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Abstract

When an automated car harms someone, who is blamed by those who hear
about it? Here, we asked human participants to consider hypothetical cases in
which a pedestrian was killed by a car operated under shared control of a primary
and a secondary driver, and to indicate how blame should be allocated. We find
that when only one driver makes an error, that driver is blamed more, regardless
of whether that driver is a machine or a human. However, when both drivers make
errors in cases of human-machine shared-control vehicles, the blame attributed
to the machine is reduced. This finding portends a public under-reaction to
the malfunctioning AI components of automated cars and therefore has a direct
policy implication: allowing the de-facto standards for shared-control vehicles to
be established in courts by the jury system could fail to properly regulate the
safety of those vehicles; instead, a top-down scheme (through federal laws) may
be called for.

Introduction

Every year, about 1.25 million people die worldwide in car crashes [1]. Laws concerning principles
of negligence currently adjudicate how responsibility and blame get assigned to the individuals who
injure others in these harmful crashes. The impending transition to fully automated cars promises
a radical shift in how blame and responsibility will get attributed in the cases where crashes do
occur, but most agree that little or no blame will be attributed to the occupants in the car, who
will, by then, be entirely removed from the decision-making loop [2]. However, before this era of
fully automated cars arrives, we are entering a delicate era of shared control between humans and
machines.

This new moment signals a departure from our current system – where individuals have full
control over their vehicles and thereby bear full responsibility for crashes (absent mitigating cir-
cumstances) – to a new system where blame and responsibility may be shared between a human
and a machine driver. The spontaneous reactions people have to crashes that occur when a hu-
man and machine share control of a vehicle has at least two direct industry-shaping implications.
First, at present, little is known about how the public is likely to respond to crashes that involve
both human and machine drivers. This uncertainty has concrete implications: manufacturers price
products to reflect the liability they expect to incur from the sale of those products. If manu-
facturers cannot assess the scope of the liability they will incur from automated vehicles (AVs),
that uncertainty will translate to substantially inflated prices of AVs [2]. Moreover, the rate of
the adoption of automated vehicles will be proportional to the cost to consumers to adopt the
new technology [2].(The rate of the adoption of this technology is contingent on many other fac-
tors, including consumers’ understanding of the relative risks and benefits of using the cars. We
do not mean to state that uncertainty about the scope of liability for manufacturers is the only
factor impacting adoption, just that it is a significant one.) Accordingly, the uncertainty about
the extent of corporate liability for automated vehicle crashes may be slowing down AV adoption
[2], while people continue to die in car crashes each year. Clarifying how and when responsibility
will be attributed to manufacturers in automated car crashes will be a first step in reducing this
uncertainty and speeding the adoption of automated and eventually fully automated vehicles.

The second direct implication of this work will be to forecast how a tort-based regulatory
scheme (which is decided on the basis on jury decisions) is likely to turn out. Put another way,
understanding how the public is likely to react to crashes that involve both a human and a machine
driver will give us a hint to what standards will be established if we let jury decisions shape them. If
our work uncovers systematic biases that are likely to impact juries and would impede the adoption
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of automated cars, then it may make sense for federal regulations be put in place, which would
preempt the tort system from being the avenue for establishing standards for these cars.

Already, automated vehicle crashes are in the public eye. In May 2016, the first deadly crash
of a Tesla Autopilot car occurred and the occupant of the car was killed. In a news release, Tesla
explained: “Neither Autopilot nor the driver noticed the white side of the tractor-trailer against a
brightly lit sky, so the brake was not applied” [3]. In March, 2018, the first automated car crash
that killed a pedestrian occurred. A pedestrian that was crossing the street went unnoticed by
both the car and the back-up driver. A few seconds before the crash, the car finally identified that
it should be breaking but failed to do so. The driver also braked too late to avoid the collision.

In both the Tesla and Uber fatal crashes, both the machine driver and the human driver should
have taken action and neither driver did. The mistakes of both the machine and the human led
to the crash. The National Highway Safety Traffic Administration (NHSTA) did an investigation
of the Tesla incident and did not find Tesla at fault in the crash [4]. Likewise, Uber has been
exonerated from criminal charges after an investigation by a county prosecutor [5]. Notably, press
attention surrounding the Tesla incident was markedly skewed towards blaming the human driver
for the crash, with rumors quickly circulating that the driver had been watching a Harry Potter
movie [6], though upon further investigation it was discovered that there was no evidence grounding
this claim [7]. Likewise, the fate of the Uber back-up driver remains unknown [5], with press
attention focusing on the distracted nature of the driver [8].

The set of anecdotes around these two crashes begins to suggest a troubling pattern, namely,
that humans might be blamed more than their machine partners in certain kinds of automated ve-
hicle crashes. Was this pattern a fluke of the circumstances of the crash and the press environment?
Or does it reflect something psychologically deeper that may color our responses to human-machine
joint action, and in particular, when a human-machine pair jointly controls a vehicle?

What we are currently witnessing is a gradual and multipronged increase toward full automa-
tion, going through several steps of shared control between user and vehicle, which may take decades
due to technical and regulatory issues as well as attitudes of consumers towards adoption [9, 10]
(see Figure 1). Some vehicles can take control over the actions of a human driver (e.g., Toyota’s
‘Guardian’) to perform emergency maneuvers. Other vehicles may do most of the driving, while
requiring the user to constantly monitor the situation and be ready to take control (e.g., Tesla’s
‘Autopilot’). Unless clear or explicitly mentioned, we use “Human” and “User” interchangeably
to refer to the person inside the car (being a driver or a passenger), and we use “Industry” and
“Machine” interchangeably to refer to both company and car combined together.

Our central question is this: when an automated car crashes and harms someone, how is blame
and causal responsibility attributed to the human and machine drivers by people who hear about
the crash? In this article, we use vignettes in which a pedestrian was hit and killed by a car being
operated under shared control of a primary and a secondary driver and ask our participants to
evaluate the crash on metrics of blame and causal responsibility. The cases we use are hypothetical
(insofar as respondents know that they did not actually take place), but are not unrealistic, as they
were designed to contain the relevant elements of events that could actually occur. We consider a
large range of control regimes (see Figure 1), but the two main cases of interest are the instances of
shared control where a human is the primary driver and the machine a secondary driver (“human-
machine”) and where the machine is the primary driver and the human the secondary driver
(“machine-human”). We consider a simplified space of scenarios in which (a) the main driver makes
the correct choice and the secondary driver incorrectly intervenes (“Bad Intervention”) and (b) the
main driver makes an error and the secondary driver fails to intervene (“Missed Intervention”).
Both scenarios end in a crash. For comparison, we also include analogous scenarios involving a
single human driver (a regular car) or a single machine driver (a fully automated car) as well as
two hypothetical two-driver cars (driven by two humans or two machines). We ask participants to
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make evaluations of the human user and one representative of the machine, either the car itself, or
the company that designed the car.
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Figure 1: Actions or action sequences for the different car types considered. Outline
arrows indicate an action by a human, ‘H’, and solid arrows indicate an action by a machine,
‘M’. The top and bottom rows represent sole-driver cars, while all others represent dual-driver
cars. A red arrow indicates a decision – whether action or inaction – that had the avoidable death
of a pedestrian as the outcome. A blue arrow indicates a decision that does not result in any
deaths. For example, the H+M type (real-world implementation is the Guardian system) has a
human main driver and a machine standby driver. A Bad Intervention then involves the human
staying on course (a non-lethal action, indicated by the outline of the straight, blue arrow) and the
machine overriding that action, causing the death of the pedestrian (solid, angled, red arrow). A
Missed Intervention involves the human staying on course to kill the pedestrian (outline, straight,
red arrow) without intervention from the machine (solid, straight, red arrow).

In Bad Intervention cases (see Methods – Case Description for details), the primary driver (be
it human or machine) has made a correct decision to keep the car on course, which will avoid
a pedestrian. Following this, the secondary driver makes the decision to swerve the car into the
pedestrian. In these sorts of cases, we expect that the secondary driver (the only driver that makes
a mistake) will be blamed more than the first driver. What is less clear is if people will assign
blame and causal responsibility differently if this secondary driver is a human driver or a machine.
Recent research suggests that humans may be blamed more than robots for making the same error
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in the same situations [11].
In Missed Intervention cases, the primary driver has made an incorrect decision to keep the

car on course (rather than swerving), which would cause the car to hit and kill a pedestrian.
The secondary driver then neglects to swerve out of the way of the pedestrian. In these cases,
the predictions for how participants will distribute blame and causal responsibility are less clear
because both drivers make a mistake. As in the Bad Intervention cases, agent type (human or
machine) may have an effect on blame and causal responsibility ratings. But unlike with Bad
Intervention cases, Missed Intervention cases introduce the possibility that driver role (primary or
secondary) may also impact judgments. It is possible that participants may shift responsibility
and blame either toward the agent who contributed the most to the outcome (primary driver),
or to the agent who had the last opportunity to act (secondary driver; [12, 13, 14, 15]). Under
some regimes – such as Toyota’s Guardian – the user does most of the driving, but the decision to
override (and thus to act last) pertains to the machine. Under others – such as Tesla’s Autopilot
– the machine does most of the driving, but the decision to override pertains to the user.

Results

All studies used hypothetical vignettes that describe a crash (see Methods – Case Description for
details on car regimes and intervention types, and see Supplementary Methods 1 for vignettes of
studies 1-5).

Study 1

Study 1 compared four kinds of cars with different regimes of control. Each car had a primary
driver, whose job it was to drive the car, and a secondary driver, whose job it was to monitor the
actions of the first driver and intervene when the first driver made an error. The car architectures of
central interest were human primary-machine secondary (“human-machine”) and machine primary-
human secondary (“machine-human”). We also included human-human and machine-machine ar-
chitectures for comparison. This allowed us to see how blame was distributed in a dual-driver
architecture when there was no difference in driver type (human or machine) in each of the driving
roles (primary or secondary).

Bad Interventions

In Bad Intervention cases, two predictors were entered into a regression with blame and causal
responsibility ratings as the outcome variable: (1) whether or not the driver made an error and
(2) driver type (human or machine). The main finding is that whether or not the driver made
an error was a significant predictor of ratings (see Table 1 – Column: Bad Intervention - Study
1). In other words, a driver that unnecessarily intervened, leading to the death of a pedestrian
was blamed more than a driver that operated on the correct course – regardless of whether the
driver was a human or machine. It is worth noting here that we did not detect a reliable effect of
driver type (Human vs. Machine), once correcting for multiple comparisons (see Table 1 – Row:
Human, Column: Bad Intervention - Study 1). We do not discuss this factor further in the Bad
Intervention cases.

Missed Interventions

In Missed Intervention cases, blame and responsibility judgments cannot depend on whether or
not a driver made an error because both drivers make errors in these cases. The main finding
for these cases is that driver type – whether the driver is a human or machine – has a significant
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Figure 2: Blame ratings for User and Industry in six car types. (a) Bar plot and (b)
Dot plot. Data from Study 1 (S1: N = 786, Observations = 3, 144) and Study 2 (S2: N = 382,
Observations = 1, 528). Ratings of blame and causal responsibility are aggregated (collectively
referred to as blame, henceforth). Ratings of car and company are aggregated (collectively referred
to as Industry, henceforth). The y-axis represents the six car types considered in Studies 1 and
2 (S1 and S2). Two car types, HM (human-machine) and MH (machine-human), were considered
in both studies. The y-axis labels include the study and the car type. For example, S1-HM
represents the Human-Machine regime ratings collected in Study 1. In the six car types, the x-
axis labeling of first driver refers to the main driver, and the last driver refers to the secondary
driver in dual-driver cars, and the sole driver in the sole-driver cars. For Bad Intervention, only
one agent has erred (the last driver). This agent (whether User or Industry) is blamed more
than the other agent (first driver; see Table 1). For Missed Intervention, in dual-driver cars (rows
2-7), both agents have erred. When human and machine are sharing control (inside the dotted
rectangle), blame ratings of Industry drops significantly, regardless of the role of the machine (main
or secondary). In Study 1, blame to Industry in S1-MH (m1 = 57.2) is significantly less than in
S1-MM (m2 = 68), [t(760.6) = �5.05, p < .0001, m2 �m1 = 10.8, 95% CI for m2 �m1 is 6.6–15].
And blame to Industry in S1-HM (m1 = 53.4) is significantly less than in S1-MM (m2 = 68),
[t(722.77) = �6.6042, p < .0001, m2 � m1 = 14.6, 95% CI for m2 � m1 is 10.2–19]. In Study
2, blame to Industry in S2-M (m1 = 75.6) is significantly more than in S2-MH (m2 = 59.5),
[t(754.63) = �7.3885, p < .0001, m1 � m2 = 16.1, 95% CI for m1 � m2 is 11.8–20.3]; And is
significantly more than in S2-HM (m3 = 48.51), [t(745.06) = 11.676, p < .0001, m1 �m3 = 27.1,
95% CI for m1 �m3 is 22.5–31.6].
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impact on ratings. Specifically, in these shared-control scenarios, where both human and machine
have made errors, the machine driver is consistently blamed less than the human driver (Table 1
– Column: Missed Intervention - Study 1; Figure 2).

The human-machine difference appears to be driven by a reduction in the blame attributed to
machines when there is a human in the loop. This is evident when comparing both the human-
machine and machine-human instances of shared control to the machine-machine scenario. Note
that the behaviors in these scenarios are identical, but how much a machine is blamed depends on
whether it is sharing control with a human or operating both the primary and secondary driver
role. When the machine is the primary driver, it is held significantly less blameworthy when
its secondary driver is a human (m1 = 57.2) compared to when the secondary driver is also the
machine (m2 = 68), t(760.6) = �5.0, p < .0001, difference in means: m2 � m1 = 10.8, 95% CI
for m2 � m1 is 6.6–15. (All tests are two-tailed.) Similarly, when the machine is the secondary
driver, it is held significantly less blameworthy when its primary driver is a human (m1 = 53.4),
compared to when the primary driver is also the machine (m2 = 68), t(722.77) = �6.6, p < .0001,
difference in means: m2 �m1 = 14.6, 95% CI for m2 �m1 is 10.2–19.

Study 2

Study 2 compared the human-machine and machine-human shared control cars with two different
baseline cars: a standard car, which is exclusively driven by a human, and a fully automated
car, which is exclusively driven by a machine. This allowed us to both replicate the main results
of Study 1 (the responses to Machine-Human and Human-Machine crashes) and also to see how
blame was assigned differently to dual-driver cars as compared to sole-driver cars. The industry
representative was varied (car and company) but this exploratory variable was not analyzed in this
study and in subsequent studies.

Bad Interventions

We replicated the main results of Study 1. Namely, in Bad Intervention cases for the shared-
control cars (Machine-Human and Human-Machine), whether or not the driver made an error was
a significant predictor of ratings (Table 1 – Column: Bad Intervention - Study 2; Figure 2).

Missed Intervention

We again replicated the main finding of Study 1. Driver type – whether the driver is a human or
machine – has a significant impact on ratings. Specifically, in shared-control scenarios (Machine-
Human and Human-Machine), where both human and machine have made errors, the machine
driver is consistently blamed less than the human driver (Table 1 – Column: Missed Intervention
- Study 2; Figure 2).

As we noted in Study 1, the human-machine difference is driven by a reduction in the blame
attributed to machines when there is a human in the loop. This is verified in Study 2 by comparing
blame to the machine in the shared control cases with blame to the machine in the fully automated
car (driven by a sole machine driver). In each case, blame to the machine in the shared control
case is significantly lower than blame to the machine in the Fully Automated car: Fully Automated
(m1 = 75.6) vs. Machine-Human (m2 = 59.5), t(754.63) = �7.4, p < .0001, m1 � m2 = 16.1,
95% CI for m1 �m2 is 11.8–20.3; vs. Human-Machine (m3 = 48.5), t(745.06) = 11.7, p < .0001,
m1 �m3 = 27.1, 95% CI for m1 �m3 is 22.5–31.6.

7



Table 1: Regression analysis of data collected in studies 1-5 in the cases of Bad Inter-
vention and Missed Intervention. Data from Studies 2 and 3 are limited to shared-control
regimes in the table. “Human” refers to the type of agent in question (that is, human as compared
to the baseline, machine), “Mistake” refers to whether the decision was a mistake (that is, the de-
cision would have resulted in losing a life, or losing more lives in study 3), and “Last Driver” refers
to the driver role (that is, the driver assumes the secondary role). All models include participant
random effects and question (blame or causal responsibility) random effects, where applicable.
Data were assumed to meet the requirements of the model.

Blame and Causal Responsibility

Bad Intervention Missed Intervention

Study 1 Study 2 Study 3 Study 1 Study 2 Study 3 Study 4 Study 5

Human 2.141 3.358 -1.508 16.942 17.493 3.567 10.745 2.594
(1.061) (1.574) (0.811) (1.148) (1.514) (0.852) (2.189) (0.860)

p = 0.044 p = 0.033 p = 0.063 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.003

Mistake 64.293 57.559 11.917
(1.061) (1.574) (0.881)

p = 0.000 p = 0.000 p = 0.000

Last Driver -1.822 -6.759 1.715 -0.073 1.355
(0.915) (1.514) (0.852) (2.189) (0.860)

p = 0.047 p = 0.000 p = 0.045 p = 0.974 p = 0.116

Constant 18.653 21.352 27.406 60.504 57.354 36.102 61.032 65.923
(0.916) (1.370) (1.171) (1.531) (1.878) (1.252) (1.911) (0.811)

p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000 p = 0.000

Participant
Rand
Effects?

Yes Yes Yes Yes Yes Yes Yes Yes

Question
Rand
Effects?

Yes Yes Yes Yes Yes Yes N/A N/A

N 786 382 389 786 382 389 375 2000
Observations 3,144 1,528 3,112 3,144 1,528 3,112 750 4,000

Study 3

In Study 3, we used the same car regimes as in Study 2, but the cases were dilemma scenarios
in which the drivers had to choose between crashing into a single pedestrian and crashing into
five pedestrians. This study was conducted as a comparison with our Studies 1 and 2, which
involve clear errors, and the studies conducted in previous research on self-driving cars (such as
[16, 17, 11, 18]) which involve the difficult choice of deciding which of two groups of people to hit.
All the main effects in Study 2 were replicated in Study 3.

Bad Interventions

Replicating the main results of Studies 1 and 2, in Bad Intervention cases for the shared-control
cars, whether or not the driver made an error was a significant predictor of ratings (Table 1 –
Column: Bad Intervention - Study 3).

Missed Intervention

Replicating the main results of Studies 1 and 2, driver type has a significant impact on ratings.
Specifically, in shared-control scenarios, where both human and machine have made errors, the
machine driver is consistently blamed less than the human driver (Table 1 – Column: Missed
Intervention - Study 3).
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Study 4

In Study 4, we replicated the central findings using more ecologically valid stimuli. We used only
the human-machine and machine-human shared control cars in the Missed Intervention scenario;
these are the cases where we observed the systematic decrease in blame to the machine in Studies 1-
3. For this study, we continued to use hypothetical scenarios, but the stimuli shown to participants
looked like realistic newspaper articles (see Supplementary Methods 1 – Studies 4-5).

The main finding of Studies 1-3 was replicated: the machine driver is consistently blamed less
than the human driver in these shared-control scenarios where both human and machine have
made errors (Table 1 – Column: Missed Intervention - Study 4).

Study 5

Study 5 was a replication of Study 4 run via YouGov with a nationally representative sample of
the United States population (see Figure 4 for details).

The main finding was again replicated: the machine driver is consistently blamed less than
the human driver (Table 1 – Column: Missed Intervention - Study 5). This result (i.e. human is
blamed more than machine) holds directionally in 82% of demographic subgroups of participants
(see Figure 3).

Discussion

Our central finding was that in cases where a human and a machine share control of the car in
hypothetical scenarios, less blame is attributed to the machine when both drivers make errors.
The first deadly crashes of automated vehicles (mentioned in the Introduction) were similar in
structure to our Missed Intervention cases. In those cases, both the machine primary driver and the
human secondary driver should have taken action (braking to avoid a collision) and neither driver
did. Our results suggests that the public response that occurred to the crash – one that focused
attention on the driver being exceedingly negligent – is likely to generalize to other dual-error
Missed Intervention-style cases, shifting blame away from the machine and towards the human.
Moreover, the convergence of our results with this real-world public reaction seems to suggest
that while we employed stylized, simplified vignettes in our research, our findings show external
validity. Moreover, this pattern of results was replicated in a nationally representative sample
of the United States population (and across different subgroups; see Figure 3), which employed
naturalistic presentation of scenarios (see Supplementary Methods 1 – Studies 4-5).

Our central finding (diminished blame to the machine in dual-error cases) leads us to believe
that, while there may be many psychological barriers to self-driving car adoption [19], public
over-reaction to dual-error cases is not likely to be one of them. In fact, we should perhaps be
concerned about public under-reaction. Because the public are less likely to see the machine as
being at fault in dual-error cases like the Tesla and Uber crashes, the sort of public pressure that
drives regulation might be lacking. For instance, if we were to allow the standards for automated
vehicles to be set through jury-based court-room decisions, we expect that juries will be biased to
absolve the car manufacturer of blame in dual-error cases, thereby failing to put sufficient pressure
on manufacturers to improve car designs. Despite the fact that there are some avenues available
to courts to mitigate psychological biases that may arises among juries (such as carefully worded
jury instructions or expert witnesses), psychological biases continue to play an important role in
court-based decisions [20]. In fact, we have been in a similar situation before. Prior to the 1960s,
car manufacturers enjoyed a large amount of liberty from liability when a car’s occupant was
harmed in a crash (because blame in car crashes was attributed to the driver’s error or negligence).
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Figure 3: Ratings of demographic subgroups in Study 5. Data collected in Study 5 from
nationally representative sample (N = 2000, Observations = 4000). Each row represents the mean
of differential blame attributed to User (i.e.: human) vs. Industry (i.e.: car or company). Positive
values (blue) indicate more blame attributed to User, while negative values (red) represent more
blame attributed to Industry. Error bars are 95% Confidence Intervals. Only subgroups with at
least 50 participants are shown. 33 out of 40 subgroups (82%) attribute more blame to User.

Top-down regulation was necessary to introduce the concept of “crash worthiness” into the legal
system, that is, that cars should be designed in such a way to minimize injury to occupants when
a crash occurs. Only following these laws were car manufacturers forced to improve their designs
[21]. Here, too, top-down regulation of automated car safety might be needed to correct a public
under-reaction to crashes in shared-control cases. What, exactly, the safety standard should be is
still an open question, however.

If our data identifies a source of possible public over-reaction, it is for cars with a human
primary driver and a machine secondary driver in Bad Intervention-style cases. These are the only
cases we identified where the car receives more blame than the human. It seems possible that these
sorts of cars may generate widespread public concern once we see instances of Bad Intervention-
style crashes in human-machine car regimes. This could potentially slow the transition to fully
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Figure 4: Representation of Demographic Attributes in Study 5. Study 5 was run via
YouGov, a service that administers and runs surveys on nationally representative samples. The
sample includes 2000 participants with diverse demographic attributes.

automated vehicles if this reaction is not anticipated and managed appropriately in public discourse
and legal regulation. Moreover, manufacturers that are working to release cars with a machine
secondary driver should plan appropriately for the likely legal fall-out for these unique cases where
a machine driver receives more blame than a human.

Our data portends the sort of reaction we can expect to automated car crashes at the societal
level (for example, through public reaction and pressure to regulate). Once we begin to see societal-
level responses to automated cars, that reaction may shape incentives for individual actors. For
example, people may want to opt into systems that are designed such that, in the event of a
crash, the majority public response will be to blame the machine. Worse yet, people may train
themselves to drive in a way that, if they crash, the blame is likely to fall to the machine (for
instance, by not attempting to correct a mistake that is made by a machine over-ride). This sort of
incentive shaping may already be happening in the legal domain. Judges who make decisions about
whether to release a person from custody between arrest and a trial frequently rely on actuarial
risk assessment tables to help make their decision. Some suspect that judges may overly rely on
the tables as a way of diminishing their responsibility if a released person commits a crime. Recent
attention generated in response to such a case focused on the role of the algorithm rather than
the judge [22], indicating that the possibility of incentive shaping in the legal domain is not so
far-fetched.

Given these possible societal-level implications of our findings, it is important to acknowledge
the potential limitations of interpreting our data this broadly. First, the participants in all of
our experiments know that they are reading about hypothetical scenarios. It is possible that
this reduces the psychological realism of the study [23, 24], causing participants’ responses to be
characteristically different than they would be upon reading about an actual event. The literature
provides a mixed view of how well responses to hypothetical scenarios map onto those made in
real life situations [25, 26, 27, 28]. However, the research that does show considerable differences
[25, 26] finds that these differences are mostly seen in the way participants themselves would act in
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moral situations and not necessarily about the moral judgments they render about third parties. In
our paper, we study participants’ judgments (blame and causal responsibility) about third parties
in hypothetical scenarios; these may align more directly with judgments of actual scenarios.

Second, although we may see a reasonably tight mapping between the opinions expressed in this
study’s scenarios and the opinions that would be expressed in real life situations, it is important
to note that, in the latter case, judgments will not be occurring in isolation. Instead, they will
occur within a richer context than the carefully controlled scenarios used in our studies. People
may hear reports of the accidents with more emotion-arousing details, which are known to skew
people’s judgments [29, 30]. Moreover, the public’s reaction to hearing about semi-autonomous
vehicle crashes will be shaped by many factors beyond their immediate psychological response
(which is the object of our study) including opinion pieces they read, the views of community
leaders, and so on. These factors will collectively shape the public’s overall reaction to crashes.

Studies 1, 2, 4, and 5 looked at blame and causal responsibility attribution in cases where one or
both drivers made errors. Study 3 looked at dilemma scenarios where the drivers faced the choice of
running over either one or five pedestrians. While there is, in some sense, an “optimal” outcome in
these cases (corresponding to saving more lives), it is not obvious that it would (for example) count
as an error to refuse to swerve away from five pedestrians into a pedestrian that was previously
unthreatened. In fact, the German Ethics Commission on Automated and Connected Driving
report [31] indicates that programming cars to trade off lives in this way would be prohibited.
The report states: “It is also prohibited to offset victims against one another. [. . .] Those parties
involved in the generation of mobility risks must not sacrifice non-involved parties.” Even though
participants in previous studies prefer to sacrifice one person who was previously not involved than
five (e.g., [16, 17]), the German Ethics Commission’s decision underscores the fact that trading off
lives in dilemma situations can be particularly fraught. For this reason, and for continuity with
previous work on the ethics of self-driving cars [16, 17, 11] and in moral psychology more generally
[32, 33], we chose to investigate dilemma situations. Our findings about the effect of driver type in
these cases underscores the fact that findings about how blame and responsibility are attributed
after a crash may still hold in less-clear dilemma scenarios.

Some of our results fall in line with previous work on the psychology of causal inference. In
Bad Intervention cases, the primary driver (be it human or machine) makes a correct decision
to keep the car on course, which will avoid a pedestrian. Following this, the secondary driver
makes the decision to swerve the car into the pedestrian. Our data show that the secondary driver
(the one that makes a mistake) is considered more causally responsible than the first driver. It
is well established that judgments of causal responsibility are impacted by violations of statistical
and moral norms [34, 35, 36, 37], and a mistake seems to count as such a violation. That is, if
something unusual or counter-normative happens, that event is more likely to be seen as a cause
of some effect than another event that is typical or norm-conforming.

Moreover, the central finding that humans are blamed more than machines even when both
make errors accords with research on the psychology of causal attribution. Findings in that field
suggest that voluntary causes (causes created by agents) are better causal explanations than phys-
ical causes [38]. While it is clear that what a human does is fundamentally different than what a
machine does in each of the scenarios, it remains an open question whether an AI that is operating
a car is perceived as a physical cause, an agent, something in between, or something else entirely
[39, 40]. Future work should investigate the mental properties attributed to an AI that controls
a car both in conjunction with a human or alone. Understanding the sort of mind we perceive as
dwelling inside an AI may help us understand and predict how blame and causal responsibility will
be attributed to it [41].

Another open question concerns what the implications are of attributing blame to a machine
at all. There are various ways that humans express moral condemnation. For example, we may
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call an action morally wrong, say that a moral agent has a bad character, or judge that an agent
is blameworthy. Judgments of blame typically track judgments of willingness to punish the perpe-
trator [42, 43]. Are the participants in our study expressing that some punishment is due to the
machine driver of the car, whatever that may mean? Alternately, is it possible that participants’
expressions of blame indicate that some entity is deserving of punishment that represents the ma-
chine (the company, or a human representative of the company, such as the CEO). The similar
blame judgments given to the car and the car’s representatives (company) perhaps support this
possibility. Finally, it is possible that participants ascribe only non-moral blame to the machine,
in the sense of being responsible but not in a moral sense. We may say that a forest fire is to blame
for displacing residents from their homes without implying that punishment is due to anyone at
all.

Following these studies, the reason that participants blame machine drivers less than human
drivers in Missed Intervention cases also remains an open question. The findings may be linked to
the uncertainty with which we perceive the agential status of machines. Once machines are a more
common element in our moral world and we interact with machines as moral actors, will this effect
change? Or will this finding be a lasting hallmark of the cognitive psychology of human-machine
interaction?

A final open question concerns whether the effects we report here will generalize to other cases
of human-machine interaction. Already we see fruitful human-machine partnerships emerging with
judges, doctors, military personnel, factory workers, artists, and financial analyzes, just to name a
few. We conjecture that we may see the patterns we report here in domains other than automated
vehicles, though each domain will have its own complications and quirks as machines begin to
become more subtly integrated in our personal and professional lives.

Methods

This study was approved by the Institute Review Board (IRB) at Massachusetts Institute of Tech-
nology (MIT). The authors complied with all relevant ethical considerations, including obtaining
informed consent from all participants.

In all studies, participants were allocated uniformly randomly into conditions. Data collection
and analysis were performed blind to the conditions of the experiments. The sample size was chosen
in each study to ensure having at least 100 participants for each condition. Number of participants
was chosen in advance of running the study and all data was collected prior to analysis. See details
below.

In Studies 1-3 we excluded any participant who did not (i) complete all measures within the
survey, (ii) transcribe (near-perfectly) a 169-character paragraph from an image (used as an atten-
tion check), and (iii) have a unique MTurk ID per study (all records with a recurring MTurk ID
were excluded).

Case Description

Summary descriptions of all car types and cases. For full vignettes, see Supplementary Methods
1.

Sole-driver car

This car has only one driver that does all the driving. Two versions are used.

Human-only. This is a sole-driver car, in which a human is the driver. Also referred to as a
regular car.
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Machine-only. This is a sole-driver car, in which a machine is the driver. Also referred to as a
fully-automated car.

Dual-driver car

This car has a primary driver, whose job it is to drive the car, and a secondary driver, whose job
it is to monitor the actions of the first driver and intervene when the first driver makes an error.
Also referred to as shared-control car. Four versions are used.

Human-Machine. This is a dual-driver car, in which a human is the primary driver, and a
machine is the secondary driver. Also referred to as Guardian.

Machine-Human. This is a dual-driver car, in which a machine is the primary driver, and a
human is the secondary driver. Also referred to as Autpilot.

Human-Human. This is a dual-driver car, in which a human is the primary driver, and another
human is the secondary driver.

Machine-Machine. This is a dual-driver car, in which a machine is the primary driver, and
another machine is the secondary driver.

Intervention Types

We use two types of interventions: Bad Intervention and Missed Intervention. The description of
each is dependent on whether the car is a sole-driver or a dual-driver car.

Bad Intervention (dual-driver). The primary driver kept the car on its track. The secondary
driver intervened and steered the car off its track (killing a pedestrian) rather than keeping the car
on track and killing no one.

Missed Intervention (dual-driver). The primary driver kept the car on its track. The sec-
ondary driver kept the car on its track (killing a pedestrian) rather than swerving into the adjacent
lane and killing no one.

Bad Intervention (sole-driver). The sole driver steered the car off its track (killing a pedes-
trian) rather than keeping the car on track and killing no one.

Missed Intervention (sole-driver). The sole driver kept the car on its track (killing a pedes-
trian) rather than swerving into the adjacent lane and killing no one.

Dilemma versions (Study 3). The two outcomes of killing one pedestrian vs. killing no one
are replaced with the two outcomes of killing five pedestrians vs. killing one pedestrian. For
example, in Missed Intervention (dual-driver): [. . .] The secondary driver kept the car on its track
(killing five pedestrians) rather than swerving into the adjacent lane and killing one pedestrian.

Study 1

Participants.

The data was collected in September 2017 from 809 participants (USA residents) recruited from the
Mechanical Turk platform (each was compensated $0.5). Of those, 23 participants were excluded
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(as explained above), leaving us with 786 participants. Participants were aged between 18-83
(median: 33), 50% were females, 39% had annual income of $50K or more, and 55% had a bachelor
degree or higher.

Stimuli and procedures.

Participants were uniformly randomly allocated to one of four conditions. Conditions varied the
car type (human-human, human-machine, machine-human, and machine-machine) in a 4-level
between-subjects design. In each condition, participants first read a description of the car, and
were then asked to attribute competence to each of the two drivers on an 100-point scale anchored
at “not competent” and “very competent” (see Supplementary Figure 1 for results on competence).
Participants then read two scenarios (presented in a random order), one Bad Intervention case
and one Missed Intervention Case. After each scenario, participants were asked to indicate (on
an 100-point scale) to what extent they thought each driver was blame-worthy (from “not blame-
worthy” to “very blame-worthy”) and to what degree each of these two agents caused the death of
the pedestrian (from “very little” to “very much”). Questions were presented in a randomized order.
(See Supplementary Methods 1 – Study 1 for text of the vignettes and see Supplementary Methods
2 for questions). At the end of the surveys, participants provided basic demographic information
(e.g., age, gender, income, education).

Study 2

Participants.

The data was collected in May 2017 from 804 participants (USA residents) recruited from the
Mechanical Turk platform (each is compensated $0.3). Of those, 25 participants were excluded (as
explained above), leaving us with 779 participants. Participants were aged between 18-77 (median:
32), 48% were females, 39% had annual income of $50K or more, and 54% had a bachelor degree
or higher.

Stimuli and procedures.

Participants were uniformly randomly allocated to one of eight conditions. Conditions varied the
car type (human only, human-machine, machine-human, and machine only) and the industry rep-
resentative (car and company), in a 4x2 between-subjects multi-factorial design. In each condition,
participants read two scenarios (presented in a random order), one Bad Intervention case and one
Missed Intervention case. After each scenario, participants were asked to attribute causal respon-
sibility, blameworthiness, and competence (see Supplementary Figure 1 for results on competence)
to two agents: the human in the car and a representative of the car (the car itself or the manu-
facturing company of the car, depending on the condition). All other features of Study 2 were the
same at those in Study 1.

Study 3

Participants.

The data was collected in November 2016 from 1008 participants (USA residents only) recruited
from the Mechanical Turk platform (each is compensated $0.6). Of those, 35 participants were
excluded (as explained above), leaving us with 973 participants. Participants were aged between
18-84 (median: 33), 51% were females, 37% had annual income of $50K or more, and 53% had a
bachelor degree or higher.
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Stimuli and procedures.

There were two groups of participants in Study 3: those who saw dual-driver cases or those who
saw sole-driver. For those who saw dual-driver cases, participants were randomly assigned to one
of six conditions in a 2x3 design, varying the car type (human-machine or machine-human) and the
industry representative (car, company, and programmer). Data for programmer was later dropped
from the analysis. For those who saw sole-driver cases, participants were randomly assigned to
one of four conditions in a 2x2 design, varying the car type (human only or machine only) and
the industry representative (car or company). In each condition (for both dual-car and single-car
groups), participants read two scenarios (presented in a random order), one Bad Intervention case
and one Missed Intervention case. These scenarios were the dilemma versions of those presented in
Studies 1 and 2 (see description above). After each scenario, participants were asked to attribute
causal responsibility and blameworthiness to two agents: the human in the car and a representative
of the car (the car itself, the company, or the programmer, depending on the condition). All other
features of Study 3 were identical to those of Study 2.

Study 4

Participants.

The data was collected in January 2019 from 375 participants (USA residents only) recruited from
the Mechanical Turk platform (each is compensated $0.3). No demographic data was collected for
this study. Given that it was done on the same platform as studies 1-3 (i.e. Mechanical Turk), its
demographic proportions are expected to be similar.

Stimuli and procedures.

The key elements of this study and Study 5 are 1) the restriction to Missed Intervention cases,
and 2) the visual and textual content of the vignettes have the look and feel of a news piece (see
Supplementary Methods 1 – Studies 4-5).

Participants were uniformly randomly allocated to one of four conditions. Conditions varied
the car type (human-machine, and machine-human) and the industry representative (car, and
company), in a 2x2 between-subjects multi-factorial design. In each condition, participants read
one scenario; one Missed Intervention case. The textual content of these scenarios was close to those
presented in Studies 1 -3, with slight changes to the text to make it read like a news piece. After
each scenario, participants were asked to attribute blameworthiness to two agents: the human in
the car and a representative of the car (the car itself, or the company, depending on the condition).

Study 5

Participants.

The data was collected in March 2019 from 2189 participants (USA residents) were recruited via
YouGov, a service that administered the study and collected the data from a representative sample
of participants. The participants were then matched down to a sample of 2000 participants based
on demographics. See Figure 4 for details on demographic proportions of participants in this study.

Stimuli and procedures.

This study is identical in the setup to Study 4.
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Data Availability.

Raw data and Source data for Fig 2, 3, and 4; Table 1; and Supplementary Fig 1 are available in:
https://bit.ly/2kzLymH

Code Availability.

Code used to produce figures and tables mentioned above is available in: https://bit.ly/2kzLymH
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1 Supplementary Figures

a bHM
M

H

100 < first driver 0 last driver > 100

After

Before

After

Before

Competence

Agent
Industry

User

HM
M

H

100 < first driver 0 last driver > 100

After

Before

After

Before

Competence

Agent
Industry

User

Supplementary Figure 1. Competence ratings from studies 1 and 2, in the

Missed Intervention cases, for the two critical regimes (human-machine and

machine-human). (a) Bar plot and (b) Dot plot. In Study 1 (S1), ratings were collected
before participants read about the accident. In Study 2 (S2), they were collected after. For
Industry, ratings of car and company are aggregated (collectively referred to as Industry,
henceforth). The x-axis labeling of first driver refers to the main driver, and the last driver
refers to the secondary driver in dual-agent cars. Industry and User ratings are shown in
blue, and red, respectively. User and Industry receive similar competence ratings in each
case. Ratings of both User and Industry drop at the same rate when the question is asked
after the scenario is presented.
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Supplementary Methods

Supplementary Method 1

Study 1

Vignette for Human-Machine with Missed Intervention.
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Vignette for Human-Machine with Bad Intervention.
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Vignette for Machine-Human with Missed Intervention.
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Vignette for Machine-Human with Bad Intervention.
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Vignette for Human-Human with Missed Intervention.
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Vignette for Human-Human with Bad Intervention.
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Vignette for Machine-Machine with Missed Intervention.
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Vignette for Machine-Machine with Bad Intervention.
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Study 2

Vignette for Human-Machine with Missed Intervention.



11

Vignette for Human-Machine with Bad Intervention.
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Vignette for Machine-Human with Missed Intervention.
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Vignette for Machine-Human with Bad Intervention.

Vignette for Human only (Regular Car) with Missed Intervention.
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Vignette for Human only (Regular Car) with Bad Intervention.

Vignette for Machine only (Fully Autonomous) with Missed Intervention.
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Vignette for Machine only (Fully Autonomous) with Bad Intervention.
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Study 3

Vignette for Human-Machine with Missed Intervention.

Vignette for Human-Machine with Bad Intervention.
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Vignette for Machine-Human with Missed Intervention.

Vignette for Machine-Human with Bad Intervention.
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Vignette for Human only (Regular Car) with Missed Intervention.

Vignette for Human only (Regular Car) with Bad Intervention.

Vignette for Machine only (Fully Autonomous) with Missed Intervention.
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Vignette for Machine only (Fully Autonomous) with Bad Intervention.
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Studies 4-5

In Studies 4 and 5, we used the same materials. These two studies were run only for Missed
Intervention cases. The main difference from previous three studies is that the materials
have the look and feel of real news articles. See figures below.

Vignette for Machine-Human. Original Satellite Image Credits (edited for the vignette):
Imagery c�2019 Google, Imagery c�2019 U.S. Geological Survey, Map data c�2019.
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Vignette for Human-Machine. Original Satellite Image Credits (edited for the vignette):
Imagery c�2019 Google, Imagery c�2019 U.S. Geological Survey, Map data c�2019.
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Supplementary Method 2

Questions

For studies 1-3, in all vignettes, after each scenario, four questions are asked: (Blame vs.
Causal Responsibility) x (User vs. Industry). Industry is car in study 1; car or company
in study 2; and car, company or programmer in study 3. See figures below.

For studies 4-5, in all vignettes, after each scenarios, two questions are asked: User vs.
Industry. Industry is car or company (between subjects).

Questions asked for all studies and all cases, where Industry is the Robocar. Robocar is
replaced with robocar company or robocar programmer in other cases.

In study 2, in addition to the four questions above two more questions about competence
are also asked (competence of Hank and competence of industry representative). See Figure
??.

In study 1, competence questions are asked separately before respondents are presented
with scenarios. In each condition, a description of the car regime is provided, and two
questions about competence (User vs. Industry). See Figures ?? – ??.
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Competence questions asked in study 2 along with the other four questions, where
Industry is the car company.

Description and Competence questions about Machine-Human from study 1.
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Description and Competence questions about Human-Machine from study 1.

Description and Competence questions about Human-Human from study 1.
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Description and Competence questions about Machine-Machine from study 1.


