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Abstract 

The aim of this project was to develop applied metabarcoding methods to aid 

both the monitoring of environmental water quality and surveillance of airborne 

fungal phytopathogens. An Illumina short-read metabarcoding method was 

developed which is now in active use by the UK Environment Agency to 

determine the abundance of diatom species, feeding into the classification of 

water bodies for the EU Water Framework Directive. Further work was 

undertaken to future proof this method by comparing the diatom assemblages of 

three English rivers as determined by light microscopy, the developed Illumina 

short-read metabarcoding method and long-read nanopore metabarcoding. The 

river and method comparison study showed that the light microscopy was the 

outlier and potentially largest source of error as the two separate metabarcoding 

methods performed very similarly. A study was undertaken to compare the 

airborne fungal communities in six locations in eastern England over a one month 

period in 2015 to assess metabarcoding as a potential surveillance tool for the 

introduction of phytopathogens and the utility of the current UK pollen network for 

sample acquisition. This study highlighted issues with contamination at stages 

within the metabarcoding laboratory preparation protocols which made the 

bioinformatics analysis problematic; however, recommendations are made for 

procedures to reduce contamination in metabarcoding studies. The final study 

characterised a weeks’ data from the eastern England fungal spore samples with 

a novel long PCR amplifying the entire ribosomal tandem repeat - including the 

intergenic spacer - to investigate the regions full utility in the light of nanopore 

sequencing.  
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Chapter 1. Introduction 
Various definitions exist for the terms ‘monitoring’ and ‘surveillance’ but it is 

generally accepted that monitoring is the systematic sampling of an environment 

to assess specific variables that inform its current status (Artiola et al., 2004) and 

surveillance is the ongoing sampling of an environment whereby action could be 

taken if the data indicates a new threat (Christensen, 2001). Monitoring and 

surveillance of air and water environments are important to food security and 

water quality, respectively; however, the methods currently used can be 

prohibitively expensive or very resource intensive. Both monitoring and 

surveillance consist of recording the presence and abundance of species in a 

sample and when many samples are required in different locations over various 

time points to characterise changes in an environment the costs can be 

prohibitive with traditional methods (Targetti et al., 2014). In the UK, there is a 

requirement for biodiversity monitoring and these obligations are regulated with 

common agreements and legislation, for example, the Conservation of Habitats 

and Species Regulations, 2017. There is an important need for methodology 

which can measure and assess our environment in a cost effective manner, 

without the loss of critical information. Modern DNA techniques offer the potential 

for such monitoring methods with the additional resolution for surveillance for new 

and emerging threats.  

Metabarcoding as a method for determining the species present 

within a sample 

DNA barcoding is a technique which can be used to assign unknown individuals 

to species as well as enhancing the discovery of new species (Hebert et al., 

2003a). Creation of the ‘barcode’ involves the PCR amplification and sequencing 

of a standardised region and the subsequent comparison to a database of known 

DNA barcodes produces the identification. Many projects in recent years were 

centred around the production of reference DNA barcodes from morphologically 

verified specimens (Hollingsworth et al., 2009; Schoch et al., 2012; Ward et al., 

2009). Yet despite the push to collect specimens and produce DNA barcodes 

there were few applied routine uses of standalone DNA barcoding. With the 

advent of high-throughput sequencing DNA barcoding can now be used in a 

massively parallel way to identify the complement of species in a sample. This 
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method is known by many different names (amplicon metagenomics, meta-

genetics, targeted metagenomics) but for the purposes of clarity it will be referred 

to here as metabarcoding. The applied uses for metabarcoding far exceed those 

of single-specimen DNA barcoding as many samples contain complex mixtures 

of species rather than single specimens.  

Taxonomic challenges in fungal identification 

Ribosomal DNA (rDNA) genes are known to accumulate mutations slowly and 

are present in multiple copies within the genome. These copies are subject to 

concerted evolution where mutations which appear in one repeat within that 

species are maintained and copied to other repeats in the region, yet between 

species the sequences can be very different (Ganley and Kobayashi, 2007). The 

Internal Transcribed Spacer (ITS) region is frequently used in studies where 

discrimination of fungal species is required due to its hypervariability. The region 

is part of a larger tandem repeat (Figure 1.1) comprising the small ribosomal 

subunit (SSU/18S), ITS1, 5.8S ribosomal submit, ITS2, large ribosomal subunit 

(LSU/28S), 5S ribosomal subunit and the two intergenic spacers (IGS1 and 

IGS2). The 5S ribosomal region can vary in position (Iwen et al., 2002) and the 

length of the ITS1, ITS2, IGS1 and IGS2 spacers can vary between species 

(Hausner and Wang, 2005) . The ITS1-5.8S-ITS2 region is capable not only of 

species discrimination but also sub-species and individual identification due to 

the hypervariability of the ITS spacers.  

 

 
Figure 1.1: The tandemly repeated structure of fungal rDNA, consisting of the small 
subunit (SSU), 5.8S, large subunit (LSU) and 5S, separated by transcribed spacers ITS1 
and ITS2, and the two intergenic spacers IGS1 and IGS2 
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The ribosomal tandem repeat regions have been used extensively in the past for 

species identification, with different regions being used for different taxa prior to 

the adoption of a more standardised approach to fungal identification using ITS 

(Schoch et al., 2012). It is estimated that there are between 2.2 to 3.8 million 

fungal species with approximately 3-8% having been named (Hawksworth and 

Lücking, 2017).  

 

Metabarcoding of 16S (bacteria) and ITS (fungi) have become common 

techniques in microbial ecology (Arfi et al., 2012; Caporaso et al., 2011). Many 

bioinformatics tools have been developed to aid metabarcoding data analysis, for 

example, QIIME (Caporaso et al., 2010) and mothur (Schloss et al., 2009). When 

comparisons are being made between samples, species-level resolution of the 

composition of each sample is not required and most tools default to genus-level. 

Additionally, almost all metabarcoding bioinformatics methods rely on clustering 

the amplicon sequences into Operational Taxonomic Units (OTUs) based upon 

a relatively arbitrary similarity percentage, usually 97%, prior to downstream 

analysis, which can also decrease the resolution available.  

 

The identification of metabarcoding OTUs to species-level is not required for most 

applications of the technique. When microbial ecologists are comparing 

communities with 16S or ITS metabarcoding, genus level taxonomic 

identifications are more than adequate (Somervuo et al., 2017). Equally, absolute 

accuracy in the taxonomic assignment of OTUs is not a prerequisite as many 

studies can be carried out without taxonomic information at all, allowing 

comparisons between samples, locations or environments based purely on the 

presence of an OTU and its relative abundance in each sample (Cordier et al., 

2017; Cordier et al., 2018). However, when the aim is to use metabarcoding for 

detection, monitoring or surveillance studies, species-level resolution is very 

important and, furthermore, accurate identifications are critical (Staats et al., 

2016; Bell et al., 2016). As such, the sequencing technology used to produce the 

metabarcode and the length of the amplicon (and how phylogenetically 

informative it is) becomes critical to a project’s success.  

 

Over the last ten years, the read lengths of next-generation sequencing 

technologies have matured from ~25bp (Solexa) through to the now-redundant 
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454 FLX+ at ~800bp, with the predominant sequencing technology being 

Illumina, with a capability of ~300-500bp amplicons (Figure 1.2). More recently 

the maturation of very long read nanopore sequencing with the Oxford Nanopore 

MinION suggests a future where metabarcoding is redundant and metagenomics 

(the sequencing of all genomic DNA in a sample) replaces it (Juul et al., 2015).  

 

However, beyond the hype is the reality that full reference genomes are not yet 

available for the vast majority of species to allow accurate identification of species 

for statutory or regulatory purposes. For example, the Barcode of Life initiative 

has been working towards the Sanger sequencing and curation of DNA barcodes 

from all species for the past 12 years and has sequenced 259,955 species from 

5,200,520 specimens (www.boldsystems.org). Replacement, even in part, of 

DNA barcodes with reference genome sequences will take many years to 

complete and will certainly present significant data management challenges. 

While a whole genome approach is likely to be the future, metabarcoding will 

likely be the interim method for many years to come.  
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Figure 1.2 The evolution of various sequencing platforms with regards to their read length 
and throughput in gigabases. Each iteration and release of the technology is shown as 
an additional point in the same colour. The read lengths and throughput in gigabases 
has, in most cases, increased as further iterations of the technology have been released. 
(Credit: Lex Nederbragt https://flxlexblog.wordpress.com 
http://dx.doi.org/10.6084/m9.figshare.100940) 

Short-read metabarcoding 

Short-read metabarcoding can be currently defined as metabarcoding carried out 

with Illumina or Ion Torrent sequencing systems. The now decommissioned 454 

sequencer (Roche, USA). was capable of read lengths up to 800bp but in light of 

newer long-read sequencing technologies it would also be classed as a short-

read sequencing method (Wicker et al, 2006; Goodwin et al., 2016). There are 

multiple sequencing systems produced by Illumina, with each having their own 

qualities making them appropriate for different experiments, from amplicon and 

small genome sequencing with the iSeq, MiniSeq and MiSeq series through to 

whole genome sequencing and metagenomics with the NextSeq and HiSeq 

series. The short-read metabarcoding experiments in this project were carried out 



 

16 

with the Illumina MiSeq. The MiSeq platform is capable of small whole-genome 

sequencing (e.g. prokaryotes, viruses) and amplicon sequencing 

(metabarcoding, SNP genotyping). It is capable of sequencing up to 15Gb of DNA 

with 25 million sequence reads and 2x300bp read lengths in 55 hours, with a 

maximum amplicon size of 600bp (www.illumina.com). The MiSeq has a low error 

rate but the errors do not always occur randomly, they occur in a more predictable 

fashion with adenine and cysteine being more prone to substitution errors, often 

with a guanine, and library preparation has a major effect on the distribution of 

errors (Schirmer et al., 2015). The sequence reads deteriorate in quality from 5’ 

to 3’ which can lead to problems during the production of a consensus sequence 

if it is more than 400bp long, as the “middle” of the sequence will be comprised 

of the error-prone ends of both reads. This has been shown to lead to issues 

where the species richness within a sample is overestimated due to sequence 

errors rather than true sequence diversity (and thus species diversity) within a 

sample (Flynn et al., 2015). Sequencing platform and PCR primer biases have 

also been reported in bacterial 16S community sequencing (Tremblay et al., 

2015). Stringent sequence quality practices prior to read merging and 

downstream analysis have been shown to produce more robust datasets for 

community ecology studies (Eckert et al., 2018). 

 

Long-read metabarcoding 

The clear advantage of long-read sequencing technologies to biodiversity studies 

is the ability to use longer, more informative regions for species identification. 

There are currently two predominant methods for long read sequencing. PacBio 

sequencing can generate up to 20Gb per Single Molecule Real Time (SMRT) 

sequencing cell with high accuracy read lengths up to 30kb. The SMRT cell 

technology relies upon fluorescently labelled nucleotides being incorporated into 

an extending DNA molecule. As each labelled nucleotide is incorporated, the 

fluorophore is cleaved from the nucleotide and a pulse of light is emitted which is 

detected by the sequencing system (www.pacb.com). The PacBio system is not 

dissimilar to other next-generation sequencing systems in that it determines the 

bases in each DNA strand from the detection of bases being incorporated during 

synthesis of another strand. The second long-read sequencing technology - 

nanopore sequencing - differs substantially from the other methods and has been 
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developed by Oxford Nanopore Technologies (ONT). Nanopore sequencing does 

not require optics or amplification and is carried out through a protein nanopores 

which are situated on an electrically resistant membrane within a flowcell. As DNA 

is ratcheted through each nanopore, the different base combinations produce 

different disruptions in current through the membrane. The current disruption is 

measured and the bases are identified with base calling software. There are 

currently three platforms produced by ONT: MinION (single flowcell device), 

GridION (five flowcell device) and PromethION (48 flowcell device). The most 

popular platform by far is the MinION due to its extreme portability with 

dimensions  10.5cm x 2.5cm x 3cm. The error rate for nanopore sequencing is 

higher than that for PacBio, yet incremental improvements are being made by 

ONT with regards to the pores and basecallers (Figure 1.3). The portability of the 

MinION sequencer is more closely aligned to the aspirations of biodiversity 

scientists of real-time sequencing in the field. 

 

 
Figure 1.3: Incremental improvements made to nanopore sequencing technology in 
recent years (from Rang et al., 2018). As improvements to pores and base calling 
algorithms have been made over time the mean and median accuracy of both 1D and 
2D reads have improved. 

Monitoring and surveillance of aquatic ecosystems with diatoms 

Diatoms are tiny single-celled micro algae around 2-200 micrometers in length 

whose cell wall (frustule) is made of silica. Their taxonomy is primarily based on 

their cell wall structure and is subject to much discussion and change 

(Kaczmarska et al., 2007). Despite this, diatoms and their assemblages 
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(communities) have been found to be useful in environmental studies and as a 

tool for monitoring water bodies as they respond to different levels of nutrients 

available, in particular phosphorus and nitrates. In recent years, the chloroplast 

gene rbcL (RuBisCO) has been used to discriminate diatom species due to its 

key function within respiration, with differing levels of success (Guo et al., 2015; 

Hamsher et al., 2011; Jones et al., 2005).  

 

Diatoms are currently used in the United Kingdom as part of a suite of biological 

indicators used to aid decision making associated with the European Union (EU) 

Water Framework Directive (WFD) in rivers and lakes. Diatoms, along with other 

algae, which are attached to submerged stones and plant stems are referred to 

as “phytobenthos” and the EU WFD legislation requires that these are examined 

to inform the ecological status of the water bodies. 

 

The current method in use by the Environment Agency (EA) uses light 

microscopy to determine abundance of diatom species, as described in European 

Standards (CEN, 2014b, 2014a) and the UKTAG partnership 

(http://www.wfduk.org/resources/rivers-phytobenthos). The abundance of each 

species is used to calculate the Trophic Diatom Index (TDI) (Kelly and Whitton, 

1995). The Water Framework Directive requires that the condition of a water body 

is expressed as a ratio - the Ecological Quality Ratio (EQR) - using a value 

expected with no or minimal human impact as the denominator (Kelly et al., 

2008). The EQR is ultimately calculated based on observed and predicted 

reference TDIs and the ratio is subsequently divided into five ecological status 

classes for reporting: High, Good, Moderate, Poor and Bad.  

 

At the core of the TDI is the determination of the relative abundance of diatoms. 

However, this is a time consuming process, requiring experienced microscopists 

and highly skilled individuals to analyse and interpret the data. Given the amount 

of training involved for individuals, the time involved to analyse each sample, and 

the number of sites sampled, the microscopy method requires a substantial 

commitment of resources by the EA. In the current funding climate, alternative 

solutions which offer a similar level of resolution and precision at lower cost are 

particularly attractive.  
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Monitoring and surveillance of fungal species 

A small number of plant pathogens have the potential to cause significant 

economic impact if they were introduced into the United Kingdom and allowed to 

become established. Such quarantine and regulated pathogens require control 

and phytosanitary methods to prevent their introduction and spread. A recent 

example was the 2012 introduction and subsequent spread in the UK of the 

fungal ash dieback pathogen Hymenoscyphus fraxinus. Despite having spread 

throughout mainland Europe during the previous 20 years from Poland where it 

was originally reported, the introduction to the UK gained widespread publicity in 

the national press. A nationwide survey of ash trees in 2012 concluded that the 

disease had likely been introduced to the UK through both the import of ash 

seedlings from continental Europe and by wind-borne spores. These conclusions 

led to the publication of a revised plant biosecurity strategy for Great Britain 

(DEFRA, 2014) and a wider realisation that surveillance for emerging threats 

should be a higher priority.  

 

A large number of fungal phytopathogens produce spores with the ability to be 

spread large distances, for example Cryphonectria parasitica (chestnut blight), 

Zymospetoria tritici (wheat septoria blotch) and Sclerotinia sclerotiorum (causes 

various rots). While some fungal pathogens are ubiquitous and prevalent in the 

United Kingdom, others are not and present a significant risk to plant health if 

they were to be introduced. A small number of plant pathogens have the potential 

to cause significant economic impact if they were to be introduced into the United 

Kingdom and allowed to become established. Between 1970 and 2004, a total of 

234 new plant pathogens were described in the UK (Jones and Baker, 2007). 

More recently, discovery in the UK of Hymenoscyphus fraxinea causing dieback 

in ash trees in the United Kingdom in 2012 demonstrated the importance of 

routine surveillance for early detection of known plant pathogens (Potter and 

Urquhart, 2016). Two main routes of entry were suspected in the introduction of 

ash dieback to the United Kingdom: imports of infected saplings and the airborne 

transport of spores from the continent (Lawrence and Cheffings, 2014). The 

outbreak highlights that more surveillance of airborne spores is required in order 

to improve plant biosecurity in the UK and to enable the early detection of 

outbreaks of existing or emerging phytopathogens. Phytopathogens requiring 

regulation that present a risk to plant health within the European Union are 
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described by the European Plant Protection Organisation (EPPO) on their lists of 

quarantine pests and pathogens (www.eppo.int).  

 

Surveys of airborne spores have been carried out in the past and methods used 

to identify the species present have included ELISA (Flückiger et al., 2000), PCR 

(Calderon et al., 2002; Williams et al., 2001) and real-time PCR (Schweigkofler 

et al., 2004; Walsh et al., 2005). These methods are reliable and species-specific 

but have limited use outside of detecting one or two species at a time. Larger-

scale methods such as microarrays (Lievens and Thomma, 2005) and denaturing 

gradient gel electrophoresis (DGGE) (Peccia and Hernandez, 2006) have also 

been used to examine spore samples but again these have their own 

methodological limitations. Recent advances in DNA sequencing technology with 

the introduction of next-generation sequencers have permitted the assessment 

and comparison of microbial communities by metagenomics amplification and 

sequencing of the 16S rDNA and the internal transcribed spacer (ITS) regions 

from bacterial and fungal communities, respectively.  

 

In recent years the applications of fungal metabarcoding have been far reaching 

and aerosol biosurveillance studies have been common. The ability to collect 

spores over time with volumetric spore traps (e.g. Burkard traps) enables the 

spatial and temporal analysis of fungal populations in many different 

environments. Microbiome studies have been carried out on outdoor fruit and 

vegetable markets (Ahire and Sangale, 2012), inside living areas (Korpelainen 

and Pietilainen, 2015) and subway systems (Afshinnekoo et al., 2015). A large 

project to study the microbiomes of the built environment has been ongoing in 

recent years (Gilbert and Stephens, 2018) and has characterised homes, offices, 

hospitals, classrooms, zoos, farms, planes, the International Space Station, and 

water systems.  

 

There is an important need for methodology which can measure and assess our 

environment in a cost-effective manner, without the loss of critical information. 

Modern DNA techniques offer the potential for such monitoring methods with the 

additional resolution for surveillance for new and emerging threats. This thesis 

has two main aims. Firstly, to assess Illumina metabarcoding for the replacement 

of microscopy in the statutory monitoring of water quality in the United Kingdom 
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and its use in surveillance of fungal plant pathogens. Part of this aim is to develop 

and implement robust and validated bioinformatics pipelines to enable the 

operational readiness of these methods. Secondly, to assess the newer long-

read nanopore sequencing technology for its potential in enabling higher 

resolution species identification for more accurate monitoring and surveillance.  
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Chapter 2. Development of a high-throughput 

method for assessing the composition of diatom 

assemblages 

Introduction 

DNA barcoding is the Sanger sequencing of a standardised region of the nuclear 

or organellar genome, to catalogue and identify taxa. It was originally proposed 

for use with mammals and invertebrates (Hebert et al., 2004, 2003a) using the 

mitochondrial COI gene (Hebert et al., 2003b), but was rapidly adopted for use in 

fungi with ITS1 (Begerow et al., 2010; Schoch et al., 2012), and plants with a 

combination of rbcL and matK (Hollingsworth et al., 2009). The technique can be 

used to identify specimens independent of their life-stage but requires that only 

one taxon is present in the sample prior to DNA extraction, amplification and 

Sanger sequencing. This limitation was circumvented with the introduction of 

next-generation sequencing technologies, opening up the potential of identifying 

all the species in a community in a single high-throughput analysis known as 

metabarcoding (Hajibabaei et al., 2012, 2011; Pierre Taberlet et al., 2012). 

Further advances in recent years in the isolation of cellular material and DNA 

from the environment (eDNA) have created the potential for yet more applications 

of DNA-based species identification using metabarcoding approaches (Deiner et 

al., 2016; Hänfling et al., 2016; Minamoto et al., 2012; Rees et al., 2014; P. 

Taberlet et al., 2012). Metabarcoding has been applied to many types of 

environmental samples, including soil (Schmidt et al., 2013), air (Nicolaisen et al., 

2017), and water. In the case of water, methods have been developed for the 

detection and identification of invasive fish species (Takahara et al., 2013) and 

invasive aquatic invertebrate species (Klymus et al., 2017).  

 

The method used in the United Kingdom prior to this work used light microscopy 

to determine the relative abundances of diatom species (Kelly et al., 2008) using 

methods underpinned by European Standards (CEN, 2014a, 2014b). The Water 

Framework Directive requires that the condition of a water body is expressed as 

a ratio - the Ecological Quality Ratio (EQR) - using a value expected with no or 

minimum human impact as the denominator (Kelly et al., 2008). The EQR is 
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ultimately calculated based on observed and predicted reference metrics and the 

ratio is subsequently divided into five ecological status classes for reporting: High, 

Good, Moderate, Poor and Bad. The Trophic Diatom Index (TDI) (Kelly and 

Whitton, 1995) is the metric used in the United Kingdom to aid the calculation of 

the EQR for a waterbody. The TDI gives a score between 0 (very low level of 

nutrients in the waterbody) and 100 (very high level of nutrients in the waterbody) 

calculated from the relative abundance of each benthic diatom taxon present in 

the sample. Each taxon is assigned a weighting based on their nutrient tolerance 

and this weighting and the abundance of the taxon is used to calculate the final 

TDI. Until 2017, the calculation of the TDI was based entirely on light microscopy 

counts of diatom species. The current version of the TDI - referred to as TDI4 - is 

based upon microscopy alone.  An updated version based upon the data 

produced during this project is referred to as TDI5. 

 

At the core of the TDI is the need to determine the relative abundances of diatom 

taxa in a sample. However, this is a time-consuming process, requiring 

experienced microscopists to analyse and interpret the data. Studies have shown 

considerable variation even amongst experienced analysts (Kahlert et al., 2012). 

Given the amount of training involved for the microscopists, the time involved to 

analyse each sample, and the number of sites sampled, the microscopy method 

requires a substantial commitment of resource. In the current funding climate, 

alternative solutions which offer a similar level of resolution and precision at lower 

cost are particularly attractive.  

 

Our aim in this study was to develop a high-throughput DNA metabarcoding 

method for the determination of diatom relative abundance in river biofilm 

samples. We also present a comparison of 500 samples assessed using both 

light microscopy and the metabarcoding method.  

Materials and methods 

Diatom sample collection 

Diatom samples (n=500) were collected from UK rivers using standard 

Environment Agency sampling techniques for benthic diatoms 

(http://www.wfduk.org/resources/rivers-phytobenthos). The location for each 
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sample taken is shown in Figure 2.1. The sampling involved collecting 5 cobbles 

at each sampling point and placing them in a tray with 50ml of stream water and 

then brushing the upper surface of each cobble with a toothbrush to remove the 

biofilm (CEN, 2014a; Kelly et al., 2008). The samples were then transferred to 

the laboratory in a cool box. An aliquot (5ml) of the suspension of biofilm and 

water was then transferred using a Pasteur pipette to a sterile 15ml centrifuge 

tube containing 5ml nucleic acid preservative (3.5M ammonium sulphate, 17mM 

sodium citrate and 13mM EDTA). The samples were then frozen at -30°C prior 

to DNA extraction. The remainder of each sample was preserved using Lugol’s 

iodine for morphological analysis by light microscopy.  

Construction of a morphologically-verified database of full-length rbcL diatom 

sequences 

Samples for traditional DNA barcoding of rbcL were collected from 61 locations 

in England and Scotland, encompassing a wide range of ecological diversity in 

order to establish a reference database of diatom rbcL DNA barcodes. A few 

drops of diatom suspension were placed in Petri dishes and individual cells of 

diatoms were isolated using a micropipette or by streaking onto 2-3% agar plates. 

Selected cells were then transferred into small volumes of freshwater medium in 

the wells of 96-well plates. After a few days of incubation the health and clonal 

nature of each culture was confirmed by observation using an inverted 

microscope. Successfully established clonal cultures were then grown in 90mm 

petri dishes for DNA extraction and preparation for a voucher slide.  
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Figure 2.1: Map showing the location of diatom collection sites and the phoshpate status 
class of the waterbody. Blue = high quality; Green = good quality; Yellow = Moderate 
quality; Orange = Poor quality; Red = Bad quality 

146  A DNA based diatom metabarcoding approach for Water Framework Directive classification of rivers  

Appendix 10: Distribution of sites 
used to collect diatom samples for 
the calibration dataset 

 

 

See Water Framework Directive UK TAG website for information on phosphorus 
standards (www.wfduk.org/resources/new-and-revised-phosphorus-and-biological-
standards). 
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The resulting slurries of cells were collected in 1.5ml test tubes and centrifuged 

at 2000 x g for 10 mins. Extraction of DNA from each pellet was carried out using 

a QIAxtractor (Qiagen, UK). Amplification of a 1400bp fragment of the rbcL gene 

was carried out in 25µl reactions containing 10ng diatom DNA, 1mM dNTPs, 1x 

reaction buffer (Roche Diagnostics, Germany), 1U Taq DNA polymerase (Roche) 

and 0.5µM each primer (DPrbcL1: AAGGAGAAATHAATGTCT and DPrbcL7: 

AARCAACCTTGTGTAAGTCTC (Hamsher et al., 2011). The following PCR 

protocol was followed: 94°C for 3 minutes, followed by 35 cycles at 94°C for 60 

seconds, 55°C for 60 seconds and 72°C for 90 seconds, followed by a final 

extension at 72°C for 5 minutes. The quantity and length of the PCR products 

were examined by agarose gel electrophoresis by comparison with known size 

standards. PCR products were purified using ExoSAP-IT (USB Corporation, 

Ohio, USA). Sequencing was conducted in 10µl volumes using 0.32µM of the 

PCR primers or the sequencing primers NDrbcL5 (CTCAACCATTYATGCG) and 

DrbcL11 (CTGTGTAACCCATWAC) described in Jones et al.(2005). DNA 

barcodes were assembled using SeqMan (DNASTAR, Madison, WI). 

Determination of conserved regions and primer design 

The diatom DNA barcode database, totalling 1232 full-length rbcL diatom 

sequences comprising 390 species, was used to develop a short rbcL barcode 

suitable for high throughput NGS analysis. The diatom sequences were aligned 

with MAFFT (Katoh and Standley, 2013) using default settings. The diatom rbcL 

alignments were analysed using a Python script findAlignmentPrimers.py 

(archived at https://github.com/rachelglover/diatom-analysis) that identified 

regions having more than 96% sequence similarity where fewer than 4 

sequences had a gap at that region; this prevented gaps from being mis-identified 

as highly conserved regions. To prevent the erroneous calling of sites as variable 

due to sequence errors or rare variants, single-base sites were called as variable 

in the highly conserved regions only when more than 5 of the sequences in the 

alignment were different at that position when compared to the most prevalent 

base. Highly conserved regions of the alignment were assessed with Primer3 

(Untergasser et al., 2012) for primer design, including degenerate bases at the 

variable sites. When multiple candidate primers were identified for a region, 

selection of the best individual primer was based upon the lowest number of 

degenerate nucleotides (to minimise the amplification of non-target sequences) 



 

27 

and the highest percentage of sequence conservation of that primer against the 

original diatom rbcL alignment.  

Estimation of the resolving power of the short rbcL barcode 

Each potential short rbcL metabarcoding region was independently assessed for 

its ability to discriminate diatom species. DNA sequences from the region of the 

rbcL alignment under investigation were trimmed from the alignment. Operational 

Taxonomic Units (OTUs) were then picked with UCLUST (Edgar, 2010) from the 

simulated short barcode sequences with the similarity set to 100% to ensure that 

all unique variants at that location were used for analysis. The OTUs were then 

assigned to taxa using BLAST (Altschul et al., 1990) against the morphologically 

verified diatom DNA barcode database. The OTUs, sequence counts and 

taxonomic assignments were then used to calculate the number of sequences 

from that specific rbcL region which had been correctly assigned to each 

taxonomic level. This processing step was carried out using a custom script 

processOTUs.py (archived at https://github.com/rachelglover/diatom-analysis). 

The counts for each region were plotted using R v3.0.2 (R Core Team, 2017). 

Preparation and analysis of diatoms by light microscopy 

Samples for light microscopy were digested either with a mixture of sulphuric and 

oxalic acids, with potassium permanganate or cold hydrogen peroxide. Following 

digestion, samples were rinsed several times to remove all traces of the oxidising 

agent. Between rinses samples were centrifuged at between 3000 and 5000 rpm 

for 4-5 minutes or allowed to stand overnight to ensure that all diatoms had settled 

to the bottom of the tube. Permanent slides were prepared using Naphrax (Brunel 

Microscopes, Chippenham) as a mountant (Kelly et al., 2018). At least 300 TDI 

scoring valves of benthic diatoms on each slide were identified to the highest 

resolution possible using a Nikon BX40 microscope with 100x oil immersion 

objectives with phase contrast and their abundance recorded.  

DNA extraction, amplification and sequencing of the short rbcL barcode 

DNA extraction was carried out with the enzymatic lysis method (Eland et al., 

2012). This method involved 5 hours of incubation with Proteinase K, followed by 

column purification using Qiagen DNeasy® Blood and Tissue kit according to the 

manufacturer’s instructions. The quantity of DNA was estimated using a Qubit 
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fluorometer and dsDNA BR Assay kit following the manufacturer’s instructions 

(Thermo Fisher Scientific, Cat: Q32850). Genomic DNA was stored at -30°C prior 

to PCR and sequencing.  

 

Amplification of rbcL prior to Illumina sequencing was carried out using the 

following method. PCR reactions of 30µl containing 6µl of HF buffer (NEB, USA), 

0.3µM rbcL-646F (ATGCGTTGGAGAGARCGTTTC), 0.3µM rbcL-998R 

(GATCACCTTCTAATTTACCWACAACTG), 0.3mM dNTPs, 0.3µl Phusion high-

fidelity DNA polymerase (NEB) and 0.5µl of a 1:10 dilution of extracted sample 

DNA. The final reaction volume was made up with nuclease free water to 30µl. 

The following PCR protocol was followed: 98°C for 2 minutes, followed by 35 

cycles at 98°C for 20 seconds, 55°C for 45 seconds and 72°C for 60 seconds, 

followed by a final extension at 72°C for 5 minutes. All PCR reactions were carried 

out on a C1000 thermal cycler (Bio-Rad, UK). Each run contained a number of 

negative controls including no-template controls, index PCR controls and 

extraction buffer controls. PCR products were visualised on 1% agarose gels. 

They were then purified using AMPure Beads and prepared for sequencing 

following the Illumina 16S Metagenomics Sequencing library preparation 

protocol. The final library fragments were then quantified using Picogreen 

(Lifetech, UK), measured on a Fluoroskan Ascent fluorimeter (Thermo Scientific, 

UK) and mixed in equal quantities to create a 20nM pool. This pool was assessed 

using a D1000 tapestation tape (Agilent, UK) prior to running in the presence of 

10% PhiX (Illumina, UK) on an Illumina MiSeq with a V3 2x300 flow cell (Illumina, 

UK). 

Quality control and sequence analysis 

The data from each instrument run was analysed independently to mitigate 

against any intra- and inter-run variation that may have been introduced during 

PCR or library preparation. Negative controls (no-template PCR controls, index-

PCR controls, extraction buffer controls) were also sequenced. Prior to the 

downstream bioinformatics analysis the sequence files for these controls were 

checked to make ensure they were blank. 

 

Sequences from each sample were subjected to a very stringent quality control 

procedure, consisting of four main steps which are summarised in Figure 2.2. 
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Firstly, PCR amplification primers were removed from both sequenced strands of 

DNA using Cutadapt v1.9.1 (Martin, 2011). Secondly, poor quality 3’ end of 

sequences from both strands were trimmed with Sickle v1.33 (Joshi and Fass, 

2016) in paired-end mode. Thirdly, trimmed paired-end reads were joined to form 

a single consensus sequence using PEAR V0.9.6 (Zhang et al., 2014). Finally, a 

further round of quality assessment to remove any sequences with an overall 

accuracy of less than 99.9% using Sickle v1.33 (Joshi and Fass, 2016) in single-

read mode. The QC procedure was automated in a custom script ampliconQC.py 

(archived at https://github.com/rachelglover/diatom-analysis). Remaining PhiX 

sequences were identified by mapping the good quality reads to the PhiX 

reference sequence (NC_001422) with bowtie2 (Langmead et al., 2009) and 

were removed from the dataset with bedtools (Quinlan and Hall, 2010).  

 

High-quality sequences were clustered into operational taxonomic units (OTUs) 

with UCLUST (Edgar, 2010) at 97% similarity and the most abundant sequence 

in the cluster selected for the representative sequence, using QIIME v1.9.1 

(Caporaso et al., 2010). Representative sequences were assigned to taxa 

following blastn against a reference database of full-length rbcL diatom 

sequences (http://github.com/rachelglover/diatom-

analysis/diatoms.sequences.FINAL2017.fasta) with an e-value threshold of 0.01. 

Once completed, a similarity threshold of 95% for each BLAST identification was 

applied (http://github.com/rachelglover/diatom-

analysis/create_taxonomy_assignments_from_blast.py) with those sequences 

with hits below 95% similarity being described as having no specific identification. 

Relative abundance calculations were carried out within QIIME v1.9.1 (Caporaso 

et al., 2010) and the Trophic Diatom Index (TDI) was calculated (Kelly et al., 

2008).  

Method reproducibility and repeatability 

Four field samples were randomly selected for use in the reproducibility and 

repeatability experiments (samples 114061 (River Ehen), 114078 (River 

Derwent), 114092 (River Team) and 114161 (River Wear)). Inter-individual 

reproducibility was tested by two different staff members carrying out the PCR 

and clean-up steps of the sequencing protocol on all four samples. Each sample 

was amplified in triplicate to test the repeatability of amplification from the same 
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DNA extract. To test for inter-instrument reproducibility, the sequencing was 

completed with the same library preparation split between two Illumina MiSeq 

instruments: one at Fera Science Ltd (York, UK) and one at NewGene Ltd 

(Newcastle, UK). Initial analysis was carried out with the bioinformatics pipeline 

described above. Following this, beta diversity was calculated with the Bray-

Curtis dissimilarity metric. Adonis (Anderson, 2001) was used to assess the 

variance between the OTU composition of the four field samples for each 

experiment, totalling 56 sequencing samples. 

 

Comparison of light microscopy and metabarcoding 

Non-metric multidimensional scaling (NMDS) (McCune et al., 2002) was used to 

investigate the structure of the LM and NGS datasets using R (R Core Team, 

2017) with the vegan package (Oksanen et al., 2007) for multivariate analyses. 

The similarity in structure was tested using a Procrustes analysis and the 

associated permutation test (Peres-Neto and Jackson, 2001) in the vegan 

package, and also by scatterplots and computation of Pearson’s correlation 

coefficient. Calculation of the Trophic Diatom Index v.4 (TDI4) values was carried 

out with the DARLEQ2 software 

(http://www.wfduk.org/resources/category/biological-standard-methods-201).  

 

  



 

31 

 
Figure 2.2 Quality control and QIIME pipeline for analysis of diatom NGS data. Notes: 
db=database; EA=Environment Agency; FERA=Food and Environment Research 
Agency; pe=paired end; QC=quality control; se=single end; BIOSYS=EA databases for 
storing, manipulating and reporting data from freshwater and marine biological surveys. 
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Figure 5.1 Quality control and QIIME pipeline for analysis of diatom NGS data 

Notes:  db = database; EA = Environment Agency; FERA = Food and Environment 
Research Agency; pe = paired end; QC = quality control; se = single end; BIOSYS 
= EA database for storing, manipulating and reporting data from freshwater and 
marine biological surveys 
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Results 

Determination of conserved rbcL regions and primer design 

In total, 11 regions of rbcL were identified as having more than 96% identity 

across the length of the alignment of full-length rbcL sequences (Figure 2.3). As 

such, these regions were determined to be suitable for conserved primer design. 

 
Figure 2.3: The conservation of nucleotides at each position in an alignment of full-length 
rbcL diatom sequences. The red line shows the threshold used to identify conserved 
regions suitable for primer design. Blue dashed lines show the location of selected primer 
target sequences. Amplicons suitable for short-read Illumina sequencing are also shown.  

 

Primers were designed to amplify regions along the rbcL gene that showed good 

potential for species discrimination (Figure 2.3). The locations of the four 

predicted amplicons (A-D) are shown in Figure 4, with the predicted amplicon 

length varying from 213 bp to 344 bp.   

Estimation of the resolving power of the short rbcL barcode 

The sequences of the four predicted amplicons, A-D, were subjected to an in 

silico analysis to determine the resolving power of each region. The numbers of 
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sequences that could be correctly assigned by the analysis pipeline to class, family, 
genus, species and isolate were calculated for each predicted amplicon region ( 

 

 

 

Table 2.2). For example, a count of 1 for the taxonomic level ‘class’ means that 

‘class’ was the lowest taxonomic level at which an accurate taxonomic 

classification could be made for that sequence using that amplicon. Based on this 

we used the sum of the ‘species’ and ‘isolate’ counts as an assessment of the 

efficacy of a particular amplicon to be used for species-level taxonomic 

assignments. 
 

The taxonomic assignments in  

 

 

 

Table 2.2 demonstrate that all amplicon regions could be used to provide an 

adequate number of species level assignments for the 390 diatom sequences 

present in the original database. As the diatom metric Trophic Diatom Index (TDI) 

estimation is based upon species-level discrimination, the numbers of correct 

species- and isolate-level identifications were plotted against the lengths of the 

amplicons (Figure 2.4). A small number of sequences in amplicons A, B and D 

could not be assigned to any taxon at any taxonomic level as the reference 

database sequences used in the alignment did not cover these regions and so 

no identification could be made for those amplicon sequences.   
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Table 2.1: Primers designed to amplify four regions of rbcL shown to be suitable for short-
read metabarcoding 

Primer name Sequence (5’ -> 3’) 

rbcL-39F TGW-CCG-TTA-CGA-ATC-TGG-TG 

rbcL-404F CWG-CDT-TAC-GTT-TAG-AAG-ATA-TGC-G 

rbcL-404R CGC-ATA-TCT-TCT-AAA-CGT-AAH-GCW-G 

rbcL-646F ATG-CGT-TGG-AGA-GAR-CGT-TTC 

rbcL-646R GAA-ACG-YTC-TCT-CCA-ACG-CAT 

rbcL-998F CAG-TTG-TWG-GTA-AAT-TAG-AAG-GTG-ATC 

rbcL-998R GAT-CAC-CTT-CTA-ATT-TAC-CWA-CAA-CTG 

rbcL-1229R ATW-GTA-CCA-CCA-CCC-AAC-TGT-A 

 

 

 

 

 

Table 2.2: Amplicons assessed in silico for their ability to assign amplified sequences to 
species-level taxonomy. The numbers in the green boxes denote the number of 
sequences which could be correctly assigned by the pipeline to each taxonomic level. 

Amplicon 
 
 

Forward 
primer 

Reverse 
primer 

Amplicon 
length 
(bp) 

Lowest taxonomic level where the taxonomic 
assignment was correct 

C
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ss
 

Fa
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A rbcL-39F rbcL-404R 344 2 0 21 204 156 7 

B rbcL-404F rbcL-646R 216 2 0 37 202 142 7 

C rbcL-646F rbcL-998R 331 2 0 22 201 165 0 

D rbcL-998F rbcL-1229R 213 2 0 26 202 151 9 
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The sequences for amplicon C produced the largest number of species- and 

isolate-level identifications and lowest number of higher-taxonomy identifications. 

PCR annealing temperature studies between 50°C and 60°C (data not shown, 

but available in the EA report, Appendix I) showed that the primers designed to 

amplify amplicon C gave the best performance, amplifying an intense band of the 

correct predicted size across the full range of annealing temperatures tested. In 

contrast primers for amplicons A, B and D generated mis-priming products of the 

incorrect sizes at temperatures below 58°C and faint bands of the correct 

predicted size for amplicons B and D. Amplicon C, amplified using primers rbcL-

646F and rbcL-998R, was used for all subsequent sequencing and method 

assessment.  

 

 
Figure 2.4: Correct species-level taxonomic assignments plotted against the length of 
the amplicon, showing that amplicon C provides the highest number of sequences 
correctly identified to species when tested in silico.  

Method reproducibility and repeatability 

The results in Table 2.3 can be used to draw a number of conclusions about the 

reproducibility of the method. The low R2 values paired with the very high p values 

lead to the conclusion that there are no significant differences between the 

samples when split by staff member and by different MiSeq instruments. In 
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contrast, when the same test is applied to split the samples themselves as a 

control, the R2 values are high and the differences are significant (p < 0001).  
 

Table 2.3: Inter-individual and inter-machine reproducibility statistics, assessed using 
adonis (Anderson, 2001) 

Experiment adonis results (R2) adonis result (p value) 

Inter-individual reproducibility 0.00539 0.994 

Inter-machine reproducibility 0.00405 0.997 

Control (diverse samples) 0.79659 0.001 

 

The low number of PCR replicates (n=3) precluded the use of adonis to assess 

the reproducibility of replicates by staff member as the number of replicates and 

diversity between replicates was too low to detect and evaluate the differences. 

The relative abundance of each species detected is therefore shown visually in 

Figure 2.5. No significant differences were detected between staff members, PCR 

replicates or separate sequencing instruments when the same diatom samples 

were processed.  
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Figure 2.5: Stacked bar chart showing the relative abundances of diatom DNA 
sequences amplified for each of the four field samples with 3 PCR replicates each (1,2,3) 
performed by two different people. Each colour represents a different diatom species 
detected. 

Comparison between the TDIs produced from light microscopy and 

metabarcoding 

After taxonomic harmonisation of the species names the light microscopy (LM) 

and metabarcoding datasets contained a total of 493 and 306 benthic taxa 

respectively. Figure 2.6 shows the distribution of total number of sequence reads 

once planktic taxa had been excluded and the distribution of the relative 

abundances of unassigned reads in the metabarcoding dataset. The average 

number of reads was 41,048 per sample with over half the total read count in 354 

samples not being assigned to a taxa within the rbcL reference database.  
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Figure 2.6: a. Number of reads of non-planktic taxa in the NGS dataset; and b. Proportion 
of reads that could not be assigned to taxa present in the rbcL reference database 

 

The compositions of the LM and metabarcoding datasets were broadly similar 

with Achnanthidium minutissimum type having the highest maximum relative 

abundance in both methods and being the most frequently recorded. There were, 

however, a number of differences in details: Melosira varians, for example, was 

both more frequently recorded and occurred at a higher relative abundance in the 

metabarcoding dataset compared to LM samples, whilst the opposite was true 

for Platessa conspicua. Luticola ventricosa and Lemnicola hungarica 

occasionally occurred in high numbers in the metabarcoding results but are 

unlikely to be missed by LM analysts. A discrepancy also occurred for the genera 

Fistulifera and Mayamaea; in both cases the maximum abundance recorded was 

higher in LM than in metabarcoding. 

 

Following the initial comparisons of the distribution of species within the LM and 

metabarcoding datasets, both were then subject to NMDS ordinations in order to 

examine the consequences of any differences on the structure of the datasets. 

The success of NMDS is given by the stress, which quantifies the agreement 

between the 2D representation and original dissimilarities where values less than 

0.1 represent a good ordination that inferences can be drawn from, where values 

0.1-0.2 represent ordination that is useable with caution and values >0.3 

indicating that the ordination may be misleading (McCune and Grace, 2002). 

NMDS yielded ordinations with low levels of stress (LM: 0.17; metabarcoding: 
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0.18) that faithfully represented the original inter-sample dissimilarities. The two 

ordinations showed similar structure in terms of the first axes of each being 

strongly correlated (Pearson correlation coefficient, r=0.87, Figure 2.7a) and for 

the correlation between the first two axes assessed by a procrustes analysis 

(p<0.001, 999 permutations). Moreover, the first axis of the NMDS based on LM 

was strongly (negatively) correlated with TDI4 (Pearson correlation coefficient, 

r=-0.94, Figure 2.7b). 

 

a.

 

b.

 

Figure 2.7: a. Comparison of the first axes of NMDS ordinations performed using LM and 
metabarcoding data. Pearson correlation coefficient, r=0.87. b. Axis 1 of NMDS of LM 
data versus TDI4 (r=-0.94) 

 

TDI4, when calculated using the metabarcoding data was strongly correlated with 

the TDI4 calculated using light microscopy data (Figure 2.8) but the line deviated 

from 1:1 (Lin’s concordance correlation coefficient: 0.81), with many 

metabarcoding analyses returning higher values from the same sample than LM 

when the TDI was low and moderate. This may reflect the generally high numbers 

of Achnanthidium minutissimum, which has a high LM:metabarcoding ratio in low 

nutrient (low TDI) sites, and higher numbers of taxa such as Navicula lanceolata 

and, in particular, Melosira varians, which have much lower LM:metabarcoding 

ratios. 
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Figure 2.8: Comparison between the TDI calculated with light microscopy and 

metabarcoding data (r=0.86, Lin's r=0.81) 

 

Discussion 

We demonstrate that DNA metabarcoding can produce similar results to those 

obtained from traditional light microscopy for diatom assemblage analysis, 

offering the possibility of cheaper and more rapid assessment of water quality.  

 

Application of metabarcoding approaches to diatom community analysis in the 

past has been limited (Kermarrec et al., 2014; Visco et al., 2015; Zimmermann et 

al., 2015). Kermarrec et al., (2014) investigated the use of 18S rDNA, rbcL and 

cytochrome oxidase I (COI) using 454 pyrosequencing to assess the ecological 

quality of rivers. They found that rbcL was the most useful of the three markers 

for molecular identification of diatoms, a finding previously noted in DNA 

barcoding studies (Hamsher et al., 2011). However, the 454 pyrosequencing 

technology used in these studies is no longer available. Both Visco et al. (2015) 

and Zimmerman et al. (2015), utilised 18S rDNA for their comparisons between 

light microscopy and metabarcoding, albeit with smaller numbers of samples. 

Based on a much larger dataset of 500 samples covering water bodies from 

across the United Kingdom (Figure 2.1), we have demonstrated that a short 

amplicon of 331bp can be used to accurately determine relative abundances of 

diatom species present in a sample and that estimates of assemblage structure 

follow similar trends in both light microscopy and metabarcoding. However, there 
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were certain species-specific biases that will require further investigation and 

elucidation. In some cases, differences between light microscopy and 

metabarcoding may be easily explained by the presence of gaps in the barcode 

reference database; for example, we were not able to obtain and sequence 

Achnanthidium pyrenaicum or Gomphonema clacifugum, which were both 

present in the light microscopy. Unfortunately, the chemical processes required 

to prepare the diatom frustules for light microscopy are harsh and DNA isolation 

from the slides would have been a futile effort. Other differences between the 

light microscopy and metabarcoding are more difficult to explain. For example, 

Luticola ventricosa and Lemnicola hungaria occasionally were estimated in 

higher numbers by metabarcoding than by light microscopy, or the opposite 

situation where Fistulifera species and Mayamaea species showed higher 

abundance in the light microscopy results. Zimmermann et al. (2015) also noted 

differences where their metabarcoding method almost always led to a higher 

number of identified taxa. However, subsequent reanalysis of their light 

microscopy results confirmed the metabarcoding outputs. This demonstrated that 

the light microscopy methods require considerable expertise in order to accurate 

identify diatoms to species. Because our method targets an rbcL amplicon 

located in the chloroplast genome, results could be influenced by the diatom size 

(Vasselon et al., 2017b) as well as by the number of chloroplasts, and by the 

number of copies of rbcL per chloroplast, all of which may vary between species 

or genera. This could be negated by the use of species- or genus-specific 

weightings within the calculation of the Trophic Diatom Index.  

 

Our results demonstrate that longer amplicons produce a greater number of 

accurate species-level diatom identifications. We applied a 97% identity threshold 

when clustering OTUs as it provided adequate clustering of diatom sequences 

but also because it reduced the time required to analyse the entire dataset. 

Recently the term Amplicon Sequence Variants (ASVs) has been introduced for 

community studies (Callahan et al., 2015), with the recommendation that they 

replace OTUs (Callahan et al., 2017). Indeed, the latest version of the popular 

microbial ecology software QIIME (https://www.qiime2.org) no longer supports 

the use of OTUs and analyses individual sequences. We support the introduction 

of such high-resolution analyses and the phylogenetic insights they may 

elucidate. However, in our study, taxonomic identification of each individual 
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sequence for datasets comprising 500 samples each, averaging more than 

40,000 sequence reads would currently be unfeasible outside of specialist 

computing facilities.  

 

When evaluating the four different rbcL amplicons for use in elucidating diatom 

community structure from biofilm samples with the current Illumina short-read 

technology, we were mindful that the resulting amplicon and method were 

required to be high-throughput, contamination-free, and with a rapid 

bioinformatics pipeline. These considerations were required to ensure the 

method would be sufficiently robust and cost-effective to enable the UK 

Environment Agency to deliver ecological assessments on thousands of 

samples. Illumina short-read sequences have an increasing error-rate along the 

reads from 5’ to 3’ (Schirmer et al., 2015). As such, when amplicon sequences 

are overlapped and a consensus sequence produced, there is a small but 

significant risk of single nucleotide errors being introduced in the middle of the 

consensus sequence if the amplicon is too long, or quality control measures to 

remove low quality 3’ bases are less than ideal (Schirmer et al., 2016). In 

applications such as ours, this carries the downstream implication of falsely 

increasing the diversity of the sample and subsequently increasing the potential 

for OTUs to be misidentified (Wen et al., 2017). As the TDI4 requires relative 

abundance estimates of species (Kelly et al., 2008), misidentified OTUs could 

have an impact on the overall TDI and subsequent water quality assessment. 

Each of the four amplicons evaluated here provided adequate length for species 

discrimination to varying degrees. It is likely that the limitations of Illumina 

sequencing for metabarcoding studies (short read length, error profile) may be 

negated with the introduction of nanopore sequencing technologies such as the 

MinION™ (Oxford Nanopore) which will allow the amplification of whole genes - 

and perhaps complete organelle genomes - for the assessment of communities.  
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Chapter 3. Efficacy of MinION sequencing to 

compare the diatom communities in three rivers 

Introduction 

There are many characteristics of diatoms and their assemblages which have 

made them useful in environmental studies and as a tool for monitoring water 

bodies. Diatoms contribute ~20% of global fixation of carbon dioxide and are the 

largest primary producers in water bodies, according to Hildebrand (Hildebrand, 

2008) who also states that diatoms contribute 50% of the primary productivity of 

oceans. Diatoms have short lifespans and a quick response to a number of 

environmental disturbances. They are more sensitive to changes in nutrients and 

contamination with organic matter than fish, macrophytes and 

macroinvertebrates (Hering et al., 2006). They have been reported as being very 

sensitive to both organic toxicants (De Jonge et al., 2008; Hirst et al., 2002; Morin 

et al., 2016). The sensitive response of diatoms to organic matter, in particular to 

the nutrients nitrate and phosphate, is especially useful to the monitoring of rivers 

and water bodies where organic runoff from farming and effluent from water 

treatment plants and industrial processes may affect water quality (Morin et al., 

2016; Stevenson, 2014; Stevenson et al., 2010).  

 

The overarching aim of the Water Framework Directive is to protect water bodies 

and use ecological status as the assessment by which the protection is measured 

(Water Framework Directive, 2000). The ecological statuses used to classify 

water bodies within Europe are High, Good, Moderate, Poor and Bad. The 

Trophic Diatom Index (TDI) is a metric used in the United Kingdom to aid the 

calculation of an Ecological Quality Ratio (EQR) for a waterbody which 

determines classification, and therefore ecological status (United Kingdom 

Technical Advisory Group (WFD-UKTAG), 2014). Until 2017, the calculation of 

the TDI was based entirely on light microscopy counts of diatom species. We 

recently developed a cost-effective and robust Illumina metabarcoding method to 

replace light microscopy for determining the Trophic Diatom Index (TDI) of water 

bodies in the United Kingdom (Kelly et al., 2018). The metabarcoding method 

was carried out in parallel with the light microscopy for all monitoring by the 
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Environment Agency (EA) during 2016-2017 before full adoption of the 

metabarcoding method in 2017. While the TDI is used in the United Kingdom for 

calculation of the EQR and ecological status, different metrics exists in other EU 

member states (Almeida et al., 2014; Feio et al., 2009; Toudjani et al., 2017). 

Other groups within the EU have been actively working towards molecular 

methods for their water quality monitoring with diatoms (Kermarrec et al., 2014; 

Morin et al., 2016; Toudjani et al., 2017; Vasselon et al., 2017a; Visco et al., 2015; 

Zimmermann et al., 2015). However, none have been implemented at the same 

scale and level of operational readiness as has occurred in the United Kingdom.  

 

Although the current Illumina metabarcoding method is being used by the 

Environment Agency, it does have its drawbacks as assessed in Chapter 1. 

Markers located in the chloroplast genome are subject to copy number variation 

within and among species, which may be associated with diatom size; therefore 

use of chloroplast genes such as rbcL is less quantitative than nuclear genes that 

occur at a fixed copy-number per cell. A further limitation is the restriction on 

amplicon length by the Illlumina short-read sequencing technology itself, with the 

amplicon used for diatom species identification being only 331bp. The region of 

rbcL was chosen such that it could be amplified in most, if not all, diatom species, 

yet provide enough sequence variation to discriminate species (Kelly et al, 2018). 

 

The introduction of long-read nanopore sequencing by Oxford Nanopore 

Technologies (ONT) in June 2014 led to an explosion of applications. It has been 

used to scaffold bacterial genomes (Karlsson et al., 2015; Wick et al., 2017), for 

monitoring and surveillance of disease outbreaks (Quick et al., 2016, 2015; 

Walter et al., 2017) and, more recently for 16S bacterial community analysis 

(Benítez-Páez et al., 2016; Kerkhof et al., 2017; Shin et al., 2016) and real-time 

DNA barcoding in the field (Menegon et al., 2017; Pomerantz et al., 2018, 2017). 

While the portability of the ONT MinION sequencer is attractive for ecological 

studies in the field, the technology itself offers the ability to sequence much longer 

amplicons, albeit with an increased error rate.  

 

This chapter aims to compare and evaluate three methods for the assessment of 

diatom species composition (light microscopy, Illumina metabarcoding and 

MinION metabarcoding) by the use of the methods to compare three rivers in 
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northern England. A discussion of MinION metabarcoding for the purposes of 

water quality assessment is undertaken and a comparison to the Illumina 

metabarcoding method developed in Chapter 1.  

 

Materials and methods 

Sample selection 

Three rivers in the north east of England (Table 3.1) were chosen for analysis 

and each was sampled in three locations along the water course. The river Ehen 

(Cumbria) has high water quality and is a special area of conservation, the river 

Wear (County Durham) has good water quality and the river Derwent (County 

Durham) has moderate water quality. Cobbles in the rivers had been sampled for 

diatoms previously as part of an Environment Agency (EA) project to develop an 

Illumina metabarcoding method for water quality classification (Kelly et al, 2018). 

Each river was sampled in three locations, diatom species counted by light 

microscopy and DNA extracted as described in Kelly et al. (2018). The same DNA 

extracts were used for Illumina short rbcL barcode sequencing and MinION long 

rbcL barcode sequencing as described below.  

Sequencing 

Sampling and Illumina sequencing of nine diatom samples was carried out as 

described previously in Chapter 1. Amplification of rbcL from the same nine 

diatom samples with primers DPrbcL1 (5’-AAGGAGAAATHAATGTCT-3’) and 

DPrbcL7 (5’-AARCAACCTTGTGTAAGTCTC-3’) (Jones et al., 2005) and MinION 

sequencing of the ~1500bp products were carried out at FERA Science Ltd. 

Following sequencing 2D fastq reads were extracted from the MinION fast5 files 

using poretools v0.6.0 (Loman and Quinlan, 2014).  

Illumina short rbcL barcode taxon assignment 

Quality control, OTU clustering and taxon assignment for the Illumina rbcL 

sequences were performed with the previously developed diatom rbcL pipeline 

(Kelly et al., 2018). Briefly, bad quality 3’ ends of sequences were trimmed, 

forward and reverse sequences were merged and sequences with quality <Q30 

also removed. The good quality Illumina reads were then clustered into 
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operational taxonomic units (OTUs) at 97% similarity with UCLUST (Edgar, 2010) 

and the most abundant sequence in the cluster selected to be the representative 

with QIIME 1 (Caporaso et al., 2010). The representative sequences were then 

assigned taxonomy by searching the diatom barcode reference database with 

blastn (Altschul et al., 1990) with an e-value threshold of 0.01. Relative 

abundances of each diatom species within each sample were also calculated 

within QIIME.  

MinION long rbcL barcode taxon assignment 

Taxon assignments for every MinION read in each sample were carried out with 

blastn (Altschul et al., 1990) with an e-value threshold of 0.01 against the diatom 

barcode reference database created during Environment Agency project 

SC140024 (Kelly et al., 2018). The taxon assignment and relative abundance 

calculations were automated using Enviropore v0.6 (Glover, 2018). The length of 

the sequence and the assigned taxonomy, along with the percentage identity with 

the reference sequence were appended to the sequence name in the FASTA file 

to aid downstream sequence analysis. Sequences where an identification could 

not be made with the diatom reference database were extracted from the sample 

dataset and searched against the NCBI NR protein database with blastx (Altschul 

et al., 1990) and subsequently visualised with MEGAN community edition (Huson 

et al., 2016). 

Comparison of three rivers, light microscopy, Illumina sequencing and MinION 

sequencing 

Statistical comparisons between the three rivers and three identification methods 

were carried out in R (R Core Team, 2017) with the packages ape (Paradis et al., 

2004), vegan (Oksanen et al., 2007) and picante (Kembel et al., 2010). The Bray-

Curtis dissimilarity metric (Bray and Curtis, 1957) was used to calculate 

community and sample dissimilarities. Non-metric multidimensional scaling 

(NMDS) was calculated with the metaMDS function within vegan and 

PERMANOVA analysis (Anderson, 2001) was carried out with the adonis function 

within vegan. Gomphonema and Achnanthidium reference rbcL sequences were 

aligned with MUSCLE (Edgar, 2004) and a neighbour-joining tree produced using 

the Kimura-2-parameter model (Kimura, 1980) within the software package 

Seqotron (Fourment and Holmes, 2016). 
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Results 

MinION and Illumina sequencing data composition 

From the nine samples from three rivers (Figure 3.1), there were a total of 53,507 

MinION reads and 1,819,888 Illumina reads produced, which are broken down 

by sample and location in Table 3.1. 

 
Table 3.1: Number of Illumina and MinION sequence reads for each sample from the 
rivers Ehen, Wear and Derwent along the grid references for each location. 

Sample River Grid 

Reference 

MinION reads Illumina reads 

114058 Ehen (Scout Camp) NY 087 153 5,009 118,689 

114061 Ehen (Mill, footbridge) NY 081 152 4,388 124,492 

114064 Ehen (Oxbow) NY 072 157 2,714 209,118 

114069 Wear (Stanhope) NY 991 392 9,654 203,779 

114072 Wear (Frosterley) NZ 036 369 7,295 218,554 

114075 Wear (Wolsingham) NZ 075 369 7,963 271,808 

114078 Derwent (Ebchester) NZ 101 556 5,701 218,561 

114081 Derwent (Low Westwood) NZ 111 565 6,017 222,928 

114084 Derwent (Blackhall Mill) NZ 122 569 4,766 231,959 
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A 

 
B 

 
C 

 
D 

Figure 3.1: (A) Location of the three rivers in the United Kingdom; (B) River Ehen 
sampling locations; (C) River Derwent sampling locations; (D) River Wear sampling 
locations 

 

The distribution of MinION sequence lengths by river are shown in Figure 3.2 and 

show a distribution of read lengths rather than a tight group around the expected 

amplicon size, as was observed in Illumina amplicon data (not shown). No 

difference in sequence length distribution is observed in any of the rivers.  
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Figure 3.2: Stacked histogram of the MinION read lengths by river, with the counts 
shown as a log scale to demonstrate the abundance of read lengths. The largest peak 
is observed at a length of 1800 nucleotides, as expected, with smaller peaks at 
approximately 500nt and a small number of sequences with length >3000nt.  

 

Comparison of the three methods used to determine relative abundance within 

diatom assemblages in three rivers 

Following taxon assignment the relative abundance of each species within each 

sample was calculated. The relative abundances when determined by light 

microscopy were also included (M. Kelly, personal communication) and the 

results are shown aggregated for each river in Error! Reference source not 

found.. The largest differences between the next-generation sequencing 

metabarcoding methods and light microscopy (LM) were due to missing reference 

DNA barcodes for 10 species which were identified in the LM samples: 

Achnanthidium caledonicum, Achnanthidium microcephalum, Adlafia suchlandtii, 

Aulacoseira sp., Cyclotella comensis, Encyonema lange-bertalotii, Gomphonema 

calcifugum, Gomphonema gracile, Gomphonema olivaceum and Synedra 
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tenera) which resulted in these species being unidentified by the Illumina and 

MinION methods.  
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Table 3.2: Diatom species relative abundances as determined by light microscopy, Illumina short rbcL metabarcoding and MinION long rbcL 
metabarcoding for the rivers Ehen, Wear and Derwent. Only species present in >1% abundance in any sample are shown and a gradient of colour from 
red (0%) to yellow (6%) to green (>10%) has been applied to aid visualisation. Starred species (*) do not have a reference rbcL DNA barcode in the 
sequence database for identification.  
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The river Ehen presented the most obvious example of missing DNA barcodes, 

where Achnanthidium caledonicum and Achnanthidium microcephalum were 

detected at 17.85% abundance each in the LM results but absent in the Illumina 

and MinION results. It was assumed that if a reference barcode from one species 

was missing from the database, that the sequences would be identified as closely 

related species, in this case another Achnanthidium species. However, the river 

Ehen also contained 31.68% of Achnanthidium minutissimum by LM, yet 35.75% 

A. minutissimum by Illumina metabarcoding and 29.73% by MinION 

metabarcoding. This suggested that sequences in the metabarcoding datasets 

originating from A. caledonicum and A. microcephalum were not being assigned 

to another Achnanthidium species as expected. The only other taxon in the river 

Ehen sequencing dataset to show significantly higher abundance in the 

metabarcoding than LM was Gomphonema parvulum. In contrast, Gomphonema 

exilissimum was not detected by Illumina metabarcoding in the river Ehen 

samples when it was detected in the LM (5.55% and MinION metabarcoding 

(11.46%). 

 

Given the discrepancies in taxon assignment in the Gomphonema and 

Achnanthidium a neighbour joining tree was constructed of Gomphonema and 

Achnanthidium sequences from the rbcL reference DNA barcode database 

(Figure 3.3). This demonstrated that the Gomphonema and Achnanthidium rbcL 

sequences were very similar, that Gomphonema species are difficult to 

discriminate with rbcL and that potential cryptic species and sub-species may be 

present in both Gomphonema and Achnanthidium.  

 



 

53 

 
Figure 3.3: Neighbour-joining tree of Gomphonema and Achnanthidium species, along 
with a number of outgroup diatom species, demonstrating the difficulties in discriminating 
some Gomphonema species with full-length (Sanger sequenced) rbcL sequences and 
the potential cryptic species present within the genus Achnanthidium. The numbers 
prefixing each sequence are the isolate numbers within the rbcL reference sequence 
database. Branch labels are bootstrap support from 1000 replicates.  

 

There was a difference in the number of species detected in all samples, with far 

fewer species detected by light microscopy compared to Illumina and MinION 

rbcL metabarcoding (Figure 3.4). Fewer species were detected by MinION long 

barcode metabarcoding than Illumina short barcode metabarcoding. However, 

the next-generation sequencing approaches demonstrated a greater diversity of 

species, even though a number of key species detected by light microscopy did 
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not have reference rbcL DNA barcodes and therefore could not be detected by 

sequencing. The total number of species detected, and shared, by each method 

are shown in Table 3.3 The number of species determined when the samples 

were grouped by river (Figure 3.5) is less informative but shows that overall the 

mean number of species detected in each river was similar and there were no 

large differences in the number of species detected in each river.  

 

 
Figure 3.4: Boxplot showing the number of species detected across all samples by 
method (Illumina short rbcL metabarcoding, light microscopy and MinION long rbcL 
metabarcoding) 

Table 3.3: Table showing the total number of species detected and shared by each 
method (Illumina, MinION and Light Microscopy). Very few species were shared between 
the two sequencing methods and light microscopy.  

Total number of species 208 
Number of species shared between Illumina, MinION and Light 
Microscopy 

42 

Number of species shared between Illumina and MinION 76 
Number of species shared between Illumina and Light Microscopy 1 
Number of species shared between MinION and Light Microscopy 1 
Number of species only detected by Illumina 24 
Number of species only detected by MinION 25 
Number of species only detected by Light Microscopy 39 
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Figure 3.5: Boxplot showing the number of species detected across all samples by river 
(Derwent, Ehen and Wear). The number of species for each river is a combination of 
each of the three detection methods: Illumina, MinION and Light Microscopy. 

 

Bray-Curtis dissimilarity metrics for all samples were calculated and average-

linking hierarchical clustering applied to measure how similar the rivers were in 

terms of their species composition between samples, methods and rivers (Figure 

3.6). This showed that the three rivers are in separate clusters, with distinct sub-

clusters for each method (Illumina, MinION and LM). The rivers Wear and 

Derwent were found to be in a single larger cluster, separate from the river Ehen, 

which also corresponds with the geographically different locations of the rivers 

with Ehen being in Cumbria and the Wear and Derwent being in County Durham.  
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Figure 3.6: Hierarchical clustering of the Bray-Curtis dissimilarity metric between all 9 
samples, three methods and three rivers. 

 

Non-metric multidimensional scaling (NMDS) ordination of the Bray-Curtis 

dissimilarities was used to visualise the structure of the communities when split 

by river (Figure 3.7) and by method (Figure 3.8). When visualised by river the 

abundance results were clearly separated by the river of the original sample, 

despite different groupings observed when the abundance results were 

visualised by method (Figure 3.8). When split by method, two groups were 

apparent, one for light microscopy and a second for the two sequencing methods.  
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Figure 3.7: NMDS showing the relationships between the samples separated by the 
rivers Ehen (green), Wear (red) and Derwent (blue). The additional light grey lines show 
the hierarchical clustering results. 

 

 
Figure 3.8: NMDS showing the relationships between samples separated by method: 
light microscopy (red), MinION (green) and Illumina (blue). The additional light grey lines 
show the hierarchical clustering results. 
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To test the variance in diversity between methods and rivers and to quantify the 

degree by which river and method explains the dissimilarity observed, the 

permutational multivariate analysis of variance (PERMANOVA) method adonis 

(Anderson, 2001) was used within the vegan package (Oksanen et al., 2007). 

Only 27% of the variance could be explained when the dataset is split by river (R2 

= 0.27, p<0.001) but 44% could be explained when the dataset is split by method 

(R2 = 0.44, p<0.001) demonstrating that the diversity in the nine samples is 

affected more by abundance calculation method than geographical location.  

 

MinION sequence lengths 

The MinION read length distributions are shown in Figure 3.9 along with the 

number of MinION reads assigned to each genus. In most genera with more than 

10 MinION reads assigned there was little length variation in the majority of 

sequences. The majority of shorter sequences were not found to have sufficient 

homology to the diatom rbcL sequences in the reference database and were 

assigned as “Unknown”. The genera where a low mean amplicon length is 

observed (e.g. Biremis, Cylindrotheca, Halamphora) had fewer sequences 

assigned to them and thus it could not be determined whether the shorter 

sequences had any true significance.  
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Figure 3.9: MinION read length by the genus the read was assigned to during analysis. 
The numbers to the right of the genus name are the number of MinION sequences 
assigned to that genus from all samples. 
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There were a number of genera where much longer sequences were observed 

than the expected amplicon size, predominantly Achnanthidium, Cocconeis, 

Cymbella, Gomphonema, Mayamaea, Navicula, Reimeria and Rhoicosphenia. 

These genera had large numbers of MinION sequence reads assigned to them. 

The longer reads were, in most cases, double the size of the expected amplicon. 

Investigation of the Cocconeis sequences more than 2kb in length (n=13, lengths 

2.88kb-5.18kb) by blastn showed that the longer sequences did consist of two 

amplicons side-by-side with both amplicons being assigned to the same diatom 

reference sequence. However, the more 3’ amplicon sequence in all cases was 

8-11% more dissimilar to the reference sequence used for taxon assignment than 

the more 5’ amplicon sequence. A subsequent blastn-short search for the MinION 

nanopore hairpin sequences was positive for all the longer sequences in the 

Cocconeis group suggesting that the longer sequences are not due to a 

duplication of rbcL or chimeric amplicon sequences but an artefact of the 

nanopore sequencing and/or 2D sequence assembly/production. The longer 

sequences were not associated with any particular sample or river. 

 

A large number (n=3463) of MinION reads from across all samples could not be 

identified when searched with blastn against the diatom reference database of 

rbcL sequences. The primers used to amplify the ~1600bp rbcL region for MinION 

sequencing contain degenerate bases and were designed to amplify diatom 

species (Jones et al., 2005) only, but this does not preclude the possibility of the 

primers amplifying non-diatom sequences where no reference existed in our 

database.  The taxonomic identifications elucidated from further searches with 

blastx against the non-redundant NCBI database are shown in Figure 3.10. 

Sequences assigned as bacterial in origin were generally short - around 650bp - 

and originated from many different genes with differing functions. The sequences 

assigned as diatoms (taxa below the class Bacillariophyta) contain species which 

were present in our validated diatom reference database of rbcL sequences and 

the majority of these sequences were identified as originating from rbcL 

suggesting successful amplification by PCR. However, these sequences only 

shared between 30% and 49% amino acid homology with their assigned 

taxonomy. This suggests that these sequences represent either undescribed or 

as-yet-unsequenced species of diatoms present in our samples.  
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Three taxa were assigned more of the unknown sequences than others (Figure 

3.10): Fistulifera solaris (coloured red), Phaeodactylum tricornutum (coloured 

blue) and Thalassiosira oceanica (coloured green). Those taxa represented 

species where a genome sequence was available. The sequences assigned to 

these taxa contained a diverse range of genes rather than rbcL only and were 

found to originate from all nine of the MinION sequenced samples. The 

assignment of sequences to Naviculaceae (coloured purple) demonstrated that 

there are diatom sequences in our data which had not yet been fully sequenced 

or described. None of the sequences investigated by blastx showed potential for 

being the “missing” species present in the light microscopy counts but not 

represented in our reference sequence database.   

 

 
Figure 3.10: Taxonomic identifications of MinION sequences originally designed as 
"unknown" when searched against the validated reference database. Coloured dots 
represent species where a genome sequence is available. 
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Taxon assignment in Achnanthidium and Gomphonema with MinION 

Further investigation into how the observed sequence diversity in Achnanthidium 

and Gomphonema might affect taxonomic assignment, particularly in the higher-

error-rate MinION sequencing, is shown in Figure 3.11 and Figure 3.12. The top-

hit blastn percent identity to the reference diatom sequence used to assign 

taxonomy was plotted for all MinION sequences identified as Achnanthidium 

species (Figure 3.11) and Gomphonema species (Figure 3.12).  

The majority of MinION reads identified as belonging to species within 

Achnanthidium were assigned to A. minutissimum (8124 reads across the three 

rivers) and the mean percent identity used for species identification was high 

(>85%). However, the spread of sequence similarities was very broad, from 72% 

to 100%, which suggests again that there were cryptic species and/or 

undescribed species present in the river samples.  

 

 
Figure 3.11: The best percentage sequence similarity used to assign each MinION read 
to species in the genus Achnanthidium. The numbers next to the species name are the 
number of MinION reads assigned to that species. 
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The predominant species identified in Gomphonema with MinION sequencing 

were G. bourbonense, G. clavatum, G. exilissimum, G. micropus, G. parvulum, 

G. rosenstockianum and Gomphonema sp. The latter assignments are all 

assigned to one reference rbcL DNA barcode only identified as “Gomphonema 

sp”, rather than this describing a catch-all for Gomphonema sequences not 

assigned to other species. However, the breadth of sequence identities in this 

group points towards many yet-to-be described Gomphonema species.  

 

 
Figure 3.12: The best percentage sequence similarity used to assign each MinION read 
to species in the genus Gomphonema. The numbers next to the species name are the 
number of MinION reads assigned to that species. 

 

Very few MinION sequences were assigned to taxa with >95% sequence identity. 

In most cases, for both Achnanthidium and Gomphonema, the best match taxon 

was determined with between 80% and 90% sequence identity.  

Discussion 

Diatoms are sensitive to changes in the availability of nutrients such as nitrate 

and phosphate and thus the species composition and relative abundance of 

diatom assemblages are used as a measure of ecological status for monitoring 

water bodies. 
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In this study we have compared three different methods for the determination of 

diatom species abundance in three different rivers. The largest effect on the 

comparison between light microscopy, Illumina metabarcoding and MinION 

metabarcoding was the absence of reference rbcL DNA barcodes for species 

identified by light microscopy. Previous work within the larger project  for the 

Environment Agency (Kelly et al, 2018) had shown that while it was technically 

possible to infer potential barcode sequences from NGS data when compared 

with the light microscopy of the same sample, it was determined not to be an 

approach that could be used for the production of robust reference barcodes. 

Reference DNA barcodes produced in this manner would be subject to 

sequencing errors from either Illumina or nanopore technology and there would 

be significant risk that while we may use the barcodes with caution and with 

caveats, others may see them in repositories and assume they are correct, 

leading to spurious identifications. Further work is being undertaken by the 

Environment Agency in 2018-2019 to find and culture species of interest for the 

production of accurate DNA barcodes for these species.  

 

We had made the assumption that when DNA barcodes of a particular species 

were absent from the database that sequences of the missing species would be 

assigned to a closely related species. Our results showed that sequences which 

may have originated from Achnanthidium species with no DNA barcode may have 

been assigned as Gomphonema species instead. This was unexpected but the 

taxonomy of diatoms is based upon frustule structure (Kaczmarska et al., 2007; 

Mann et al., 1996) and as names and classifications can change it could be that 

metabarcoding enlightens taxonomists to relationships previously unseen.  Our 

metabarcoding methods used a blastn e-value threshold of 0.01 to filter out 

spurious identifications and the rbcL reference DNA barcode database had been 

thoroughly cleansed of misidentified sequences in the previous project (Kelly et 

al., 2018) so we are confident that our taxon assignments were not different due 

to flaws in the reference database. An additional exploratory analysis of 

sequences left unidentified after comparison with the rbcL reference barcode 

database showed a number of sequences which had homology to diatom rbcL 

sequences. These are likely to represent currently undescribed diatom species 

or potentially some of the “missing” DNA barcodes from the reference database; 
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however, it is difficult to determine as the abundances were low in the unidentified 

sequences and inferring a species name from sequence similarity in a field 

sample would not be recommended. An interesting result in the exploratory 

analysis of unidentified sequences was the background of genomic DNA present 

in the MinION sequencing datasets. As MEGAN (Huson et al., 2016) uses a 

lowest common ancestor (LCA) algorithm for taxon assignment it is able to assign 

species to higher taxonomy which can be useful for identifying new species or 

diatom genomic DNA remaining in the PCR products. The number of non-rbcL 

sequences, in particular bacterial sequences, demonstrate that there appears to 

be a background contamination originating from DNA extraction kits, the PCR 

and library preparation reagents or aerosol contamination from the laboratory 

environment. This type of contaminating sequence have more recently been 

referred to as the “kitome” (Salter et al., 2014). 

  

A serious consideration is that the light microscopy results were not as accurate 

as one might expect. The preparation of diatom slides for microscopy is 

chemically harsh, some species are not detected because they are small enough 

to be beyond the limit of detection of light microscopy, and the variability between 

samples when analysed with microscopy is high (Kelly, 1999; Prygiel et al., 2002). 

Species counts from light microscopy often come from a sample of a few hundred 

diatoms whereas next-generation sequencing enables the determination of 

counts from all diatoms in the sample. Our results show good correlation and 

statistical support for the similarity of the Illumina and MinION metabarcoding 

methods. The two metabarcoding methods use different primer sets, different 

amplicon lengths and the sequencing methods have different error profiles, so 

the similarity in relative abundance for samples when sequenced with the two 

methods gives support to the concept that the light microscopy is the least 

accurate of the three methods (Zimmermann et al., 2015). It would be typical to 

expect that microscopy gives the “correct” abundances and to assess a new 

method in its ability to match this. However, in this study we have compared the 

three methods without this assumption. With two metabarcoding methods 

showing comparable abundances when analysing the same sample, it is unlikely 

that primer bias is the cause of the differences between LM and metabarcoding. 
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The error rate for MinION at the time of sequencing and analysis (2016) was 

between 7.5% and 14.5% (Jain et al., 2017) but despite this disadvantage to 

taxon assignment, our MinION and Illumina results are comparable. Despite the 

error rate taxon assignment was on par with the Illumina method but interestingly, 

the breadth of percent identities used for taxon assignment was wider in the 

MinION results. Some taxon assignments in the genera Achnanthidium and 

Gomphonema were made at just 70-80% nucleotide identity. This would suggest 

that even with the MinION’s relatively high error rate there is considerably more 

variability within the species of these genera. It is not unlikely that Achnanthidium 

minutissimum and Gomphonema parvulum, for example, represent species 

complexes or cryptic species. 

  

The Illumina method has weaknesses in the length of the amplicon and its 

reduced ability to discriminate species due to the short length providing less 

variability but a good error rate of <1%. Our data showed that Gomphonema 

exilissimum could not be identified by Illumina metabarcoding but was present in 

the microscopy and MinION results. MinION currently has a high error rate but 

the distinct advantage of longer amplicons to exploit more species-specific 

variability in rbcL, which may account for its ability to detect species such as G. 

exilssimum where Illumina metabarcoding could not. It is worth noting that the 

Illumina sequencing methods are unlikely to improve in the future with regards to 

error profile or read length. However, the MinION platform is developing rapidly, 

with falling error rates and increasing read lengths along with the additional 

potential for field-based sequencing of diatoms at the riverside.  

 

The calculation of the TDI relies upon the accurate determination of the relative 

abundance of species within the sample and so the method used to determine 

this is important. The three rivers were selected for further MinION testing 

because they had three different water quality statuses representing different 

abundances of species.  The TDI4 was based upon light microscopy and a further 

iteration of the method, TDI5, was produced based upon the Illumina method 

developed in Chapter 1. The TDI5 (Kelly et al., 2018) adjusted the species-

specific weightings based on abundances observed over the 500 samples 

analysed with LM and the Illumina metabarcoding method. The three rivers tested 

during this analysis only comprised single examples of “excellent”, “good” and 
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“moderate” water quality. With the expected future improvement of nanopore 

sequencing accuracy, a much larger scale comparison would be required in order 

to determine if further adjustment of the TDI weightings would be needed to use 

nanopore sequencing for statutory water quality testing that would feed into the 

Water Framework Directive.  

 

The next step in assessment of diatom communities may well be the sequencing 

of whole chloroplast genomes to fully embrace the current long-read sequencing 

technologies to enable better species discrimination. However, the sequencing 

of whole chloroplast genomes would have the same inherent issues as those 

proposed for sequencing whole mitochondrial genomes to replace COI DNA 

metabarcoding for invertebrate and fish studies (Deiner et al., 2017; Sato et al., 

2018) insofar as the abundance would be skewed by the size of the organism 

and therefore the number of organelles isolated. To this end, accurate 

quantification of unicellular diatom species present in an environmental sample 

would require a single-copy nuclear region. Historically, mitochondrial and 

chloroplast genes were used for phylogenetic and population studies due to their 

abundance within cells and therefore greater yield of DNA for PCR amplification 

success. Their lack of introns was also an advantage allowing easier amplification 

with conserved primers and sequencing of the whole protein-coding region. 

These advantages have led to an abundance of sequence data for mitochondrial 

and chloroplast genes from morphologically verified specimens and compounds 

their present and future use in phylogenetic and species identification studies 

(Hebert et al., 2003a; Hebert et al., 2003b; Nilsson et al., 2008; Tedersoo et al., 

2012). Yet the quantification problem remains with their continued use in 

metabarcoding studies. With the advent of cheaper and more accessible genome 

sequencing of morphologically verified and vouchered specimens, additional 

single-copy nuclear regions may be discovered which can discriminate species 

adequately and allow the accurate quantification of species when used as a 

metabarcoding locus. However, this would still be an interim measure between 

current metabarcoding methods and full power of metagenomic sequencing of 

environmental samples to determine species composition. 

  

Our current monitoring methods use changes in diatom species abundance as a 

measure of response to changes in nutrients and inorganic contaminants in water 
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bodies. However, the future may see new eRNA monitoring methods developed 

where the up- or down-regulation of diatom gene expression in response to 

nutrients and contamination can be measured and assessed in real-time with 

RNA-seq of water samples by nanopore sequencing technologies in the field. 
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Chapter 4. Distribution of fungal plant 

pathogens over one month in eastern England 

Introduction 

Quarantine pests and pathogens are defined internationally as “pests of potential 

economic or environmental importance to an area, which are not present there or 

which, if present, are not widespread, and are being officially controlled” (IPPC, 

2011). Additionally, there are regulated non-quarantine pests and pathogens, 

which are widely established and cannot be described as quarantine pests, but 

which require control and phytosanitary methods to a certain degree. The 

European Plant Protection Organisation (EPPO) is the regional organisation with 

responsibility for the promotion and harmonisation of approaches for the 

detection and control of plant pathogens. EPPO identifies the pathogens and 

pests which could pose a risk to its member countries and has arranged them 

into four lists for guidance, which are regularly updated: A1 (organisms absent 

from the EPPO region), A2 (organisms which are present in the EPPO region), 

Alert (non-quarantine organisms which present a phytosanitary risk) and Action 

(organisms on the A1 and A2 lists which are of particularly urgent phytosanitary 

risk). Each member state can also produce its own lists and the United Kingdom 

has the Plant Health Risk Register, which records and rates the risk to crops, 

trees, gardens and ecosystems from plant pests and pathogens (UK Plant Health 

Risk Register).  

 

The causative agent of ash dieback, Hymenoscyphus fraxinus, is a fungal 

pathogen that causes shoot dieback, necrotic lesions and leaf wilting in ash trees. 

In young trees it is often lethal but in older trees ash dieback can result in a 

chronic infection, weakening the trees and predisposing them to other diseases 

(Cleary et al., 2016). It was first observed in Poland in 1992 (Kowalski, 2006) and 

has since been reported in more than 22 European countries (Timmermann et 

al., 2011), and is now considered widespread. Recent evidence has suggested 

the pathogen was recently introduced to Europe from East Asia (Gross et al., 

2014) and in 2012 it was first reported in the United Kingdom (EPPO, 2012). The 

introduction of ash dieback to the United Kingdom gained widespread publicity 
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given the number of ash trees in the UK and was initially linked to the import of 

ash seedlings from continental Europe. A systematic and widespread survey of 

ash trees across the United Kingdom in late 2012 established that many of the 

affected sites were in eastern England and Scotland, leading to the conclusion 

that the disease had also been introduced by wind-borne spores from mainland 

Europe (Heuch, 2014). This conclusion led to the publication of a revised plant 

biosecurity strategy for Great Britain which aims to deliver an improved 

biosecurity system that is resilient and able “to respond effectively to new and 

emerging threats” (DEFRA, 2014). 

 

In recent years, next-generation DNA sequencing technologies have matured 

and become a cost-effective way of both monitoring known species and 

undertaking surveillance for potential new threats (Bulman et al., 2018; Galan et 

al., 2016; Ji et al., 2013). Environmental DNA (eDNA) techniques - where the total 

DNA is extracted from a sample and either metabarcoding (targeted) or 

metagenomics (non-targeted) sequencing is carried out - have become popular 

and have been used widely (Douglas et al., 2012; Elbrecht and Leese, 2016; 

Pierre Taberlet et al., 2012). Standardised protocols for metabarcoding, coupled 

with cost-effective multiplexing of samples, deliver advantages in the 

simultaneous detection of both described and unknown organisms. With regards 

to fungal metabarcoding, the ribosomal internal transcribed spacer (ITS) region 

has become the most widely used locus (Schoch et al., 2012). The locus is widely 

utilised and reference sequences exist for many described and undescribed 

species within UNITE, the main repository for such sequences (Nilsson et al., 

2013). 

 

A number of studies have already shown that metabarcoding can be useful in 

assessing the presence of airborne fungal species. Air sampling of the indoor 

environment has been demonstrated and shown to provide high resolution fungal 

identification with ITS2 (Korpelainen and Pietilainen, 2015). In Canada, it has 

been shown that spore samplers can be used to collect fungal species for 

metabarcoding studies effectively, albeit with the conclusion that air samplers 

collect more Ascomycota and rain samplers collect more Basidiomycota (Chen 

et al., 2018). Air samples taken from urban environments in the UK and the 
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Netherlands have also shown that plant pathogens can be detected successfully 

with metabarcoding from rooftop air samples (Nicolaisen et al., 2017). 

 

We present the results of a baseline study for the daily monitoring and 

surveillance of air-borne fungal species present in six locations in eastern 

England over one month in June 2015. The study had the dual aims of 

determining if we could use next-generation amplicon sequencing for routine 

monitoring and surveillance of fungal plant pathogens in the UK and whether the 

existing pollen network could be used for collection of representative samples.  

 

Materials and methods 

Spore sampling 

Samples were obtained from two sources. Samples from Wansford, Alford, 

Haywold, and Stokesley came from the Crop Monitor network (CropMonitor, 

2017) of spore samplers located in crop fields (Wansford: Latitude 53.55°N, 

Longitude -0.43°W; Alford: Latitude 53.26°N, Longitude 0.18°W; Haywold: 

Latitude 53.99°N, Longitude -0.60°W and Stokesley: Latitude 54.58°N, Longitude 

-1.16°W). The samplers were Burkard multi-vial Cyclone samplers (Burkard 

Manufacturing, UK). They continuously sample pollen and fungal spores, which 

were then deposited into a 1.5ml tube. The tubes were changed every day giving 

daily samples of spores during the period 29/5/2015 to 30/6/2015. Samples from 

York and Beverley came from the UK Pollen Monitoring Network. Both were 

Burkard volumetric spore traps (Burkard Manufacturing, UK) similar to the Crop 

Monitor traps but with the spores being collected on Melinex tape coated with 

petroleum jelly and paraffin wax and mounted on a rotating drum. Tape 

representing spore samples for each day was collected and slide mounted as 

described in Brittain et al (2013). Both traps were mounted on top of buildings in 

urban areas. The York trap was located on the roof of a building at the University 

of York (Latitude 53.95°N, Longitude 1.05°W) and the Beverley trap on the roof 

of an East Riding Council building in Beverley, East Riding, UK (Latitude 53.84°N, 

Longitude -0.42°W).  
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DNA extraction 

Mounted slides were individually placed in 50ml falcon tubes (Fisher Scientific, 

UK) containing 2ml of CTAB buffer (10mM sodium phosphate buffer pH8, 50mM 

cetrimonium bromide, 1.5M sodium chloride) and incubated at 60°C on a rotating 

carousel for 30 minutes. The tubes were then centrifuged at 500g for 20 seconds 

in a Sigma 4K15 centrifuge (Sigma Laborzentrifugen GmbH, Germany) and the 

slide and coverslip removed.  

 

Slide samples and Cyclone samples were then disrupted in 50ml falcon tubes by 

adding 1g of an equal weight mixture of 2.3mm and 0.5mm zirconia silica beads 

(Fisher Scientific, UK) and vortexed for 4 min at full speed on a Vortex Genie II 

(Fisher Scientific, UK) using a horizontal vortex adapter (Qiagen, UK). The tubes 

were centrifuged at 5000g in a Sigma 4K15 centrifuge and the clear lysate 

removed. The lysate was then extracted using a nucleospin Plant 2 kit 

(Macherey-Nagel, Germany) as per the manufacturer’s instructions. Buffer-only 

samples were taken through the complete extraction process as extraction 

blanks.  

DNA amplification and sequencing 

Part of the ribosomal ITS1 region was amplified using primers Nex_ITS1_Ky02F 

(Toju et al., 2012) with the sequence: 

5’-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGTAGAGGAAGTAAAAGTCGTAA-3’ 

and Nex_ITS1R_Wobble with sequence: 

5’-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGCWGYGTTCTTCATCGATG-3’. 

Thirty-microliter reactions consisted of 5μl HF buffer, 0.6U Phusion polymerase 

and 300uM dNTPs mix (all New England Biolabs, USA), 300nM forward and 

reverse primers (Eurofins, Germany) and 1μl extracted DNA. Extraction blanks, 

amplification blanks and a positive control consisting of a Gblock (IDT, UK) with 

artificial sequence separating Nex_ITS1_Ky02F and Nex_ITS1R_Wobble 

binding sites were also amplified. The resulting solution was amplified on a 

BioRad C1000 thermocycler (BioRad, USA) at 98°C for 2 min followed by 25 

cycles of 98°C for 20 sec, 54°C for 30 se and 72°C for 90 sec. The reaction was 

completed with 10 mins at 72°C. Amplified DNA was assessed by agarose gel 

electrophoresis in a 1% gel. The reactions were then cleaned with Ampure XP 

beads (Beckman Coulter, UK), indexed and again cleaned with Ampure XP 
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beads as described in the Illumina 16S metagenomics library prep guide 

(Illumina, USA) with the exception that Phusion polymerase was substituted for 

Kappa polymerase. The final DNA library fragments were then quantified using 

Picogreen (Lifetech, UK), measured on a Fluoroskan Ascent fluorimeter (Thermo 

Scientific, UK) and mixed in equal quantities to create a 20nM pool. This pool was 

assessed using a D1000 tapestation tape (Agilent, UK) prior to running in the 

presence of 10% PhiX control (Illumina, UK) on an Illumina MiSeq with a V3 

2x300 cycle flow cell (Illumina, UK).  

 

Sequence quality control 

A stringent quality control procedure was applied to the raw sequence data. 

Firstly, PCR amplification primers and any remaining Illumina adapter sequences 

were removed from both sequenced strands of DNA using Cutadapt v1.9.1 

(Martin, 2011). Secondly, poor quality 3’ ends of sequences from both strands 

were removed with sliding window trimming using Sickle v1.33 (Joshi and Fass, 

2016) in paired-end (pe) mode. Thirdly, the trimmed read-pairs were merged to 

form single consensus sequences with PEAR v0.9.6 (Zhang et al., 2014). Finally, 

a further round of quality assessment was carried out to remove any sequence 

with an overall accuracy of less than 99.9%, length <100bp and sequences 

containing ‘N’ bases. This was achieved with Sickle v1.33 (Joshi and Fass, 2016) 

in single-read (se) mode. Remaining PhiX positive sequencing control sequences 

were identified by mapping the good quality reads to the PhiX reference 

sequence (NC_001422) with bowtie2 (Langmead et al., 2009) and were removed 

from the dataset with bedtools (Quinlan and Hall, 2010). Chimeric amplicon 

sequences were identified using the usearch61 method (Edgar, 2010) 

implemented within QIIME v1.9.1 (Caporaso et al., 2010) and removed from the 

dataset.  

Sequence analysis 

The number of sequence reads per sample were rarefied to 15000 reads prior to 

the analysis to ensure the clusters were not biased by sequencing depth per 

sample. Sequences were clustered at 100% similarity within QIIME 1.9.1 

(Caporaso et al., 2010) in order to collapse identical amplicon sequences in 

pseudo-OTUs to reduce computational time. Taxonomy was assigned to each 
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unique amplicon sequence by searching the UNITE ITS database (version 7.2, 

dynamic) (Kõljalg et al., 2005) with megablast (Camacho et al., 2009). Additional 

ITS sequences (n=44) were obtained from NCBI and added to the UNITE ITS 

blast database to cover fungal species present in the UK Plant Health Risk 

Register, however 22 risk register pathogens had no ITS1 sequence available. 

The data for each sample was rarefied to 15,000 reads and counts for each taxon 

identified within each sample were outputted with the summarize_taxa script 

within QIIME1 and imported into R (R Core Team, 2017) for downstream 

investigation and analysis. The version of the United Kingdom risk register used 

was downloaded on 13/07/2017 from 

https://secure.fera.defra.gov.uk/phiw/riskRegister/. 

 

Statistical comparisons between samples, dates and locations were carried out 

in R (R Core Team, 2017) with the packages ape (Paradis et al., 2004), vegan 

(Oksanen et al., 2007) and picante (Kembel et al., 2010). The Bray-Curtis 

dissimilarity metric (Bray and Curtis, 1957) was used to calculate community and 

sample dissimilarities. Non-metric multidimensional scaling (NMDS) ordination 

was calculated with the metaMDS function within vegan. Identification of species 

contributing to location, date and cluster differences was carried out with SIMPER 

(Clarke, 1993) which assesses dissimilarity between groups. 
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Results and Discussion 

Spatial and temporal characterisation of fungal communities 

 
Figure 4.1: Location of the sampling sites (1) Haywold; (2) Stokesley; (3) Wansford; (4) 
Alford; (5) Beverley and (6) York. York and Beverley (Light blue) samples were collected 
as part of the national pollen monitoring network sample collection. 

 

The location of each air sampler is shown in Figure 4.1. In order to identify any 

location specific grouping within the dataset, hierarchical clustering of Bray-Curtis 

dissimilarity distances was performed on the rarefied dataset. The clustered 

dendrogram (Figure 4.2) shows a number of groups; however, none of the groups 

correlated with sampling location or date upon initial inspection. The original 

number of reads which passed the stringent QC process are shown in Table 4.1.  
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Figure 4.2: Hierarchical clustering of Bray-Curtis dissimilarities across all samples with 
rarefaction to 15000 reads per sample. Whilst 8 groups are observed, A-H, these are not 
consistent with either sampling location or date. 
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The hierarchical clustering by Bray-Curtis dissimilarities demonstrated 8 separate 

groups, A-H (Figure 4.2). Four control samples contained enough sequence 

reads to be included in the rarefied dataset and three of the controls 

(pollenPCRneg, pollenEB151116, pollenEB161116) were found to be clustered 

with sample CTS83. This would suggest that the three controls were 

contaminated with DNA from this sample, although at an unknown time in the 

protocol. Unfortunately the staff who carried out the DNA extraction, PCR 

amplification and library preparation did not keep records of any potential 

contamination events they may have noticed. The fourth control sample 

containing significant sequence reads was found to cluster closely with sample 

CTS108. All other controls had fewer than 15,000 sequence reads in total and so 

were excluded from the rarefied dataset (Table 4.1).  

 

Table 4.1: Number of Illumina reads which passed quality control for each sample 
(prior to rarefaction), organised by date and sampling location 

 
 

Testing of associations between clusters, sampling location and sampling date 

with adonis/PERMANOVA (Anderson, 2001) determined that only 6.2% of the 

differences between samples could be attributed to sampling location (p=0.001) 

and only 21% could be attributed to date (p=0.23). The same hierarchical testing 

was applied to the individual clusters A-H (Table 4.2) and statistically supported 

associations were discovered for sampling location in clusters G and H and for 

sampling date in cluster E. However, despite a link between the samples in 

cluster G and their original location, only 12% of sample clustering could be 

explained this way (n=71), and similarly only 18% for cluster H. In contrast, the 
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association between samples in cluster E and their collection date is present for 

83% of the samples (n=9). 

 

Table 4.2: Adonis (PERMANOVA) testing of association between samples in a cluster 
(as determined by Bray-Curtis dissimilarities) and location or date. Statically supported 
associations are highlighted in green (Clusters G and H samples by location; cluster E 
samples by date). 

Cluster 

(samples) 

A 

(n=6) 

B  

(n=4) 

C  

(n=5) 

D  

(n=19) 

E  

(n=9) 

F  

(n=18) 

G  

(n=71) 

H  

(n=29) 

R2  

(location) 

0.56 - 0.79 0.32 0.11 0.13 0.12 0.18 

p-value  

(location) 

0.1 - 0.4 0.15 0.7 0.8 0.001 0.003 

R2  

(date) 

0.86 1 1 0.79 0.83 0.89 0.43 0.54 

p-value  

(date) 

0.1 1 1 0.32 0.02 0.41 0.67 0.44 

 

 

The detailed hierarchical clustering for clusters E, G and H are shown in Figure 

4.3a, Figure 4.3b and Figure 4.3c respectively. While there were clear visual 

associations between some samples, for example the similarity between the blue 

Beverley samples and orange York samples in Figure 4.3c, this served to 

highlight the lack of statistical association between most samples based on 

location in clusters H and G. Overall, the hierarchical clustering and statistical 

analysis showed very little support for correlation between samples and their 

location and/or date.  
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a 
 

c 

b

 

Figure 4.3: (a) Cluster E samples annotated by date. (b) Cluster H samples annotated 
by location (Blue=Beverley, Orange=York, Yellow=Haywold, Green=Stokesley). (c) 
Cluster G samples annotated by location (Pale Blue=Alford, Purple=Wansford, 
Red=Contaminated control 

 

The clustering of the data into eight clusters, A-H, demonstrated that there was 

enough variability between samples for comparison. However, the initial analysis 

showed no support for correlation between the six sampling locations, nor the 

dates over the month sampled. This was interesting given the sampling locations 

were in some cases hundreds of miles apart, with two locations being in urban 

areas, as the York and Beverley air samplers used in pollen studies were on top 
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of buildings. The samples in cluster H appeared to show some supported within-

cluster differentiation of York and Beverley from the field-based samples 

(Wansford, Alford, Stokesley and Haywold). However, this represented a small 

amount of the dataset and was not further supported by differences between 

sampling dates. It did suggest that there are location-specific taxonomy 

differences even if they are being lost in the noise of contamination subsequently 

found in the dataset.  

Identification of contamination in samples and controls 

With almost no supported correlation between the data and either location or 

date, and the presence of contamination, further interrogation of the species 

composition was required. We hypothesised that the samples had been 

contaminated during storage, DNA extraction, PCR amplification or library 

preparation. The three controls remaining in the dataset after rarefaction which 

were placed in cluster A by hierarchical clustering of the Bray-Curtis dissimilarities 

were two DNA extraction negative controls and a PCR negative control. These 

three controls were all from the pollen slide samples (York and Beverley sampling 

sites) and had similarity in species composition to samples CTS83, CTS86 (both 

Burkard samples) and MGEH020615 (pollen slide sample). This suggested 

contamination of both pollen and Burkard samples during both DNA extraction 

and PCR amplification given the pollen slide and Burkhard extractions were 

carried out on different days by different people. The DNA extraction control from 

the Burkard samples (Alford, Stokesley, Haywold and Wansford) was also 

positive with significant similarity in species composition to sample CTS108.  

 

The evidence of both insidious and gross contamination in the results was 

worrying and changed the course of the analysis dramatically. We were not in a 

position to carry out the detailed spatial and temporal analysis as the samples 

were clustering based upon contamination events rather than true diversity, a 

result supported by PERMANOVA testing. The removal of suspected 

contaminating sequences would have reduce the sequences in most datasets to 

very low levels which would have further weakened a downstream analysis. The 

United Kingdom Plant Health Risk Register describes 125 fungal species but 

reference DNA barcodes were not available in the public databases for 22 of 

these species, which represents a gap in our results. These species may be 
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present in varying quantities, yet described as “unidentified”. UNITE provides 

many sequences for unidentified species and it may be that some of the Risk 

Register species are within these groups, for example, “unidentified 

Pleosporales”, which was very abundant over the whole dataset. The random 

way in which some species were present in samples from very different dates 

and very different locations is stark (e.g. Endocronartium harkenessii), and, given 

the large abundance of contaminating species suggests gross contamination of 

these samples through unknown mechanisms. Other forms of contamination 

were more subtle and perhaps the result of batch effects resulting from DNA 

extraction orPCR amplification.  

Identification of species driving the observed clustering of samples and potential 

batch effects 

SIMPER analysis determined a number of species across all clusters that 

contribute at least 70% to the difference between clusters A-H: Endocronartium 

harknessii, Mycosphaerella tassiana, Cryptococcus pseudolongus, an 

unidentified Mycosphaerellaceae species, Microdium phyllanthi, Blumeria 

graminis, an unidentified Pleosporales species, Elsino australis, Aspergillus 

cibarius, Sporobolomyces roseus and Puccinia striiformis. Many other species 

with a lesser effect on the clustering were also elucidated with SIMPER; however, 

interpretation proved difficult. SIMPER determines the percentage by which each 

individual species is responsible for within-group and between-group differences, 

so species which are more abundant contribute more to the outputted difference. 

In this case the number of samples and the number of species present within 

them made elucidating any additional species presence or abundance subtleties 

that contributed to the clusters very difficult. 

 

To further investigate the effect of overly-abundant species on the clustering, the 

rarefied counts of each species in each sample were plotted with the hierarchical 

clustering of the Bray-Curtis dissimilarities (Figure 4.4). This identified the species 

responsible for certain clusters. Cluster F is characterised by very large relative 

abundance of Endocronartium harknessii (>80% in some samples). 

Cryptococcus pseudolongus influences the groups within clusters A and H. The 

abundance of Elsinoe australis in five samples explains cluster C; however, these 

samples were from four different locations on four different dates. There is an 
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interesting relationship between Blumeria graminis, Endocronartium harknessii 

and Cryptococcus pseudolongus across the samples: where B. graminis and E. 

harknessii are present, C. pseudolongus is absent. Sporobolomyces roseus was 

present in almost all samples in varying abundances with the largest abundances 

observed within five samples in cluster D. This may represent a batch effect 

where B. graminis and E. harknessii were introduced during one set of DNA 

extractions and C. pseudolongus was introduced during another set of DNA 

extractions. Unfortunately, the researcher who carried out the DNA extractions 

did not keep a record of which samples were extracted together. The unidentified 

Pleosporales was also present in almost all samples in varying abundances but 

with larger abundances within cluster G.  
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Figure 4.4: Heatmap of the rarefied read numbers (max=15000) for the 8 most abundant 
species detected in the whole dataset (labelled in black) and for species found on the 
UK Risk Register (labelled in red). The hierarchical clustering and groups A-H are also 
shown to demonstrate the effect of single species on the clustering across the dataset. 
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Batch effects are well known in genomic datasets (Parker and Leek, 2012) and 

attempts have been made to develop algorithms to counter their effect on 

different types of genomic datasets (Akulenko et al., 2016; Gibbons et al., 2017; 

Manimaran et al., 2016; Nyamundanda et al., 2017). Despite the progress made 

with tools for identifying and reducing batch effects in expression studies with 

limma (Ritchie et al., 2015) and Combat (Johnson et al., 2007), there are few 

such tools for metabarcoding studies. Hypothetically, a positive mock community 

control, a negative DNA extraction control, a negative PCR amplification control 

and a negative PCR library preparation control would all be taken through the 

metabarcoding pipeline to determine contaminants from the laboratory 

environment, reagents and kits. Any contaminants discovered in these controls 

would then be subtracted from the main dataset prior to analysis in order to 

minimise batch effects across the dataset. This strategy was first proposed by 

(Salter et al., 2014) who determined that contaminating DNA present in reagents 

(the “kitome”) can have a significant effect on experiments with low biomass 

samples. They published a list of contaminating genera they had found in 

negative controls from various kits and found that while contaminants were 

predominantly environmental bacteria (rather than the human samples they were 

studying) the contamination between batches/lots of consumables was not 

predictable. Recent studies have also confirmed that common routes of 

contamination in metabarcoding experiments are DNA extraction and PCR 

amplification, and that kit box number or even reagent lot number can affect the 

taxonomic composition of a sample (de Goffau et al., 2018; Glassing et al., 2016; 

Kim et al., 2017). Mock communities as positive controls have been shown to 

help understand the effects of PCR amplification and accurate community 

representation in the final data (Bakker, 2018), however no such control was used 

in this experiment due to the diversity in the range and abundance of species 

expected to be found. However, in the fungal spore data analysed here the 

abundance of species associated with batch effects was considerable and 

removal of these species would have significantly weakened the dataset further.  

United Kingdom Plant Health Risk Register plant pathogens present in the 

samples 

The United Kingdom Plant Health Risk Register is a register of pests and 

pathogens of significance to plant health and includes species which are already 
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known to be present in the UK as well as those which have yet to arrive and which 

are hoped will never arrive given their pathogenicity. A number of fungal 

pathogens present on the United Kingdom Plant Health Risk Register (DEFRA) 

were expected to be found in the dataset due to their widespread distribution in 

the United Kingdom. However, a number of highly quarantine species believed 

to be absent from the UK were present in the rarefied sequence data (Figure 4.4 

and Table 4.3).  

 

Further interrogation of the rarefied sequence counts, sampling date and sample 

location for Endocronartium harknessii showed a random distribution of large 

abundances of this species strongly suggesting laboratory contamination rather 

than presence in the field (Figure 4.5). Given its EPPO A1 list status as a 

quarantine pathogen, it is highly unlikely that this pathogen comprised 8.4% of 

the spores collected in the field. Even if the sequence reads assigned as E. 

harknessii originated from a closely related species, rather than the quarantine 

species, the introduction of the organism to the dataset looks like a random 

spotting of huge abundances of this organism, rather than a gradually increasing 

or decreasing level, or a steady background level as had been observed for other 

species in the dataset. For example, the sequences classified as E. harknessii 

comprised more than 14,000/15,000 on some days and 0/15,000 the next.  
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Table 4.3: Fungal species present on the UK Risk Register (accessed 13-07-2017) and 
also present within the rarefied dataset. The EPPO/EU classification and their 
presence/absence in the UK is also listed. 

Name EPPO 
listing 

Presence in the 
UK 

Relative abundance (in all 
samples) 

Alternaria mali A1 Absent 0.039%  
Alternaria panax - Absent 0.003% (only in samples 

JT240615 and CTW107) 
Apiosporina mobosa A1 Absent 0.011% (found primarily in the 

pollen slide samples) 
Ciborinia camelliae A2 Present (limited 

distribution) 
0.376% (see figure 4) 

Coleosporium 
phellodendri 

- Absent 0.007% (found in four 
unrelated samples) 

Cronartium quercuum A1 Absent 0.0001% 
Diaporthe vaccinii A2 Absent 0.006% (only in sample 

JT220615) 
Elsinoe australis A1 Present 2.596% (see figure 4) 
Endocronartium 
harknessii 

A1 Absent 8.455% (see figure 4) 

Gymnosporangium 
asiaticum 

A2 Absent 0.00004% 

Heterobasidion abeitium - Absent 0.00008%  
Heterobasidion 
irregulare 

Alert Distribution 
unknown 

0.099% (found primarily in the 
pollen slide samples) 

Heterobasidion 
parviporum 

- Absent 0.002% (only in samples 
CTA91 and Blaine280615) 

Hymenoscyphus fraxinus A2/Alert Present (limited 
distribution) 

0.0005% (only found in 
sample CTH100) 

Kabatiella zeae - Present (limited 
distribution) 

0.0001% 

Neonectria 
neomacrospora 

- Present (unknown 
distribution) 

0.00004% 

Ophiognomonia 
claviginenti-
juglandacearum 

A1 Absent 0.00008% 

Podosphaera 
euphorbiae-helioscopiae 

- Present (unknown 
distribution) 

0.00004% 

Puccinia graminis - Absent 0.00025% 
Puccinia komarovii - Present (unknown 

distribution) 
0.00008% 

Septoria lycopersici var 
malagutii 

A1 Absent 0.084% (see figure 4) 

Stemphylium vesicarium - Present 
(widespread 
distribution) 

0.0003% 

Thecaphora solani A1 Absent 0.011% (see figure 4) 
Tilletia indica A1 Absent 0.0005% 
Urocystis agrophyri - Present 

(widespread) 
0.304% (see figure 4) 

Verticillium albo-atrum A2 Present 
(widespread) 

0.001% (only in sample 
JT030615) 

Verticillium dahliae A2 Present 
(widespread) 

0.0003% 
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Figure 4.5: Rarefied counts of Endocronartium harknessii by sample and location. 
Despite being an EPPO A1 listed quarantine pathogen which is absent from the UK, this 
species constituted 8.4% of all sequences in the dataset. This is an overt example of the 
laboratory-acquired contamination during DNA extraction. Note that many samples are 
negative for this pathogen.  

We plotted the percentage similarities between each read and its corresponding 

database reference sequence for all Risk Register species identified in >0.01% 

abundance across the dataset (Figure 4.6). This analysis demonstrated that the 

identifications of sequences as Elsinoe australis, Endocronartium harknessii and 

Septoria lycopersici may not be as robust as might be assumed without this 

check. However, the plot also demonstrates that the identifications for the 

majority of sequences assigned as Alternaria mali, Apiosporinia morbosa, 

Ciborinia camellae, Diaporthe vaccinii, Heterobasidion irregulare, Thecaphora 

solani and Urocystis agroyri are robust. The “comet trails” below the box plots in 

Figure 6 represent sequences with lower sequence identity that were assigned 

that that species. Given the comprehensive reference database used, UNITE, 

which also included references for unidentified species, it is likely that the majority 

of lower percentage identifications represented sequence errors.  
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Figure 4.6: Boxplots of the percent identity between the reference sequence used for 
identification and the sequence read being identified. This figure demonstrates that the 
identifications for Elsinoe australis, Endocronartium harknessii and Septoria lycopersici 
may not be as robust as those for other species. 

 

 

A species of particular interest at the time of sampling was the causative 

pathogen of ash dieback, Hymenoscyphus fraxinus. However, it was only 

detected in very low abundance in a single sample using short-read Illumina 

sequencing and due to sequencing limitations that sample was not included for 

long-read nanopore sequencing. The low abundance of H. fraxinus was 

unexpected, but it is possible that the weather was not conducive to the transport 

of H. fraxinus spores during the sampling period. 
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Conclusions and recommendations 

In contrast to the published studies on metabarcoding contamination (Salter et 

al., 2014; Weiss et al., 2014), the major contaminating species in our data were 

unlikely to have been introduced by the kits or reagents used during DNA 

extraction as they are quarantine species under licencing restrictions 

(Heterobasidion irregulare, Alternaria mali, Thecaphora solani, Apiosporina 

morbosa, Coleosporium phellodendri and Diaporthe vaccinii) and thus would be 

highly unlikely to be present in the kit manufacturing facilities. However, they 

could have been introduced during DNA extraction, PCR amplification and library 

preparation from the laboratory environment itself as these steps were carried out 

in quarantine licensed facilities where fungal pathogens were actively being 

worked with, and which had been grown and worked with previously. None of 

these species are known to be present in the United Kingdom and if found to be 

present would require significant response from the UK government’s Animal and 

Plant Health Agency for management and control. This presents an interesting 

conundrum: does our data show a low level of these quarantine pathogens in the 

field, in which case they would be found in multiple locations on different dates at 

low level, or, does the data show that there is a low background level of 

contamination introduced from the laboratory in which DNA extraction was carried 

out. We believe that the latter is considerably more likely; however, without further 

field samples being collected and tested with more robust diagnostic methods 

such as validated species-specific real-time PCR assays, the former cannot be 

fully ruled out. Further investigation with the researchers who carried out the 

sample collection, DNA extraction and library preparation revealed that DNA 

extraction had been carried out in a quarantine laboratory where fungal cultures 

were present and being actively worked with. To this end, we propose that 

aerosol contamination from the laboratory itself is an additional significant route 

for contamination of samples being prepared for metabarcoding and may explain 

why the “kitome” (Salter et al., 2014) varies so unpredictably between kits and 

batch numbers: the “labome” may be an additional factor contributing to the 

variability.  

 

A number of studies have discussed the considerations for reducing 

contamination in metabarcoding studies. In environmental DNA (eDNA) studies, 

Goldberg et al (2016) recommend that negative field controls be used, field 
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equipment and field staff should be separated from the testing laboratory prior to 

sampling and analysis. Their recommendation of negative field controls (clean 

water collected using the same protocol and equipment as field samples) would 

have been difficult to achieve for air sampling in the field. However, given the 

hypothesis of aerosol contamination within the laboratory environment it would 

have been an improvement on our methods to include a 24h air sample from 

within the lab to assess the background of fungal spores in the laboratory. 

Goldberg et al (2016) and Salter et al (2014) both make similar recommendations 

for reducing the level of background contamination in eDNA metabarcoding and 

clinical 16S sequencing, respectively. Both papers stress the importance of 

“clean laboratory” protocols at all stages of the process, to the extent that staff 

travelling from laboratories where PCR products or DNA extractions are handled 

to the clean laboratory should shower and change into fresh clothing before 

entering the clean laboratory. They also recommend that deep cleaning using 

50% bleach solutions and UV treatment of surfaces should also be regularly 

carried out.  

 

In addition to the general laboratory considerations stated above, should the 

contamination not be introduced by the random aerosol introduction of spores 

into tubes but by processes we recommend an additional number of basic, and 

rather obvious, laboratory processes to reduce contamination and enable batch 

effects to be more easily identified in the downstream data. The following 

recommendations would have enabled the contamination found in our fungal 

dataset to be identified and characterised more readily and accurately. 

1. Use of an incremental numbering system for samples 

Given 100 samples, they should be numbered 1-100, independent 

of their actual sample names or numbers in a LIMS system. All 

manipulations, for example pipetting of DNA extraction reagents, 

should be carried out in numerical order. This would allow the 

downstream identification of any dilution effect on a single tube 

being contaminated as manipulations are carried out in the same 

order.  

2. Accurate record keeping of which samples were tested together.  
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This should include which samples were extracted and by what 

method, the lot numbers and kits used, along with any differences 

from protocol noted at the time.  

3. DNA extractions should not be carried out in a laboratory where growth of 

fungal cultures or bench-top analysis of fungal spores is being carried out.  

In scenarios such as ours, where we were actively looking in the 

downstream dataset for the presence or absence of particular 

pathogens, sample storage and DNA extraction should not be 

carried out in a laboratory where these pathogens might be present. 

Goldberg et al. (2006) state implicitly that separate rooms should 

be available for pre- and post-PCR steps, potentially with positive 

air pressure and filtration.  

4. Staff training should be kept up-to-date and carried out by the most 

experienced senior scientist in the lab 

Refresher sessions on good pipetting practice, the effect and 

impact of contamination on large projects, and a culture where 

reporting of contamination events is welcomed and encouraged. 

The same person should be responsible for training all staff to 

reduce the dilution effect of second-hand training. Senior scientists 

should not assume that a one-off training session is enough to 

reduce contamination events in the long term; continuous training 

and improvement should be encouraged. 

5. Routine swabbing and metabarcoding monitoring of laboratories and 

equipment where DNA extraction, PCR reactions and library preparation 

are carried out.  

Ideally if bacterial 16S, fungal ITS or any other loci is routinely used 

within a sequencing facility, those metabarcoding experiments 

should be carried out on the monitoring swabs. This would monitor 

background equipment contamination levels and illuminate issues 

prior to them appearing in datasets.  

 

In conclusion, metabarcoding is an incredibly promising tool for surveillance and 

monitoring of fungal plant pathogens in the field. However, the propensity for 

contamination-based batch effects needs to be fully understood by researchers 

wanting to utilise it - this also applies to metagenomic studies which are subject 
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to the same effects. We have made a number of recommendations to aid the 

identification of contamination-based batch effects which could be easily 

introduced into standard operating procedures in most laboratories.  
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Chapter 5. The potential for full ribosomal 

tandem repeat metabarcoding 

Introduction 

It has been estimated that there are between 2.2 to 3.8 million fungal species, 

with only an estimated 3-8% having been named (Hawksworth and Lücking, 

2017). The ability to discriminate species by their DNA sequence can be limited 

by the choice of genetic/genomic locus. If the locus does not contain enough 

variable positions within the length of sequence amplified then species- or isolate-

level identification may not be possible. The locus also needs to have enough 

conservation to allow the design and use of universal primers. However, universal 

primers, amplicon length and the variability within the locus are all assessed 

based upon knowledge of the species which have already been described. 

Recent studies have shown that there are likely to be many fungal species which 

have not yet been identified and are completely unknown (Tedersoo et al., 2017). 

With so many species yet to be described, the longer the sequence used to first 

identify it, the better it can be placed within the current taxonomy.  

 

Studies utilising targeted Illumina sequencing of the ribosomal internal 

transcribed spacers (ITS) have demonstrated the ability of this technique to 

resolve fungal species, including the indoor environment (Korpelainen and 

Pietilainen, 2015; Korpelainen et al., 2015), soil (Schmidt et al., 2013), urban 

environments (McGuire et al., 2013) and even hot water systems (Ma et al., 

2015). The ability of Illumina metabarcoding to be used for environmental fungal 

spore monitoring for plant pathogens has been demonstrated in Chapter 4, 

despite the contamination observed. However, targeted Illumina sequencing is 

subject to a number of disadvantages when applied to the surveillance for 

unknown or emerging threats. The restriction in amplicon length for Illumina 

sequencing can reduce the ability to resolve some species and the requirement 

for conserved primers flanking variable regions can drastically reduce candidate 

loci for sequencing studies. The clustering of quality-filtered sequence reads into 

operational taxonomic units (OTUs) - often at 97% similarity - can cluster 

separate sub-species and isolates into the same OTU. This loss of resolution can 
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be negated by clustering at 100%, thereby only clustering identical sequences for 

computational efficiency, but should species, sub-species or isolates have the 

same ITS1/ITS2 sequence they are still impossible to discriminate. The 

introduction of long-read sequencing technologies such as PacBio and nanopore 

negates the short-read disadvantages and allow the sequencing of longer 

regions, however with their own set of disadvantages, including error rate (Jain 

et al., 2017). 

 

The nuclear ribosomal tandem repeat contains genes for the ribosomal 18S small 

subunit (SSU), 28S large subunit (LSU) and 5.8S subunit. These genes are 

interrupted by the two internal transcribed spacers, ITS1 and ITS2, and the non-

transcribed intergenic spacer (IGS). A fourth ribosomal gene, 5S, is present in 

some fungal groups, splitting the IGS into two spacers, IGS1 and IGS2, with the 

5S rDNA being transcribed by a different RNA polymerase to the 18S, 5.8S and 

28S rDNA (Bergeron and Drouin, 2008). The ITS regions can vary significantly in 

length between fungal species (Hausner and Wang, 2005; Taylor and 

McCormick, 2008; Tedersoo et al., 2015). The ITS regions are hypervariable, yet 

also contain more conserved regions, and form secondary structures (Mullineux 

and Hausner, 2009; Nazar, 2004; Rampersad, 2014). The ribosomal genes - 

LSU, SSU, and 5.8S - are highly conserved and are routinely used for the forward 

and reverse primers for ITS sequencing studies. The ribosomal genes and 

spacers are present in multiple copies in the nuclear genome as a tandem repeat. 

Their abundance has made them an attractive region for species identification 

studies due to their ease of amplification and variability. The ribosomal tandem 

repeat regions have been used extensively in the past for species identification, 

with different regions being used for different taxa prior to the adoption of a more 

standardised approach to fungal identification using ITS (Schoch et al., 2012).  

 

In the late 20th century, the IGS region was commonly amplified and digested 

with restriction enzymes (RFLP) for species and isolate discrimination (Erland et 

al., 1994; Gardes and Bruns, 1996; Henrion et al., 1992).  The IGS region varies 

in length from around 2kb in yeast to 21kb in mammals and the length is 

determined by the number of repeats present within the region (Moss and 

Stefanovsky, 1995). Due to its hypervariability, the IGS region has been used to 

discriminate not only species but isolates too (Pantou et al., 2003). Despite these 
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obvious advantages for species discrimination, the IGS region is not a panacea. 

Its length can make amplification problematic and the resulting product is too long 

to be sequenced with Sanger sequencing. However, with the newer long-read 

sequencers this region shows renewed promise as an additional marker for 

biosurveillance and monitoring.  

 

Short-read next-generation sequencing technologies have enabled the 

characterisation of fungal communities in many different environments using 

conserved primers to amplify the ITS regions (Ghannoum et al., 2010; 

Korpelainen and Pietilainen, 2015; Li et al., 2016; Mosier et al., 2016; Sugiyama 

et al., 2010). However, there are disadvantages to using such short loci for 

community assessments, including the inability to discriminate the species of 

certain genera and primer bias during amplification (Bokulich and Mills, 2013). 

Such disadvantages are not just applicable to next-generation sequencing 

technologies but also Sanger sequencing.  

 

The introduction of long-read sequencing methods introduced the potential to 

sequence the entire ribosomal tandem repeat. A recent study used PacBio long-

read sequencing to amplify the 18S-ITS1-5.8S-ITS2-28S section of the repeat in 

fungi (Tedersoo et al., 2018) but did not attempt to sequence the entire repeat to 

include IGS. A further recent study sequenced the whole tandem repeat for using 

nanopore sequencing, but used three overlapping long amplicons and cultured 

material in order to demonstrate sequencing of the whole repeat for reference 

sequence database construction (Wurzbacher et al., 2018). Here we 

demonstrate the utility of long-read nanopore sequencing to characterise the 

whole ribosomal operon for fungal biomonitoring and surveillance by the 

metabarcoding of aerosol samples from four locations over one week. 

Materials and Methods 

Spore sampling 

Samples from Wansford, Alford, Haywold, and Stokesley came from the Crop 

Monitor network (CropMonitor, 2017) of spore samplers located in crop fields 

(Wansford: Latitude 53.55°N, Longitude -0.43°W; Alford: Latitude 53.26°N, 

Longitude 0.18°W; Haywold: Latitude 53.99°N, Longitude -0.60°W and 
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Stokesley: Latitude 54.58°N, Longitude -1.16°W). The samplers were Burkard 

volumetric Cyclone samplers (Burkard Manufacturing, UK). They continuously 

sample pollen and fungal spores, which were then deposited into a 1.5ml tube. 

The tubes were changed every day giving daily samples of spores during the 

period 29/5/2015 to 30/6/2015. A subset of these samples comprising 24/06/2015 

to 30/06/2015 was selected for MinION sequencing. 

 

DNA extraction 

Cyclone samples were disrupted in 50ml falcon tubes by adding 1g of an equal 

weight mixture of 2.3mm and 0.5mm zirconia silica beads (Fisher Scientific, UK) 

and vortexed for 4 min at full speed on a Vortex Genie II (Fisher Scientific, UK) 

using a horizontal vortex adapter (Qiagen, UK). The tubes were centrifuged at 

5000g in a Sigma 4K15 centrifuge and the clear lysate removed. The lysate was 

then extracted using a nucleospin Plant 2 kit (Macherey-Nagel, Germany) as per 

the manufacturer’s instructions. Buffer-only samples were taken through the 

complete extraction process as extraction blanks.  

 

Ribosomal tandem repeat region primer design 

The GenBank nucleotide database was queried on 25th October 2016 for fungal 

rDNA tandem repeat sequences up to 5kb in length with the following query which 

retrieved 236,064 DNA sequences: 

(28S[All Fields] AND 18S[All Fields]) AND (fungi[filter] AND 

biomol_genomic[PROP] AND ddbj_embl_genbank[filter] AND 

(“1”[SLEN]:”5000”[SLEN])) 

As there were too many sequences to produce an alignment to investigate for 

primer design, a list of existing large rDNA subunit (LSU) primers were retrieved 

from https://sites.duke.edu/vilgalyslab/rdna_primers_for_fungi/ (Table 5.1). A 

blast database was created with the GenBank sequences and each of the primers 

searched against the database with blastn and the number of (unrestricted) hits 

were recorded. The final selected amplicon sequences were 5.8S (5’-

CGCTGCGTTCTTCATCG-3’) and 5.8SR-MinION (5’-

TGCSRGARCCAAGAGATCCG-3’). 
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Table 5.1: Primers investigated for their efficacy in amplifying large numbers of fungal 
species 

Primer name Sequence (5’-->3’) Position within S. cereviseae rRNA 

5.8S CGCTGCGTTCTTCATCG 51-35 (5.8S RNA) 

5.8SR TCGATGAAGAACGCAGCG 34-51 (5.8S RNA) 

LR0R ACCCGCTGAACTTAAGC 26-42 

LR1 GGTTGGTTTCTTTTCCT 73-57 

LR2 TTTTCAAAGTTCTTTTC 385-370 

LR2R AAGAACTTTGAAAAGAG 374-389 

LR3 CCGTGTTTCAAGACGGG 651-635 

LR3R GTCTTGAAACACGGACC 638-654 

LR5 TCCTGAGGGAACTTCG 964-948 

LR6 CGCCAGTTCTGCTTACC 1141-1125 

LR7 TACTACCACCAAGATCT 1448-1432 

LR7R GCAGATCTTGGTGGTAG 1430-1446 

LR8 CACCTTGGAGACCTGCT 1861-1845 

LR8R AGCAGGTCTCCAAGGTG 1845-1861 

LR9 AGAGCACTGGGCAGAAA 2204-2188 

LR10 AGTCAAGCTCAACAGGG 2420-2404 

LR10R GACCCTGTTGAGCTTGA 2402-2418 

LR11 GCCAGTTATCCCTGTGGTAA 2821-2802 

LR12 GACTTAGAGGCGTTCAG 3124-3106 

LR12R CTGAACGCCTCTAAGTCAGAA 3106-3126 

LR14 AGCCAAACTCCCCACCTG 2616-2599 

LR15 TAAATTACAACTCGGAC 154-138 

LR16 TTCCACCCAAACACTCG 1081-1065 

LR17R TAACCTATTCTCAAACTT 1033-1050 

LR20R GTGAGACAGGTTAGTTTTACCCT 2959-2982 

LR21 ACTTCAAGCGTTTCCCTTT 424-393 

LR22 CCTCACGGTACTTGTTCGCT 364-344 

MinION nanopore sequencing and analysis 

Amplification and MinION nanopore sequencing was carried out at Fera Science 

Ltd (York, UK) with nanopore R9.4 chemistry. Base calling was carried out with 

MinKNOW v1.4.3 and the Recurrent Neural Network (RNN) algorithm. FastQ 2D 

sequences were extracted from the MinION fast5 files using poretools v0.6.0 
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(Loman and Quinlan, 2014). Taxonomy was assigned to each 2D nanopore 

sequence by searching the UNITE ITS database (version 7.2, dynamic) (Kõljalg 

et al., 2005) with blastn (Camacho et al., 2009) with a maximum number of 

alignments and descriptions set to 50. In addition to isolating the top blast hit from 

this data, it was imported into MEGAN (Huson et al., 2016) to calculate an 

identification using the lowest common ancestor (LCA) algorithm. Additional ITS 

sequences (n=44) were obtained from NCBI and added to the UNITE ITS blast 

database to cover fungal species present in the UK Plant Health Risk Register, 

however 22 risk register pathogens had no ITS1 sequence available. GC content 

and fastq quality scores were calculated with BioPython (Cock et al., 2009) and 

all results were imported into R for exploratory analysis (R Core Team, 2017). 

Comparisons with fungal relative abundances obtained with Illumina sequencing 

from in Chapter 4 were carried out within the vegan package in R (Oksanen et 

al., 2007) and searches between the Illumina and MinION sequence reads were 

performed with Blast+ v2.7.1 (Altschul et al., 1990) 

Results and discussion 

Primer design for the rDNA tandem repeat 

The primers listed in Table 5.1 had variable performance when searched against 

the 236,064 fungal sequences retrieved from GenBank. The 5.8S and 5.8SR 

primers performed considerably better than primers located within the LSU, those 

named starting with ‘LR’ in Figure 5.1.  
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Figure 5.1: Proportion of the 236,064 fungal sequences where each primer sequence 
was detected 

 

A decision was made to not only amplify the full tandem repeat, but also to design 

the long PCR amplicon in such a way that it exploited as much taxonomically-

informative sequence as possible. The results from the primer search experiment 

(Figure 5.1) showed superior performance of primers 5.8S and 5.8SR. These two 

primers were reversed so that the amplified DNA exploited back-to-back primers 

placed within 5.8S (Figure 5.2). This approach sacrificed the taxonomically 

conserved 5.8S region from the amplicon, yet allowed the full amplification of 

SSU, LSU, ITS1, ITS2, and the IGS region(s). Primer 5.8SR was amended on 

the basis of the primer search experiment to include three degenerate bases for 

the downstream amplification and nanopore sequencing. There was a risk using 

this approach would amplify PCR products spanning multiple copies of the repeat 

region, however the PCR extension time was optimised for the amplification of 

products ~6kb to reduce this. 
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Figure 5.2: Long PCR primer design to amplify the full tandem repeat. 

Basic sequence composition and identification 

The MinION nanopore sequencing produced 19,235 2D sequences. There were 

large differences in the number of sequences produced from each dated sample 

for each site, with the lowest being 129 sequences and the highest being 2137 

sequences (Table 5.2). The total number of sequences per site, excluding 

controls, was: Alford (5290), Haywold (5784), Stokesley (3810), Wansford 

(3944). While some of the samples had low numbers of sequence reads it was 

decided to proceed with the analysis.  

 

Table 5.2: Total number of nanopore sequences produced per sample 

Sampling 

date 

Alford  Haywold  Stokesley  Wansford  

24/6/2015 CTA99 579 CTH104 2137 CTS102 270 CTW101 279 

25/6/2015 CTA100 489 CTH105 847 CTS103 360 CTW102 359 

26/6/2015 CTA101 1894 CTH106 288 CTS104 360 CTW103 930 

27/6/2015 CTA102 537 CTH107 430 CTS105 237 CTW104 1137 

28/6/2015 CTA103 146 CTH108 167 CTS106 215 CTW105 739 

29/6/2015 CTA104 680 CTH109 1058 CTS107 1334 CTW106 129 

30/6/2015 CTA105 965 CTH110 857 CTS108 1034 CTW107 371 

Controls CTAEB 194 CTHEB 199 CTSEB 2 CTWEB 2 
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Sequence length frequency histograms were produced to assess the length of 

sequences in each sample (Figure 5.3). The histograms showed that in many 

samples there were large numbers of sequences less than 1kb. There were 19 

2D sequences >10kb which when investigated further with blast were shown to 

be extra long amplicons with two copies of the tandem repeat. However, the 

majority of the samples produced a cluster of high quality 2D sequences around 

the expected amplicon size of 5-6kb. The 1D sequences are considerably longer 

than the 2D reads and likely reflect the true amplicon size, however the accuracy 

of 1D sequences at the time of analysis was poor (Rang et al., 2018). All 

downstream analysis was carried out with the 2D sequences.  
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Figure 5.3: Sequence length histograms for each sampling location and date. The 
number of sequences is shown on a log scale to aid visualisation between samples. 
Individual read length differences between the 2D sequences (red) and 1D sequences 
(blue) are also shown. 
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The mean quality scores for all sequences in each sample was plotted to give a 

broad overview of the quality of the nanopore sequencing (Figure 5.4). The mean 

phred quality score across all 19,235 sequences was 19.8, indicating a 99% base 

call accuracy. However, this is very likely to be a gross overestimation of the true 

accuracy of the nanopore sequencing of these samples.  

 
Figure 5.4: Boxplot of the mean quality scores for the nanopore sequences in each 
sample. 

 

One strategy for determining the accuracy of nanopore sequencing which was 

not employed during these experiments, but which would improve the quality 

estimations, would be to use a spike-in of known DNA. The nanopore reads from 

this DNA would then be mapped back to a Sanger or high-coverage Illumina 

reference sequence and accuracy estimated based upon the number of SNPs in 

the reference assembly. The inclusion of PhiX DNA in Illumina sequencing is an 

example of this as it enables an assessment of the overall performance of that 

run. Similar approaches have been applied to microbiome and metabarcoding 

studies where a mock community containing a mixture of species with known 

DNA concentration is also sequenced (Nguyen et al., 2015). This provides a two-

fold assessment of the sequencing as both sequencing accuracy and the 

sensitivity of the sequencing run to species detection can also be assessed. 
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Taxonomic identification of the nanopore sequence reads 

The nanopore sequences were searched against the same UNITE/UK risk 

register sequence database used previously to analyse the Illumina sequencing 

of the same samples. Only 5421 (28%) nanopore reads could be assigned to a 

taxon with 13,814 sequences left unidentified. The sequences with a putative 

identification had also been subject to a lowest common ancestor (LCA) analysis 

of the blast results using MEGAN. To assess whether the sequence quality may 

have been a factor in the identifications, the mean quality scores for each 

sequence was plotted with the putative identification made by the LCA algorithm 

(Figure 5.5). This demonstrated that there was no obvious difference in the mean 

quality score of the sequences that could not be identified. In fact, many of the 

highest quality sequences in the dataset could not be identified with blastn (Figure 

5.5, pink boxplot).  

 

 
Figure 5.5: Mean sequence quality scores for sequences with identifications made by 
MEGAN using a lowest common ancestor. 

 

The mean sequence quality, sequence length and the percent identify found 

between the sequence and the hit in the UNITE/risk register sequence database 

were plotted to elucidate any correlations (Figure 5.6). This demonstrated that 

many of the high quality identifications had adequate sequence quality, but were 

predominantly less than 1kb in length. Most of the longer sequence identifications 

were made between 80-90% identity to the reference sequence, which is also the 
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reported accuracy for nanopore sequencing (Rang et al., 2018) and suggests the 

potential of genus- or family-level identifications but not species-level 

identifications. 

 
Figure 5.6: Scatter plot of sequence quality and the percent identity to the database for 
sequences with blastn hits to the UNITE/risk register sequence database. The points are 
coloured by sequence length. 

Investigating the link between sequence length and putative identification 

It has been reported that the intergenic spacer region can vary in size between 

different fungal species and groups, and it is well known that ITS1 and ITS2 can 

differ in size between species (Vilgalys et al., 1992). In the earlier years of 

sequence analysis, where RFLP was a popular way to investigate the differences 

between species and strains, the fungal IGS region was a target of first choice 

given its hypervariability (Jackson et al., 1999; Konstantinova and Yli-Mattila, 

2004; Ranjard et al., 2001). The IGS region can vary from 2kb upwards and in 

filamentous ascomycetes it can reach up to 5kb in length. In yeasts and 

basidiomycetes the IGS region also contains a single coding region for the 5S 

RNA. In light of this, the lengths of the nanopore sequences with putative 

identification were plotted to investigate any correlation between putative 

identification (by LCA) and sequence length (Figure 5.7) 
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Figure 5.7: Sequence length boxplots for each of the taxa identified with a lowest 
common ancestor algorithm in MEGAN. The numbers next to the taxa describe the 
number of nanopore sequences assigned to that taxon. 

 

The sequences putatively identified as belonging to three taxa were considerably 

longer than other sequences: Acidomyces sp. AK72/03, Dikarya spp., and 

Gymnosporangium libocedri. The reference sequence for Acidomyces sp. 

AK72/03 was published in 2010 (FJ430711) and is 2.8kb in length, which will 

have enabled more sequences to find similarity to this reference. The sequences 

identified as Dikarya by MEGAN’s LCA algorithm were predominantly identified 

as Acidomyces acidothermus using blast alone and account for all the sequences 

longer than >7kb in the Dikarya group. The sequences putatively identified as 

Gymnosporangium libocedri had only 75-84% identity to the reference sequence 

and so are only related to this plant pathogenic rust fungus. Figure 5.7 also shows 

taxa which have mean sequence lengths ~5kb with a wide spread of sequence 

lengths longer and shorter, although these taxa have lower numbers of 

sequences.  

 

The results demonstrate that nanopore sequencing is able to sequence the entire 

tandem repeat. While the IGS region was popular in the 1990s and early 2000’s 
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as a species identification marker in combination with RFLP, there are very few 

sequenced IGS regions with which to compare nanopore sequences. The error 

rate of nanopore sequencing adds a little uncertainty to the identifications made, 

however it may well be the hypervariability of the IGS region itself. A recent paper 

demonstrated the sequencing of the entire tandem repeat using three long PCR 

products from cultured material for the production of IGS and full-length ribosomal 

DNA barcodes (Wurzbacher et al., 2018). Should efforts be made by the fungal 

barcoding community to extend the length of barcodes in databases such as 

UNITE, then the combination of full-length tandem repeat barcoding could yield 

higher resolution identifications and therefore higher resolution community 

studies.  

Investigation of unidentified nanopore sequences: fungal species or amplification 

from other taxa? 

Given the large number of unidentified sequences (n=13,814; 72%) an 

exploratory analysis of the GC content of the sequences was undertaken to 

identify any groups of sequences which may originate from related organisms, 

whether fungal or another taxonomic group. Differences in GC content between 

genomic DNA and ribosomal DNA have been described for both prokaryotes and  

eukaryotes, with higher %GC being observed in ribosomal DNA (Schattner, 

2002). In order to aid the identification of the sequences to higher taxonomy the 

GC content of each sequence was plotted against its length for all sequences in 

the dataset (Figure 5.11A). Further plots coloured by putative identification 

(Figure 5.11B), mean sequence quality (Figure 5.11C) and site (Figure 5.11D) 

demonstrated that the identified sequences were centrally grouped, sequence 

quality did not influence the groups of sequences but that site-specific groups 

existed.  
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Figure 5.8: Scatter plots of the GC content against sequence length of each 2D nanopore 
read. (A) Points uncoloured;  
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Figure 5.9: Scatter plots of the GC content against sequence length of each 2D nanopore 
read. B) Points coloured by taxonomic kingdom: fungi (green), unidentified (pink), plant 
(blue);  
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Figure 5.10: Scatter plots of the GC content against sequence length of each 2D 
nanopore read. (C) Points coloured by mean sequence quality score: low (black), high 
(blue 
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Figure 5.11: Scatter plots of the GC content against sequence length of each 2D 
nanopore read. (D) Points coloured by location of the originating sample: Alford (pink), 
Haywold (green), Stokesley (blue), Wansford (purple). 
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To further investigate the relationships between the GC content and sequence 

length, the plots were split by both date and sampling location (Figure 5.12). This 

was carried out with the hypothesis that closely related sequences may group 

together due to similar ribosomal tandem repeat length and %GC content. Four 

interesting groups of sequences were selected for further analysis due to their 

extreme %GC content (either high or low), or discrete correlation with date and 

location.  

 

Group 1 comprised sequences from the Alford sample from 24th June 2015 with 

low GC content and potentially also present in the Wansford sample on 25th June 

2015. Group 2 comprised sequences in the Haywold sample from 25th June 2015 

with a high GC content and potentially only present in this location on this day. 

Group 3 comprised sequences present in the Stokesley sample from 27th June 

2015 with very high GC content. Group 4 was a group of sequences in the 

Stokesley sample from 28th June 2015 with very long read length and very low 

GC content.  

 

Group 1 

The length of these sequences ranged from 2050-2816bp, the mean %GC 

content was 32.6% (min=30.2%, max=34.9%) and mean sequence quality score 

was 22.6 (min=13.2, max=31.5). No identification could be made for any of the 

sequences against the fungal ITS UNITE/risk register database with blastn which 

would be expected to find sequence identity greater than approximately 75%. 

Alignment of sequences within this group with clustalw did not identify any sub-

groups of sequences and blastn against the NCBI nucleotide database did not 

return results useful for identification. A further search with blastx against the 

NCBI nr protein database did not return any results and as such this group of 

sequences remains unidentified. A low GC content may be suggestive of bacterial 

origins but the indels prevalent in nanopore sequencing made open reading 

frame (ORF) finding extremely difficult and may have ultimately affected the 

ability of blastx to find significant homologies within the nr database.  

 



 

113 

 
Figure 5.12: GC content plotted against sequence length for all nanopore sequences, 
separated by site and coloured by date. Four interesting groups are annotated: 1. Alford, 
24th June; 2. Haywold, 25th June; 3. Predominantly Stokesley, 27th June; 4. Stokesley, 
28th June.  
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Group 2 

Sequences ranged from 177-1106bp with the vast majority originating from 

Haywold samples CTH104 and CTH105. Searches against the fungal UNITE/risk 

register sequence database returned a small number of very short high identity 

hits to fungi in the family Ceratostomataceae. The alignment to the reference 

sequences in these cases was at the extreme 5’ end of the sequences, 

suggesting the hits were in the highly conserved primer region within 5.8S. 

Alignment with ClustalW showed that there were four different sub-groups of 

sequence within this group. A representative from each sub-group was searched 

against the NCBI nucleotide database with blastn to further characterise these 

sequences. The sequences from two of the sub-groups showed significant 

similarity to Triticum aestivum (bread wheat) and the other two sub-groups to 

bacterial sequences, suggesting the back-to-back conserved 5.8S primers are 

capable of amplification in other eukaryotes and in non-ribosomal regions in 

prokaryotes. 

 

Group 3 

The sequences in this group predominantly originated from Stokesley on 27th 

June but a small number were also observed in the sample from Alford on the 

29th June. The GC content ranged from 60.3-65.8 and sequence lengths ranged 

from 2532-4531bp. Only one sequence out of 41 could be putatively identified 

with the UNITE/risk register sequence databases. The single sequence had 75% 

identity to 343bp of the Basidiomycete Malassezia restricta. When aligned with 

clustalw, three sub-groups became apparent and a representative sequence from 

each was searched with blastn against the NCBI nt database. Two of the sub-

groups could be identified as Leifsonia spp., with 81% identity to Leifsonia xyli, a 

bacterium that causes sugarcane stunting disease. Leifsonia is a bacterial genus, 

adding further evidence that the 5.8S primers are capable of amplification outside 

of fungal taxa. The bacterial amplicon covered a number of genes, including the 

bacterial LSU, but the priming sites appeared to be in the DnaA and SpoIIIJ-

associated protein genes. The third sub-group was also bacterial in origin, with 

the closest hit being Variovorax spp., with the primers having amplified 3.5kb of 

the GGDEF-containing protein. The bacterial identifications were significantly 
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better in both identity and alignment length than the original putative identification 

determined from the UNITE/risk register database (Malassezia spp.). The 

sequences within this group appear to be bacterial in origin and are 

predominantly found in the Stokesley sample. 

 

Group 4 

The sequences in this group were only found in the Stokesley sample from 28th 

June. The GC content ranged from 26.4 to 28.0 and the length from 6024bp to 

7024bp. No identification could be made when the sequences were searched 

against the UNITE/risk register database with blastn. Alignment of the 15 

sequences in this group with clustalw showed two distinct groups which were very 

different to each other.  

 

The four small groups characterised above demonstrate that in some cases more 

accurate identifications can be made by expanding the searches to larger 

databases. A better search strategy for identifying amplicons encompassing the 

entire tandem repeat would likely be blastx against a eukaryotic rDNA database 

followed by subsequent searches in whole genome sequence databases for 

amplicons where an adequate identification could not be made. However, this 

would be very computationally intensive and outside the current capabilities of 

most applied organisations where these techniques would have the most impact. 

The current nanopore pipelines incorporating species identification for use in the 

field are mainly k-mer based and therefore unlikely to find distant homology to 

place a sequence to the lowest taxonomic rank possible (Oxford Nanopore, 

What’s In My Pot [WIMP]). Current field-based studies rely on offline searching 

of sequence data using local databases installed on a laptop (Edwards et al., 

2016), which restricts the identifications that could be made to the computational 

power and disk capacity of the machine.  

Discovery of dark taxa with long-read metabarcoding 

The bacterial sequences identified in the Stokesley samples (group 3) by a 

combination of GC content, sequence length and blastn against the full GenBank 

nucleotide database were not introduced as contaminants during the extraction 

or library preparation process through reagents or consumables as has been 

described previously (de Goffau et al., 2018; Salter et al., 2014). Rather, the 
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sequences originated from mis-priming of the conserved 5.8S primers to genomic 

DNA from bacterial species present in the Burkard trap samples, as the bacterial 

species are only present in specific samples. If these were reagent contamination 

they would likely be present in all samples or in particular batches of samples 

processed at the same time. The combination of degenerate primers and long 

PCR thermocycling resulted in spurious amplification of a non-target taxa. 

However, for the purposes of surveillance for new fungal threats, the amplification 

of non-fungal sequences is preferable to the opposite scenario where 

undiscovered taxa could be missed by primers which are too conserved (Hugerth 

et al., 2014).  

 

The plotting of GC content against sequence length may be a useful tool to 

elucidate groups of novel sequences where local alignment searches against 

known fungal species have failed to produce an identification. The majority of 

sequences which could be identified as fungal in origin in the nanopore dataset 

had a GC content of ~50% (+/- 5%). Yet there were many sequences in the same 

region which could not be identified. Sequences suspected to have a fungal origin 

but which have no further identification can be described as “dark taxa”. That is, 

the sequences have no lower taxonomic placement and have not been described 

or cultured previously (Ryberg and Nilsson, 2018). In many community ecology 

studies such sequences are, at worst, ignored as they have no taxonomic name 

and at best are grouped together as “unidentified”, despite the efforts of UNITE 

to include such sequences under the concept of “species hypotheses” (Kõljalg et 

al., 2005; Nilsson et al., 2013). These taxa represent important parts of the fungal 

communities being studied and their abundances may be important in elucidating 

differences between samples. For the purposes of plant health surveillance, there 

is a small possibility that these dark taxa could contain emerging threats which 

have yet to be described.  

Comparison between Illumina and nanopore amplicon sequencing of the same 

sample 

Chapter 4 demonstrated that one or more contamination events had occurred 

during either DNA extraction, PCR amplification or Illumina library preparation of 

the Burkard samples subsequently used for the MinION sequencing presented in 

this chapter. Surprisingly, given they were compared to the same reference 
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database, the Illumina and MinION reads had very different proportions of the 

samples which could be identified when searched against the UNITE/risk register 

sequence database (Table 5.3). The percentage of sequences identified in the 

Illumina samples rarely fell below 99%, whereas the percentage of sequences 

identified when the same sample was sequenced with long-read nanopore 

sequencing varied greatly from a low of 1.7% (sample CTH104) to a high of 

94.4% (sample CTS104). The range in percent identified to taxa in the MinION 

sequences can be partly attributed to the far lower number of sequences in the 

MinION sequenced samples. The samples had been sequenced on a MinION 

flowcell which had previously been used and washed and which still had active 

pores but which may have been underperforming in the number of pores available 

for sequencing, which explains the lower number of sequences obtained than 

expected. The very high proportions of Illumina sequences able to be placed to 

taxa seems incredibly optimistic given these are field samples where we would 

expect a proportion of the sample to be “dark taxa”, those which have not yet 

been sequenced or described. These results suggest that the truly unknown 

Illumina sequences are being assigned to a taxon, even if incorrect, whereas the 

longer MinION sequences are not being assigned taxonomy. This is an 

interesting observation given the blastn databases and search parameters were 

identical. We would expect that the species-specific ITS loci would be sequenced 

in the MinION reads, perhaps with a higher rate of sequence errors and single 

nucleotide indels, but still with the ability to be assigned to a taxon with blastn (i.e. 

with sequence identity >70% to a reference in the database). One possible 

explanation for the lower number of taxa assignments for the nanopore 

sequences is that the UNITE database is almost entirely populated with shorter 

ITS1-5.8S-ITS2 sequences. As the nanopore amplicon begins and ends in the 

5.8S rDNA - effectively a circular amplicon - the ITS2 region would be at the 5’ 

end of the nanopore sequence and the ITS1 region would be at the 3’ end of the 

nanopore sequence. While there is no reported loss of quality towards the end of 

reads in nanopore sequences, the splitting of the ITS1-5.8S-ITS2 sequence into 

two distant regions of the sequence may have affected the ability of the blastn 

algorithm to find the best high-scoring pair for that sequence. As the reference 

sequence database contained complete sequences, our MinION sequences for 

identification were effectively split (5’ and 3’ end of the MinION amplicon) and this 

would have negatively affected the ability of the blastn algorithm to find 
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identifications for the MinION sequences. An improvement to the search strategy 

would have been to take the 5’ and 3’ ends of the MinION amplicons and re-join 

them to improve the taxonomic identifications made, but time constraints 

prevented this from being tested further. The primer locations for the amplification 

of the MinION long amplicon were chosen because 5.8S is highly conserved in 

Fungi (Nilsson et al., 2008) and so potentially allowed the amplification of many 

more species than primers placed in less conserved areas. However, the 

placement of the primers in 5.8S clearly had an impact on the bioinformatics 

algorithms used to identify the resulting amplicons.  

 

The effect of the difference in sequences identified was obvious when the 

identified sequences from both the Illumina and nanopore methods were 

compared with standard molecular ecology analyses. The number of species 

present over all samples showed a striking difference between the two 

technologies (Figure 5.13) which was further backed up by splitting the 

technologies by location (Figure 5.14). The difference can be partly explained by 

the large difference in the number of sequences used to calculate the relative 

abundances used for the Bray-Curtis dissimilarities, indicating a difference in 

resolution. NMDS of the Bray-Curtis dissimilarities also confirmed that the 

significant difference between the species present (Figure 5.15).  

 
Figure 5.13: Number of species across all samples sequenced with both Illumina and 
nanopore technologies 
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Table 5.3: Percentage of sequences which could be assigned to a taxon from samples 
sequenced with both nanopore MinION and Illumina metabarcoding sequencing. 

Sample MinION (% identified) Illumina (% identified) 

CTA99 10.7% 99.5% 

CTA100 77.5% 99.5% 

CTA101 31.0% 99.8% 

CTA102 52.5% 99.4% 

CTA103 85.0% 99.9% 

CTA104 53.4% 99.6% 

CTA105 4.0% 98.3% 

CTH104 1.7% 98.8% 

CTH105 33.9% 99.1% 

CTH106 34.5% 99.6% 

CTH107 89.7% 99.5% 

CTH108 34.1% 99.5% 

CTH109 5.7% 99.5% 

CTH110 55.3% 99.2% 

CTS102 18.8% 99.2% 

CTS103 78.8% 99.1% 

CTS104 94.4% 99.3% 

CTS105 10.9% 99.2% 

CTS106 15.8% 98.8% 

CTS107 2.7% 99.4% 

CTS108 8.4% 99.2% 

CTW101 34.4% 99.8% 

CTW102 41.5% 99.9% 

CTW103 20.1% 98.7% 

CTW104 59.1% 99.4% 

CTW105 9.6% 99.3% 

CTW106 58.9% 99.5% 

CTW107 89.7% 99.9% 
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Figure 5.14: Number of species across all samples sequenced with both Illumina and 

nanopore technologies when split by location 

 
Figure 5.15: NMDS showing the relationships between the samples separated by 

sequencing technology: nanopore (red) and Illumina (green) 
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Hierarchical clustering of the Bray-Curtis dissimilarities further demonstrated a 

distinct divide between the samples when sequenced with the two technologies 

(Figure 5.16). Manual inspection of the relative abundances (abundance >1%) 

showed that only 7 species could be detected by both methods: Holtermanniella 

takashimae, Vishnacozyma victoriae, Sporobolomyces roseus, Ciborinia 

camelliae, Ustilago hordei, Blumeria graminis (mostly Wansford samples when 

Illumina sequenced and throughout the nanopore sequenced samples), 

Alternaria mali (predominantly in the Illumina sequencing and a small number 

nanopore sequenced samples).  

 

One prior hypothesis was that carrying out nanopore and Illumina sequencing of 

amplicons from the same DNA extract would produce similar communities, albeit 

with differences in resolution due to amplicon length. However, this does not 

seem to be upheld by the data. Only 7 species of 115 present in any sample in 

more than 1% abundance are shared by the two amplicons and sequencing 

methods. The differences could well be due to primer bias but this seems unlikely 

in the long amplicon nanopore sequencing due to the evidence of non-fungal 

eukaryotic amplification of the ribosomal tandem repeat. The accuracy of the 

nanopore sequencing may have made identifications more difficult for the blastn 

algorithm, yet nucleotide identities as low as 70% between nanopore sequence 

and reference database sequence were observed, suggesting that if an adequate 

reference sequence was present a distant identification could have been made.  
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Figure 5.16: Hierarchical clustering of Bray-Curtis dissimilarities for samples sequenced 
with Illumina (suffixed with 'i', left hand group) and nanopore (no suffix, right hand group) 
sequencing technologies 
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Chapter 6. Discussion 

 

This project was the first to demonstrate that DNA metabarcoding can produce 

comparable results to those obtained from traditional light microscopy for diatom 

assemblage analysis, with the advantages of increased resolution and the ability 

to elucidate cryptic taxa. Prior to this work there had been limited demonstrations 

of the use of metabarcoding for the characterisation of diatom assemblages 

(Kermarrec et al., 2014, Visco et al., 2015, Zimmerman et al., 2014). Of these 

Visco et al., (2015) was the only work to achieve quantification, using 18S rDNA 

on a small dataset and with lower agreement with light microscopy than was 

achieved in this project.  As a direct result of this work, following a transition period 

where light microscopy and Illumina metabarcoding were used in parallel, the 

Illumina metabarcoding method is the sole method used by the UK Environment 

Agency to calculate the Trophic Diatom Index and thus determine the Ecological 

Quality Ratio as required by the EU Water Framework Directive. 

 

The results from the water quality testing part of this project have shown that 

there are certain species of diatom, for example Melosira varians, which 

consistently had higher relative abundances in the metabarcoding data compared 

to light microscopy. These differences were hypothesised to be due to rbcL copy 

number, which can vary between species of diatoms due to the number of 

chloroplasts present (Mann et al., 1996). Multi-copy loci such as rbcL (and other 

chloroplast, mitochondrial and tandem repeat loci) are advantageous as species 

identification markers due to their ease of PCR amplification (Nilsson et al., 2008; 

Hebert et al., 2003b). This has led to markers such as rbcL, Cytochrome oxidase 

I, and ITS2 being utilised extensively for single specimen identification using 

Sanger sequencing (Hebert et al., 2003a; Hebert et al., 2004; Hollingsworth et 

al., 2009; Koljalg et al., 2005). When a more quantitative result is required, such 

as the metabarcoding methods described here, a single-copy nuclear gene is 

typically more appropriate, enabling more accurate calculation of relative 

abundances without knowing the copy number in each species. However, single-

copy nuclear regions are not a panacea as the degenerate PCR primers required 

to amplify multiple diverse species present in a sample can also co-amplify 

pseudogenes, which can potentially be misidentified as a species not actually 
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present in the sample (Song et al., 2008) and the exon/intron structure of nuclear 

genes can make degenerate primer design surrounding informative regions 

challenging.  

 

The use of rbcL for the diatom metabarcoding experiments presented here had 

been decided by an earlier project funded by the EA and completed by Cardiff 

University to deliver a metabarcoding method using 454 pyrosequencing (Kelly 

et al., 2018). However, 454 pyrosequencing was discontinued in 2013 and the 

original method required updating to a newer sequencing technology with a more 

appropriate operational design that would work for the processing of thousands 

of samples per year. This was an iterative process over a number of sequential 

projects over multiple years and so the ability to change from rbcL, a multi-copy 

gene, to a more quantitative single-copy nuclear gene was not possible within the 

budgetary restraints of the EA. With hindsight, it may have been more appropriate 

for the EA to invest in identifying a new marker region in the earliest projects given 

the limitations of rbcL due to copy number as determined in this work.  

 

A comparison of barcoding genes for diatoms published after the development of 

our rbcL method (Guo et al., 2015) demonstrated that 18S rRNA, COI and ITS 

may perform better than rbcL in the identification of certain diatom taxonomic 

groups. However, these loci are all multi-copy and would have required 

considerable investment in the re-creation of the DNA barcode reference 

database for their use. Other European countries developing similar biotic indices 

for water quality with diatoms have used different markers but none are yet in 

operational use by their respective statutory bodies at the time of writing. Despite 

other barcoding genes being available, the choice of rbcL as a marker did not 

prove to be too detrimental as there was a predictable relationship between the 

number of individual diatoms and the number of reads. An approach was 

developed for the selection of a short-read sequencing region of rbcL from longer 

DNA barcode sequences, such that the maximum variability was retained for 

species discrimination, yet degenerate primers could be designed to highly 

conserved regions. The approach developed during this project could be applied 

to any similar scenario where longer barcodes exist but where sequencing 

technology restricts the size of the amplicon. 
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The relationship between the diatom LM and NGS results is complicated for a 

number of reasons. Firstly, the relative abundance of a species appears to be 

influenced by the number of chloroplasts but there have been no studies to date 

fully investigating the number of chloroplasts per species. It is likely that the 

number of chloroplasts varies between species and between environmental 

conditions in the same species (Rauwolf et al., 2010). Secondly, LM does not 

record the number of cells, rather the number of frustules (the number of valves, 

or half cell walls). In very small diatoms it can be difficult to determine whether a 

single valve or complete frustules are present. Finally, the relationship between 

the LM and NGS for a particular diatom species will be determined from within a 

mixture of typically more than 20 species. Therefore, the proportion of one 

species will be influenced by changes in the proportion of other species in the 

sample when comparing species between samples. Species with multiple 

chloroplasts, for example Cyclotella meneghiniana and Diatoma vulgare, had the 

potential for over-estimation of their abundance in the metabarcoding while being 

present at much lower abundance in LM. Other diatom species, for example 

Fistulifera saprophila were thought to be at lower abundance in the LM due to 

being weakly silicified and therefore susceptible to damage during the chemically 

aggressive process during slide preparation (Zgrundo et al., 2013).  

 

Following the work in this project the version of the Trophic Diatom Index 

originally used with light microscopy data (TDI4) was updated to a version which 

could be used with metabarcoding data (TDI5) which included species-specific 

weightings which accounted for the differences seen between light microscopy 

and metabarcoding (Kelly et al., 2018).  

 

The reproducibility and repeatability between individuals and with different MiSeq 

machines demonstrated a very consistent method that was robust to change in 

personnel and physical sequencing location. The ability of a routine method to 

withstand these changes is important as batch effects can introduce significant 

biases into analyses, as demonstrated in the fungal surveillance work in Chapter 

4 and by Balint et al. (2018).  

 

The acceptance of the short-read diatom metabarcoding method for routine high-

throughput use by the UK Environment Agency demonstrates its utility and 
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robustness. However, the genomics technology landscape is constantly changing 

and evolving and, just as the initial 454 technology used prior to this project 

became obsolete, so will Illumina short-read sequencing (Slatko et al., 2018). 

Long-read sequencing technologies such as PacBio Sequel and Oxford 

Nanopore Technologies nanopore sequencing demonstrate that there is a 

demand for sequence length as well as quality. The use of a short barcode was 

led by the available technology and did not provide the taxonomic resolution of 

the full length rbcL barcode, yet it offered good enough resolution and a cost-

effective method to provide a solution to the Environment Agency.  

 

With this in mind, this project also included a comparison between light 

microscopy, the accepted short-read Illumina method and a nanopore 

sequencing method using a longer amplicon covering the entire rbcL gene. The 

results from this comparison showed that there are still major challenges to be 

solved within diatom taxonomy and the correct assignment of sequence reads to 

diatom taxa which may be very similar in their rbcL sequence but are currently 

“distantly” related by naming conventions based upon frustule structure. This 

comparison also demonstrated that the light microscopy counts were significantly 

different in species abundance from the short- and long-read sequencing 

methods. Light microscopy is universally assumed to be the “ground truth” of 

diatom identification as the specimen can be seen and the frustule characterised 

yet diatom frustules can be very difficult to tell apart with light microscopy alone 

and the accuracy can be influenced by the experience of the microscopists. 

Higher resolution scanning electron microscopy has shown previously that 

identifications made by light microscopy can often be inconsistent and that the 

low taxonomic resolution can lead to an overestimation of geographical 

distributions and ranges of tolerance to environmental and grown conditions 

(Morales et al., 2001). The harsh chemical preparation methods used to prepare 

slides for LM can also affect the distribution of species observed, with weakly 

silicified species often being under-represented after slide preparation (Zgrundo 

et al., 2013). The results from this project showing that two different sequencing 

technologies using different primer sets and different amplicon lengths gave very 

similar relative abundance counts could not be discounted and it can be 

suggested that light microscopy is actually more inaccurate than traditional 

taxonomists in this area would concede. It has been suggested by some studies 
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that traditional taxonomic approaches should be abandoned in favour of 

sequencing based approaches (Baird & Hajibabaei, 2012; Woodward et al., 

2013). There is potential to explore aspects of ecosystem function and 

biodiversity with NGS methods where traditional approaches struggle, for 

example, elucidating highly informative, but cryptic, species. However, a baseline 

of NGS versus LM was important to provide in order to provide comparable 

information given that LM was the method accepted by regulatory bodies at the 

start of the project.  

 

The results of the three rivers experiments also provided the initial groundwork 

for future proofing the use of metabarcoding diatom assemblages in 

biomonitoring for water quality analysis. Should Illumina sequencing be entirely 

replaced by long-read sequencing in the future, the switch to such a technology 

for the Environment Agency should be simpler and less costly than an entirely 

new project to redevelop the method again from scratch. As current ecological 

classifications are based in part on assessment of diatom assemblages it is 

important that new methods are compared with the methods currently accepted 

by the regulatory bodies. The results showed that even with the relatively low 

quality of the nanopore sequencing undertaken on the diatom samples, they 

provided very similar results to the short-read Illumina sequencing of the same 

sample. At the time of writing we could not find any other studies which had 

directly compared Illumina short-read and Oxford Nanopore MinION 

metabarcoding from the same biological samples. Given that the Illumina 

sequences were at their technological limit of length and sequence quality and as 

the nanopore sequencing quality will only improve over time to match the quality 

of Illumina, the future is promising for long-read metabarcoding for ecological 

studies. 

 

It is worth noting that the short-read Illumina sequences for the diatom 

assemblage experiments and the airborne fungal community experiments were 

treated differently with regards to initial post-QC processing. The diatom 

sequences were clustered into Operational Taxonomic Units (OTUs) with a 

similarity threshold of 97% (Nilsson et al., 2008). The fungal sequences were 

clustered into OTUs, but with a similarity threshold of 100% to reduce the 

computational requirements of searching the same sequence millions of times. 
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As such, the fungal short-read sequences can be thought of as Amplicon 

Sequence Variants (ASVs) rather than OTUs (Callahan et al., 2017). This 

difference in methodology was decided upon to enable higher resolution 

identifications in the fungal surveillance experiments as the intra specific 

difference between the ITS of some closely related fungal species can be much 

smaller than the recommended clustering percentage of 3% (Nilsson et al., 2008). 

There is an increasing number of studies to date which have evaluated nanopore 

sequencing for community ecology (Tedersoo et al., 2018, Krehenwinkel et al., 

2019, Wurzbacher et al., 2019) and a minority decided to cluster their nanopore 

amplicon sequences into OTUs (Wurzbacher et al., 2019). The long-read 

nanopore amplicons in this project were not clustered into OTUs as it was felt to 

be a futile exercise given the indel-prone data. MinION nanopore sequences 

produced in early 2017 with the R9.4 pores and RNN basecaller were of lower 

quality than those produced at the time of writing (late 2018). The errors present 

in early 2017 nanopore sequences include small (1-5nt) insertions and deletions 

throughout the sequence (Laver et al., 2015) and it was assumed that the 

nanopore sequences would ultimately cluster into OTUs with only one sequence 

per OTU. Even if the clustering of nanopore sequences were successful and the 

number of sequences in each cluster were significant, it would be very difficult 

using current methods to decide upon a representative sequence for that cluster, 

as the most prevalent is typically recommended (Edgar et al., 2010).  

 

In contrast to the experiments demonstrating methodology for monitoring of 

known diatom species, the aerosol fungal samples collected with Burkard 

samplers demonstrated the potential of metabarcoding for surveillance, where 

the species of interest may not yet be described. The aim of the surveillance 

experiments was to characterise the fungal communities present in six locations 

in eastern England over one month. With continuous Burkard sampling and 24 

hour sample collections the plan was to accumulate a dataset which could be 

used to both track the abundance of known plant pathogens important to the UK 

(those present on the Plant Health Risk Register) and to investigate the potential 

for such a dataset to be used to uncover new species which may be present in 

abundance but not yet described. The data analysis proceeded as planned but 

the results were not as expected. The presence of sequences showing high 

identity to EPPO listed plant pathogens - in particular those not known to be 
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present in the United Kingdom - introduced the suspicion of one or more sample 

contamination events during DNA extraction, PCR amplification or library 

preparation in the laboratory. Contamination of samples has been determined in 

many clinical samples where environmental microorganisms would not be 

expected and in those samples the reagents or equipment is typically the source 

of contamination. Salter et al., (2014) was the first study to uncover reagent 

contamination during the metabarcoding processing of clinical samples, with 

varying levels of environmental microorganisms discovered in different kits and 

different batches. Contamination has also been shown to have a much greater 

effect in low biomass samples (Weiss et al., 2014). However, in environmental 

samples it is extraordinarily difficult to detect contamination of samples with 

species which may be naturally present in the sample to begin with. In the results 

presented here, the contamination was overt and able to be identified as certain 

quarantine species were known to be absent from the United Kingdom and had 

been present in the laboratories used to process the samples.  

 

This work has determined the significance that should be placed upon preventing 

laboratory contamination when metabarcoding is to be used for environmental 

surveillance and monitoring studies. A one-off contamination event in a large 

dataset may be easy to identify, isolate and remove from or flag in a large long-

term monitoring dataset where the samples are processed in batches. In shorter 

term monitoring datasets such as the short-read fungal dataset (samples over 

one month) the samples were processed in only two batches and separate 

contamination was introduced in each batch. The laboratory staff involved were 

experienced but had processed the samples in a laboratory where fungal plant 

pathogens had been grown previously and where cultures were present on the 

open bench. The Illumina libraries were prepared in a dedicated ‘clean’ laboratory 

used only for next-generation library preparation, which is in agreement with the 

current recommendations for processing eDNA samples with low biomass 

(Goldberg et al., 2016) and the technical and negative controls we included 

allowed for the point at which the contamination had been introduced to be 

identified rapidly. While there were certainly sequences which represented clear 

contamination of pathogens which should not have been there, a proportion of 

the sequences identified as being risk register pathogens were clear 

misidentifications. The combined reference database comprising UNITE (Nilsson 
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et al., 2018) and additional risk register pathogens was not comprehensive 

enough to cover all species in known genera and so some sequences were 

assigned to closely related species which we would not expect to be present, 

adding to the complication within the dataset. Despite an estimate of 2.2 to 3.8 

million fungal species, only an estimated 3-8% have been described (Hawksworth 

and Lücking, 2017) and the gaps in the barcode databases resulted in some 

Illumina sequences within the dataset being identified as risk register pathogens 

with much lower percent identity alignments than would be expected from an 

accurate identification given intraspecific variation (Nilsson et al., 2008).  

 

This project identified that while >99% Illumina sequences were assigned to a 

taxon, significantly fewer nanopore amplicon sequences obtained from the same 

DNA extract could be identified. Given the short- and long-read sequences were 

searched using an identical reference sequence database and local alignment 

search parameters. In community studies where the species identification is of 

less significance to the overall difference between samples, and where all 

sequences will be misidentified equally, this would not be a hindrance. In 

biomonitoring and surveillance this could introduce a number of errors which 

could easily lead to spurious conclusions about the ecology of the location 

sampled. The long-read nanopore sequences were more likely to not have an 

identification and while this may be due, in part, to the larger number of small 

insertions and deletions affecting the BLAST algorithm (Laver et al., 2015) it could 

equally be due to the design of the long PCR for the amplification of the whole 

ribosomal tandem repeat, with primers placed close to taxonomically informative 

regions. 

 

In recent years, suggestions have been made by various groups to extend the 

DNA barcoding region to either organellar genome or full genome references to 

enable larger regions of sequence to be used for species identification (Coissac 

et al., 2016; Dodsworth, 2015; Straub et al., 2012). The recently announced Earth 

BioGenome Project (EBP) aims to “sequence, catalog[ue], and characterize the 

genomes of all Earth’s eukaryotic biodiversity over a period of 10 years” (Lewin 

et al., 2018). This project may provide much needed genome sequence data to 

expand the availability of metabarcoding markers to larger nuclear regions, or to 

realise the full promise of shotgun metagenomics for the detection and 



 

131 

characterisation of new species. After all, the use of metabarcoding for monitoring 

and surveillance only determines that a species is present in an environment, not 

what it is doing, how it is living and what its capabilities are.   
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Glossary 

ASV Amplicon Sequence Variant 

BLAST Basic Local Alignment Search Tool 

COI Cytochrome oxidase I 

DARLEQ2 Diatoms for Assessing River and Lake Ecological Quality 

DEFRA Department for Environment, Food and Rural Affairs 

DGGE Denaturing Gradient Gel Electrophoresis 

DNA Deoxyribonucleic acid 

EA Environment Agency 

eDNA Environmental DNA 

eRNA Environmental RNA 

ELISA Enzyme-Linked Immunosorbent Assay 

EPPO European Plant Protection Organisation 

EQR Ecological Quality Ratio 

EU European Union 

IGS Intergenic spacer 

ITS Internal Transcribed Spacer 

LCA Lowest Common Ancestor 

LM Light Microscopy 

LSU Large subunit (ribosomal) 

NCBI National Center for Biotechnology Information 

NGS Next-generation sequencing 

NMDS Non-metric Multidimensional Scaling 

OTU Operational Taxonomic Unit 

PCR Polymerase Chain Reaction 

PERMANOVA Permutational Multivariate analysis of Variance 

QIIME Quantitative Insights Into Microbial Ecology 

rDNA Ribosomal DNA 
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RFLP Restriction Fragment Length Polymorphism 

RNA Ribonucleic acid 

SSU Small subunit (ribosomal) 

TDI Trophic Diatom Index 

TDI4 Trophic Diatom Index when used with Light Microscopy 
weightings 

TDI5 Trophic Diatom Index when used with Next-Generation 
Sequencing weightings. 

UNITE Database of fungal ITS sequences 

UKTAG United Kingdom Technical Advisory Group 

WIMP What’s In My Pot 

WFD Water Framework Directive 
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Executive summary 
The UK currently uses diatoms as part of a suite of ecological methods to inform 
decision-making associated with EU directives (Water Framework Directive, Urban 
Wastewater Treatment Directive, Habitats Directive) on water quality in rivers and 
lakes. When used alongside evaluations of other components of the aquatic biota, 
these provide a measure of the health of aquatic ecosystems. This in turn supports 
decision-making within catchments to ensure the delivery of critical ecosystem 
services. Current methods are based on light microscopy (LM), underpinned by 
European standards and producing outcomes that have been verified via the EU’s 
intercalibration exercise.  

Current biological assessment is a time-consuming process requiring highly skilled 
individuals to analyse and interpret data. There are several sources of uncertainty in 
the pathway from sample collection to data interpretation; one of these is the process 
of identification and enumeration of the organisms. In the case of diatoms, uncertainty 
associated with this stage can be controlled by training and quality control but, when 
combined with the time required to analyse a sample, and multiplied by the number of 
sites for which data are required, these add up to a substantial resource commitment. 
Alternative approaches that offer a similar level of precision at a lower cost would, 
therefore, be very attractive. 

Another complication in the use of diatoms for ecological assessment is that their 
widespread adoption, particularly for assessments associated with the Water 
Framework Directive, has taken place alongside a paradigm shift in understanding of 
their taxonomy and phylogenetics. There is now known to be considerable taxonomic 
diversity within aggregates formerly thought to be single species. This diversity often 
pushes the capabilities of optical microscopy and analysts to the limit, and there is a 
real possibility that the use of a molecular approach may help to unlock taxonomic 
information in a form that can be used for ecological assessments. 

Molecular techniques offer a potentially more cost-effective alternative and 
complementary approach to ecological assessment, with scope for improved efficiency 
and reduced analytical error through automation and standardisation. Recent 
developments combining DNA barcoding with next generation sequencing (NGS) 
enable DNA from whole communities of organisms to be sequenced simultaneously 
(‘metabarcoding’) in an assessment. 

The overall aim of the project was to develop a high-throughput, cost-effective method 
for identifying and quantifying diatom taxa from environmental samples in a manner 
suitable for calculating the Trophic Diatom Index (TDI) and associated metrics using 
NGS for Water Framework Directive classifications. 

This report presents the results of the first large-scale proof of concept to establish the 
suitability of metabarcoding – combining DNA barcodes (targeting the chloroplast rbcL 
gene) of diatoms with NGS – for the quantitative ecological assessment of diatoms. 

 A ‘gold standard’ diatom rbcL barcode reference database of known diatom 
species was produced by isolating and culturing diatom species from water 
bodies of different ecological quality. Although the barcode database 
currently contains only 176 species or less than 10% of the diatom species 
that have been described from the UK,1 it includes representatives of most 
of the commonly encountered taxa. It was demonstrated that this is 
sufficient to account for most of the variation in TDI analyses. Occasional 

                                                           
1 This number is increasing through the addition of barcodes from online databases. 
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misclassifications may occur when taxa that are absent from the barcode 
database are abundant in a sample. 

 A good quality barcode reference database is the backbone to any 
metabarcoding approach that requires taxonomy assignment. Culturing 
diatom species is a specialised, resource intensive exercise. An 
unexpected outcome of this project was the ability to ‘discover’ new 
barcodes by inferring species using NGS and bypassing the need to culture 
strains. Additional species were added from other online databases. 

 A field sampling strategy for the collection and preservation of diatom 
samples was developed. 

 A protocol for the extraction and amplification of DNA from environmental 
samples, suitable for high-throughput automation, was produced. 

 A short rbcL barcode has been evaluated that allows the simultaneous 
amplification of a DNA fragment from a large number of diatom taxa while 
retaining taxonomic resolution. To the project team’s knowledge, this is the 
first report of the use of this region of the rbcL gene for metabarcoding 
diatoms. 

 The fragment is of a size (340 base pairs) that enables it to be analysed 
using the most cost-effective sequencing platform currently available 
(MiSeq™ from Illumina). 

 A bioinformatics pipeline was developed to match NGS outputs with the 
relevant species in the barcode reference database. The pipeline is also 
capable of screening out non-diatom algae at an early stage and includes 
routines to manipulate data and produce an output in a form suitable for 
use by the Environment Agency to calculate diatom metrics for water body 
classification. 

 The relationship (similarities, differences, uncertainties) between NGS and 
LM has been evaluated and a new variant of the current TDI (TDI4) for 
NGS (TDI5) has been developed. Despite an incomplete rbcL barcode 
reference database and observed variability in the relative abundance of 
certain taxa evaluated using LM and NGS, significant correlation between 
the current LM TDI4 and a new NGS TDI5 has been shown. 

Overall, the outcomes of this study are very positive and a method that is 
compatible with the latest NGS technologies has been developed. The intention 
was to develop a molecular ‘mirror’ of the existing diatom assessment method, and 
although not a 1:1 relationship, significant correlation between the 2 approaches 
has been demonstrated. The aspiration of producing a molecular ‘mirror’ of the 
existing LM approach is a sensible starting point as it forces close examination of 
the relationship between the NGS and ‘traditional’ data. It should also be borne in 
mind that the traditional LM approach is itself a constrained approach which is used 
to generate a summarised view of reality. Therefore, the 2 approaches offer 
alternative views of the river ecosystem that need to be reconciled; it is rarely as 
simple as deciding that one method is ‘right or that it is ‘better’ than the alternative. 

Given this understanding of the relationship between the 2 approaches, it will be 
possible to begin to consider how to provide added value to that contained within 
the NGS data, exploiting the intrinsic information on diversity using operational 
taxonomic unit information in combination with species assessments. So long as 
these metrics can be linked to legislative drivers such as the Water Framework 
Directive, then an NGS metric may be effective. 
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1 Introduction 

1.1 Background to UK diatom assessment 

The UK currently uses diatoms as part of a suite of ecological methods (Box 1) to 
classify the quality of water bodies (rivers and lakes) in line with EU directives (Water 
Framework Directive, Urban Wastewater Treatment Directive, Habitats Directive). 
When used alongside evaluations of other components of the aquatic biota, these 
provide a measure of the health of aquatic ecosystems. This, in turn, supports 
decision-making within catchments to ensure the delivery of critical ecosystem 
services. Current methods are based on light microscopy (LM), underpinned by 
European standards (CEN 2014a, 2014b), and producing outcomes that have been 
verified via the EU’s intercalibration exercise (European Commission 2008, 2013).  

Box 1: Ecological assessment using diatoms 

Diatoms are a group of microscopic plant-like organisms that are widespread in aquatic 
habitats throughout the world. Along with other algae, they play an important role in 
natural ecosystems and make a major contribution to global primary productivity. 
Those algae that are found attached to submerged surfaces such as stones and plant 
stems are referred to as ‘phytobenthos’; European legislation requires that these are 
examined as part of assessments of the health (ecological status) of lakes and rivers.  

In the UK, this was achieved using the Trophic Diatom Index (TDI). The first version 
(Kelly and Whitton 1995) has been updated several times and the version currently 
used by UK agencies is TDI4. The Water Framework Directive required that the 
condition of water bodies was expressed as a ratio – the Ecological Quality Ratio 
(EQR) – using the index value expected under conditions of no or minimal human 
impact as the denominator (Kelly et al. 2008, Bennion et al. 2014). This led to the 
development of a new tool, DARLEQ (Diatoms for Assessing River and Lake 
Ecological Quality), which calculated the EQR as the observed TDI divided by the 
expected TDI for any lake or river. This, too, has been updated, as a result of extensive 
testing and comparisons with macrophyte assessments; the current tool is DARLEQ2. 
For the Water Framework Directive, the results from DARLEQ2 are combined with 
those from macrophyte assessments (LEAFPACS 2) to give an overall assessment for 
the biological quality element ‘macrophytes and phytobenthos’.  

The TDI is based on a weighted average equation. Diatom taxa are each assigned a 
score from 1 (nutrient sensitive) to 5 (nutrient tolerant). The average sensitivity of all 
the taxa in the sample, each weighted by the number of individuals for that taxon, 
determines the final value of the TDI. The TDI scores range from 0 (very low nutrients) 
to 100 (very high nutrients). The EQR is calculated based on observed data and 
predicted reference values, resulting in a scale which ranges from 0 to 1 and which is 
itself divided to give 5 ecological status classes: High, Good, Moderate, Poor or Bad.  

More information on the UK methods can be found from the website of the Water 
Framework Directive UK Technical Advisory Group (UK TAG): 

 Rivers – phytobenthos (www.wfduk.org/resources/rivers-phytobenthos)  

 Lakes – phytobenthos (www.wfduk.org/resources/lakes-phytobenthos)  

 

The current method of biological assessment is a time-consuming process, requiring 
highly skilled individuals to identify the diatoms at the species level and interpret the 
data. There are also several sources of uncertainty in the pathway from sample 

http://www.wfduk.org/resources/rivers-phytobenthos
http://www.wfduk.org/resources/lakes-phytobenthos
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collection to data interpretation, one of which is the process of identification and 
enumeration of the organisms.  

In the case of diatoms, the uncertainty associated with this stage can be controlled by 
training and quality control. When combined with the time required to analyse a sample 
and multiplied by the number of sites for which data are required, this adds up to a 
substantial resource commitment. Alternative approaches that offer a similar level of 
precision at a lower cost would therefore be very attractive. 

Another complication to the use of diatoms for ecological assessment is that their 
widespread adoption –, particularly for assessments associated with the Water 
Framework Directive (Kelly 2013) – has taken place alongside a paradigm shift in 
understanding of their taxonomy and phylogenetics. Several workers have shown that 
there is considerable taxonomic diversity within aggregates formerly thought to be 
single species (see, for example, Mann et al. 2008, Trobajo et al. 2009, Kermarrac et 
al. 2013, Rovira et al. 2015). This diversity often pushes the capabilities of optical 
microscopy and analysts to the limit. There is also a real possibility that the use of a 
molecular approach may help to unlock taxonomic information in a form that can be 
used for ecological assessments (Mann et al. 2010). 

1.2 Molecular approach to diatom assessment 

Molecular techniques have the potential to overcome many of the hurdles facing the 
UK and other European regulators in monitoring our environments. They offer an 
alternative to traditional approaches, with the scope for improved efficiency and 
reduced analytical error through automation and standardisation.  

Molecular techniques use the variation in the genetic code – deoxyribonucleic acid 
(DNA) – to distinguish between individuals of the same species or to identify specific 
species. A variety of techniques are available, each with their own strengths and 
limitations; there is no single ‘one-size-fits-all’ solution (Environment Agency 2011).  

Many of the techniques have been around for a number of years. However, it is only 
recently that the science has developed to a level where complex species 
assemblages can be identified and given a semi-quantitative enumeration. Two 
advances have made this possible. The first advance is the development of DNA 
barcoding (Box 2). The second is that technology now allows high-throughput next 
generation sequencing (NGS) to be performed at a fraction of the cost that previously 
precluded advances in the field of ecological monitoring. NGS is a new technology that 
enables automated high-throughput DNA sequencing that can produce thousands or 
millions of DNA sequences at the same time.  

Combining DNA barcoding with NGS as a rapid method for multiple species 
identification from a complex environmental sample is termed ‘metabarcoding’. This 
has been shown to have great potential when applied to the ecological assessment of 
diatoms (Kermarrec et al. 2014, Visco et al. 2015), as it has the potential to replace the 
labour-intensive stages of species identification.  

Genetic markers used as DNA barcodes need to be specific for the target organism. 
Taxonomic resolution to discriminate at the species level is highly desirable; the marker 
should have a well understood pattern of molecular evolution and be ideally linked to a 
comprehensive taxonomic database. Numerous gene markers have been investigated 
as potential DNA barcode targets for diatom identification (Evans et al. 2007, Moniz 
and Kaczmarska 2009, Moniz and Kaczmarska 2010). These included: 

 classical cytochrome c oxidase subunit 1 (COI) gene 

 small ribosomal subunit (SSU)  
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 second ribosomal internal transcribed spacer (ITS) region together with 
5.8S gene (ITS-2 + 5.8S) 

Although SSU had the highest amplification success, it required a significantly longer 
fragment to be amplified and sequenced before species resolution was attained. COI 
showed substantial heterospecific divergence and was readily aligned, but its 
amplification efficacy was low, which was a potential limiting factor in its use. In 
contrast, the 300–400 base pair (bp) ITS-2 + 5.8S fragment provided a high success 
rate of amplification together with good species level resolution. A further supposed 
advantage of ITS2 (Moniz and Kaczmarska 2010) was that compensatory base 
changes in helix regions may give insights into the limits of biological species, since 
their presence is claimed to correlate with sexual incompatibility (Coleman 2009). 
However, this idea has not been supported by critical studies (Caisová et al. 2011). 
Following identification of the ITS-2 + 5.8S region as a suitable fragment for barcoding 
diatoms, Moniz and Kaczmarska (2009) then exploited this region to genotype 114 
diatom species (Moniz and Kaczmarska 2010). The technique enabled the separation 
of morphologically defined species with a success rate of 99.5%. 

Box 2: DNA barcoding  

DNA barcoding is based on the principle that a defined DNA sequence can be used 
to represent a specific species. A DNA sequence of a specified marker gene 
becomes a unique ‘tag’ or ‘DNA barcode’ for a particular organism. A gene region 
that is commonly used in plants, for instance, is a gene region in the chloroplast 
called the ribulose-1,5-bisphosphate carboxylase/oxygenase large (rbcL) chain 
gene.  

Fundamental to DNA barcoding is a sound knowledge base where the DNA 
sequence is anchored to a known species that has been identified using classical 
morphology (voucher specimen). Linking DNA sequences to known voucher 
specimens has benefitted in recent years from international DNA barcoding 
campaigns, though these have been largely restricted to animals and land plants. 
These campaigns have created large online reference databases that link species 
taxonomies to diagnostic DNA sequences such as the Barcode of Life Data System 
(www.boldsystems.org) and the International Nucleotide Sequence Database 
Collaboration (www.insdc.org). These DNA barcode reference databases can be 
augmented by user-created DNA databases for particular taxa, combining the skills 
of molecular biologists and traditional taxonomists. Figure 1.1 shows an example of 
the steps involved in creating the DNA barcode reference database for diatoms.  

Creating these databases can be a resource intensive exercise. Development starts 
with a specimen either obtained from the field or from a specimen collection. In the 
laboratory, the specimen is cultured and the DNA extracted. The barcode region on 
the marker gene is isolated using an amplification process called polymerase chain 
reaction (PCR). A DNA sequencer is used to read the nucleotides – cytosine (C), 
guanine (G), thymine (T) and adenine (A) – along the barcode region. Once the DNA 
sequence has been determined, it can be added to the reference database along 
with images of the voucher specimen and other specimen metadata. 

http://www.boldsystems.org/
http://www.insdc.org/
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Figure 1.1 Steps involved in creating a DNA barcode reference database 

 

Subsequent workers, however, have questioned the focus on ITS-2 (for example, 
because of the significant intra-individual heterogeneity in ITS), preferring to look either 
at the SSU (Zimmerman et al. 2011) or the rbcL) gene (Mann et al., 2010). Mann et al. 
(2010) argue that protein-encoding genes such as COI and rbcL pose fewer practical 
problems than rDNA, once they have been obtained. Benefits include that there is 
rarely any intragenomic variation and they are very easily aligned and compared. 
Sequencing errors can often be detected by frame shifts and unlikely amino acid 
changes such as exchange of one type of amino acid by a different one (for example, 
polar by non-polar, or basic by acidic). The rbcL gene, in particular, has been exploited 
for taxonomy (Trobajo et al. 2009) and ecological assessment (Kermarrec et al. 2014).  

The chloroplast-based rbcL gene provides a very practical advantage over its nuclear 
SSU counterpart in the context of characterisation of real-world community analysis of 
water bodies related to targeting of the amplicon to chloroplast-containing ecosystem 
constituents. On the other hand, a number of environmental DNA (eDNA) studies have 
used SSU to describe the extensive complement of macro and micro fauna in rivers 
and lakes (Barnes et al. 2014, Liang and Keeley 2013). So although deployment of 
18S would reduce the signal observed for the targeted diatom taxa, it could potentially 
open the way to integrated assessment of organism groups to provide more of a 
holistic overview.  

1.3 About the project  

This report describes the development of a DNA metabarcoding approach to ecological 
assessment based on diatoms using the NGS of a fragment of the rbcL gene. Although 
some have advocated abandoning traditional taxonomic approaches (Biomonitoring 
2.0; Baird and Hajibabaei 2012, Woodward et al. 2013), this research tried to construct 
a molecular ‘mirror’ of the current approach based on LM. This ensures continuity with 
existing methods while, at the same time, complying with the normative definitions of 
the Water Framework Directive, which refer to ‘taxonomic composition’. While there is 
support for the claim by Baird and Hajibabaei (2012) that there is potential within DNA 
based approaches to explore aspects of diversity and ecosystem function that are 
difficult to measure using traditional approaches, it is still useful from a practical point of 
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view to understand the relationship between molecular evidence and traditional 
biological methods.  

The twin foundations for this study are a calibration dataset of samples, analysed by 
both current LM and NGS approaches, along with a reference database of rbcL DNA 
barcodes which link to Linnaean taxonomy. The samples span a wide range of 
ecological quality encountered primarily in England, but also across other parts of the 
UK. They also provide a ‘bridge’ between current approaches to analysing and 
interpreting ecological quality using diatoms and new methods based on outputs from 
NGS. 

1.3.1 Aims and objectives 

The Environment Agency is looking to improve the efficiency and effectiveness of the 
way in which it carries out environmental monitoring. Fundamental to this are new 
ways of working, and using new and more effective approaches to ecological 
assessment. This project was developed in direct response to an initiative to identify 
recent developments in DNA-based methods that could potentially deliver novel, 
operationally valid monitoring approaches and at the same time provide efficiency 
savings and improvements in data quality within the Environment Agency’s routine 
monitoring programme, focusing on the identification of diatoms followed by 
classification of the water body ecological status (Environment Agency 2011).  

The overall aim of the project was to develop a high-throughput, cost-effective method 
for identifying and quantifying diatom taxa from environmental samples in a manner 
suitable for calculating the TDI and associated metrics using NGS for the Water 
Framework Directive. Although one objective was to develop a cost-effective method, a 
comparison of the costs and benefits are not presented within this report.  

The work was conducted in 2 phases. Phase 1 was a proof of concept, an overview of 
which is presented in Appendix 1. 

Specific objectives of the project were to: 

 develop a reference database of rbcL DNA barcodes from known diatom 
species, isolated and cultured from water bodies of different ecological 
quality 

 optimise DNA extraction and PCR protocols for the amplification of diatom 
DNA barcodes that will enable resolution of diatoms to an appropriate 
taxonomic level to enable TDI calculation using NGS 

 optimise a bioinformatics pipeline for the routine analysis of diatom taxa 
from the NGS metabarcoding data 

 perform a validation study comparing diatom species composition metrics 
acquired using NGS metabarcoding data with data produced using LM 

 calibrate the estimation of TDI calculated from NGS metabarcoding data 
against matched samples analysed by LM 

 quantify the performance characteristics of the work flow in terms of 
sources of uncertainty and variability compared with current LM in both the 
laboratory and the field 
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2 Development of diatom rbcL 
DNA barcode reference database 

2.1 Introduction 

Ecological assessments based on an examination of community structure require 
organisms present in a sample to be assigned to the appropriate Linnaean binomial so 
as to provide a link with autecological and habitat information for that species from 
which ecological quality can be inferred. For conventional microscope-based analyses, 
morphological criteria are matched by eye to descriptions in identification guides. For 
molecular analyses, the identification guide is replaced by a database of DNA 
barcodes of known provenance to which DNA sequences can be matched using 
bioinformatics algorithms.  

As over 2,500 diatom species have been recorded in UK freshwaters (Whitton et al. 
1998), effort was focused in this project on ensuring that those taxa most likely to 
influence the outcome of ecological assessments were included in the barcode 
database. Taxa were prioritised from an analysis of existing datasets.  

As diatom assessments are based on a weighted average equation, the primary focus 

was on taxa that were both often abundant (defined as 10% of the total) and 

commonly encountered (that is, found in 10% of samples). Secondary considerations 
included whether the taxon was a good indicator of either high/good status or poor/bad 
status, and was not well represented in existing barcode libraries. A third category 
used in the primary screening was taxa closely related to those selected by the first 2 
steps to ensure that the method could discriminate closely related species.  

This screening exercise produced a list of taxa from which likely locations for obtaining 
them were identified, again using existing databases. As many as possible of these 
locations were visited and samples obtained provided the raw materials for culturing 
and isolation described below. Once barcodes had been obtained, permanent slides 
were made from the cultures and digital images collected to enable the taxa to be 
identified.  

2.2 Methods  

2.2.1 Isolation, culture and harvesting for DNA extraction and 
voucher preparation 

Samples were collected as described in 2.1 from the locations listed in Appendix 3, and 
kept cool to avoid decay and deoxygenation. Within 1–3 days, samples were placed in 
50mm Petri dishes, sometimes diluted with Woods Hole culture (WC) medium (Table 
2.1). Individual cells of diatoms were isolated by micropipette or by streaking on 2–3% 
agar plates. Micropipette isolations were made with either a Zeiss inverted microscope 
or a stereomicroscope. With the inverted microscope, higher magnifications (of up to 
400×) were possible and identifications to genus could often be made (from a 
combination of cell shape and chloroplast arrangement) but rarely to species, though in 
some cases even the genus could not be determined with any certainty.  

Selected cells (or, in the case of plated material, discrete small colonies of clonal cells) 
were transferred into small volumes of freshwater medium in the wells of 96-well 
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plates. Initially a general purpose freshwater medium was used (WC medium with 
silicate, adjusted to pH 7) (Guillard and Lorenzen 1972). However, trials during the first 
couple of months indicated that this was unsuitable for diatoms from oligotrophic and 
acid habitats. For these, modified WC media were used containing less nitrogen (N) 
and/or phosphorus (P) (one-tenth of the usual WC additions) and modified 
Grundgloeodinium II medium (von Stosch and Fecher 1979), replacing the silicon 
dioxide (SiO2) with the sodium metasilicate addition of WC medium. After a few days of 
incubation, the health and clonality of each culture was confirmed under an inverted 
microscope. Successfully established clonal cultures were then grown in 90mm Petri 
dishes for DNA extraction and preparation for a voucher slide. All the clones were 
grown at 15–22°C under cool white fluorescent light on a 14:10 (light: dark; L:D) 
photoperiod at a photon flux density of 5–20 μmol photons m–2 s–1. 

Cells were harvested by either pipetting (for species forming visible colonies, for 
example, Fragilaria and Staurosira) or scraping them from the bottom of the dish using 
pieces of silicone tubing (for benthic species, for example, Nitzschia and Navicula). 
The resulting slurries of cells were collected in 1.5ml test tubes and centrifuged at 
2,000g for 10 minutes. Most of each pellet was transferred into a 1.5µl tube and kept at 
–20°C until DNA extraction, leaving a small amount which was resuspended with 
distilled water and dried onto one 18mm square coverslip and one 10mm diameter 
circular coverslip. The square coverslip was used to prepare a voucher slide for LM; 
the circular coverslip was retained in case of the need to examine material with 
scanning electron microscopy (SEM).  

For both the LM and SEM vouchers, cells were cleaned in situ on cover slips by adding 
nitric acid to the cover slip on a hotplate and heating to oxidise organic material. After 
oxidation the diatom cell walls, still on the cover slips, were washed with distilled water 
several times to remove digestion products and then dried again on a hotplate. For LM, 
voucher cells were mounted in the high refractive index resin Naphrax, whereas SEM 
specimens were stored in Petri dishes at the Royal Botanical Gardens Edinburgh. 

Table 2.1 Composition of algal growth media used in this study  

Compound Concentration  
(mg l–1) 

Weight per 
litre of 
element 

µM 

WC medium (Guillard and Lorenzen 1972)1  

CaCl2.2H2O 36.76  250 

MgSO4.7H2O 36.97  150 

NaHCO3 12.60  150 

KH2PO4 8.71  50 

NaNO3 85.01  1,000 

Na2SiO3.9H2O 28.42  100 

Trace metals    

Disodium EDTA 4.36 – c. 11.7 
(EDTA) 

FeCl3.6H2O 3.15 0.65 mg Fe c. 11.7 

CuSO4.5H2O 0.01 2.5 µg Cu c. 0.04 

ZnSO4.7H2O 0.022 5.0 µg Zn c. 0.08 
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Compound Concentration  
(mg l–1) 

Weight per 
litre of 
element 

µM 

CoCl2.6H2O 0.01 2.5 µg Co c. 0.05 

MnCl2.4H2O 0.18 0.05 mg Mn c. 0.9 

NaMoO4.2H2O 0.006 2.5 µg Mo c. 0.03 

H3BO3 1.0 0.17 mg B c. 16 

Vitamins  

Thiamin hydrochloride 0.1 mg l–1 

Biotin 0.5 µg l–1 

Cyanocobalamin (Vitamin B12) 0.5 µg l–1 

Na2SiO3.9H2O 28.42  100 

Grundgloeodinium II medium (von Stosch and Fecher 1979)2 

KNO3   500 

Na2HPO4   10 

MgSO4   10 

CaCl2   1 

FeSO4   1 

Na2SiO3.9H2O   100 

Disodium EDTA   2 

Trace elements   As above 

 
Notes: 1 Adjust pH to 6.5–8 with drops of concentrated hydrochloric acid. Stock solutions 

were prepared at 1,000× concentration and aliquots of 1ml added per litre of final 
medium. The medium was autoclaved at 120°C for 20 minutes. On standing, a fine 
brown precipitate often forms in autoclaved medium. This dissolves again with 
agitation and does not seem to harm cultures. 
2 Adjust pH to 5–7 with drops of concentrated hydrochloric acid. Stock solutions 
can be prepared at 1,000× concentration and aliquots of 1ml added per litre of final 
medium. 

2.2.2 Imaging and identification of reference strains 

Reference strains were photographed using a Zeiss Axio-imager photomicroscope 
using 100× or 63× oil immersion objectives (nominal NA 1.4) and either bright field or 
Nomarski interference contrast optics. All images are kept securely as TIFF files. 
Image metadata were recorded on associated .xml files, which are interpretable using 
Zeiss Axiovision software. Images were also listed with their microscope configurations 
in a Microsoft® Excel spreadsheet. Some image processing for montages was 
performed using Adobe Photoshop v.7 or CS2. 
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2.2.3 DNA extraction, PCR amplification of rbcL, sequencing and 
alignment 

The enzyme ribulose-1,5-bisphosphate carboxylase (Rubisco) is responsible for 
carbon fixation. The rbcL gene encoding the large subunit of Rubisco is located in a 
single copy region of the chloroplast genome, of which there are multiple copies per 
cell. The rbcL gene provides conserved primer sites that have been shown to be 
appropriately conserved within the diatom phyla and allow effective amplification of a 
high proportion of species tested (Hamsher et al. 2011). Both the ~1,400 bp region of 

rbcL and a ~850bp region of the 3 prime end of rbcL (rbcL-3P; rbcL-3) have been 
shown to have the power to discriminate between all species tested (Jones et al. 2005, 
Hamsher et al. 2011). 

Extraction of DNA from each pellet was conducted using a high-throughput genomic 
DNA extraction instrument QIAxtractor (Qiagen). The forward and reverse primers 
used were the ones reported by Jones et al. (2005), that is, DPrbcL1: 
AAGGAGAAATHAATGTCT and DPrbcL7: AARCAACCTTGTGTAAGTCTC, which 
amplified a region of ~1,400 bp, covering the rbcL gene. The PCR reaction for the 
amplification of rbcL was in 25μl volumes containing 10ng DNA, 1 mM 
deoxynucleotides (dNTPs), 1× Roche diagnostics PCR reaction buffer (Roche 
Diagnostics GmbH, Mannheim, Germany), 1 unit Taq DNA polymerase (Roche) and 
0.5 μM of each primer. The PCR cycling comprised an initial denaturing phase for 3 
minutes (94ºC), followed by 30–40 cycles of 94°C for 1 minute, 55°C for 1 minute and 
72°C for 1.5 minutes, with a final extension of 72°C for 5 minutes.  

The quantity and length of the PCR products were examined by agarose gel 
electrophoresis against known standards. PCR products were purified using ExoSAP-
IT (USB Corporation, Ohio, USA). Sequencing was conducted in 10μl volumes using 
0.32 μM of PCR primer or sequencing primers NDrbcL5: CTCAACCATTYATGCG and 
DrbcL11: CTGTGTAACCCATWAC (Jones et al. 2005), 1μl of BigDye v3.1 and 2μl of 
sequencing reaction buffer (Applied Biosystems). Sequencing PCR conditions were 25 
cycles of 95°C for 30 seconds, 50°C for 20 seconds and 60°C for 4 minutes. Excess 
dye-labelled nucleotides were removed using the Performa DTR V3 clean-up system 
(EdgeBio) and sequence products were run on an ABI 3730 DNA sequencer (Applied 
Biosystems) at the University of Edinburgh. 

Sequencing reads were edited and assembled using SeqMan (DNASTAR, Madison, 
WI). Each rbcL region was sequenced by 4 reads (using primers DPrbcL1, DPrbcL7, 
NDrbcL5 and DrbcL11) and the whole region was sequenced by at least 2 overlapping 
reads.  

The sequence was defined as ‘high quality’ if all the reads were obtained successfully 
and resulted in no ambiguous bases. ‘Low quality’ reads were those with at least one 
read having weak signal(s) and/or noise(s), so that not all the sequence region was 
covered by multiple overlapping reads. 

Because rbcL is a translated protein (with almost no variation in sequence length), the 
gene sequences of different taxa were easily aligned manually in BioEdit 7.0.2 (Hall 
1999). 

2.2.4 Addition of externally validated barcodes 

Until the work of Jones et al. (2005) introduced new primers, there were few rbcL 
sequences for diatoms available in GenBank® (www.ncbi.nlm.nih.gov/genbank/) and 
most of these were for planktonic species, for example, Aulacoseira and Thalassiosira. 
Since 2005, many more sequences have been deposited by a variety of laboratories, 
so that now there are >2,000 rbcL sequences in GenBank {Nucleotide search 

http://www.ncbi.nlm.nih.gov/genbank/


10  A DNA based diatom metabarcoding approach for Water Framework Directive classification of rivers  

(Bacillariophyta[Primary Organism]) AND rbcL [Gene Name}. However, some of these 
are of marine or planktonic taxa and are relevant to freshwater ecological assessment 
only through the phylogenetic context they provide for interpreting unknown NGS 
sequences. Others are poorly documented (through published images and metric data) 
for the identification to be trusted, or represent taxa known to need or be undergoing 
taxonomic revision.  

Nevertheless, among the GenBank sequences there were significant numbers that 
could be added to the reference database for this project, especially the well-
documented sequences deposited by Rimet and colleagues at the French National 
Institute for Agricultural Research (INRA) at Thonon-les-Bains (based on their ‘TCC’ 
culture collection) and a number of Nitzschia and Sellaphora sequences already 
obtained by the Royal Botanical Gardens Edinburgh.  

As a prelude to developing the reference dataset, the entries on GenBank were 
evaluated based on the project’s team knowledge of the expertise associated with 
submitting groups; only those from ‘trusted’ sources were included. Other external 
sequences were obtained through the curated, open access barcode database for 
diatoms at R-SYST (www.rsyst.inra.fr).  

In many cases, the taxonomic classification used by GenBank was out-of-step with that 
currently accepted by diatomists and implemented for diatom analyses. As a 
consequence, the taxonomic hierarchy for any GenBank sequence would need to be 
annotated by hand before it was imported to the DNA barcode reference database. 

Given the time it takes to check the provenance and documentation of sequences 
deposited in GenBank, GenBank sequences were evaluated and added only when 
these offered a closer match to NGS results than any sequences obtained during this 
study. In future, it may be mutually advantageous to reach agreements with other 
groups active in developing barcodes for ecological assessment (for example, the 
INRA group) to share unpublished, well-documented sequences. It will be important to 
regularly re-inspect external barcode sources for sequences closely related to the NGS 
molecular operational taxonomic units and import them to the DNA barcode reference 
database.  

2.2.5 Addition of inferred barcodes 

Some barcodes were assigned a species identity by inference. This worked by 
comparing their occurrence frequency between LM and NGS and their relative 
phylogenetic position using maximum likelihood (see Sections A1.2.3 and A1.2.4 in 
Appendix 1). 

2.2.6 Addition of Xanthophyta (yellow-green algae) contaminants 

The preliminary study identified Xanthophyta contaminants in environmental diatom 
samples that were influencing the proportional representation of diatom species. 
Xanthophyta sequences were incorporated into the barcode reference database to 
allow pre-filtering prior to NGS analysis (see Section A1.2.5 in Appendix 1).  

2.3 Results 

A total of 987 unialgal cultures were obtained from samples collected from 60 locations 
in England and Scotland. DNA was extracted and sequenced from 554 of these, 
representing 123 species from 41 genera (Appendix 4).  

http://www.rsyst.inra.fr/
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Multiple strains were sequenced from some genera (as many as 67 and 78 for 
Fragilaria gracilis and Achnanthidium minutissimum, both common ‘pioneer’ species 
from low nutrient environments). These, in turn, permit broader coverage of cryptic and 
semi-cryptic variation within species complexes that can be difficult to identify with 
certainty with LM alone.  

In addition, the identities of 8 taxa were inferred directly from the congruence of 
unassigned NGS reads with LM results (Appendix 5). These included additional 
barcodes that clustered close to Achnanthidium minutissimum and Eolimna minima.  

Finally, 45 strains were added from GenBank or R-SYST (Appendix 6); 307 sequences 
for Xanthophyta (yellow-green algae) were also added from GenBank so as to filter out 
close relatives of the diatoms that would otherwise cause problems during the 
bioinformatics (Appendix 7). 
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3 General methods 

3.1 Diatom sample collection 

Diatom samples were collected from UK rivers using standard Environment Agency 
sampling techniques for benthic diatoms. This involves placing 5 cobbles in a tray with 
about 50ml of stream water and then brushing the upper surface of each cobble with a 
toothbrush to remove the biofilm (Kelly et al. 1998, CEN 2014a). These samples were 
then transferred to the laboratory in a cool box. Using a Pasteur pipette, 5ml of the 
suspension of biofilm and water was transferred to a sterile 15ml centrifuge tube 
containing 5ml nucleic acid preservative (hereafter referred to as diatom preservative) 
consisting of 3.5 M ammonium sulphate, 17 mM sodium citrate and 13 mM 
ethylenediaminetetraacetic acid (EDTA) The sample was then frozen at -30oC prior to 
extraction of the DNA. The remainder of the sample was preserved using Lugol’s 
iodine for morphological analysis by LM (Appendix 2).  

Preliminary experiments looked at the possibility of using alternative sampling 
methods, such as clinical swabs to collect samples, rather than toothbrushes. 
However, the yield of DNA from such samples was generally much lower than from 
toothbrush-collected samples, so the latter were retained as the preferred sampling 
instrument.  

3.2 Preparation and analysis of diatoms by LM 

Samples for LM were digested either with a mixture of sulphuric and oxalic acids, with 
potassium permanganate (Environment Agency laboratories) or cold hydrogen 
peroxide (CEN 2014b).  

Following digestion, samples were rinsed several times to remove all traces of 
oxidising agents. Between rinses samples were either centrifuged at 3,000–5,000 rpm 
for 4–5 minutes (Environment Agency laboratories) or allowed to stand overnight to 
ensure that all diatoms settled to the bottom of the tube. Permanent slides were 
prepared using Naphrax (Brunel Microscopes, Chippenham) as a mountant, following 
Kelly et al. (2008). At least 300 valves on each slide were identified to the highest 
resolution possible using a Nikon BX40 microscope with 100× oil immersion objectives 
with phase contrast and their abundance recorded.  

The primary floras and identification guides used were Krammer and Lange-Bertalot 
(1986, 1997, 2000, 2004), Hartley (1996) and Hofmann et al. (2011). All nomenclature 
was adjusted to that used by Whitton et al. (1998), which follows the conventions of 
Round et al. (1990) and Fourtanier and Kociolek (1999).  

3.3 Preparation and analysis of diatoms for NGS  

DNA was extracted using the enzymatic lysis method described in Appendix 9.  

3.3.1 Target amplification 

Amplification of rbcL prior to sequencing was carried out with the following method. 
PCR reactions of 30μl containing 6μl of HF buffer (NEB, USA), 0.3 μM forward and 
reverse primers (Table 4.1), 0.3 mM dNTPs, 0.3μl Phusion high-fidelity DNA 
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polymerase (NEB) and 0.5μl of a 1:10 dilution of extracted sample DNA. The final 
reaction volume was made up with nuclease-free water to 30μl.  

The following PCR protocol was followed: amplification started with an initial single 
denaturation step at 98°C for 2 minutes, followed by 35 cycles of denaturation at 98°C 
for 20 seconds, annealing at 55°C for 45 seconds and extension at 72°C for 60 
seconds, followed by a final extension at 72°C for 5 minutes. All PCR reactions were 
carried out without replication on a C1000 thermal cycler (Bio-Rad, UK); each run 
contained a number of negative controls including ‘no template’ controls, index PCR 
controls and extraction buffer controls that passed through the whole procedure.  

PCR products were visualised on 1% agarose gels. They were then purified using 
AMPure Beads following the Illumina 16S Metagenomic Sequencing library preparation 
protocol and were eluted in 50μl nuclease-free water.  

3.3.2 Index addition 

In order to identify and remove sequences from previous runs (something that happens 
in small amounts when using MiSeq™ from Illumina even with improved 
decontamination procedures due to common fluidics that are not changed between 
runs), 3 sets of indices were used, changing the index set between runs. Experience 
shows that, after 3 runs, within instrument contamination is no longer detectable and 
the first index can then be reused. This results in indexes only being used every third 
MiSeq run, effectively removing the possibility of samples on subsequent runs 
containing sequences from the previous run.  

Illumina Nextera XT sequencing adapters and indices were attached to each sample 
with a PCR step by combining 10μl HF buffer, 0.3 mM dNTPs, 1 μM MgCl2, 0.5μl 
Phusion polymerase (NEB, USA), 5μl of each specific ‘index 1’ and ‘index 2’ primer, 
and 5μl of purified sample PCR product. The final reaction volume of 50μl per sample 
was made up with nuclease-free water.  

The PCRs were carried out on a C1000 thermal cycler. Amplification cycling conditions 
were as follows: 95°C for 3 minutes, followed by 8 cycles of 95°C for 30 seconds, 55°C 
for 30 seconds and 72°C for 30 seconds, with a final extension of 72°C for 5 minutes. 
The PCR product was then purified with AMPure Beads following the Illumina 16S 
Metagenomic library preparation protocol. Final libraries were eluted in 25μl nuclease-
free water.  

The quality and quantity of each amplicon library was evaluated with Tapestation 
(Agilent, USA) along with quantification using Qubit (Life Technologies, CA, USA) prior 
to sequencing.  

3.3.3 Illumina sequencing (MiSeq) 

All samples, including controls, were quantified using the Qubit method. They were 
then combined to produce a 20 nM library, which was again quantified and diluted to 
produce a final 4 nM library for sequencing. Negative controls were water controls for 
both the PCR amplification and MiSeq library preparation steps. The positive control for 
PCR reactions was a mock community constructed from cultured extracts (described in 
more detail in Table 5.3). The library was denatured and combined with 5% PhiX 
sequencing control DNA and loaded onto a MiSeq instrument following the Illumina 
16S Metagenomic Sequencing library preparation protocol.  
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4 Development of the short 
rbcL barcode 

4.1 Introduction 

During the course of the project, significant changes occurred in the availability and 
performance of NGS technologies. The 2 most important technologies of relevance to 
this project are GS FLX (Roche) and MiSeq™ (Illumina). The former platform was used 
initially due to the increased read length (up to 900 bp) compared with the 400 bp 
achievable using the latter platform (Appendix 1). A further consideration is cost and 
availability; while the GS FLX costs remained high, the MiSeq costs have fallen 
continuously, resulting in the GS FLX being withdrawn from sale in 2016. As a result, a 
short barcode was required of a length appropriate for sequencing on the MiSeq 
platform and which provided good taxonomic resolution.  

The research to identify suitable primer binding sites and evaluate barcodes of differing 
lengths and positions enabled the most cost-effective sequencing technology available 
today to be accessed. It also had the extra advantage that, should new technologies 
provide the opportunity to use longer barcodes (for example, MinION, Oxford 
Nanopore), it may be possible to implement their use with minimal extra cost, given 
that almost full length rbcL sequences have been determined and are available in the 
barcode reference database. 

4.2 Materials and methods 

4.2.1 DNA extraction 

Field samples were received in diatom preservative and stored at -30oC until DNA 
extraction. Two DNA extraction methods were compared: 

 the method of Fawley and Fawley (2004) combining homogenisation using 
glass beads with buffer containing dodecyltrimethylammonium bromide 
(DTAB) followed by Qiagen DNeasy® column purification using FastDNA 
buffers (MP-Biomedicals)  

 the enzymatic lysis method of Eland et al. (2012), essentially 5 hours of 
incubation with Proteinase K, followed by column purification using Qiagen 
DNeasy® Blood and Tissue kit according to the manufacturer’s instructions 

The quantity of DNA was estimated using a Qubit fluorimeter and dsDNA BR Assay Kit 
following the manufacturer’s instructions (Thermo Fisher Scientific, Cat: Q32850). 
Genomic DNA was stored at -30oC prior to PCR and NGS analysis.  

4.2.2 PCR amplification 

Amplifications were performed in 20μl volumes containing 4μl of HF buffer, 0.3 μM of 
forward and reverse primers (Table 4.1), 0.3 mM of dNTPs, 0.4 units Phusion high-
fidelity DNA polymerase (New England Biolabs, UK). The final reaction volume was 
made up with nuclease-free water (Severn Biotech, UK). All PCRs were carried out on 
a C1000 thermal cycler.  
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The PCR cycling conditions were one cycle of 98°C for 2 minutes, followed by 35 
cycles of denaturation at 98°C for 20 seconds, annealing at temperatures ranging from 
60 to 50°C for 45 seconds and extension at 72°C for 60 seconds, and a final extension 
at 72°C for 5 minutes.  

The quantity and length of the PCR products were examined following electrophoresis 
on 1% agarose gels compared with DNA standards of known sizes, stained using 
ethidium bromide and visualised on an ultraviolet (UV) transilluminator.  

Table 4.1 Sequences of primers used for amplifying rbcL barcodes 

Primer name Sequence (5 to 3) Experiment Reference 

rbcL-39F TGWCCGTTACGAATCTGGTG Short barcode 
evaluation 

This study 

rbcL-404F CWGCDTTACGTTTAGAAGATATGCG Short barcode 
evaluation 

This study 

rbcL-404R CGCATATCTTCTAAACGTAAHGCWG Short barcode 
evaluation 

This study 

rbcL-646F1 ATGCGTTGGAGAGARCGTTTC Short barcode 
evaluation 

This study 

rbcL-646R GAAACGYTCTCTCCAACGCAT Short barcode 
evaluation 

This study 

rbcL-998F CAGTTGTWGGTAAATTAGAAGGTGATC Short barcode 
evaluation 

This study 

rbcL-998R 1 GATCACCTTCTAATTTACCWACAACTG Short barcode 
evaluation 

This study 

rbcL-3P_640F 2 CCRTTYATGCGTTGGAGAGA Proof of concept 
(Appendix 1) 

Hamsher 
et al. 2011 

rbcL-3P_1538R 3 AARCAACCTTGTGTAAGTCT 

 

Proof of concept 
(Appendix 1) 

Hamsher 
et al. 2011 

 
Notes: 1 Primers used to amplify the short barcode for subsequent NGS. 

2 Formerly known as Cfd F 
3 Formerly known as DPrbcL7 

4.2.3 Determination of conserved regions and primer design 

To establish a short barcode from the rbcL gene, it was necessary to identify regions of 
diverse (informative) sequence flanked by regions of low diversity sequence where 
primers could be designed to amplify the barcode region from a large number of diatom 
species.  
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A total of 390 diatom sequences from the rbcL barcode reference database were used 
to develop a short rbcL barcode suitable for high-throughput NGS analysis. The diatom 
sequences were aligned using MAFFT (Katoh and Stanley 2013) using default 
settings. The diatom alignments were analysed using primer design software currently 
under development (https://github.com/rachelglover/diatom-analysis).  

The settings applied to identify conserved regions of the alignment were 96% similarity 
with a maximum of 4 gaps in the alignment at that position. A sliding window of 25 
nucleotides and a threshold of 5% of an alignment column differing from the most 
prevalent base were used to identify degenerate bases. Primers were designed to the 
identified regions using Primer3 (Undergasser et al. 2013) with default settings. When 
multiple primers were identified for a region, the best individual primer was selected 
based on the lowest number of degenerate nucleotides and the highest percentage 
sequence identity for that primer against the original diatom alignment. 

4.2.4 Estimation of the resolving power of the short rbcL 
barcode 

Potential rbcL barcode regions were independently assessed for taxonomic coverage, 
using the following protocol in QIIME (Quantitative Insights into Microbial Ecology) v1.5 
(Caporaso et al. 2010). Firstly, operational taxonomic units (OTUs) were picked with 
UCLUST (Edgar 2010) from all the sequences in that alignment region with a similarity 
level set at 100% in order to create distinct OTUs from identical sequences. A 
representative sequence for each OTU was then selected. The OTU representative 
sequences were then assigned taxonomy using BLAST® (Basic Local Alignment 
Search Tool; http://blast.ncbi.nlm.nih.gov/Blast.cgi) (Zhang et al. 2000) based on the 
diatom reference database.  

The raw OTU counts and taxonomic assignments for each OTU were then used to 
calculate the number of sequences in the region that had been assigned to the correct 
taxonomic level for the sequence used in the alignment (which has known taxonomy). 
This processing step was carried out using a custom script (processOTUs.py; python 
code for taxonomic assignments), (Appendix 8). The counts for each region were 
plotted using the statistical computing package R v3.0.2 (www.r-project.org).  

4.2.5 Testing primer amplification 

Using DNA extracted from Tabellaria sp. (Culture Collection of Algae and Protozoa, 
number 1081/7) as the PCR template, the performance of the different primer sets was 
compared experimentally. Criteria for comparison were the amplification of fragments 
of the correct length, with no amplification of secondary bands.  

The robustness of amplification was assessed by comparing results following 
amplification at different annealing temperatures.  

4.3 Results 

4.3.1 DNA extraction 

The performance of the 2 methods was tested on environmental diatom samples. The 
results (Table 4.2, Figure 4.1) show that the Proteinase K method gave higher average 
and more consistent amounts of purified DNA. A further consideration was that the 
Proteinase K method could be applied to high-throughput extraction using robotics, 
while the DTAB method was lengthy and complex to complete. The Proteinase K 

https://github.com/rachelglover/diatom-analysis
http://blast.ncbi.nlm.nih.gov/Blast.cgi
https://www.r-project.org/
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method (Appendix 9) was therefore used to extract DNA from all diatom samples and 
optimised for use on a robotic DNA extraction system (BioRobot, Qiagen).  

Table 4.2 Average, minimum and maximum amounts of DNA purified  
from 8 diatom samples  

 DTAB (ng per µl) Proteinase K (ng per µl) 

Average 14.8 20.3 

Maximum 54.6 32.8 

Minimum 1.22 10.4 

 
Notes: Samples were vortexed and split into 2 prior to extraction using the 2 methods. 

 

Figure 4.1 DNA concentrations from the extracts of 8 diatom samples  

 
Notes: Samples were vortexed and split into 2 prior to extraction using the 2 methods. 

4.3.2 Determination of conserved regions and primer design 

A total of 11 regions along the rbcL gene were identified as having >96% sequence 
identity suitable for primer design (Figure 4.2, Table 4.3). A small number of the 
regions identified were immediately adjacent to each other and for primer design were 
considered to be one region only. 

 

          DTAB 
         Proteinase K 
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Figure 4.2 Percentage of identical nucleotides plotted along the length of an alignment of full length diatom rbcL sequences 

Notes: The red line is a threshold used by the software to select regions which are most suitable for primer design.  
In this alignment, 11 rbcL regions were suitable for conserved primer design. 
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Table 4.3 Location of regions identified as suitable for primer design for 
Illumina amplicon sequencing 

Alignment 
location 

Approximate 
sequence 
conservation 

Sequence (5–3) 

0–32 96.3% ATGTCTCAATCTGTAWCAGAACGGACTCGAAT 

33–65 96.6% AAAAGTGACCGTTACGAATCTGGTGTAATYCC 

63–99 96.7% CCWTAYGCTAAAATGGGTTACTGGGATGCTKCATAY 

403–443 96.7% CWGCDTTACGTTTAGAAGATATGCGTATTCCWCAYTCWTA 

582–623 97.3% GAAGGTTTAAAAGGTGGTTTAGAYTTCTTAAAAGATGAYGA 

645–696 96.3% ATGCGTTGGAGAGARCGTTTCTTAWACTGTATRGAAGSTATY
AACCGTGCW 

879–905 96.0% TTACAYTTACAYCGTGCDGGTAACTC 

915–947 96.5% CGTCAAAARAAYCAYGGTATYAAYTTCCGTGT 

936–986 97.0% AAYTTCCGTGTWATYTGTAAATGGATGCGTATGKCWGGTGT
WGAYCAYAT 

987–1,050 96-99% CAYGCWGGTACAGTTGTWGGTAAATTAGAAGGTGATCCTTT
AATGATTAAAGGTTTCTAYGA 

1,143–1,184 96.4% TCWGGTGGTATYCAYTGTGGTCAAATGCACCAATTAVTWCA 

 
Primers were designed (Table 4.1) to amplify 4 regions along the rbcL gene that 
showed good potential for species discrimination. The location on the rbcL gene of the 
4 hypothetical amplicons (I-L), along with the already validated longer amplicon (B) 
used by Hamsher et al. (2011) and tested in Appendix 1, are shown in Figure 4.3. The 
amplicons varied in size from 213 bp (L) to 344 bp (I). 

 

Figure 4.3 Locations of each hypothetical amplicon region (fragment) along 
the length of the rbcL gene 
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4.3.3 Estimation of the resolving power of the short rbcL 
barcode 

The number of sequences that could be correctly assigned to class, family, genus, 
species and isolate were calculated for each amplicon (Table 4.4). For example, a 
count of 1 for the taxonomic level ‘class’ means that ‘class’ was the lowest taxonomic 
level at which an accurate taxonomic classification could be made for that sequence 
using this amplicon. In this way, it was possible to use the sum of the ‘species’ and 
‘isolate’ counts as an assessment of the efficacy of a particular amplicon to be used for 
species level assignments. 

Table 4.4 Amplicons assessed for their ability to place sequences to species 
level identifications  

Amplicon Forward 
primer  

Reverse primer  Length 
(bp)  

Lowest taxonomic level where the taxonomic 
assignment was correct 

Class  Family Genus Species Isolate No 
identification  

B  rbcL-3P_640F  rbcL-3P_1538R  786 2 0 12 177 199 0 

I rbcL-39F  rbcL-404R  344 2 0 21 204 156 7 

J  rbcL-404F  rbcL-646R  216 2 0 37 202 142 7 

K rbcL-646F  rbcL-998R  331 2 0 22 201 165 0 

L rbcL-998F  rbcL-3P-1229R  213 2 0 26 202 151 9 

 
Notes: ‘No identification’ is due to missing sequence coverage in that region for those 

sequences. 

From the taxonomic assignments in Table 4.4, all amplicon regions could be used to 
provide a respectable number of species level assignments for the 390 sequences 
present in the original dataset. But because diatom metric TDI estimation is based on 
species level discrimination, the number of correct species level identifications was 
plotted against the length of the fragment (Figure 4.4). 

As expected, the longest fragment (B) produced the largest number of correct species 
level identifications. However, it is unsuitable for Illumina sequencing, given the 
requirement for a good overlap between the paired end reads to maintain quality (and 
therefore accurate species level identification).  

Amplicons J and L, while suitably short, appear to flank sequence that is too conserved 
and cannot be used to provide an adequate number of correct species level 
identifications in comparison to the longer fragment.  

Amplicons I and K are both of an appropriate length (344 and 331 bp respectively) to 
give accurate sequences using the Illumina MiSeq platform. They can also be used to 
provide a satisfactory number of correct species level identifications. The forward 
primer for amplicon K also spans a region of the rbcL gene, which is 99% conserved 
across all 390 sequences.  
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Figure 4.4 Correct species level taxonomic assignments plotted against the 
length of the amplicon fragment 

Notes: The centre of the text is the exact point plotted. 

4.3.4 PCR amplification of the short barcode 

Overall, the primer pair rbcL-646F/rbcL-998R (amplicon K) gave the best performance, 
consistently giving an intense band of the correct size across the full range of 
annealing temperatures tested (Figure 4.5). The other primer sets performed less well; 
rbcL-39F/rbcL-404R (amplicon I) gave miss-priming at temperatures below 58°C, while 
primer pairs rbcL-404F/rbcL-646R and rbcL-998F/rbcL-3P-1229R (amplicons J and L 
respectively) amplified DNA less efficiently giving faint bands at all temperatures 
tested.  

Based on its taxonomic coverage, amplicon length, primer conservation and robust 
performance, amplicon K (331 bp) was selected for use in all downstream Illumina 
analyses for benthic diatoms. 
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Figure 4.5 Gel electrophoresis of PCR products post amplification performed 
at different annealing temperatures (between 50 and 60°C) using newly designed 
primer sets (I, J, K and L) tested on DNA from a diatom sample and a no template 

control 

Notes: The diatom sample is (1) and the no template control is (2) in each pair of tracks.  
The PCR products are flanked on the gel by low molecular weight markers (New 
England Biolabs, UK). 

 

60°C 

I J K L 

1 2 1 2 1 2 1 2 
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I J K L 

1 2 1 2 1 2 1 2 
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                 52°C 
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I J K L 
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5 Development of NGS 
workflow and data analysis 

5.1 Introduction 

An NGS workflow based on the use of PROMpT (Primary Rapid Overview of 
Metagenomic Taxonomy) software (https://github.com/passdan/prompt) was developed 
during the early developmental phase of this project (Appendix 1). However, because 
the preferred operating system for PROMpT is Biolinux, this limits its utility, especially 
since government agencies are unable to install and run Biolinux due to Public 
Services Network restrictions. As a result the project changed to the QIIME platform 
(www.qiime.org), which is considered the industry gold standard. It can be scaled up to 
the data produced by larger NGS platforms such as Illumina’s MiSeq and HiSeq, and 
has the potential to incorporate a high-throughput pipeline that would automate the 
analysis. 

5.2 Bioinformatic analysis 

The data from each instrument run was analysed independently to mitigate against any 
intra- and inter-run variation that may have been introduced during PCR or library 
preparation. A mock community sample, extraction and PCR controls for each run were 
analysed alongside the samples in the respective run (Section 3.3). The analysis 
pipeline developed is in 2 parts: quality control and taxonomic assignment (Figure 5.1).  

5.2.1 Quality control 

Any errors incorporated into the DNA sequences generated – even single nucleotide 
polymorphisms – have the potential to create additional taxa (false positives) in the 
downstream analysis. As a result a very stringent quality control procedure was 
implemented consisting of the following 4 steps: 

1. Removal of PCR amplification primers from both sequenced strands of 
DNA using Cutadapt v1.9.1 (Martin 2011) 

2. Sliding window trimming of poor quality 3′ ends of sequences from both 
strands (this is a typical Illumina artefact) was achieved using Sickle 
v1.33 (Joshi and Fass 2011) in paired end mode 

3. Joining of the trimmed, paired end reads to form one consensus strand 
using PEAR v0.9.6 (Zhang et al. 2014) 

4. Further round of quality assessment for the removal of any sequences 
with an overall accuracy of less than 99.9% using Sickle v1.33 (Joshi 
and Fass 2011) in single-read mode 

Following quality control, each sample was independently prepared for analysis using 
QIIME and the taxonomic assignment pipeline described in the next section applied. 

5.2.2 Taxonomic assignment 

The downstream analysis was completed in 4 main steps as follows: 

https://github.com/passdan/prompt
http://www.qiime.org/
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OTU picking  

Taxonomic assignment of each individual sequence in the dataset would be very 
computationally intensive. As a result, OTU picking is used to make the number of 
sequences requiring taxonomic assignment much smaller.  

Because there are varying levels of intra-species variation in most genes used for 
amplicon metabarcoding studies, the first step is to cluster sequences into OTUs which 
are then used for downstream analysis. The diatom pipeline uses UCLUST (Edgar 
2010) within QIIME to carry out this step and clusters the sequences based on 97% 
similarity. The similarity percentage was a mid-range value chosen partly because it is 
the same used in bacterial and fungal studies, and partly because the nucleotide 
identities between most invertebrate species range between 95% and 99%. As the 
identities between species can vary by genus, it is difficult to pick a de novo clustering 
value that will accurately cluster all species separately as individual OTUs. 

OTU representative sequence selection  

A representative sequence from the OTU cluster must be chosen for downstream 
analysis. The diatom pipeline uses the most abundant unique sequence in the cluster 
for this purpose.  

Assigning taxonomy to OTUs  

Once a representative sequence is available for each OTU it can be used to assign 
taxonomy to the sequences within the OTU cluster defined above. This is carried out 
with the QIIME package using BLASTn to search against the diatom reference 
database (see Section 2) for sequences with >90% sequence identity (now amended 
to 95%, see Section 5.3).  

If a sequence match is found in the database, the OTU is assigned the taxonomy of the 
sequence with the highest identity.  

Reporting of assignments and abundance  

QIIME is used to calculate the abundance of each species. In the OTU picking stage, 
the total sequences in each OTU cluster are retained. These values are then summed 
by species (as each OTU will have a taxonomy assignment), giving the total number of 
sequences per species. A percentage of the overall sample is then calculated in order 
to report the relative abundance for each species present in the sample.  

All species detected are reported, even in low abundance, as no minimum abundance 
threshold value is set. Potential false positives, including chimeras, are likely to occur 
at a rate of less than 2%, which is the threshold used to calculate the TDI values. 
During testing of the pipeline, low numbers of Xanthophyta contaminants were 
identified from each sample in correlation with that reported in Appendix 1. It was 
decided that, as QIIME reports the relative abundances of the algae present as well as 
diatoms (due to their inclusion in the diatom reference database constructed in the 
original PROMpT software, Appendix 1), they would be reported in the final pipeline but 
with the option remaining to remove them during the analysis in the future. 
Xanthophyta contaminants were observed in very low quantities, suggesting that the 
PCR primers used for amplifying the new short fragment either did not amplify 
Xanthophyta efficiently or Xanthophyta were not present in those samples. 
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Figure 5.1 Quality control and QIIME pipeline for analysis of diatom NGS data 

Notes:  db = database; EA = Environment Agency; FERA = Food and Environment 
Research Agency; pe = paired end; QC = quality control; se = single end; BIOSYS 
= EA database for storing, manipulating and reporting data from freshwater and 
marine biological surveys 
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5.3 Validation 

The NGS procedure developed was assessed for robustness by estimating its 
reproducibility, repeatability, sensitivity and specificity. The assessment of 
reproducibility and repeatability were completed using field samples. Sensitivity was 
estimated using a mock community constructed from cultured diatoms with a 
decreasing amount of one species. Specificity was estimated using a mock community 
constructed from cultured diatoms.  

5.3.1 Reproducibility and repeatability 

Four field samples (114061, 114078, 114092 and 114161) were used for the 
reproducibility and repeatability experiments. Inter-individual reproducibility was tested 
by 2 different staff members carrying out the PCR and clean-up steps of the 
sequencing protocol on all 4 samples. Each sample was amplified in triplicate to test 
the repeatability of amplification from the same DNA extract. To test for inter-
instruments reproducibility, the sequencing was completed with the same library 
preparation split between 2 MiSeq instruments: one at the Food and Environment 
Research Agency in York and one at NewGene Ltd in Newcastle.  

The data from both sequencing runs were passed through the quality control pipeline 
as described above, and sequences which passed quality control were prepared for 
further analysis using QIIME. OTUs were constructed by clustering with UCLUST at 
97% nucleotide similarity, and the most abundant sequence was chosen as the 
representative sequence for each cluster. A Biological Observation Matrix (BIOM) table 
(www.biom-format.org) was constructed to store the individual OTU composition of 
each sample.  

To statistically assess the differences between different groupings of samples, a 
distance matrix of beta (inter-sample) diversity was calculated using the Bray–Curtis 
dissimilarity metric. The Bray–Curtis matrix was used for each of the reproducibility and 
repeatability experiments. Two statistical methods, ANOSIM and adonis (Anderson 
2001), were used to assess the variance between the OTU composition of the 4 field 
samples (totalling 56 sequencing samples) for each experiment.  

The statistics in Table 5.1 can be used to draw a number of conclusions about the 
reproducibility experiments. The low R2 values from adonis and low R values from 
ANOSIM, paired with the very high p values, lead to the conclusion that there are no 
significant differences between the samples when split by staff member and by 
different MiSeq instrument. In contrast, when the same test is applied to split the 
samples themselves as a control, the R and R2 values are high and the differences are 
significant (p = 0.001).  

Table 5.1 Inter-individual and inter-machine reproducibility statistics, as 
tested using adonis and ANOSIM  

Experiment adonis result, R2 (p 
value) 

ANOSIM result, R (p 
value) 

Inter-individual 
reproducibility 

0.00539 (0.994) 0.01786 (0.774) 

Inter-machine 
reproducibility 

0.00405 (0.997) 0.02586 (0.969) 

Control 0.79659 (0.001) 0.97838 (0.001) 

 

http://www.biom-format.org/
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Notes: A control (a sample containing a large diatom diversity) is included to show the 
difference in variation between diatom samples when calculated using the same 
methods 

Table 5.2 shows the data from the same adonis and ANOSIM analysis applied to the 
replicates in each of the diatom samples, split by staff member. The low number of 
PCR replicates (n = 3) is affecting the ability of the statistical methods to detect and 
measure differences. The data are also plotted in a stacked bar chart to visually 
represent the different taxa identified in the replicates (Figure 5.2).  

Table 5.2 Differences detected between 3 replicates of each PCR carried out 
for each sample, split by staff member  

Diatom 
sample 

Staff member E Staff member I 

adonis result 
R2 (p value) 

ANOSIM 
result R (p 
value) 

adonis result 
R2 (p value) 

ANOSIM 
result R (p 
value) 

114061 0.49478 
(0.667) 

– 0.75697 
(0.333) 

– 

114078 0.28906 
(1.000) 

– 0.75519 
(0.167) 

– 

114092 0.63066 
(0.167) 

– 0.65475 
(0.333) 

– 

114161 0.29529 
(0.833) 

– 0.55793 
(0.333) 

– 

 
Notes: ANOSIM was unable to detect any differences due to the low number of PCR 

replicates (n = 3) and the extremely high similarity. 
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Figure 5.2 Stacked bar chart showing each of the 4 samples with 6 PCR 
replicates 

Notes: The colour-blocks in each bar represent single species and the relative proportion 
in the sample.  
Very little variation is seen between the 6 replicates of each sample.  

Summary result  

No significant differences were detected between staff members, PCR replicates or 
separate sequencing instruments when the same diatom samples were processed.  

5.3.2 Sensitivity 

To test the sensitivity of the protocol, a mock community (from extracted DNA) was 
constructed containing each of the 11 species listed in Table 5.3 to provide a 
background of diatom DNA. The species Gomphonema parvulum was added in 
different dilutions (1:10 to 1:1,000,000) to the background mock community. Each of 
the mock community samples were taken through the PCR, sequencing and pipeline 
protocol, and the results are shown in Figure 5.3. The relative abundance of G. 
parvulum is seen to drop in response to dilution within the mock community. Changes 
in relative abundance are also observed in response to the reduction of G. parvulum in 
the 1:10 and 1:100 dilutions. 

In order to initially check the identity of each culture used in the sensitivity experiment, 
DNA was extracted from each culture separately and the rbcL gene (amplicon K) was 
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amplified. Sanger sequencing was performed on each culture to ensure the correct 
identification of the cultures prior to the mock community construction. Table 5.3. 
shows the results of the sanger sequencing for each culture and details the revised 
names of the species used in the mock-community and the following discussion. 

 

Table 5.3 Cultured species obtained from culture collections, indicating their 
references and revised identify following Sanger sequencing 

Mock community 
species 

Culture 
collection 

Culture 
collection ID 

Revised 
identification 
following Sanger 
sequencing 

Melosira 
nummuloides 

Bigelow CCMP482 Melosira 
nummuloides 

Cyclotella cryptica CCAP CCAP 1070/6 Cyclotella 
meneghiniana 

Eucocconeis sp.  Bigelow CCMP2525 Nitzschia inconspicua 
(98% identity match) 

Stephanodiscus 
hantzschii 

CCAP CCAP 1079/4 Cyclotella cryptica 

Tabellaria sp.  CCAP CCAP 1081/7 Tabellaria flocculosa 

Asterionella formosa CCAP CCAP 1005/7 Asterionella formosa 

Fragilaria crotonensis SAG 
Goettingen 

28.96 Fragilaria crotonensis 
and Fragilaria bidens 
(99% identity match) 

Gomphonema 
parvulum 

SAG 
Goettingen 

1032-1 Gomphonema 
parvulum 

Navicula pelliculosa 1 SAG 
Goettingen 

1050-3 Mayamaea permitis 
(97% identity match) 

Nitzschia palea SAG 
Goettingen 

1052-3a Nitzschia palea  

Sellaphora capitata Ugent Sellaphora 
capitata D.G. 
Mann and S. 
Droop (03x38) F1-
9 

Sellaphora capitata 

 
Notes: 1 Identification by morphology of these small naviculoid diatoms is problematic and 

Navicula pelliculosa has long been known to be a widely misapplied name. 
 CCAP = Culture Collection of Algae and Protozoa (www.ccap.ac.uk) 

https://www.ccap.ac.uk/)
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Figure 5.3  Relative abundance of each species in the mock community 

Notes: Gomphonema parvulum (pink) is observed in reducing relative abundance within 
each community sample as its input amount is reduced by the serial dilution. As 
the relative abundance of G. parvulum decreases, the relative abundance of other 
species in the mock community increases and stabilises.  

 

5.3.3 Specificity 

To assess the specificity of the taxonomic assignments being made by the pipeline, the 
neat mock community sample from the sensitivity experiments was analysed in depth 
(Figure 5.4). As described earlier, the taxonomic assignments were made using the 
most abundant sequence from each OTU cluster following clustering at 97% nucleotide 
similarity. Each of the representative sequences were searched against the reference 
diatom database using BLASTn and the sequence with the highest BLAST score was 
used to assign taxonomy to that OTU. The BLAST step of the pipeline was carried out 
independently on the representative sequences and the percentage similarity to the 
best diatom match in the database was recorded and imported into R 3.1.1 for further 
analysis. 

Melosira nummuloides 
Cyclotella meneghiniana 
Cyclotella cryptica 
Tabellaria flocculosa 
Asterionella formosa 
Fragilaria crotonensis  
Gomphonema parvulum 
Mayamaea permitis  
Nitzschia palea  
Sellaphora capitata 
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Figure 5.4 Box and whisker plots for all species detected in the mock 
community sample, showing the number of OTUs assigned to the species (right 

of the name) and boxplots showing the percentage similarities of all the 
representative sequences to the best match in the database that resulted in 

assignment to the species 

Notes: 1 Different colours are used (for the number of OTUs/box plots) to represent 
different genera.  
2 Particular taxa of interest in the analysis are highlighted in yellow. 
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The results of the mock community analysis (Figure 5.4) show that, of the 11 species 
included in the mock community (Table 5.3, as identified by the Sanger sequencing of 
DNA extracted from the cultures – final column), six were identified accurately with high 
numbers of OTUs (Asterionella formosa, Cyclotella meneghiniana, Gomphonema 
parvulum, Melosira nummuloides, Nitzschia inconspicua, Nitzschia palea with reads of 
2798, 1673, 1862, 1366, 3203, 383 respectively). Four species (Cytotella cryptica, 
Sellaphora capitata, Fragillaria crotnensis and Tabellaria flocculosa) were also 
identified in the analysis, but with a low number of OTUs (113, 49, 12 and 66 
respectively) assigned to them. Cyclotella cryptica and Cyclotella meneghiniana share 
99% sequence identity between their rbcL barcodes. Since the OTUs are clustered 
with 97% similarity, the numbers of OTUs assigned to each species may not be 
accurate. Similalrly a large number of OTUs (488) were assigned to Tabellaria sp. 
which may belong to Tabellaria flocculosa. In particular, the Cyclotella cryptica / 
meneghinaina example highlights some of the challenges faced in this work. The same 
clone can produce both ‘Cyclotella cryptica’ and ‘Cyclotella meneghiniana’ 
morphologies, depending on environmental conditions (Schultz 1971), indicating the 
problems associated with assigning binomials to barcodes in situations where the 
underlying taxonomy is still not fully resolved.  

The 11th and final species included in the community, Mayamaea permitis, was not 
identified. There were, however, 1,140 OTUs identified as Mayamaea atomus and the 
rbcL barcodes of these 2 species share 97% identity. In addition, M. atomus appears to 
be designated M. atomus var. permitis in GenBank records, suggesting some 
uncertainty in species designation in GenBank. Of the remaining OTUs assigned in a 
significant number, 595 sequences were identified as Gomphonema 
pseudobohemicum; this species was not knowingly included in the mock community, 
but may have been a contaminant in the cultures used. Another 567 OTUs were 
identified as Navicula spp., which may have been contaminants introduced with the M. 
permitis which was found by Sanger sequencing to be the predominant species in the 
Navicula pelliculosa culture (Table 5.3).  

Although many species in the mock community sample were identified effectively by 
the large number of OTUs assigned to those species, the analysis in general 
overestimated the number of taxa present in the sample as well as misidentifying some 
of the species that are present. However, these represent small relative abundances 
within the sample when the number of sequences per OTU is investigated and are 
therefore unlikely to affect the TDI value.  

Figure 5.5 shows a brief exploration of one of the potential reasons for this with 36 
diatom samples sequenced during this project. The pipeline takes advantage of 
QIIME’s BLAST identification script, which has a (currently) unchangeable threshold for 
deciding when an identification has been made: if the BLAST hit in the diatom 
database has at least 90% identity with the OTU being searched then an identification 
is made. This is less than ideal as OTUs with distant hits could be assigned incorrect 
taxonomy, rather than left as ‘unknown’ or investigated further as potential new 
species. Figure 5.5 demonstrates that, as the identity threshold for BLAST hits is 
increased, the percentage of the sample given an identification decreases. In the 
current pipeline, unidentified sequences are searched against GenBank in order to 
broaden the search for a more accurate identification; however, this is not without risk 
as the GenBank database contains misidentified sequences and the taxonomy for 
diatoms is not updated. Currently, with the 90% threshold, very few OTUs are searched 
against GenBank. A better threshold could be 95%: while only 40% of OTUs would be 
given an identification, though this would still represent 75% of the sequences in the 
sample. By increasing the BLAST threshold, there is potential for 25% of the 
sequences in samples to be left without an identification and deemed 'unknown'; 
however, the identifications applied to sequences should be more taxonomically 
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accurate, ultimately leading to a more accurate read across between the LM and NGS 
methods. 

Further work is required to refine the approach for assigning sequences to taxa, a 
problem that falls into 2 parts. Firstly identifying OTUs by clustering sequences with a 
strict cut-off (in this case 97%) may not be the most appropriate analysis approach for 
identifying species. Some species share a sequence identity higher than the cut-off and 
thus multiple taxa may be combined within a single OTU cluster. Other species are 
diverse with a larger amount of within species sequence variability; the sequences for 
these species may be split across multiple clusters. Secondly, it is known that, even 
when used in conjunction with GenBank, the taxon dictionary massively 
underrepresents the numbers of species found in the samples. As a result, using a 
relatively unconstrained criteria (>90% identity) to assign OTUs to taxa may compound 
the misidentification of the OTUs, as shown in Figure 5.5. Going forward, the current 
analysis pipeline will be amended to restrict species identifications to those with >95% 
sequence similarity to the reference database in order to reduce the potential for 
misidentifications.  

 

Figure 5.5 Number of OTUs (red) and overall proportion of sequences in 
samples (blue) having a hit in the diatom database within increasing BLAST 

identity threshold  

Notes: As the threshold is increased, less OTUs/sequences are given an identification.  
This figure was created from further assessment of 36 diatom samples previously 
tested during the project. 
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6 Development and calibration 
of NGS metric 

6.1 Introduction 

Section 5 shows that it is possible to use Illumina NGS technology to process short 
rbcL barcodes from field samples to yield quantitative data. In theory, both LM and 
NGS approaches yield equivalent data (that is, a list of taxonomic categories, with the 
abundance of each expressed as a proportion of the total). In practice, however, the 2 
approaches count different entities: LM records diatom valves (that is, half of a frustule 
or complete cell wall), while NGS records rbcL genes. Because rbcL genes are part of 
the chloroplast rather than the nuclear genome, and because the number of 
chloroplasts varies between genera, the relationship between LM and NGS data 
cannot be assumed to be 1:1. This, in turn, would be a potential source of bias if LM 
methods for data processing were applied to NGS data.  

This section therefore begins by examining the relationship between LM and NGS 
data, before going on to constructing a modification of the existing TDI based method 
for estimating ecological status. 

6.2 Methods 

6.2.1 Study design  

Development of a metric compatible with Water Framework Directive requirements 
requires the observed state of a water body to be compared with the reference state 
(that is, the ecological conditions encountered when anthropogenic disturbance is 
absent or minimal). Therefore, 2 separate datasets (with both LM and NGS analyses 
for each sample) were compiled:  

 Calibration dataset – spans a range of ecological conditions along the 
primary nutrient/organic gradient to which diatoms are known to be 
particularly sensitive  

 Reference dataset – consists only of samples from ‘reference sites’ (that 
is, locations where anthropogenic disturbances are absent or minimal)  

Calibration dataset 

Samples were collected from all of the approximately 1,000 sites scheduled for routine 
diatom sampling in England during 2014. A subsample of 250 sites were selected to 
provide as broad a range as possible of Water Framework Directive phosphorus status 
classes across the range of alkalinity types from low to high alkalinity. This was done 
because phosphorus concentration alone is insufficient to indicate the degree of 
pressure over the full alkalinity gradient; phosphorus concentrations are naturally 
higher in high alkalinity rivers than in low alkalinity rivers (Appendix 10).  

Sites were ultimately selected by placing all sites within a matrix categorised by their 
alkalinity (1–9, 10–19, 20–29 mg CaCO3 per litre and so on) against the 5 Water 
Framework Directive phosphorus status classes (where 1 = poor and 6 = high). A 
number of sites were then selected at random from each matrix category depending on 
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how many sites occurred within that category. Where between 1 and 3 sites occurred 
in the matrix category, 1 site was selected at random to be used in the validation 
analysis. For every subsequent 3 sites occurring within the category, a further site was 
selected at random. This led to around 230 sites being selected. The additional 20 sites 
were then randomly selected from the matrix categories that contained the highest 
number of sites within them to bring the total number of sites up to 250. As diatom 
samples are collected in both spring and autumn, this meant that a total of 500 
samples were available for analysis.  

Reference dataset 

As there are very few reference sites in England, that is, following ECOSTAT criteria 
(Pardo et al. 2012), samples for this dataset were also collected from Scotland, Wales 
and Northern Ireland. A total of 232 samples from 113 sites identified as reference or 
near reference in Environment Agency (2013) were included in this exercise.  

6.2.2 Statistical analysis 

Non-metric multidimensional scaling (NMDS) (McCune and Grace 2002) was used to 
investigate the structure of the LM and NGS datasets using the R software package (R 
Development Core Team 2017) with the vegan package (Oksanen et al. 2007) for 
multivariate analyses. The aim of NMDS is to produce a low dimensional 
representation of the dissimilarity between samples, measured across all taxa. The 
success of NMDS is given by the stress, which quantifies the agreement between the 
(in our case) two-dimensional (2D) representation and original dissimilarities with 
(McCune and Grace 2002): 

 values <0.1 representing a good ordination from which inferences may be 
drawn 

 values of 0.1–0.2 representing an ordination that is useable with caution 

 values >0.3 indicating that the ordination may be misleading  

The similarity in structure between the LM and NGS ordinations was tested using a 
Procrustes analysis and associated permutation test (Peres-Neto and Jackson 2001) in 
the vegan package, and by scatterplots and computation of the Pearson correlation 
coefficient. 

Calculation of TDI4 values used DARLEQ2 software 
(www.wfduk.org/resources/category/biological-standard-methods-201). A NGS specific 
variant of the TDI (TDI5) was derived using weighted averaging to calculate new NGS 
taxon indicator scores that gave the optimal prediction of LM-TDI4 values for the 
matched LM/NGS dataset (ter Braak and Barendregt 1996, ter Braak and Looman 
1996). That is:  
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where NGSj is the NGS indicator score for taxon j, TDI4i is the LM-TDI4 value of 
sample i, yij is the relative abundance of taxon j in sample i, and n is the total number of 
samples in the dataset.  

When calculating taxon and sample scores using weighted averaging, the range of 
scores is shrunk with respect to the original values. To correct for this effect, it is 
standard practice to ‘deshrink’ the scores using a linear regression of original on 
weighted averaging predicted sites scores (Birks et al. 1990). For this study, this 

http://www.wfduk.org/resources/category/biological-standard-methods-201
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regression was applied to the NGS taxon coefficients so that the new TDI5 scores 
would be deshrunk to the correct range of values. Any taxa with indicator values <1.0 
had their values set to 1.0. Weighted averaging calculations were performed in R using 
the package rioja (Juggins 2015). The indicators values derived in this way are listed in 
Table 6.1. They can be used to derive TDI5 sample values using the following 
equations: 
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where TDI5_initiali is the new initial NGS derived TDI score for sample i, NGSj is the 
NGS indicator value for taxon j, and m is the number of taxa in sample i. 

The 2 variants of the TDI (TDI4 and TDI5) were compared using Lin’s concordance 
correlation coefficient (Lin 1989). This is a modification of correlation analysis which 
assesses the deviation from a perfect 1:1 relationship between the 2 variables. It was 
calculated by means of the epiR package (Stevenson 2010) within R. 

EQR values were computed for each sample using expected values (eTDI) derived 
from alkalinity data from the closest appropriate site. Initial comparisons used site-
specific alkalinity applied to 2014 diatom data only. This enabled a direct comparison of 
EQRs based on LM and NGS data for each site. However, classifications are not 
necessarily based on a single year’s data and this needs to be borne in mind when 
comparing the NGS based classifications with the formal classification results (Table 
6.2). EQR was calculated as:  

EQR = (100 – observed TDI) / (100 – expected TDI) 6.4  

6.3 Results 

6.3.1 Dataset composition 

The calibration and reference datasets were combined for the analyses of differences 
between LM and NGS in order to encompass the widest possible range of habitat 
conditions, from soft water upland sites in near pristine conditions to highly enriched 
lowland streams. A total of 628 samples passed NGS quality control, and had both LM 
and NGS data available for analysis.  

Composition, as analysed by LM and NGS, was broadly similar with Achnanthidium 
minutissimum type having the highest maximum relative abundance (RA) in both 
methods (Figure 6.1) and being the most frequently recorded (Figure 6.2). There were, 
however, a number of differences in details. Melosira varians, for example, was both 
more frequently recorded and occurred at higher RA in NGS than LM samples, while 
the opposite was true for Platessa conspicua. In some cases, differences may 
represent gaps in the barcode reference database (that is, Achnanthidium pyrenaicum, 
Gomphonema calcifugum); however, others are harder to explain. For example, 
Luticola ventricosa and Lemnicola hungarica occasionally occurred in high numbers in 
the NGS outputs but are unlikely to be missed by LM analysts. A discrepancy also 
occurred for the genera Fistulifera and Mayamaea; in both cases, the maximum 
abundance recorded was higher in LM than in NGS, though the number of records was 
much higher with NGS. This issue is discussed in more detail below.  
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Figure 6.1 Differences in maximum abundance of the 50 most common diatom 
taxa in 628 samples as recorded by LM to show comparison with NGS data  

Notes:  Barcode for taxa absent from database. 
 A value of 0.5 means this is the maximum RA at which the taxon in question was 

recorded. 
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Figure 6.2 Differences in the total number of times that a taxon was recorded 
for the 50 most frequently occurring diatom taxa in samples as recorded by LM 

compared to NGS in the 628 sample dataset.  

Notes:  Barcode of taxa absent from database.  

Figures 6.1 and 6.2 illustrate 2 separate problems faced in the development of a 
workable NGS method. The former illustrates fundamental differences in the units 
counted by the 2 methods (diatom valves for LM, rbcL sequences for NGS), while the 
latter highlights the ability of the barcode database to detect the full range of variation 
as understood by current morphology-based taxonomy.  

The former issue means that there was rarely 1:1 correspondence between the 
proportions of individual taxa in LM and NGS. The general tendency was for small, 
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single-celled species such as Achnanthidium minutissimum and Amphora pediculus to 
have lower representation in NGS than LM, while larger cells with 2 chloroplasts (for 
example, Navicula lanceolata) or many chloroplasts (for example, Melosira varians) 
typically had greater representation in NGS compared with LM (Figure 6.3). There was 
considerable scatter in all the relationships between LM and NGS for individual taxa, 
reflecting uncertainty in both axes associated with the calculation of proportions of 
single taxa from a pool of many taxa. So while species A might generally form a higher 
proportion of the total in LM compared with NGS, this effect might be masked if species 
A co-exists with species B, which forms a much greater proportion in NGS than in LM. 
In practice, there are upwards of 20 taxa per sample, all of which will have an individual 
response, along with components of stochastic and analytical variability.  

Particular issues were encountered for the genera Fistulifera and Mayamaea, both of 
which are far more prominent in many NGS reads but are absent from corresponding 
LM analyses (Figure 6.3). Representatives of these genera are tiny (<10µm) with 
weakly silicified frustules that may not survive the preparation process used in LM. 
When they were recorded in LM, they were often abundant (Figure 6.1), but there were 
many fewer records than for NGS. 

 

Figure 6.3  Differences between representation of common taxa in LM and 
NGS analyses of selected diatom species: (a) Achnanthidium minutissimum type 
(small, 1 chloroplast); (b) Amphora pediculus (small, 1 chloroplast); (c) Navicula 

lanceolata (medium sized, 2 chloroplasts); (d) Melosira varians (large, many 
chloroplasts); (e) Fistulifera saprophila (very small, 4 chloroplasts, weakly 

silicified); (f) Mayamaea atomus including var. permitis (very small, possibly 2 
chloroplasts, weakly silicified) 

Mismatches in Figure 6.2 represent 3 possible situations.  

The first is that, because NGS typically produces 2 orders of magnitude more data per 
sample than LM, the detection limit is much lower. Hence, a species ‘missed’ by LM 
may be detected by NGS, albeit as a very small proportion of the total (and, as such, is 
unlikely to have a significant effect on interpretation). This component will be 
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exacerbated in situations such as Melosira varians (see above), which are typically 
overrepresented in NGS compared with LM (Figure 6.3).  

However, it is also possible that some of the discrepancy within Figure 6.2 reflects 
limitations in either the barcode database or morphology-based taxonomy. In cases 
where a true ‘biological’ species can be summarised by distinct morphological criteria, 
there should be a good correspondence with the corresponding barcode, as is the case 
for Navicula lanceolata (Figure 6.4a). However, many taxa are known or suspected to 
be complexes and, in many cases, the limits of species within these complexes are still 
the subject of debate. In some instances (for example, Nitzschia palea), the complex is 
represented by a number of barcodes and the barcode database can be assumed to 
reflect much of the genetic diversity (Figure 6.4b). In other cases, the complex may be 
represented by fewer barcodes (for example, Amphora pediculus, Cocconeis 
placentula), leading to underrepresentation in the NGS data (Figure 6.4c). Finally, in a 
few instances (for example, Gomphonema calcifugum), the absence of a barcode 
altogether means that taxa will be missed entirely by NGS. 

A third reason for discrepancies may be limitations in the LM method. Firstly, the LM 
method does not distinguish between cells that were alive or dead at the time of 
sampling, and secondly, the use of strong oxidising agents in the preparation of 
samples for analysis can lead to the dissolution of weakly silicified valves. Conversely, 
every record of an rbcL gene does not necessarily originate from a cell that was 
healthy at the time the sample was collected, and it is best to assume that the 2 types 
of data offer different perspectives, rather than that one is ‘right’ while the other is 
‘wrong’. 

 

Figure 6.4 Conceptual diagram of relationship between LM and NGS outputs 
for 4 different scenarios: (a) clearly defined taxon aligns with barcode; (b) 

species complex with several different barcodes represented in the barcode 
database; (c) species complex poorly represented in the barcode database; and 

(d) species (or complex) not represented in the barcode database 

Notes: ‘+’ or ‘-’ indicate that a barcode either does or does not exist for a particular 
genotype within a species complex. 

6.3.2 Comparisons of LM and NGS datasets  

Following these initial comparisons of the distribution of species within the LM and 
NGS datasets, both were then subject to NMDS ordinations to examine the 
consequences of any differences on the structure of the datasets. This, in turn, would 
indicate whether: 

 

Genetic variation 

a.                       b.                                   c.                        d 

+            -  +   -   +   +  -  +          -  -   -   -   +  -   -              - 
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 ecological status concepts developed for LM can be reliably transferred to 
NGS 

 inferences derived from NGS data can be compared with older data based 
on LM 

In both cases, NMDS yielded ordinations with low levels of stress (LM: 0.17, NGS: 
0.18) that faithfully represented the original inter-sample dissimilarities. The 2 
ordinations showed similar structure in terms of the first axes of each being strongly 
correlated (Pearson correlation coefficient, r = 0.87) (Figure 6.5) and in terms of the 
correlation between the first 2 axes assessed by a Procrustes analysis (p = 0.001; 999 
permutations). Moreover, the first axis of the NMDS based on LM was strongly 
(negatively) correlated with TDI4 (Pearson correlation coefficient, r = -0.94) (Figure 6.6)  

 

Figure 6.5 Comparison of the first axes of NMDS ordinations performed using 
LM and NGS data (r = 0.87) 

 

Figure 6.6 Axis 1 of NMDS of LM data versus TDI4 (r = -0.94) 
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TDI4, calculated using the current version from NGS data was strongly correlated with 
the TDI4 calculated using LM data (Figure 6.7a; Pearson correlation coefficient, r = 
0.86), but the line deviated from 1:1 (Lin’s concordance correlation coefficient: 0.81), 
with many NGS analyses returning higher values for the same sample than LM when 
the TDI (LM) was low and moderate. This may reflect the generally high numbers of 
Achnanthidium minutissimum, which has a high LM to NGS ratio (Figure 6.3a), in low 
nutrient (low TDI) sites and higher numbers of taxa such as Navicula lanceolata and, in 
particular, Melosira varians, which have much lower LM:NGS ratios (Figure 6.3c, 
Figure 6.3d).  

These initial results suggested the need to recalibrate the TDI for use with NGS data. 
Figure 6.7b shows the outcome when NGS specific weights are calculated by weighted 
averaging, using the LM TDI as the explanatory variable. 

 

Figure 6.7  Comparison between the TDI calculated on LM and NGS data for 
628 samples from UK rivers: (a) using TDI4 (LM) weights to calculate TDI for NGS 

data (Pearson’s r = 0.86, Lin’s r = 0.81; and (b) using NGS specific weights 
(‘TDI5’, Pearson’s r = 0.90, Lin’s r = 0.89; RMSE = 9.3)  

Notes: RMSE = root mean square error 

However, early attempts at this exercise revealed a continuing strong influence of 
Melosira varians and RAs of this taxon were down weighted (multiplied by 0.5) to 
reduce this effect. The Lin’s concordance correlation coefficient rose from 0.81 to 0.89 
as a result of these changes. There was, in addition, a strong correlation between this 
NGS based variant of the TDI and the first axis of an ordinations based on the NGS 
data (Figure 6.8; r =-0.95), indicating that the TDI5 captured the main ecological 
gradient in the data. Using the NGS specific variant of the TDI (referred to henceforth 
as ‘TDI5’), 78% of all samples fell within 10 TDI units of the current LM based TDI4, 
compared with 68% when the TDI4 was applied to NGS data (Figure 6.9). For context, 
10 TDI units represent 10% of the total TDI scale; acceptable variation for replicate 

analyses of the same sample by LM is 8 TDI units. Species weights for TDI5 are 
given in Table 6.1.  
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Figure 6.8 Axis 1 of NMDS of NGS data versus TDI5 (r = -0.95). 

 

Figure 6.9 Histograms showing agreement between TDI calculated with LM 
and NGS data for 628 samples from UK rivers, calculated using NGS data and 

TDI4 weights (left) and calculated using NGS specific weights (right) 

The above evaluation of TDI5 is derived using the full NGS dataset and the model 
tested using the same dataset. Consequently the correlation between TDI5 and TDI4 
(derived from NGS and LM data respectively) may be over optimistic. Since there was 
no independent dataset with which to evaluate the model, bootstrap cross-validation 
was used to estimate the correlation between TDI4 and TDI5 likely when TDI5 is 
applied to independent data. Results using 1,000 bootstrap samples demonstrated the 
relationship to be robust; the bootstrap correlation coefficient is 0.89, with a 95% 
confidence interval of 0.86–0.91. Corresponding values for Lin’s concordance 
correlation were also 0.89, with a 95% confidence interval of 0.86–0.91. 
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Table 6.1 Species coefficients 1 

Taxon ID Taxon Coefficient Note 

AC143A Achnanthes oblongella 1.00  

AC004A Achnanthes pseudoswazi 1.47  

XX0021 Achnanthidium coarctatum 2.06  

ZZZ835 Achnanthidium minutissimum 1.63 RA upweighted by 1.5 

AT9999 Actinocyclus sp. 3.36  

ADLA-01 Adlafia bryophila 2.96  

ADLA-03 Adlafia minuscula 3.28  

XX0004 Amphora berolinensis 3.94  

AMPH-05 Amphora pediculus 5.24  

BA005A Bacillaria paxillifer 3.97  

XX0023 Berkeleya sp. 4.11  

BR010A Brachysira neoexilis 1.00  

BRAC-02 Brachysira vitrea 1.00  

CA9999 Caloneis sp. 4.50  

COCO-01 Cocconeis euglypta 2.86  

CO005A Cocconeis pediculus 3.69  

CI002A Craticula accomoda 3.17  

YH001A Ctenophora pulchella 1.80  

CL001A Cymatopleura solea 2.04  

CM007A Cymbella cymbiformis 1.82  

CM9999 Cymbella sp. 2.36  

CYMB-01 Cymbopleura naviculiformis 1.82  

DE003A Denticula kuetzingii 5.34  

DT022A Diatoma moniliformis 1.85  

DT9999 Diatoma sp. 3.99  

DT004A Diatoma tenuis 2.64  

DIAT-01 Diatoma vulgaris 4.01  

DD001A Didymosphenia cf geminata 1.48 See note 2 

DP9999 Diploneis subovalis 4.97  

EL001A Ellerbeckia sp. TN-2014 isolate 12 4.82  

EY011A Encyonema minutum 2.32  

EY016A Encyonema silesiacum 2.21  
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Taxon ID Taxon Coefficient Note 

EY9999 Encyonema sp. 2.82  

ENCS-07 Encyonopsis falaisensis 1.99  

ENCS-01 Encyonopsis microcephala 2.10  

EOLI-01 Eolimna minima 3.34  

XX0008 Eolimna sp. 4.80  

EP003A Epithemia argus 3.86  

EP001A Epithemia sorex 1.44  

EUCO-01 Eucocconeis laevis 1.00  

EU013A Eunotia arcus 1.00  

EU070A Eunotia bilunaris 1.00  

EU018A Eunotia cf formica 1.00  

EU009A Eunotia exigua 1.00  

EU107A Eunotia implicata 1.00  

EU110A Eunotia minor 1.00  

FA001A Fallacia pygmaea 3.73  

FIST-02 Fistulifera pelliculosa 3.90  

FIST-01 Fistulifera saprophila 3.63  

FIST-03 Fistulifera solaris 3.88  

FR009A Fragilaria capucina 1.19  

FR040B Fragilaria mesolepta 1.55  

FRAG-03 Fragilaria pararumpens 1.00  

ZZZ842 Fragilaria perminuta 2.54  

ZZZ939 Fragilaria radians 3.73  

FR9999 Fragilaria sp. 1.89  

SY013A Fragilaria tenera 1.00  

FR007A Fragilaria vaucheriae 2.26  

FRUS-03 Frustulia crassinervia 1.00  

GEIS-02 Geissleria decussis 3.12  

ZZZ834 Gomphonema ‘intricatum’ type 2.69  

GO006A Gomphonema acuminatum 1.00  

GO003E Gomphonema angustatum 2.90  

GO029A Gomphonema clavatum 2.65  

GO074A Gomphonema hebridense 1.00  
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Taxon ID Taxon Coefficient Note 

GO050A Gomphonema minutum 2.36  

GO013A Gomphonema parvulum 1.45  

XX0006 Gomphonema pseudobohemicum 2.83  

GO9999 Gomphonema sp. 2.45  

GO023A Gomphonema truncatum 2.75  

AM084A Halamphora montana 3.89  

HN001A Hannaea arcus 1.00  

KARA-03 Karayevia ploenensis 5.09  

ZZZ900 Lemnicola hungarica 2.36  

LU9999 Luticola sp. 3.23  

LU009A Luticola ventricosa 4.97  

MA9999 Mastogloia sp.29x07B 2.12  

MAYA-01 Mayamaea atomus 3.83  

ME015A Melosira varians 3.99 RA downweighted by 0.5 

MR001A Meridion circulare 1.27  

NA037A Navicula angusta 1.55  

NA066A Navicula capitata 4.98  

NA007A Navicula cryptocephala 3.38  

NA751A Navicula cryptotenella 4.27  

NA023A Navicula gregaria 3.95  

NA009A Navicula lanceolata 3.97 RA downweighted by 0.5 

NA030A Navicula menisculus 4.18  

NA003A Navicula radiosa 3.80  

NA9999 Navicula sp. 3.61  

NA095A Navicula tripunctata 4.38  

NA063A Navicula trivialis 4.13  

NA054A Navicula veneta 4.04  

NE003A Neidium affine 4.29  

NE007A Neidium dubium 2.20  

NI042A Nitzschia acicularis 3.68  

XX0002 Nitzschia alicae 2.91  

NI014A Nitzschia amphibia 5.48  

NI028A Nitzschia capitellata 4.22  
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Taxon ID Taxon Coefficient Note 

NI024A Nitzschia dissipata 3.86  

NI002A Nitzschia fonticola 1.57  

NI034A Nitzschia hantzschiana 3.33  

NI052A Nitzschia heufleuriana 3.70  

NI043A Nitzschia inconspicua 4.66  

NI031A Nitzschia linearis 4.03  

NI009A Nitzschia palea 3.63  

NI033A Nitzschia paleacea 3.49  

NI005A Nitzschia perminuta 1.52  

NI152A Nitzschia pusilla 4.64  

NI025A Nitzschia recta 4.56  

XX0020 Nitzschia romana 3.63  

NI006A Nitzschia sigma 3.63  

NI046A Nitzschia sigmoidea 4.53  

NI166A Nitzschia sociabilis 2.07  

NITZ-03 Nitzschia soratensis 3.90  

NI9999 Nitzschia sp. 3.17  

XX0022 Parlibellus hamulifer 4.25  

PARL-01 Parlibellus protracta 3.00  

PE002A Peronia fibula 1.00  

PI006A Pinnularia grunowii 2.79  

PI011A Pinnularia microstauron 1.00  

XX0007 Pinnularia neomajor 2.23  

PI9999 Pinnularia sp. 1.00  

PI022A Pinnularia subcapitata 1.03  

ZZZ872 Placoneis clementis 2.91  

ZZZ896 Planothidium frequentissimum 4.26  

ZZZ897 Planothidium lanceolatum 3.34  

PLAT-01 Achnanthes Platessa conspicua 5.89  

ZZZ910 Psammothidium bioretii 2.07  

PS001A Pseudostaurosira brevistriata 4.55  

RE001A Reimeria sinuata 2.87  

RC002A Rhoicosphenia abbreviata 4.46  
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Taxon ID Taxon Coefficient Note 

RH001A Rhopalodia gibba 1.00  

SELL-01 Sellaphora joubaudii 4.66  

SL002A Sellaphora seminulum 4.14  

SA006A Stauroneis phoenicenteron 2.43  

SR001A Staurosira construens 3.28  

SR002A Staurosira elliptica 4.41  

STAS-01 Staurosirella martyi 4.31  

SU073A Surirella brebissonii 3.49  

SY003A Synedra acus 1.43  

TA001A Tabellaria flocculosa 1.00  

TU003A Tabularia fasciculata 3.86  

TF9999 Tryblionella constricta 2.76  

ZZZ985 Tryblionella debilis 4.13  

SY001A Ulnaria ulna 2.66  

 
Notes 1 Table gives species scores for TDI5 (see Section 6.2.2 for details) 

2 The species epiphet Didymosphenia geminata has been applied to all records of 
the genus Didymosphenia assigned to NGS reads. D. geminata is not represented 
in the barcode database. Some records of D. dentata were assigned during BLAST 
searches of GenBank, although this species has not been recorded from the UK.  

How much of the observed difference between the TDI calculated with LM and NGS 
data is likely to be due to gaps in the barcode database? The database currently 
represents just 176 of over 2,500 species recorded from UK and Ireland freshwaters? 
Figure 6.10 shows the relationship between the LM TDI calculated with all available 
taxa (x axis) and the LM TDI calculated with just those taxa included in the barcode 
database. The high correlation between the 2 variants (Pearson correlation coefficient, 
r = 0.991) suggests that most of the biological variation within diatom assemblages is 
being captured by the barcode database, although there are still a few samples where 
the variation is greater. A few ecologically significant taxa – in particular, 
Achnanthidium pyrenaicum, Gomphonema calcifugum and G. pumilum – are still 
absent from the barcode database or are underrepresented.  
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Figure 6.10  Difference between TDI4 based on LM data calculated with all taxa 
and with just those taxa represented in the barcode database  

6.3.3 From metric to classification: calculation of eTDI and EQR 

The next step is to transform the raw TDI into an EQR by dividing by a denominator 
that provides an estimate of the TDI at reference conditions for that site. For the current 
LM based approach, this is determined by an equation that uses alkalinity to predict the 
value of the TDI:  

eTDI4 = 9.933 × exp(log10(Alk) × 0.81) 6.5 

where eTDI4 is the expected value of TDI4 and Alk is the average alkalinity at the site. 

Figure 6.11a shows a strong correspondence between this equation and LM analyses 
of 171 samples from this study, which were collected from reference sites throughout 
the UK (r2 = 0.58).  

However, Equation 6.5 appears to under predict eTDI when applied to the NGS data. 
Therefore the procedure in the derivation of the original TDI4 was followed and a new 
equation was fitted to the NGS data using least squares regression (Figure 6.11b).  

eTDI5 = -11.43 + [32.65 × log10(Alk)]  6.6 

where eTDI5 is the expected value of TDI5. 

Equation 6.6 provided a means to calculate the site-specific predicted NGS-TDI score 
from mean site alkalinity (eTDI5) for use in calculating the EQR, and was adopted for 
subsequent analyses of the NGS data.  
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Figure 6.11 Relationship between alkalinity and TDI for 171 samples from 
reference sites throughout the UK: (a) based on LM results and TDI4 calculation 
(Equation 6.5); and (b) based on NGS results and TDI5 calculation (see Equation 
6.6).  

Like the raw metrics, there was a strong relationship between EQRs computed with LM 
and NGS approaches (Figure 6.12).  

 

Figure 6.12 Comparison between EQR calculated on LM and NGS data for 620 
samples from UK rivers for which alkalinity data were available 

Notes: Open circles show samples from the entire alkalinity gradient (1.7–353 mg CaCO3 
per litre) (r = 0.75). 
Closed circles show samples from sites where alkalinity is <120 mg CaCO3 per 
litre) (r = 0.77).  
Diagonal line shows slope = 1.  
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Many of the outliers around this relationship are samples from sites with high alkalinity 
(>120 mg CaCO3 per litre), where it is recognised that the current phytobenthos EQRs 
do not necessarily reflect the response to nutrient pressure effectively. Excluding these 
high alkalinity data from the relationship increases the correlation slightly (Pearson 

correlation coefficient, r = 0.75 for all sites and 0.77 for sites with alkalinity 120 mg 
CaCO3 per litre).  

Using normalised versions of the current intercalibrated class boundaries (high: 0.8, 
good: 0.6, moderate: 0.4, poor: 0.2) and amalgamating all samples from a water body 
following current Environment Agency classification procedures, 70% of water bodies 
were assigned to the same class using both LM and NGS. Some 98% agreed to within 
one class (Table 6.2), with the current LM method showing a tendency (21% of sites) to 
more stringent classifications than NGS. As a result, no sites currently classified as 
high or good status would be downgraded to moderate, poor or bad status using NGS. 
However, this analysis is based on the sub-element phytobenthos only. In practice, 
final water body status is determined from several biological quality elements, which 
will further buffer the effect of any changes in status based on phytobenthos alone. 

Table 6.2  Comparison between ecological status classes computed by LM 
and NGS variants of the TDI  

 
TDI5 (NGS) 

TDI4 (LM) H G M P B 

H 105 7 0 0 0 

G 31 34 2 0 0 

M 3 18 6 0 0 

P 0 0 1 0 0 

B 0 0 0 0 0 

 
Notes: n = 207 water bodies 

B = bad status; P = poor status; M = moderate status; G = good status; H = high 
status 

Green shading: identical classification for both LM and NGS 
Yellow shading: agreement to within one class between LM and NGS 
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7 Comparison of uncertainty in 
LM and NGS analyses 

7.1 Introduction 

The previous sections have established that there is a strong correspondence between 
LM and NGS analyses across the nutrient/organic pressure gradient while, at the same 
time, noting some important differences in the expression of individual species. As 
most ecological assessment methods involve the conversion of a continuous EQR 
scale to a categorical classification of status, some mismatch between class (see Table 
6.2) is statistically inevitable when 2 classifications are compared, reflecting 
uncertainties in the underlying model. Other aspects of uncertainty will reflect 
stochastic and analytical variability introduced during the data gathering phases. 
Although LM and NGS share the same sampling process, subsequent treatment of 
samples is different in each case and it is therefore likely that the uncertainties 
associated with LM and NGS will also differ. This, in turn, will influence the confidence 
with which water bodies can be assigned to particular status classes.  

This section describes experiments on variation at a number of levels, from field 
sampling through to laboratory analysis, in order to investigate differences in method 
uncertainty and performance characteristics between the current approach using LM 
and the NGS analytical process. 

7.2 Methods 

7.2.1 Study design 

The sources of uncertainty investigated during this study are listed in Table 7.1. 
Background details of the locations from which samples were collected are provided in 
Table 7.2. 

Triplicate samples were collected from one site per water body in spring 2014 to allow 
within site variation to be estimated; and one of these samples was also subsampled to 
allow analytical variation to be established (Experiment 1). In addition, samples were 
collected from this site and 2 others within the same water body on 4 occasions, 
allowing simultaneous investigation of variation within a water body and between 
seasons (Experiment 2).  

One subsample per location in Experiment 1 was also circulated to a number of 
experienced analysts as part of the UK/Ireland diatom ring test. The standard deviation 
of the TDI was used as an estimate of between-operator variation. This was compared 
with the standard deviation for 2 operators each using 2 machines (see Section 5.1.2) 
to indicate the scale of between-operator variation for NGS. 
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Table 7.1 Sources of uncertainty investigated during the study 

Source Investigated by ... 

Water body 

3 locations within a single water body 

Stretches chosen to have no major point source inputs 
along their length 

Site 

3 samples collected from a site (location within a water 
body from which routine samples are collected) 

Samples spaced ~10m apart (upstream–downstream) 

Season 4 samples collected over a 12 month period 

Analytical (within 
sample) (‘repeatability’) 

LM: 3 separate slides prepared from individual samples  

NGS: 3 separate aliquots taken for subsequent DNA 
extraction, amplification and analysis 

Analytical (between-
analyst) (‘reproducibility’) 

LM: one sample per water body used for UK/Ireland 
diatom ring test; results for ‘expert panel’ (experienced 
analysts) used as indication of between-analyst variation. 

NGS: one sample per water body prepared separately by 
2 individuals and analysed on 2 separate NGS machines 

 

Table 7.2 Locations and characteristics of sites visited during investigations 
of uncertainty  

Water body/site NGR Altitude 
(m) 

Alkalinity  
(mg CaCO3 per 
litre) 

River Ehen (high status, Special Area of Conservation) 

Scout Camp 1 NY 087 153 110 <5 

Mill, footbridge NY 081 152 100 – 

Oxbow 2 NY 072 157 95 <5 

Upper River Wear (good status) 
  

Stanhope NY 991 392 200 74.1 

Frosterley NZ 036 369 160 – 

Wolsingham NZ 075 369 135 84.2 

River Derwent (County Durham) (moderate status) 
 

Ebchester 3 NZ 101 556 60 44.5 

Low Westwood NZ 111 565 57 – 

Blackhall Mill NZ 122 569 55 85.3 

River Team (poor/bad status) 4 
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Water body/site NGR Altitude 
(m) 

Alkalinity  
(mg CaCO3 per 
litre) 

D/S East Tanfield STW 5 NZ 198 558 120 103.7 

Causey Arch NZ 202 554 100 – 

Beamish Hall NZ 215 549 85 70.2 

 
Notes: Alkalinity is presented as a site average (all records since 1 January 2010) based 

on routine Environment Agency chemical sampling, except for the River Ehen, 
where most values are below the routine detection limit (5 mg CaCO3 per litre). 
1 Closest chemical sampling point: Bleach Green Bridge (NY 085 154) 
2 Closest chemical sampling point: Ennerdale Bridge (NY 069 158)  
3 Closest chemical sampling point: Shotley Bridge (NZ 091 527) 
4 The River Team is classified as ‘heavily modified’; current ecological potential is 
defined as ‘moderate’. Phytobenthos results are not presented in the latest River 
Basin Management Plan, but invertebrates are ‘poor (very certain)’ and phosphate 
is ‘bad (very certain)’ 
5 Closest chemical sampling point: u/s East Tanfield STW (NZ 197 553) 
NGR = National Grid Reference; STW = sewage treatment works  

7.2.2 Statistical analysis 

Initial analyses of data structure used NDMS (see Section 6.2.2) on the combined 
datasets for Experiments 1 and 2. Following this, data for Experiments 1 and 2 were 
analysed separately, examining the variation in TDI within and between treatments 
using analysis of variance where initial tests demonstrated homogeneity of variances, 
or non-parametric alternatives (Kruskal–Wallis test for one-way comparisons, 
Friedman’s test for two-way comparisons). The Fmax test was used to test for 
homogeneity of variances. 

7.3 Results 

7.3.1 Preliminary analysis of data structure 

Preliminary analyses investigated the structure of the pooled data from both 
experiments. For both LM and NGS, NMDS ordinations of the data showed low stress 
(0.145 and 0.169 respectively), good separation of the 4 sites, and a strong relationship 
between axis 1 of the ordination and the respective TDI (r = 0.861 for LM and 0.967 for 
NGS). There were, in addition, strong correlations between the first axis of the LM and 
NGS ordinations (r = 0.832) and between TDIs (r = 0.887) (Figure 7.1), though there 
were some interesting patterns within the datasets. In the River Ehen, for example, 
NGS results were fairly consistent despite variability in the LM results, while in the 
River Team the opposite is true, with high variability in the NGS results but stable LM 
results. 
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Figure 7.1 Within water body and within site variation in LM and NGS analyses 
of diatom samples from 4 contrasting river sites in England  

Notes: Results are expressed as TDI4 (LM) and TDI5 (NGS) and the diagonal line 
indicates slope = 1 (LM = NGS).  
Closed symbols = within site variation on a single day. 
Open symbols = within water body variation over the course of a year.  
See text for more details.  

7.3.2 Within site and analytical variation (Experiment 1) 

Although replicate analyses of 3 samples from one site per water body collected on the 
same day tended to have less variation than samples collected over time or between 
sites in the same water body (see Sections 7.3.3 and 7.3.4), there was considerable 
variation among LM analyses from the River Ehen (high status site) and among NGS 
analyses from the River Team (poor/bad status site) (Figure 7.1). The lack of variation 
in NGS in the former may represent the distinctive flora in the River Ehen, which is 
challenging to LM analysts and not all of whose representatives are represented in the 
barcode database at present. Within site variation in the River Team was on a similar 
scale to that observed for the Rivers Derwent and Wear; however, considerable within 
water body variation was observed for the NGS results, along with some marked 
differences between LM and NGS.  

The most abundant diatom observed with LM was Luticola goeppertiana, a species not 
in the barcode library, while 2 Gomphonema species dominated NGS analyses. One of 
these (Gomphonema pseudobohemicum) was not recorded at all by the LM analyses 
and is, in any case, a species of oligo- to mesotrophic, circumneutral to slightly acid 
streams (Hofmann et al. 2011); the other Gomphonema species was present but in 
lower numbers, This suggests that part of the variation described in Section 6 may 
represent shortcomings in the breadth of species (and genotypes) in the barcode 
library at present: if a species is not represented with a reference DNA barcode, it will 
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be assigned to the species that has the closest barcode match. In addition, the River 
Derwent (moderate status) has consistently higher results for NGS than for LM, 
presumably due to similar factors.  

In most cases, analytical variation was of a similar magnitude for both LM and NGS, 
although tending to be slightly lower for LM than for NGS for the River Derwent and 
lower for NGS than for LM in the Rivers Ehen and Wear (Table 7.3). Variance was 
much higher for both methods in the River Team compared with other rivers, though it 
was still lower for NGS than LM. Between-sample variation showed variation between 
samples in all cases except for NGS in the River Team.  

Table 7.3 Variation within (analysis of 3 separate slides) and between 
replicate samples from the same site (each approximately 10m apart) at 4 water 

bodies of contrasting ecological quality in northern England  

Location 

LM NGS 

Variance within 
samples (n = 3) 

F 
Variance within 
samples (n = 3) 

F 

Ehen, Oxbow     

A 0.053  0.029  

B 0.743  0.066  

C 0.152 42.34 *** 0.010 57.9 *** 

Wear, Wolsingham     

A 0.021  0.014  

B 0.305  0.201  

C 0.120 87.35 *** 0.542 58.36 *** 

Derwent, Ebchester     

A 0.042  0.121  

B 0.001  0.011  

C 1.384 75.18 *** 0.086 1629 *** 

Team, Causey Arch    

A 44.52  12.63  

B 33.62  28.54  

C 23.16 6.05 * 12.54 1.46 N.S. 

 
Notes: Variances were homogeneous for all datasets.  

Within sample variation expressed as variance; between-sample variance expressed 
as F. 

* p < 0.05; ** p  0.05, < 0.01; ***: p  0.01, < 0.001; N.S. = not significant 

This experiment was performed with a single LM analyst and a single NGS sequencer. 
A direct comparison of between-operator variation for LM and NGS is not possible, but 
an insight into this is given in Figure 7.2, which shows between-operator variation for 1 
sample from each of the 4 locations, alongside the median of between-operator and 
instrument variation for samples from each of the 4 locations (see Section 5.1.2 for 
more details). Variation among LM operators was highest at the River Ehen – an 
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oligotrophic, soft water stream in north-west England with a challenging assemblage of 
diatoms. In all cases, however, between-operator variation in LM analyses was greater 
than between instrument variation in NGS, demonstrating that the NGS approach 
produces more consistent results. 

 

Figure 7.2 Variation (as standard deviation of TDI) between analytical results 
(LM) from experienced analysts for one sample from each water body reported in 

Table 7.2 alongside results from tests of analytical specificity for NGS 

Notes: Details of the tests of analytical specificity are given in Section 5.1.2. 

7.3.3 Within water body variation (spatial and temporal) 

Both temporal (Figure 7.3a) and spatial (Figure 7.3b) variation within water bodies 
(expressed as standard deviation) were of a similar magnitude for LM and NGS 
(Spearman’s rank correlation coefficient r = 0.72, p < 0.01; and r = 0.790, p < 0.01 
respectively). However, variation in NGS tended to be lower (that is, most points below 
line indicating slope = 1) in more cases for each of site, temporal and water body 
variation.  
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Figure 7.3  Within site and within waterbody variation in LM and NGS analyses 
of diatom samples from 4 contrasting river sites in England expressed as 

standard deviation: (a) water body variation expressed as spatial variation within 
the water body (n = 3) on 4 separate occasions; and (b) water body variation 
expressed as temporal variation (n = 4) at each of 3 locations per water body  

Notes: Diagonal line indicates slope = 1 (that is, identical variability using both methods). 
Closed symbols = within site variation on a single day 
Open symbols = within water body variation over the course of a year 
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Following this overview, each water body was analysed separately. Preliminary Fmax 
tests indicated that the assumption of homogeneous variances was violated once for 
LM analyses (seasonal variation in the River Derwent) and 4 times for NGS analyses 
(both seasonal and between-site variation in the Rivers Derwent and Ehen).The non-
parametric Kruskal–Wallis and Friedman tests were therefore used in place of 
conventional analysis of variance.  

Temporal variation exceeded spatial variation in almost all cases using LM (Table 7.4), 
though it was only significant (that is, p < 0.001) in the River Derwent. Despite this, 
seasonality was apparent in all cases for LM (Figure 7.4), though less so for NGS 
(Figure 7.5). The seasonal patterns also varied between rivers, with the lowest TDI 
values recorded in the summer in all but the Ehen, where winter samples were lowest. 
Highest values were recorded in the autumn (Ehen), winter (Wear, Team) or spring 
(Derwent) for LM (Figure 7.4). In contrast, seasonal patterns were less pronounced for 
NGS (Figure 7.5; Table 7.4). Spatial variation within water bodies for NGS was 
significant only in the Rivers Ehen and Team.  

Table 7.4 Outcome of one-way Kruskal–Wallis (KW) and two-way Friedman (F) 
tests on within water body variation in TDI determined by LM and NGS 

River 

LM NGS 

Spatial Temporal 2-way Spatial Temporal 2-way 

KW KW F KW KW F 

Ehen 3.50 N.S. 6.28 N.S. 7.4 N.S. 8.0 *S. 1.87 N.S. 6.6. N.S. 

Wear 1.19 N.S. 7.51 N.S. 7.0 N.S. 1.19 N.S. 6.49 N.S. 5.8 N.S. 

Derwent 1.08 N.S. 8.44 * 4.5 N.S. 7.42 * 1.36 N.S. 6.0 * 

Team 1.42 N.S. 5.61 N.S. 4.2 N.S. 7.38 * 0.74 N.S. 1.0 N.S. 

 
Notes: * p < 0.05; N.S. = not significant 
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Figure 7.4 Seasonal variation in TDI4 (LM analyses) in the Rivers Ehen, Wear, 
Derwent and Team 
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Figure 7.5  Seasonal variation in TDI5 (NGS analyses) in the Rivers Ehen, 
Wear, Derwent and Team 

7.3.4 Overview of sources of uncertainty in LM and NGS 
assessments of ecological status using diatoms 

The results from the previous 2 sections can now be collated and combined with data 
from Section 5.1.2 to allow comparisons of the scale of the different sources of 
uncertainty associated with LM and NGS (Figures 7.6 to 7.9). One additional source of 
variation is included on these plots, that is, that between diatoms and other algae. This 
is based on variation between the Norwegian non-diatom index, PIT (Schneider and 
Lindstrøm 2011) and the TDI based on samples collected from the same site on the 
same day (Schneider et al. 2013); 95% confidence limits of predictions were estimated 
by eye and then halved to give an approximate value that was used on all 4 plots to 
indicate the scale of an uncertainty component that would otherwise be invisible.  

These plots allow comparisons between different sources of variation within a single 
water body. Caution is needed for comparisons between water bodies as assumptions 
regarding homogeneity of variance are not always satisfied (see Section 7.3.3) and 
standard deviations will be influenced by the site mean. Some generalisations are, 
nonetheless possible (assuming standard deviation in TDI of <2 = low, 2–6 = 
intermediate and >6 = high):  

Analytical variation (that is, replicate analyses of the same sample by a single analyst 
and by several analysts) generally has low levels of variation for both NGS and LM 
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(Table 7.3). Reproducibility (that is, replicate analyses by several 
individuals/laboratories) is higher for NGS than for LM. Repeatability (that is, replicate 
analyses by the same individual/laboratory) is similar or slightly lower for NGS 
compared with LM.  

Variability at higher spatial and temporal scales is generally greater than for analytical 
variation for both LM and NGS (Figures7.6 to 7.9). However, it varies considerably from 
river to river. There was no consistent trend of LM being either lower or higher than 
NGS. It is possible that apparently low levels of variation at these scales in the River 
Ehen, in particular (Figure 7.6), may be an artefact of the limited coverage of the flora 
found at this site in the barcode library. However, barcodes for missing species can be 
added to the barcode library in the future as they become available, allowing the 
precision of the NGS method to improve over time. 

Analytical variation by both approaches is generally lower or of a similar magnitude to 
the variation between ecological status estimates based on diatoms and non-diatoms. 
Water body spatial and temporal variation of diatoms, whether by NGS or LM, in 
contrast, is similar or higher. 

Overall, NGS provides greater analytical precision than the current LM approach. 
However, the benefits of the greater analytical precision obtained from NGS are 
dampened, to some extent, by other sources of error (for example, between season, 
within site and within water body). This means that it is unlikely to lead to greater 
confidence of class for water body level status classifications. However, it does have 
the potential to improve consistency of analysis through automation (see Section 
5.1.2), particularly at sites where there is a challenging assemblage of diatoms, as this 
appears to be an area where variability is introduced in the LM approach. 

 

Figure 7.6 Sources of uncertainty in TDI calculated using LM and NGS data 
from samples collected from the River Ehen (high status)  

Notes: Within sample, between-analyst variation for NGS is 0.068. 
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Figure 7.7  Sources of uncertainty in TDI calculated using LM and NGS data 
from samples collected from the River Wear (good status)  

 

Figure 7.8 Sources of uncertainty in TDI calculated using LM and NGS data 
from samples collected from the River Derwent (moderate status)  
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Figure 7.9 Sources of uncertainty in TDI calculated using LM and NGS data 
from samples collected from the River Team (poor/bad status) 
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8 Case study: application of the 
method to an operational 
investigation 

8.1 Introduction 

Having developed an NGS compatible metric and examined the performance of this at 
different spatial and temporal scales, the final test was to apply the method to a ‘live’ 
operational investigation of a series of small water bodies and compare the outcomes 
with those from the current technique to understand how the method might fit into an 
ecological assessment toolkit.  

A study was therefore developed in conjunction with local Environment Agency staff 
which focused on subcatchments of the River Browney (a tributary of the River Wear) 
to enable the impact of 3 sewage treatment works (STWs) to be assessed; see 
schematic map of the area (Figure 8.1). Although the validity of sampling upstream and 
downstream of point source discharges has been questioned, local Environment 
Agency staff believe that this is the best way to demonstrate to utility companies that 
particular STWs are directly responsible for changes in ecology. The study also 
enabled the impact of the largest of the 3 STWs to be differentiated from the impact of 
storm sewers serving the village of Lanchester in County Durham. This, in effect, 
constitutes the ‘before’ component of a before–after–control–impact study design, 
widely used for assessing environmental impacts (Underwood 1991, Downes et al. 
2002). 

Smallhope and Stockerley Burns constitute a single water body in the Wear catchment 
for Water Framework Directive reporting purposes (GB103024077330) with an overall 
classification of bad status, driven by invertebrates, with fish and phosphorus at poor 
status. All other supporting elements that have been measured are at high status.  

Smallhope and Stockerley Burns receive inputs from Knitsley (5,172 population 
equivalent) and Crook Hall (4,809 population equivalent) STWs respectively, both of 
which receive effluent from houses and businesses on the western outskirts of the town 
of Consett. The 2 streams join about 2km upstream of Lanchester, and Smallhope 
Burn receives some storm drainage and urban run-off before the effluent from 
Lanchester STW (5,447 population equivalent) just above the confluence with the River 
Browney.  

Upstream of the confluence with Smallhope Burn, the River Browney 
(GB103024077320) is classified as poor status due to the condition of the fish; 
invertebrates and all supporting elements are at high status. Downstream of the 
confluence with Smallhope Burn (GB103024077551), the river is moderate status, 
again due to the condition of the fish; however, phosphorus drops to poor status. The 
phosphorus failures, combined with the lack of data for phytobenthos, provided the 
rationale for this particular study. 
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Figure 8.1  Schematic map of the upper River Browney and tributaries 
showing the location of STWs (orange circles), sampling sites (green circles) and 

the town of Lanchester (grey circle) 

8.2 Methods 

8.2.1 Study design 

The locations and characteristics of the sites are listed in Table 8.1. U/s Crook Hall and 
Bogle Bridge bracket Crook Hall STW, while Knitsley Bridge and Low Meadows 
bracket Knitsley STW. Lanchester Bridge and u/s Lanchester STW examine the impact 
of the built-up area around Lanchester. Effluent from Lanchester STW enters 
Smallhope Burn close to the confluence of the River Browney and the sites at the 
B6301 bridge and Malton allow the effect of this to be assessed (Figure 8.1).  

Samples were collected in summer 2014, autumn 2014 and winter 2015; samples were 
also collected in spring 2014 but these could not be analysed by NGS. Water chemistry 
for the period under consideration was obtained from the Environment Agency.  
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Table 8.1 Locations and characteristics of sites visited during investigation 
of the River Browney subcatchments 

Site Water body/site NGR Altitude 
(m) 

Alkalinity  
(mg CaCO3 per 
litre) 

 
Stockerley Burn 

 

1 u/s Crook Hall STW NZ 122 508 234 224.2 

2 Bogle Bridge NZ 132 502 175 91.4 

 
Smallhope Burn 

   

3 Knitsley Bridge NZ 121 483 150 82.4 

4 Low Meadows NZ 151 482 120 73.2 

5 Lanchester Bridge NZ 165 479 115 73.2 

6 u/s Lanchester STW NZ 174 467 110 113.6 

 
River Browney 

   

7 B6301 bridge NZ 166 463 105 77.4 

8 Malton NZ 178 464 100 96.2 

8.2.2 Statistical analyses 

The approach to statistical analyses was similar to that outlined in Section 6.2.2. But 
because there were a large number of spatial and temporal samples from a limited 
area with a relatively short gradient of ecological diversity (see below), only limited use 
was made of multivariate analyses as these might accentuate the importance of 
relatively small differences, leading to a risk of over-interpretation of the data.  

Phosphorus concentrations likely to support different ecological status classes at each 
site were calculated following UKTAG (2013). The median value of predictions was 
plotted to make Figure 8.2 easier to read; the full range of predictions for the 8 sites are 
as follows:  

 good status: 0.040–0.054 mg L-1 

 moderate status: 0.115–0.143 mg L-1 

 poor status: 0.845–0.927 mg L-1  

There are no UK standards for nitrate concentrations likely to support good ecological 
status. However, the Republic of Ireland threshold for good status of 1.8 mg nitrate-N 
per litre provides an approximate indication of the state of the river with respect to this 
nutrient. 
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8.3 Results 

8.3.1 Water chemistry 

The effect of the STWs at Crook Hall (between sites 1 and 2) and Knitsley (between 
sites 3 and 4) is clearly shown in the increase in phosphorus concentrations between 
these sites (Figure 8.2), as is the effect of the confluence of Smallhope Burn (including 
Lanchester STW as well as the upstream works) on the River Browney (between sites 
7 and 8). The upstream locations at Stockerley Beck (site 1), Smallhope Burn (site 3) 
and the River Browney (site 7) have phosphorus concentrations likely to support good 
ecological status; however, there is significant enrichment at all the downstream sites. 
In Smallhope Burn and the River Browney, concentrations are unlikely to support 
ecology above moderate status while Stockerley Beck has very high concentrations, 
unlikely to support ecology above poor status. Stockerley Beck (bearing effluent from 
Crook Hall), however, appears to have little additional impact on Smallhope Burn 
downstream of the confluence (between sites 5 and 6). Similar patterns are shown by 
nitrate-N (Figure 8.3), though increases downstream of STWs are not so pronounced 
and, in addition, both Smallhope Burn (site 3) and the River Browney (site 7) show 
signs of enrichment upstream of any major point source inputs.  

 

Figure 8.2 Variation in reactive phosphorus in Stockerley and Smallhope 
Burns and the upper River Browney 

Notes: Boxplots summarise data collected between 2012 and 2014.  
Horizontal lines show the median site-specific predictions for boundaries between 
good and moderate status (green), moderate and poor status (orange), and poor 
and bad status (red).  
Sites 1 and 2: Stockerley Beck, u/s Crook Hall STW and Bogle Hole;  
Sites 3–6: u/s Knitseley STW, Low Meadows, Lanchester Bridge and u/s 
Lanchester STW on Smallhope Burn 
Sites 7 and 8: B6301 bridge and Malton on River Browney 
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Figure 8.3 Variation in nitrate-N in Stockerley and Smallhope Burns and the 
upper River Browney 

Notes: Boxplots summarise data collected between 2012 and 2014.  
Horizontal line: Republic of Ireland standard for nitrate-N concentrations likely to 
support good ecological status.  
Sites 1 and 2: Stockerley Beck, u/s Crook Hall STW and Bogle Hole 
Sites 3–6: u/s Knitsley STW, Low Meadows, Lanchester Bridge and u/s Lanchester 
STW on Smallhope Burn 
Sites 7 and 8: B6301 bridge and Malton on River Browney 

8.3.2 Diatom analysis: LM and NGS 

The expectation, based on the results presented in Section 6, is that there should be a 
close relationship between TDI4 (LM) and TDI5 (NGS). Although this is the case for 
most samples (Figure 8.4), there are 4 samples where TDI4 is much higher than TDI5, 
all of which have low numbers of sequence reads (ranging from 100 to 180) compared 
with the other NGS samples. Samples with sequence reads less than 3,000 would 
normally fail quality control and be repeated. Here they have been excluded from 
further analyses. When the low read samples are removed, the correlation between the 
2 approaches becomes highly significant (r = 0.753, p < 0.001).  
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Figure 8.4  Relationship between TDI4 (LM) and TDI5 (NGS) with sites from 
River Browney subcatchments overlain 

Notes: Open circles show samples from the Browney catchment that are outliers.  
 Diagonal line indicates slope = 1 

Figure 8.5a and Figure 8.5b show the difference calculated for the 8 sites for LM and 
NGS respectively.  

Based on the phosphorus data (Figure 8.2), an increase in TDI would be expected 
between sites 1 and 2, 3 and 4 and 7 and 8. Diatoms analysed by both LM and NGS 
do not appear to pick up the effect of phosphorous downstream of Knitsley STW on 
Smallhope Burn (between sites 3 and 4) nor below sites 7 and 8 where Smallhope 
Burn, bearing the effluent from Lanchester STWs joins the River Browney, although 
TDI values are very similar between the 2 methods.  

The effect of Crook Hall STW on Stockerley Beck (between sites 1 and 2) is picked up 
by a slight increase in TDI using LM, but the change is not mirrored by the NGS data.  

The difference between LM and NGS is apparent at site 1, where a higher than 
expected TDI5 value is observed. Figure 8.6 shows the difference in composition 
between the LM and NGS outputs for samples from site 1 for those taxa with RA >5%. 
The reasons for the higher than expected TDI5 at this site are likely due to the 
influence of lower numbers of Achnanthidium minutissimum recorded using NGS 
(common in streams with low to moderate concentrations of nutrients) compared with 
LM and higher proportions of taxa such as Navicula lanceolata whose ecological 
spectra extend into more enriched conditions. On one occasion, Melosira varians was 
recorded by NGS but not by LM. The up weighting of A. minutissimum and down 
weighting of M. varians and N. lanceolata in TDI5 (Table 6.1) should have accounted 
for some of the effect of these taxa but, clearly, the impact is still apparent in this 
instance. 

The mismatch between diatoms and water chemistry is most acute at site 7 (B6301 
bridge on the River Browney). This site is surrounded by farmland and nitrate-N 
concentrations appear to be slightly elevated (Figure 8.3). One possible explanation is 
that the monthly analyses of unfiltered reactive phosphorus is underestimating the true 
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bioavailable phosphorus load, perhaps reflecting pulses associated with rainfall. 
However, this is beyond the scope of the current study, which focuses on differences 
between LM and NGS analyses. 

 

Figure 8.5 Variation inTDI4 (a) and TDI5 (b) in the Stockerley and Smallhope 
Burns and the upper River Browney 

Notes: Boxplots summarise 3 seasonal samples collected between summer 2014 and 
winter 2015.  
Samples with low numbers of sequences have been removed from the TDI5 plot.  
All boxes are based on n = 3 samples, with the exception of TDI5 data for site 3 (2 
outliers purged; n = 1) and sites 5 and 6 (n = 2). 
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Figure 8.6 Variation in composition of taxa at site 1 between LM and NGS 
samples 

Notes: Bar chart shows the distribution of taxa from 3 seasonal samples collected 
between summer 2014 and winter 2015 (A = summer, 2014 B = autumn, 2014 and 
C = winter, 2015). 

8.4 Discussion 

The objective of this case study was to apply the NGS method to a real life 
investigation and compare the outcome of NGS with LM to understand its response to 
pressures – in this case phosphorus and the impact of STWs. The upper River 
Browney and its subcatchments are of ongoing interest to local Environment Agency 
staff and therefore represented an appropriate ‘real-time’ test of the NGS method in a 
catchment whose general features are well known to the study team. 

In terms of the biology, the correlation between the TDI values for the 2 approaches 
was highly significant (r = 0.753, p < 0.001), demonstrating the close agreement 
between the 2 methods. However, there were mismatches between the chemistry and 
the diatom results obtained using both LM and NGS. A possible explanation is that 
upstream locations are set amid productive farmland and the low levels of phosphorus 
recorded by routine chemical sampling may underestimate the short-term pulses of 
nutrients associated with high flow events which the diatoms are responding to (see, 
for example, Snell et al. 2014). Unfortunately, this has represented a ‘step into the 
unknown’ for the NGS method insofar as the details of inputs and influences on the 
biota still need to be unravelled. Further work is therefore needed at a small scale to 
understand the relationship between NGS and LM data and the response to 
phosphorus. This needs to be carried out on a catchment where the biology and water 
chemistry are fully understood. 
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9 Discussion 

9.1 Introduction 

This project is the first large-scale proof of concept to establish the suitability of 
combining rbcL DNA barcoding with NGS (metabarcoding) for species identification 
and RA estimates of diatoms in rivers. Significant correlation between the current LM 
TDI4 and the recalibrated NGS based TDI5 has been demonstrated, despite an 
incomplete rbcL DNA barcode reference database. There have been limited 
demonstrations in the past (Kermarrec et al. 2014, Visco et al. 2015, Zimmerman et al. 
2014); of these Visco et al. (2015) achieved quantification, targeting the 18S fragment 
on a smaller dataset and with lower agreement with LM than was achieved in this 
project. Other studies using NGS profiling of eukaryotes have successfully 
demonstrated links between environmental habitat heterogeneity and molecular 
sequencing patterns (Lallias et al. 2015). These studies reveal the growing body of 
evidence to support the use of NGS, not only for profiling diatom assemblages, but also 
for other biological taxa including vertebrates (Hänfling et al. 2016), indicating the 
potential for this technology to generate data that can be used in ecological 
assessments.  

Though now well-established as part of the ecological assessment toolkit in Europe 
and beyond (Kelly 2013, Poikane et al. 2016), diatom analysis currently requires highly 
trained individuals to spend considerable lengths of time with microscopes. There are a 
number of uncertainties associated with LM assessments (Prygiel et al. 2002, Kelly et 
al. 2009), a significant part of which is associated with the analytical process itself 
(Kahlert et al. 2012, Kahlert et al. 2016). There is therefore a strong case for exploring 
alternative technology, with potential for greater specificity and which may be more 
suited to large-scale assessment. This study has demonstrated that NGS is one 
alternative that shows great promise.  

It is also important to remember that current methods based on LM are also, to some 
extent, artificial. The use of cleaned diatom slides offers benefits in greater taxonomic 
sensitivity, but at the expense of losing information about non-diatom algae (an 
important component of many biofilms) as well as extracellular structures such as 
stalks and tubes, and about which individuals of which species were alive at the time of 
sampling. Moreover, methods for LM data analysis focus on enumeration of individuals, 
regardless of cell size. There can be, for example, a 100× difference in the biovolume 
of a single cell of Achnanthidium minutissimum, compared with one of Ulnaria ulna, yet 
both have equal influence on a TDI calculation.  

Some authors have advocated abandoning traditional taxonomic approaches (for 
example, Baird and Hajibabaei 2012, Woodward et al. 2013). Although agreeing that 
there is great potential with NGS approaches to explore aspects of biodiversity and 
ecosystem function that are difficult to measure using traditional taxonomic 
approaches, establishing that NGS can provide comparable information to existing 
methods is an important first step. As current ecological classifications are based in 
part on assessments made of diatom assemblages, it is important that new methods 
are compared with methods currently accepted by the regulatory bodies. Having an 
established baseline also ensures that OTUs are grounded in reality. One aspect of 
trying to understand the relationship between LM and NGS involved the painstaking 
task of comparing OTUs with binomials (see Section A1.2.2 in Appendix 1) and visually 
interrogating phylogenetic trees. This revealed nomenclature issues between 
databases and cryptic diversity within complexes and identified algal contaminants that 
would have been missed had the more radical approaches proposed by Baird and 
Hajibabaei (2012) been adopted.  
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Having established that there is a significant correlation between the NGS approach 
and the existing diatom assessment method (chapter 6), albeit with some caveats 
(Sections 7 and 8), it is now possible to begin to consider how to provide added value 
contained within the NGS data, exploiting the intrinsic information on diversity using 
OTU information in combination with species assignments. So long as these metrics 
can be linked to legislative drivers such as the Water Framework Directive, then an 
NGS metric should be effective. 

NGS is a rapidly emerging field, and unlike other molecular analysis techniques such 
as PCR, the development of platforms to generate more data at ever decreasing cost 
continues. To put this into context, prices of instruments and sequencing runs have 
both dropped by 10 times over the last 5 years, yet the amount of data generated per 
run has increased 30-fold. This offers the future potential that a method based on NGS 
will continue to decrease in price, whereas the price of analysis of methods based on 
microscopy has not changed for many years.  

The potential for the use of NGS in ecological assessment extends beyond diatoms. 
This project has established several general principles of relevance to projects 
examining the potential of NGS in other spheres of ecological assessment. These 
include: 

 the value of looking critically at barcode length 

 the importance of a comprehensive barcode database 

 how to handle taxa not included in the barcode database 

 issues associated with quantification 

 understanding the relationship between NGS and ‘traditional’ approaches 

It is particularly important to approach the latter point with an open mind. While it is not 
in doubt that differences exist between LM and NGS approaches for analysing diatoms, 
it is important to bear in mind that the ‘traditional’ LM approach is, itself, an imperfect 
reflection of reality (albeit one with which practitioners are familiar). The 2 approaches 
offer alternative views of the stream ecosystem that need to be reconciled; it is rarely 
as simple as deciding that one method is ‘right’ or that it is ‘better’ than the alternative. 

9.2 Development of rbcL barcode and bioinformatics 

The identification and development of robust taxonomic markers is not trivial. Accurate 
species identification is a fundamental criterion (Hebert et al. 2003) for the application 
of a taxonomic marker for molecular detection. Furthermore, features should include 
the universality across the taxa of interest, the reflection of evolution of the studied 
species and ideally low variation in copy number across the taxa of interest (Chase et 
al. 2007).  

With the advent of NGS, an additional characteristic needs to apply for a marker to be 
suitable for high-throughput sequencing, that is, its length should be short  to fit 
currently available sequencing platforms (Kress and Erickson 2008). In this project, 
after a suitable barcode (rbcL) was chosen, a major challenge was to identify an 
informative region of the rbcL gene satisfying the criterion of length without losing its 
taxonomic resolution. To the project team’s knowledge, this is the first report of the use 
of this region of rbcL allowing a robust metabarcoding strategy due to its compatibility 
with Illumina technology, the current market leader in this area.  

More specifically, during this project a short barcode region was developed which 
simultaneously enabled a DNA fragment from a large number of diatom taxa to be 
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amplified while retaining a sufficient number of informative nucleotide positions to allow 
discrimination. The aim was to take advantage of the wide availability of short-read 
sequencers such as the MiSeq (Illumina), enabling the production of data at a cost that 
allows the technique to become useable for routine monitoring by regulatory agencies.  

The use of a short barcode is a pragmatic one and does not provide the taxonomic 
resolution of the full length rbcL barcode. However, it offers both good resolution and 
cost-effectiveness. In having this balance, there is a risk that in a few cases 
ecologically differentiated taxa may not be separated by the short barcode sequence, 
although no such cases have yet been detected. Moreover, the barcode reference 
database contains full length barcode sequence data and the analysis pipelines will 
enable analysis of these data should longer read length sequencing become a viable 
proposition in the future; see, for example, the MinION sequencing device developed 
by Oxford Nanopore Technologies (https://nanoporetech.com/products/minion). 

Further work could be carried out to refine the bioinformatic pipeline to improve the 
accuracy of taxonomic assignments. Chimeric sequences, which can occur during PCR 
amplification and result in sequences that may be partly one species and partly 
another, are a known PCR artefact in amplicon metagenomic studies and were not 
screened out in this project. Although software is available to detect chimeric 
sequences (Edgar 2010, a drawback of taxonomy-free methods of detection can be a 
high false positive rate (Haas et al. 2011) and the subsequent removal of informative 
sequences. More recently, chimera detection for metagenomic studies has moved 
towards reference-based detection methods which require the use of curated sequence 
databases known to be free of chimeric DNA barcodes (Nilsson et al. 2015).  

It is possible, but rather long-winded, to screen the DNA barcode database to assess 
whether the DNA barcodes are themselves chimeric sequences. This screening 
process would be an essential step before the introduction of a chimera checking step 
into the current pipeline and could be carried out as future work. However, given that 
ultimately the taxonomic abundance data >2% produced during the pipeline is 
converted to a TDI value, it is unlikely that a small number of chimeric sequences 
would have an impact on the overall TDI of a sample. 

Following the comparison of LM and NGS datasets in Section 6.3.2, further work has 
been carried out to refine the bioinformatics pipeline to: 

 increase the taxa assignment threshold from 90% to 95%  

 constrain the analysis to only assign a taxa identity to sequences that are 
present in the barcode reference library and thus bypass searches in 
GenBank  

Given that the initial pipeline assigned a sequence to a taxon when sequence identity 
was above 90%, the effect of increasing this threshold to 95% was assessed. With a 
low 90% threshold, very few OTUs are left unknown or searched against GenBank, 
meaning that identifications that do not have a good sequence similarity match are 
potentially being made erroneously. Additional work in this area has shown that, should 
the threshold be increased to 95%, taxonomy would still be assigned to approximately 
75% of each sample (Figure 5.5). In this scenario, the remaining 25% of sequences 
would be left as ‘unknown’, rather than being assigned an identity, which should 
produce a more accurate NGS TDI5 than is the case for the results presented in this 
report. While identifications are required to mirror the current LM method, NGS 
barcodes can provide a higher level of resolution which may be useful in identifying 
new taxa that have not yet been described, as well as cryptic and semi-cryptic variation 
within established taxa which may have ecological value. Any potential new taxa 
emerging from the ‘unknown’ sequences could be included in the diatom database – 

https://nanoporetech.com/products/minion
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without any taxonomic identification – allowing them to be tracked and identified in 
other water bodies.  

The analysis has also been simplified. Figure 6.10 demonstrated that the diatom 
species present in the barcode reference database provided a good predictor of TDI. 
This allowed the analysis to be constrained so that it bypasses GenBank and identifies 
only sequences within the sample that can be linked to sequences present in the 
barcode reference database. In addition, GenBank comes with various sources of error 
and hence sequences submitted and assigned a taxa identify may not always be 
correct. In addition, the constrained pathway is also computationally faster than the 
original approach.  

The data files produced during the NGS based approach are not prohibitively large 
(~5Gb per Illumina run of 200 samples) and can be compressed for long-term storage 
by the Environment Agency. This opens up the potential for a wide range of 
retrospective studies in the future with the sequence data produced during routine 
monitoring and with the dataset already archived from this study. 

9.3 What was learnt from development of the 
barcode database? 

Correct assignment of NGS data to the appropriate Linnaean binomial is of prime 
importance to the development of a viable NGS based ecological assessment 
procedure. The situation for diatoms is complicated by the number of new 
developments in underlying taxonomy, many of which are, themselves, driven by the 
insights that molecular biology has provided. In some cases, these insights clarify 
differences between species that present challenges to traditional analyses (Rovira et 
al. 2015) which, in turn, allow ecological differences to be unravelled (Kelly et al. 2015). 
In other cases, such studies throw doubt on species defined on morphological criteria 
alone (Kermarrec et al. 2013, Rovira et al. 2015, Duleba et al. 2016).  

The barcode database at the heart of this project contains sequences from 176 species 
(at the time of writing the number is increasing through the incorporation of additional 
barcodes becoming available through trusted online databases). A substantial amount 
of effort went into the development of this database, which still represents less than 
10% of the total number of UK diatom species recorded from British and Irish 
freshwaters. However, this list does include representatives of most of the commonly 
encountered taxa and is sufficient to account for most of the variation in TDI analyses 
(Figure 6.10).  

There is, nonetheless, no cause for complacency. Inferences based on a nationwide 
dataset can look less impressive when differences within small geographical areas are 
examined, and where the absence of a key taxon may influence the sensitivity of the 
index. Although the number of quantitatively important taxa that are not represented in 
the database is small (Sections 6.3.1 and 6.3.2), the situation is complicated because 
several species are known or suspected to be complexes. Furthermore, phylogenetic 
analyses of diatoms (for example, Rovira et al. 2015) suggested that the rbcL gene 
evolves more rapidly in some lineages than in others (for example, more rapidly in 
Nitzschia group II than in group I in the study by Rovira and colleagues), potentially 
biasing NGS data when the same stringency threshold is applied throughout. The 
same phenomenon has also been observed with other genes or combinations of genes 
(for example, see the behaviour of Rhabdonema, Striatella, Florella and Astrosyne in 
the three-gene tree of Lobban and Ashworth 2014).  

Ideally, species should be represented in a barcode database by a series of strains 
exhibiting the full range of genetic variation. Otherwise, potential differences between 
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LM and NGS outcomes will be accentuated, although the NGS analysis performed 
identified OTUs as clusters of sequences rather than sequences that are identical to 
sequences present in the taxon database. Different rates of molecular evolution also 
illustrate that no single stringency threshold will perform equally in all groups of diatom, 
in terms of separating closely related species. 

One way to increase coverage of the barcode database would be to continue the 
approach adopted here, sequencing more strains and linking them to the appropriate 
Linnaean binomial. This may be ‘best practice’ (Zimmermann et al. 2014), but it is also 
expensive and depends on being able to select and grow unialgal strains of a wide 
range of target species. Two alternatives are to infer barcodes directly from 
comparisons between LM and NGS data, as demonstrated, for example, in this project 
for Achnanthes oblongella (Section A1.2.4) or to adjust the bioinformatics pathways to 
enable unassigned OTUs to be curated at an appropriate taxonomic level and linked to 
an appropriate binomial at a later date.  

All of these approaches assume a continuing relevance for Linnaean binomials. In 
practice, these provide a series of a priori categories to which entities identified by 
either LM or NGS are assigned. Each of these categories can then be linked to 
autecological information, from which the final status assessment is derived. The 
assumption is that the information associated with each binomial adds substantial 
value to the assessment outcome. In theory, a system based purely on OTUs (that is, 
bypassing Linnaean binomials completely) could work as efficiently, once it had been 
calibrated against the principal environmental gradients.  

As a result of the work in the present study and elsewhere, some practical issues that 
need to be taken into account in the development of any diatom barcode database 
have been identified. These are as follows.  

 The commonly used freshwater media (for example, Guillard and 
Lorenzen’s WC medium) are themselves selective, giving rather poor 
results with species from acid oligotrophic waters.  

 Even when a range of media are employed, some species may still remain 
refractory in culture. In these, amplification from single cells may provide 
reference sequences and allow culturing to be bypassed, but it may be 
difficult or impossible to provide adequate voucher specimens to document 
the morphology of the organism that has been barcoded.  

 Efficient isolation of a variety of targeted diatom species requires a very 
unusual combination of dexterity and detailed knowledge of diatom 
morphology and cytology, as well as an understanding of their ecological 
preferences.  

 Given such a highly skilled culturist, the time and effort spent in isolating 
and culturing is small relative to that needed for harvesting and the 
preparation and documentation (including photography) of voucher 
specimens. 

9.4 Relationship of NGS with LM approach 

This project has gone further than any other projects in demonstrating that a full NG 
based analogue of existing ecological assessment methods is possible. In particular, 
the project has demonstrated that it is possible to achieve semi-quantitative outcomes 
from NGS. The initial choice of the rbcL gene proved fortuitous in this respect, as there 
is a predictable relationship between the number of individuals and the number of 
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reads. Interpretation of this relationship is, however, complicated for the following 
reasons.  

 The number of rbcL reads per cell appears to be influenced by the number 
of chloroplasts. Although there have been no studies specifically focused 
on diatom chloroplasts, it is likely that copy number per chloroplast and per 
cell will vary between species, and between different cells (in different 
environmental conditions or developmental stages) of the same species 
(Rauwolf et al. 2010). However, each species will probably vary only within 
certain limits and these limits will differ from those in other species, 
Figure 6.3 does suggest that the relationship between the RA of sequences 
is at least partly a consequence of the number of chloroplasts. In many taxa 
there is one or two chloroplasts per cell; in a few species, however, there 
are many and these taxa (in particular, Melosira varians) tend to dominate 
the NGS output. In a small number of genera, the number of chloroplasts is 
not known.  

 Traditional LM does not record the number of cells, but rather the number 
of valves (= half a cell wall, or ‘frustules’). In very small diatoms, it can be 
difficult to determine whether a single valve or complete frustules are 
present. (NB In some countries, single valves and intact frustules are not 
differentiated during analyses.) 

 The relationship between LM and NGS for any particular taxon has to be 
determined in a mixture of (typically) 20 or more species; the proportion of 
species A in NGS and LM, for example, will also be influenced by 
fluctuations in the proportion of species B, C, D and so on.  

Nonetheless, a good correlation was seen between LM and NGS data (Figure 6.7). 
The only other study that has achieved quantification (Visco et al. 2015, using 18S) 
showed a relationship with a similar statistical strength which also deviated from 1:1. 
Samples with taxa with multiple chloroplasts proved to be particularly troublesome in 
this study, as a few taxa (Melosira varians, Cyclotella meneghiniana and Diatoma 
vulgare) could dominate the rbcL output while being present in relatively low numbers 
in LM data. Furthermore, a few weakly silicified taxa (for example, Fistulifera 
saprophila) were more common in the NGS output than in LM, possibly due to 
dissolution in the aggressive oxidising mixtures used to prepare samples for LM 
(Zgrundo et al. 2013). It should not be a surprise, therefore, that simply applying a 
metric designed for LM data to NGS data did not result in a strong 1:1 fit (Figure 6.7a). 
Even after new coefficients were derived to calibrate a NGS specific diatom metric, a 
few taxa required additional weightings to optimise the fit between LM and NGS 
specific variants of the TDI.  

Having a basic metric that captures the dominant nutrient/organic gradient, it is then 
relatively straightforward to calibrate this against ‘expected’ values, following the same 
procedures used to develop the current method (Kelly et al. 2008, Environment Agency 
2013). The outcome shows good, though not perfect agreement, suggesting that 
continuity with existing classifications should be achieved.  

The broad spatial relationship established in Section 6 is examined in more detail in 
Sections 7 and 8, which focus on spatial and temporal variation at different scales, and 
within the context of investigations as part of Programmes of Measures. Section 7 
suggests that there will be ‘gains’ in terms of greater analytical precision from the NGS 
method. However, spatial and temporal variation within a water body was, in most 
cases, greater than the analytical variation for both LM and NGS. These sources of 
uncertainty are important for determining Confidence of Class and Risk of 
Misclassification (Clarke 2013, Kelly et al. 2009). The relative scale of this variation in 
LM and NGS varied from stream to stream, with NGS showing consistently lower 



 

  A DNA based diatom metabarcoding approach for Water Framework Directive classification of rivers 79 

variability only in the River Ehen. Similarly, higher variability of NGS compared with LM 
was observed in the River Team, and further work to understand the performance of 
the NGS method in highly polluted rivers is currently underway. Overall, however, there 
seems to be little or no likelihood of a major gain in overall precision in status 
assessments as a result of a shift to NGS.  

Similar comments apply to the study of the upper River Browney and subcatchments. 
This is a catchment of ongoing interest to local Environment Agency staff. As such, it 
represented a ‘step into the unknown’ for the method. Although the variability between 
LM and NGS fell within the expected range (Figure 8.6), the presence of outliers – due 
to failure in the NGS analysis for some samples – amid otherwise well-correlated data 
suggests further work is needed to understand the relationship between NGS and LM 
data at a smaller scale. 

9.5 Conclusions  

Overall, the outcomes from this study are positive: a procedure has been developed 
that is compatible with the latest high-throughput NGS technologies and successfully 
correlates with the current LM method. Protocols for collecting, preserving and storing 
samples for NGS analyses have been modified from existing methods. Procedures for 
extracting, amplifying and analysing DNA sequences in these samples have been 
developed and tested, and automated bioinformatics procedures have been devised to 
produce data that are compatible with outputs from current LM analyses. This, in turn, 
has allowed the similarities and differences between the 2 approaches to be evaluated 
and, from this point, a new metric – a variant of the current TDI (TDI4) – optimised for 
NGS (TDI5) to be developed.  

This is remarkable given that it has been achieved using a barcode database that 
includes less than 10% of the diatom species that have been described from the UK. 
As more laboratories contribute barcodes to online databases, the method will continue 
to improve. However, it is unlikely that full comprehensive coverage of all diatom 
species will be achieved at a sufficiently high quality in the near future due to issues 
with the isolation and culturing of some diatom species. This is an area ripe for 
international collaboration. However, there is potential for exploring parallel approaches 
to document taxa without the need for culturing and sequencing from pure cultures, 
particularly as understanding of the species concept in diatoms continues to evolve 
(Mann 1999, Mann 2010).  

When the variation within water bodies is studied in greater detail, however, the picture 
is not always so clear. In most cases, the levels of variation encountered were similar 
to those experienced in LM based studies. Where no consistent trend emerged 
(Figures 7.6 to 7.8), this can probably be explained by a combination of in-stream 
processes working at a variety of spatial and temporal scales, and issues with the post-
NGS data handling such as handling of OTUs that cannot be assigned reliably and the 
weighting applied to multiple chloroplast taxa that are still being explored.  

The collection of large sequencing datasets using NGS enables the possibility of future 
investigative analyses for the Environment Agency with regard to relatively simple 
multi-site and multi-year investigations using comparative metagenomics approaches 
developed by microbial ecologists. The future value of NGS sequencing datasets, such 
as those collected after implementation of this method, should not be underestimated. 
Such datasets provide a much larger opportunity for cost-effective large-scale ‘big data’ 
research and monitoring improvements that would not be possible with the current 
slide-based LM methods. 

Finally, the project provides a template for how similar projects involving other 
organism groups and water body types could be organised. The aspiration of producing 
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NGS ‘mirrors’ of existing techniques is considered a sensible starting point, as it forces 
a close examination of the relationship between NGS and ‘traditional’ data. Once this 
has been achieved, however, the door can open to second generation methods that 
move beyond simplistic metrics and unlock the huge potential of NGS to evaluate 
ecosystem function in ways that can enhance assessments and, thereby, regulation 
and management (Sagarin et al. 2009).  

9.6 Recommendations for further work 

The following areas have been identified for further investigation or refinement prior to 
the method being implemented for classification of river water bodies. 

Improve the utility of NGS outputs 

Expand the barcode database 

Although the overall performance of the method is good using the current barcode 
database and most of the variation within the diatom assemblages is being captured, 
further strengthening of the database will increase the resilience of the method, 
particularly in situations where samples are dominated by rare or unusual taxa. ‘Low 
frequency, high impact’ taxa whose absence may have a disproportionate effect on 
metric calculations should be targeted and barcodes obtained. In addition, the 
coverage – and understanding – of taxa suspected to be genetically diverse should be 
increased.  

The current barcode library is largely the result of one year’s full-time effort by a 
postdoctoral researcher to culture and sequence diatoms. Additional sequences have 
been added from GenBank and other sources. This has ensured coverage of diatoms 
that are common and which grow easily in culture. As the barcode library grows in size, 
so the effort needed to plug gaps also increases, as particular taxa need to be targeted 
and cultured. There is also a risk that target taxa may not grow well in culture and 
cannot therefore be sequenced. There will be a continued need to add barcodes from 
online sources.  

The addition of new sequences from cultures isolated from UK locations, where these 
are known to occur, should also continue. This will not be possible for every missing 
taxon, but it should be possible to: 

1. Identify sites where a species is known to occur from existing records 

2. Visit the site at a time when the species is known to be abundant 

3. Culture biofilm samples to isolate the taxon in question 

4. Sanger sequence the taxon to generate the barcode  

Improvements to post-NGS data handling 

Currently there is an understanding of how NGS and LM data differ – and recognition 
that the 2 sorts of data should not be regarded as equivalent in all respects. However, 
there is not a good understanding of why these difference exist.  

The contribution made by rbcL reads from diatoms with multiple chloroplasts is thought 
to be a major factor. Additional data mining should be explored to test this hypothesis 
and to consider ways in which the accuracy of TDI outputs might be improved so that 
there can be greater confidence in the data.  

Improvements to species identification by investigating the requirement for OTU 
clustering in the future 
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The creation of OTUs at 97% similarity from the raw NGS sequences can group very 
similar species together into one OTU. In the short to medium term, as improvements 
to computing power are realised, it may be possible to move from a computational 
power-saving OTU based analysis pipeline to one where each individual NGS 
sequence is analysed instead. This can be investigated by comparing datasets with 
and without OTU clustering, alongside a comparison between the current pipeline's 
BLAST identification of sequences versus machine learning classification systems.  

Improve the coverage of poor and bad status classes to give a better 
overview of the method performance (see Table 6.2).  

Care was taken to select sites that covered the full range of conditions encountered in 
England as part of the calibration dataset to develop the method. Despite this, the 
calibration dataset was biased towards high, good and moderate status when the final 
classifications were calculated. Therefore additional poor/bad status sites should be 
included in the calibration dataset to complete the ecological quality gradient.  

Extend geographical coverage of the method to other parts of the UK 

The work reported here is based largely on samples collected by the Environment 
Agency in England. Having established the performance of the method in England, 
further testing is required to ensure that the method is also applicable in Scotland, 
Wales and Northern Ireland.  

Test the method on an independent dataset  

In this project, TDI5 was developed and tested using a single dataset – the 
Environment Agency’s 2014 sampling programme. Although bootstrapping was used to 
overcome the potential circularity of this process, generation of a new matched LM and 
NGS dataset would permit an independent test of the performance of the NGS method.  

Test the method in real or simulated ‘operational investigations’ where 
there is good a priori evidence of a change in diatom assemblage 
composition within a short distance  

The study reported in Section 8 attempted a real-time operational investigation using 
NGS where the relationship between chemistry and biology within the subcatchment 
studied was not clear ahead of the work. Effects were expected due to the location of 
point source inputs and the existing results from water quality and invertebrate 
analyses. However, there was a poor relationship between chemistry and (LM) 
diatoms, perhaps reflecting intermittent diffuse inputs missed by routine (monthly) 
chemistry. Low numbers of reads for some of the NGS outputs, which should have 
been detected and the extractions repeated, also reduced the number of data points 
available for analysis. A new study should be conducted based on sites around the UK 
where a relationship between chemistry and LM diatoms has already been established 
so that the performance of the NGS method can be evaluated without the complication 
of simultaneously trying to understand the relationship between pressures and biology 
in the catchments in question.  
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Evaluate the potential cross-contamination introduced by the current 
sampling method  

NGS based analysis may be more sensitive than LM to low-level cross-contamination 
resulting from current sampling procedures. To ensure cross-contamination is 
minimised, an investigation into the efficacy of a cleaning step in the sampling process 
and the use of deionised or tap water for rinsing is required.  

Test the transferability of the river method to lakes  

The current method has been calibrated for rivers. The barcode database is likely to be 
important in determining the transferability of the method to lakes. Most of the common 
diatom species are found in both rivers and lakes, but there are a few that are more 
prolific in lakes. The current database has inadequate representation of, for example, 
Cymbella (and relatives), Denticula and Epithemia. There is also likely to be a stronger 
planktonic diatom signal from lake data, and it may be necessary to incorporate 
planktonic taxa in the barcode database in order to filter them out during bioinformatics 
analysis.  

Although development of a lake method would require samples from lakes across the 
alkalinity and pressure gradients, a preliminary investigation using samples from 
England alone may give some insights into the scale of modification required to 
develop an operational lake assessment tool.  

Consider the effect of method change on long-term dataset  

There is often a need to maintain long-term datasets to track temporal change, which is 
particularly important for environment agencies in justifying and reporting on the 
efficacy of nutrient control measures in catchments. These datasets have been built on 
the results of the LM method, and there is a need to examine how NGS-computed TDI 
values relate to temporal trends of LM-derived TDIs, and consider reasons for any 
inconsistencies.  

9.6.1 Preparation for implementation 

Once the method has reached a stage where operational implementation by the 
relevant UK agencies is considered feasible and desirable, there will be a number of 
implementation issues to be considered. Details may be specific to each agency, 
depending on current systems in use, but will include: 

 finalising the DNA barcode database*  

 ensuring taxa have appropriate codes to allow input of NGS data to the 
agencies’ data archive systems 

 updating of classification software (DARLEQ) and associated guidance 

 adopting NGS based assessment as a recognised UK method for Water 
Framework Directive classification and intercalibration of the method as 
required by the Water Framework Directive 

 knowledge transfer and staff training in implementation of the new method 

* Although taxa will continue to be added to the database over time, there is a need to 
determine a point at which a stable version is adopted for the purposes of an 
operational classification tool. This does not mean the taxa list is permanently fixed, but 
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future revisions would need to be considered in the context of the impact on 
classification results. 
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List of abbreviations 
BLAST Basic Local Assignment Search Tool 

bp base pair 

COI cytochrome c oxidase subunit 1 

DNA deoxyribonucleic acid 

DTAB dodecyltrimethylammonium bromide 

eDNA environmental DNA 

EDTA ethylenediaminetetraacetic acid 

eTDI expected Trophic Diatom Index 

EQR Ecological Quality Ratio 

IMS industrial methylated spirits 

ITS internal transcribed spacer 

LM light microscopy 

MID multiple identifier 

NCBI National Center for Biotechnology Information [USA]  

NGR National Grid Reference 

NGS next generation sequencing 

NMDS non-metric multidimensional scaling 

OTU Operational Taxonomic Unit 

PCR polymerase chain reaction 

PROMpT Primary Rapid Overview of Metagenomic Taxonomy 

QIIME Quantitative Insights Into Microbial Ecology 

RA relative abundance 

rbcL ribulose bisphosphate carboxylase large chain gene 

SEM scanning electron microscopy 

SSU small ribosomal subunit 

STW sewage treatment works 

TDI  Trophic Diatom Index 

UV ultraviolet 

WFD  Water Framework Directive 
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Glossary 
Bioinformatics Field of biology that uses computer science, statistics, 

mathematics and engineering to study and process biological 
data. 

Bioinformatics 
pipeline 

Steps involved in extracting, processing and analysing raw 
data generated, for example, by next generation sequencing.  

BLAST® Basic Local Assignment Search Tool – bioinformatics tool 
that finds regions of local similarity between DNA or protein 
sequences (http://blast.ncbi.nlm.nih.gov/Blast.cgi).  

DNA barcoding Identification of a species or taxon based on PCR 
amplification and sequencing of a standard region of DNA 
(often the mitochondrial cytochrome oxidase 1 gene). 

GenBank® Annotated collection of publicly available DNA sequences 
housed at the National Center for Biotechnology Information 
(USA) (www.ncbi.nlm.nih.gov/genbank/ ). 

Illumina 
sequencing 

Next generation sequencing on a platform developed by the 
company Illumina, such as MiSeq™ 
(www.illumina.com/systems/miseq.html) used in the current 
study. 

Metabarcoding A rapid method of biodiversity assessment that combines 2 
technologies:  

 DNA based taxon identification (DNA barcoding)  

 high-throughput DNA sequencing (NGS) 

It uses universal PCR primers to mass-amplify DNA barcodes 
from mass collections of organisms or from environmental 
DNA. 

Next generation 
DNA sequencing 
(NGS) 

Also known as high-throughput sequencing, ‘next generation 
sequencing’ is the catchall term used to describe a number of 
different modern sequencing technologies, including Illumina 
(Solexa). These recent technologies allow the sequencing of 
DNA that is much quicker and cheaper than the previously 
used Sanger sequencing, and as such have revolutionised 
the study of genomics and molecular biology. 

Operational 
taxonomic unit 
(OTU) 

Clusters of similar rbcL barcode variants. It is a means of 
categorising taxa based on their sequence similarity. Each 
cluster represents a taxonomic unit for example, species or 
genus.  

Polymerase chain 
reaction (PCR) 

A method of amplifying the number of copies of a target 
region of DNA using oligonucleotide primers which permits 
downstream analysis such as DNA sequencing. 

Primer A short single-stranded stretch of DNA that is complementary 
to the DNA sequence of a target region. A pair of primers, 
flanking the target region, is required for PCR amplification. 
The primers bind to the target DNA during PCR and prime 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
http://www.ncbi.nlm.nih.gov/genbank/
http://www.illumina.com/systems/miseq.html
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the addition of nucleotides, generating millions of copies of 
the target sequence. 

PROMpT A bioinformatics pipeline system for rapid metagenomic 
analysis of NGS amplicon sequencing data with a simple web 
interface, allowing non-informatic users access to the benefits 
from NGS sequencing (https://github.com/passdan/prompt). 
While built for NGS, there is also the capacity to load light 
microscopy data into the pipeline to allow easy comparisons 
between methods.  

It is designed to be implemented in analysis of your chosen 
taxonomic clade, requiring only reference sequences 
formatted into a BLAST (Basic Local Alignment Search Tool - 
http://blast.ncbi.nlm.nih.gov/Blast.cgi) database and a 
taxonomic hierarchy that can both be defined by the user. It 
also allows for correction factors to be applied to the 
reference sequences to allow for polyploidy or the effect of 
size differences in the community.  

https://github.com/passdan/prompt
http://blast.ncbi.nlm.nih.gov/Blast.cgi
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Appendix 1: Proof of concept – 
testing the feasibility of 
developing diatom ecological 
assessment metrics from NGS 
data  

A1.1 Introduction and method development 

The overall objective of this work is to develop a cost-effective operational molecular 
diatom tool to determine water quality for the Water Framework Directive using diatom 
DNA barcodes combined with next generation sequencing (NGS). In addition, it is 
hoped it will liberate molecular techniques from the research environment, and 
demonstrate their power and utility within a regulatory framework. This will hopefully 
facilitate their uptake into other areas of the Environment Agency’s monitoring 
programme such as macroinvertebrate and fish monitoring. 

The proof of concept phase was carried out from September 2011 to March 2014 to 
develop and test an alternative means of evaluating ecological status using benthic 
diatoms and NGS rather than light microscopy (LM) as the basis for sample analysis. A 
brief overview of the work is provided here. The chloroplast-based rbcL gene was 
selected on the basis of prior studies (see Section A.1.1.3), as the most suitable 
barcode for routine environmental assessment using diatoms.  

A1.1.1 Sample handling and transfer 

For this proof of concept phase of the project, diatom samples were collected from 
rivers in England by Environment Agency Area staff as part of routine surveys in 
autumn 2011 by brushing the top surface of 5 cobbles with a clean toothbrush to 
remove the biofilm (following standard Environment Agency protocols). Samples were 
returned to the laboratory where 15ml of biofilm/water suspension was removed and 

centrifuged to generate a pellet of diatoms and frozen at -20C. The remaining sample 
was preserved in Lugol’s iodine for morphological analysis. The preserved sample and 

frozen pellet were then transferred at 4C – using the Environment Agency’s 

infrastructure – to a laboratory in Exeter where they were again stored at -20C. When 
sufficient numbers had been collected, the samples were dispatched under dry ice to 
Cardiff University. The Lugol’s preserved samples were transferred to Bowburn 
Consultancy (Durham) for morphological analysis and the associated pelleted diatom 

samples were stored at -70C prior to DNA extraction. Approximately 100 samples 
were collected; a subset was used to test whether the NGS approach could provide 
meaningful diatom species metrics compared with LM. 

A1.1.2 DNA extraction 

Initial DNA extractions were performed using a commercial procedure, Qiagen 
DNeasy® Plant Mini Kit (69104). But although DNA was extracted and barcodes 
amplified, it was evident both from spectrophotometric analysis of the DNA and the 
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dilution required to perform some amplifications that the template DNA was of varying 
quality.  

To ensure the templates generated were of consistent high quality, the extraction 
procedure was re-optimised. Three extraction procedures were compared: the DNeasy 
Plant Mini Kit (Qiagen Ltd); the Instagene DNA matrix (Bio-Rad); and a procedure 
developed using a hybrid involving glass bead lysis into a DTAB extraction (Fawley and 
Fawley 2004). The hybrid protocol yielded a simple and rapid technique for extraction 
of DNA from diatoms followed by a DNeasy column purification. The latter technique 
yielded DNA of consistent quality and qualities sufficient for the purposes of this study. 
UV/visible region spectra of typical extractions are shown in Figure A1.1. 

 

Figure A1.1 Representative spectrophometric analysis of DNA extracted from 
diatom samples  

DNA extractions were also trialled on diatom samples that had been preserved in 
Lugol’s iodine, the standard preservative for samples for LM. However, these yielded 
exceptionally low quantities of DNA, which were unsuitable for further analysis. 

A1.1.3 Amplification of rbcL-3 barcode from environmental 
samples  

To test whether it was possible to amplify rbcL barcodes from diatom samples collected 

by Environment Agency Area staff, the 3 prime (3P or 3) end of the Rubisco rbcL 
gene was targeted using forward primer Cfd_F (CCRTTYATGCGTTGGAGAGA) and 
reverse primer DPrbcL7 (AARCAACCTTGTGTAAGTCT) (Hamsher et al. 2011) to 
amplify ~850 bp amplicons.  

Amplifications were performed on genomic DNA in 25µl reaction volumes using the 

following conditions: one cycle at 94C for 3 minutes, followed by 30 cycles at 94C (30 

seconds), 55C (30 seconds) and 72C (1 minute). A final step at 72C (10 minutes) 
was included. PCR products were electrophoresed through a 1.5% agarose gel at 4–
5V per cm, and visualised using SYBR Safe stain (Invitrogen) under UV light, with a 
100 bp Plus Gene Ruler ladder (Fermentas). Although differences in the intensity of the 
band were observed between samples, ~90% of the amplification succeeded with no 
further optimisations. 

A1.1.4 Validation of diatom rbcL-3 barcode generation 

The success of amplifying rbcL from an environmental sample was assessed by 
cloning and sequencing representatives from diatom samples. For this 1µl of the gel 

purified rbcL-3 amplicon was cloned using the Topo cloning kit (Invitrogen) according 
to the manufacturer’s instructions. Briefly, 5µl cloning reactions were set up containing 
1µl PCR product, 1µl salt solution, 1µl water and 1µl of the Topo cloning vector. The 
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reaction was incubated at room temperature for 10 minutes and then 2µl was used to 
transform the One Shot® Mach1™-T1R Competent Cells provided in the kit using the 
procedure defined for the chemically competent cells. Ten microlitres and 40µl of the 

transformation were spread onto LBkan plates and colonies grown at 30C for 24 hours 

and 37C for 18 hours respectively. Colonies from the LBkan plates were transferred to 

5ml of LBkan and grown overnight at 37C. Plasmid preparations were then performed 
on 4.5ml of the LBkan using a Promega SV mini prep kit following the manufacturer’s 
instructions with 2 minor modifications:  

 DNA was dried by centrifuging for 2 minutes in a fresh tube prior to elution  

 elution was performed in 75µl of sterile distilled water  

DNA was quantified using a Nanodrop and digested with EcoR1, which cuts either side 
of the Topo vector. Successful recombinants were selected and sequenced using 
Sanger sequencing (MSBU Cardiff University). The diatom DNA barcode products 

were confirmed as being rbcL-3 using the BLASTX algorithm against the Non-
redundant GenBank Database (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The identified 
closest matching species were ascertained and recorded (data not shown). 

A1.1.5 Development and testing of rbcL diatom barcode 

To determine which portion of the Rubisco rbcL gene to target, 50 diatom rbcL gene 
sequences were retrieved from the European Bioinformatics Institute (EMBL) database 
using the Sellaphora sequences detailed in Hamsher et al. (2011) as a retrieval tag. 
Five of these sequences were discarded due to poor quality (runs of n bases in the 
sequence) or short lengths. An alignment of the remaining 45 sequences was 
constructed using ClustalW, and the degree of consensus bases (>55% consensus 

from the 45 sequences) was determined at the 5and 3 ends of the gene. From this 

output, it was estimated that the 5 end of the gene showed 65% consensus over 734 

bases, with 58% over 725 bases at the 3 end. It was therefore judged that either end 
of the gene would be equally useful in the context of this work.  

NGS technology developments 

At the start of the proof of concept work, the range of second generation NGS 
technologies universally relied on a clonal amplification step prior to sequencing, either 
emPCR (Roche GS FLX or SOLID technologies) or surface-based amplification 
(Illumina and Ion torrent). This amplification step provided a limit to the size of the 
amplicon that could then be sequenced.  

For GS FLX and GS FLX+, various ‘long emPCR’ protocols have been proposed, 
although those routinely using the platforms advise amplicons of <600 bp and the 
protocols available prior to 2012 recommended amplicons ideally between 300 and 
400 bp. This therefore provided this project with a significant hurdle since the current 
rbcL barcode that has been validated previously and used for phylogenetics is ~850 
bp, yielding a ~950 bp amplicon when the required NGS sequencing primer, multiple 
identifier (MID) tags and calibration sequences have been added to each end.  

A significant technical development was announced in November 2012 by Roche, the 
manufacturers of the GS FLX platform. This involved enhancements in software and 
reagent developments, which allowed the GS FLX+ platform to sequence amplicons of 
up to 1,200 bp, providing a sequence range distribution with a modal distribution 
centred on 950 bp. To take advantage of these developments, platforms must have 
both software upgrades and exploit ‘new’ suites of reagents and protocols. The 

http://blast.ncbi.nlm.nih.gov/Blast.cgi
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immediate advantage to this project was that it would allow the use of the established 

rbcL-3 barcode and exploit all of the information content of this fragment.  

Since expert confidence in the provision of sequence data from the longer amplicon 
was low2 and additional developments might present more cost-effective long-term 
solutions, it was decided that the project should attempt to assimilate the opportunities 
presented by the rapidly changing NGS landscape.  

A summary of the current competing technologies is provided in Table A1.1, which 
illustrates that exploitation of a smaller amplicon would allow utilisation of technologies 
that would significantly reduce the costs associated with NGS analysis to a tenth or a 
fifth of those for the GS FLX+ platform. It was therefore decided to evaluate shorter 
rbcL barcode amplicons, with a particular focus on the informatics content of the 
outputs. 

Informatic design of custom NGS compatible primer sets 

To derive whether shorter amplicons compatible with alternative NGS could be 
developed, it was necessary to establish their validity. Previous research had identified 

the longer rbcL-3 fragment as a potential barcode for environmental analyses as it 
fulfilled the following criteria.  

 It provides appropriate taxonomic resolution. 

 Validated and optimised primers exist for its cross-species amplification. 

 The primers have been tested for environmental diatom analysis.  

It was therefore essential to establish that alternative primers which would amplify 
shorter fragments could fulfil these criteria. To develop additional NGS compatible 
primer sets, >1,100 rbcL sequences were downloaded from GenBank® 
(www.ncbi.nlm.nih.gov/genbank/). These were filtered to select those that contained 

the majority of the rbcL-3 region (used for phylogeny reconstructions) and to remove 
species/taxa redundancy. This yielded 349 sequences. These were aligned using the 
software tool Muscle and the variation across the sequence determined.  

A number of ‘regions’ displayed conservation and these were examined by eye to 
identify possible priming sites. The parameters used included: 

 8 fold redundancy would yield a match to all species represented 

 terminal 3 bases were invariant 

 Tm matched those primers already used to generate the 850 bp amplicon 

 did not represent repetitive sequence 

 primers displayed no significant hairpins, self-priming or primer-primer 
interaction 

 

 

                                                           
2 Personal communication from Edinburgh Genetics, Centre for Genomic Research Liverpool, 
and the Food Standards Agency’s genomic unit at York 

http://www.ncbi.nlm.nih.gov/genbank/
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Notes: 1 The costs per run and cost per sample are for the direct sequencing costs only and do not include sample preparation costs, which are 

comparable between platforms.  
2 MinION accuracy and read numbers are estimates based on data released by Oxford Nanopore for R9 flow cells. 
3 Only 384 barcodes are currently commercially available for HiSeq but more could be custom synthesised. 
4 Standard mode HiSeq gives 2 × 150 bp HiSeq2500 run in fast mode can produce 2 × 250 bp. This is likely to be too short for the rbcL 
mini-barcode.  
5 Multiplexing to achieve the depth of coverage was used during the project, not necessarily the maximum that could be achieved. 

 

Table A1.1 Comparison of NGS platforms  

Platform Company Read length  Accuracy Number of 
reads 
(millions) 

Multiplex 5 Depth per 
sample (K) 

Cost per 
run 1 

Cost per 
sample 1 

Instrument 
run time 
(hours) 

GS FLX Roche 750 bp 98.9% 0.5 25 20,000 £5,000 £200 24 

Ion Torrent 
PGM 

Life Technologies 400  bp 98.3% 5 200 25,000 £500 £2.50 12 

MiSeq Illumina 2 × 300  bp 99.2% 25 200 125,000 £1,000 £5 56 

HiSeq2500 Illumina 2 × 250 4  bp 99.7% 250 384 3 650,000 £3,500 £9 60 

MinION Oxford Nanopore >5kb bp 952% 0.1 2 5 20,000 £350 £70 48 
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Two regions were identified (Figure A1.2), fortuitously dividing the rbcL gene into 3 
equal sections of approximately 300 bp. Degenerate primers were designed (Figure 
A1.2 and Table A1.2) from these regions and used for further analysis. 

 

Figure A1.2 Design of rbcL NGS compatible primers  

Notes: Approximate location of new and established primers are overlaid onto illustrations 
of the gene encoding the large Rubisco subunit (Panel A) as well as the secondary 
protein fold (Panel B) derived for Synechococcus elongates.  
Nucleotide and protein numbering is initiated from the first base of the methionine 
or the methionine itself, respectively.  
Primers where the background shading is given in orange represent the 
established primer set, while new primers are denoted using a green background 
shading.  
The similarity observed when the non-redundant 349 rbcL sequences that cover 

the 3 region of the rbcL gene used for barcoding is shown in Panel C. As with 
Panel A, the nucleotide number numbering is initiated from the gene’s start codon.  
Unfortunately very few of the sequences report the ‘full sequence’ including the 

rbcL-3 primer sequence and therefore the conservation plot does not incorporate 
this region. 
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Table A1.2 Degenerate primers designed for NGS rbcL amplicon generation 

CfD_F || rbcL-3P_640F (640): CCRTTYATGCGTTGGAGAGA 

DPrbcL7|| rbcL-3P_1538R (1538): AARCAACCTTGTGTAAGTCT [5- 

AGACTTACACAAGGTTGYTT-3] 

rbcL-3P_957F Tm 54oC: 5 R TGG ATG CGT ATG KSW GG 3 

rbcL-3P_975R Tm 55oC 5- ACC WSM CAT ACG CAT CCA -3 [5- TGG ATG CGT 

ATG KSW GGT -3] 

rbcL-3P_1213F: 5- TTY GGT GGT GGT ACW ATI GG -3 

rbcL-3P_1229R: 5- ATW GTA CCA CCA CCC AAC TGT A -3 [5- TAC AIT TIG 

GTG GTG GTA CWA T -3] 

 

Notes: All primer are given 5–3 on the positive strand unless otherwise indicated 

To determine whether reducing the size of the fragment amplified for barcode purposes 
would have an impact on the taxonomic resolution and the ability to exploit those 
sequences submitted to the data repositories, bespoke software was developed to 
identify and extract specific regions of the rbcL genes. Simulated amplicons were either 
bracketed by specific primers or selected as a specific size starting from a primer site. 

Hamsher et al. (2011) used a fragment of 748bp 3 of the rbcL-3P_640F (CfD_F) 

primer to validate the rbcL-3 primers (CfD_F and DPrbcL7 now assigned the 
systematic names rbcL-3P_640F and rbcL-3P_1538R respectively). A number of 
sequences available in GenBank and their respective information content were 
therefore analysed for a suite of regions of the rbcL-3’ region both in its entirety and 
with simulated primer sub-sequences (Figure A1.3, Table A1.3 and Table A1.4). The 
metric employed to explore information content was the number of operational 
taxonomic units (OTUs), defined at a series of thresholds representing the percentage 
identity of the sequences within an OTU. This metric was selected in preference to 
classical metrics because, although relaxing the sequence identity match when 
assigning species will always provide additional assignment, it increases the potential 
error and removes potentially valuable information. This is especially relevant for NGS 
sequencing approaches where technical error is higher than with classical Sanger 
approaches.  

Initial analysis was performed using all rbcL sequences submitted to the databases 
(Table A1.3). This showed that only 6 database sequences representing full plasmid 

genomes contain the complete rbcL-3 region. The sequence employed by Hamsher et 
al. (2011) (primer region/amplicon A1 in Table A1.3) is represented by 383 entries, 
while the sequence spanned by rbcL-3P_640F (CfD_F) and rbcL-3P_975R (primer 
region/amplicon D in Table A1.3) is represented within 727 entries.  

It is misleading to compare the OTU representation since each group of sequences 
contains different qualities of species and taxa redundancy. Therefore, the analysis 
was repeated employing the 349 sequences used for the design of the new NGS 
primers (see above). This analysis clearly shows that amplicon D, representing the 
fragment between rbcL-3P_640F (CfD_F) and the rbcL-3P_975R, is contained in 301 
entries and represents the largest number of OTUs at 268 at 0.97% identity (Table 
A1.4). These analyses suggest that this first amplicon may be optimal for NGS based 
analysis of environmental samples. 
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Figure A1.3 Regions of rbcL-3 gene exploited for bioinformatic analysis 

Notes: Numbering used to define location in rbcL gene defined from first base of the start 
codon.  

Table A1.3 OTU analysis of full GenBank representation of rbcL-3 regions 

 

Table A1.4 OTU analysis of 349 GenBank entries for selected rbcL-3 regions 
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Experimental validation of NGS specific primer designs  

It was essential to confirm that the proposed alternative primers would amplify a wide 
spectrum of diatom species if they were to be compatible with diatom assemblage 
analysis. To establish compatibility and to optimise the specific PCR conditions, 
amplifications were performed using DNA templates representing 16 diatom species 
isolated as part of the rbcL reference database development (Section 3). The analysis 
revealed that amplicons H and F provided single amplicon bands with all 16 species 
tested.  

 

Figure A1.4 Cross-species validation of primer sets (left) with representative 
phylogenetically diverse clones (right)  

Notes: Amplicons are labelled as given in Figure A1.3.  

Samples 1–16 are selected to cover a wide range of diatoms including radial 
centrics (blue), polar/thalassiosiroid centrics (green), araphid pennates (pink) and 
raphid pennates (yellow). 

 

1 0614 Tabellaria flocculosa 

2 0641 Melosira varians 

3 0643 Fragilaria gracilis 

4 0647 Pseudostaurosira brevistriata 

5 0648 Cyclotella meneghiniana 

6 0654 Gomphonema acuminatum 

7 0659 Diatoma vulgare 

8 0660 Nitzschia palea 

9 0666 Achnanthidium minutissim var. cf jackii 

10 0667 Encyonema silesiacum 

11 0680 Navicula cf radiosa 

12 0710 Sellaphora joubaudii 

13 0715 Mayamaea atomus var. permitis 

14 0729 Eunotia cf pectinalis 

15 0762 Neidium cf. ampliatum 

16 0876 Stephanodiscus hantzschii 
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A1.1.6 Amplification of NGS compatible MID tagged barcodes 
representing diatom assemblage 

Amplification trial of alternative NGS primer sets 

The initial approach was to perform a head-to-head analysis of the 3 possible 
amplicons – amplicon B (representing the original validated rbcL barcode; Hamsher et 
al. 2011), amplicon F and amplicon H – using the GS FLX+ long sequence protocol 
and evaluating the species representation achieved by each amplicon. Should the 
shorter amplicons provide similar species representation, subsequent analyses could 
exploit alternative and more cost-effective technologies. This being the case, a 96-well 
plate design was adopted to combine the appropriate diatom-specific primers (Table 
A1.2) with an appropriate amplicon specific MID tag. The design of the plate was 
engineered to allow for high-throughput analysis of 11 environmental diatom samples 
with the 3 alternate sets of primers and subsequent analysis of the individual samples. 
Primers were supplied at 100 µM and diluted to working concentrations.  

Unfortunately, subsequent amplification tests for amplicons F and H failed to generate 
complementary amplicons from each sample. Due to time constraints, this approach 
was abandoned in favour of just sequencing the original longer amplicon (amplicon B). 
Further work on developing a short rbcL barcode is described in Section 4. 

Amplification of rbcL-3 for diatom community analysis by NGS 

The only European NGS supplier that would guarantee delivery of a long sequence 
was MWG-Biotech. Therefore, primers were designed that combined sample-specific 

MID tags together with the rbcL-3 primers CfD_F || rbcL-3P_640F (640): 
CCRTTYATGCGTTGGAGAGA and DPrbcL7|| rbcL-3P_1538R (1538).  

The MWG-Biotech protocol recommended the production of MID tagged amplicons 
which would be ligated to sequence adapters then size selected, purified, qualified and 
combined into pools prior to NGS analysis. This protocol would yield extended 
sequences from both the forward and reverse direction of the amplicons since the 
ligation of the sequencing adapter was non-specific. However, this approach 
significantly reduced the costs of the amplification primers and reduced the possibility 
of primer-based artefacts.  

To remove PCR bias that may arise from initial primer hybridisation, it is standard 
practice to perform triplicate amplifications prior to pooling each sample for NGS 
analysis. Furthermore, to reduce any proofreading errors generated by Taq 
polymerase, the NGS amplification exploited a proofreading, hot start polymerase. A 
total of 17 successful amplifications from environmental diatom samples were provided 
to MWG-Biotech for sequencing. It should be noted that, within this batch, a small 
number were at the limits of the permissible concentrations, a fact that was identified 
during MWG-Biotech’s quality control analysis. 

A1.2 Analysis of NGS data  

A1.2.1 Development of PROMpT: bioinformatic pipeline software 

NGS data were processed using the PROMpT pipeline software 
(https://passdan.github.io/prompt), developed in parallel to this study. It was 
augmented with customisation for rbcL diatom analysis utilising the diatom rbcL 
reference sequences generated (Section 3). This allowed for integration of both the 

https://passdan.github.io/prompt
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NGS amplicon data and the classical LM analysis, allowing direct comparison as 
visualised in Figure A1.5.  

 

Figure A1.5 Overview of analytical workflow of PROMpT  

Notes: PCA = principal component analysis 

A1.2.2 Analysis of NGS data 

From the 17 samples submitted for NGS analyses under the long read GS FLX+ 
protocol, 247,657 sequences were obtained which passed the initial machine quality 
control that removed sequences with no data or mixed sequences data. The quality of 
the raw data was analysed, yielding a sequence distribution with: 

 a maximum sequence length of 929bp (Figure A1.6B) 

 a GC content of 39% (Figure A1.6D)  

 an average quality score of Q = 30  

Q is equivalent to Illumina 1.9 quality score; this approximates to an error rate of Q10 = 
1/10, Q20=1/100, Q30= 1/1000 and Q40 =1/10,000.  

The quality score is not constant through the length of the sequence and substantially 
degrades through the length of the sequence (Figure A1.6A). At around 550 bp, the 
interquartile range representing 95% (represented by the yellow boxes in Figure A1.6A) 
of the sequences starts to fall below Q20. This led to all further analysis using only 
sequences that were 550 bp, removing shorter sequences as not having sufficient 
sequence and longer sequences due to error rates.  



 

  A DNA based diatom metabarcoding approach for Water Framework Directive classification of rivers 105 

 

Figure A1.6 Quality analysis of raw GS FLX+ data  

The sequences were then divided between those where the sequence was derived 
from the forward (CfD_F || rbcL-3P_640F (640)) primer sites and those derived from 
the reverse primer site (DPrbcL7|| rbcL-3P_1538R). The distribution of the sequences 
is given in Table A1.5. 

Sequence representation within the samples was not consistent due to the low 
concentration of amplified product used for the NGS analysis. In microbial community 
analyses, samples with <3000K counts would normally be excluded. However, this is 
done on the basis of representation of the community, and as such the lower 
complexity of diatom assemblages when compared with their microbial counterparts 
may allow for lower numbers to be used.  

Preliminary analysis and phylogenetic verification 

Initially the forward sequences were trimmed and analysed using the PROMpT data 
analysis workflow described above. An initial analysis was used to derive overall 
diversity indices and OTUs (99%) for all samples (Table A1.5). 
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Table A1.5 Results of initial analysis to obtain information about diversity and 
number of OTUs  

Sample ID Number of sequences Chao 
index  

Shannon 
index 

OTUs 
(99%) Forward  Reverse 

DTM100 786 705 305.0 3.8 191 

DTM113 8,519 8,015 283.0 1.7 140 

DTM15 10,388 9,484 240.1 3.5 172 

DTM34 5,261 6,584 238.2 3.8 169 

DTM42 12,938 12,678 202.6 3.3 126 

DTM44 7,122 7,323 38.0 2.3 33 

DTM45 2,627 2,698 201.5 2.8 99 

DTM47 5,627 5,506 248.1 3.3 152 

DTM55 14,664 13,070 57.1 1.1 42 

DTM56 8,066 6,681 141.0 2.9 99 

DTM69 6,018 3,482 317.6 3.4 199 

DTM72 4,647 3,616 48.1 0.6 33 

DTM73 1,004 470 65.0 1.8 25 

DTM74 357 525 154.2 2.5 96 

DTM96 1,829 1,785 71.3 1.2 46 

DTM98 2,794 3,133 57.2 2.6 39 

DTM99 952 913 175.0 1.3 37 

 
Notes: Further details of the diversity indices are given in Caporaso et al. (2010). 

The data were resampled to provide a theoretical calculation of the number of 
sequences required to optimise these metrics (Figure A1.7). This suggested that only 
~500 sequences are required to report on the full OTU composition of the sample, but 
that about 10-fold additional sequence data are needed to capture the total richness of 
these samples. 

 

Figure A1.7 Diversity metric analysis of diatom community data 
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Quality correction of taxonomic annotations from reference data 

Initial PROMpT analysis was performed at a 97% and 96% level of taxonomic 
stringency (the percentage match that was accepted to assign identity to an OTU) 
using the rbcL reference database (Section 3). Initial analysis showed poor correlation 
with LM data and calculated TDIs (see Box 1 in Section 1.1).  

To investigate the cause of these discrepancies, the top 1% of the OTUs from each 
sample were aligned against full length reference sequences (~500) and a ‘guide’ 
maximum likelihood phylogenetic tree was constructed without bootstrapping. These 
trees allowed visual interrogation between the OTUs and reference sequences. The 
decision to perform this analysis with guide trees (not bootstrapped) was based on the 
practical computation time (days) that would have been required to perform the 
bootstrapping on trees with 500–800 constituents. The trees generated were navigated 
manually and the OTUs analysed. This analysis was performed at the following levels. 

 If reference sequences were within 3% of the OTU, the identity of the 
accessions was check against an up-to-date copy of the barcode reference 
database. 

 If no reference sequence within 3% existed within the guide tree, the taxa 
dictionary was interrogated for species where the frequency of observation 
matched with the OTU sequence frequency. If a relevant accession was 
identified, the partial sequence database was integrated into the analytical 
pipeline used for analysis. 

 If no significant match was observed for the sequence, GenBank was 
interrogated for matches using the BLAST algorithm. Matching sequences 
with significant provenance were included in the analytical pipeline. 

 If no matches were observed, the OTUs were further analysed across 
samples to see if sequences could be used to infer a species (see specific 
examples below). 

This manual analysis was very useful for identifying major issues with the preliminary 
analysis. These included the following. 

 Nomenclatural issues between reference databases were detected and 
harmonised, contributing to a significant improvement in species 
assignment. 

 The inclusion of partial sequences (often the forward element of the rbcL-3 
fragment) significantly assisted species identification. 

 Inclusion of specific GenBank sequences where appropriate provenance 
existed improved taxa assignment. 

 Some species represent complexes that contained significant cryptic or 
semi-cryptic diversity that is difficult to detect by LM. By including 
appropriate OTUs representative of variants within these complexes, 
significant species reassignment was seen (see Section A1.2.3). 

 OTUs for some species could be inferred due to their occurrence frequency 
and relative phylogenetic position (see Section A1.2.4). 

 Significant numbers of Xanthophyta sequences were observed within the 
sequence reads. Removal of these reads redressed some significant 
discrepancies between molecular and taxonomic data (see Section A1.2.5). 
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These issues were addressed by making subtle adjustment to the PROMpT’s analytical 
code. The code was altered to recognise 3 classes of sequence within its sequence 
database. These included:  

 no prefix – verified sequences within the reference database 

 ‘g’ prefix – GenBank sequences 

 ‘i’ prefix – species inferred by the analysis 

 ‘n’ prefix – non-algal sequences  

A1.2.3 Identification of species complexes 

Analysis of the individual samples identified a number of species complexes where the 
taxonomic differentiation is very subtle. This was evident in one species in particular, 
Eolima minima (synonym: Navicula minima). Significant OTUs obtained by NGS were 
associated with the single Eolima minima reference sequence. To determine the full 
diversity of this species, sequences representing 1% of the constitute sequences of 
each sample and with a close phylogenetic relationship to the Eolima minima reference 
sequence were mined from all samples. A maximum likelihood guide tree was then 
generated using these OTUs, the Eolima minima reference sequence and 3 other 
closely related sequences (accessions 710, 790 and 893) (Figure A1.8). Clades were 
then generated representing ~1% divergence, and the inter- and intra-divergence was 
calculated (Figure A1.8B and Figure A1.8C). This analysis resulted in the inclusion of 
the additional barcode sequences for Eolima minima to the analytical pipeline and 
reference database (‘I’ suffix – inferred, ‘g’ suffix – GenBank: iDTM42_2671, 
iDTM42_719, iDTM44_274, iDTM42_1080, iDTM96_900, gAM710427, gEF143279, 
gJQ610175 and gKF959642). 

 

Figure A1.8 Phylogenetic analysis of Eolima minima complex: (A) maximum 
likelihood tree of Eolima minima OTUs; (B) estimates of average evolutionary 

divergence over sequence pairs within groups; and (C) estimates of evolutionary 
divergence over sequence pairs between groups 
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A1.2.4 Inferred taxa analysis: Achnanthes oblongella 

The dominant species occurring within samples were assembled in order to identify 
species that were missing from the barcode reference database and where there may 
be good evidence for species inference.  

LM analysis had identified Achnanthes oblongella in 2 samples at the following 
frequencies: DTM100 at 84%, DTM47 at 11%. Initially, a highly represented non-
assigned clade was identified in DTM100; this consisted of OTU DTM100_109, 
DTM100_4 and DTM100_242 (Figure A1.9A), which together accounted for 51% of all 
reads (these percentages have not been adjusted for the Xanthophyta that are also 
found within the sample). The association with the sequence from accession 723 
(Cocconeis pediculus) can be ignored due to the significant divergence between these 
sequences. An appropriate clade was also identified in DTM47 that accounted for 5% 
of all reads (Figure A1.9B). The sequences were combined into a single tree, which 
confirmed that the OTUs belonged to a single clade (Figure A1.9C). In response to this 
analysis, the iDTM100_4 (‘i’ – inferred) sequence was added to the analytical pipeline 
and reference database to represent Achnanthes oblongella. 

(A) 

 

(B) 

 

(C) 

 

Figure A1.9 Clades of putative Achnanthes oblongella: orphan clades were 
identified individually from DTM100 (A), DTM47 (B) and then the relevant OTUs 

were combined into a single maximum likelihood guide tree (C) 
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A1.2.5 Xanthophyta contaminants 

The preliminary analysis of DTM98 identified 79% of the sample as Xanthophyta 
(yellow-green algae), significantly disrupting the proportional representation of the 
diatom species within the samples. Occurrence of other Xanthophyta was observed 
within a number of the other samples. Initially, individual rbcL genes from Xanthophyta 
were added to the analytical pipeline annotated as ‘n’ or non-diatom, and the workflow 
was refined to filter out these sequences and provide proportional counts for the diatom 
constituent alone. In a few samples, all non-stochastic OTUs with sequence 
representation >5 were analysed, demonstrating that most samples contained some 
yellow-green algae.  

It was considered impractical to mine all the samples for the representative non-diatom 
sequences and an alternative strategy was adopted whereby GenBank was mined for 
rbcL genes of Xanthophyta. Testing these sequences for a >90% match against the 
project’s diatom reference database identified 5 sequences whose match to the 
reference diatom barcodes and phylogenetic context would suggest that these were 
sequences submitted to GenBank as Xanthophyta but where the current phylogenetic 
analysis suggested they represented sequences from diatoms. All of these were 
removed. The remaining 306 Xanthophyta rbcL genes were incorporated into the 
analysis pipeline with the prefix ‘n’ to represent non-diatom sequences and added to 
the reference database to allow them to be pre-filtered prior to proportional 
calculations. 

A1.3 Relating NGS outputs to LM calculated using 
the TDI 

After the inclusion of a range of refinements to the analytical pipeline, the pipeline was 
rerun on both the forward and reverse sequences from the 17 samples. Analysis of the 
forward sequences data was used for the comparison with the LM data. 

A1.3.1 RA of taxa in analyses by LM and NGS 

The hypothesis underlying this work is that the RA of taxa should be similar in an NGS 
analysis to that obtained by traditional LM analysis. This was tested by examining the 
RA of genera as estimated by both methods. This in turn assumed that factors that 
determine the representation of organisms in an NGS analysis are controlled by 
phylogeny and will not differ markedly between species (though in several of the 
examples listed below, a single species comprises most of the records for a genus). A 
number of properties were examined:  

 concurrence (whether the same taxon was present in both LM and NGS 
analyses) 

 Spearman’s rank correlation between LM and NGS percentages within the 
dataset 

 whether representation was higher in NGS compared with LM, or vice versa 

 whether there were any conspicuous outliers  

Results are summarised in Table A1.6 with 2 examples, Achnanthidium and Eolimna, 
also illustrated (Figure A1.10). Both show a general trend of higher representation in 
LM being matched by higher representation in NGS. In the case of Achnanthidium, 
however, relative representation in LM is much higher than by NGS (that is, all samples 
fall below the line indicating slope =1), whereas for Eolimna, representation by NGS 
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tends to be slightly greater than by LM (samples mostly fall just above line indicating 
slope = 1). There is also, for Eolimna, one conspicuous outlier where representation by 
NGS is much higher than would be predicted by LM.  

All genera tested showed significant correlations between representation in LM and 
NGS (Table A1.6) except Nitzschia. NGS gave much greater representation than LM 
for Cyclotella (centric), Amphora and Eolimna (both raphid), while Melosira (centric), 
Diatoma and Fragilaria (both araphid), Achnanthidium, Navicula and Rhoicosphenia (all 
raphid) had greater representation in LM. There were conspicuous outliers for 7 of the 
12 genera tested where representation for one or more samples in NGS was 
substantially higher than predicted from the trend between NGS and LM inferred from 
other samples. For Fragilaria, Nitzschia and Planothidium, the opposite was also true, 
with 2 samples showing much greater representation in LM. This may reflect species 
being detected by LM analysis for which barcodes do not yet exist.  

 

Figure A1.10 Comparison between representation of 2 taxa by traditional LM 
analysis and NGS: (a) Achnanthidium; and (b) Eolimna  

Notes: Open circle = outlier; dashed line: slope = 1.   

Several sources of variability contribute to the differences seen between LM and NGS 
outputs in this study. Those associated with LM are well understood due to the 
considerable amount of work over the years. There is an inherent stochastic variability 
between counts, reflecting the (near-) random distribution of valves on a slide, overlain 
by between-analyst variation (Prygiel et al. 2000, Kahlert et al. 2009, Kahlert et al. 
2012). The latter can be controlled, to some extent, by working within a quality 
assurance framework (Kelly 2013). Further issues include the underrepresentation of 
certain taxa due to the dissolution of weakly silicified valves (for example, Fistulifera; 
Zgrundo et al. 2013) and problems caused by contagious distributions of chain-forming 
genera such as Staurosira and Pseudostaurosira.  

An additional set of factors apply when considering NGS. These can be broken down 
into 2 categories: 

 Underlying real differences in representation of LM and NGS data (for 
example, issues with copy number) as well as the possibility of selective 
amplification of some taxa. The selective amplification may be due to 
differential efficiency in liberating DNA or subtle differences in primer 
binding that are exacerbated during the competitive amplification process 
which occurs during community analysis. This will lead to a systematic 
deviation from a 1:1 relationship for any particular genus and, in turn, will 
have knock-on effects on the relationships of other taxa in the sample. A 
further possibility is that LM analyses do not differentiate between live and 
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dead cells, with the assumption that living cells will contribute most of the 
DNA. Although time will elapse before complete DNA degradation, the size 
on the amplicon means that it is unlikely to survive significantly after the 
death of the diatom.  

 Several of the genera examined also showed occasional outliers, where the 
representation in one sample greatly exceeded that predicted from the 
general trend between LM and NGS samples (Figure A1.10). Situations 
where LM greatly exceeds NGS may indicate ‘gaps’ in the taxa dictionary 
that will be filled over time. However, there are also possibilities of 
occasional overexpression of particular taxa, leading to very high NGS 
results for a sample.  

At this stage no general trend is apparent between the relative representation in LM 
and NGS based on phylogeny or cell size, though more data and a wider range of 
analyses (including species- as well as genus-level comparisons) are needed before 
generalisations can be made. 

A1.3.2 Community composition and TDI, as assessed by LM and 
NGS 

The outcome of the process described above is a data matrix in which the composition 
of the diatom assemblage is expressed in terms of the number of barcodes in an NGS 
analysis that can be assigned to particular taxa. Of the 17 samples analysed in this 
study, 8 (47%) had over 90% of the barcodes assigned to binomials in the reference 
database, and 13 (76%) had over 75% of barcodes assigned. Of the 33 taxa that 
constituted ≥5% of the total count in at least one LM analysis, 21 (64%) were 
represented in the reference database, though there are still some issues, particularly 
where the traditional taxonomy still requires work (for example, Cocconeis placentula), 
where it is suspected that cryptic or semi-cryptic diversity may exist (Eolimna minima) 
or for a few genera where it is known that the reference database is weak, relative to 
understanding based on morphological taxonomy. This situation should improve as the 
reference database increases in depth. 

Generally, more taxa were identified using LM than NGS (Figure A1.11). This was the 
case both when the comparison was limited to taxa that could be named using the 
reference database and when OTUs were used, irrespective of whether a binomial 
could be applied. More OTUs were recognised by NGS than could be named; the 
difference ranged from 2 additional OTUs being recorded (DTM96, DTM98 – both with 
limited diversity due to heavy metals) to 14 (DTM113). DTM113 was also interesting as 
this was the only sample where a considerably greater number of taxa (as OTUs) were 
discovered by NGS than by LM. 

An NMDS performed using both LM and NGS datasets showed similarities between 
the positions of samples, as estimated by the composition using the 2 techniques, 
particularly along the first axis (Figure A1.12; Spearman’s rank correlation of axis 1 
scores by LM and NGS: 0.57; p < 0.05). DTM96 and DTM98 both had very low scores 
for axis 1 using both methods, possibly reflecting low diversity due to the influence of 
heavy metal pollution at these sites. Greater differences were observed between LM 
and NGS approaches for axis 2, with LM analyses generally having lower axis 2 scores 
(median: -0.18) than NGS analyses (median: 0.24).  

If data obtained by the 2 approaches show similar structure in relation to the major 
environmental gradient (presumed to be water quality), it should follow that ecological 
indices based on these data should also give similar results. When the TDI is 
calculated on the RA of taxa to which binomials could be applied via NGS, a significant 
relationship is obtained (Figure A1.13; Spearman’s rank correlation: 0.59; p < 0.02). 
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NGS appears to overestimate the TDI at higher values for reasons that are not entirely 
clear. The possibility that this is a chance consequence of the subset of samples 
selected for these preliminary NGS analyses cannot be ruled out. One sample, DTM56, 
had a much higher TDI value based on LM than that from NGS. This was a diverse 
sample with a large number of valves belonging to a recently described species, 
Platessa bahlsii (Potapova 2012). If confirmed, this would be the first UK record and, 
as a consequence, there is no TDI score. However, other taxa in the sample would 
support the high TDI score assigned.  
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Table A1.6 Comparison between representation in LM and NGS for common diatom genera  

Genus Maximum RA (LM) N ≥2% (LM) Concurrence Correlation Slope Outliers? 

All records RA >2% only 

Centric diatoms 

Cyclotella 7% 2 65% 100% 0.59 * NGS >> LM NGS 

Melosira 12% 5 76% 100% 0.86 *** LM > NGS  

Araphid diatoms 

Diatoma 5% 2 88% 50% 0.96 *** LM > NGS  

Fragilaria 33% 6 65% 67% 0.61 ** LM >> NGS NGS and LM 

Raphid diatoms 

Achnanthidium 92% 14 76% 86% 0.72 ** LM >> NGS LM 

Amphora 94% 12 70% 100% 0.80 *** NGS > LM NGS 

Eolimna 64% 5 86% 100% 0.82 *** NGS > LM NGS 

Navicula 18% 14 70% 78% 0.72 LM >> NGS  

Nitzschia 52% 12 88% 92% 0.44 – NGS and LM 

Planothidium 36% 8 82% 75% 0.60 ** ? NGS and LM 

Rhoicosphenia 11% 6 71% 67% 0.70 ** LM > NGS NGS 

Surirella 4% 3 53% 0% 0.50 * ?  

 
Notes: Maximum RA (LM) indicates the highest value recorded in the 17 samples in the original analyses using LM to indicate the range over 

which NGS results should be expected; N ≥ 2% (LM) is also included as this is the effective ‘confidence limit’ for ‘presence’ LM analyses 
based on 300 valves (values lower than this may not be recorded in replicate analyses).  
Concurrence (whether the taxon was recorded in both LM and NGS analyses) is presented for all samples and for only those samples 
where representation in LM exceeds 2%.  
Spearman’s rank correlation is presented with statistical confidence (* p < 0.05; ** p < 0.01; *** p < 0.001; N.S. = not significant). 
‘Slope’ indicates whether the slope of LM v NGS is greater or less than 1.  
‘Outlier?’ is based on a visual assessment of whether samples deviate from the main trend of the data. 
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Figure A1.11 Comparison between number of taxa (N. taxa) recorded by LM and 
NGS 

Notes: NGS taxa are based on OTUs; see text for more details. 
The diagonal line indicates slope = 1. 

 

Figure A1.12 First 2 axes of NMDS analysis using combined data from samples 
analysed by LM and NGS 

Variation between TDI values calculated with LM and NGS data may be due to: 

 incomplete coverage in the reference database 

 a number of factors that influence how the taxa are recorded in either LM or 
NGS 
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To differentiate between these 2 causes, TDI values were computed from LM data 
using only taxa that were also recorded in the NGS analyses. This reduced the total 
number of taxa from 164 to 64 although, as the TDI is based on a weighted average 
equation that favours the most abundant taxa, which are well covered by the reference 
database (see above), this only had a small effect on the TDI calculation based on LM 
data (Spearman’s rank correlation: 0.97; p < 0.001). Although further work to improve 
coverage of the reference database would be useful, this analysis suggests that the 
most important problem is differences in how taxa are recorded in NGS and LM.  

 

Figure A1.13 Comparison of TDI values computed using traditional LM analyses 
and NGS 

Notes: The x axis shows the TDI based on all taxa identified by LM. 
Closed circles show the calculation based on NGS outputs, while open circles 
show the equivalent value of the TDI based on LM data but using only the taxa 
available for the NGS calculations.  
The diagonal line shows slope = 1.  

A1.4 Discussion 

Within this proof of concept work, the following main outputs were developed and 
tested. 

 A diatom reference database of rbcL barcodes from known diatom species 
was developed by isolating and culturing diatom species from water bodies 
of different ecological quality (see Section 3 for full details).  

 A field sampling strategy for collecting and preserving diatom samples was 
established (Appendix 2). 

 A protocol for DNA extraction and amplification from environmental 
samples was developed. This has since been adapted for automation 
(Appendix 9). 

 Work to develop shorter amplicons compatible with alternative NGS was 
also undertaken (Section A1.1.5). Use of shorter amplicons would 
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significantly reduce the cost of NGS, making it a much more attractive 
proposition for routine analyses. However, a shorter amplicon could not be 
developed satisfactorily during the lifetime of the proof of concept study but 
has since been refined (see Section 4). 

 A series of bioinformatics procedures were developed to match NGS output 
with the relevant species in the barcode reference database. This included: 

- steps to screen out non-diatom algae at an early stage  

- routines to manipulate data and produce an output in a form suitable for 
further analyses (Section A1.2) 

 The final stage of the proof of concept project was to relate the NGS 
outputs to LM results for the same samples (Section A1.3). NGS samples 
tended to recognise fewer taxa than LM (though this may change as the 
system develops) and the proportional representation of taxa was often 
different. However, the 2 datasets showed a similar structure when 
evaluated using NMDS and TDI values computed from NGS data were 
significantly correlated (Spearman’s rank correlation: 0.59).  

The proof of concept project had to overcome several methodological challenges 
including the generation of a ‘gold standard’ reference database, which is the backbone 
for any phylogenetic analysis. The culturing stages, though effective, had a tendency to 
favour fast-growing cosmopolitan species and, unless substantial effort is devoted to 
diatom ‘horticulture’, it is unlikely that this method will provide barcodes for slower-
growing species with more specialised requirements, many of which are typically found 
at low RAs.  

An unexpected outcome from this project was the ability to ‘discover’ new species 
directly from field samples using NGS, bypassing the need to culture strains (Sections 
A1.2.3 and A1.2.4). Species discovery or barcode assignment by NGS needs to be 
used with care and it is suggested the development of a series of carefully considered 
rules covering issues such as replication, metadata and phylogenetic context to ensure 
that any inferred barcodes are robust.  

 The issues that need to be addressed in the next phase of research are 
mainly associated with the development of a new suite of primers that 
would support the amplification of a smaller (300–500 bp) amplicon 
compatible with the full range of NGS sequencing technologies. This would 
have 3 advantages: 

 significantly improving the cost-effectiveness of the NGS analysis 

 increasing the depth of the sampling performed by NGS 

 removing the technical error associated with the GS FLX+ platform  
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Appendix 2: Establishing and 
deploying a field sampling 
strategy for diatom community 
samples compatible with NGS 
analysis for use by Environment 
Agency sampling teams 

A.2.1 Introduction 

The project team engaged with Environment Agency Area sampling staff to establish 
and deploy a robust procedure for sample collection of diatom community samples 
compatible with NGS analysis. This process needed to include: 

 a Standard Operating Procedure for the sampling teams (Section A.2.3) 

 a dispatch protocol to ensure that the samples arrive at the archiving and 
processing centre 

A.2.2 Sample preservation trial 

For samples collected for LM analysis, changes to the diatom assemblage after 
sampling (for example, due to differential growth rates, microbial activity and grazing) is 
prevented by the addition of either Lugol’s iodine or industrial methylated spirits (IMS). 
However, previous analysis had shown that these methods were incompatible with 
DNA extraction. An alternative option was to preserve samples by cooling with an ice 

pack at -4C. However, sampling teams had no way of maintaining ice packs at low 
temperatures in the field without adding substantially to the weight of sample batches, 
making postal delivery impractical. A ‘chemical’ freezer bag that could be activated in 
the field and was relatively light was trialled. Even given optimal delivery times, 
however, the sample would still arrive having experienced substantial time at room 
temperature.  

An additional trial of preservatives was therefore performed. All samples were collected 
from the River Taff (51.486991, -3.189138) and the following treatment applied. 

1. Diatom suspension (15ml) was placed into an empty 15ml Falcon tube, 
transported directly to the laboratory, where it was centrifuged immediately 

to pellet the cellular material and frozen at -20C. 

2. Diatom sample (7.5ml) was added to an equal volume of IMS and the 
sample left at room temperature for 72 hours. 

3. Diatom sample (7.5ml) was added to an equal volume of ethanol and the 
sample left at room temperature for 72 hours. 
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4. Diatom sample (7.5ml) was added to an equal volume of nucleic acid 
preservative (3.5 M ammonium sulphate, 17 mM sodium citrate and 13 mM 
EDTA) and the sample left at room temperature for 72 hours. 

After 72 hours at room temperature, samples 2–4 were centrifuged to pellet the cellular 

material and frozen at -20C. All samples were then defrosted and DNA extracted 
using a hybrid glass bead lysis into a DTAB extraction method (Fawley and Fawley 
2004). The hybrid protocol yielded a simple and rapid technique for extraction of DNA 
from diatoms followed by a DNeasy column purification.  

The expectation was that 50:50 volume/volume (v/v) addition of nucleic acid 
preservative and ethanol to the sample would suspend all biological activity, thus 
preserving community structure. The DNA samples were analysed for DNA recovery 
and purified using spectral analysis (Figure A2.1). These results confirmed that: 

 no DNA could be recovered from IMS preserved material 

 both ethanol and the nucleic acid preservative did preserve the integrity 

Although the yield of DNA using these methods is half of that achieved for the fresh 
sample, this represents an equivalent quality when adjusting for the volume of 
preservative added.  

Ethanol and the nucleic acid preservative samples were subsequently successfully 

tested for the ability to act as a template for rbcL-3 amplification (Figure A.2.2) and 
both provide a method for robust sample collection.  

 

Figure A2.1 Compatibility test for diatom preservation with DNA extraction. 
DNA was extracted and analysed from diatoms subsampled from an individual 
community preparation and either immediately centrifuged and preserved at -

20oC (A) or maintained for 72 hours at room temperature with an equal volume of 
IMS (B), ethanol (C) and nucleic acid preservative (D).  

Notes: DNA concentrations were: (A) 48ng µl-1 fresh sample; (B) IMS 8.2 ng µl-1 (note this 
is not accurate due to degradation); (C) ethanol 20.9 ng µl-1; and (D) nucleic acid 
preservative 18.5 ng µl-1. 
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Figure A2.2 rbcL amplification from diatom assemblages after preservation 
treatments. DNA extracted from environmental samples after differential 

preservation were amplified using the rbcL-3 primers previous reported by 
Hamsher et al. (2011). Lanes show the following samples: (M) 100 bp ladder; (A) 
fresh sample; (B) 72 hours IMS; (C) 72 hours ethanol; (D) 72 hours nucleic acid 

preservative; and (E) control PCR with no template DNA. 

A.2.3 Standard Operating Procedure: Diatom sample 
preservation for molecular analysis  

Purpose  

This document describes the process you must follow when collecting and preserving 
diatom samples for molecular analysis. 

Scope  

This method is applicable to all diatom samples collected by Environment Agency staff 
from rivers and lakes in the UK for DNA analysis. 

Justification of method 

The chemical added to diatom samples used for DNA analysis is different from the 
chemical (Lugol’s iodine) added to diatom samples collected for standard analysis. It is 
necessary to use a different preservative as it stabilises and protects the DNA within 
the cells of the diatoms. It also eliminates the need to immediately process or freeze 
the samples.  

Health and safety 

The preservative used in diatom DNA samples is an aqueous, ammonium sulphate 
based, non-toxic preservative. It is not classified as hazardous, the risk level is low, it 
can be disposed of down the sink and there are no restrictions on shipment. It can, 
however, cause skin irritation. Therefore you must avoid contact with skin and wear 
gloves when handling. If skin contact occurs, wash hands thoroughly with plenty of 
water. Please refer to the COSHH risk assessment for further information regarding the 
health and safety risk of this product. 
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Equipment and supplies for preservation 

 15ml sterile Falcon tubes  

 diatom DNA preservative (can be stored at room temperature) 

 plastic Pasteur pipettes  

 barcode labels 

 gloves 

Method summary 

Sample collection 

Diatom DNA samples must be collected using the standard sampling method described 
in Operational Instruction 27_07, which is in accordance with CEN (2014a) and Kelly et 
al. (1998). Once the sample has been collected, mix it and decant 5ml of sample to the 
Falcon tube (15ml centrifuge tube). The remaining sample can then be decanted into 
the normal sample container. Both samples must then be appropriately labelled with 
the sample barcode, Biosys site ID and sample date. 

Sample preservation 

On return to the laboratory, both sample portions need to be appropriately preserved 
as follows: 

Diatom DNA sample (15ml centrifuge tube): 

Important! Wear gloves when handling diatom DNA samples to reduce the risk of skin 
exposure and to avoid contaminating DNA entering the sample. 

1. Add 5ml of the diatom DNA preservative to the sample using a pipette. 
Important! There must be equal volumes of sample liquid and diatom 
preservative. 

2. Replace the same cap onto the sample tube and seal it with Parafilm. 
Important! You must make sure the same cap goes back on the same 
tube to avoid sample contamination. 

3. Invert the tube to mix the contents. 

4. Store the sample in the freezer.  

Important! It is essential that diatom DNA samples are preserved as quickly as 
possible after collection to reduce DNA degradation. If a sample will not reach the 
laboratory for more than 24 hours, consider preserving the sample at the depot. 

Standard diatom sample 

This portion of the sample can be preserved as normal with Lugol’s iodine.  

What to do with samples 

1. Store the preserved diatom DNA samples in the freezer. 
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2. Once a batch of at least 10 samples has been collected, these should be 
couriered to the molecular laboratory that will be carrying out the diatom 
DNA analysis. To save on shipping cost and if capacity is available in your 
freezer, please store the samples until the end of the sampling campaign 
and ship in larger batches (for example, one batch at the end of spring 
sampling and one at the end of autumn sampling). 
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Appendix 3: Collection locations 
The table below lists the locations from which diatom species were collected to provide 
strains for the rbcL barcode database.  

 ID permits cross-reference to individual strain identities. 

 Voucher (box slot) refers to the location of the original slide in the 
herbarium at the Royal Botanic Gardens, Edinburgh 

 BC accession number refers to the location of the original slide in Bowburn 
Consultancy’s herbarium and database (where appropriate). 

ID Locality Date NGR Collector Original 
ID 

P01 Water of Leith at Currie 
Rugby Club, Balerno, 
Midlothian 

19 May 2012 NT 164667 David Mann P1 

P02 Streams, Pentland Hills, 
Green Cleuch, above 
Balerno, Midlothian 

19 May 2012 NT 1862 David Mann P2 

P03 Streams, Pentland Hills, 
Green Cleuch, above 
Balerno, Midlothian 

19 May 2012 NT 1862 David Mann P3 

P04 Streams, Pentland Hills, 
Green Cleuch, above 
Balerno, Midlothian 

19 May 2012 NT 1862 David Mann P4 

P05 Streams, Pentland Hills, 
Green Cleuch, above 
Balerno, Midlothian 

19 May 2012 NT 1862 David Mann P5 

P06 Streams, Pentland Hills, 
Green Cleuch, above 
Balerno, Midlothian 

19 May 2012 NT 1862 David Mann P6 

P07 Streams, Pentland Hills, 
Green Cleuch, above 
Balerno, Midlothian 

19 May 2012 NT 1862 David Mann P7 

P08 Streams, Pentland Hills, 
Green Cleuch, above 
Balerno, Midlothian 

19 May 2012 NT 1862 David Mann P8 

P09 Streams, Pentland Hills, 
Green Cleuch, above 
Balerno, Midlothian 

19 May 2012 NT 1862 David Mann P9 
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ID Locality Date NGR Collector Original 
ID 

P10 Streams, Pentland Hills, 
Green Cleuch, above 
Balerno, Midlothian 

19 May 2012 NT 1862 David Mann P10 

C01 Kinleith Burn, Moidart 
House, Currie, Edinburgh 

22 May 2012 NT 187675 David Mann C1 

C02 Kinleith Burn, Moidart 
House, Edinburgh 

22 May 2012 NT 187675 David Mann C2 

C03 Kinleith Burn, Moidart 
House, Edinburgh 

22 May 2012 NT 187675 David Mann C3 

C04 Kinleith Burn, Moidart 
House, Edinburgh 

22 May 2012 NT 187675 David Mann C4 

C05 Kinleith Burn, Moidart 
House, Edinburgh 

22 May 2012 NT 187675 David Mann C5 

B01 Allt a ‘Bhalachain, Argyll 
and Bute 

26 May 2012 NN 2705 David Mann BT1 

B02 Allt a ‘Bhalachain, Argyll 
and Bute 

26 May 2012 NN 2705 David Mann BT2 

B03 Allt a ‘Bhalachain, Argyll 
and Bute 

26 May 2012 NN 2705 David Mann BT3 

B04 Allt a ‘Bhalachain, Argyll 
and Bute 

26 May 2012 NN 2705 David Mann BT4 

B05 Allt a ‘Bhalachain, Argyll 
and Bute 

26 May 2012 NN 2705 David Mann BT5 

B06 Allt a ‘Bhalachain, Argyll 
and Bute 

26 May 2012 NN 2705 David Mann BT6 

B07 Allt a ‘Bhalachain, Argyll 
and Bute 

26 May 2012 NN 2705 David Mann BT7 

B08 Allt a ‘Bhalachain, Argyll 
and Bute 

26 May 2012 NN 2705 David Mann BT8 

B09 Allt a ‘Bhalachain, Argyll 
and Bute 

26 May 2012 NN 2705 David Mann BT9 

B10 Allt a ‘Bhalachain, Argyll 
and Bute 

3 June 2012 NN 2705 David Mann BN1 
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ID Locality Date NGR Collector Original 
ID 

B11 Allt a ‘Bhalachain, Argyll 
and Bute 

3 June 2012 NN 2705 David Mann BN2 

C06 River Almond at Cramond, 
Edinburgh 

June 2012 NT 183764 David Mann CRA1 

C07 River Almond at Cramond, 
Edinburgh 

June 2012 NT 183764 David Mann CRA2 

M01 Kinleith Burn, Moidart 
House, Edinburgh 

June 2012 NT 187675 David Mann M1 

M02 Kinleith Burn, Moidart 
House, Edinburgh 

June 2012 NT 187675 David Mann M2 

W01 Water of Leith, Currie, 
Edinburgh 

June 2012 NT 183677 David Mann WL1 

W02 Water of Leith, Currie, 
Edinburgh 

June 2012 NT 183677 David Mann WL2 

T01 River Tay, near Aberfeldy, 
Perth and Kinross 

4 June 2012 – Cristine 
Rosique 

T01 

T02 River Tay, near Aberfeldy, 
Perth and Kinross, slow 
flow 

14 June 2012 – Cristine 
Rosique 

T02 

T03 River Tay, near Aberfeldy, 
Perth and Kinross, fast flow 

14 June 2012 – Cristine 
Rosique 

T03 

K01 Eudon Beck 20 June 2012 NZ 067300 Martyn Kelly K01 

K02 River Browney, Sunderland 
Bridge ()112257 

20 June 2012 NZ 267383 Martyn Kelly K02 

P11 River Tay, Pitlochry, Perth 
and Kinross 

8 July 2012 – Shinya Sato P11 

P12 River Tay, Pitlochry, Perth 
and Kinross 

8 July 2012 – Shinya Sato P12 

P13 River Tay, Pitlochry, Perth 
and Kinross 

8 July 2012 – Shinya Sato P13 

K03 River Ehen, ‘scout camp’ 12 August 
2012 

NY 087153 Martyn Kelly K03 

K04 River Ehen, ‘Mill, footbridge’ 12 August 
2012 

NY 081152 Martyn Kelly K04 



126  A DNA based diatom metabarcoding approach for Water Framework Directive classification of rivers  

ID Locality Date NGR Collector Original 
ID 

K05 River Ehen, ‘oxbow’ 12 August 
2012 

NY 072157 Martyn Kelly K05 

K06 Cheriton Stream, Cheriton 19 September 
2012 

SU 5829 
2849 

Martyn Kelly A 

K07 River Dever, Branbury 
(112277) 

19 September 
2012 

SU 4215 
42230 

Martyn Kelly B 

K08 Pillhill Brook, Upper Clatford 
(112278) 

19 September 
2012 

SU 35111 
44201 

Martyn Kelly C 

K09 River Anton, Andover, ‘KFC’ 19 September 
2012 

SU 36446 
46388  

Martyn Kelly D 

K10 Lambourn, Bagnor 
(112280) 

19 September 
2012 

SU 4519 
6928 

Martyn Kelly E 

K11 River Kennet, Stitchcombe 
Mill 

19 September 
2012 

SU 1676 
6870 

Martyn Kelly F 

K12 River Wylye, Kingston 
Deverill 

19 September 
2012 

ST 844372 Martyn Kelly G 

K13 River Wylye, Henford Marsh 19 September 
2012 

ST 878438 Martyn Kelly H 

B12 Inveruglas Water, by Ben 
Vane, Argyll and Bute 

23 September 
2012 NT 2909 

David Mann SL 

B13 Inveruglas Water, by Ben 
Vane, Argyll and Bute 

23 September 
2012 NT 2909 

David Mann SL inv 

B14 Allt Coiregrogain, by Ben 
Vane, Argyll and Bute 

23 September 
2012 NT 2909 

David Mann BV str 

B15 Allt Coiregrogain, by Ben 
Vane, Argyll and Bute 

23 September 
2012 NT 2909 

David Mann BV 

N01 Wooler Water near Wooler, 
Northumbria 

28 October 
2012 

– David Mann 1 

N02 Wooler Water near Wooler, 
Northumbria 

28 October 
2012 

– David Mann 2 

N03 River near Wooler, 
Northumbria 

28 October 
2012 

– David Mann 3 

N04 Harthope Burn, 
Northumbria 

28 October 
2012 

NT 973246 David Mann 4 
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ID Locality Date NGR Collector Original 
ID 

N05 Harthope Burn, 
Northumbria 

28 October 
2012 

NT 973246 David Mann 5 
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Appendix 4: Diatom species from 
which rbcL barcodes obtained  
Species Authority Number 

Strains 

Achnanthes_pseudoswazi J.R.Carter 1963 1 

Achnanthidium_caledonicum (Lange-Bertalot) Lange-Bertalot 
1999 

2 

Achnanthidium_lineare W. Smith; 1855 1 

Achnanthidium_minutissimum (Kützing) Czarnecki 1994 88 

Achnanthidium_sp. Kützing 1844 1 

Adlafia_bryophila (Petersen) Lange-Bertalot In Moser 
et al. 1997 

1 

Adlafia_minuscula (Grunow) Lange-Bertalot in Lange-
Bertalot and Genkal 1999 

2 

Amphora_pediculus (Kützing) Grunow in Schmid et al. 
1875 

3 

Brachysira_neoexilis Lange-Bertalot in Lange-Bertalot 
and Moser 1994 

2 

Brachysira_vitrea (Grunow) R.Ross in B.Hartley 1986 1 

Cocconeis_pediculus Ehrenberg 1838 1 

Cocconeis_placentula Ehrenberg 1838 1 

Cyclotella_meneghiniana Kützing 1844 7 

Cymbella _sp. C.Agardh 1830 1 

Cymbella_cymbiformis C. Agardh 1830 1 

Diatoma_moniliformis Kützing 1833 6 

Diatoma_tenuis Agardh 1812 2 

Diatoma_vulgaris Agardh 1812 3 

Encyonema_minutum (Hilse in Rabenhorst) D.G.Mann in 
Round et al. 1990 

4 

Encyonema_silesiacum (Bleisch in Rabenhorst) D.G.Mann 
in Round et al. 1990 

4 

Encyonema_sp. Kützing 1833 6 

Encyonopsis_falaisensis (Grunow) Krammer 1997 2 

Encyonopsis_microcephala (Grunow) Krammer 1997 1 

Eunotia_arcus Ehrenberg 1837 1 
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Species Authority Number 
Strains 

Eunotia_bilunaris (Ehrenberg) Mills 1934 7 

Eunotia_exigua (Brébisson) Rabenhorst 1864 4 

Eunotia_implicata Norpel, Lange-Bertalot et Alles 
1991 

1 

Eunotia_minor (Kützing) Grunow in Van Heurck 
1881 

3 

Fistulifera_solaris  S.Mayama, M.Matsumoto, 
K.Nemoto and T.Tanaka in 
Matsumoto et al. 2014 

1 

Fragilaria_capucina Desmazières 1925 3 

Fragilaria_crotonensis Kitton 1869 1 

Fragilaria_gracilis Øestrup 1910  67 

Fragilaria_sp. Lyngbye 1819 7 

Fragilaria_mesolepta Rabenhorst 1861 1 

Fragilaria_pararumpens Lange-Bertalot, G. Hofmann et 
Werum 2011 

19 

Fragilaria_perminuta (Grunow) Lange-Bertalot 2000 2 

Fragilaria_radians (Kützing) Lange-Bertalot in 
Hofmann et al. 2011 

1 

Fragilaria_rumpens (Kützing) Carlson 1913 2 

Fragilaria_tenera (W. Smith) Lange-Bertalot 1980 1 

Fragilaria_vaucheriae (Kützing) Petersen 1938 5 

Frustulia_crassinervia (Brébisson) Lange-Bertalot and 
Krammer in Lange-Bertalot and 
Metzeltin 1996 

2 

Gomphonema_acuminatum Ehrenberg 1836 3 

Gomphonema_sp. Ehrenberg 1832 2 

Gomphonema_clavatum Ehrenberg 1832 2 

Gomphonema_cymbelliclinum E.Reichardt and Lange-Bertalot 
1999 

1 

Gomphonema_exilissimum (Grunow) Lange-Bertalot and E. 
Reichardt 1996 

5 

Gomphonema_hebridense Gregory 1854 8 

Gomphonema_micropus Kützing 1844 2 

Gomphonema_minutum (C. Agardh) C. Agardh 1831  2 

Gomphonema_parvulum (Kützing) Kützing 1849 21 
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Species Authority Number 
Strains 

Gomphonema_pseudobohemicum Lange-Bertalot and E. Reichardt 
1993 

1 

Gomphonema_pumilum (Grunow) E. Reichardt and Lange-
Bertalot 1991 

1 

Gomphonema_truncatum Ehrenberg 1832 2 

Hannaea_arcus R.M.Patrick in R.M.Patrick et 
Reimer 1966 

2 

Mayamaea_atomus (Kützing) Lange-Bertalot 1997 2 

Melosira_varians C. Agardh 1827 8 

Meridion_circulare (Greville) C.Agardh 1831 1 

Navicula tripunctata (O.F.Müller) Bory 1822 1 

Navicula_angusta Grunow 1860 1 

Navicula_capitata Ehrenberg 1838 1 

Navicula_cryptocephala Kützing 1844 3 

Navicula_cryptotenella Lange-Bertalot 1985 2 

Navicula_gregaria Donkin 1861 10 

Navicula_lanceolata (Agardh) Ehrenberg 1838 45 

Navicula_radiosa Kützing 1844 7 

Navicula_sp. Bory 1822 2 

Navicula_trivialis Lange-Bertalot 1980 1 

Navicula_upsaliensis (Grunow) Peragallo 1903 1 

Navicula_veneta Kützing 1844 1 

Neidium_dubium (Ehrenberg) Cleve 1894 1 

Nitzschia_acicularis (Kützing) W.Smith 1853 1 

Nitzschia_alicae Hlúbiková and Ector in Hlúbiková et 
al. 2009 

2 

Nitzschia_amphibia Grunow 1862 4 

Nitzschia_capitellata Hustedt in A.Schmidt et al. 1922 1 

Nitzschia_dissipata (Kützing) Grunow 1862 4 

Nitzschia_fonticola Grunow in Van Heurck 1881 4 

Nitzschia_frustulum (Kützing) Grunow in Cleve and 
Grunow 1880 

1 

Nitzschia_hantzschiana Rabenhorst 1860 2 

Nitzschia_linearis (Agardh) W.Smith 1853 7 
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Species Authority Number 
Strains 

Nitzschia_palea (Kützing) W.Smith 1856 35 

Nitzschia_paleacea Grunow in Van Heurck 1881 2 

Nitzschia_perminuta (Grunow) M. Peragallo 1903 1 

Nitzschia_pusilla (Kützing) Grunow em. Lange-
Bertalot 1976 

1 

Nitzschia_recta Hantzsch ex. Rabenhorst 1861 2 

Nitzschia_romana Grunow in Van Heurck 1881 1 

Nitzschia_sigma (Kützing) W.Smith 1853 1 

Nitzschia_sigmoidea (Nitzsch) W.Smith 1853 1 

Nitzschia_sociabilis  Hustedt 1957 2 

Nitzschia_sp. Hassall 1845 3 

Nitzschia_sublinearis Hustedt 1930 1 

Nitzschia_vermicularoides Lange-Bertalot 1 

Parlibellus_protracta (Grunow) Witkowski, Lange-
Bertalot and Metzeltin 2000 

1 

Peronia_fibula (Brébisson ex.Kützing) R.Ross 
1956 

1 

Pinnularia_grunowii Krammer 2000 1 

Pinnularia_microstauron (Ehrenberg) Cleve 1891 3 

Pinnularia_neomajor Krammer 1992 1 

Pinnularia_sp. Ehrenberg 1843 3 

Pinnularia_subcapitata Gregory 1856 4 

Planothidium_frequentissimum (Lange-Bertalot) Round and 
L.Bukhtiyarova 1996 

1 

Planothidium_lanceolatum (Brébisson) Lange-Bertalot 1999 4 

Psammothidium_bioretii (Germain) L.Bukhtiyarova and 
Round 1996 

1 

Pseudostaurosira_brevistriata (Grunow in Van Heurck) 
D.M.Williams and Round 1987 

2 

Reimeria_sinuata (Gregory) Kociolek and Stoermer 
1987 

3 

Rhoicosphenia_abbreviata (C.Agardh) Lange-Bertalot 1980 1 

Sellaphora_joubaudii (H.Germain) Aboal in Aboal et al. 
2003 

1 

Sellaphora_seminulum (Grunow) D.G.Mann 1989 1 

Stauroneis_phoenicenteron (Nitzsch) Ehrenberg 1843 1 
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Species Authority Number 
Strains 

Staurosira_cf_subsalina (Hustedt) Lange-Bertalot 2000 1 

Staurosira_elliptica (Schumann) D.M. Williams and 
Round(1987) 

2 

Staurosira_venter (Ehrenberg) Grunow in Pantocsek 
1889 

5 

Stephanodiscus_hantzschii Grunow in Cleve and Grunow 1880 1 

Surirella_angusta Kützing 1844 3 

Surirella_brebissonii Krammer and Lange-Bertalot 1987 7 

Tabellaria_flocculosa (Roth) Kützing 1844 8 

Thalassiosira_pseudonana Hasle and Heimdal 1970 1 

Thalassiosira_weissfloggii (Grunow) Fryxell and Hasle 1977 3 

Tryblionella_debilis Arnott in O’Meara 1873 1 

Ulnaria_acus (Kützing) Aboal in Aboal, Alvarez 
Cobelas, Cambra and Ector 2003 

6 

Ulnaria_ulna (Nitzsch) P.Compère in Jahn et al. 
2001 

12 
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Appendix 5: Diatom taxa whose 
identities were inferred by 
comparing NGS and LM outputs 
Species  Authority Number 

Strains 

Platessa_conspicua (A. Meyer) Lange-Bertalot 2004 1 

Achnanthes_oblongella Øestrup 1902 1 

Achnanthidium_minutissimum (Kützing) Czarnecki 1994 1 

Actinocyclus_sp. Ehrenberg 1837 1 

Diatoma_sp. Bory 1824 1 

Eolimna_minima (Grunow) Lange-Bertalot 1998 5 

Eunotia_cf_formica Ehrenberg 1843 1 

 



134  A DNA based diatom metabarcoding approach for Water Framework Directive classification of rivers  

Appendix 6: Diatom barcodes 
added from published sources  
 

Species Authority 
Number 
Strains 

Source 1 

Achnanthes coarctata 
(Brébisson) Grunow in Cleve 
and Grunow 1880 

1 R-SYST 

Actinocyclus_sp. Ehrenberg 1837 1 GenBank 

Amphora_pediculus 
(Kützing) Grunow in Schmid et 
al. 1875 

1 GenBank 

Asterionella formosa Hassall 1855 1 R-SYST 

Aulacoseira granulata (Ehrenberg) Simonsen 1979 1 R-SYST 

Bacillaria paxillifer (Müller) Hendey 1951 1 R-SYST 

Caloneis limosa 
(Kützing) R.M.Patrick in 
R.M.Patrick and Reimer 1966 

1 R-SYST 

Craticula accomoda 
(Hustedt) D.G.Mann in Round 
et al. 1990 

1 R-SYST 

Ctenophora pulchella 
(Ralfs ex.Kützing) D.M.Williams 
and Round 1986 

1 R-SYST 

Cyclostephanos dubius (Fricke) Round 1982 1 R-SYST 

Cyclotella_distinguenda Hustedt 1927 1 GenBank 

Cymatopleura solea (Brébisson) W.Smith 1851 1 R-SYST 

Cymbopleura 
naviculiformis 

(Auerswald) Krammer 2003 1 R-SYST 

Denticula kuetzingii Grunow 1862 1 R-SYST 

Denticula_sp. Kützing 1844 1 GenBank 

Didymosphenia geminata (Lyngbye) M.Schmidt 1899 1 R-SYST 

Diploneis subovalis Cleve 1894 1 R-SYST 

Ellerbeckia sp. R.M.Crawford 1988 1 R-SYST 

Eolimna_minima (Grunow) Lange-Bertalot 1998 3 GenBank 

Eolimna_sp_Styx 
Lange-Bertalot and W. Schiller 
in W. Schiller and Lange-
Bertalot 1997 

1 GenBank 

Epithemia sorex Kützing 1844 1 R-SYST 

Eucocconeis laevis (Østrup) Lange-Bertalot 1999 1 R-SYST 

Eunotia_formica  Ehrenberg 1843 1 GenBank 
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Species Authority 
Number 
Strains 

Source 1 

Fallacia pygmaea 
(Kützing) Stickle and D.G.Mann 
in Round et al. 1990 

1 R-SYST 

Fistulifera_pelliculosa 
(Brébisson ex Kützing) Lange-
Bertalot 1997 

4 GenBank 

Fistulifera_saprophila 
(Lange-Bertalot and Bonik) 
Lange-Bertalot 1997 

2 GenBank 

Fragilariforma virescens 
(Ralfs) D.M.Williams and Round 
1988 

1 R-SYST 

Geissleria decussis 
(Hustedt) Lange-Bertalot and 
Metzeltin 1996 

1 R-SYST 

Halamphora montana (Krasske) Levkov 2009 1 R-SYST 

Kareyevia ploenensis (Hustedt) L. Bukhtiyarova 1999 1 R-SYST 

Mastogloia sp. 
G.H.K.Thwaites in W.Smith 
1856 

1 R-SYST 

Navicula_tripunctata (O.F.Müller) Bory 1822 2 GenBank 

Neidium affine (Ehrenberg) Pfitzer 1871 1 R-SYST 

Nitzschia_inconspicua Grunow 1862 68 GenBank 

Nitzschia_soratensis E. Morales and Vis 2007 10 GenBank 

Parlibellus hamulifer (Grunow) E.J. Cox 1988 1 R-SYST 

Placoneis clementis (Grunow) E.J.Cox 1987 1 R-SYST 

Rhopalodia gibba (Ehrenberg) O.Müll. 1895 1 R-SYST 

Staurosira_construens Ehrenberg 1843  1 GenBank 

Staurosira_elliptica 
(Schumann) D.M. Williams and 
Round 1987 

1 GenBank 

Staurosirella martyi 
(Héribaud-Joseph) E.A.Morales 
and K.M.Manoylov 2006 

1 R-SYST 

Staurosirella pinnata 
(Ehrenberg) D.M.Williams and 
Round 1987 

1 R-SYST 

Tabularia fasiculata 
(Agardh) D.M.Williams and 
Round 1986 

1 R-SYST 

Tryblionella constricta Gregory 1855 1 R-SYST 

 
Notes: 1 R-SYST = www.rsyst.inra.fr, GenBank = www.ncbi.nlm.nih.gov/genbank 

http://www.rsyst.inra.fr/
http://www.ncbi.nlm.nih.gov/genbank/
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Appendix 7: Xanthophyta 
barcodes added to the barcode 
database 

Taxon Authority 
Number 
Strains 

Asterosiphon dichotomus (Kützing) Rieth 1962 1 

Botrydiopsis alpina Vischer 1945 2 

Botrydiopsis callosa Trenkwalder 1975 1 

Botrydiopsis constricta Broady 1976 3 

Botrydiopsis intercedens Pascher 1939 2 

Botrydiopsis pyrenoidosa Trenkwalder 1975 1 

Botrydium becherianum Vischer 1938 2 

Botrydium cystosum Vischer 1938 1 

Botrydium granulatum (Linnaeus) Greville 1830 3 

Botrydium stoloniferum Mitra 3 

Botryochloris sp Borzí 1889 1 

Bumilleria exilis  Klebs 1896 2 

Bumilleria klebsiana  Pascher 1932 1 

Bumilleria sicula Borzí 1888 2 

Bumilleria sp Borzí 1888 3 

Bumilleriopsis filiformis Vischer 1945 2 

Bumilleriopsis cf. filiformis  Vischer 1945 1 

Bumilleriopsis peterseniana Vischer et Pascher 1936 2 

Bumilleriopsis pyrenoidosa (Deason and Bold) Ettl 1978 1 

Bumilleriopsis sp Printz 1914 8 

Chlorellidium pyrenoidosum A.Begum and P.A.Broady 2002 1 

Chlorellidium sp.   1 

Chlorellidium tetrabotrys Vischer and Pascher 1937 2 

Excentrochloris sp Vischer and Pascher 1937 5 

Goniochloris sculpta  Geitler 1928 1 

Heterococcus brevicellularis  Vischer 1945 1 

Heterococcus caespitosus Vischer 1936 5 
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Taxon Authority 
Number 
Strains 

Heterococcus chodatii  Vischer 1937 1 

Heterococcus conicus  Pitschmann 1963 4 

Heterococcus crassulus  Vischer 1945 1 

Heterococcus fournensis  Vischer 1945 2 

Heterococcus cf. fuornensis  Vischer 1945 1 

Heterococcus leptosiroides  Pitschmann 1963 1 

Heterococcus mainxii  Vischer 1937 2 

Heterococcus moniliformis  Vischer 1937 1 

Heterococcus pleurococcoides Pitschmann 1963 3 

Heterococcus protonematoides protonematoides Vischer 1945 3 

Heterococcus ramosissimus  Pitschmann 1963 2 

Heterococcus sp Chodat 1908 3 

Heterococcus viridis  Chodat 1908 7 

Heterothrix debilis  Vischer 1936 1 

Mischococcus sphaerocephalus Vischer 1932 2 

Monodus unipapilla  H.Reisigl 1964 1 

Ophiocytium capitatum Wolle 1887 2 

Ophiocytium majus Nägeli 1849 2 

Ophiocytium parvulum (Perty) A.Braun 1855 2 

Pleurochloris meiringensis Vischer 1945 3 

Pseudobumilleriopsis 
pyrenoidosa  

Deason and Bold 1960 1 

Pseudopleurochloris antarctica 
C.Andreoli, I.Moro, N.La Rocca, F.Rigoni, 
L.Dalla Valle and L.Bargelloni 1999 

1 

Sphaerosorus composita L.Moewus 2 

Tribonema aequale Pascher 1925 4 

Tribonema affine  (G.S.West) G.S.West 1904 7 

Tribonema elegans  Pascher 1925 1 

Tribonema intermixtum Pascher 8 

Tribonema microchloron  Ettl 2 

Tribonema minus (Wille) Hazen 1902 3 

Tribonema cf. minus  (G.A.Klebs) Hazen 1902 2 

Tribonema missouriense   1 
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Taxon Authority 
Number 
Strains 

Tribonema regulare Pascher 1939 16 

Tribonema sp Derbès and Solier 1856 11 

Tribonema ulotrichoides Pascher 1925 2 

Tribonema utriculosum (Kützing) Hazen 1902 13 

Tribonema viride Pascher 1925 8 

Tribonema vulgare Pascher 1923 10 

Vaucheria aversa Hassall 1843 1 

Vaucheria borealis  Hirn 1900 1 

Vaucheria bursata (O.F.Müller) C.Agardh 5 

Vaucheria canalicularis (Linnaeau) T.A.Christensen 1968 1 

Vaucheria compacta (Collins) Collins in Taylor 1937 1 

Vaucheria conifera T.A.Christensen 1987 1 

Vaucheria cornonata Nordstedt 1879 1 

Vaucheria dichotoma (Linnaeus) Martius 1817 2 

Vaucheria dilwynii (F.Weber et D.Mohr) C.Agardh 1812 1 

Vaucheria erythrospora  T.A.Christensen 1956 2 

Vaucheria frigida (Roth) C.Agardh 1824 4 

Vaucheria geminata 
(Vaucher) de Candolle in Lamarck et de 
Candolle 1805 

2 

Vaucheria hamata 
(Vaucher) De Candolle in Lamarck and De 
Candolle 1805 

1 

Vaucheria litorea C.Agardh 1823 3 

Vaucheria medusa T.A.Christensen 1952 1 

Vaucheria prona T.A.Christensen 1970 3 

Vaucheria pseudogeminata P.A.Dang. 1939 1 

Vaucheria repens Hassall 1843 2 

Vaucheria schleicheri De Wildeman 1895 1 

Vaucheria synandra Woronin 1869 1 

Vaucheria terrestris 
(Vaucher) De Candolle in Lamarck and De 
Candolle 1805 

1 

Vaucheria walzii Rothert 1896 1 

Vaucheria zapotecana  
Bonilla-Rodriguez, Garduno-Solorzano, 
Martinez-Garcia, Campos, Monsalvo-Reyes 
and Quintanar-Zuniga 2013 

1 
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Taxon Authority 
Number 
Strains 

Xanthonema bristolianum 
Xanthonema bristolianum (Pascher) P.C.Silva 
1979 

2 

Xanthonema cf. bristolianum  
Xanthonema bristolianum (Pascher) P.C.Silva 
1979 

1 

Xanthonema debile (Vischer) P.C.Silva 1979 4 

Xanthonema cf. debile (Vischer) P.C.Silva 1979 3 

Xanthonema exile (G.A.Klebs) P.C.Silva 1979 3 

Xanthonema cf. exile  (G.A.Klebs) P.C.Silva 1979 1 

Xanthonema hormidioides (Vischer) P.C.Silva 1979 4 

Xanthonema cf. hormidioides  (Vischer) P.C.Silva 1979 1 

Xanthonema montanum  (Vischer) P.C.Silva 1979 3 

Xanthonema mucicolum (Ettl) Ettl 2 

Xanthonema sessile (Vinatzer) Ettl and Gärtner 1995 2 

Xanthonema solidum (Vischer) P.C.Silva 1979 3 

Xanthonema sp P.C.Silva 1979 17 

Xanthonema tribonematoides Pascher) P.C.Silva 1979 2 

Xanthonema cf. tribonematoides  Pascher) P.C.Silva 1979 1 

‘Botryidiopsidaceae’ sp  2 

‘Uncultured xanthophyte’  12 

‘Xanthophyceae’   2 
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Appendix 8: Python code written 
for this project  
This code was written in order to calculate the number of correct taxonomic 
assignments made for each hypothetical amplicon region. 

# For the diatom alignment taxonomy assessments 
# To be run on QIIME server so no biopython 
  
import argparse 
import sys 
from collections import defaultdict 
  
def main(): 
    options = parseArguments() 
      # The otus and tax files are indexed by the OTU number. 

# Gives an output of each actual sequence in the alignment slice and its taxonomic 
assignment. 
    sequences = defaultdict(lambda: defaultdict(dict)) 
     
    # Grab the names of the sequences in the alignment file. 
    alignment_sequences = [] 
    for line in open(options.alignment,"rU"): 
       if line.startswith(">"): 
           line = line.rstrip() 
           sample = line.strip(">") 
           alignment_sequences.append(sample) 
            
     
    # Load in all the correct taxonomies to the sequences dict 
    for line in open(options.alltax,"rU"): 
       line = line.rstrip() 
       if (line.startswith("Strain")): 
           #This is the first line 
           pass 
       else: 
           #Process 
           linelist = line.split('\t') 
           seqname = linelist[0] 
           if seqname in alignment_sequences: 
              taxonomy = linelist[1] 
              taxonomylist = taxonomy.split(';') 
              sequences[seqname]["correct_taxonomy"]["full"] = taxonomy 
              sequences[seqname]["correct_taxonomy"]["class"] = taxonomylist[0] 
              sequences[seqname]["correct_taxonomy"]["family"] = taxonomylist[1] 
              sequences[seqname]["correct_taxonomy"]["genus"] = taxonomylist[2] 
              sequences[seqname]["correct_taxonomy"]["species"] = taxonomylist[3] 
              sequences[seqname]["correct_taxonomy"]["strain"] = taxonomylist[4] 
              #Note: "strain" for the DTM_composite is the seqname 
     
    # Now go through the OTU taxonomy and create a lookup. 
    otu_taxonomies = {} 
    for line in open(options.tax,"rU"): 
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       line = line.rstrip() 
       linelist = line.split('\t') 
       otu = int(linelist[0]) 
       taxonomy = linelist[1] 
       otu_taxonomies[otu] = taxonomy 
        
    # Now go through the otus and go through each of the samples and assign the 
actual taxonomy. 
    for line in open(options.otus,"rU"): 
       line = line.rstrip() 
       linelist = line.split('\t') 
       otu = int(linelist[0]) 
       linelist.pop(0)#linelist now only contains sequence ids. 
       # Grab the taxonomy for this otu 
       otu_tax = otu_taxonomies[otu] 
       if (otu_tax.startswith("No blast hit")): 
           otu_tax = "NULL;NULL;NULL;NULL;NULL;" 
       # Print otu_tax 
       otu_taxlist = otu_tax.split(';') 
       # Assign this OTU taxonomy to all sequences associated with this OTU. 
       for seq in linelist: 
           sequences[seq]["actual_taxonomy"]["full"] = otu_tax 
           sequences[seq]["actual_taxonomy"]["class"] = otu_taxlist[0] 
           sequences[seq]["actual_taxonomy"]["family"] = otu_taxlist[1] 
           sequences[seq]["actual_taxonomy"]["genus"] = otu_taxlist[2] 
           sequences[seq]["actual_taxonomy"]["species"] = otu_taxlist[3] 
           sequences[seq]["actual_taxonomy"]["strain"] = otu_taxlist[4] 
     
    # Not all DTM taxonomy sequences will have been in the original alignment 
    for seq in sequences: 
       try: 
           actual = sequences[seq]["actual_taxonomy"]["full"] 
       except: 
           sequences[seq]["actual_taxonomy"]["full"] = "not-in-slice" 
           sequences[seq]["actual_taxonomy"]["class"] = "not-in-slice" 
           sequences[seq]["actual_taxonomy"]["family"] = "not-in-slice" 
           sequences[seq]["actual_taxonomy"]["genus"] = "not-in-slice" 
           sequences[seq]["actual_taxonomy"]["species"] = "not-in-slice" 
           sequences[seq]["actual_taxonomy"]["strain"] = "not-in-slice" 
     
    for seq in sequences: 
       match = "no_match" 
       #sequentially get more specific on the match between correct/actual 
       if (sequences[seq]["correct_taxonomy"]["class"] == 
sequences[seq]["actual_taxonomy"]["class"]): 
           match = "class" 
       if (sequences[seq]["correct_taxonomy"]["family"] == 
sequences[seq]["actual_taxonomy"]["family"]): 
           match = "family" 
       if (sequences[seq]["correct_taxonomy"]["genus"] == 
sequences[seq]["actual_taxonomy"]["genus"]): 
           match = "genus" 
       if (sequences[seq]["correct_taxonomy"]["species"] == 
sequences[seq]["actual_taxonomy"]["species"]): 
           match = "species" 



142  A DNA based diatom metabarcoding approach for Water Framework Directive classification of rivers  

       if (sequences[seq]["correct_taxonomy"]["strain"] == 
sequences[seq]["actual_taxonomy"]["strain"]): 
           match = "strain" 
       print seq, sequences[seq]["correct_taxonomy"]["full"], 
sequences[seq]["actual_taxonomy"]["full"],match 
        
def parseArguments(): 
    parser = argparse.ArgumentParser() 
    parser.add_argument('-otus', help='The picked otus TEXT file from QIIME. This is 
the output of pick_otus.py', required=True) 
    parser.add_argument('-tax', help='The OTU taxonomy assignments from QIIME. 
This is the output of assign_taxonomy.py', required=True) 
    parser.add_argument('-alltax', help='All the sequence taxonomy assignments from 
the main taxonomy file input used in assign_taxonomy.py') 
    parser.add_argument('-alignment', help='Original alignment slice', required=True) 
    args = parser.parse_args() 
    return args 
  
if __name__ == '__main__': 
    main() 
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Appendix 9: DNA extraction 
procedure using enzymatic lysis 
and spin column purification 
The methodology given below outlines the extraction procedure for DNA from diatom 
samples with a manual method using the Qiagen DNeasy® Blood and Tissue kit, and 
an automated method using the BioRobot® Universal with the QIAamp® Investigator 
BioRobot® kit. 

Note: Samples are received in preservative and stored at -30C until extraction. 

Before beginning the procedure, preheat an incubator to 56C. 

A9.1 Preparation of samples 

1. Thaw sample thoroughly. 

2. Vortex to create a homogenous mixture. 

3. Spin down samples at 3,000g for 15 minutes at 5C. 

4. Remove promptly from the centrifuge and check that all material has 
pelleted. 

5. Remove lid and gently tip buffer into waste container, being careful not 
to disturb the pellet. Then without re-inverting the tube, take a 1ml 
pipette and remove all excess buffer from the inside of the rim of the 
tube. 

6. Re-invert and wait for the liquid to pool round the pellet and remove the 
last of the liquid. If at any point the pellet in disturbed re-spin using 
conditions in step 3. 

A9.2 For extraction by hand using Qiagen DNeasy® 

Blood and Tissue kit: 

1. Place approx. 0.05g of the pellet from above procedure into 
appropriately labelled 1.5ml tube. Repeat for each sample. 

2. Add 180μl Buffer ATL and 20μl Proteinase K. Vortex thoroughly. 

3. Incubate at 56C shaking at 100 rpm for 5 hours (or overnight). 

4. Vortex for 15 seconds.  

5. Add 200μl Buffer AL to the sample. Mix thoroughly by vortexing.  

6. Add 200μl ethanol (96–100%). Mix again thoroughly by vortexing. 

7. Pipette the mixture from step 6 (including any precipitate) into the 
DNeasy mini spin column placed in a 2ml collection tube.  

8. Centrifuge at 6000g (8000 rpm) for 1 minute. Discard flow-through and 
collection tube. 
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9. Place the DNeasy mini spin column in a new 2ml collection tube. Add 
500μl Buffer AW1 and centrifuge for 1 minute at 6,000g (8,000 rpm). 
Discard flow-through and collection tube. 

10. Place the DNeasy mini spin column in a new 2ml collection tube. Add 
500μl Buffer AW2 and centrifuge for 3 minute at 20,000g (14,000 rpm) to 
dry the DNeasy membrane. Discard flow-through and collection tube. 

11. Place the DNeasy mini spin column in a clean 1.5ml or 2ml 
microcentrifuge tube. Pipette 200μl Buffer AE directly onto the DNeasy 
membrane. 

12. Incubate at room temperature for 2 minutes before centrifuging for 1 
minute at 6,000g (8,000 rpm) to elute. 

13. If downstream processing is not happening straight away, store samples 

at -30C. 

A9.3 For extraction using Qiagen BioRobot 
Universal 

1. Place approximately 0.05g of each sample into the appropriate 
corresponding well of the BioRobot S-Block, noting the appropriate 
sample number for each well on the sample sheet. 

2. Add 300μl Buffer ATL and 20μl Proteinase K to each well of the plate – 
pipette up and down to mix. 

3. Seal the plate using a plastic plate seal and incubate at 56C shaking at 
100 rpm for 5 hours or overnight. Note: if taking into a quarantine lab for 
incubation, ensure you double bag the samples. When the incubation 
has finished, remove one layer of protection before leaving the lab and 
dispose as quarantine waste. 

4. Prepare the BioRobot®: 

a. Switch on the BioRobot using the ‘on/off’ switch on the front right of 
the machine. 

b. Switch on the associated computer and log on. 

c. Launch the QIAsoft 5 operating system. 

d. Enter the username ‘general operator’ and leave the password field 
blank. Press OK. 

e. Within the software, go to the dropdown menu (in red box in 
screenshot below) and select QIAamp Investigator BioRobot Kit > 
QIAamp DNA Casework (manual lysis) UNIV. 

 

f. Click ‘run’ (highlighted in green above) to start the setup process.  

g. The screen below shows and guides you through the setup of the 
BioRobot. 
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h. Follow the step by step instructions, pressing OK or Next once a step 
has been completed. NOTE: ensure that all reagents being placed on 

the machine do not contain any precipitate – if they do heat at 56C 
for 5 minutes or until they have dissolved. 

i. The final instruction before the program initialises will instruct you to 
place the S-Block containing your lysed samples onto the BioRobot. 
DO NOT press Next from this unless you are ready to proceed with 
the extraction! When ready press Next. 

5. The BioRobot will now process your samples. This will take about 
2.5 hours for a full 96-well plate. 

6. At the end of the run, remove your samples in their 96-well plate. 

7. If downstream processing is not happening straight away, store the 

samples at -30C. 
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Appendix 10: Distribution of sites 
used to collect diatom samples for 
the calibration dataset 

 

 

See Water Framework Directive UK TAG website for information on phosphorus 
standards (www.wfduk.org/resources/new-and-revised-phosphorus-and-biological-
standards). 

http://www.wfduk.org/resources/new-and-revised-phosphorus-and-biological-standards
http://www.wfduk.org/resources/new-and-revised-phosphorus-and-biological-standards
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