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There exists continued interest in building accurate models of wind turbine power curves for better
understanding of performance or assessment of the condition of the turbine or both. Better predictions of
the power curve allow increased insight into the operation of the turbine, aid operational decision
making, and can be a key feature of online monitoring and fault detection strategies. This work proposes
the use of a heteroscedastic Gaussian Process model for this task. The model has a number of attractive
properties when modelling power curves. These include, removing the need to specify a parametric
functional form for the power curve and automatic quantification of the variance in the prediction. The
model exists within a Bayesian framework which exhibits built-in protection against over-fitting and
robustness to noisy measurements. The model is shown to be effective on data collected from an
operational wind turbine, returning accurate mean predictions (<1% normalised mean-squared error)
and higher likelihoods than a corresponding homoscedastic model.
© 2019 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The power curve of a wind turbine is one of its key performance
indicators. As the popularity of wind-based power generation
continues to grow, the characterisation of the performance of tur-
bines is an important step in the justification for, and management
of, this renewable energy source. Being able to accurately predict
the power output of a turbine has a number of beneficial use cases
for the operator. The prediction of power output allows more ac-
curate prediction of expected income from the turbine (and by
extension, farm) allowing for more forward-thinking business
planning. Alternatively, the power curve of the turbine has been
shown to be an effective indicator of degradation in performance of
the system, for example see Papatheou et al. [1]. That work sits
within a wider body of work on monitoring wind turbines, usually
via SCADA (supervisor control and data acquisition) systems in
order to infer the structural condition of the turbine d this being
one example of structural health monitoring [2].
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Typical power curve data collected from a wind turbine SCADA
system is shown in Fig. 1. Visually, it can be seen that the power
curve exhibits a number of interesting features from the modelling
perspective. The relationship between the wind speed and the
power output is nonlinear. The data has a stochastic element or
there is noise in the measurement of the data and that this noise is
not constant across the input domain. This input-dependent noise
variance is referred to as heteroscedasticity, as opposed to homo-
scedastic noise where the variance of the noise is independent of
the input. Finally, there are a number of data points which could be
considered outlying from the bulk of the data distribution. The
combination of these factors makes modelling the behaviour and
variance of the power curve robustly an interesting and challenging
prospect.

This paper presents a methodology for building probabilistic
models of wind turbine power curves based on a heteroscedastic
Gaussian Process method. This allows predictions to be made of the
mean and variance which approximate the distribution of power
output from a turbine given the measured wind speed. The ques-
tion remains: why might this be useful to the end user?

Considering applications in Structural Health Monitoring (SHM)
[2,3], the value of a probabilistic model is made apparent. Here,
le under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

d turbine power curves with application of heteroscedastic Gaussian
19.09.145

http://creativecommons.org/licenses/by/4.0/
mailto:tim.rogers@sheffield.ac.uk
www.sciencedirect.com/science/journal/09601481
http://www.elsevier.com/locate/renene
https://doi.org/10.1016/j.renene.2019.09.145
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.renene.2019.09.145


Fig. 1. Typical power curve data from a wind turbine SCADA sytem that has been
normalised for anonymity.
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probabilistic methods provide a natural framework in which de-
cisions can be made based on quantifiable risk. Most simply, there
is a distinction between saying there is or is not damage, as
compared to considering the probability of damage on a structure.
Alternatively, if predicting fatigue damage accrual, providing a
distribution over expected crack lengths from a model returns in-
formation, not only about the most likely result, but also confers a
measure of confidence which can guide the decision-making pro-
cess. Finally, it is worth considering that a deterministic approach
to these problems does not remove the inherent uncertainty from
the process but it does fail to account for it. By failing to acknowl-
edge uncertainty when attempting to understand a structure’s
condition, the engineer implies perfection in models and processes
which are inherently imperfect. In safety critical applications, this
can lead to failure in planning for unlikely events, greatly magni-
fying the consequences of these.

Beyond the realm of SHM, the quantification of uncertainty
continues to add value. For example, one key use of power curve
models is for investors to calculate expected returns from a turbine
or farm. Models which can account not only for the mean trend but
also quantify uncertainty in predictions allow financial planning to
be done on the basis of more information. Clearly there exists a
distribution over wind speeds that a turbine will be subject to. An
uncertain model of the power output of the turbine allows com-
bination of these distributions. The possession of models which
quantify and handle uncertainty allows for robust uncertainty
propagation. In this, all the uncertainty present throughout the
power generation process can be combined to give a distribution
over a variable of interest d e.g. monthly income. Again, being in
possession of this distribution, allows better confidence in the
models and enables long-term risk-based financial planning.

It is hopefully clear that the accurate modelling of uncertainty
offers tangible cost benefit across a range of situations. This in-
cludes day to day benefits in operation such as health monitoring
applications or longer term benefits in assistance with high-level
financial planning. The final reason for building probabilistic
models of uncertainty, for systems such as wind turbines, is that it
is possible. To not do so fails to make full use of the data which has
been collected. The process of sensing and data acquisition remains
expensive and difficult in comparison to building and learning
data-based models. By reducing this data to a single deterministic
line, users fail to make full use of this valuable resource. If operators
are willing to spend money to acquire data, it is only sensible to
build the most expressive model possible.
Please cite this article as: T.J. Rogers et al., Probabilistic modelling of win
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1.1. Related work

The task of modelling wind turbine power curves has been
explored in the literature previously with review papers being
published in 2011 [4], 2013 [5], and 2014 [6]. Broadly speaking,
approaches to solving this task have been separated into those
which aim to build models based on physical/engineering under-
standing of the behaviour of the turbine and thosewhich rely solely
on learning from data.

A number of models have been built upon polynomial regres-
sion equations; the most common being those based on the cubic
relationship between wind speed and maximum available power,
e.g. Carrillo et al. [5]. However, attempts have been made to fit
higher-order polynomial models, a 6th order in Ref. [7] and a 9th

order in Ref. [8]. However, these works routinely fail to use any
form of regularisation or cross validation, which is required to
ensure that the models will generalise and fit well to unseen data.
Mar�ciukaitis et al. [7] discuss the use of a cross-validation technique
for model assessment; while this demonstrates the consistency of
the model, it does not provide any protection against over-fitting
during the training stage. The problem of over-fitting occurs most
frequently in over-parameterised models, the classic examples
being high-order polynomials; further discussion of this problem
and techniques to alleviate it can be found in (for example) Bishop
[9] or Barber [10]. Taslimi-Renani et al. [11] also discuss the problem
of overfitting in their work where a modified hyperbolic tangent
function is proposed as a parametric model of the power curve. In
these references and in this work, distinction is made between two
subsets of data; training data which is used for learning the model,
and (independent/unseen) testing data which is unused in learning
the model but is used to assess the expected performance of the
model in operation. Results are presented on both the training data
and this unseen test data to demonstrate the ability of the model to
generalise (i.e. continue to make valid predictions for the turbine
into the future).

Other parametric methods have explored fitting functions
which, heuristically, match the shape of the power curve. These
have included variations on logistic and hyperbolic tangent func-
tions, for example see Lydia et al. [6], Mar�ciukaitis et al. [7], Seo
et al. [12]. In a similar manner Villanueva and Feij�oo [13] and Lydia
et al. [14] propose parametric models of the power curve based
upon a logistic function. These functions have the benefit of pos-
sessing many of the properties that appear inherent to the data in a
wind turbine power curve, i.e. boundedness at high and low wind
speeds and nonlinear transition between these bounds.

For modelling power curves, the use of (artificial) neural net-
works has been explored e.g. Refs. [15,16] and more recently this
trend has continued [17,18] in line with the continued popularity of
neural networks across many fields. The use of a support vector
machine (SVM) was also discussed in Ouyang et al. [19], where the
SVM is created based on using the centroids of a k-means algorithm
as training data. Yan et al. [20] consider the combination of a
number of deterministic models with approaches that also attempt
to capture the uncertainty in the power curve, a comparison is
made between these approaches in terms of the error and an
“expectation variance ratio”. Wang et al. [21] propose a probabi-
listic approach to modelling the wind turbine power curve based
spline regression models which are used to generate inputs to a
neural network for power forecasting. The use of Gaussian Process
(GP) regression models for modelling the wind turbine power
curve has, also, previously been discussed. In Papatheou et al. [1],
Antoniadou et al. [22] and Papatheou et al. [23] the use of the
standard GP formulation allows detection of damage in the turbine.
In Manobel et al. [24] the GP is used as a pre-processing step for
filtering data before it is passed to a neural network model. This
d turbine power curves with application of heteroscedastic Gaussian
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work appears to overcomplicate the problem of modelling the
power curve. The addition of the neural network seems superfluous
since there exist proofs that the GP is a universal approximator [25].
In addition to this, it can be shown that, as the number of neurons
in a single layer MLP (multi-layer perceptron) tends to infinity, a GP
is recovered [26] d the extension of this work to deeper networks
is discussed in Ref. [27]. Additionally, the use of the GP for filtering
forces the data into an approximately Gaussian distribution, which
is homoscedastic. This leads to the exclusion of potentially valid
points as outliers and can distort the true distribution of the data.
Pandit et al. [28] consider the use of a standard GP where the air
density is included as a second input variable along with the wind
speed, this shows improvement in accuracy. In Pandit et al. [29] a
model similar to this one is compared to a support vector machine
and a random forest model, results reveal the GP to score better in
the performancemetrics shown. It can be seen that there have been
numerous approaches to modelling the wind turbine power curve
and that investigation into this problem continues to be an active
research area. However, a number of the models used make no
attempt to model the uncertainty in the power output of the tur-
bine and of those that do a heteroscedastic approach is very rarely
taken. The work contained in this paper aims to provide a meth-
odology that forms and an accurate model of the power output of
the wind turbine while also quantifying this varying uncertainty
across different wind speeds in a manner which is efficient for large
datasets and statistically rigorous.

The layout of the paper is as follows; in section 2 the necessary
theory for Gaussian Process regression is introduced, section 2.1
discusses the efficient modelling of large datasets with GPs; sec-
tion 2.2 extends the GP model to the heteroscedastic noise case;
section 2.3 combines these approaches to form a sparse hetero-
scedastic model, and finally section 2.4 presents a methodology for
distributed computation of these models and combination via a
robust Bayesian committee machine. The use of the model is shown
in section 3where it is applied to datameasured from an operational
wind turbine. The benefit of moving to a heteroscedastic model is
demonstrated by comparison with a homoscedastic GP model, both
quantitatively and qualitatively. Finally, conclusions are made in
section 4 with discussion of possible directions for future work.
1 Formally this property is referred to as smoothness, however, to avoid confu-
sion the term smooth is not used in this paper. Instead the word smooth is used to
refer to functions which vary more slowly with relation to the input space, i.e. have
longer length-scales.
2. Gaussian Process regression

Gaussian Process (GP) models provide a flexible Bayesian ma-
chine learning method for solving regression problems [10,30e32].
They exhibit a number of desirable properties for this application:
they are nonparametric, automatically quantify uncertainty in
predictions, require little a priori input, and are capable of model-
ling signals even in the presence of high noise levels on the
measured data. The GP allows a prior distribution to be placed over
an entire function for inference rather than merely learning the
parameters of a model. The GP is developed for modelling functions
of the form,

y¼ f ðxÞþ ε ε � N
�
0; s2n

�
(1)

i.e. it models data as the output of some function f ðxÞ, operating on
a D-dimensional input x. This function is corrupted by some addi-
tive Gaussian noise ε with zero mean and a fixed variance s2n.

The most common d and most intuitive d introduction to the
GP is as a distribution over functions, where a single draw from the
GP is a potential realisation of a function generated by that GP. In
this way the GP can be seen as the prior over f ðxÞ in equation (1). A
GP is defined as in equation (2), where x and x’ are a pair of inputs
to the function of interest,
Please cite this article as: T.J. Rogers et al., Probabilistic modelling of win
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f ðxÞ � GP ðmðxÞ; kðx; x’ÞÞ (2)

It follows that the GP is characterised completely by its mean,
mðxÞ, and covariance, kðx; x’Þ, functions. To make predictions, the
joint Gaussian distribution between the training and testing data is
assessed,

�
y
y+

�
� N

0B@� mðXÞ
mðx+Þ

�
;

24KXX þ s2nI KXx+

Kx+X Kx+x+
þ s2nI

35
1CA (3)

Here, the notation X is used to denote a set of N, D dimensional,
training inputs where X2RN�D and y is the corresponding set of N
measured training outputs with y2RN�1. Whenwanting to predict
with the model, a new input x+ can be considered (trivially this
could also be X+ if predicting at multiple points). This is used to
make a prediction at a new potentially unknown output y+. By the
properties of a multivariate Gaussian, every conditional distribu-
tion is also Gaussian. Using this standard result, it is possible to
write down the predictive distributions over y+,

pðy+jx+;X;yÞ¼N ðE½y+�;V½y+�Þ

E½y+� ¼ mðx+Þ þ Kx+X

�
KXX þ s2nI

��1ðy�mðXÞÞ

V½y+� ¼Kx+x+
�Kx+X

�
KXX þ s2nI

��1
KXx+

þ s2n (4)

It is possible to assess new test points since the covariance of the
process is fully described by the covariance function. This together
with the mean function mð,Þ allows the GP to be used when pre-
dicting at any new x+. The mean function can be chosen to be any
parametric function of the inputs, although it is commonly set to
zero when the GP is presented in machine learning literature [31].

In order to fully specify the GP model, a covariance (kernel)
function must be chosen which defines the similarity of any two
sets of input points giving rise to the covariancematrix K. A popular
choice for the covariance function is the squared-exponential (SE),
which is defined for two input points x and x’ as,

kSEðx; x’Þ¼ s2f exp

(
jjx � x’jj2

2l

)
(5)

The use of the squared-exponential kernel embeds the belief
that the function being modelled is infinitely differentiable.1 It
should be noted that by choosing this covariance function the user
is restricting the functions which can be modelled to those which
conform to these properties.

It can be seen that there exist a small number of hyper-
parameters in the kernel which must be determined in order to
make use of the GP. In the case of the squared-exponential
covariance these are the signal variance s2f and the length scale [.
These two hyperparameters control the behaviour of the covari-
ance function; s2f can be interpreted as the prior variance of the
signal being modelled and [mediates the region of influence of the
kernel. In other words, the length-scale controls how smooth the
function being modelled is, where increasing the length-scale in-
creases the smoothness of the function.
d turbine power curves with application of heteroscedastic Gaussian
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In order to learn these hyperparameters, a Type-II maximum
likelihood approach is taken as in Ref. [31]. The marginal likelihood
of the model, also referred to as the model evidence, is maximised.
This optimisation makes use of the Bayesian Occam’s razor [33e35]
to find theminimally complexmodel given the observed data in the
training setD ¼ fX;yg. This optimisation is normally performed as
a minimisation over the negative log marginal likelihood for con-
venience and numerical stability. Thus, an estimate of the hyper-

parameters bq ¼ fs2f ; [g is obtained through the following

optimisation,

bq¼ arg min
q

f � log pðy j X; qÞg (6)

with,

�logpðyjX;qÞ¼�logN
�
y
���mðXÞ;KXXþs2nI

�
¼N
2
logð2pÞþ

1
2
log
����KXXþs2nI

����þ
1
2

��
y�m

�
X
��T

 
KXXþs2nI

!�1
0@y�m

0@X

1A1A35
(7)

In this way the hyperparameters of the kernel (and if necessary
the parameters of the mean function) can be learnt and the GP is
fully specified by equations (4) and (7).
2 Here notation is established for a general matrix Qab such that Qab ¼
KauK�1

uuKub .
2.1. Handling large datasets

In order to either learn the hyperparameters of the GP or to
make predictions, it is necessary to assess the inverse of the
covariance matrix with noise, ðKXX þ s2nIÞ

�1
. This operation is

O ðN3Þ in both computation and memory storage. Practically, this
means that for datasets larger than roughly ten thousand data
points it is not feasible to learn a GP model. This is the case in many
datasets collected from SCADA systems where the number of
datapoints regularly exceeds tens, if not hundreds, of thousands. A
number of methods have been considered to address this problem.
This class of models is referred to as sparse Gaussian Processes. The
most common methodology is to introduce a number of inducing
points, although other methods have been explored [36,37]. Intro-
ducing these inducing points reduces the complexity of the process
from O ðN3Þ, for N datapoints, to O ðNM2Þ, for M inducing points,
giving advantage when M≪N. Broadly speaking, inducing point
methods can be separated into two classes, model approximations
and posterior approximations. Model approximations modify the
prior of the model to achieve sparsity whereas posterior approxi-
mations approximate the posterior directly. In Qui~nonero-Candela
and Rasmussen [38], or more recently in Bui et al. [39], the use of
inducing points (also referred to as pseudo-points) is brought un-
der unifying frameworks. For the sake of brevity, the content of
these papers is not duplicated here.

In general, posterior approximations of the GP will result in
more robust models than model approximations [40]. It is known
that a posterior approximation is not able to overfit the data unlike,
for instance, a Fully Independent Training Conditional (FITC)
approach [40,41]. Therefore, a posterior approximation approach is
adopted in this work, namely the Variational Free Energy (VFE)
approach [42].
Please cite this article as: T.J. Rogers et al., Probabilistic modelling of win
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A very brief review of the VFE sparse GP is given here, for a full
introduction the reader is referred to Ref. [42]. The inducing points
of the model fZ;ug (where Z contains the locations of the inducing
points and u the values of the latent function at those points) are
used to form a variational approximation of the full posterior of the
model. The model can then be learnt by minimising the Kullback-
Leibler (KL) divergence between this approximate joint posterior
and the full joint GP posterior. The joint variational (approximate)
posterior qðf;uÞ is formed such that,

qðf;uÞ¼pðf;uÞ4ðuÞ (8)

where 4ðuÞ is known as the ‘free’ variational distribution with f
being the latent function values at the measured inputs and u
dependent upon the set of ‘free’ inputs Z. This allows the joint
posterior of the GP pðf; f+Þ to be approximated directly as,

pðf; f+Þz qðf; f+Þ¼
ð
pðf+juÞqðfjuÞpðuÞdu (9)

It is possible to find the optimal choice of 4ðuÞ analytically from
which a lower bound on the marginal likelihood, FðZÞ, can be
established as,

FZ ¼ �1
2
log
���QXX þ s2nI

���� 1
2
ðy �mðXÞÞ

T�
QXX þ s2nI

��1

� ðy�mðXÞÞ�N
2
log 2p� 1

2s2n
tr ðKXX �QXXÞ

(10)

where, trð,Þ is the trace operator and the approximate covariance
QXX is defined as,2

QXX ¼KXuK
�1
uuKuX (11)

Now in learning the hyperparameters of the GP the bound in
equation (10) is used in place of the marginal likelihood pðyjX;qÞ in
equation (6). Predictions can then be made through this approxi-
mate posterior in a similar manner to the standard GP. The pre-
dictive distribution of the VFE model is given by,

qðy+jx+;X; y;uÞ ¼ N ðE½y+�;V½y+�Þ
E½y+� ¼ Qx+X

�
QXX þ s2nI

�
�1y

V½y+� ¼ Kx+x+
� Qx+X

�
QXX þ s2nI

��1
QXx+

(12)

By making use of this sparse approximation, the computational
requirements for a dataset with N datapoints is reduced from
O ðN3Þ to O ðNM2Þ forM inducing points. This nowmakes it feasible
to handle large engineering datasets such as those returned by a
data acquisition system installed on a wind turbine.

2.2. Heteroscedastic noise models

Considering the data shown in Fig. 1, it can be seen that one of
the key assumptions in the GP does not hold when modelling po-
wer curve data. That is the assumption of homoscedastic noise, this
is that the noise on the function f ðxÞ is an additive Gaussian noise
with fixed variance. In fact, it can be seen that the noise variance
changes across the input space, i.e. with changing wind speed there
is a change in noise variance. In a heteroscedastic noise model it is
assumed that the noise model is a function of the inputs to the
system. The regression model introduced in equation (1) would
d turbine power curves with application of heteroscedastic Gaussian
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then become,

y¼ f ðxÞþ εðxÞ ε � N ð0; rðxÞÞ (13)

It can be seen that the variance of the noise process is now
considered to be a function of the inputs to the model. In the case of
the power curve, this expresses the fact that noise variance is
dependent on wind speed.

In the same way that a GP prior can be used to infer the un-
known function f ðxÞ, such that f ðxÞ � GP ðmðxÞ; kf ðx; x’ÞÞ. It is
possible to model the function over the noise variance using a GP.
This was first presented in L�azaro-Gredilla and Titsias [43], where,
since the variance of the noise is strictly positive the function rðxÞ is
modelled as the exponential of a Gaussian Process regression. That
is,

rðxÞ¼ expfgðxÞg (14)

where,

gðxÞ � G P
	
m0; kgðx; x’Þ



(15)

The GP which is used to model gðxÞ is assigned its own covari-
ance function kgðx; x’Þ and is considered to have a constant mean
m0. The addition of the second GP over the log noise variance in-
creases the expressive power of the model, but with that, the
difficultly in learning and inference. The second GP increases the
number of hyperparameters that must be learnt by the number
required to express the constant mean and kernel of the second GP.

The introduction of this heteroscedastic noise model also means
that the marginal likelihood and predictive equations of the model
are no longer available in closed form. To handle this, a variational
approximation is used. Similarly to the VFE sparse method the
approximate distribution over the posterior is used to form a lower
bound on the marginal likelihood of the model which can be found
to be dependent on two sets of parameters m and S. The bound is
found in Ref. [43] to be,

Fðm;SÞ¼ logN
�
yj0;Kf þR

�
�1
4
trðSÞ � KL

	
N ðgjm;SÞ

� jjN 	gjm01;Kg




(16)

Here, Kf and Kg are used to denote the covariance matrices of the
two Gaussian Processes over f ðxÞ and gðxÞ respectively.
KLðpðaÞjjpðbÞÞ is the Kullback-Leibler divergence between distri-
bution pðaÞ pofa and pðbÞ; 1 is a vector of ones; m and S are varia-
tional parameters to be determined, and R is a diagonal matrix
whose diagonal elements are given by,

Rii ¼ exp
�
mi �

1
2
Sii

�
i¼1;…;N (17)

It can be seen that, in m and S, there exist N þ NðNþ1Þ= 2 un-
known free variational parameters whichmust be learnt. Following
the approach in L�azaro-Gredilla and Titsias [43], it is possible to
reparameterise m and S in terms of L d a diagonal semi-positive-
definite matrix d reducing the number of parameters to be learnt
to N. This allows m and S to be expressed in the following form,

m¼Kg

�
L�1

2
I

�
1þm01; S�1 ¼K�1

g þL (18)

This being the case, the bound on the marginal likelihood can be
computed and the hyperparameters of the model can be learnt. The
overall increase in computational load for the heteroscedastic GP
model means that learning takes roughly twice as long as a ho-
moscedastic GP [43].
Please cite this article as: T.J. Rogers et al., Probabilistic modelling of win
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One final complication in the heteroscedastic GP model is that
the full predictive distribution is also unavailable in closed form. To
obtain it would require evaluating the integral,

qðy+Þ ¼ ∬ pðy+jg+; f+Þqðf+Þqðg+Þdf+dg+
¼
ð
N
�
y+
���a+; c2+ þ expfg+g

�
N
�
g+
���m+;s2+� dg+

(19)

where,

a+ ¼ kf ðx+;XÞ
�
Kf þ R

��1
y (20a)

c2+ ¼ kf ðx+; x+Þ � kf ðx+;XÞ
�
Kf þ R

��1
kf ðX; x+Þ (20b)

m+ ¼ kgðx+;XÞ
�
L�1

2
I

�
1þ m0 (20c)

s2+ ¼ kgðx+; x+Þ � kgðx+;XÞ
�
Kg þL�1

��1
kgðX; x+Þ (20d)

Although equation (19) cannot be computed in closed form, it is
possible to calculate the first two moments of the predictive dis-
tribution qðy+Þ; that is, the mean and the variance of this distri-
bution.3 These moments can be found to be,

Eqðy+Þ½y+� ¼ a+ (21a)

Vqðy+Þ½y+� ¼ c2+ þ exp
�
m+ þ1

2
s2+

�
(21b)

Therefore, it is possible to make predictions using a GP under
a heteroscedastic noise assumption. By calculating only the first
two moments of the predictive distribution, the distribution over
an unknown output y+ given a test input x+ can be approxi-
mated. An approximation of this distribution by its first two
moments is to assume that the distribution over the test output
at this point is well represented by its first two moments; the
true distribution may not be Gaussian but by using only the first
two moments is assumed to be close to this. This allows a
probabilistic prediction of the function of interest to be made
while also predicting the variance of the function at any given
input. This additional information regarding the uncertainty on
the process is invaluable if the predictions are to be carried for-
ward into further analysis.
2.3. Sparse heteroscedastic Gaussian Process regression

In possession of both a sparse and a heteroscedastic Gaussian
Process model it is natural to explore the combination of these into
a sparse heteroscedastic GP. This combination has also been shown
in the literature by Liu et al. [44]. In that work, the authors establish
a new variational bound when making a variational approximation
of the posterior under both the heteroscedastic model and a sparse
model akin to the VFE approach, which they term the Variational
Sparse Heteroscedastic Gaussian Process (VSHGP). Taking the het-
eroscedastic model shown in Ref. [43] and presented in section 2.2,
it is possible to form a sparse heteroscedastic GP. Separate sets of
inducing points are introduced to both the function GP modelling
f ðxÞ and the log noise variance GP modelling gðxÞ. The same
d turbine power curves with application of heteroscedastic Gaussian
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strategy for achieving sparsity is followed as in section 2.1 (using
the technique of Titsias [42]).

The variational approximation of this complete model again
reduces to determining a lower bound on the marginal likelihood.
This is found to be,

Fðm;SÞ ¼ log N
�
y
���0; Q ðf Þ

XX þ R
�

�1
4
tr
	
Sg



�1
2
tr
�
R�1

�
Kðf Þ
XX � Q ðf Þ

XX

��
�KL

	
N ðgjmu;SuÞj

��N 	gjm0;KðgÞ
uu




(22)

where,

mg¼UðgÞ
Xu ðmu �m01Þ þ m01 (23a)

Sg ¼KðgÞ
XX �Q ðgÞ

XX þ UðgÞ
Xu Su UðgÞ

uX (23b)

mu ¼KðgÞ
uX

�
L�1

2
I

�
1þ m01 (23c)

S�1
u ¼ KðgÞ

uu
��1 þ UðgÞ

uXLUðgÞ
Xu (23d)

given,

UðgÞ
Xu ¼KðgÞ

Xu


KðgÞ
uu
��1

UðgÞ
uX ¼ KðgÞ

uu
��1

KðgÞ
uX (24)

and R is a diagonal matrix with elements,

Rii ¼ exp
�

mg
�
i �

1
2

Sg
�
ii

�
(25)

At this point it is worth clarifying the notation used in this
section. The introduction of a sparse approximation to the two
Gaussian Processes in the heteroscedastic model adds an additional
number of hyperparameters corresponding to the inducing points
used in f ðxÞ and gðxÞ. It should be noted that the inducing points for
f ðxÞ and gðxÞ are two separate sets that can be different sizes. In
light of this, notationally a covariance matrix is indexed by a su-
perscript ðf Þ or ðgÞ to denote which function d and therefore
hyperparameters d are being considered. The subscript is used to
denotewhich sets of points the covariance is taken between, with X
being the full measured set of inputs and u being the set of inducing
points for that function. For example, KðgÞ

uX indicates the matrix of
covariances between the inducing points of the process for gðxÞ and
the training data X given those learnt inducing points and the
hyperparameters of the kernel for the log noise process. Although
there is a non-trivial amount of algebra to arrive at this point, the
bound developed in equation (22) can be used in place of the
marginal likelihood of the standard GP pðyjX; qÞ to learn the set of
hyperparameters of the model q. However, the number of hyper-
parameters which must be learnt has now increased to include the
hyperparameters for the kernels kf ðx; x’Þ and kgðx;x’Þ, the constant
mean for the log noise variance m0, the set ofMf inducing points for
f ðxÞ, the set of Mg inducing points for gðxÞ, and the N variational
parameters which form the diagonal matrix L.

Turning attention to making predictions with the VSHGPmodel,
it is necessary to compute the approximate posterior distribution
over y+ d qðy+Þ. As with the non-sparse heteroscedastic GP the
computation of this approximate posterior requires the
Please cite this article as: T.J. Rogers et al., Probabilistic modelling of win
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computation of an intractable integral,

qðy+Þ ¼ ∬ pðy+jg+; f+Þqðf+Þqðg+Þdf+dg+
¼
ð
N
�
y+
���mðf Þ+ ; expfg+g þ s2

ðf Þ
+

�
N
�
g+
���mðgÞ+ ; s2

ðgÞ
+

�
dg+

(26)

This equation is dependent upon a predictivemean and variance
for f ðxÞ (mðf Þ+ and s2

ðf Þ
+ ) as well as the predictive mean and variance

for gðxÞ (mðgÞ+ and s2
ðgÞ

+ ). Each of these can be computed in closed
form [44], defining KR as,

KR ¼Kðf Þ
uXR

�1Kðf Þ
Xu þ Kðf Þ

uu (27)

m
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+uK
�1
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�1y (28a)
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In an analogous manner to (21), the first two moments of qðy+Þ
under the VSHGP model can we written down as,

Eqðy+Þ½y+� ¼m
ðf Þ
+ (29a)

Vqðy+Þ½y+� ¼ s2
ðf Þ

+ þ exp
�
m
ðgÞ
+ þ1

2
s2

ðgÞ
+

�
(29b)

These first two moments can then be assumed to well represent
the full predictive distribution, i.e. it is assumed that this distribu-
tion is approximately Gaussian.

2.4. Distributed computation

In Ref. [44] one further extension is made to this model. The
Distributed Variational Sparse Heteroscedastic Gaussian Process, is
presented where the data are divided into a number of subsets.
Each of these subsets is learnt via a separate VSHGP in the manner
described above using the bound established in equation (22). This
creates a mixture of experts type model where the experts each
represent a local approximation of the function. These experts can
then be combined using a variety of tools. The one presented in
Ref. [44] is the Robust Bayesian Committee Machine (RBCM),
developed in Ref. [45] and shown to be effective when used with
Gaussian Process models in Ref. [46].

When modelling the wind turbine power curve this approach
also can be beneficial. It will reduce, further, the computational
complexity of the model which in turn reduces computation time,
also helps account for the first of two types of heteroscedasticity
present in the data. That is, the power curve exhibits three distinct
regimes that it smoothly transitions between; the first is the
behaviour before cut-in, the second as the power output rises with
increasing wind speed, and the third when the turbine is limited to
its maximum output. This allows the data to be separated into a
three component mixture. Unlike the work of Liu et al. [44], the
data relating to each of these components can be and is defined
based on physical prior knowledge. Additionally, around the tran-
sitions between two components data are included in each of the
components to ensure smooth transitions between the GPs.

When making predictions using this model, the predictions
d turbine power curves with application of heteroscedastic Gaussian
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from each expert must be combinedd here bymeans of the RBCM.
The means and variances which are predicted by each of the ex-
perts are aggregated as a weighted sum over the experts. The ex-
perts are combined separately for the Gaussian Processes over f ðxÞ
and gðxÞ. For a committee model with C experts, each expert has a
calculated predictive mean and variance for f ðxÞ and gðxÞ which
can be indexed according towhich expert made that prediction. For
example s2

ðgÞ
+i indicates the predictive variance of the ith expert for

the GP over gðxÞ, this has an analogous precision s�2ðgÞ
+i ¼ 1= s2

ðgÞ
+i .

The aggregated predictive distribution for f+ has a mean given
by,

m
ðf Þ
+A ¼ s2

ðf Þ
+A

XC
i¼1

b
ðf Þ
i s�2ðf Þ

+i m
ðf Þ
+i (30)

and precision,

s�2ðf Þ
+A ¼

XC
i¼1

b
ðf Þ
i s�2ðf Þ

+i þ
�
1�

XC
i¼1

b
ðf Þ
i

�
s�2ðf Þ
++ (31)

where s�2ðf Þ
++ is the prior precision of the GP over f ðxÞ. Similarly for

the GP over the log noise variance, the aggregatedmean is given by,

m
ðgÞ
+A ¼ s2

ðgÞ
+A

hXC
i¼1
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ðgÞ
i s�2ðgÞ

+i m
ðgÞ
+i þ

�
1�

XC
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b
ðgÞ
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�
s�2ðgÞ
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i
(32)

and the precision by,

s�2ðgÞ
+A ¼

XC
i¼1

b
ðgÞ
i s�2ðgÞ

+i þ
�
1�

XC
i¼1

b
ðgÞ
i

�
s�2ðgÞ
++ (33)

with s�2ðgÞ
++ is the prior precision of the GP over gðxÞ. It remains to

decide on the weighting functions between the experts for both
f ðxÞ and gðxÞ. These are the weightings b

ðf Þ
i and b

ðgÞ
i respectively.

Since the GP model automatically returns a measure of uncertainty
in the prediction it makes (the VSHGP included), this can be used as
some measure of confidence in the prediction being made at any
point. It is therefore possible to use the variance of the prediction to
weight the experts. The variance for each GP is bounded by its prior
variance, therefore it is possible to establish the weighting of each
expert by comparing its predictive variance to its prior variance.
Given this the weighting function for f ðxÞ is given as,

b
ðf Þ
i ¼ 1

2

�
log s

ðf Þ
++ � log s

ðf Þ
+i

�
(34)

and likewise for gðxÞ,

b
ðgÞ
i ¼1

2

�
log s

ðgÞ
++ � log s

ðgÞ
+i

�
(35)

Finally, once the means and variances for the predictions of each
expert have been aggregated for both f ðxÞ and gðxÞ, the first two
moments of the variational predictive distribution can be written
down as,

Eqðy+Þ½y+� ¼m+A ¼m
ðf Þ
+A (36a)

Vqðy+Þ½y+� ¼s+A ¼ s2
ðf Þ

+A þ exp
�
m
ðgÞ
+A þ1

2
s2

ðgÞ
+A

�
(36b)

Despite the somewhat circuitous route, the similarity between
these equations and those shown in equation (21) make clear that
this model is merely an extension of the non-sparse
Please cite this article as: T.J. Rogers et al., Probabilistic modelling of win
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heteroscedastic model. In addition to this, these equations
approximate the probability distribution over the mean and vari-
ance of each output given the previously observed data,D ¼ fX;yg,
in amanner analogous to the standard GP. As such, without needing
to pre-specify a functional form for the data, the input-output
relationship d with a heteroscedastic noise model d can be
learnt in a Bayesian manner, returning a probabilistic output.

3. Modelling wind turbine power curves

With a mathematical framework for learning nonlinear func-
tions with heteroscedastic noise models in place, attention can be
directed towards prediction of wind turbine power curves. This
section will explore the use of the techniques presented previously
for modelling. To demonstrate the usage of these techniques a
sample dataset taken from an operational wind turbine is used. For
confidentiality reasons the measured values of wind speed and
power have been obscured by normalisation of the data. Addi-
tionally, the values stated for the cut-in and nominal speeds of the
turbine are selected to be representative in the normalised space
and bear no relation to the stated values on the data sheet for the
turbine being considered. However, the data collected are 10-min
averages from a functional SCADA system over a period of 125
weeks, and as such, this dataset represents a realistic set of mea-
surement data.

Following their normalisation, the data are separated into three
distinct sets, one for training, one for validation, and one for testing
of any models which are learnt. In the results shown here com-
parisons are made between predictions made on the training data
d that data used to learn themodeld and the test datad data that
remains unseen by the model until predictions are made, the vali-
dation data is unused in this case. Both the training and testing
datasets consist of 16359 pairs of data points where the input is the
measured 10-min average wind speed and the target is the
measured 10-min average power. One key modelling assumption is
that the function is stationary, i.e. the relationship between the
wind speed and power output does not change over time.
Considering the training and test data (collected several months
apart) which are shown overlaid in Fig. 2, this assumption appears
to hold across this dataset.

Although, as has been shown, the addition of a mean function to
the standard GP formulation is trivial, for the heteroscedastic for-
mulations, only the zero-mean versions have been shown.
Observing the characteristic shape of the wind turbine power
curve, it is clear that a constant zero mean assumption is not valid.
In view of this, it is prudent to learn a parametric mean function
which can be removed from the data before learning the GP model
of choice. Two potential mean functions are considered, the first a
piecewise-linear function that could be specified from the known
cut-in and nominal speeds of the turbine, the second a hyperbolic
tangent function the parameters of which must be learnt from the
data. The piecewise-linear function is defined as a three-
component curve, with a constant power output of zero, before
the cut-in speed, and a constant of the rated power output above
the nominal speed. A line then connects these two values between
the cut-in and nominal speed.

Fig. 3 shows a comparison between the piecewise-linear fit and
the hyperbolic tangent fit. The parameters of the hyperbolic
tangent have been learnt by a minimisation of the sum of squares
errors on the training data d i.e. a standard least squares fit d

using a quantum particle swarm population based optimiser [47].
The requirement for a very robust fit is relaxed since the GP is
expressive enough to compensate for any bias introduced by
learning ‘sub-optimal’ parameters of this model.

The models learnt by these parametric fits have been removed
d turbine power curves with application of heteroscedastic Gaussian
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Fig. 2. Normalised training and test wind turbine power curve data.
Fig. 4. The “zero” mean transform space after applying each mean (parametric)
function.
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from the data in order to transform it into a zero-mean space that
can be used with the GP model. In Fig. 4, the data in this trans-
formed space is shown. The piecewise linearmodel is seen to create
a hard corner as it transitions between sections, this leaves the
function to be learnt by the GP as non-smooth and discontinuous.
Remembering that the choice of kernel encodes smoothness beliefs
about the functions, to make use of the piecewise linear mean
would require finding a covariance function that allows for non-
smooth functions. However, using the hyperbolic tangent as a
mean functions leads to a smoother function in the transformed
space. The data, following removal of the hyperbolic tangent mean,
would be more readily learnt using more common covariance
functions encountered when using GP models, e.g. the squared
exponential in equation (5).

Having removed this hyperbolic tangentmean, the task of fitting
a GP model can begin. For comparison, it would be preferential to
have fit a full homoscedastic GP, the VFE sparse GP, the full heter-
oscedastic, and the sparse heteroscedastic. However, due to the size
of the data set, over 16000 training points, it is not possible to fit a
non-sparse GP with any reasonable amount of resources. This will
often be the case when modelling wind turbine power curves as
data acquisition systems typically run for extended periods of time
Fig. 3. Two different parametric models fitted to the power curve, the piecewise linear
model (in blue) from assumed values and the hyperbolic tangent model (in green)
learnt from the training data. (For interpretation of the references to colour in this
figure legend, the reader is referred to the Web version of this article.)
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accumulating very large datasets. It is also beneficial to use
computationally efficient methods when inference needs to be
conducted online, this may include the retraining of these models
to make comparisons as the turbine ages. Therefore, given the
necessity to use a sparse method, comparison is made between the
VFE (a homoscedastic model) and the distributed sparse variational
heteroscedastic GP (DSVHGP). Results are shown for fits to both the
training and testing data with and without the hyperbolic tangent
mean added.

Two quantities are used to assess the model fit, the first is a
normalised mean squared error (NMSE) shown in equation (37);
this measures the goodness-of-fit of point predictions of a modeld
either the output of a deterministic model or the mean of a prob-
abilistic one. The NMSE will return a score of zero in the case of a
perfect fit, a score of 100 corresponds to a prediction which has the
same error as simply taking the mean of the data.

NMSE¼ 100
Ns2y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðy � byÞTðy � byÞq

(37)

Here, N is the number of datapoints being assessed, s2y the variance
of the measured data, y the measured data, and by the predicted
outputs. In addition to this, the joint likelihood of the probabilistic
models is used to assess model quality. The NMSE metric fails to
capture any quantification of uncertainty in the model. Since one of
the main benefits of the GP approach is this automatic quantifica-
tion of uncertainty, it is sensible to include this as a measure of
goodness-of-fit. The joint likelihood is calculated as the product
over the likelihood of each prediction, given that at each prediction
a univariate Gaussian distribution is returned d in the case of the
heteroscedastic model this is an approximate distribution given the
first two moments of the prediction equation (21).

The predictions made by the VFE model are shown in Fig. 5 and
Fig. 6, in the transformed space and on the original power curve
data respectively. Before stating the quantitative assessment of this
model, it can be seen that the model has failed to capture the un-
certainty present in the data well. There exist many points in the
rising part of the power curve which lie outside of the three sigma
intervals, however, at low and high wind speeds (where the func-
tion is flat) the variance is overestimated. It would appear that, as
expected, the noise variance has been learnt to be an average be-
tween the high variance section as the function rises and the low
variance sections towards the edges. On first inspection it may
appear that the variance has been captured well in the middle
d turbine power curves with application of heteroscedastic Gaussian
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Fig. 5. Prediction made by the homoscedastic sparse GP in the transformed space.
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section of the function and poorly at the end, however, on closer
inspection it is seen that in addition to the overestimation of
variance at high and low wind speeds the variance is actually
underestimated in the middle section of the curve. With reference
to the prediction in the transformed space in Fig. 5, the NMSE of the
process is 56.4 for the training data and 56.2 for the test data. This is
expected as the variance related to noise on the data is large in this
space. Transforming back to the full power curve in Fig. 6, by adding
back the hyperbolic tangent mean function, it can be seen that the
fit that may look unimpressive in the transformed space actually
represents the mean behaviour of the power curve well (despite
poor modelling of the variance), this yields a NMSE of 0.81 for both
the training and testing data. For comparison it is worth stating the
NMSE scores of the two parametric functions considered. The
piecewise-linear function scores 3.93 and 3.94 on the training and
testing data, whereas, the hyperbolic tangent scores 1.49 and 1.50.
From this it can be seen that the use of the GP with the hyperbolic
tangent as a mean function leads to a significant decrease in the
point-wise error. Considering the likelihoods of the models (stated
as log likelihoods), in the transformed space these score 2:26� 104

for both training and testing data. With the mean function added
these scores remain the same, for both training and testing data,
this allows more consistent comparison of the models as it both
incorporates the uncertainty of the prediction and is insensitive to
removing the parametric mean function.
Fig. 6. Predictions of the homoscedastic sparse GP of the full power curve.
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A heteroscedastic model was also learnt and tested on the same
datasets. The distributed sparse variational heteroscedastic GP is
chosen for this task, to allow heteroscedastic inference over this
large dataset. The training data are separated in to three over-
lapping datasets, which are in turn, used to train three experts in
the robust Bayesian committee model framework. Fig. 7 shows the
predictionsmade by these experts when predicting the test dataset.
In the upper three plots the datawhich have been used to train each
expert is also shown. It can be seen that each expert has been
trained on a subset of data which overlaps in the input space, this
ensures a smooth transition between the experts in the committee
model. The locations of these splits and the amount of overlap were
chosen a priori to divide the data into the three broad regions seen
in the power curve:

1. Before and through cut-in speed;
2. Transition from cut-in speed to the upper bound on nominal

speed;
3. Lower bound on the nominal speed to cut-out speed.

The split locations can be chosen based upon the known cut-in
and nominal speeds of the turbine and the amount of overlap is a
matter of user choice, for this example the normalised splits are
listed in Table 1. It was the experience of the authors that a small
overlap region ensured a smooth transition between the experts, in
this case the ranges of wind speed were:

As expected, each expert is most capable of making predictions
close to data which has been used to train that expert and is most
confident of the predictions in those regions. This confidence in the
predictions is the measure used to weight the contribution of that
expert as calculated in equations (34) and (35). The aggregated
predictions of the model (equation (36)) for the test data are shown
below the contribution of each expert in Fig. 7 with the measured
test data superimposed.

The aggregated predictions made by the DSVHGP in the trans-
formed space are shown in Fig. 8 for the training and testing data.
The NMSE scores for these models are 56.5 and 56.2 for the training
and test data respectively. The scores in the NMSE match very
closely with the homoscedastic model fitted. Moving to the full
space, shown in Fig. 9, the NMSE scores are found to be 0.81 for
both the training and testing data. Scores which are identical to the
homoscedastic model d up to this level of accuracy. This is,
perhaps, expected considering that the predictive mean of the
DSVHGP model is given by the mean of the GP over the function
f ðxÞ which is a very similar formulation to the predictive mean
equation of the homoscedastic sparse model. The main difference
between the models (in a predictive sense) enters through the
calculation of the variance of the predictive density.

Since the NMSE score does not depend on the predictive vari-
ance of the model, it is unsurprising that this score is largely un-
affected by the changes in the model. The likelihood score of the
model, however, reveals the improved quantification of the un-
certainty in the prediction. As before, the joint log likelihoods in the
transformed space and over the full power curve are identical up to
the accuracy stated. These are 3:47� 104 for the training data and
3:39� 104 for the testing data. This represents a marked
improvement over the scores calculated for the homoscedastic
model. The increase in likelihood of the predictions would indicate
that the heteroscedastic formulation has been able to better cap-
ture the variance in the data and is capable of making predictions
which better represent that variance.

To visualise the difference in the fits of the two models, they are
shown overlaid in Fig. 10; here, the similarity in predictive mean
can be easily seen and the difference in the predictive variance is
also apparent. The improvedmodelling of the noise on the data as a
d turbine power curves with application of heteroscedastic Gaussian
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Fig. 7. Prediction of each of the experts in the robust Bayesian committee model and the aggregated prediction in the transformed space.

Table 1
Division of input space for mixture of experts.

Expert Normalised Wind Speed

Lower Bound Upper Bound

1 �1 �0.8
2 �0.85 0.1
3 0 1

Fig. 8. Predictions of the distributed SVHGP in the transformed space.

Fig. 9. Predictions of the distributed SVHGP of the full power curve.
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result of the heteroscedastic GP is most apparent at the tails of the
power curve where the homoscedastic model overestimates the
variance. Although in certain situations this may not be of major
concern, this overestimation of variance will lead to reduced
sensitivity if the model is used in a damage detection setting such
as in Papatheou et al. [23].

One concern that could be raised with both models, or indeed
any GP fit of the power curve, would be that there is likelihood that
the turbine would exceed its stated maximum power outputd this
would not be observed due to the limits of the turbine. This is most
apparent when considering the output of the homoscedastic model
since the variance of the heteroscedastic model reduces as thewind
Please cite this article as: T.J. Rogers et al., Probabilistic modelling of win
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speed increases and the turbine consistently produces its
maximum rated power. However, around the nominal speed of the
turbine there is variance in the power output which is captured in
both models. This region is focussed on in Fig. 11, where it can be
seen that the heteroscedastic model captures well the variance in
power output around the nominal speed below the maximum
output but has variance extending above the maximum rated
output. This is an artefact of the approximation of the posterior
distribution as a Gaussian based on its first two moments, although
it is likely that the full distribution would also have probability
mass above this maximum output. Because of the Gaussian nature
of this approximate posterior, the distribution over the outputs
must be symmetric about the mean. Around the nominal speed of
the turbine the distribution over the power output is heavily
skewed, because only the mean and variance of the distribution of
the output are modelled it is not possible to model is asymmetric
distribution. One solution to this is to apply prior physical knowl-
edge to the system and to recognise that it is extremely unlikely
that the turbine would exceed its rated output, therefore, in any
further analysis the predictions could be limited at the maximum
value. Alternative approaches to handling this issue will be dis-
cussed as future work.
d turbine power curves with application of heteroscedastic Gaussian
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Fig. 10. Comparison of power curve predictions made by both the homoscedastic and
heteroscedastic models.

Fig. 11. Highlighting the predictions around the nominal-speed where output is
limited to the rated output.

Fig. 12. Decomposition of the prediction from the mixture of experts into the GP over
the mean of the process (top left) and the GP over the log noise variance of the process
(top right), the combination of these two gives the full prediction shown at the bottom.
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Finally, it is natural to consider the importance of each part of
the modelling process. The use of the mixture of experts model to
separate each region of the prediction allows for some hetero-
scedasticity by assigning a different noise variance to each expert.
By separating the components of the prediction from the DSVHGP it
is possible to inspect the role of the heteroscedastic model. In
Fig. 12 the GP which accounts for the mean prediction of the model
and the GP which models the log noise variance are visualised
separately as well as showing the full prediction. In the top left
frame of the figure it can be seen that the GP over the latent
function of the mean for the power curve has a very low variance.
This indicates a confident prediction of the mean behaviour of the
curve, which is seen to fit well with the data. Considering the top
right frame in the figure the prediction of the GP over the log noise
variance is shown. Here, the role of the heteroscedastic formulation
in the GP is clearly seen. If each member of the mixture of experts
were to exhibit homoscedastic behaviour within its region this plot
would show three horizontal lines, with quick transitions between
them. Instead it can be seen that the log noise variance is itself a
nonlinear function which is evolving with wind speed. This curve
also shows the expected behaviour that the variance of the noise on
the power curve is lower towards the upper and lower bounds on
the wind speed. It can also be seen that the increase in variance
close to the nominal speed of the turbine has beenmodelled by this
Please cite this article as: T.J. Rogers et al., Probabilistic modelling of win
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GP. Finally, due to the relatively low number of datapoints seen
close to a nominal wind speed of one, the prediction of the variance
in the region becomes less confident (seen by an increase in vari-
ance) and the predicted variance increases to accommodate this.
However, since this is modelling the log noise variance the actual
uncertainty seen in the model remains very low even toward this
uncertain region since the mean remains low. Through the
modelling of this collected data it has been possible to demonstrate
how the proposed methodology based on the DSVHGP can accu-
rately capture the behaviour of a power cure both in terms of its
mean behaviour and through modelling the uncertainty. The use of
the mixture of experts is shown to be a pragmatic approach to
capturing the form of the power curve across three key regimes.
Finally, the use of the heteroscedastic GP model is shown to allow
the change in noise variance, across the wind speed, to be
modelled; giving more reliable predictions of the uncertainty
associated with the prediction across the full power curve.

4. Conclusions

The work contained in this paper has laid down a methodology
for rigorous probabilistic modelling of wind turbine power curves
d extending the work of [1,22,23] to the heteroscedastic case with
sparsity, improving the quantification of uncertainty significantly.
The Gaussian Process has been introduced as a flexible Bayesian
machine learning technique for modelling of nonlinear functions.
The difficultly in use of a GP model with large datasets has been
discussed with the use of a sparse approximation suggested. The
variational free energy approach of Titsias [42] has been presented
as a powerful and robust method in which large numbers of
training data points can be incorporated into the GP framework. In
view of the heteroscedastic noise behaviour seen in power curve
data, the extension of a GP model to include the modelling of this
input dependent noise has been discussed. The method of L�azaro-
Gredilla and Titsias [43] has been to shown to achieve this by
modelling the log noise variance of a process as an additional
Gaussian Process which is learnt in a variational manner.
Combining the theory developed for the VFE sparse approximation
and the heteroscedastic approach led to a sparse variational het-
eroscedastic GP model. This model, introduced in Liu et al. [44]
allows the learning of a heteroscedastic GP over large datasets, such
as those collected by SCADA systems installed on wind turbines.
Finally, the approach of building a mixture of experts model based
on partitioning the input space of the data is shown to lead to
further computational gains and better robustness whenmodelling
d turbine power curves with application of heteroscedastic Gaussian
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functions with multiple behavioural regimes. As discussed in
Ref. [44] the robust Bayesian committee machine is a useful tool for
doing this within a Bayesian framework.

A measured set of wind speed and power output data collected
via a SCADA system has been used to demonstrate the usage of
these approaches for modelling wind turbine power curves. The
wind turbine power curve is seen to exhibit nonlinear behaviour
and heteroscedastic noise processes. It is shown how the power
curve can be transformed to approach a zero-mean space via a pre-
learnt mean function. The hyperbolic tangent function is used in
this work since it ensures smoothness of the function to be learnt
by the GP in the transformed space. Fitting the data in this space via
either the homoscedastic or heteroscedastic GP leads to nearly
identical NMSE scores indicating that the mean fits of the models
are very similar. The models of the full power curves for both the
homoscedastic and heteroscedastic GPs and for both training and
testing data are found to be 0.81 d heuristically this represents a
“very good” fit as the NMSE can be thought of as similar to a per-
centage error.

The move to heteroscedastic modelling of power curves,
although having little effect on the mean prediction quality of the
model and leads to far better quantification of the variance in the
data. This is reflected in the likelihood scores of the predictions. The
joint log likelihood of the predictions for both the training and
testing data increase by over 50% whenmoving the heteroscedastic
model. It is also seen that visually, the variance in the data is
captured far better (Fig. 10).

In this work, it has been shown that the wind turbine power
curve is well suited to being modelled via a heteroscedastic GP
regression and the distributed sparse variational heteroscedastic
GP is a powerful and expressive model with which to do this. The
use of this model naturally handles the heteroscedastic noise pre-
sent in the data, automatically returns predictions as the (approx-
imate) distribution over possible outputs, and avoids the risk of
overfitting d present in high-order polynomial models. Therefore,
the use of this model represents a good choice should a user wish to
accurately model the power curve of a wind turbine (with quan-
tification of the uncertainty) and becomes more valuable as the
probabilistic outputs are carried into further calculations.

As previously discussed, in possession of this probabilistic
model, it is now possible to refine further analyses. This includes
better quantification of uncertainty in SHM applications leading to
reductions in false alarms and increased sensitivity to damage. It
also provides important information for making macro-level de-
cisions about the turbine or farm. This process could include the
propagation of distributions over wind speed to give a distribution
over expected power which can be used for better financial plan-
ning or for grid-level power management.

4.1. Future work

While the approach adopted in this paper has been seen to be
effective at modelling the behaviour of awind turbine power curve,
it opens up a number of avenues of further investigation. It has been
observed that, despite the mean predictions being consistent with
the physical behaviour of the wind turbine, the predictive variance
of the model places probability mass above the maximum power
output of the turbine. This is a consequence of considering the
variance of the prediction to be symmetric around the mean. While
it would be possible to truncate this distribution above the
maximum rated output, future work into modifications of the
likelihood function could lead tomore statistically robust solutions.
It is also beneficial to consider if the parameters of the mean
function would be better learnt inside the GP framework rather
than applying the transformation into the zero-mean space before
Please cite this article as: T.J. Rogers et al., Probabilistic modelling of win
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learning the (hyper)-parameters of the GP. Finally, it will be valu-
able in future to demonstrate the propagation of the predictive
variance of the model into further analyses whichmay benefit from
a Bayesian treatment. For example, to predict distributions over
expected income from a particular turbine, or to enhance previ-
ously presented damage detection strategies.

In conclusion, the move towards nonparametric modelling of
wind turbine power curves, allows the use of probabilistic models
which offer robust and accurate mean predictions, as well as
automatic quantification of uncertainty. The use of these models
opens up better understanding of the uncertainty of the power
output, of the turbine and avoids issues in overfitting that may
occur in parametric models. For this reason, the use of hetero-
scedastic Gaussian Process models is a powerful and sensible
approach moving forward.
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