
A New Initialisation Method
for Examination Timetabling Heuristics

Amjad A. Alsuwaylimi
University of Exeter

Exeter, United Kingdom
Email: aa777@exeter.ac.uk

Jonathan E. Fieldsend
University of Exeter

Exeter, United Kingdom
Email: J.E.Fieldsend@exeter.ac.uk

Abstract—Timetabling problems are widespread, but are par-
ticularly prevalent in the educational domain. When sufficiently
large, these are often only effectively tackled by timetabling meta-
heuristics. The effectiveness of these in turn are often largely
dependant on their initialisation protocols. There are a number of
different initialisation approaches used in the literature for start-
ing examination timetabling heuristics. We present a new iterative
initialisation algorithm here — which attempts to generate high-
quality and legal solutions, to feed into a heuristic optimiser. The
proposed approach is empirically verified on the ITC 2007 and
Yeditepe benchmark sets. It is compared to popular initialisation
approaches commonly employed in exam timetabling heuristics:
the largest degree, largest weighted degree, largest enrollment,
and saturation degree graph-colouring approaches, and random
schedule allocation. The effectiveness of these approaches are
also compared via incorporation in an exemplar evolutionary
algorithm. The results show that the proposed method is capable
of producing feasible solutions for all instances, with better
quality and diversity compared to the alternative methods. It
also leads to improved optimiser performance.

Keywords—examination timetabling; scheduling; heuristic ini-
tialisation; evolutionary algorithms

I. INTRODUCTION

Exam timetabling is considered an NP-complete optimisa-
tion problem [1], [2]. The problem requires the scheduling of
the exams corresponding to a set of courses, while satisfying
a range of constraints determined by exam timetabling staff.
There are commonly two types of constraints: hard constraints
which must be satisfied for a solution to be viable (e.g. a
student should not sit two exams at the same time), and
soft constraints which we would prefer to satisfy, but are not
absolutely necessary to meet (e.g. a student should not sit
two exams in quick succession), see for example [3]. Con-
cisely: satisfying all the hard constraints produces a feasible
timetable; whereas soft constraints can be violated.

Many papers have proposed methods to construct examina-
tion timetables. Often graph-colouring forms the basis, e.g. [4],
[5]. Computational intelligence approaches such as fuzzy logic
[6] and neural networks [7] have been employed, however
the bulk of work in this area has employed methods from
the broad area of evolutionary computation. For instance [8]–
[10] applied tabu search. Simulated annealing was used in
[11], [12], and memetic algorithms in [13], [14]. Genetic
algorithms were used in e.g. [15], ant colony optimisation in
e.g. [16], [17], particle swarm optimisation in e.g. [18]. The

great deluge algorithm in [19], and hybridisations of distinct
heuristic methods in e.g. [20], [21]. More recently hyper-
heuristic approaches have gained popularity [22], [23]. The
efficacy of an optimisation heuristic is often dependent on
the initial population from which it starts. High quality and
diverse initial solutions are generally thought to improve the
subsequent performance of a timetabling algorithm [24].

The initial population can be generated by a number of
methods. Most commonly these attempt to generate ‘high
quality’ solutions (i.e. ones that have low soft constraint
violations, and preferably no hard constraint violations) so that
the search is initialised in ‘good’ areas of design space. This
minimises the subsequent run time required of the algorithm to
find an acceptable solution. It is this area of algorithm design
we are particularly concerned with in this work.

We propose a new initialisation approach here, whose main
novelty stems from the way it manages three interacting lists
of exams to allocate. These lists are arranged and processed
in a step-wise fashion in order to provide a good satisfaction
of hard and soft constraints.

The rest of the paper is structured as follows. Section II
describes popular initialisation approaches from the literature.
Our proposed approach is outlined in Section III. Section
IV details the widely used ITC 2007 examination datasets
[25], [26], and the more recent Yeditepe datasets [27], which
we employ in our empirical work here (Section V). Finally,
conclusions and future work are presented in Section VI.

II. INITIALISATION FOR EXAM TIMETABLING PROBLEMS

Many researchers have studied initialisation methods for
evolutionary algorithms (EAs) to help solve timetabling prob-
lems. [28] proposed an initialisation method where a random
operator was used to ensure diversity to support either a higher
quality solution or a more random solution (hard constraints
could be violated). They concluded that the strictness of the
achievement of the hard constraints could result in an inferior
ultimate outcome in regard to the soft constraints. However, it
is hard to apply this method to problems that enforce a high
plenty weight to the violation of the hard constraints. [29] used
this approach to initialise EAs, and presented a comparison
between genetic algorithms (GAs), simulated annealing (SA),
and multi-start stochastic hill-climbing (MSSH) algorithms
in regard to the performance when they started from both

seeded solutions and random solutions. Their results show
that the GA’s performance was the worst among the studied
algorithms when it started from random solutions. However,
when the algorithms started from seeded solutions, the GA’s
performance increased to the extent that it performed the
best, whilst the SA and MSSH were much less affected. [15]
proposed a hybrid approach between heuristic measures and a
roulette wheel-style method to enhance the solutions’ quality
while keeping some diversity between them. Work presented
in [30] studied the effect of random sequential initialisation
followed by hill-climbing — each solution resulted in a better
group of solutions than the former approach.

Graph-colouring heuristic algorithms are also widely used to
construct an initial feasible timetable, see for example [1], [4],
[31]–[33]. In this initialisation approach, the exams are repre-
sented as vertices, while the edges are the conflicts between
them. Immediately neighbouring vertices are assigned distinct
colours. The colour therefore denotes the time period(s) in
the timetable. These heuristic methods give the priority of
scheduling based on the level of the difficulty in scheduling
(number or weight of edges) in order to first schedule the most
difficult exams.

The most common graph-colouring methods are as follows.
Largest degree (LD): in this method the degree represents

the number of exams in conflict, and the method gives
the priority in scheduling to the exams that have most
conflicts with other exams.

Largest weighted degree (LWD): this approach applies a
weight to each conflict by counting the number of stu-
dents participating in that conflict. As such, the priority
in scheduling is given to core exams.

Saturation degree (SD): the exam that has the fewest num-
ber of free periods for scheduling without violation of
any hard constraints will be scheduled first. In order to
settle ties between exams, the LD approach is used.

Largest Enrollment First (LE): this method depends on the
arranging exams in decreasing order based on the number
of students enrolled.

In addition to the graph-colouring approaches listed above,
random schedule allocation (RD) is adapted widely to generate
initial solutions in exam timetabling [34]. RD orders the
examinations list randomly and schedules exams into the first
valid period satisfying the hard constraints. Exams are taken
sequentially starting from the top of a randomly ordered list.
If the scheduling process fails, the process is repeated with a
new random ordering.

III. PROPOSED INITIALISATION APPROACH

We now propose a new algorithm to construct solutions for
examination timetabling problems, that can be used as seed so-
lutions for meta-heuristic algorithms. The proposed algorithm
attempts to schedule the largest number of conflicting exams
as possible in the first periods of a timetable, which we name
the Front Section (FS), and in the last periods of the timetable
named Back Section (BS) while also attempting to satisfy all
hard and soft constraints. The number of periods in the FS and

BS are equal to a given number of spread periods determined
by the Period Spread (PS) constraint, which aims to spread
each student’s exams over a given number of periods. The
overarching idea behind the proposed algorithm is to satisfy
the PS constraint for each student of any exam scheduled into
periods of the Middle Section (MS) (i.e. the periods after FS
periods and before BS periods).

In order to avoid violation of the PS constraint for an exam
timetabled in any period, T , of MS, with period spread range
X , then the X periods before and after period T must not
contain any conflicting exam (i.e. an exam with students in
common). On the other hand, if an exam is timetabled in the
first period of the FS, then the number of periods N that must
not contain any conflict exam is just the X periods which fall
after this period, so N = X . Also the same period range N =
X is used if an exam is timetabled in the last period of the BS,
where just the N periods that fall before the last period must
be free of conflicting exams. In case an exam is timetabled
in the second period of FS, then the number of periods N
that must have no conflicting exams in order to satisfy the PS
constraint is N = 1 + X (one period falling before and X
periods falling after that period T). Also, scheduling an exam
in the period before the last period of BS requires the same
period range, N = X + 1 (i.e. X periods falling before and
one period falling after period T). Timetabling an exam in
the third period of FS or in the third period before the last
period of BS requires N = X + 2 and so on until the period
number becomes equal to PS (i.e. the last period in the FS or
the first period in the BS). Then N = (X − 1) + X , which
is still lower than timetabling an exam in any period of MS,
which will require 2X periods N = X+X having no conflict
exam(s) to satisfy the PS constraint.

According to the proposed method, for each period the
available rooms of a timetable are ordered increasingly by their
capacities, also the exams are ordered in three lists which are:
Front List (FL), Back List (BL), and Middle List (ML).
Each list initially contains all exams to be scheduled.

In the Front List, as detailed in Algorithm 1, the exams
are sorted by decreasing number of conflicts with other exams
(line 4), subject to ‘after’ constraints being observed. This list
is then processed from the front.

Once any exam in this list is scheduled in any period in the
FS, it is removed from the other lists (ML and BL — lines
19–20). On the other hand, if any exam cannot be scheduled
in any period in the FS, then it is removed only from the FL
and remains in the other lists to be scheduled via one of them
later (line 29).

In the Back List, the exams are sorted by decreasing number
of conflicts with other exams, subject to ‘before’ constraints
being observed (line 5 of Algorithm 1). This constraint is
derived from the ‘after’ constraint that stipulates which exams
must occur after others. The scheduling process starts by
attempting to schedule BL exams as much as possible in the
BS, starting from the last period of BS until to the first period
of BS while satisfying all hard and soft constraints. Any exam
scheduled in these last periods will be removed from the BL

Algorithm 1 Front List (FL) heuristic.
Require: PS . The period spread number
Require: E . Exams to be scheduled
Require: R . Set of room lists, available each period

• Initialisation step
1: α← ∅
2: FS ← init_FS(PS)
3: BS ← init_PS(PS)
4: FL← sort_by_conflict(E)
5: BL← sort_by_conflict(E)
6: ML← random_sorting(E)
7: for all periods p do . For each period
8: Rp ← ascend_sort(Rp)
9: end for
• Schedule FL exams into Front Section periods (FS)

10: while FL is not empty do
11: isScheduled← false
12: p← 1 . Attempt to schedule from the first period

(p) of FS until reaching the last period of FS
13: while p ≤ |FS| do
14: Ri

p ← first_suitable_room(Rp, α, FL1)
15: if Ri

p 6= ∅ then . If it can be scheduled
16: if satisfies(FL1) = true then
17: α← schedule(α, FL1, R

i
p)

18: FL← FL \ {FL1}
19: BL← BL \ {FL1}
20: ML←ML \ {FL1}
21: isScheduled← true
22: p← 1
23: Break . The current exam is scheduled
24: end if
25: end if
26: p← p+ 1
27: end while
28: if isScheduled← false then
29: FL← FL \ {FL1} . Del. exam FL1 from FL
30: end if
31: end while
32: return α

and the ML (Algorithm 2 lines 12–13), otherwise, in case an
exam cannot be scheduled at this stage, it is removed only
from BL (line 21).

Finally, the Middle List contains all remaining exams that
have not been scheduled by Algorithms 1 and 2. The ML
exam list is ordered depending on the number of the remaining
periods available, where the exams having the fewest number
of available periods in the timetable have the highest priority
to be scheduled first in any period while satisfying only the
hard constraints. The algorithm selects the periods randomly
(Algorithm 3, line 2), giving the priority to the previous
selected periods in order to maximise the periods’ utilisation
and keep the diversity. The process stops when all the exams in
the middle list are completely scheduled to a feasible period,

Algorithm 2 Back List (BL) heuristic.
Require: BL . Back list
Require: ML . Middle list
Require: α . Current schedule state
Require: R . Set of room lists, available each period

1: for all periods p do . For each period
2: Rp ← ascend_sort(Rp)
3: end for
• Schedule BL exams into Back Section periods (BS)

4: while BL is not empty do
5: isScheduled← false
6: p← |BS|
7: while p ≥ 1 do
8: Ri

p ← first_suitable_room(Rp, α,BL1)
9: if Ri

p 6= ∅ then
10: if satisfies(BL1) = true then
11: α← schedule(α,BL1, R

i
p)

12: BL← BL \ {BL1}
13: ML← BL \ {BL1}
14: isScheduled← true
15: Break . Exam is now scheduled
16: end if
17: end if
18: p← p− 1 . inverse selecting
19: end while
20: if isScheduled← false then
21: BL← BL \ {BL1} . Del. exam BL1 from BL
22: end if
23: end while
24: return {α,ML}

and a feasible solution is returned. However, if there is any
exam in this list which has no available period, i.e. it could
not be assigned to any feasible period, an infeasible solution
is returned instead (Algorithm 3, line 34).

IV. TEST PROBLEM DESCRIPTION

Examination timetabling problems can be categorised as
either capacitated or uncapacitated [35]. With regard to capac-
itated examination problems, room capacity is considered as a
hard constraint, which means each exam must be assigned into
one of a set of rooms that has sufficient seating capacity. In the
uncapacitated examination problems, only timeslot assignment
is considered for hard constraints. Both the ITC 2007 and
Yeditepe examination datasets are capacitated problems.

A. ITC 2007

The second international timetabling competition (ITC
2007) included three tracks, covering examination and course
timetabling [36]. Here we concentrate on its examination
datasets, which are derived from real-world timetabling prob-
lems. The exam timetabling track involves 12 instances with
distinct characteristics, and constraints that are similar to those
constraints encountered in practice. Table I describes the ITC
2007 instances’ characteristics. The hard constraints are:

Algorithm 3 Middle List (ML) heuristic.
Require: ML . Middle list
Require: α . Current schedule state
Require: R . Set of room lists, available each period
Require: PL list of all periods in the timetable.

• Schedule remaining exams
1: SPL← ∅ . Initial empty selected periods list
2: rp← random_period(PL) . Get a random period
3: SPL← SPL ∪ {rp} . Add rp to SPL
4: for all periods p do . For each period
5: Rp ← ascend_sort(Rp) . Order rooms by size
6: end for
7: PL← PL \ {rp} . Remove rp from PL
8: sp← 1 . Index into SPL
9: while ML 6= ∅ do

10: isScheduled← false
11: while sp ≤ |SPL| do
12: if ML1 can be scheduled into SPLsp satisfying

all the hard constraints into the ith smallest room then
α← schedule(α,ML1, R

i
SPLsp

)
13: ML←ML \ML1 . Remove exam from list
14: isScheduled← true
15: goto line 19 . Exit loop as exam scheduled
16: end if
17: sp← sp+ 1 . select the next period of SPL
18: end while . End scheduling ML1 in the SPL
19: if isScheduled = false then
20: temp← PL . Temporary list
21: while temp 6= ∅ do
22: sp← random_element(temp)
23: if ML1 can be scheduled into sp satisfying

all the hard constraints into the ith smallest room then
α← schedule(α,ML1, R

i
tempsp

)
24: ML←ML \ML1 . Remove from list
25: isScheduled← true
26: SPL← SPL ∪ {tempsp}
27: PL← PL \ {tempsp}
28: goto line 9 . Exit from loop
29: else
30: temp← temp \ {tempsp}
31: end if
32: end while
33: end if
34: return infeasible solution
35: end while
36: return α

No conflicts: the exams which have at least one common
student must be in different periods.

Room occupancy: it is not possible to exceed the number of
seats available for each period and room.

Period duration: exam length must not exceed period length.
Period related: pairs of exams have time-ordering require-

ments that must be achieved. Where for any pair of exams

TABLE I
SPECIFICATIONS OF THE 12 INSTANCES OF THE ITC 2007

EXAMINATION TIMETABLING PROBLEM DATASET.

Problem No. of No. of No. of No. of Conflict
Instance Exams Students Rooms Days T.Slots Density
Exam 1 607 7891 7 29 54 0.05
Exam 2 870 12,743 49 13 40 0.01
Exam 3 934 16,439 48 12 36 0.03
Exam 4 273 5045 1 7 21 0.15
Exam 5 1018 9253 3 14 42 0.009
Exam 6 242 7909 8 8 16 0.06
Exam 7 1096 14,676 15 40 80 0.02
Exam 8 598 7718 8 40 80 0.05
Exam 9 169 655 3 13 25 0.08

Exam 10 214 1577 48 12 32 0.05
Exam 11 934 16,439 40 9 26 0.03
Exam 12 78 1653 50 7 12 0.18

(Exam1, Exam2) the following constraints may apply:
After constraint: Exam1 must be scheduled after
Exam2.

Exam coincidence: Exam1 and Exam2 must be sched-
uled simultaneously.

Period exclusion: Exam1 and Exam2 must not be
scheduled simultaneously.

Room exclusive: an exam must be roomed alone.
All exams have to be scheduled (a complete solution),

and exams cannot be divided between rooms and periods. A
feasible solution must satisfy all the hard constraints.

Generally, soft constraints include the following: “Two
Exams in a Row” constraint that counts the number of
occurrences of students having two exams straight after one
another, “Two Exams in a Day” constraint counts the number
of occurrences where two examinations are taken by students
in a day but which are not directly adjacent in time, and
“Period Spread (PS)” constraint that allows organisers to
spread a students’ exams over a specified number of periods.
The PS constraint implicitly contains “two in a row” and “two
in a day” constraints, therefore, satisfying the PS constraint
means satisfying both the “two in a row” and “two in a day”
constraints.

B. Yeditepe datasets

The Yeditepe dataset is comprised of a number of datasets
from the Faculty of Engineering and Architecture of Yeditepe
University [27]. In general, they are smaller than ITC 2007
problems with regards to a number of exams, students, and
timeslots. Also, this dataset is less constrained compared with
ITC 2007 as it contains two hard constraints and only one
soft constraint (in ITC 2007, there are seven hard constraints
and seven soft constraints). The characteristics of the Yeditepe
dataset are given in Table II. The Yeditepe examination
timetabling problems’ hard constraints are:
Examination conflict (C1): any student must not have more

than one exam at any given time period.
Capacity (C2): it is not possible to exceed the number of

seats in any given room at any given time period.

TABLE II
THE CHARACTERISTICS OF YEDITEPE DATASET.

Problem No. of No. of No. of No. of Conflict
Instance Exams Students Rooms Days T.Slots Density

YUE20011 126 559 2 6 18 0.18
YUE20012 141 591 2 6 18 0.18
YUE20013 26 234 2 2 6 0.25
YUE20021 162 826 2 7 21 0.18
YUE20022 182 869 2 7 21 0.17
YUE20023 38 420 1 2 6 0.2
YUE20031 174 1125 2 6 18 0.15
YUE20032 210 1185 2 6 18 0.14

In this dataset there is only one soft constraint:
Examination spread (C3): the exams for any student on the

same day should not be assigned consecutively.

C. Evaluation Function

The number of hard constraint violations must equal zero,
whereas the quality of an examination timetable is determined
by the soft constraint violations subject to this. The best quality
solution is that with the lowest weighted sum of soft constraint
violations. The objective function is to minimise the total
penalty as result of soft constraint violations defined by (1)
for ITC 2007 and (2) for Yeditepe, where the total penalty for
the soft constraint violations is calculated for each student s.

1) ITC 2007: Minimise∑
s∈S

(w2RC2R
s + w2DC2D

s + wPSCPS
s)

+ wNMDCNMD + wFLCFL + CP + CR. (1)

Two exams in a row (C2R
s): penalty given whenever a stu-

dent s has to attend two distinct exams scheduled in two
consecutive periods on the same day.

Two exams in a day (C2D
s): penalty given whenever a stu-

dent s has to attend two distinct exams scheduled in two
non-consecutive periods on the same day.

Period spread (CPS
s): penalty given whenever a student s

has to attend more than one exam within a specified
period range.

No Mixed durations (CNMD): penalty given whenever any
room in any period is assigned to exams with different
durations.

Front-load (CFL): penalty incurred by scheduling exams
having largest number of students at the end of the
examination session.

CP : penalty associated to a period whenever it is assigned
to an exam.

CR: penalty associated to a room whenever it is assigned to
an exam.

See [26] for a full description of the ITC2007 exam
timetabling problem, weights for each of the above mentioned
penalties and the objective function description.

2) Yeditepe: Minimise∑
s∈S

w2RC2R
s . (2)

Two exams in a row (C2R
s) is a penalty given whenever

a student s has to attend two distinct exams scheduled in
two consecutive periods on the same day. The weight for this
penalty is 1 for all instances of Yeditepe [27].

V. EXPERIMENTAL RESULTS AND COMPARISON

Our experiment has two phases. In the first phase, a set
of initial solutions is constructed by the proposed algorithm
(OBSI: ordering-based scheduling initialisation) and compari-
son methods (LD - Largest Degree, LE - Largest Enrollment,
LWD - Largest Weighted Degree, SD - Saturation Degree,
RD - Random Allocation). In the second phase, a basic
evolutionary algorithm (EA) uses the initial population to start
its (total) time-limited search.1

A. Phase 1: Initialisation

The median results (out of 30 runs for each instance) on both
datasets (ITC 2007 examination track and Yeditepe) are shown
in Tables III and IV, respectively, including statistical signifi-
cance. The ITC 2007 results indicate that using our proposed
OBSI strategy generally outperforms graph heuristics and ran-
dom initialisation for initial solution quality. Additionally, the
graph heuristics and random initialisation fail to obtain feasible
solutions for some of the more difficult instances. Furthermore,
OBSI solutions tend to be more diverse in performance, with
total soft constraint costs often spread in a wider range than
the comparison methods (as shown in Figure 1). Generating
an initial population with graph heuristics, on the other hand,
tends to occur in a shorter time-frame compared with the
OBSI, albeit delivering lower quality solutions.

The results on the Yeditepe problems are provided in Table
IV. This shows that the OBSI strategy is able to generate fea-
sible solutions for all instances in contrast to graph heuristics
and RD, which again cannot generate a feasible solution for
some of the difficult instances. Its performance is less striking
than on the ITC 2007 datasets, outperforming some graph
heuristics in term of quality on some problems, but on others
it performs less well (see Figure 2).

Figures 3 and 4 show the distribution of execution time in
milliseconds for the different initialisation approaches on both
datasets. Generally speaking the OBSI tends to be relatively
faster on the Yeditepe problems (due to the fewer constraints),
but often slower on the ITC 2007 problems. Apart from the SD
method, the other graph heuristics fail for some instances of
ITC 2007 and Yeditepe. Some particular problems instances,
such as Exam4 and Exam11 of ITC 2007 and YUE20012,
YUE20021, and YUE20032 of Yeditepe, have a large number
of exams with high conflict density and few available peri-
ods. This can lead to saturation cases where there are no
valid periods to schedule the next exam. The main reason
for saturation cases occurring is where subroutines schedule
exams into periods while giving scheduling priority to exams

1These are implemented in Java, with experiments run on an Intel Core
(TN) i5-6200U (CPU @ 2.30 GHz with 16 GB RAM) PC running Windows
7 Enterprise with 64-bit operating system. Source code is available at
https://github.com/alsuwaylimi/Initialisation-Method-Project.

TABLE III
MEDIAN SOFT CONSTRAINT COST RESULTS, AND TIMINGS ON THE ITC 2007 DATASET. THE HYPHEN SYMBOL “-” MEANS THE METHOD CANNOT
PRODUCE FEASIBLE SOLUTIONS FOR THE CORRESPONDING INSTANCE. BOLD AND UNDERLINED RESULTS ARE SIGNIFICANTLY BETTER THAN ALL

OTHERS ACCORDING TO THE MANN-WHITNEY U TEST WITH THE HOLM-BONFERRONI CORRECTION.

OBSI LD LWD LE SD RD
Median Median Median Median Median Median Median Median Median Median Median Median

Instances cost t (ms) cost t (ms) cost t (ms) cost t (ms) cost t (ms) cost t (ms)
Exam1 27987.5 6130 31805.5 3408 30666.5 3463 30224.5 2269.5 31872.5 7714 39630 130463
Exam2 26661 10022.5 38974 6973 40838.5 7121 40791 7020 40848 11418.5 150514.5 7817
Exam3 72713 23095 102158 12620 101874.5 18704 104357.5 19344 100657 32736.5 249617.5 9393.5
Exam4 50139 1263 - - - - - - 51346.5 2542.5 - -
Exam5 74394.5 11829.5 133080.5 7163 130333 7106 133910 7103.5 135884.5 18150.5 319573.5 45975.5
Exam6 50190 624 53115 686 52190 32845.5 51285 16411 51000 904 63957.5 41347.5
Exam7 49253 25232.5 80718.5 11011 77993 10834.5 77386 10829 83277 31225.5 64212.5 31107.5
Exam8 114559 7230 136475.5 3104 145734.5 3096 138280.5 3198 134043.5 8197.5 - -
Exam9 7705.5 148 8454.5 62 8550 62 8727.5 62 8998.5 156 11646 874.5

Exam10 66741 452 67936.5 165.5 71808 206 69649 158 67881 872.5 127559.5 8344
Exam11 218227.5 21067.5 219267.5 70019.5 - - - - 223552.5 36347 334398.5 86444
Exam12 10995.5 452 12327 5187 12748.5 3338 12323 11840 13000.5 218 13277.5 7873.5

TABLE IV
YEDITEPE DATASET RESULTS. NOTATION AS IN TABLE III.

OBSI LD LWD LE SD RD
Median Median Median Median Median Median Median Median Median Median Median Median

Instances cost t (ms) cost t (ms) cost t (ms) cost t (ms) cost t (ms) cost t (ms)
YUE20011 831 62 774.5 148 764 163.5 706.5 537.5 713 62 912 62.5
YUE20012 885 62 779 2372.5 - - - - 799.5 475.5 886 1057.5
YUE20013 64 15 65 15 63.5 15 64 15 66 0 69 11
YUE20021 865 116.5 833.5 2381.5 - - - - 790.5 473 1499.5 116
YUE20022 1093.5 156 1140.5 2098 1112.5 19975.5 1057 51768.5 1110.5 171 1235.5 5938.5
YUE20023 115 15 110.5 50.5 108 56 102.5 46.5 117.5 39 116.5 142.5
YUE20031 11285.5 124 3306 797.5 4337.5 554 3474 534.5 2582 137 7658 688.5
YUE20032 11378 156 - - - - - - 2360.5 197 - -

SI LD LWD LE SD RD

2.5

3

3.5

4

C
o

s
t

v
a
lu

e

10
4

Exam1

SI LD LWD LE SD RD

10
4

10
5

Exam2

SI LD LWD LE SD RD

0.5

1

1.5

2
2.5

10
5

Exam3

SI LD LWD LE SD RD

4

5

6

C
o

s
t

v
a
lu

e

10
4

Exam4

SI LD LWD LE SD RD

10
5

Exam5

SI LD LWD LE SD RD
4

5

6

7

10
4

Exam6

SI LD LWD LE SD RD

4

6

8

10

C
o

s
t

v
a
lu

e

10
4

Exam7

SI LD LWD LE SD RD

1

1.5

2

10
5

Exam8

SI LD LWD LE SD RD

0.5

1

1.5

10
4

Exam9

SI LD LWD LE SD RD

Initialisation strategies

5

10

15

C
o

s
t

v
a
lu

e

10
4

Exam10

SI LD LWD LE SD RD

Initialisation strategies

2

2.5

3

3.5

4
10

5

Exam11

SI LD LWD LE SD RD

Initialisation strategies

0.8

1

1.2

1.4

1.6

1.8

10
4

Exam12

OBSI OBSI OBSI

OBSIOBSIOBSI

OBSI OBSI OBSI

OBSI OBSI OBSI

Fig. 1. Boxplots of the soft constraint costs for all initialisation strategies
performed on ITC 2007 dataset, where OBSI: ordering-based scheduling
initialisation, LD: largest degree, LWD: largest weighted degree, LE: largest
enrollment, SD: saturation degree and RD: random. Y-axis on log scale.

having largest degree (LD), largest weighted degree (LWD), or
largest enrollment degree (LE). SD prevents saturation cases
arising by dynamically ordering exams depending on a number
of available periods and giving scheduling priority to exams
which have the fewest number of periods available.

We further analyse our results by conducting statistical tests,

SI LD LWD LE SD RD

103

C
o

s
t

v
a
lu

e

20011

SI LD LWD LE SD RD

103

20012

SI LD LWD LE SD RD

40

60

80

100
20013

SI LD LWD LE SD RD

1000

1500

2000

2500

3000 20021

SI LD LWD LE SD RD

Initialisation strategies

103C
o

s
t

v
a
lu

e

20022

SI LD LWD LE SD RD

Initialisation strategies

80

100

120

140

20023

SI LD LWD LE SD RD

Initialisation strategies

104

20031

SI LD LWD LE SD RD

Initialisation strategies

104

20032

OBSI OBSI OBSI OBSI

OBSIOBSIOBSIOBSI

Fig. 2. Boxplots of the soft constraint costs for all initialisation strategies
performed on Yeditepe dataset. Notation as in Figure 1. Y-axis on log scale.

as shown in Tables III, IV,V,VI, using the Mann-Whitney U
test followed by the Holm-Bonferroni method to compensate
for multiple hypothesis testing.

B. Phase 2: Optimisation

An EA was implemented following the approach of [37]
(which eschews crossover) to quantify the effectiveness of the
initialisation on subsequent meta-heuristic performance. We
utilise the initial solutions that have been constructed in phase
1 by the OBSI, as well as other initialisation methods, and
use these to determine the start populations of the EA. The
EA population size is 40. Total run time (initialisation plus
optimisation) is capped at 8 minutes. Each child solution in

SI LD LWD LE SD RD

104

E
x

e
c

u
ti

o
n

 T
im

e Exam1

SI LD LWD LE SD RD

5000

10000

15000
Exam2

SI LD LWD LE SD RD

104

Exam3

SI LD LWD LE SD RD

103E
x

e
c

u
ti

o
n

 T
im

e Exam4

SI LD LWD LE SD RD

104

Exam5

SI LD LWD LE SD RD

104

Exam6

SI LD LWD LE SD RD

104

E
x

e
c

u
ti

o
n

 T
im

e Exam7

SI LD LWD LE SD RD

4000

6000

8000 Exam8

SI LD LWD LE SD RD

102

Exam9

SI LD LWD LE SD RD

Initialisation strategies

104

E
x

e
c

u
ti

o
n

 T
im

e

Exam10

SI LD LWD LE SD RD

Initialisation strategies

105

Exam11

SI LD LWD LE SD RD

Initialisation strategies

102

104

Exam12

OBSI OBSI OBSI

OBSIOBSIOBSI

OBSI OBSI OBSI

OBSI OBSI OBSI

Fig. 3. Boxplots of the log execution time in milliseconds for all initialisation
strategies on the ITC 2007 dataset.

SI LD LWD LE SD RD

102

103

E
x

e
c

u
ti

o
n

 T
im

e

20011

SI LD LWD LE SD RD

102

103

104
20012

SI LD LWD LE SD RD

101

102
20013

SI LD LWD LE SD RD

102

103

104
20021

SI LD LWD LE SD RD

Initialisation stratgies

103

104

105

E
x

e
c

u
ti

o
n

 T
im

e

20022

SI LD LWD LE SD RD

Initialisation stratgies

101

102

20023

SI LD LWD LE SD RD

Initialisation stratgies

102

103

20031

SI LD LWD LE SD RD

Initialisation stratgies

200

400

600

800

1000 20032

OBSI OBSI OBSI OBSI

OBSIOBSIOBSIOBSI

Fig. 4. Boxplots of the log execution time of all initialisation strategies on
the Yeditepe dataset. Notation as in Figure 3.

the population for every generation (iteration) is generated
by applying a combination of both light and heavy mutation
[13]. Light mutation chooses a number of exams randomly
from any period in the timetable and attempts to reschedule
them at any other period while satisfying all hard constraints.
The heavy mutation is performed by disturbing all the exams
in one or more periods in the timetable. The periods to be
disturbed are determined by the procedure from [13]. After
applying the two mutation operators at any time to every
parent population member, the subsequent generation’s parent
population is populated by performing roulette wheel selection
on the combined parent and child set.

Results indicate that the OBSI strategy gives not only rel-
atively high quality solutions compared to other initialisation
approaches, but that these solutions are effective for seeding
an efficient population-based search. The results for most
instances using OBSI result in a final solution surpassing
the quality of runs using other initialisation strategies (see
Tables V and VI for the results of the ITC 2007 and Yeditepe
problems respectively).

VI. CONCLUSION AND FUTURE WORK

This paper presents a new strategy for constructing initial
examination timetables. Compared against other popular ini-
tialisation strategies, our results demonstrate that this strategy
outperforms graph heuristic and random approaches on nearly
all of the ITC 2007 benchmark instances for both quality and
diversity and also on some of Yeditepe benchmark instances
for quality. Incorporation within a simple EA has demonstrated
the advantage that using OBSI to generate an initial population
of high quality and diverse solutions provides in the final
timetables returned. This is for the same total time cost
(initialisation time plus optimisation time). We look forward
to integrating this new approach in some recently proposed
state-of-the-art timetabling meta-heuristics in future work.

ACKNOWLEDGMENTS

Amjad Alsuwaylimi thanks Northern Border University,
Saudi Arabia and the Saudi Arabia Cultural Bureau in the
UK for his PhD Scholarship.

REFERENCES

[1] D. de Werra, “An introduction to timetabling,” European journal of
operational research, vol. 19, no. 2, pp. 151–162, 1985.

[2] A. Schaerf, “A survey of automated timetabling,” Artificial intelligence
review, vol. 13, no. 2, pp. 87–127, 1999.

[3] B. Sigl, M. Golub, and V. Mornar, “Solving timetable scheduling prob-
lem using genetic algorithms,” in Information Technology Interfaces,
2003. ITI 2003. Proceedings of the 25th International Conference on.
IEEE, 2003, pp. 519–524.

[4] M. W. Carter and G. Laporte, “Recent developments in practical
examination timetabling,” in International Conference on the Practice
and Theory of Automated Timetabling. Springer, 1995, pp. 1–21.

[5] E. K. Burke, B. McCollum, A. Meisels, S. Petrovic, and R. Qu,
“A graph-based hyper-heuristic for educational timetabling problems,”
European Journal of Operational Research, vol. 176, no. 1, pp. 177–192,
2007.

[6] H. Asmuni, E. K. Burke, J. M. Garibaldi, and B. McCollum, “Fuzzy
multiple heuristic orderings for examination timetabling,” in Interna-
tional Conference on the Practice and Theory of Automated Timetabling.
Springer, 2004, pp. 334–353.

[7] P. H. Corr, B. McCollum, M. McGreevy, and P. McMullan, “A new neu-
ral network based construction heuristic for the examination timetabling
problem,” in Parallel Problem Solving from Nature-PPSN IX. Springer,
2006, pp. 392–401.

[8] L. Di Gaspero and A. Schaerf, “Tabu search techniques for examination
timetabling,” in International Conference on the Practice and Theory of
Automated Timetabling. Springer, 2000, pp. 104–117.

[9] G. Kendall and N. M. Hussin, “A tabu search hyper-heuristic approach
to the examination timetabling problem at the mara university of
technology,” in International Conference on the Practice and Theory
of Automated Timetabling. Springer, 2004, pp. 270–293.

[10] G. M. White and B. S. Xie, “Examination timetables and tabu search
with longer-term memory,” in International Conference on the Practice
and Theory of Automated Timetabling. Springer, 2000, pp. 85–103.

[11] E. K. Burke and J. P. Newall, “Enhancing timetable solutions with local
search methods,” in International Conference on the Practice and Theory
of Automated Timetabling. Springer, 2002, pp. 195–206.

[12] J. M. Thompson and K. A. Dowsland, “A robust simulated annealing
based examination timetabling system,” Computers & Operations Re-
search, vol. 25, no. 7-8, pp. 637–648, 1998.

[13] E. K. Burke, J. P. Newall, and R. F. Weare, “A memetic algorithm for
university exam timetabling,” in international conference on the practice
and theory of automated timetabling. Springer, 1995, pp. 241–250.

[14] E. K. Burke and J. L. Silva, “The design of memetic algorithms for
scheduling and timetabling problems,” in Recent Advances in Memetic
Algorithms. Springer, 2005, pp. 289–311.

TABLE V
MEDIAN EA RESULTS AND MEDIAN ABSOLUTE DEVIATION (MAD) AFTER 8 MINUTES — ITC2007 PROBLEMS. NOTATION AS IN TABLE III.

OBSI LD LWD LE SD RD
Instance Median MAD Median MAD Median MAD Median MAD Median MAD Median MAD
Exam1 12955 509.5 16802 580.5 15920.5 189 15739 136 15508.5 350.5 15731 178.5
Exam2 2228.5 273.5 5450.5 532 3961 204.5 3942.5 63.5 3904 112 3823 132.5
Exam3 17442.5 82.5 27457.5 100 27364.5 57.5 28166 410.5 27963 108.5 32174.5 1459.5
Exam4 24345.5 510 - - - - - - 32664.5 957 - -
Exam5 7113.5 240.5 24574.5 1867.5 18245 326.5 16831 81.5 16794.5 610.5 17743.5 124.5
Exam6 29310 12 32142.5 47.5 32520 200 31700 120 31567.5 102.5 31812.5 105
Exam7 18460.5 12 39860.5 1190.5 35726 129.5 35893.5 554 34587.5 326 32941 230
Exam8 15837.5 190 20077 965.5 18097.5 463.5 17490 91.5 17358.5 259 - -
Exam9 1530.5 34.5 2095.5 57 2039.5 18 2020.5 43.5 1973.5 22.5 2006.5 37.5
Exam10 15219 446 17948.5 165 17669 55 17509.5 146 17620 148.5 17502.5 133
Exam11 54594.5 593.5 87940 4322 - - - - 79346 472.5 89335.5 3855
Exam12 6340.5 79.5 7543 95.5 7587 133 7502 82 7458.5 107 7650 182

TABLE VI
MEDIAN EA RESULTS AND MEDIAN ABSOLUTE DEVIATION (MAD) AFTER 8 MINUTES — YEDITEPE PROBLEMS. NOTATION AS IN TABLE III.

OBSI LD LWD LE SD RD
Instance Median MAD Median MAD Median MAD Median MAD Median MAD Median MAD

YUE20011 112 7.5 257 15 240 13 241 9.5 231.5 14 246.5 5.5
YUE20012 219 18 355.5 10 - - - - 375 7 364.5 10.5
YUE20013 41 7.5 55.5 5 56 6 54 10 56 8 59 7
YUE20021 181 14.5 382.5 11 - - - - 374.5 12 364 13
YUE20022 341.5 34.5 568.5 21.5 542.5 5.5 551.5 11.5 561.5 11.5 563 15
YUE20023 71.5 6 100.5 8.5 98 12 92.5 13.5 107.5 12 107 10.5
YUE20031 327.5 18 587.5 11.5 569 21.5 564 12 541.5 24 570 9.5
YUE20032 647 21.5 - - - - - - 888 13.5 - -

[15] R. Weare, E. Burke, and D. Elliman, “A hybrid genetic algorithm
for highly constrained timetabling problems,” Department of Computer
Science, 1995.

[16] K. A. Dowsland and J. M. Thompson, “Ant colony optimization for the
examination scheduling problem,” Journal of the Operational Research
Society, vol. 56, no. 4, pp. 426–438, 2005.

[17] M. Eley, “Ant algorithms for the exam timetabling problem,” in Interna-
tional Conference on the Practice and Theory of Automated Timetabling.
Springer, 2006, pp. 364–382.

[18] S.-C. Chu, Y.-T. Chen, and J.-H. Ho, “Timetable scheduling using
particle swarm optimization,” in Innovative Computing, Information and
Control, 2006. ICICIC’06. First International Conference on, vol. 3.
IEEE, 2006, pp. 324–327.

[19] E. Burke, Y. Bykov, J. Newall, and S. Petrovic, “A time-predefined
local search approach to exam timetabling problems,” Iie Transactions,
vol. 36, no. 6, pp. 509–528, 2004.

[20] M. Caramia, P. Dell’Olmo, and G. F. Italiano, “New algorithms for
examination timetabling,” in International Workshop on Algorithm En-
gineering. Springer, 2000, pp. 230–241.

[21] L. T. Merlot, N. Boland, B. D. Hughes, and P. J. Stuckey, “A hybrid
algorithm for the examination timetabling problem,” in International
Conference on the Practice and Theory of Automated Timetabling.
Springer, 2002, pp. 207–231.

[22] A. Muklason, “Hyper-heuristics and fairness in examination timetabling
problems,” Philosophy, 2017.

[23] N. Pillay and E. Özcan, “Automated generation of constructive ordering
heuristics for educational timetabling,” Annals of Operations Research,
vol. 275, no. 1, pp. 181–208, 2019.

[24] E. K. Burke, J. P. Newall, and R. F. Weare, “Initialization strategies and
diversity in evolutionary timetabling,” Evolutionary computation, vol. 6,
no. 1, pp. 81–103, 1998.

[25] B. McCollum, P. McMullan, E. K. Burke, A. J. Parkes, and R. Qu, “The
second international timetabling competition: Examination timetabling
track,” Technical Report QUB/IEEE/Tech/ITC2007/-Exam/v4. 0/17,
Queen’s University, Belfast, Tech. Rep., 2007.

[26] B. McCollum, P. McMullan, A. J. Parkes, E. K. Burke, and R. Qu,
“A new model for automated examination timetabling,” Annals of
Operations Research, vol. 194, no. 1, pp. 291–315, 2012.

[27] A. J. Parkes and E. Ozcan, “Properties of yeditepe examination
timetabling benchmark instances,” in Proceedings of the 8th Interna-

tional Conference on the Practice and Theory of Automated Timetabling,
2010, pp. 531–534.

[28] D. Corne and P. Ross, “Peckish initialisation strategies for evolutionary
timetabling,” in International Conference on the Practice and Theory of
Automated Timetabling. Springer, 1995, pp. 227–240.

[29] ——, “Some combinatorial landscapes on which a genetic algorithm
outperforms other stochastic iterative methods,” in AISB Workshop on
Evolutionary Computing. Springer, 1995, pp. 1–13.

[30] E. Burke and J. Newall, “Investigating the benefits of utilising problem
specific heuristics within a memetic timetabling algorithm,” Workin
Paper NOTTCS-TR-97-6, dept. of Computer Science, University of
Nottingham, UK, 1997.

[31] R. Qu, E. K. Burke, B. Mccollum, L. T. G. Merlot, and S. Y. Lee, “A
survey of search methodologies and automated system development for
examination timetabling,” Journal of Scheduling, pp. 55–89, 2009.

[32] E. K. Burke and S. Petrovic, “Recent research directions in automated
timetabling,” European Journal of Operational Research, vol. 140, no. 2,
pp. 266–280, 2002.

[33] M. Ayob, A. M. Ab Malik, S. Abdullah, A. R. Hamdan, G. Kendall,
and R. Qu, “Solving a practical examination timetabling problem: a case
study,” in International Conference on Computational Science and Its
Applications. Springer, 2007, pp. 611–624.

[34] S. K. Jha, “Exam timetabling problem using genetic algorithm,” Inter-
national Journal of Research in Engineering and Technology, vol. 3,
no. 5, pp. 649–654, 2014.

[35] M. N. M. Kahar and G. Kendall, “The examination timetabling problem
at universiti malaysia pahang: Comparison of a constructive heuristic
with an existing software solution,” European journal of operational
research, vol. 207, no. 2, pp. 557–565, 2010.

[36] B. McCollum, A. Schaerf, B. Paechter, P. McMullan, R. Lewis, A. J.
Parkes, L. D. Gaspero, R. Qu, and E. K. Burke, “Setting the research
agenda in automated timetabling: The second international timetabling
competition,” INFORMS Journal on Computing, vol. 22, no. 1, pp. 120–
130, 2010.

[37] G. N. Beligiannis, C. N. Moschopoulos, G. P. Kaperonis, and
S. D. Likothanassis, “Applying evolutionary computation to the school
timetabling problem: The Greek case,” Computers & Operations Re-
search, vol. 35, no. 4, pp. 1265–1280, 2008.

