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Highlights

• We propose a novel autoencoder architecture to learn compressed representations of

multivariate time series with missing data

• An additional regularization term aligns the learned representations with a prior kernel

similarity matrix, which accounts for missing data

• Encoder and decoder are implemented with recurrent neural networks, to handle time

dependencies and different lengths in data

• Even with many missing data, time series belonging to different classes becomes well

separated in the induced latent space

• We exploit the proposed architecture to design methods for anomaly detection and for

imputing missing data

• We perform an analysis to investigate which kind of time series can be effectively

encoded using recurrent layers
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Abstract

Learning compressed representations of multivariate time series (MTS) facilitates data anal-

ysis in the presence of noise and redundant information, and for a large number of variates

and time steps. However, classical dimensionality reduction approaches are designed for

vectorial data and cannot deal explicitly with missing values. In this work, we propose a

novel autoencoder architecture based on recurrent neural networks to generate compressed

representations of MTS. The proposed model can process inputs characterized by variable

lengths and it is specifically designed to handle missing data. Our autoencoder learns fixed-

length vectorial representations, whose pairwise similarities are aligned to a kernel function

that operates in input space and that handles missing values. This allows to learn good

representations, even in the presence of a significant amount of missing data. To show the

effectiveness of the proposed approach, we evaluate the quality of the learned representa-

tions in several classification tasks, including those involving medical data, and we compare

to other methods for dimensionality reduction. Successively, we design two frameworks based

on the proposed architecture: one for imputing missing data and another for one-class classi-

fication. Finally, we analyze under what circumstances an autoencoder with recurrent layers

can learn better compressed representations of MTS than feed-forward architectures.

Keywords: Representation learning; Multivariate time series; Autoencoders; Recurrent

neural networks; Kernel methods.
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1. Introduction

Real-valued multivariate time series (MTS) allow to characterize the evolution of complex

systems and is the core component in many research fields and application domains [1, 2].

MTS analysis should account for relationships across variables and time steps, and, at the

same time, deal with unequal time lengths [3–5]. Thanks to their ability to capture long-

term dependencies, recurrent neural networks (RNNs) achieve state of the art results in

tasks involving time series with one or more variables. In the latter case, RNNs can also

be coupled with convolutional neural networks to explicitly model relationships across the

different variables [6].

In time series analysis it is important to handle missing values, which are commonly

found in real-world data such as electronic health records (EHR) [7, 8], and are usually

filled with imputation techniques in a pre-processing phase [9]. However, unless data are

missing completely at random [10], imputation destroys useful information contained in the

missingness patterns. Furthermore, an imputation method may introduce a strong bias that

influences the outcome of the analysis, especially for large fractions of missing values [11].

A data-driven approach has recently been proposed to learn when to switch between two

particular types of imputation [12], but it relies on strong assumptions that are suitable only

for specific applications.

A proper representation of the data is crucial in machine learning applications [13]. While

traditional approaches rely on manual feature engineering that requires time and domain

expertise, representation learning aims at automatically producing features describing the

original data [14]. Dimensionality reduction has been a fundamental research topic in ma-

chine learning [15–17] and its application in representation learning for extracting relevant

information and generating compressed representations facilitates analysis and processing of

data [3, 18, 19]. This is particularly important in the case of MTS, which often contain noise

and redundant information with a large number of variables and time steps [19]. However,

classical dimensionality reduction approaches are not designed to process sequential data,
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especially in the presence of missing values and variable input size.

1.1. Contributions

In this paper, we propose a novel neural network architecture, called the Temporal Ker-

nelized Autoencoder (TKAE), to learn compressed representations of real-valued MTS that

contain missing data and that may be characterized by unequal lengths. We assume data

to be missing at random (MAR), i.e., the probability of data to be missing depends on the

observed variables and the missingness patterns might be useful to characterize the data.

Under the MAR assumption, once one has conditioned on all the data at hand, any remain-

ing missingness is completely random (i.e., it does not depend on some unobserved variable).

The MAR assumption covers many practical cases and includes also those situations where

data are missing completely at random, i.e., the probability of missing data is independent

from any other variable and there are no missingness patterns.

Our contributions are summarized in the following.

Learning compressed representations of MTS with missing data. To handle

missing data effectively, and, at the same time, avoid the undesired biases introduced by

imputation, we propose a kernel alignment procedure [20] that matches the dot product ma-

trix of the learned representations with a kernel matrix. Specifically, we exploit the recently-

proposed Time series Cluster Kernel (TCK) [21], which computes similarities between MTS

with missing values without using imputation. By doing so, we generate representations that

preserve unbiased pairwise similarities between MTS even in the presence of large amounts

of missing data.

The encoder and the decoder in the TKAE are implemented by stacking multiple RNNs,

allowing to generate a fixed-size vectorial representation of input MTS with variable-lengths.

To better capture time dependencies, we use a bidirectional RNN [22] in the encoder. The

final states of the forward and backward RNNs are combined by a dense nonlinear layer that

reduces the dimensionality of the representation.

The proposed architecture serves different purposes. First of all, it transports the data from
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a complex input domain to a low-dimensional vector space while preserving the original

relationships between inputs described by the TCK. Once represented as ordinary vectors,

the MTS can then be processed by standard classifiers or by unsupervised machine learning

algorithms [23], and their indexing and retrieval are more efficient [24, 25]. Furthermore,

when the dimensionality of the data is reduced, the models can potentially be trained with

fewer samples.

Frameworks for missing data imputation and anomaly detection. Contrarily

to other nonlinear dimensionality reduction techniques, the TKAE provides a decoder that

yields an explicit mapping back to the input space. We exploit this feature to implement

frameworks for two different applications. Specifically, we use the TKAE and its decoder

to (i) implement an imputation method that leverages the generalization capability of the

decoder reconstruction, rather than relying on a-priori assumptions that may introduce

stronger biases, and (ii) design an anomaly detector based on the reconstruction error of the

inputs.

Analysis of how RNNs encode MTS. We provide a detailed analysis of the effect

of using RNNs for encoding MTS, which is the mechanism adopted in TKAE to handle

inputs with variable lengths. Despite the popularity of AEs based on RNNs [26] for appli-

cations focused on text [27], speech [28], and video data [29], significantly fewer research

efforts have been devoted so far in applying these architectures to real-valued MTS and, in

general, in the context of dynamical systems. To fill this gap, we investigate under which

circumstances recurrent architectures generate better compressed representations of MTS

than feed-forward networks, which use padding to obtain inputs of equal length. Results

show that the effectiveness of the RNNs is related to specific intrinsic properties of the MTS.

1.2. Paper organization

The paper is organized as follows. In Sec. 2 we first provide the background for existing

AE models and the TCK. Then, we introduce the proposed TKAE architecture. In Sec. 3,
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we evaluate the TKAE’s capability to learn good representations both on controlled tests

and real-world MTS classification datasets. Results confirm that our method significantly

improves the quality of the representations as the percentage of missing data increases.

Successively, in 3.2 we propose two different frameworks that exploit the properties of the

TKAE decoder for (i) imputing missing data and (ii) building a one-class classifier. We

achieve competitive results for the imputation task, while we outperform other state-of-

the-art methods in one-class classification. In Sec. 4, we perform an in-depth analysis to

investigate which MTS are better represented by an AE with RNNs. We report several

results obtained in controlled environments, as well as on benchmark data, to support the

findings in our analysis. Finally, Sec. 5 reports our conclusions.

2. Methods

2.1. The Autoencoder

The AE is a neural network traditionally conceived as a non-linear dimensionality re-

duction algorithm [30], which has been further exploited to learn representations in deep

architectures [31] and to pre-train neural network layers [32]. An AE simultaneously learns

two functions; the first one, called the encoder, is a mapping from an input domain, RDx , to a

hidden representation (code) in RDz . The second function, the decoder, maps from RDz back

to RDx . The encoding function φ : RDx → RDz and the decoding function ψ : RDz → RDx

are defined as

z = φ(x;θE); x̃ = ψ(z;θD), (1)

where x ∈ RDx , z ∈ RDz , and x̃ ∈ RDx denote a sample from the input space, its hidden

representation, and its reconstruction given by the decoder, respectively. The encoder φ(·) is

usually implemented by stacking dense layers of neurons equipped with nonlinear activation

functions. The decoder ψ(·) is architecturally symmetric to the encoder and operates in

reverse direction; when inputs are real-valued vectors, the decoder’s squashing nonlinearities

are often replaced by linear activations [33]. Finally, θE and θD are the trainable parameters

of the encoder and decoder, respectively. The parameters are the connection weights and

biases of each layer m, i.e., θE = {W(m)
E ,b

(m)
E } and θD = {W(m)

D ,b
(m)
D }. AEs are trained
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to minimize the discrepancy between the input x and its reconstruction x̃. In the case

of real-valued inputs, this is usually achieved by minimizing a loss Lr implemented as the

empirical Mean Squared Error (MSE). It has been shown that for real-valued data, when

the MSE between original and reconstructed input is minimized, the learned representations

are good in the sense that the amount of mutual information with respect to the input is

maximized [33].

In this paper, we focus on AEs with a “bottleneck”, which learn an under-complete

representation of the input, i.e., Dz < Dx, retaining as much useful information as possible

to allow an accurate reconstruction [30]. The learned lossy, compressed representation of

the input, can be exploited, e.g., for clustering and visualization tasks [34], or to train a

classifier [35]. The bottleneck already provides a strong regularization as it limits the variance

of the model. However, further regularization can be introduced by tying the encoder and

decoder weights (WD = WT
E) or by adding a `2-norm penalty to the loss function

L = Lr + λL2 = MSE(x, x̃) + λ‖W‖2
2, (2)

where L2 is the `2-norm of all model weights W = {WD,WE} and λ is the hyperparameter

controlling the contribution of the regularization term.

Recurrent neural networks (RNNs) are models excelling in capturing temporal depen-

dencies in sequences [36, 37] and are at the core of seq2seq models [26]. The latter, learns

fixed-size representations of sequences with unequal length and, at the same time, generates

variable-length outputs.

Modern seq2seq architectures implement a powerful mechanism called attention, which

provides an inductive bias that facilitates the modeling of long-term dependencies and grants

a more accurate decoding if the lengths of the input sequences varies considerably [38, 39].

However, models with attention provide a representation that is neither compact nor of fixed

size and, henceforth, are not suitable for our purposes. If fact, rather than learning a single

vector representation for the whole input sequence, a model with attention maintains all the

encoder states generated over time, which are combined by a time-varying decoding vector

at each decoding step.
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2.2. The Time Series Cluster Kernel

The time series cluster kernel (TCK) [21] is an algorithmic procedure to compute unsu-

pervised kernel similarities among MTS containing missing data. The TCK is able to model

time series with missing data, under the MAR assumption. The method is grounded on

an ensemble learning approach that guarantees robustness with respect to hyperparameters.

This ensures that the TCK works well in unsupervised settings (the ones in which AEs ac-

tually operate), where it is not possible to tune hyperparameters by means of supervised

cross-validation. The base models in the ensemble are Gaussian mixture models (GMMs),

whose components are fit to the dataset. By fitting GMMs with different numbers of mix-

tures, the TCK procedure generates partitions at different resolutions that capture both

local and global structures in the data.

To further enhance diversity in the ensemble, each partition is evaluated on a random

subset of MTS samples, attributes (variates), and time segments, using random initializa-

tions and randomly chosen hyperparameters. This also contributes to provide robustness

with respect to hyperparameters, such as the number of mixture components. To avoid

imputation, missing data are analytically marginalized away in the likelihoods. To obtain

the GMM posteriors, the likelihoods are multiplied with smooth priors, whose contribution

becomes stronger as the percentage of missingness increases. The TCK is then built by

summing up, for each partition, the inner products between pairs of posterior assignments

corresponding to different MTS. More details on the TCK are provided in Appendix A.

2.3. The Temporal Kernelized Autoencoder

The Temporal Kernelized Autoencoder (TKAE) is our proposed AE architecture, which is

specifically conceived to learn compressed representations of variable-length MTS that may

contain missing values. A schematic depiction of the TKAE is provided in Fig. 1.

We assume that each MTS can be represented by a matrix X ∈ RV×T , where V denotes

the number of variates and T is the number of time steps that may vary in each MTS.

Analogously to seq2seq [26], in TKAE the dense layers of standard AEs are replaced by

RNNs, which process inputs sequentially and update their hidden state at each time step t
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x1 x2 . . . . . . xT

Input MTS

xT . . . . . . x2 x1

RNN1 RNN2

RNN1 RNN2

Encoder
(stacked bidirectional RNN)

h f
T

hb
T

` z

Encoder
last state Fixed size

representation

RNN2 RNN1

Decoder
(stacked RNN)

x̃T. . .. . .x̃2x̃1

Input
reconstruction

ZZT Lk K

Kernel alignment

Lr

Reconstruction error

Figure 1: Schematic representation of TKAE. Inputs are processed by a stacked bidirectional RNN. The
last states obtained in forward hf

T and backward hb
T directions are combined by a dense layer ` to produce

a fixed-size representation z of the input. z is used to initialize the state in the decoder, which is a stacked
RNN operating in generative mode and is trained to reproduce inputs by minimizing the reconstruction error
Lr. TKAE allows learning similarity-preserving representations of the inputs. In particular, the matrix ZZT

containing the dot products of the representations of the MTS in the dataset is aligned, by means of a
cost term Lk, to the kernel matrix K. The kernel matrix K is provided by the user as prior information to
condition the representations. In our case, the kernel alignment generates representations whose relationships
account for missing data in the input.

according to the following mapping,

ht = φ(xt,ht−1,θE), (3)

where θE is the set of trainable parameters of the recurrent units. The recurrent layers are

composed of either gated recurrent units (GRU) [40] or long short-term memory (LSTM) [41]

cells. The choice of the cell is usually guided by the task at hand [42].

Conventional RNNs make use of previous inputs to build their current hidden representa-

tion [22]. However, in applications like MTS classification where the whole input is available

at once, it is also possible to exploit the information contained in future inputs to generate

the current state of the network. For this reason, the encoder is implemented as a stacked

bidirectional RNN [43] consisting of two RNNs working in parallel, each one with M layers

of Dz cells and transition function (3). One of the RNNs captures input dependencies going

backward in time, whereas the other processes the same input but in reverse order, thus

modeling relationships going forward in time. After the whole input is processed, the final

states of the forward and backward RNN are denoted as hf
T and hb

T , respectively. While hf
T

is influenced by past observations, hb
T depends on future ones. Hence, their combination can
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capture a wider range of temporal dependencies in the input. In the TKAE, dense nonlinear

layer ` combines the two states hf
T and hb

T and produces an output vector z ∈ RDz . The

latter, is the fixed-size, vectorial representation of the MTS.

The decoder operates according to the following map,

x̃t = ψ(ht, x̃t−1,θD), (4)

where ψ(·, ·) is a stacked RNN withM layers parametrized by θD that operates in a generative

mode, processing the previously generated output as a new input. To initialize the decoder,

we let its initial state h0 = z and first input x̃0 = 0, which corresponds to an “average

input” if the MTS are standardized. The decoder iteratively produces outputs for T steps,

T being the length of the input MTS. Unequal lengths are naturally handled since the whole

architecture is independent of T .

The TKAE is trained end-to-end by means of stochastic gradient descent with scheduled

sampling [44]. More specifically, during training the decoder input at time t is, with prob-

ability ps, the decoder output at time t − 1 (inference mode) and with probability 1 − ps

the desired output at time t− 1 (teacher forcing). Since the desired output is not available

during the test phase, the decoder generates test data operating only in generative mode

(ps = 1). In most of our experiments, scheduled sampling improved the training convergence

speed, providing a practical motivation for our choice.

Analogously to standard AEs, RNNs cannot directly process data with missing values,

which are thus filled beforehand with some imputed value (0, mean value, last observed

value) [45]. However, imputation injects biases in the data that may negatively affect the

quality of the representations and conceal potentially useful information contained in the

missingness patterns. To overcome these shortcomings, we introduce a kernel alignment

procedure [20] that allows us to preserve the pairwise similarities of the inputs in the learned

representations. These pairwise similarities are encoded in a positive semi-definite matrix K

that is defined by the designer and passed as input to the model. In our case, by choosing

the TCK matrix as K, the learned representations will also account for missing data.

Kernel alignment is implemented by an additional regularization term in the loss function
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(2), which becomes

L = Lr + λL2 + αLk. (5)

Lk is the kernel alignment cost, which takes the form of a normalized Frobenius norm of the

difference between two matrices: K and ZZT , the dot product matrix between the hidden

representations z of the input MTS. More specifically, the Lk term is defined as

Lk =

∥∥∥∥∥
ZZT

‖ZZT‖F
− K

‖K‖F

∥∥∥∥∥
F

, (6)

where Z ∈ RN×Dz is a matrix of hidden representations relative to the N MTS in the dataset

(or, more specifically, in the current mini-batch). Finally, α, λ ≥ 0 are hyperparameters

controlling the contribution of alignment and regularization costs in the overall loss function.

3. Experiments

The experimental section is organized as follows.

1. Quantitative evaluations of the representations in the presence of missing

data. In Sec. 3.1, we evaluate the effectiveness of the kernel alignment for generating

compressed representations in the presence of missing data by computing how accu-

rately the representations are classified. Results show that the kernel alignment with

the TCK greatly improves the classification accuracy of the MTS representations in

the presence of large amounts of missing data.

2. Design and evaluation of decoder-based frameworks. In Sec. 3.2, we propose

two novel frameworks based on the TKAE decoder for (i) imputing missing data and

(ii) for one-class classification. Both frameworks exploit not only the TKAE hidden

representation but also its decoder, as the results are computed by mapping the com-

pressed representations back to the input space. The proposed frameworks are tested

on two different case-studies and compared with other methods.

Experimental setup. In the following, we compare the TKAE with methods for dimen-

sionality reduction: PCA, a standard AE, and other RNN-based architectures. The learned
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compressed representations have the same dimensionality for all models that are taken into

account. Let Dx be the input dimensionality; in TKAE Dx = V , as it processes recur-

sively each single time step. On the other hand, the MTS must be unfolded into vectors

when processed by PCA and AE. Therefore, in AE and PCA the input dimensionality is

Dx = V · T . We let Dz be the size of the compressed representations, which corresponds

to the number of RNN cells in each TKAE layer, the size of the innermost layer in AE,

and the number of principal components in PCA, respectively. In all experiments we use an

AE with 3 hidden layers, {Dx, 30, Dz, 30, Dx}; the number of neurons in the intermediate

layers (30) has been set after preliminary experiments and is not a critical hyperparameter

(comparable results were obtained using 20 or 40 neurons). As a measure of performance,

we consider the MSE between the original test data and their reconstruction as produced

by each model. In each experiment, we train the models for 5000 epochs with mini-batches

containing 32 MTS using the Adam optimizer [46] with an initial learning rate of 0.001.

We independently standardize each variate of the MTS in all datasets. In each experiment,

and for each method, we identify the optimal hyperparameters with k-fold cross-validation

evaluated on the reconstruction error (or, in general, on the unsupervised loss function) and

we report the average results on the test set, obtained in 10 independent runs. We consider

only TKAE models with a maximum of three hidden layers of either LSTM or GRU cells, as

deeper models generally improve performance slightly at the cost of greater complexity [47].

When kernel alignment is not used (α = 0), we refer to the TKAE simply as the TAE.

Datasets. We consider several real-world dataset from the UCI and UCR 1 repositories

and two medical datasets; details are reported in Tab. 1. The datasets have been selected in

order to cover a wide variety of cases, in terms of training/test sets size, number of variates

V , number of classes and (variable) lengths T of the MTS.

The first medical dataset is the EHR dataset, which contains blood samples collected over

time, extracted from the Electronic Health Records of patients undergoing a gastrointestinal

1archive.ics.uci.edu/ml/datasets.html, www.cs.ucr.edu/~eamonn/time_series_data
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Table 1: Benchmark time series datasets. Column 2 to 5 report the number of attributes, samples in training
and test set, and classes, respectively. Tmin is the length of the shortest MTS in the dataset and Tmax the
longest MTS.

Dataset V Train Test Classes Tmin Tmax Source

ECG 1 500 4500 5 140 140 UCR
Libras 2 180 180 15 45 45 [48]
Wafer 6 298 896 2 104 198 UCR
Jp. Vow. 12 270 370 9 7 29 UCI
Arab. Dig. 13 6600 2200 10 4 93 UCI
Auslan 22 1140 1425 95 45 136 UCI
EHR 10 892 223 2 20 20 [49]
Physionet 2 8524 298 4 5 176 [50]

surgery at the University Hospital of North Norway in 2004–2012 [49]. Each patient is

represented by a MTS of V = 10 blood sample measurements collected for T = 20 days

after surgery. We consider the problem of classifying patients with and without surgical

site infections from their blood samples. The dataset consists of N = 883 MTS, of which

232 pertain to infected patients. The original MTS contain missing data, corresponding to

measurements not collected for a given patient. Data are in random order and the first 80%

are used as training set and the rest as test set.

The second medical dataset is Physionet, which contains time series of peak-to-peak and

RR intervals extracted from ECGs in the 2017 Atrial Fibrillation challenge [50]. The MTS

are divided into 4 classes: normal (N), atrial fibrillation (A), other symptoms (O) and noisy

records (∼).

3.1. Quantitative evaluations of MTS representations in the presence of missing data

Controlled experiments and sensitivity analysis. To evaluate the effect of kernel

alignment when the MTS contain missing data, we perform a controlled experiment where

we compare the representations learned by the TAE (α = 0) and the TKAE (α 6= 0) on the

Jp. Vow. dataset. This dataset does not originally contain missing data. However, similarly

to previous studies [21, 48], we inject missing data in a controlled way by randomly removing

a certain percentage of values. We vary such percentage from 10% to 90%, evaluating each

time the reconstruction MSE and classification accuracy of the TAE and the TKAE encodings
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using kNN with k = 3. We apply zero imputation to replace missing data in the MTS. The

TAE and the TKAE are configured with 2 LSTM cells, ps = 0.9 and λ = 0.001. In the TKAE,

α = 0.1. In Fig. 2, we show the kernel matrix K yielded by the TCK and the dot products

in ZZT of the representations of the test set when 80% of the data are missing. ZZT is very

similar to the TCK matrix, as they are both characterized by a block structure indicating

that intra-class similarities in the 9 classes are much higher than inter-class similarities.
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1.0

(a) TCK (K)
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0.8
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(b) TKAE (ZZT )

Figure 2: Test set of Jp. Vow. with 80% of missing data. (a) prior K computed with TCK in input space;
(b) dot products ZZT of the representations in TKAE.

Fig. 3(a) shows how the classification accuracy and reconstruction error of the TAE and

the TKAE vary as we increase the amount of missing data. The classification accuracy
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Figure 3: Classification accuracy (in blue) and reconstruction MSE (in red) on Japanese Vowels dataset. In
(a), TAE and TKAE results are reported as a function of the missing values percentage. Panel (b) reports
the sensitivity analysis for the parameter α, when λ = 0 is fixed and the percentage of missing values is 80%.
Panel (c) reports the sensitivity analysis for the parameter λ, when α = 0.5 is fixed and the percentage of
missing values is 80%.

(blue lines) does not decrease in the TKAE when the data contain up to 50% missing values

and is always higher than in the TAE. When 90% of the data are missing, the TKAE still
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achieves a classification accuracy of 0.7, while for the TAE it drops to 0.1. We note that

the reconstruction MSE decreases for a higher amount of missingness. The reason is that

by using imputation, a higher amount of missingness introduces more constant values and,

therefore, there is less information to compress.

Fig. 3(b) reports the classification accuracy and reconstruction error, by varying the

kernel alignment parameter α when λ = 0 is fixed and the percentage of missing values

is 80%. It is possible to note that there is quite a large interval ranging from 0.25 to 0.7

where the classification accuracy is above 70%. We also observe that the alignment term

does not compromise input reconstruction, since the MSE does not significantly change as

α is increased.

Finally, Fig. 3(c) reports the classification accuracy and reconstruction error, by varying

the L2 regularization parameter λ, when α = 0.5 is fixed and the percentage of missing

values is 80%. The small changes in the results demonstrate that the TKAE is not very

sensitive to this hyperparameter.

Classification of MTS representations in the presence of missing data. In this

second experiment, we analyze the MTS from the EHR, Japanese Vowels, and Arabic Digits

datasets. Since the last two datasets are complete, missingness is introduced by removing

80% of the samples. The performance is assessed by classifying the representations of the test

set generated by each model. We include in the comparison the representations generated

by PCA, a standard AE, the TAE, and the Encoder-Decoder scheme for Anomaly Detection

(EncDec-AD), which is a state-of-the-art architecture that generates vectorial representations

of MTS [51]. The main differences between EncDec-AD and the TAE, are the lack of the

bidirectional encoder in EncDec-AD and a deep architecture in TAE obtained by stacking

multiple RNN layers in both the encoder and the decoder. The networks considered for this

experiment are configured with the parameters reported in Tab. 2.

Beside classification accuracy, in Tab. 3 we also report the F1 score that handles class

imbalance. For example, in the EHR data the infected class is under-represented compared

to not infected.

15



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Table 2: Optimal hyperparameters found with cross-validation. For AE: type of activation function (ψ), l2
regularization (λ), and tied weights in the decoder (tw). For TAE and TKAE: type of cell × number of
layers, probability of scheduled sampling (ps), kernel alignment (α), and l2 regularization (λ).

Dataset Dz
AE EncDec-AD, TAE, TKAE TAE, TKAE TKAE

ψ λ tw λ cell ps α

EHR 10 lin. 0.001 yes 0 GRU×2 0.9 0.1
Jp. Vow. 10 lin. 0.001 no 0.001 LSTM×2 0.8 0.1
Arab. Dig. 10 lin. 0 yes 0 LSTM×2 1.0 0.95

Table 3: Classification of the blood data. F1 score is calculated considering infected as “positive” class.

EHR Jp. Vow. Arab. Digits
Method Accuracy F1 score Accuracy F1 score Accuracy F1 score

PCA 83.5 65.1 76.8 76.7 84.8 84.8
AE 84.6±0.13 67.5±0.34 78.1±0.02 78.2±0.03 85.1±0.01 85.1±0.01
EncDec-AD 82.9±0.07 60.5±0.18 75.9±0.05 76.4±0.05 66.3±0.14 65.1±0.11
TAE 85.3±0.021 68.2±0.22 78.6±0.17 79.1±0.15 73.1±0.09 72.8±0.11
TKAE 89.9±0.22 80.2±0.47 82.4±0.01 82.6±0.01 86.8±0.06 86.7±0.02

As expected, the AE achieves consistently better results than PCA. In all the experi-

ments, we observe that the TAE performs better than the EncDec-AD, which indicates the

importance of the bidirectional encoder to learn MTS representations. Except for the Ara-

bic Digits dataset, the TAE performs also slightly better than the AE. However, when using

kernel alignment the performance is boosted, as indicated by the results of the TKAE that

are always the best in each task. In particular, we observe that the TKAE representations

achieve the best accuracy and a much higher F1 score in the EHR dataset. Fig. 4 depicts

the first two principal components of the representations from the EHR dataset learned by

the TAE and by the TKAE. It is possible to recognize the effect of the kernel alignment, as

the densities of the components relative to different classes become more separated.

3.2. Decoder-based frameworks

Imputation of missing data. To perform missing data imputation, we modify the loss

function of the TKAE slightly and exploit the decoder to impute missing values in the MTS.

In the presence of missing data, the reconstruction MSE of the loss function can be modified
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Figure 4: PCA and density of the two principal components of the representations yielded by TAE and
TKAE on EHR dataset. The densities are computed with a kernel density estimator.

to account only for non-imputed values,

Lr = −
∑

t

((xt − x̃t)mt)
2 /
∑

t

mt, (7)

where mt = 0 if xt is imputed and 1 otherwise. In this way, the decoder is not constrained

to reproduce the values that are imputed and, instead, freely assigns values to the entries

that are originally missing. Thus, we can exploit the generalization capability of the decoder

to provide an alternative form of imputation, which depends on the nonlinear relationships

existing in the training data. A similar principle is followed by denoising AEs (DAEs) [33], as

they try to reconstruct the original input from a corrupted version of it, where some entries

are randomly removed. Therefore, after training, DAEs can be exploited to impute missing

values on new unseen data [52, 53].

We randomly remove approximately 50% of the values from 5 of the datasets described in

Tab. 1 and compare the capability of the TKAE to reconstruct missing values with respect

to other imputation techniques. As baselines, we consider mean imputation, last occurrence

carried forward (LOCF), and DAE imputation [54]. For the TKAE and the DAE, we use

the optimal configurations identified with cross-validation, reported in Tab. 4. In the TKAE

we replace the Lr term with (7) and we set α = 0.1. In the DAE, we apply a stochastic

corruption of the inputs, by randomly setting input values to 0 with probability 0.5.
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Table 4: Optimal hyperparameters found with cross-validation. For DAE: type of activation function (ψ),
λ of l2 regularization, and tied weights in the decoder (tw). For TKAE: type of cell, number of layers,
probability of scheduled sampling (ps), and λ of l2 regularization.

Dataset Dz
DAE TKAE

ψ λ tw cell ps λ

ECG 10 lin. 0 no GRU×1 1.0 0
Lbras 5 sig. 0.001 no LSTM×2 0.9 0.001
Wafer 10 lin. 0 no LSTM×2 1.0 0
Jp. Vow. 10 lin. 0.001 no LSTM×2 0.8 0.001
Auslan 10 lin. 0 yes LSTM×2 1.0 0

Table 5: MSE and Pearson correlation (CORR) of the MTS where missing values are imputed using different
methods, with respect to the original MTS (without missing values). Best and second best results are
highlighted in dark and light blue, respectively.

Dataset
Mean Imp. LOCF DAE TKAE
MSE CORR MSE CORR MSE CORR MSE CORR

ECG 0.883 0.702 0.393 0.884 0.157±0.004 0.956±0.001 0.151±0.003 0.956±0.001
Libras 0.505 0.666 0.085 0.949 0.050±0.001 0.970±0.001 0.029±0.002 0.978±0.002
Wafer 0.561 0.695 0.226 0.911 0.199±0.017 0.935±0.004 0.093±0.007 0.964±0.003
Jp. Vow. 0.502 0.699 0.084 0.954 0.132±0.001 0.926±0.000 0.114±0.003 0.938±0.001
Auslan 0.532 0.613 0.379 0.746 0.145±0.002 0.873±0.005 0.087±0.001 0.941±0.002

In Tab. 5 we report the MSE and the Pearson correlation (CORR) of the MTS with

imputed missing values, with respect to the original MTS. We observe that in 4 of the 5

datasets the TKAE yields the most accurate reconstruction of the true input, followed by

the DAE. However, in Jp. Vow. LOCF imputation allows retrieval of missing values with

the highest accuracy. This can be explained by the fact that in the MTS of the Jp. Vow.

dataset very similar values are repeated for several time intervals. However, we notice that

also in this case the TKAE achieves the second-best result and it outperforms the DAE.

One-class classification. One-class classification and anomaly detection are applied in

several domains, including healthcare [55], where non-nominal samples are scarce and often

unavailable during training [56]. When dealing with MTS data, RNN-based approaches

have been adopted to perform anomaly detection tasks [51, 57]. The methods based on

dimensionality reduction procedures, such as AEs and energy based models [58, 59] rely on

the assumption that anomalous samples do not belong to the subspace containing nominal
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data, which is learned during training. Therefore, the representations generated by the

trained model for samples of a new, unseen class will arguably fail to capture important

characteristics. Consequently, for those samples an AE would yield large reconstruction

errors, which we consider as the classification scores for the new class.

Method AUC

OCSVM 0.713
IF 0.662±0.01
PCA 0.707
AE 0.712±0.001
EncDec-AD 0.719±0.007
TAE 0.728±0.005
TKAE 0.732±0.006

Table 6: AUC obtained by different one-class classification
methods in detecting the MTS of atrial fibrillation class,
which is not present in the training set.

For this task, we consider the real-world data from the Physionet dataset. By following

a commonly adopted procedure [60], we simulate missing data by randomly removing ap-

proximately 50% of the entries in each MTS and then we exclude samples of class A from

the training set (which are then considered as non-nominal). We evaluated the performance

of the TKAE, the AE, and PCA in detecting class A in a test set containing samples of

all classes (N,A,O,∼). As performance measure, we considered the area under ROC curve

(AUC) and compared the performance also with two baseline classifiers: one-class SVM

(OCSVM) [61] and Isolation Forests (IF) [62]. The optimal configurations are: Dz = 10;

EncDec-AD, TAE and TKAE with λ = 0; TAE and TKAE with 1 layer of GRU cells,

ps = 0.9; TKAE with α = 0.2; AE with non-linear decoder, no tied weights, and λ = 0;

OCSVM with rbf kernel width γ = 0.7 and ν = 0.5; IF with contamination 0.5. Results in

Tab. 6 show that the TKAE scores the highest AUC.

4. Comparative analysis of recurrent and feed-forward architectures for learning
compressed representations of MTS

So far, we demonstrated the capability of the TKAE to learn good representations even

in the presence of missing data, thanks to the kernel alignment with the TCK. Another

characterizing component of the TKAE is the use of RNNs in both encoder and decoder.
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Recurrent layers have been successfully applied in seq2seq models [26] to encode different

types of sequential data, such as text and videos. However, their application to real-valued

MTS has been limited so far and it is not clear yet in which cases recurrent AEs work

well. Therefore, in this section we investigate when RNNs can represent MTS better than

a feed-forward architecture, which processes the whole MTS at once using padding to deal

with inputs of variable lengths. We show that in most cases an AE with RNNs encodes well

the MTS, which justifies our choice in the design of the TKAE. However, we also report

examples of negative results where RNNs fail to process MTS exhibiting certain properties.

Since we want to focus only on the effects of using recurrent layers in generating com-

pressed representations, in the following we do not use kernel alignment, but we consider

only the TAE (i.e., TKAE with α = 0). Synthetic data are generated to study specific MTS

properties in controlled environments.

Time series with different frequencies. Here, we evaluate the capability of the TAE

to compress periodic signals having different frequencies and phases. We generate a dataset

of sinusoids y(t) = sin(a · t + b), where a, b are drawn from N (0, 1) and t ∈ [0, 100]. The

proposed task is closely related to the multiple superimposed oscillators, studied in pattern

generation and frequency modulation [63]. The training and test sets contain 200 and 1000

samples, respectively. We let Dz = 5 and the optimal configurations are: AE with nonlinear

decoder and λ = 0.001; TAE with 2 layers of LSTM cells, λ = 0, and ps = 1.0. The

reconstruction MSE on the test set is 0.41 for PCA, 0.212 for the AE, and 0.013 for the

TAE.

Both PCA and the AE process the entire time series at once. This may appear an

advantage with respect to the TAE, which stores information in memory for the whole

sequence length before yielding the final representation. Nonetheless, the TAE produces a

better reconstruction, while the AE (and PCA) is unsuitable for this task. Indeed, in AEs a

given time step t in each MTS is always processed by the same input neuron. For periodic

signals, the training procedure tries to couple neurons associated to time steps with the same

phase, by assigning similar weights to their connections. However, these couplings always
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change if inputs have different frequencies (see Fig.5). Therefore, training in the AE never

1 2 3 4 5

A B

1 2 3 4 5

A BHidden 
Neurons

Input 
Neurons

Figure 5: Periodic inputs with different
frequencies generate different activation
patterns in AEs. It is not possible to learn
connections weights that preserve neurons
couplings for each frequency.

converges as it is impossible to learn a model that generalizes well for each frequency. On

the other hand, thanks to its recurrent architecture, the TAE can naturally handle inputs of

different frequencies as there is no pairing between structural parameters and time steps.

Fig. 6 shows the reconstruction of one sample time series. The lower quality of the

20 40 60 80 100
-1.5

-1

-0.5

0

0.5

1

1.5

AE
TAE

PCA
true

Figure 6: Reconstructions
obtained by PCA, AE, and
TAE on a sample sinusoid,
whose frequency and phase
are randomly chosen.

reconstruction yielded by the AE and by PCA can be immediately noticed. Additionally,

since they are unable to reproduce the dynamics of each sample, they rather adopt a more

conservative behavior and output signals with lower amplitudes that are closer (in a mean

square sense) to the “average” of all the random sinusoids in the dataset.

Time series with variable lengths. While the TAE can process MTS of different length,

the standard AE and PCA require inputs of fixed size. The common workaround also

followed in this work, is to pad the shorter MTS with zeros [64]. To systematically study

the performance of the different methods when the MTS have fixed or variable length,

we generate data by integrating the following system of first-order Ordinary Differential
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Equations (ODE):
dy

dt
= Atanh (y(t)) , (8)

where y ∈ RV , A ∈ RV×V is a matrix with 50% sparsity and elements uniformly drawn in

[−0.5, 0.5]. To guarantee system stability [65], we set the spectral radius of A to 0.8. tanh(·)
is applied component-wise and introduces nonlinear dependencies among the variables. A

MTS x ∈ RT×V is obtained by integrating (8) for T steps, starting from a random initial

condition y(0). Since a generic deterministic dynamical system can be described by an ODE

system, these synthetic MTS can represent many real data.

We generate two different datasets of MTS with V = 10 variables, each one with 400

and 1000 samples for training and test set, respectively. The first, ODEfix, contains MTS

with same length T = 90, while in the second, ODEvar, each MTS has a random length

T ∈ [30, 90]. We let Dz = 10 and compare the reconstruction MSE of PCA, the AE, and the

TAE. The optimal configurations for this task are: AE with λ = 0.001 and linear decoder;

TAE with 1 LSTM layer, λ = 0.001, and ps = 0.9. The average results obtained for 10

independent random generations of the data (A) and initialization of AE and TAE are

reported in Tab. 7.

Table 7: Average reconstruction MSE of MTS with fixed (ODEfix) and variable (ODEvar) length.

Dataset PCA AE TAE

ODEfix 0.018 0.004 0.060
ODEvar 0.718 0.676 0.185

In ODEfix, both the AE and PCA yield almost perfect reconstructions, which is expected

due to the simplicity of the task. However, they perform worse in ODEvar despite the presence

of many padded values and a consequent lower amount (on average) of information to encode

in the compressed representation. On the other hand, the TAE naturally deals with variable-

length inputs, since once the input sequence terminates its state and model weights during

the training are no longer updated.

Dealing with a large number of variates and time steps. To test the ability to learn

compressed representations when the number of variates in the MTS increases, starting
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from (8) we generate four datasets ODE5, ODE10, ODE15, and ODE20, obtained by setting

V = {5, 10, 15, 20}. The number of time steps is fixed to T = 50 in each dataset. We

let Dz = 10; TAE is configured with 2 layers of LSTM and ps = 0.9; λ is 0.001 in both

the AE and the TAE. We also include in the comparison an AE with tied weights in the

(nonlinear) decoder, which has fewer parameters. Reconstruction errors are reported in

Tab. 8. We notice that the AE performs well on MTS characterized by low dimensionality,

but performance degrades when V assumes larger values. Since the AE processes MTS

unrolled into a unidimensional vector, the input size grows quickly as V increases (one

additional variable increases the input size by T ). Accordingly, the number of parameters

in the first dense layer scales-up quickly, possibly leading to overfitting. We also notice that

the tied weights regularization, despite halving the number of trainable parameters, degrades

performance in each case, possibly because it hinders too much the flexibility of the model.

On the other hand, the TAE complexity changes slowly, as only one single neuron is added

for an additional input dimension. As a consequence, we conclude that the TAE is the best

performing model when the MTS have a large number of variates.

Table 8: Average reconstruction MSE on the ODE task for different values of V , obtained by TAE, AE, AE
with tied weights (tw) and PCA. For AE and TAE we report the number of trainable parameters (#par).
Best results are in bold.

Dataset
TAE AE AE (tw) PCA

MSE #par MSE #par MSE #par MSE

ODE5 0.019 6130 0.04 31170 0.014 15870 0.007
ODE10 0.060 6780 0.04 61670 0.071 31370 0.018
ODE15 0.072 7430 0.106 92170 0.153 46870 0.174
ODE20 0.089 8080 0.121 122670 0.181 62370 0.211

To study the performance as the lengths of MTS increase, we generate 8 datasets with

the ODE system (8) by varying T ∈ {50, 75, 100, 125, 150, 175, 200}, while keeping V = 15

fixed. In Fig. 7, we report the reconstruction errors and note that the TAE performance

decays as T increases. RNNs excel in capturing recurring patterns in the input sequence

and they can model extremely long sequences whenever they are characterized by a strong

periodicity. However, in this case there are no temporal patterns in the data that can be

exploited by the RNNs to model the inputs. Therefore, the RNN dynamics do not converge
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to any fixed point and the modeling task becomes much more difficult as the input length

increases.

50 75 100 125 150 175 200

time series length (T)

0

0.1

0.2

0.3

0.4

R
ec

on
st

r 
er

r 
(M

S
E

)

PCA
AE
TAE Figure 7: Reconstruction MSE

when increasing length T of MTS
in ODE15. TAE performance de-
creases for large T .

5. Conclusion

We proposed the temporal kernelized autoencoder, an RNN-based model for represent-

ing MTS with missing values as fixed-size vectors. Missing values in MTS are commonly

found in domains such as healthcare and derive from measurement errors, incorrect data

entry or lack of observations. Through a kernel alignment performed with the time series

cluster kernel, a similarity measure designed for MTS with missing data, our method learns

compressed representations that preserve pairwise relationships defined in the original input

space, even when data are heavily corrupted by missing values.

We showed that the representations learned by the TKAE can be exploited both in super-

vised and unsupervised tasks. Experimental results, contrasted with other dimensionality

reduction techniques on several datasets, showed that the TKAE representations are clas-

sified accurately also when the percentage of missing data is high. Through sensitivity

analysis, we showed that the kernel alignment has very little impact on the reconstruction

error, demonstrating that the TKAE can learn good representations even when using the

alignment procedure.

After training, only the TKAE encoder is used to generate the representation of the MTS,

while the decoder, which is learned as part of the optimization, remain unused. To fully

exploit the capabilities of the TKAE architecture, we considered two applications that take

advantage of the decoder module. Specifically, we designed two frameworks based on dimen-

sionality reduction and inverse mapping to the input space for imputing missing data and
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for one-class classification. We showed that by thresholding the reconstruction error of the

decoder, the TKAE is able to outperform competing approaches on these tasks.

We concluded our work by investigating which types of MTS are better modeled by a neu-

ral network auto-encoder with recurrent layers, rather than with feed-forward ones. Our

results showed that in most cases an RNN-based AE is the best architecture to generated

good MTS representations. This motivated our design choice for the TKAE. Our analysis

revealed that an RNN excels in encoding short MTS with many variables, that are charac-

terized by different lengths or by a varying periodicity. However, when MTS are very long

and do not contain temporal patterns that can be modeled by RNNs, better performance

can be achieved by replacing recurrent layers in the TKAE with standard dense layers.
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Appendix A. Details of the TCK algorithm

A MTS X ∈ RV×T is represented by a sequence of V univariate time series (UTS) of

length T , X = {xv ∈ RT | v = 1, . . . , V }, being V and T the dimension and length of X,

respectively. Given a dataset of N samples, X(n) denotes the n-th MTS and a binary MTS

R(n) ∈ RV×T describes whether the realisation x
(n)
v (t) in X is observed (r

(n)
v (t) = 1) or is

missing (r
(n)
v (t) = 0).

DiagGMM. The TCK kernel matrix is built by first fitting G diagonal covariance GMM

(DiagGMM) to the MTS dataset. Each DiagGMM g is parametrized by a time-dependent

mean µgv ∈ RT and a time-constant covariance matrix Σg = diag{σ2
g1, ..., σ

2
gV }, being σ2

gv the

variance of UTS v. Moreover, the data is assumed to be missing at random, i.e. the missing

25



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

elements are only dependent on the observed values. Under these assumptions, missing data

can be analytically integrated away [66] and the pdf for each incompletely observed MTS

{X,R} is given by

p(X |R, Θ) =
G∑

g=1

θg

V∏

v=1

T∏

t=1

N (xv(t) | µgv(t), σgv)
rv(t) (A.1)

The conditional probabilities follows from Bayes’ theorem,

πg =
θg
∏V

v=1

∏T
t=1N (xv(t) | µgv(t), σgv)

rv(t)

∑G
g=1 θg

∏V
v=1

∏T
t=1N (xv(t) | µgv(t), σgv)

rv(t)
. (A.2)

The parameters of the DiagGMM are trained by means of a maximum a posteriori expecta-

tion maximization algorithm, as described in [21].

Ensemble generation. To ensure diversity in the ensemble, each GMM model has a differ-

ent number of components from the interval [2, C] and is trainedQ times, using random initial

conditions and hyperparameters. Specifically, Q = {q = (q1, q2) |q1 = 1, . . . Q, q2 = 2, . . . , C}
denotes the index set of the initial conditions and hyperparameters (q1), and the number of

components (q2). Moreover, each DiagGMM is trained on a subset of the original dataset,

defined by a random set of the MTS samples, a random set V of |V| ≤ V variables, and a

randomly chosen time segment T , |T | ≤ T . The inner products of the posterior distribu-

tions from each mixture component are then added up to build the final TCK kernel matrix.

Details are provided in Alg. 1.
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Algorithm 1 TCK kernel training

Input: Training set of MTS {X(n)}Nn=1 , Q initializations, C maximal number of mixture compo-
nents.

1: Initialize kernel matrix K = 0N×N .
2: for q ∈ Q do

3: Compute posteriors Π(n)(q) ≡ (π
(n)
1 , . . . , π

(n)
q2 )T , by applying maximum a posteriori expec-

tation maximization [21] to the DiagGMM with q2 components and by randomly selecting,

i. hyperparameters Ω(q),

ii. a time segment T (q) of length Tmin ≤ |T (q)| ≤ Tmax ,

iii. attributes V(q), with cardinality Vmin ≤ |V(q)| ≤ Vmax,

iv. a subset of MTS, η(q), with Nmin ≤ |η(q)| ≤ N ,

v. initialization of the mixture parameters Θ(q).

4: Update kernel matrix, Knm = Knm + Π(n)(q)T Π(m)(q)

‖Π(n)(q)‖‖Π(m)(q)‖ .
5: end for
Output: TCK matrix K.
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