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Abstract: We present a model that estimates the spectral phytoplankton absorption coefficient
(aph(λ)) of four phytoplankton groups (picophytoplankton, nanophytoplankton, dinoflagellates,
and diatoms) as a function of the total chlorophyll-a concentration (C) and sea surface temperature
(SST). Concurrent data on aph(λ) (at 12 visible wavelengths), C and SST, from the surface layer
(<20 m depth) of the North Atlantic Ocean, were partitioned into training and independent validation
data, the validation data being matched with satellite ocean-colour observations. Model parameters
(the chlorophyll-specific phytoplankton absorption coefficients of the four groups) were tuned using
the training data and found to compare favourably (in magnitude and shape) with results of earlier
studies. Using the independent validation data, the new model was found to retrieve total aph(λ)

with a similar performance to two earlier models, using either in situ or satellite data as input.
Although more complex, the new model has the advantage of being able to determine aph(λ) for
four phytoplankton groups and of incorporating the influence of SST on the composition of the
four groups. We integrate the new four-population absorption model into a simple model of ocean
colour, to illustrate the influence of changes in SST on phytoplankton community structure, and
consequently, the blue-to-green ratio of remote-sensing reflectance. We also present a method of
propagating error through the model and illustrate the technique by mapping errors in group-specific
aph(λ) using a satellite image. We envisage the model will be useful for ecosystem model validation
and assimilation exercises and for investigating the influence of temperature change on ocean colour.

Keywords: phytoplankton absorption; community structure; temperature; North Atlantic

1. Introduction

Light absorbed by phytoplankton is either converted to heat or used in photosynthesis.
The conversion to heat helps modulate the physical structure of the ocean’s surface layer [1,2].
Photosynthesis converts inorganic to organic carbon, modifying the CO2 concentration and pH of the
water, and providing energy to roughly half of the life on our planet. Consequently, light absorption
by phytoplankton plays an important role in the functioning of the ocean.

The phytoplankton absorption coefficient (aph(λ), where λ is the wavelength of light), is used to
represent the amount of light absorbed by phytoplankton per unit length. It is a fundamental quantity
in physical and biogeochemical ocean models, altering underwater spectral light transmission [3–6]
and the photosynthetic response of phytoplankton to available light [7–9]. The magnitude and
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spectral shape of aph(λ) are controlled by phytoplankton biomass, size and type. Consequently,
routine measurements of aph(λ) are used to monitor the amount, composition and size structure of
phytoplankton in aquatic systems [10–16].

Historically and conventionally, aph(λ) has been modelled as a function of the total chlorophyll-a
concentration (C, representing the sum of mono- and divinyl-chlorophyll-a, chlorophyllide-a, and the
allomeric and epimeric forms of chlorophyll-a), the main photosynthetic pigment in all phytoplankton
and a measure of phytoplankton biomass. Nonlinearity in this relationship, which varies with
wavelength, is indicative of changes in phytoplankton size and pigment composition [17–22]. Empirical
models that derive aph(λ) from C have been proposed, including: power-law functions [22–27];
hyperbolic tangent functions [28]; polynomial functions [29]; and Michaelis-Menten-type functions [6,30].

Theoretical approaches have also been proposed, for example, those that express aph(λ) as the
contribution of different populations of phytoplankton in the water [10,14,31–33], such that aph(λ) can
take the form

aph(λ) =
N

∑
i=1

a∗i (λ)Ci, (1)

where i is the population, N is the number of different populations, a∗i (λ) is the chlorophyll-specific
absorption coefficient for population i, and Ci is the chlorophyll-a concentration for population i
(Table A1 in the Appendix to this manuscript defines all symbols used). Unlike empirical models [30],
the parameters of Equation (1) have clear interpretation and the approach ensures plausible values of
a∗(λ) at extreme chlorophyll-a concentrations, since the range of values of a∗(λ) is bounded by the
values associated with the populations. Models with two [32] and three [14,31,33] populations have
been proposed, typically partitioning populations of phytoplankton according to size ranges, since
a∗(λ) is known to change with cell size [10].

Approaches have also been proposed that tie changes in Ci with C [32,34], meaning that aph(λ)

can be derived from Equation (1) as a function of C, by relating Ci to C, if a priori information
exists on a∗i (λ) [14,31,32]. It is widely recognised that temperature is a useful variable for predicting
phytoplankton community structure [35–44] and consequently, a∗(λ) [45]. Recently, Brewin et al. [46]
proposed a model that estimates Ci for four populations of phytoplankton (picophytoplankton,
nanophytoplankton, dinoflagellates, and diatoms) as a function of C and sea surface temperature (SST)
in the North Atlantic, both of which can be retrieved through satellite remote sensing. The approach
has proven useful for satellite data assimilation into multi-phytoplankton ecosystem models [47,48],
although assimilating the optical properties of the phytoplankton groups directly (i.e., aph,i(λ) rather
than Ci) could be more beneficial [49].

In this paper, using the approach of Brewin et al. [46], we extend the three-population absorption
model of Brewin et al. [31] to four populations of phytoplankton. Our purposes for developing this new
model were twofold: (1) to estimate aph(λ) for four phytoplankton groups (dinoflagellates, diatoms,
nanophytoplankton, and picophytoplankton) that match those simulated in a state of the art marine
ecosystem model (the European Regional Seas Ecosystem Model, ERSEM), using remotely-sensed input
(C and SST), and quantify uncertainties in these estimates for use in a future optical data-assimilation
experiment using ERSEM; and (2) investigate how temperature change may influence ocean colour in
the context of climate change.

The new model yields total and population-specific aph(λ) as a continuous function of C and
SST. Data from the North Atlantic containing aph(λ), C and SST measurements are separated into
parameterisation and validation data. The parameterisation data are used to yield a∗i (λ) values for
each of the four populations, which are subsequently compared with results from earlier studies.
The performance of the model, when used to retrieve aph(λ) for a given total chlorophyll concentration,
is compared with those of two other models (a power-law model and a three-population model) using
the independent validation data. An error-propagation method is proposed to quantify uncertainty in
population-specific aph(λ) derived from the four-population absorption model, and we integrate the
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four-population absorption model into a simple (case-1) model of ocean colour, to illustrate expected
changes in the blue-to-green ratio of remote-sensing reflectance with changes in C and SST.

2. Methodology

2.1. Study Area

Our study area was the North Atlantic Ocean, spanning 100 ◦ W to 13 ◦ E and 20 ◦ N to
66 ◦ N (Figure 1). This region encompasses the Copernicus Marine Environment Monitoring Service
(CMEMS) Ocean Colour Thematic Assembley Centre (OCTAC) Atlantic (ATL) region, the CMEMS
Marine Forecasting Centre (MFC) of the North West Shelf-Seas (NWS) and Ireland-Biscay-Iberia (IBI)
regions, as well as the north-west Atlantic and eastern seaboard of North America, covering a wide
range of bio-optical environments, from the oligotrophic North Atlantic gyre through to shallower
optically-complex shelf seas. The region has been sampled intensively over the past few decades,
supports one of the largest spring phytoplankton blooms on the planet [50] and is a region of focus for
many marine ecosystem modelling studies (e.g., [51]).

Figure 1. Study site and geographic distribution of the data used in the study. (a) Shows the spatial
distribution of data used in the study, and (b) shows the partitioning into training and validation data.

2.2. Data

Two bio-optical datasets were utilised in the study: (1) the NASA bio-Optical Marine Algorithm
Dataset (NOMAD Version 2.0w APLHA, 18/07/2008 [52,53]); and (2) a dataset compiled from various
locations by Shubha Sathyendranath and Trevor Platt at the Bedford Institute of Oceanography [10,32].
Both datasets contained matching measurements of aph(λ) and total chlorophyll concentration (C),
the latter derived either from High Performance Liquid Chromatography or using a calibrated Turner
fluorometer following extraction of chlorophyll in solvent. For the NOMAD dataset, aph(λ) was
derived by subtracting detrital absorption (ad(λ)) from particulate absorption (ap(λ)) measurements.
Because the two datasets provided measurements of aph(λ) at slightly different wavebands, 12 common
wavebands (412, 443, 490, 510, 520, 550, 560, 620, 665, 670, and 682 nm) were selected for which the
two datasets had wavelengths within 1 nm of this common set. The wavebands are also aligned
with those of common multispectral ocean colour sensors. Only data within the selected study area
were used (see Figure 1) and within the top 20 m of the water column (within the surface mixed-layer
depth (rarely <20 m in the open ocean [54]) or within the 1st optical depth as in the case of the NASA
NOMAD dataset. For each measurement, SST data were extracted by matching each in situ sample in
time (daily temporal match-up) and space (closest latitude and longitude) with daily, 1/4◦ resolution
Optimal Interpolation Sea Surface Temperature (OISST) data (Version 2.0 [55]) acquired from the
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National Oceanic and Atmospheric Administration (NOAA) website (http://www.esrl.noaa.gov/
psd/data/gridded/data.noaa.oisst.v2.highres.html). In total, 1687 measurements of aph(λ), C and SST
(median = 11.5 ◦C, min = 0.0 ◦C, max = 30.8 ◦C, 13.6 percentile = 3.4 ◦C, and 86.4 percentile = 25.1 ◦C)
were available for use, covering all months of the year.

The data were matched to daily, level 3 (4 km sinusoidal projected) satellite chlorophyll data, from
version 3.1 of the Ocean Colour Climate Change Initiative (OC-CCI, a merged MERIS, MODIS-Aqua
and SeaWiFS product available at http://www.oceancolour.org/), between 1997–2006. Each in situ
sample was matched with a single satellite pixel in time (same day) and space (closest pixel with
a distance <4 km away). For the 1687 samples, there were 484 corresponding satellite chlorophyll
match-ups. These 484 measurements were set aside and used for independent model validation,
leaving 1203 measurements for model training (parameterisation). Figure 1 shows the geographic
distribution of the training and validation data.

2.3. Four-Population Model of Phytoplankton Absorption

Brewin et al. [46] consider the total chlorophyll-a concentration (C) as the sum of chlorophyll-a
concentrations in picophytoplankton (C1), nanophytoplankton (C2), dinoflagellates (C3) and diatoms
(C4), such that

C =
4

∑
i=1

Ci. (2)

The model first utilises two exponential functions [10], where the chlorophyll concentration of
picophytoplankton (C1, cells <2 µm) and combined pico- and nanophytoplankton (C1,2, cells <20 µm)
are obtained from

C1,2 = Cm
1,2[1− exp(−D1,2

Cm
1,2

C)], (3)

and
C1 = Cm

1 [1− exp(− D1
Cm

1
C)]. (4)

The parameters D1,2 and D1 determine the fraction of total chlorophyll in the two size classes
(<20 µm and <2 µm, respectively) as total chlorophyll tends to zero, and Cm

1,2 and Cm
1 are the asymptotic

maximum values for the two size classes (<20 µm and <2 µm, respectively). The chlorophyll
concentration of nanophytoplankton (C2) and microphytoplankton (combined dinoflagellates and
diatoms, C3,4) are calculated simply as C2 = C1,2 − C1 and C3,4 = C− C1,2. Brewin et al. [46] modelled
the parameters of Equations (3) and (4) as a function of SST using the following logistic equations,

Cm
1,2 = 1− { Ga

1 + exp[−Gb(SST− Gc)]
+ Gd}, (5)

and
Cm

1 = 1− { Ha

1 + exp[−Hb(SST− Hc)]
+ Hd}, (6)

where Ga and Gd control the upper and lower bounds of Cm
1,2, Gb represents the slope of change in Cm

1,2
with SST, and Gc is the SST mid-point of the slope between Cm

1,2 and SST. For Cm
1 , Hi, where i = a to d,

is analogous to Gi for Cm
1,2. The parameters D1,2 and D1 were expressed as

D1,2 =
Ja

1 + exp[−Jb(SST− Jc)]
+ Jd, (7)

and
D1 =

Ka

1 + exp[−Kb(SST− Kc)]
+ Kd, (8)

where Ja and Jd control the upper and lower bounds of D1,2, Jb represents the slope of change in D1,2

with SST, and Jc is the SST mid-point of the slope between D1,2 and SST. For D1, Ki is analogous to
Ji for D1,2. Model parameters Gi, Hi, Ji and Ki are provided in Table 1. Finally, microphytoplankton
(C3,4) is partitioned into dinoflagellates (C3) and diatoms (C4) according to,

http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html
http://www.esrl.noaa.gov/psd/data/gridded/data.noaa.oisst.v2.highres.html
http://www.oceancolour.org/
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C3

C3,4
=

1
1 + exp[−α(SST− β)]

, (9)

where α = 0.10 (0.08↔0.13) and β = 32.5 (29.7↔36.1). Using Equations (3)–(9), the chlorophyll
concentrations for the four groups (C1, C2, C3 and C4) can be derived from total chlorophyll (C) and SST.

Here, we expand on this approach by modelling aph(λ) as the contribution of the four
different populations of phytoplankton, picophytoplankton (aph,1(λ)), nanophytoplankton (aph,2(λ)),
dinoflagellates (aph,3(λ)), and diatoms (aph,4(λ)), according to

aph(λ) =
4

∑
i=1

a∗i (λ)Ci, (10)

where a∗i are the chlorophyll-specific absorption coefficients for each population i. To retrieve a∗i ,
we used the training (parameterisation) data. By integrating Equation (3)–(9) into Equations (10),
and using aph, C and SST as inputs, we fitted Equation (10) individually to each wavelength using a
non-linear least-squared fitting procedure (Levenberg-Marquardt [56,57], IDL Routine MPFITFUN).
We used the method of bootstrapping [58,59] to compute a parameter distribution (1000 bootstraps),
and from the resulting parameter distribution median values and robust standard deviations in a∗i
were obtained, which are provided in Table 2 for each of the 12 wavelengths in the dataset.

Table 1. Parameter values for Equation (5)–(8). Taken from Table 4 of Brewin et al. [46].

Model Parameter
Parameters Values $

i = a i = b i = c i = d

Gi (Equation (5))
−1.51 −1.25 14.95 0.25

(−1.57↔−1.43) (−1.41↔−1.25) (14.87↔15.05) (0.23↔0.26)

Hi (Equation (6))
0.29 3.05 16.24 0.56

(0.28↔0.30) (2.87↔3.26) (16.19↔16.29) (0.55↔0.57)

Ji (Equation (7))
0.370 1.13 14.89 0.569

(0.367↔0.373) (1.10↔1.16) (14.87↔14.91) (0.566↔0.571)

Ki (Equation (8))
0.503 1.33 17.31 0.258

(0.501↔0.505) (1.31↔1.37) 17.28↔17.32) (0.256↔0.259)
$ Bracket values refer to the 2.5% and 97.5% confidence intervals.

Table 2. Chlorophyll-specific absorption coefficients (m2 [mg C]−1) retrieved from fitting the
four-population model (Equation (10)) to the parameterisation data.

Wavelength Picophytoplankton Nanophytoplankton Dinoflagellates Diatoms
λ (nm) a∗

1 a∗
2 a∗

3 a∗
4

412 0.124 (±0.054) 0.052 (±0.031) 0.039 (±0.014) 0.011 (±0.004)
443 0.183 (±0.043) 0.039 (±0.027) 0.041 (±0.016) 0.016 (±0.005)
490 0.118 (±0.025) 0.022 (±0.018) 0.035 (±0.008) 0.009 (±0.003)
510 0.067 (±0.020) 0.018 (±0.015) 0.026 (±0.005) 0.008 (±0.003)
520 0.053 (±0.016) 0.016 (±0.013) 0.022 (±0.004) 0.007 (±0.002)
550 0.028 (±0.010) 0.011 (±0.008) 0.013 (±0.002) 0.004 (±0.001)
555 0.023 (±0.009) 0.011 (±0.007) 0.012 (±0.002) 0.003 (±0.001)
560 0.018 (±0.008) 0.011 (±0.006) 0.010 (±0.002) 0.003 (±0.001)
620 0.016 (±0.007) 0.007 (±0.005) 0.008 (±0.001) 0.004 (±0.001)
665 0.037 (±0.010) 0.009 (±0.008) 0.010 (±0.006) 0.013 (±0.002)
670 0.052 (±0.013) 0.011 (±0.010) 0.011 (±0.008) 0.015 (±0.002)
682 0.054 ±0.013) 0.012 (±0.009) 0.009 (±0.008) 0.012 (±0.002)

Bracketed values refer to robust standard deviations.
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2.4. Other Models That Relate Phytoplankton Absorption to Total Chlorophyll

Using the independent validation data, the performance of the absorption model developed in the
previous section at retrieving total aph(λ) was compared with two existing phytoplankton absorption
models that derive total aph(λ) as a function of C: a power-law model [23]; and a three-population
model [31]. The power-law model can be expressed as

aph(λ) = A(λ)C(1−B(λ)), (11)

where A(λ) and B(λ) are positive, wavelength-dependent parameters. These were taken from Table 2
of Bricaud et al. [23]. The three-population model can be expressed as

aph(λ) = a∗1(λ)C
m
1 [1− exp(− D1

Cm
1

C)]+

a∗2(λ){Cm
1,2[1− exp(−D1,2

Cm
1,2

C)]− Cm
1 [1− exp(− D1

Cm
1

C)]}+

a∗3,4(λ){C− Cm
1,2[1− exp(−D1,2

Cm
1,2

C)]}.
(12)

In this approach, dinoflagellates (i = 3) and diatoms (i = 4) are grouped together as
microphytoplankton (i = 3, 4) and the parameters D1,2, D1, Cm

1,2 and Cm
1 are fixed and consequently do

not vary with SST, in contrast to Equations (5)–(8). Model parameters for Equation (12) were taken
from Tables 1 and 2 of Brewin et al. [31] (note in their Table 1 Di = Cm

i Si). The performances of the
three models (four-population, three-population and power-law) at estimating aph(λ) from C were
evaluated using both in situ and satellite estimates of C.

2.5. Statistical Tests

Model performance was quantified using the Pearson linear correlation coefficient (r) and the
root mean square error (Ψ) between the estimated and measured absorption coefficients. The Ψ were
computed according to

Ψ =

[
1
N

N

∑
i=1

(
XE

i − XM
i

)2
]1/2

, (13)

where X is the variable (aph(λ)) and N is the number of samples. The superscript E denotes the
estimated variable (e.g., from model) and M the measured variable (e.g., in situ). All statistical tests
were performed in log10 space, considering that aph(λ) is approximately log-normally distributed [60].

2.6. Estimation of Uncertainty in Group-Specific aph(λ)

Because aph,i(λ) can be expressed as the product of a∗i (λ) and Ci, the relative uncertainty
(or relative standard deviation) in aph,i(λ), denoted as fa,i(λ), can be approximated, based on a
Taylor expansion, as

fa,i(λ) =
√

f ∗a,i(λ)
2 + fC,i

2, (14)

where f ∗a,i(λ) and fC,i are the relative uncertainties in a∗i (λ) and Ci, respectively, and i is the
phytoplankton group. The quantity f ∗a,i(λ) can be estimated as the standard deviation in a∗i (λ)
divided by a∗i (λ) (Table 2). So with knowledge of fC,i we can compute fa,i(λ) through application of
Equation (14).

Here, we illustrate the application of Equation (14) using a satellite image of total chlorophyll (C)
and SST in the North East Atlantic (8-day chlorophyll (OC-CCI) and SST (NOAA OISST) composite
between 17 and 24 June 2008). For each group (picophytoplankton, nanophytoplankton, diatoms, and
dinoflagellates), Ci and associated log10-transformed per-pixel uncertainties were estimated using the
model of Brewin et al. [46]. Briefly, Brewin et al. [46] used an in situ and satellite match-up dataset
to compute the log10-transformed Ψ and the bias between in situ and satellite estimates of Ci, for
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14 different optical water types (OWT, see Table 5 of [46]). These values are weighted using satellite
estimates of OWT membership [61] to map Ψ and bias in Ci for each pixel.

Here, we used the approach of Ciavatta et al. [62] (see their Appendix A) to transform data
uncertainties between log and linear space. The Ci data were bias-corrected and per-pixel standard
deviations were computed in linear-space. We then computed fC,i by dividing the standard deviations
by the concentrations. Finally, fa,i(λ) was computed on a per-pixel basis through application
of Equation (14) using per-pixel fC,i and estimates of f ∗a,i(λ) from Table 2 as input.

3. Results and Discussion

3.1. Model Tuning

To evaluate the tuning of the four-population model, estimates of aph(λ) from the model, using C
and SST as input, are plotted against observations of aph(λ) in the parameterisation data (Figure 2).
The model is seen to fit well to the observations, with correlation coefficients ≥0.89, comparable with
the results of studies fitting other models to aph(λ) and C data [31,32], and root mean square errors (Ψ)
ranging between 0.20 and 0.27 for all wavelengths (Figure 2).

Figure 2. Comparison of modelled aph(λ) using total chlorophyll (C) and sea surface temperature
(SST) as input and measured aph(λ) from the training data. (a–l) show aph(λ) scatter plots at each of
the 12 wavelengths in the data. Modelled data is on the ordinate and measurements on the abscissa.
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The retrieved a∗i (λ) values for each phytoplankton group, computed from fitting Equation (10)
to the parameterisation data, are shown in Figure 3a and their spectral forms (a∗(λ) normalised
at 510 nm) in Figure 3b. Picophytoplankton have the highest a∗(λ) and the steepest spectral form.
Diatoms display the lowest a∗(λ) values and the flattest spectral form. Nanophytoplankton and
dinoflagellates a∗(λ) lie between picophytoplankton and diatoms. The a∗(λ) of all groups have peaks
around 443 nm and 670 nm associated with chlorophyll-a absorption. Changes in a∗(λ) magnitude and
spectral form (shape) from picophytoplankton (smallest cells) to diatoms (large cells) are consistent
with changes in size associated with packaging and pigment composition [17–22,63,64].

Figure 3. Phytoplankton group chlorophyll-specific absorption coefficients (a∗i (λ)) derived from tuning
the four-population model. (a) Magnitude of a∗i (λ) for each group and (b) spectral form (shape) computed
by normalisation of a∗i (λ) at 510 nm. Comparison of retrieved a∗(λ) values of: (c) picophytoplankton
with other studies [14,31,33,65]; (d) nanophytoplankton with other studies [14,31,33]; (e) dinoflagellates
with other studies of microphytoplankton [12,14,31,33]; and (f) diatoms with other studies of
microphytoplankton [12,14,31,33]. Note the different scales of the ordinate axis.
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Retrieved picophytoplankton a∗(λ) compare well with results from other studies (Figure 3c).
Retrieved values are higher than those of Ciotti and Bricaud [65], but in good agreement with
Brewin et al. [31], Devred et al. [14], and Uitz et al. [33], with confidence intervals overlapping
for most wavelengths. Agreement with the Brewin et al. [31] and Devred et al. [14] studies is
not surprising, considering data used here are not entirely independent of the data used in these
two earlier studies. Values are slightly closer to Devred et al. [14] at 443, 490, and 670 nm, and
Brewin et al. [31] and Uitz et al. [33] at other wavelengths. High picophytoplankton a∗(λ) values
at blue wavelengths have been attributed to the presence of non-photosynthetic cartenoids, such as
zeaxanthin or β-carotene, that absorb in this region of the spectrum [66]. Picophytoplankton a∗(443)
values obtained here (0.183 m2 [mg C]−1) are similar to those from monospecific laboratory cultures of
Prochlorococcus [67–69].

Retrieved a∗(λ) values for nanophytoplankton (Figure 3d) also agree with those of Brewin et al. [31]
and Devred et al. [14], but are slightly lower than Uitz et al. [33] in the blue and red region of the
spectrum. Large error bars in retrieved a∗(λ) for nanophytoplankton indicate a high natural variability
in a∗(λ) for this group. It is not surprising considering that nanophytoplankton span a relatively large
size range and are known to have high levels of diversity [70]. The high value at 412 nm obtained in
this study, relative to other wavelengths, is somewhat surprising when compared with earlier studies.
However, large error bars suggest differences are not significant with other wavelengths in the blue
region of the spectrum.

Retrieved a∗(λ) values for dinoflagellates and diatoms are plotted against results of other studies
on microphytoplankton in Figure 3e,f. It is worth considering that, though both dinoflagellates
and diatoms are typically microphytoplankton, the microphytoplankton a∗(λ) from other studies
are not expected to match exactly the dinoflagellates and diatoms a∗(λ) from this study, since
microphytoplankton a∗(λ) represents a combination of both groups. In general, dinoflagellate a∗(λ) is
higher than the Brewin et al. [31] and Devred et al. [14] studies and diatom a∗(λ) lower. Dinoflagellate
a∗(λ) is higher than all other studies between 490 and 510 nm, but overlaps with Devred et al. [14] in
blue regions (412 and 443 nm), agrees with Uitz et al. [33] in green regions (550 to 560 nm) and overlaps
with all studies in the red region (665 to 683 nm). Diatom a∗(λ) is in good agreement with estimates
from Ciotti et al. [12] in blue and green regions of the spectrum (412 to 620 nm) but in better agreement
with Brewin et al. [31], Devred et al. [14] and Uitz et al. [33] in the red (665 to 683 nm). Lowest
a∗(λ) values for diatoms in blue and green wavelengths can be linked to the strong package effect
occurring in this group [11]. Values of a∗(443) for diatoms and dinoflagellates are also comparable
with laboratory studies on these groups [71,72].

Differences in a∗i (λ) among studies (Figure 3) may be due to a variety of reasons. While on the
one hand the datasets used in this paper have been used previously by the bio-optical community for
studying phytoplankton absorption and community structure [10,11,14,32,59,73,74], and are among
the few datasets available for such large spatial-scale analysis, the complication of data collected
by different investigators and in different laboratories will always be vulnerable to variations in
lab-procedures and techniques [52]. Increasing efforts are being made by the international community
to minimise such differences, by improving international protocols for measuring properties like aph
(e.g., [75]). Differences in a∗i (λ) among studies (Figure 3) may also be dependent on the methods used to
derive phytoplankton composition (Ci). The model of Brewin et al. [46] was fitted using a combination
of High Performance Liquid Chromatography (HPLC) pigment data and sequential size-fractionated
chlorophyll measurements. This is different to other studies, for example, Uitz et al. [33] used HPLC
data only, and the use of HPLC in their study for deriving phytoplankton composition was not
exactly the same as that used in the Brewin et al. [46] study, which introduced modifications to the
method [14,34]. The Ciotti et al. [12] study used a combination of methods allocating spectra based
on dominant group, and Devred et al. [14] used aph and C to derive Ci, making assumptions about
the composition at extreme (low) ends. Differences in a∗i (λ) among studies (Figure 3) may also be
related to regional and seasonal differences in the datasets used, and differences in mathematical and
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statistical methods for determining a∗i (λ) (e.g., fitting procedures, variations in the use of parametric
and non-parametric statistics).

3.2. Model Validation

The validation data were used to verify the performance of the four-population model at retrieving
total aph(λ). The model was tested using both in situ and satellite total chlorophyll-a (C) as input.
For the in situ validation, correlation coefficients (r) ranged from 0.87 to 0.92 and root mean square
errors (Ψ) between 0.21 and 0.29 (Table 3), in good agreement with statistical tests performed on the
parameterisation data (Figure 2). For the satellite validation, lower r values (0.76 to 0.80) and higher Ψ
(0.27 to 0.39) were obtained (Table 3). However, results from these statistical tests are influenced by
discrepancies between in situ and satellite chlorophyll-a (see footnote to Table 3), and are comparable
with other validation studies estimating aph(λ) from remote sensing reflectance (Rrs) data [76].

The performance of the four-population model at retrieving aph(λ) was found to be comparable
with results of two other models that estimate aph(λ) as a function of total chlorophyll-a (C) [23,31],
using both in situ and satellite total chlorophyll-a (C) as inputs (Table 3). There were no significant
differences in r among models according to the z-score (p > 0.05, see [76] for computation of z-score).
There were also no significant differences in Ψ, with 95 % confidence intervals in Ψ overlapping
(computed from the standard error and the t-distribution of the sample size), with the exception of
412 nm. Here, the four-population model had significantly lower Ψ than both the three-population
model and the power-law model in both validation cases (using in situ and satellite C as input).
Furthermore, at 443 nm, and in both validation cases, the four-population and three-population model
had significantly lower Ψ than the power-law model.

With respect to estimating total aph(λ) only from total chlorophyll-a (C), and considering
performance similar to the two simpler models at most wavelengths (that have fewer parameters),
the four-population model is a less parsimonious model. However, the four-population model has
advantages over the two simpler models, including: (1) its parameters have clear interpretations and
the approach ensures plausible values of a∗(λ) at extreme chlorophyll-a concentrations, unlike an
empirical power function; (2) the model can determine aph(λ) for four phytoplankton groups, rather
than three as in the three-population model; and (3) the model incorporates the effect of changes in
SST on total and group-specific aph(λ), which could be important when modelling phytoplankton
absorption in a future, warmer ocean under climate change.
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Table 3. Comparison of the performance of the four-population model at retrieving aph(λ) with the model of Brewin et al. [31] and Bricaud et al. [23] using the
validation data, and both in situ and satellite chlorophyll-a data as input.

Wavelength (nm)

In Situ Chlorophyll-a as Input * Satellite Chlorophyll-a as Input *

This Study Brewin et al. [31] Bricaud et al. [23] This Study Brewin et al. [31] Bricaud et al. [23]
r Ψ r Ψ r Ψ r Ψ r Ψ r Ψ

412 0.89 0.21 0.88 0.23 0.89 0.26 0.80 0.28 0.80 0.31 0.80 0.34
443 0.87 0.22 0.86 0.22 0.87 0.25 0.78 0.27 0.78 0.29 0.78 0.32
490 0.87 0.21 0.86 0.21 0.86 0.22 0.77 0.27 0.78 0.27 0.78 0.29
510 0.89 0.21 0.89 0.21 0.89 0.22 0.79 0.28 0.80 0.29 0.80 0.30
520 0.90 0.21 0.90 0.21 0.91 0.22 0.80 0.29 0.81 0.30 0.81 0.31
550 0.90 0.26 0.90 0.25 0.91 0.24 0.80 0.34 0.80 0.36 0.81 0.33
555 0.90 0.26 0.89 0.26 0.91 0.24 0.80 0.35 0.80 0.37 0.81 0.34
560 0.90 0.27 0.89 0.27 0.91 0.24 0.80 0.35 0.80 0.38 0.82 0.33
620 0.91 0.25 0.91 0.23 0.91 0.23 0.79 0.36 0.80 0.35 0.81 0.34
665 0.92 0.22 0.92 0.22 0.92 0.21 0.80 0.34 0.81 0.33 0.81 0.34
670 0.91 0.23 0.92 0.22 0.92 0.22 0.79 0.34 0.80 0.33 0.80 0.34
682 0.88 0.29 0.89 0.26 0.89 0.26 0.76 0.39 0.78 0.37 0.78 0.37

* All statistical tests are performed on log10-transformed aph(λ) data. A statistical comparison between log10-transformed in situ and satellite chlorophyll-a
yielded r = 0.80 and Ψ = 0.34.
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3.3. Variations in aph(λ) with Temperature and Community Structure

The four-population model allows us to explore the impact of changes in SST on phytoplankton
community structure and consequently aph(λ). Figure 4a,b shows the effect of SST on total aph(443)
and total a∗(443) as functions of total chlorophyll-a (C). Larger differences are seen at lower chlorophyll
concentrations, where the a∗(443) (and consequently aph(443)) are higher in warmer waters. This
is a consequence of a change in the composition of phytoplankton (Figure 4c,d) from a dominance
(in terms of C) of picophytoplankton in warmer, low-chlorophyll waters (Figure 4c, picophytoplankton
have higher a∗(443), see Figure 3), to nanophytoplankton in cooler, low-chlorophyll waters (Figure 4d,
nanophytoplankton have lower a∗(443), see Figure 3). The four-population model constrains a∗(443)
at very high and very low chlorophyll-a concentrations, since the range of values of a∗(λ) is bounded
by the values associated with the populations. However, as the populations change with SST, so do
the bounds (Figure 4b). Interestingly, the functional relationship between a∗(443) and C is in good
qualitative agreement with the hyperbolic tangent function of Carder et al. [28] (Figure 4b). Though
biases are observed at the higher end of chlorophyll concentrations, temperate parameters of the
Carder et al. [28] model (likely representative of cooler waters) are shifted lower than those from
subtropical water (likely representative of warmer waters), consistent with the four-population model
at lower chlorophyll concentration (<1 mg m−3).

Figure 4. Estimates of aph(443) as a function of total chlorophyll-a (C) using the four-population model.
(a) Influence of SST on estimates of aph(443) as a function of C. (b) Influence of SST on estimates of
a∗(443) as a function of C: C91 refers to the model of Carder et al. [28], for subtropical and temperate waters.
(c–f) The fractions (Fi) of each phytoplankton group (1 = picophytoplankton, 2 = nanophytoplankton,
3 = dinoflagellates, and 4 = diatoms) relative to C for the same model simulations.

Estimates of total a∗(λ) for a range of total chlorophyll-a concentrations (C) are plotted in Figure 5
using the four-population model for three contrasting temperature values: 24 ◦C; 17 ◦C; and 10 ◦C.
The change in the upper bound of a∗(λ) with SST at low chlorophyll is most apparent in the blue
part of the spectrum, but still occurs in the green and red (Figure 5a–c). Figure 5d–o show the
fractional contribution to specific absorption of each of the four phytoplankton groups, relative to total
aph(λ), for the same simulations. In general, picophytoplankton control total a∗(λ) at low chlorophyll
concentration, nanophytoplankton at intermediate chlorophyll, and diatoms and dinoflagellates at
high chlorophyll. However, there are clear spectral variations, as well as variations with temperature.
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Although nanophytoplankton dominate the fractional contribution of each group relative to total
chlorophyll at low SST and low chlorophyll (Figure 4a,d), picophytoplankton are more efficient in
absorbing light and consequently have a greater influence on aph(λ) in the same temperature and
chlorophyll range.

Figure 5. Estimates of a∗(λ) as a function of total chlorophyll-a (C) using the four-population model at
three contrasting temperature ranges: (a,d,g,j,m) at 24 ◦C; (b,e,h,k,n) at 17 ◦C; and (c,f,i,l,o) at 10 ◦C.
(a–c) a∗(λ) for a given total chlorophyll-a (C) at the three temperature ranges. (d–o) The fractional
contribution of each group (1 = picophytoplankton, 2 = nanophytoplankton, 3 = dinoflagellates
and 4 = diatoms) relative to aph(λ) for each simulation at the three temperature ranges: (d–f)
picophytoplankton; (g–i) nanophytoplankton; (j–l) dinoflagellates; and (m–o) diatoms. Thin grey
lines represent wavelengths in the model, all other wavelengths are estimated from linear interpolation
between neighbouring wavebands and should be interpreted cautiously.

3.4. Towards a Mechanistic Understanding of Temperature in the Four-Population Model

SST influence in the four-population model is represented through the parameters that control
the relationship between group-specific chlorophyll (Ci) and total chlorophyll (C) (Equation (5)–(8)):
the asymptotic maximum value for cells <20 µm and <2 µm (Cm

1,2 and Cm
1 ), the fraction of total

chlorophyll in two size classes (<20 µm and <2 µm) as total chlorophyll tends to zero (D1,2 and
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D1), and the fractional contribution of dinoflagellates (C3) and diatoms (C4) to microphytoplankton
chlorophyll (C3,4, cells >20 µm). The extent to which temperature has a direct or an indirect influence
on phytoplankton community structure is an area of active research [40,42,77–79].

In the favour of direct control, temperature is known to influence the physiology of
phytoplankton [80]. As highlighted by López-Urrutia and Morán [78], temperature impacts uptake rates
of nutrients, for example, through temperature-dependent metabolic processes that influence nutrient
ion handling times, or through modifying nutrient diffusion and fluid viscosity [81]. Temperature
also can influence resource allocation; for example, the relative nitrogen-to-phosphorus demands in
phytoplankton have been linked to temperature [82]. Phytoplankton loss terms (e.g., grazing) have
been related to parameters of the model (e.g., the asymptotic maximum value for small cells [83])
and to temperature. For example, López-Urrutia [84] found that temperature can modify the grazing
interactions between phytoplankton and their predators. All these factors will directly influence
bottom-up and top-down control on these phytoplankton groups.

Nonetheless, the relationship between temperature and model parameters may simply be an
indirect effect of covariation between temperature and resource supply [77,79]. Inverse relationships
between temperature and nutrients are well known in the region [85], as are positive relationships
between temperature and light availability in the mixed-layer [46]. Temperature may also covary with
the spectral quality of light in the mixed layer, which has also been shown to influence phytoplankton
community structure [2]. The influence of temperature on model parameters has not only been seen in
the North Atlantic study of Brewin et al. [46], but also in other studies, using different datasets and
methods, and in different regions, from polar to tropical waters [86,87]. Future work is needed to
understand mechanistically how temperature influences model parameters. For example, the evidence
and length of lags between temperature and changes in phytoplankton community structure could be
useful for understanding direct and indirect effects.

3.5. Impact of Variations in aph(λ) on the Blue-to-Green Ratio of Remote-Sensing Reflectance

We integrated the four-population absorption model into a simple model of ocean colour
(see Appendix A). This model was used for the sole purpose of illustrating the influence of
changes in SST on phytoplankton community structure, and consequently, the blue-to-green ratio of
remote-sensing reflectance. Figure 6 shows the blue-to-green maximum band ratio of remote sensing
reflectance (Rrs(443 > 490 > 510)/Rrs(555)) plotted as a function of total chlorophyll-a (C) and SST
using this model. Overlain on these simulations is the globally-tuned NASA OC4v6 model [88,89].

Variations in the maximum band ratio at higher chlorophyll (>1 mg m−3) are relatively small
and agree well with the empirical OC4v6 model. Larger differences emerge at lower chlorophyll
(<1 mg m−3). Here, there is a significant increase in blue light relative to green light with decreasing
SST (Figure 6a). This change is characterised by a shift in the composition of phytoplankton from
small cells (picophytoplankton) in warmer waters to larger cells (nanophytoplankton and diatoms) in
cooler waters (Figure 6b–d). Interestingly, the OC4v6 algorithm tracks the warmer water simulations
in these low chlorophyll waters, possibly reflecting the distribution of data in the database used to
parameterise the OC4v6 algorithm; after all, low chlorophyll waters are generally more prevalent
in subtropical (warmer water) regions. In fact, the median SST (OISST) for HPLC chlorophyll-a
concentrations < 0.4 mg m−3 in the NOMAD database (Version 2.0 ALPHA, parts of which were used
to parameterise OC4v6) is 20 ◦C, a temperature range where model simulations and OC4v6 agree
reasonably (Figure 6a).

Results for the simulations in Figure 6 are consistent with results of some regional studies in cold
waters. For example, empirical algorithms that estimate total chlorophyll-a from reflectance ratios
typically report higher ratios for the same chlorophyll in the Southern Ocean [90,91], which has been
attributed to changes in pigment packaging and a shift toward larger celled phytoplankton [86,92].
Other studies have shown that, in high latitude regions, often characterised by the presence
of diatoms, blue-to-green reflectance ratios are higher than in low latitude regions, for similar
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chlorophyll and coloured dissolved organic matter (CDOM) concentrations [10]. With predicted
changes in ocean temperature in the North Atlantic [93], and consequently phytoplankton population,
the four-population model could be useful for exploring consequential changes in ocean colour, or
verifying bio-optical ecosystem model projections of ocean colour [94].

In fact, it has been suggested [94] that parts of the future ocean could be bluer as phytoplankton
concentration and community composition is modified due to climate change. The results presented
here (Figures 5 and 6) raise the possibility that temperature-dependent alterations in the phytoplankton
absorption properties could counteract any such tendencies to some extent: We see in Figure 6 that
the blue-to-green ratio of remote-sensing reflectance decreases with increasing temperature, for a
given chlorophyll concentration, and especially for low-chlorophyll waters. To resolve the question of
whether such patterns would persist in a future ocean decades away from now, we need to understand
better the reasons for a temperature dependence in absorption (see Section 3.4). Another possibility is
that higher temperatures are associated with high-light environments, and that the temperature
effect observed here is actually a consequence of photo-acclimation: in high-light environment,
phytoplankton are expected to have lower chlorophyll per cell than in low-light conditions, which in
turn would lead to reduced flattening effect on phytoplankton absorption and higher phytoplankton
absorption in the blue relative to green. But such discussions must remain speculative at present, until
further investigations can be carried out to test the cause of the observed temperature dependence of
phytoplankton absorption.

Figure 6. The blue-to-green maximum band ratio of remote sensing reflectance (Rrs) plotted as
a function of total chlorophyll-a (C) and SST using a model of ocean colour that integrates the
four-population absorption model (see Appendix). (a) Impact of variations in SST on estimates of the
maximum band ratio. (b–e) The fractions (Fi) of each phytoplankton group (1 = picophytoplankton,
2 = nanophytoplankton, 3 = dinoflagellates, and 4 = diatoms) relative to C for the same model
simulations. Dashed line represents the NASA OC4v6 model [88,89].
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3.6. Mapping Uncertainty in Group-Specific aph(λ)

Figure 7 illustrates an application of the four-population model and Equation (14) in
the North East Atlantic, to estimate, from satellite data, aph(443) for each group (diatoms,
dinoflagellates, nanophytoplankton, and picophytoplankton, Figure 7e,h,k,n) and the uncertainty
in these estimates (Figure 7f,i,l,o), from knowledge of the chlorophyll concentrations for each
group (Figure 7d,g,j,m), derived from total chlorophyll and SST (Figure 7a,c), uncertainties in the
chlorophyll concentrations for each group (from OWT data, Figure 7b, and Table 5 of [46]), and
uncertainties in a∗(443) (Table 2). Uncertainty is lowest for picophytoplankton (median 96 %), followed
by dinoflagellates (median 121 %), nanophytoplankton (median 124 %), and diatoms (median 140 %).
In general, for all groups, there is an increase in uncertainty with increasing total chlorophyll and
OWT. This is most pronounced for dinoflagellates. Reducing uncertainty in these estimates requires
reducing the uncertainties in the input to Equation (14) (group specific a∗(443) and C), which will
require improvements in the in situ measurements of phytoplankton group chlorophyll and aph(λ),
and better characterisation of uncertainties associated with differences in the observational scales
between satellite and in situ data [95], since uncertainties in group-specific chlorophyll are based on
satellite and in situ data match-ups [46].

Figure 7. Satellite estimates of phytoplankton group chlorophyll, aph(443) and per-pixel errors in
aph(443) for an eight day composite (17 to 24 June 2008) of Ocean Colour Climate Change Initiative
(OC-CCI) chlorophyll and NOAA Optimal Interpolation Sea Surface Temperature (OISST) SST using
the four-population absorption model and Equation (14). (a) Total chlorophyll, (b) dominant optical
water type (OWT), and (c) SST data. These are used as input to the four-population absorption model to
predict: (d) diatom chlorophyll (C4); (e) diatom absorption at 443 nm (aph,4(443)); (f) % uncertainty in
aph,4(443); (g) dinoflagellate chlorophyll (C3); (h) dinoflagellate absorption at 443 nm (aph,3(443));
(i) % uncertainty in aph,3(443); (j) nanophytoplankton chlorophyll (C2); (k) nanophytoplankton
absorption at 443 nm (aph,2(443)); (l) % uncertainty in aph,2(443); (m) picophytoplankton chlorophyll
(C1); (n) picophytoplankton absorption at 443 nm (aph,1(443)); and (o) % uncertainty in aph,1(443).
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Increasing efforts to incorporate bio-optical modules into multi-phytoplankton ecosystem
models are underway (e.g., [94,96]). These modules open a path to assimilating satellite-based
phytoplankton group-specific optical properties, such as phytoplankton absorption. It has recently
been demonstrated that significant improvements in the forecasting and reanalysis of biogeochemical
indicators by multi-phytoplankton ecosystem models can be achieved by assimilating satellite
estimates of group-specific chlorophyll concentration, compared with assimilating only total
chlorophyll [47,48]. Furthermore, there are advantages to assimilating optical data directly, rather than
concentrations [49,97,98]. The CMEMS project “Optical data modelling and assimilation” seeks to
move one step further and assimilate phytoplankton group-specific aph(λ) into the ERSEM model that
is run operationally by the CMEMS MFC of the North West European Shelf-Seas. As demonstrated
in Figure 7, such satellite products are becoming available, together with per-pixel uncertainties, which
are highly desirable for use in data assimilation, as well as other applications.

4. Summary

We use the regional phytoplankton group chlorophyll-a model of Brewin et al. [46] to extend
a three-population phytoplankton absorption model [31] to a four-population model. The new
model estimates the spectral phytoplankton absorption coefficient (aph(λ)) of four phytoplankton
groups (picophytoplankton, nanophytoplankton, dinoflagellates, and diatoms) as a function of the
total chlorophyll-a concentration (C) and SST. A dataset of aph(λ) (at 12 wavelengths), C and SST
measurements, compiled from the surface layer of the North Atlantic, was partitioned into training and
validation data, the validation data being matched to satellite ocean-colour observations. The model
was fitted to the training data to yield the chlorophyll-specific absorption coefficient (a∗(λ)) for each of
the four groups, which compared well with previous field and laboratory studies.

The model was tested using independent validation data and was found to retrieve total
aph(λ) with a similar performance to two earlier models [23,31], using either in situ or satellite
total chlorophyll-a data as input. Unlike these earlier models, the new model can determine aph(λ) for
four phytoplankton groups and includes the influence of changes in SST on total and group-specific
aph(λ). We incorporated the new four-population absorption model into a model of ocean colour to
demonstrate the influence of change in SST on phytoplankton community structure, and consequently
on ocean colour. We also provide a technique for propagating uncertainty through the model and
illustrate it using a satellite image. We expect the model to be useful for optical ecosystem model
validation and assimilation exercises and for exploring the influence of temperature change on
community structure and consequently ocean colour.
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Appendix A. Ocean-Colour Model

The case-1 ocean-colour model used to illustrate changes in the blue-to-green ratio of
remote-sensing reflectance with changes in total chlorophyll (C) and SST is described in this Appendix.

Appendix A.1. Remote-Sensing Reflectance

The remote-sensing reflectance (Rrs(λ)) was modelled as a function of the total absorption
coefficient (a(λ)), total backscattering coefficient (bb(λ)), particulate backscattering coefficient (bbp(λ)),
and pure seawater backscattering coefficient (bbw(λ)), according to Lee et al. [99]. The approach
explicitly separates the phase-function of molecular and particle scattering, such that

Rrs(λ, Ω) =

(
Mw

0 (Ω) + Mw
1 (Ω) bbw(λ)

a(λ)+bb(λ)

)
bbw(λ)

a(λ)+bb(λ)
+(

Mp
0 (Ω) + Mp

1 (Ω)
bbp(λ)

a(λ)+bb(λ)

)
bbp(λ)

a(λ)+bb(λ)
,

(A1)

where parameters Mw
0 (Ω), Mw

1 (Ω), Mp
0 (Ω), Mp

1 (Ω) were derived from Hydrolight simulations [99]
for various Sun angles and viewing geometries, with Ω collectively representing these geometries.
Parameters for solar zenith angle in air equal to zero, sensor nadir-view angle in air equal to zero, and
a sensor azimuth angle in relation to the solar plane equal to zero were selected, such that Mw

0 = 0.0604,
Mw

1 = 0.0406, Mp
0 = 0.0402 and Mp

1 = 0.1310 [99]. The term bbw(λ) was modelled from Zhang and
Hu [100] and Zhang et al. [101], using SST as input and fixing salinity at 35 ppt.

Appendix A.2. Backscattering Model

The total backscattering coefficient bb(λ) was computed as

bb(λ) = bbw(λ) + bbp(λ). (A2)

The particulate backscattering coefficient (bbp(λ)) was modelled as a function of the chlorophyll
concentration of small (C1,2) and large (C3,4) phytoplankton following Brewin et al. [102], such that

bbp(λ) = b∗bp,1,2(λ0)(λ/λ0)
−γ1,2 {Cm

1,2[1− exp(−D1,2
Cm

1,2
C)]}+

b∗bp,3,4(λ0)(λ/λ0)
−γ3,4 {C− Cm

1,2[1− exp(−D1,2
Cm

1,2
C)]}+

bk
bp(λ0)(λ/λ0)

−γk ,

(A3)

where b∗bp,i(λ0) is the chlorophyll-specific backscattering coefficient for pico+nanophytoplankton

(i = 1, 2) and microphytoplankton (i = 3, 4), bk
bp(λ0) represents the constant background component, γi

describes the spectral slope of backscattering for each phytoplankton group (i) and γk the spectral slope
of the constant background component. The reference wavelength (λ0) was set at 443 nm. Parameters
Cm

1,2 and D1,2 were modelled as a function of SST using Equations (5) and (7), and parameters b∗bp,i(λ0),

γi , bk
bp(λ0) and γk were taken from Table 1 of Brewin et al. [102] (adjusting the reference wavelength

(λ0) from 470 nm to 443 nm).

Appendix A.3. Absorption Model

The total absorption coefficient a(λ) was computed as

a(λ) = aw(λ) + aph(λ) + adg(λ). (A4)

The absorption coefficient of pure seawater (aw(λ)) was taken from Pope and Fry [103].
The four-population model (Equations (2)–(10)) was used to compute aph(λ) as a function of C and
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SST. The absorption coefficient of combined detrital (non-algal) particles and CDOM (adg(λ)) was
modelled as

adg(λ) = adg(λ0) exp[−Sdg(λ− λ0)], (A5)

where Sdg is the slope of the exponential function, set to 0.018 [104], and adg(λ0), where λ0 = 443 nm,
was computed as a multiplicative factor of aph(λ0) following Sathyendranath et al. [10], such that
adg(λ0) = 0.3aph(λ0). Table A1 defines all symbols used in this manuscript.

Table A1. Symbols and definitions.

Symbol Definition

a Total absorption coefficient (m−1)

a∗ Chlorophyll-specific absorption coefficient of phytoplankton (m2 [mg C]−1)

a∗i Chlorophyll-specific absorption coefficient of phytoplankton group i, where i can be 1, 2, 3 or 4
(pico-, nano-, dinoflagellates, or diatoms, respectively), or a combination of groups, for example,
i = 1, 2 would represent combined pico- and nano-phytoplankton (m2 [mg C]−1)

ad Absorption coefficient of detrital material (m−1)

adg Absorption coefficient of combined detrital particles and coloured dissolved organic matter (m−1)

ap Absorption coefficient of particulate matter (m−1)

aph Absorption coefficient of phytoplankton (m−1)

aph,i Absorption coefficient of phytoplankton group i, where i can be 1, 2, 3 or 4 (pico-, nano-,
dinoflagellates, or diatoms, respectively), or a combination of groups, for example, i = 1, 2
would represent combined pico- and nano-phytoplankton (m−1)

aw Absorption coefficient of pure seawater (m−1)

bb Total backscattering coefficient (m−1)

bbp Backscattering coefficient of particulate matter (m−1)

b∗bp,i Chlorophyll-specific particulate backscattering coefficient of phytoplankton group i, where i can
be 1, 2, 3 or 4 (pico-, nano-, dinoflagellates, or diatoms, respectively), or a combination of groups,
for example, i = 1, 2 would represent combined pico- and nano-phytoplankton (m2 [mg C]−1)

bk
bp Constant background particulate backscattering coefficient (m−1)

bbw Backscattering coefficient of pure seawater (m−1)

C Total chlorophyll concentration (mg m−3)

Ci Chlorophyll concentration for phytoplankton group i, where i can be 1, 2, 3 or 4 (pico-, nano-,
dinoflagellates, or diatoms, respectively), or a combination of groups, for example, i = 1, 2
would represent combined pico- and nano-phytoplankton (mg m−3)

Cm
1,2 Asymptotic maximum value of C1,2 (mg m−3)

Cm
1 Asymptotic maximum value of C1 (mg m−3)

D1,2 Fraction of total chlorophyll in combined pico-nanoplankton (cells < 20µm) as total chlorophyll
tends to zero

D1 Fraction of total chlorophyll in picoplankton (cells < 2µm) as total chlorophyll tends to zero

fa,i Relative uncertainty (or relative standard deviation) in aph,i

f ∗a,i Relative uncertainty (or relative standard deviation) in a∗i
fC,i Relative uncertainty (or relative standard deviation) in Ci

Fi Fraction of total chlorophyll for phytoplankton group i, where i can be 1, 2, 3 or 4 (pico-, nano-,
dinoflagellates, or diatoms, respectively), or a combination of groups, for example, i = 1, 2
would represent combined pico- and nano-phytoplankton

Gi Parameters for Equation (5) controlling changes in Cm
1,2 with SST, where i = a, b, c or d depending

on parameter (see Table 3)
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Table A1. Cont.

Symbol Definition

Hi Parameters for Equation (6) controlling changes in Cm
1 with SST, where i = a, b, c or d depending

on parameter (see Table 3)

Ji Parameters for Equation (7) controlling changes in D1,2 with SST, where i = a, b, c or d depending
on parameter (see Table 3)

Ki Parameters for Equation (8) controlling changes in D1 with SST, where i = a, b, c or d depending
on parameter (see Table 3)

Mw
0 Parameter for the optical model of Lee et al. [99], see Equation (A1)

Mw
1 Parameter for the optical model of Lee et al. [99], see Equation (A1)

Mp
0 Parameter for the optical model of Lee et al. [99], see Equation (A1)

Mp
1 Parameter for the optical model of Lee et al. [99], see Equation (A1)

r Pearson correlation coefficient

Rrs Remote-sensing reflectance (sr−1)

Sdg Slope of an exponential function of adg with λ (nm−1)

SST Sea surface temperature (◦C)

α Parameter of Equation (9) controlling slope of change in C3/C3,4 with SST (◦C−1)

β Parameter of Equation (9) controlling the SST mid-point of α (◦C)

γi Spectral slope of b∗bp,i with λ

γk Spectral slope of bk
bp with λ

λ Wavelength of light (nm)

λ0 Reference wavelength of light (set here to 443 nm)

Ω Collectively representing solar zenith angle, sensor nadir-view angle and sensor azimuth angle,
for the optical model of Lee et al. [99], see Equation (A1)

Ψ Root mean square error
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