability  highP j  of a 

run of  j  large waves which after a little manipulation has the form: 

                                                       highP j = 𝑝2,2

𝑗−1

(1 − 𝑝2,2)                                                      6 

 

2.2 Quiescent Periods 

The present authors propose that the assumptions of the probability of a low runs underpinning a 

quiescent period require careful interpretation and are somewhat different to those employed by Kimura 

and Longeut Higgins (besides the obvious difference of seeking the low runs as opposed to the high runs).  

Clearly, a quiescent period of j  small wave heights is bounded at each end by large waves. Thus the 

authors considered it necessary to first incorporate the probability of the starting wave being large, i.e., 

𝑝2, and incorporate the conditional probability of a low wave occurring given that the large wave has 

occurred, i.e. 𝑝2,1. The remainder of the argument equivalently follows the low runs equivalent to that 

adopted by Longuet-Higgins [15] for the high runs case. Thus, the probability 𝑃𝑄𝑃(𝑗)  of a quiescent 

period of  j small waves bounded at each end by large waves has the form: 

                                                 𝑃𝑄𝑃(𝑗) = 𝑝2 𝑝2,1𝑝1,1
𝑗−1𝑝1,2                                                          7 

   which is readily shown to have the form: 

𝑃𝑄𝑃(𝑗) = 𝑝1 (1 − 𝑝1,1)
2

𝑝1,1
𝑗−1 

An outcome of simply starting with a small wave is that this does not exclude the possibility that the 

precursor to this wave was similarly small and so on back in time. It is thus vital that the quiescent period 

starts with a large wave whose probability of occurrence must be incorporated.  

3.4.1 Cumulative Quiescence  

The practical quantity of interest to users wishing to exploit quiescent periods is typically not the 

probability of a given quiescent period of a specified length but the cumulative probability  CQPP j  of 

all quiescent periods equal to and longer than j waves, i.e.: 

                                                𝑃𝐶𝑄𝑃(𝑗)  = ∑ 𝑃𝑄𝑃(𝑙)∞
𝑙=𝑗                                                                     8 

 which, using the above evaluates to:     

                                           𝑃𝐶𝑄𝑃(𝑗) = 𝑝1 (1 − 𝑝1,1)𝑝1,1
𝑗−1                                                          9 
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The probability CQPP  thus represents the probability of a quiescent period of at least 𝑗 small waves 

bounded at each end by a large wave.  

 

3.4.2 Quiescence Duration 

Further to the issue of user requirements, applications will mainly require the time duration of 

quiescence rather than the number of consecutive quiescent waves. The simplest approach which will be 

employed here, to this is to multiply the run length j  by an appropriate average period measure, such as 

the mean zero up-crossing period z .  

If one wished to extend the present treatment a somewhat more sophisticated approach would be to 

compute a measure of the mean wave period,  ch h  , for wave heights over the restricted range 

0 ch h  , then to multiply this by the run length j  corresponding to the particular ch  value of interest. 

Given that the authors have employed the results from a band model in determining the runs length 

behaviour it for consistency for this purpose it would be natural to use the a joint wave height h  period 

  distribution  ,p h   developed by from the same assumptions such as  [20,21], i.e.: 

   

22

1
2

0

20.5 2

0

1

1
22

, exp 1 10
2

h

m h
p h L

m




 

  



   
   

                  

  

where the scaling constant,  L  , is given by:     
1

0.5
22 1 1L  




    . 

However as previously indicated it is the authors’ view that for the purposes of a future simple low 

computational cost QPP operational planning tool, towards which this work is directed, it is deemed 

adequate to describe the quiescent periods in terms of a mean wave period measure and the number of 

individual small waves involved. Thus incorporating the above more sophisticated approach is left for our 

companion fully numerical approach publication. 

3.4 The Narrow Band Restriction and Quiescent Period Prediction: 

Both the envelope and the Markov chain approach use Rice’s probability distribution [13,14] (which are 

both linear narrow band approximations) strictly speaking require that the bandwidth parameter, 1  , 

or at least   is significantly less than unity. Several authors have addressed the issue of spectral 

bandwidth for wave systems with Cavanié et al [22] finding that even modest high frequency truncation 

of a spectrum such as Pierson Moskowitz had a very large effect on reducing . This is especially 

relevant to the validity of narrow band theory to QPP applications because only the energy dominant 
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section of the spectrum around the peak is typically important. Furthermore despite   values for the cases 

examined being approximately 0.4 both Arhan and Ezraty [19] and Longuet-Higgins [23] found good 

agreement between wave statistics and metrics derived from linear narrow-band noise theory.  

 

3. Using Spectral Parameters for Wave-Wave Correlation  

 

3.1  Correlation Coefficient between Successive Waves 

By employing either simulations or actual wave data a discrete version of the wave correlation coefficient 

   can be determined. As is well known   evaluated discretely in this manner is a biased estimator for 

the parameter   which is of interest here. The two quantities   and   were shown to be related to the 

by Uhlenbeck [24] and Middleton [25] as follows: 

                                                    

     21
1

2 4 12

1
4

E K


  




  





  

in which, K , and E , are complete elliptic integrals of the first and second kind respectively.  

The inconvenience of having to use (12) to obtain  from   can be avoided by recognising that the 

parameter   can be obtained directly from the power density spectrum. This is achieved by using a 

discrete form of the Wiener-Khinchin theorem. Authors have discussed this approach [15,18] from 

slightly different, but quantitatively equivalent, perspectives. Battjes [18] obtains   directly from the 

magnitude of the normalised autocorrelation function  
0

1
R

m
 ,  derived from the wave spectrum 

evaluated at a lag value given by the mean zero crossing period, z . This exploits the fact that, 

 0 0m R .  

Thus: 

 
 

0

0

1
13zi

S e d

S d

  

 




 

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The present authors will follow Battjes [16] noting that: 

1

2
0

2

2z

m

m
 

 
  

 
, the parameters, 0m and 2m  

being the zeroth and second moments of the energy spectrum respectively.  

Longuet-Higgins [15] also derives,  , via a normalised autocorrelation function which in this case is of 

the wave envelope. The lag value employed was, 0
1

1

2
m

m
  .   

Specifically: 

 2 2

0

14
X Y

m



   

where: 

     0 0

0

cos 15X S d    


    

and:  

    0 0

0

sin 16Y S d    


    

where, 0 , is the centre frequency of the narrow band spectrum which physically is interpreted as the 

angular frequency at which the envelope of wave heights is modulated.  

Now provided, 0 , can be chosen such that, 0

0

2



  ,  the approaches of Battjes and Longuet-Higgins 

become mathematically equivalent. In this regard an important practical point here is that for many 

commonly used wave spectral models the two mean wave period measures, 1 , and, z , are numerically 

very similar, e.g., for the Pierson Moskowitz spectrum, 
1

0.92Z


 . So given that Rice’s narrow band 

model [13,14] only approximately applies to wave spectra to within the anticipated accuracy of the 

approach it is probably equally legitimate to use either value for the lag value 0  at which to evaluate the 

normalised envelope auto-correlation function in the estimation of, .  
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3.2 Power Spectral Density Functions 

This inverse Fourier approach to estimating   is attractive because the statistical properties of sea 

waves are typically couched in terms of various classes of wave spectral model forms, e.g., Neumann, 

Pearson Moskowitz, Jonswap, etc. It is worth noting at this point that while it is common parlance in 

oceanographic research to either implicitly or explicitly refer to all wave spectral models as wave power 

spectra this is not formally correct. Apart from the obvious factor of 2 difference between these two 

quantities the main point is that the power density spectrum   S   is required to be an even function of 

  whereas for many wave spectral models, including the Pierson Moskowitz spectrum, the wave spectra 

are odd functions of  .  

It is the property of  S   being an even function that forces the use of the one-sided trigonometric 

integrals in Oceanographic work. This is necessary because the standard Fourier integral based definition 

of the power spectral density (ie., the Wiener-Khinchin theorem) spans    and clearly odd 

functions integrate to zero over this domain.  

The strict correct analytic solution to this problem for situations of the present type where integrations are 

required over    is very simple and merely requires replacing the independent variable   in 

spectral wave models exhibiting odd   symmetry by the quantity  
2

SGN


 . The  SGN  simply 

returns the sign of  . In practice this is unnecessary as one can simply integrate over 0    and 

double the result as is implicitly done in oceanographic applications.  

Hence one can say that when treated appropriately it is possible to employ the “one sided form” of the 

Wiener-Khinchin theorem to obtain   as given by: 

 0

0

1
17R

m
 

,  

where given the assumption that 0

0

2



 , the function,  R  , evaluated at a lag of 0  can be either the 

auto-correlation function of the wave elevations or of the wave envelope.  

As stated the authors will follow Battjes [18] and employ,

1

2
0

0

2

2z

m

m
  

 
   

 
, corresponding to the 

mean zero-crossing wave period. Illustrative examples of z  are: for the Neumann spectrum, 
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3

42

N
z

U

g
   , and for the Pierson-Moskowitz form, 

1

4

PM
z

U

g





 , where in each case the parameter U  

is a wind speed value at a given height above sea level.   

 

4. A Significant General Property of Quiescence for a Range of Sea Types 

 

Consider the following spectral form: 

   18

A
B

S e









     

This function encompasses the wave spectrum models of a wide range of sea states including the 

commonly used Neumann and Peirson-Moskowitz/Bretschnieder forms. In these models the constants, 𝐵 

and 𝐴, are typically functions of wind speed over the region where the waves are formed but are 

independent of angular frequency 𝜔. This will also be assumed to be the true in the general case of (18). 

The only other restriction that will be placed upon (18) is that the parameters 𝛼 and 𝛽 are real and 

positive.  

Given (18) the moments 0m  and 2m  in terms of angular frequency (radian/sec), are given by: 

 

0
0

2 19

A

e
m B d












 
    

and:  

2

2
0

2 20

A

e
m B d




 







 
  

 

Thus 

  



13 

 

Using the change of variable: 
1

A


   , the mean zero up-crossing wave period, z , can be written as:  

 

 

Now recalling that: 

   
00

1
22zi

zR S e d
m

  


   

and using the previous change of variables: 

1 1

1 1

1 10 0

0 0

1 1
cos sin 23z z

e e
A d j A d

e e
d d

 

 

 

 
 

 

 

      
 

 
 

 

 

 

 

   
    

   
 

 

 

Substituting for z  gives: 

1

1 1

2

1
2 21z

e
d

Ae
d
















 


















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 
 
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Equation (24) means that is independent of the parameters A  and B  and hence independent of wind-

speed and thus of the significant wave height. Now the probability distribution  2 1,p h h , given by (2), 

only depends upon: (i)   and (ii) the wave heights normalised to the root-mean-square wave height. 

Furthermore the absolute dependences on wave height associated with the integrals over  2 1,p h h and 

over the marginal probability density cancels because only the ratio of such integrals is used. 

Consequently, there is no dependence of the probability of a run of 𝑗 small waves on the absolute level of 

the prevailing wave height. Only the functional “form” of the spectrum through the parameters   and   

affects this.  

Summarising, for the broad class of wave spectral object as defined by (18), the run of small waves only 

depends upon the “form” of the wave spectra and not upon the significant wave height. However, it must 

be born in mind that this finding only holds while the narrow band approximation holds legitimising the 

results of Rice. This analysis has been undertaken using 𝜏𝑧 = 2𝜋√𝑚0/𝑚2 , however the same 

independence on absolute wave height can easily be shown by repeating the analysis if 𝜏1 = 2𝜋𝑚0/𝑚1 

is used rather than z  . 

Now as stated in section 3.3.2 it is the time duration of the “runs of small waves” that are most likely to 

interest users, rather than the number of waves, j  , or rather the cumulative number of runs of at least this 

length. Hence as stated previously the simplest approach to this is for the number of consecutive small 

waves in a run to be multiplied by the corresponding mean wave period. Incorporating the wave period  

does introduce a dependence upon the absolute level of wave height, but using the average wave period 

approach this simply requires re-scaling the runs statistics and does not significantly add to the overall 

computational costs.  
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5. Semi-Analytic Evaluation of Quiescent Period Probabilities 

 

Given that the well-known parameterised spectral model forms are commonly employed for both 

describing and forecasting sea conditions, the ability to estimate the runs properties (in this case of QPs) 

of different categories of seas directly from such model spectra in the manner described can be of 

considerable value in developing future forward planning aids for maritime operations. This can be 

achieved for all power density spectra if the integrals involved in determining the low runs probability are 

evaluated numerically. As stated a companion work describes such a numerical approach and presents 

examples using power spectral densities obtained from both simulations and from actual sea trials data. 

However, for a set of interesting commonly met special cases encompassed by the form given in (18) 

(including the: Neumann, Peirson-Moskowitz and Bretschneider), somewhat surprisingly it also is 

possible to obtain semi-analytic results which significantly reduces computational costs and also 

demonstrates a further runs property that could reduce computational cost further.  

Such a semi-Analytic approach will be developed here for the process described in sections 3 and 4 for 

spectra of the type:  
A

B
S e









 .  This will be illustrated for the special cases of the Neumann and 

the Pierson-Moskowitz/Bretschneider spectra. The early Neumann form is included because unlike the 

much more commonly cited Pierson-Moskowitz/Bretschneider spectra, it is an even function of the 

frequency and thus is a true power density function.  

Given that the key parameter   is derived from auto-correlation functions, it is sensible to explore the 

literature on the analytic treatment of this quantity with respect to wave spectral models. Expressions for 

the autocorrelation functions for both Neumann and the Pierson-Moskowitz wave spectra have been 

obtained by Latta and Balie [26]. Their method for the Neumann case involved an exponential operator 

technique applied via the Mellin transform, and the Pierson-Moskowitz case was approached by setting 

up an associated differential equation. These methods were indirect, extremely intensive and very case 

specific. In contrast, the frequency domain approach employed here very readily yields analytic 

expressions for the respective envelope auto-correlations in terms of standard special functions. 

Specifically the key parameter   appearing in (2) can be evaluated analytically in terms of 

hypergeometric and MeijerG special functions, which are standard function calls in symbolic language 

packages (such as Maple and Mathematica). This means that one layer of numeric integration in the runs 

evaluation process can be avoided making it realistic to incorporate the present approach in 

computationally cheap user packages designed to provide advice on the quiescence conditions.  

Given that the nomenclature of such special functions is rather cumbersome and these forms do not 

fall within most users mathematical experience, the functional details are omitted. Consequently it is 

simply stated here that for integer values of   and    the required integrals of the type: 
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 
0

cos d

A

z

e
B




 






 ,  

and, 

 

 
0

sin d

A

z

e
B




 







  

can be considered to be standard forms within the repertoire of typical symbolic language packages. 

 

5.1 Relevant Parameters of the Neumann, Pierson-Moskowitz/Bretschneider Spectra 

The Neumann wave spectral model  NS   which is a true power density spectrum, is given by: 

 
2

6
25

NA

N N

e
S B








   

where, 3.05
2

NB


 , and, 2 22N NA g U   , in which, g , is the gravitational constant, and, 
NU , the 

wind velocity 7.5m above the sea surface. The first and second moments of this spectrum are 

given respectively by: 

 

5

,0 3
2 2

N
N N

U
m B

g

  
  

 
  , and, 

3

,2
2 2

N N

U
m B

g

  
  

 
 . The corresponding mean zero up-

crossing period is given by:  ,

3

2
z N

U

g
  . 

   

The Pierson Moskowitz form, which is not a true power spectral density function, is: 

 
4

5
26

PMA

PM PM

e
S B









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where, 3 28.1 10PMB g  , and, 

4

0.74PM

PM

g
A

U

 
  

 
 , where, g, is the gravitational constant and, 

PMU , is the wind velocity 19.5m above the sea surface.  The two moments, 
0,PMm , and, 

2,PMm , 

are given by: 

0,
4

PM
PM

PM

B
m

A
 , and, 2,

4
PM PM

PM

m B
A


 . The corresponding mean zero up-crossing period is 

given by:    
1/4

,PM 0.74z

U

g
  .  

From the perspective of QP analysis the Bretschneider form is mathematically equivalent to 

Pierson Moskowitz, the fact that the constants, BSB , and, BSA , are chosen independently does 

not affect the results. Thus the value of the wave-wave correlation parameter,   ,  for these two 

forms is the same. 

6. Illustrations 

The analysis described in sections 2 to 5 is used in a comparison against results obtained from 

a linear sea wave simulation. The key issue is: what is the probability that under specific sea 

conditions of the occurrence of quiescent periods of at least j  consecutive wave of heights 

bounded above by ch ? Given the ubiquity of the Pierson Moskowitz/Bretschneider spectral 

forms this case was used as an illustration of the approach, employing a wind of speed 19 1.secm    

at the standard reference height of 19.5 m above sea level. It should be recalled that the analytic 

results for such probabilities are independent of wind speed.  

The simulations were generated in the standard manner by superimposing multiple sinusoids 

with phases sampled from a uniform distribution over 0 2 , and magnitudes obtained by 

randomly sampling from a Rayleigh distribution whose variance is provided by  S  . The latter 

process is especially important [27] in order to obtain simulations with the correct runs properties 

rather than being merely “sea like”. In order to obtain confidence in the low probability events 

the simulations are run over an equivalent real time of 260,000 seconds using a sampling time-

step of 1 second. The total number of zero up-crossings was approximately 28,000. The 

frequency band employed is 0.003 0.3Hz Hz  and the deep water dispersion 
2

k
g


  

relationship is assumed.   
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Fig. 1 compares the results of the present semi-analytic approach against the simulations. The 

parameter varied between each curve is the critical wave height value ch . The results presented 

cover the range, 
1

2 2
6

r c r ch h h h   .  

The validity of the analytic prediction, based upon the narrow band model, that the runs lengths 

are independent of absolute wave height, is explored in the scatter diagram shown in figure 2 that 

uses data derived from two cases of wave height, i.e., 0m  values of  3.6m and 6.7m.  The results 

plotted are of the fractional change in the probability between the two cases. Given that the 

standard deviation of these changes is less than 10 percent (well within the anticipated precision 

of the methodology presented here) these results bear out the sea state independence for the 

Pierson Moskowitz form and it seems not unreasonable to assume that the same is likely to be 

true for the whole class of spectral forms given by equation 26.   
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Figure 1. Plots of the natural logarithm of the probability of a given number of runs within a quiescent 

period. The parameter, h_o, is equal to 2 rh , where, rh , is the root mean square sea surface elevation. 

The data derived from the wave simulations described is denoted by discrete symbols while the 

predictions correspond to solid lines.     
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7. Discussion and Conclusions 

 

The results presented in figure 1 and figure 2 show a reasonable agreement between the 

simulations and the semi-analytic calculations using the present approach and demonstrate that 

under conditions where QPP might be employed the runs statistics are at most only weakly 

sensitive to absolute sea state. Because of the rarity of these events, the fits between theory and 

the simulations become increasingly worse as the number of waves present in the quiescent 

period increases. The type of conditions where deterministic QPP might expect to be used 

(aircraft or small boat recovery and cargo transfers) would be typified by large well developed 

swell seas produced by remote storms with a dominant wave period of 10 to 12 sec. Typical 

prediction times of 1 minute are considered to be operationally useful in such applications [1]-[3] 

which in the above context is approximately 5 wave periods. To set this in context the results in 
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Scatter diagram of fractional changes in runs probability when changing from M0 = 3.7m to M0 = 6.7m

Figure 2. A scatter diagram derived from the simulations of the fractional change 

in the probability of quiescence when the wind velocity increases from 19m/sec 

to 22m/sec, corresponding to 0m   rising from 3.7m to 6.7m. The range of critical 

wave heights over which the data is determined is equivalent to that in figure 1.  



21 

 

figure 1 indicated that quiescence probability of 5 wave periods can be reasonably well estimated 

provided the critical wave heights, ch , is given by, 
3

2
6

c rh h , i.e., 
2

r
c

h
h  .  

The purpose of the present work is to estimate the statistics of quiescence. This methodology is 

designed to be used to estimate if there is likely to be sufficient quiescence present for the 

deterministic estimation of such quiescence during the operation to be of value. So in assessing 

the potential value of the proposed techniques the real comparison that must be made is to 

compare using deterministic methods in an application against to simply employing traditional 

sea state measures. If an activity is deemed to be safe below wave height ch  and the mean square 

value under the prevailing conditions is rh  then using traditional statistics one would need to 

decide a confidence level  ch  which it is deemed to be sufficiently low i.e., obtaining ch is 

sufficiently unlikely so as to be acceptably small. This would inevitably mean that ch would have 

to be a very small fraction of the prevailing root mean square value rh . At the very least 4c rh h
 

. In contrast with Deterministic Sea Wave Prediction the occurrence of the actual expected wave 

height values, rather than their probabilities can be estimated. The critical criterion then is the 

accuracy of DSWP which given the 4c rh h alternative condition for the statistical approach 

means that DSWP could actually be very imprecise and still be useful. 

Thus deterministic QPP would be of considerable operational benefit and the present semi-

analytic approach would provide a useful tool to aid in the development of a future QPP forward 

planning tool.  

Of considerable practical importance is the fact that theoretical estimates tend to underestimate 

the probability of quiescence, the converse being clearly operationally dangerous.  

Hence the following specific conclusions can be drawn: 

1. For wave spectra investigated the cumulative probability of a quiescent period of at least

j  small waves predicted by the analysis is a reasonable fit to simulations and is 

independent of absolute wave height. Thus figure 1 can be taken to be a generic plot for 

the Pierson Moskowiz/Bretschneider case as a whole, for all wind speeds and hence all 

wave heights. 

 

2. The standard bandwidth width measure, 

1

2
0, 2,

2

1

1
PM PMm m

m


 
  
 

, is also wind speed 

independent [28]. Thus at least for Moskowitz/Bretschneider spectra the level of error 
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introduced in using Rice’s narrow band theory is also wind speed/wave height 

independent.  

   

3. Conversion to the duration of quiescence does introduce a dependence on the prevailing 

wind speed, U , and to a first approximation is simply a matter of multiplying the j  

values in figure 1 by  
1/4

,PM 0.74z

U

g
  .     
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