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ABSTRACT 

 This thesis sought to elucidate the mechanisms driving the large-scale 

population changes observed in Pygoscelis penguins in the Western Antarctic 

Peninsula (WAP)/Scotia Sea region since the 1970s, with particular focus on 

the interactions between the species. During this period the climate in this 

region has changed dramatically, with rapid warming and sea ice declines 

occurring until the late 20th century to be followed by a pause in the warming. 

These changes have altered biotic and abiotic conditions in the penguins’ 

ecosystem and researchers widely agree that this is driving their population 

changes. In order to elucidate the exact mechanisms of population change, we 

attempted to fill crucial knowledge gaps, including foraging ecology, migration 

and breeding success, throughout their annual cycle and all with particular 

focus on the interactions between the three Pygoscelis species. 

 Direct tracking and isotope analysis provided novel insights into foraging 

behaviour and the role of niche partitioning between the species throughout the 

annual cycle, and its importance for reducing interspecific competition. During 

the breeding season, allochrony between Adélie and chinstrap penguins was 

found to reduce competitive overlap in foraging areas by 54%, compared to 

synchronous breeding, and to be resilient to climate change. The migration 

routes and over-winter sites of chinstrap penguins from the South Orkney 

Islands were identified for the first time and were found to be segregated from 

birds from the neighbouring South Shetland Islands archipelago. The 

environmental conditions at the two over-winter sites differed but the population 

trends at the two archipelagos were similar, suggesting that winter conditions 

are not likely to be a major driver.  

 Developing on our findings of contrasting environmental conditions 

across the chinstrap over-wintering sites, we investigated the effect of multiple 

environmental variables on population trends in the final two thesis chapters. 

Sea ice has been shown to be a major driver of Adélie penguin breeding 

success, and thereby population trends, and birds in our study region 

experience particularly dramatic seasonal changes in sea ice concentration 

(SIC), as it is located near the northern extent of winter ice. The three 

Pygoscelis species are widely cited as having different ice tolerances, termed 

the ‘sea ice hypothesis’, with Adélies being described as ‘ice-loving’, chinstraps 

as ‘ice tolerant’ and gentoos as ‘ice averse’. These differing ice tolerances are 
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thought to be a major factor in the species’ contrasting population changes in 

this region and these hypothesised preferences could theoretically induce a sea 

ice optima for breeding and forging success. However, no evidence was found 

for a sea ice optima at the study colony, despite previous studies finding a 20% 

optima for Adélies in East Antarctica, and SIC was found to have no significant 

effect on breeding productivity or diet composition but some effect was found for 

fledging mass and foraging trip duration.  

 The combined influence of environmental conditions and interspecific 

interactions on the three species’ population trends was investigated for the first 

time in this system. Data from large and local scale climate and a long time 

period (more than 25 years) were investigated at the two study archipelagos 

using a multi-species Gompertz population model. The model failed to identify 

any of the modelled variables as major drivers of the population variation, 

suggesting that other factors, such as predation and prey availability were 

potentially important drivers.  

 This thesis also identified a number of priorities for future research and 

identified the need for a greater emphasis on modelling the effects of Antarctic 

krill biomass, rather than climate variables, upon penguin demographic 

variables. 

 

ACKNOWLEDGMENTS  

 Firstly, I would like to thank my main PhD advisor Dr. Norman Ratcliffe 

for his guidance and for sharing his extensive knowledge. I would also like to 

thank my collaborators for their generous data-sharing and helpful comments 

and the fieldworkers who collected much of the data in this project. This work 

would not have been possible without the financial support of the Natural 

Environment Research Council (NERC) and the World Wide Fund for Nature 

(WWF-UK). Last but not least, I would like to thank my family for their 

encouragement and guidance and give special thanks to my partner, Becs, for 

her constant support. I would not have been able to do this without you. 

 

Table of Contents 

ABSTRACT…………………………………………………………...……………..…2 

ACKNOWLEDGEMENTS…………………………………………...……………..…3 

List of Tables and Figures………………………………………………….……...….7 



4 
 

 

Chapter 1 – General introduction……………………………………….……..…14 

1 | LITERATURE REVIEW…………………………………………………………..14 

 1.1 | A GLOBAL VIEW OF CLIMATE CHANGE…………………………..15 

1.2 | CLIMATE CHANGE IN ANTARCTICA……………....……………….15 

1.3 | INFLUENCES OF CLIMATE CHANGE………………….….………..17 

1.3.1 | Geographical range expansion and contraction….……….18 

1.3.2 | Altered Species Interactions…………………………….......19 

1.3.2.1 | Effects of climate on food abundance…………….21 

1.4 | NICHE PARTITIONING…………………………………….………….22 

1.5 | ALLOCHRONY……………………………………………….…...........24 

1.6 | STUDY SPECIES – Genus Pygoscelis (Brush-tailed penguins) ....25 

1.6.1 | Adélie penguin (Pygoscelis adeliae)…………......…………27 

1.6.2 | Chinstrap penguin (Pygoscelis Antarctica)…….................28 

1.6.3 | Gentoo penguin (Pygoscelis papua ellsworthi)……………29 

1.7 | STUDY SITES………………………………..…………………………………30 

1.7.1 | Signy Island, South Orkney Islands………………..………31 

1.7.2 | King George Island, South Shetland Islands……………...32 

2 | AIMS, OBJECTIVES AND RESULTS…………………………………......……33 

3 | CONTRIBUTION OF PUBLISHED PAPERS TO THE FIELD………….........37 

4 | REFERENCES………………………………………………………………...….37 

 

Chapter 2 – Niche partitioning of sympatric penguins by leapfrog foraging 

appears to be resilient to climate change……………………………………….51 

Author contributions………………………………………………………………….51 

ABSTRACT……….…………………………………………………………………..51 

1 | INTRODUCTION………………………………………………………………….52 

2 | MATERIALS AND METHODS…………………………………………………..55 

 2.1 | Study site and tag deployments……………………………………….56 

 2.2 | GPS and dive data processing…………………………………………57 

 2.3 | Statistical analysis of tracking data……………………………………57 

 2.4 | Behaviour-based model of foraging areas……………………………58 

2.5 | Analysis of breeding phenology………………………………………..60 

3 | RESULTS ………………………………………………………………………….61 

3.1 | Trip and dive metrics……………………………………………………61 



5 
 

3.2 | Simulated effects of allochrony on spatial overlap ………………….61 

3.3 | Timing of breeding phenology in relation to October air 

temperature…………………………………………………………………...62 

   4 | DISCUSSION……………………………………………………………………63 

 4.1 | Stage-dependent foraging distribution………………………………..64 

 4.2 | Allochrony and leapfrog foraging ……………………………………..64 

 4.3 | Partitioning of dive depths……………………………………………..65 

 4.4 | Phenology, climate change and competitor matching……………….66 

   5 | CONCLUSIONS ………………………………………………………………..67 

   6 | FIGURES………………………………………………………………………..69 

   7 | SUPPORTING INFORMATION..……………………………………………..74 

   8 | REFERENCES …………………………………………………………………82 

 

Chapter 3 – Chinstrap penguins display archipelago specific migration 

routes and strong migratory connectivity……………………........................91 

Author contributions………………………………………………………………….91 

ABSTRACT.…………………………………………………………………………..91 

1 | INTRODUCTION………………………………………………………………….92 

2 | MATERIALS AND METHODS…………………………………………………...95 

2.1 | Geolocator deployment sites and location data processing………..95 

2.2 | Spatial segregation and site fidelity……………………………………96 

2.3 | Migratory connectivity ………………………….………………………97 

2.4 | Environmental conditions within wintering sites……………………..97 

2.5 | Biological sampling for stable isotope analysis………………………98 

2.6 | Stable isotope analysis technique…………………………………….99 

2.7 | Isotopic niche analysis………………………………………………..100 

3 | RESULTS ………………………………………………………………………..101 

3.1 | Migration routes and over-wintering areas…………………………101 

3.2 | Isotopic niche overlap between the two archipelagos…………….103 

3.3 | Annual isotopic niche variation within each archipelago………….103 

   4 | DISCUSSION………………………………………………………………….104 

4.1 | Migratory behaviour and environmental conditions………………..104 

4.2 | Isotopic niches…………………………………………………………108 

4.2.1 | Variation between archipelagos……………………………108 

4.2.2 | Variation within archipelagos………………………………109 



6 
 

   5 | CONCLUSIONS ………………………………………………………………110 

   6 | FIGURES………………………………………………………………………111 

   7 | REFERENCES ………………………………………………………………..118 

 

Chapter 4 – Investigating the effect of sea ice on breeding and foraging 

performance metrics of Pygoscelis penguins at the South Orkney 

Islands.............................................................................................................129 

Author contributions………………………………………………………………...129 

ABSTRACT.…………………………………………………………………………129 

1 | INTRODUCTION………………………………………………………………...130 

2 | MATERIALS AND METHODS…………………………………………………133 

 2.1 | Sea ice concentration in foraging area………………………………133 

2.2 | Breeding productivity………………………………………………….133 

2.3 | Diet composition……………………………………………………….134 

2.4 | Foraging trip duration…………………………………………………135 

2.5 | Analytical methods……………………………………………………135 

3 | RESULTS ……..…………………………………………………………………136 

3.1 | Trip duration……………………………………………………………136 

3.2 | Diet Composition………………………………………………………137 

3.3 | Fledging mass…………………………………………………………139 

3.4 | Breeding productivity………………………………………………….140 

   4 | DISCUSSION………………………………………………………………….140 

4.1 | Links between breeding and foraging performance metrics……..140 

4.2 | Responses to SIC……………………………………………………..142 

   5 | CONCLUSIONS ………………………………………………………………145 

   6 | FIGURES………………………………………………………………………147 

   7 | REFERENCES ………………………………………………………………..154 

 

Chapter 5 – Investigating the interacting roles of competition and the 

environment upon long-term Pygoscelis penguin population trends……..…..163 

Author contributions………………………………………………………………...163 

ABSTRACT.…………………………………………………………………………163 

1 | INTRODUCTION………………………………………………………………...164 

2 | MATERIALS AND METHODS…………………………………………………166 

2.1 | Study site and species……………………………………………..…166 



7 
 

2.2 | Modelling annual variation in abundance……………………………167 

2.3 | Principal Component Analysis selection of environmental 

variables……………………………………………………………………..167 

2.4 | Multi-species population model……………………………………...170 

3 | RESULTS ………………………………………………………………………..173 

4 | DISCUSSION……………………………………………………………………174 

4.1 | Patterns of population change among species and 

archipelagos…………………………………………………………………175 

4.2 | Principal component analysis………………………………………..175 

4.3 | Multi-species population model………………………………………176 

   5 | CONCLUSIONS ………………………………………………………………178 

   6 | FIGURES………………………………………………………………………180 

   7 | REFERENCES ………………………………………………………………..189 

 

Chapter 6 – Synthesis chapter………………………………………..………..197 

    REFERENCES…………………………………………………………………..202 

 

List of Tables and Figures 

Chapter 1 – General introduction 

Figure 1 – Figure adapted from Abram et al., 2014 indicating the spatial 

response of surface air temperatures (°C) to SAM variability across the 

Antarctic continent from 1979-2012.  

Figure 2 – Approximate breeding ranges of Adélie penguins in blue, chinstrap 

penguins in red and gentoo penguins in grey. Adapted from figures in 

Borboroglu and Boersma, 2013 using a basemap from SCAR Antarctic Digital 

Database Map Viewer (https://www.add.scar.org/).  

Image 1 – An adult Adélie penguin stretches their wings in front of a crèche of 

chicks. Image taken by Harriet L. Clewlow during 2015/16 field season.  

Image 2 – A chinstrap penguin incubating their chick on Signy Island, South 

Orkney Islands. Image taken by Harriet L. Clewlow during 2015/16 field season. 

Image 3 – A gentoo penguin protecting their chicks on Signy Island, South 

Orkney Islands. Image taken by Harriet L. Clewlow during 2015/16 field season. 

https://www.add.scar.org/
https://www.add.scar.org/


8 
 

Figure 3 – Map showing the locations of the two study sites, produced using the 

package ggmap (Kahle and Wickham, 2016) in R version 3.3.0 (R Core Team, 

2015). 

Figure 4 – Map showing the monitored breeding sites on Signy Island, South 

Orkney Islands and the proximity of other islands within the archipelago. Maps 

were produced by the authors using the package ggmap (Kahle and Wickham, 

2016) in R version 3.3.0 (R Core Team, 2015). 

Figure 5 – Map showing the four monitored breeding sites on King George 

Island, South Shetland Islands and the proximity of other islands within the 

archipelago. Maps were produced by the authors using the package ggmap 

(Kahle and Wickham, 2016) in R version 3.3.0 (R Core Team, 2015). 

Figure 6 – Schematic diagram indicating links between thesis chapters.  

 

Chapter 2 – Niche partitioning of sympatric penguins by leapfrog foraging 

appears to be resilient to climate change  

Figure 1 – Utilization distribution kernels of peripheral (95%) (thin line) and core 

(50%) foraging areas (shaded area with thick line) using raw GPS data of 

foraging trips during incubation (a), guard (b) and crèche (c) stage for Adélies 

(blue) and chinstraps (red) overlaid on bathymetry (metres) shown in greyscale 

shading. The maps were produced by the authors using R version 3.3.0. 

Figure 2 – Leapfrog foraging behaviour throughout the breeding season based 

on Adélie (black line) and chinstrap (grey line) foraging distances. Shaded 

areas show when one species has leapfrogged the other by foraging further 

away from the colony. Areas below the dotted line show when Adélies have 

leapfrogged chinstraps and areas above show when chinstraps have 

leapfrogged Adélies (difference = daily maximum chinstrap distance – daily 

maximum Adélie distance). 

Figure 3 – Daily (number of days from 1st October) utilization distribution 

overlap index (UDOI) values, and area under the curve (AUC) values, for with 

allochrony (top panel) and without allochrony (bottom panel) in core (left 

column) and peripheral (right column) foraging areas. 



9 
 

Figure 4 – Kernel density estimation curves of vertical overlap in dive depths for 

core (a), peripheral (b) and no horizontal overlap areas (c) between Adélies 

(black) and chinstraps (grey). 

Figure 5 – Annual laying date for Adélies (black) and chinstraps (grey) against 

annual mean October air temperatures (°C) over the 20 year study period. 

Points are marked with years and shading represents 95% confidence intervals. 

Appendix S1 – Sampling and variability of tracks among years 

Table S1 – GPS/TDR tag deployments summed by breeding stage for all years 

of deployment 

Table S2 – Comparison between years within breeding stages using a Utilisation 

Distribution Overlap Index (UDOI)  

Figure S1 – Utilization distribution kernels of peripheral (95%; thin line) and core 

(50%; shaded area with thick line) foraging areas using raw GPS data of annual 

breeding stage foraging trips for Adélies (blue) and Chinstraps (red) overlaid on 

bathymetry. The maps were produced by the authors using R version 3.3.0. 

Animation S1 – Animation illustrating the process of simulating tracks through 

the breeding season using Adélie penguins on Signy Island, South Orkneys as 

an example. Blue tracks represent resampled tracks from incubation, green 

from brood-guard and yellow from crèche. Accessible online - 

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2656.12919 

Animation S2 – Animation showing overlap in 50% (shaded area with thick 

lines) and 95% isopleths (thin lines) of Adélie (blue) and chinstrap penguin (red) 

dive locations derived from the simulation analysis. Accessible online - 

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2656.12919 

Table S3 – Examples of allochrony in sympatric congeneric seabirds. 

Definitions of allochrony type: staggered allochrony is a situation where birds 

breed during the same season but have different peaks in laying; complete 

allochrony is where birds breed in different seasons (e.g. summer, winter) such 

that their seasons do not overlap at all; Differences in breeding synchrony is 

where both species overlap their breeding seasons, but one species activity is 

more spread out through time than the other. Leapfrog foraging may arise in 

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2656.12919
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2656.12919
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2656.12919
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2656.12919


10 
 

those species showing staggered allochrony where this is combined with stage-

dependent foraging ranges. 

 

Chapter 3 – Chinstrap penguins display archipelago specific migration 

routes and strong migratory connectivity  

Table 1 – Sample sizes of geolocator (GLS) tracks and biological samples 

collected from Signy Island, South Orkney Islands archipelago. 

Table 2 – Summary of tail feather and eggshell (2007 only) isotopic values 

(mean±SD) and Bayesian core niche area estimate (SEAb) for each sampling 

year at each archipelago. Values in parentheses are 95% credibility intervals. 

Figure 1 – Monthly 95% contours of birds from the South Orkney Islands 

(dashed lines – colony location at red triangle) and South Shetland Islands 

(solid line – colony location red circle) with April to November coloured in the 

following order: red, brown, blue, green, orange, purple and grey. The maps 

were produced by the authors using R version 3.6.1. and the ggplot2 packages 

(R Core Team, 2015; Wickham and Chang, 2016).  

Figure 2 – Mean near-surface ocean velocity field (2012-2016) for the Southern 

Ocean, with the colour axis set to a maximum of 0.3 m s-1 for clarity of 

visualisation. Arrows indicate current velocity (larger arrow = faster flow) plotted 

at every 1° latitude and 2° longitude. Data were obtained from the E.U. 

Copernicus Marine Service information (Copernicus Marine Environment 

Monitoring, 2018). South Shetland Islands highlighted with red circle and South 

Orkney Islands highlighted with red triangle. 

Figure 3 – Annual sea-surface temperature values at the over-winter site of 

each archipelago population during each tracking year. 

Figure 4 – Annual chlrophyll-a values at the over-winter site of each archipelago 

population during each tracking year. 

Figure 5 – Total (TA–dashed line) and core isotopic niche area (SEAc–solid line) 

and group centroid (cross) for chinstrap penguin biological samples. Plot A–All 

feather samples from both archipelagos–black=South Shetland Islands, 

red=South Orkney Islands; B–All eggshell samples–black=South Shetland 



11 
 

Islands, red=South Orkney Islands; C–South Shetlands individual years tail 

feathers–black= 2012, red= 2014; D–South Orkney individual years tail 

feathers–black= 2013, red= 2015 and grey=2018; E–tail feathers of individual 

birds sampled on successive years–black= 2016 samples, red=2017 samples. 

 

Chapter 4 – Investigating the effect of sea ice on breeding and foraging 

performance metrics of Pygoscelis penguins at the South Orkney Islands 

Figure 1 – Conceptual graph of the sea ice optima for Adélies’ (blue), 

chinstraps’ (red) and gentoos’ (grey) breeding productivity (ratio chicks to pairs). 

Figure 2 – Map showing the monitored breeding sites on Signy Island, South 

Orkneys and the proximity of other islands within the archipelago. Maps were 

produced by the authors using the package ggmap in R version 3.3.0. 

Figure 3 - Average annual foraging trip duration against average annual sea ice 

cover for Adélies (blue) and chinstraps (red) with error bars representing the 

standard error of model prediction values. Note that both species had similar trip 

durations in 2008 and 2012 but Adélie trips were longer in 2014 and 2016. 

Figure 4 – Annual variation in the proportion of krill in diet, fledging mass and 

breeding success for Adélies (blue) and chinstraps (red) with error bars 

representing the standard error. 

Figure 5 – Annual proportion of krill in diet against average annual sea ice cover 

for Adélies (blue) and chinstraps (red) with error bars representing the standard 

error of model prediction values. 

Figure 6 – Average annual fledging mass against average annual sea ice cover 

for Adélies (blue) and chinstraps (red) with error bars representing the standard 

error of model prediction values. 

Figure 7 – Breeding productivity (ratio of chicks per pair) with sea ice cover 

(SIC) for Adélies (blue), chinstraps (red) and gentoos (grey) with error bars 

representing the standard error of model prediction values.  

Table 1 - Annual variation in trip duration (hours) and the effect of sea ice 

concentration (SIC), where t is year, s is species, x is SIC, K is the number of 



12 
 

model parameters and ΔAICc is the difference in AICc between the model in 

question and the best fit model. 

Table 2 – Mean annual trip durations and standard deviations for Adélies and 

chinstraps. 

Table 3 - Annual variation in percentage krill in diet samples models and the 

effect of sea ice concentration (SIC), where t is year, s is species, x is SIC, K is 

the number of model parameters and ΔAICc is the difference in AICc between 

the model in question and the best fit model. 

Table 4 – Annual variation in fledging mass models and the effect of sea ice 

concentration (SIC), where t is year, s is species, x is SIC, K is the number of 

model parameters and ΔAICc is the difference in AICc between the model in 

question and the best fit model. 

Table 5 – Annual variation in breeding productivity models and effect of sea ice 

concentration (SIC), where t is year, s is species, x is SIC, K is the number of 

model parameters and ΔAICc is the difference in AICc between the model in 

question and the best fit model. 

 

Chapter 5 – Interactions of competition and the environment upon 

Pygoscelis penguin population trends  

Figure 1 – Maps of (a) the region with the locations of the two study 

archipelagos, (b) a fine-scale map of the study colonies on Signy Island, South 

Orkney archipelago and (c) a fine-scale view the study colonies on King George 

Island, South Shetlands archipelago. Maps were produced by the authors using 

ggmap and ggrepel in R version 3.3.0 (Kahle and Wickham, 2016; Slowikowski 

et al., 2018). 

 

Figure 2 – Modelled Pygoscelis penguin population trends at (a) Signy Island, 

South Orkney Islands and (b) King George Island, South Shetland Islands with 

95% confidence limits (shaded bands). Note: Signy Island gentoo data is actual 

number of pairs counted annually in whole island population. Signy Island 

Adélie and chinstrap data is modelled from numbers of pairs counted annually 

in selected study colonies. 



13 
 

Figure 3 – First and second Principal Components from the Principal 

Component Analysis based on environmental variables (SST=sea surface 

temperature, SIE=Sea ice extent, SAM=Southern Annular Mode, SOI=Southern 

Oscillation Index, AIR=October air temperature) with the abundance series of 

each penguin species incorporated as supplementary variables (AP=Adélie 

penguin, CP=chinstrap penguin, GP=gentoo penguin) for the South Orkney 

Islands (a) and the South Shetland Islands (b). 

Figure 4 – Estimated means and credible intervals (95%) parameters 

representing the effects of species interactions (αi,j; i≠j) on the growth of 

individual penguin species on the South Orkney Islands (a) and South Shetland 

Islands (b). A, C and G correspond to Adélie, chinstrap and gentoo penguins 

respectively so AC denotes Adélie compared to chinstrap. 

Figure 5 – Estimated means and credible intervals (95%) for environmental 

fixed effects denoted by Principal Components (PC1 and PC2) on the growth of 

individual penguin species at the South Orkney Islands (a) and South Shetland 

Islands (b). A, C and G correspond to Adélie, chinstrap and gentoo penguins 

respectively. 

Table 1 – Principal Component Analysis results for South Orkney Islands (Dim 

= principal component axes). 

Table 2 – Principal Component Analysis results for South Shetland Islands (Dim 

= principal component axes). 

Table 3 – Model selected environmental variables for South Orkney Islands 

(Dim = principal component axes). 

Table 4 – Model selected environmental variables for South Shetlands (Dim = 

principal component axes). 

Table 5 – Estimates of components of the temporal variance and proportions of 

the different components with respect to the total temporal variance for the 

South Orkney Islands.  



14 
 

Table 6 – Estimates of components of the temporal variance and proportions of 

the different components with respect to the total temporal variance for the 

South Shetland Islands.   

 

 

Chapter 1 – General introduction  

1 | LITERATURE REVIEW 

 Global biodiversity is under immense threat from climate change (Sala et 

al., 2000; Grooten and Almond, 2018), making insights into the effects of 

climate change a major focus for modern ecologists. Climate change induces 

far-reaching direct and indirect effects, intensifying many of the global 

challenges affecting people, species and ecosystems (Blois et al., 2013). 

Elucidating the mechanisms underlying the observed effects of climate change 

on species can be complex but it is crucial for accurately predicting potential 

long-term impacts (Parmesan, 2006). 

 This research project focuses on a group of species living in one of the 

most rapidly warming areas globally (Vaughan et al., 2003), utilising long term 

data sets to investigate the impact of climate change on individual species and 

the interactions between them, in order to determine the drivers of population 

change. The study species are the Pygoscelis penguins; Adélie (Pygoscelis 

adeliae), Chinstrap (P. antarctica) and Gentoo penguins (P. papua ellsworthi). 

These congeners breed sympatrically in parts of their range and experience 

high levels of competitive interactions due to their shared foraging areas and 

primary prey species.  

 

1.1 | A GLOBAL VIEW OF CLIMATE CHANGE 

 Climate changes have occurred repeatedly throughout history, however, 

recent warming rates are far greater than any warming events observed in the 

past 10,000 years (Blois et al., 2013). Therefore, whilst climate variation is 

expected, natural causes alone are not enough to explain the scale and rate of 

the recent changes observed (Intergovernmental Panel on Climate Change, 

2014). Anthropogenic factors, particularly greenhouse gas emissions, are 

thought to play a key role in the observed warming trends and with the ever-

growing human population these contributions are only likely to increase 
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(Solomon et al., 2009). Globally, temperatures have already risen by more than 

1°C above pre-industrial levels and world leaders have agreed to try to limit the 

rise to less than 2°C, as above this level substantial negative impacts are 

projected (Warren et al., 2011; Intergovernmental Panel on Climate Change, 

2014). These large scale temperature changes have already caused global sea 

levels to rise by up to ~3.2mm annually since 1901 and sea temperatures to 

warm by 0.11°C per decade between 1971 and 2010 (Intergovernmental Panel 

on Climate Change, 2014). These changes are magnified in areas of climate 

extremes, such as at the poles where Arctic sea ice extent has been steadily 

declining since 1978 (Kirchmeier-Young et al., 2016) and 87% of Antarctic 

marine glaciers have retreated (Cook et al., 2005).  

 

1.2 | CLIMATE CHANGE IN ANTARCTICA 

 As the Earth’s last great wilderness, Antarctica is key to understanding 

the Earth’s climate and humans’ impact upon it. The continent is becoming 

increasingly more vulnerable to the effects of climate change, which are 

magnified in areas of climate extremes, such as polar regions or deserts 

(Walther et al., 2002) where changes have been occurring at a faster and less 

predictable rate than elsewhere on Earth (Vaughan et al., 2003).  

 Climate change patterns across the Antarctic continent are highly 

regional because it spans a wide range of latitudes. East Antarctica has been 

experiencing temperature declines and increases in sea ice (Turner and 

Overland, 2009), whilst Western Antarctica is one of three areas of the world 

experiencing particularly rapid warming (Vaughan et al., 2003; Clarke et al., 

2007; Ducklow et al., 2007). The Western Antarctic Peninsula (WAP) has 

experienced nearly a 3°C rise in average surface temperature since 1951 

(Vaughan et al., 2003; Turner et al., 2016), followed by pauses in this warming 

since 2000 (Turner et al., 2016), which is significantly higher than the mean 

global average (Intergovernmental Panel on Climate Change, 2014). These 

dramatic atmospheric temperature changes have caused a 1°C rise in the 

temperatures of the surrounding oceans as well as increasing salinity levels in 

the upper-layer (Meredith and King, 2005). In turn, winter sea ice extent has 

reduced by 10% per decade since the 1950s (Clarke et al., 2007) and almost 

90% of glaciers on the Antarctic Peninsula have been retreating since the 

1960s (Clarke et al., 2007; Turner, Bindschalder, et al., 2009). This region is 
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currently described as a ‘polar desert’ due to very low annual levels of 

precipitation but snow fall has been increasing since the start of 20th century 

(McClintock et al., 2008). This combination of small scale melt and increased 

snow fall is predicted to be a significant contributor to global sea level rise, even 

though Antarctic ice sheets are not predicted to melt entirely (Shepherd et al., 

2012; Mengel et al., 2016). 

 The Southern Annular Mode (SAM), the strong westerly wind belt that 

circles Antarctica (Fig. 1), is thought to be a major factor in determining the 

contrasting climate observed across the Antarctic continent (Thompson and 

Solomon, 2002; Ding et al., 2011). Changes in the location, or polarity, of SAM 

have caused circumpolar westerly winds to increase by ~20% since 1970s 

directing warm, wet oceanic air to the region from the tropical Pacific; an area 

also experiencing sea surface warming (Fig. 1; Marshall et al., 2006; Ding et al., 

2011; Abram et al., 2014). These westerly winds directly influence seasonal sea 

ice extent and duration, and this is reflected in the significant negative trends in 

sea ice observed in the Amundsen and Bellingshausen Seas (Western 

Antarctica). However, a positive sea ice trend has been observed in East 

Antarctica and this contrasting sea ice pattern across the continent is called the 

Antarctic Dipole (Turner, Comiso, et al., 2009). The dipole is highly influenced 

by the ‘ozone-hole’ above Antarctica and trends are predicted to alter as the 

hole ‘heals’ towards the end of the 21st century (Turner, Comiso, et al., 2009). 

Models indicate that as the ‘ozone-hole’ closes sea ice trends will reverse as 

wind speeds will reduce (Turner, Comiso, et al., 2009). Sea ice levels can also 

directly drive winter air temperatures, for example the winter temperatures in 

Western Antarctica are driven by the sea ice extent in the Bellingshausen sea 

(west of Antarctic Peninsula), meaning regional changes in sea ice may have 

much wider ranging, long-term effects (Vaughan et al., 2003; Turner et al., 

2005). It is important to note, however, that whilst temperatures in the WAP 

region have increased, the rate of warming has varied greatly and even paused 

in the late 1990s (Turner et al., 2016). 
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Figure 1 – Figure adapted from Abram et al., 2014 indicating the spatial 

response of surface air temperatures (°C) to SAM variability across the 

Antarctic continent from 1979-2012 and the two study sites.  

 

1.3 | INFLUENCES OF CLIMATE CHANGE 

 Climate change influences individuals, populations and ecosystems 

through a variety of interconnected mechanisms (Walther et al., 2002; Gilman et 

al., 2010). These mechanisms can be difficult to disentangle as effects can be 

direct and/or indirect and positive or negative for the species. 

 The majority of research has investigated the direct effects of climate 

change, likely because they are the most immediately apparent and easiest to 

disentangle, and some biotic alterations in predator-prey interactions, 

particularly phenological mismatching (Croxall et al., 2002; Hipfner, 2008; 

Visser et al., 2012; Keogan et al., 2018). However, in doing this most research 

has ignored the important interactions between climate change (abiotic) and 

other biotic factors, such as inter- and intraspecific competition (Loreau, 2010), 

which are crucial in driving key processes in ecosystems (Araújo and Luoto, 

2007; Gilman et al., 2010; Helland et al., 2011; Milazzo et al., 2013). Recent 

studies have indicated the importance of biotic interactions, specifically 

interspecific competition, in defining a species’ response to climate change and 

that climate conditions can define competitive dominance between species 

(Helland et al., 2011; Milazzo et al., 2013). Novel climate conditions could, 

therefore, induce species co-occurrence to shift to competitive displacement,  

trigger completely novel interspecific interactions or cause breeding cycles to 

become more synchronised in sympatric breeding areas (termed ‘competitor 

South Orkney Islands 

South Shetland Islands 
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matching’ here), with all potentially resulting in food web alterations or species 

extinctions (Ahola et al., 2007; Blois et al., 2013; Milazzo et al., 2013).  

Further to this, in line with global climate change, extreme weather 

events are becoming increasingly common (Easterling et al., 2000) and can 

trigger dramatic biological responses at all trophic levels (Parmesan et al., 

2000). In Antarctica, a desert ecosystem, storms and rainfall are becoming 

increasingly common and are predicted to become ever more frequent (IPCC, 

2007). Such events have already caused entire seabird colony breeding failures 

in East Antarctica (Ropert-Coudert et al., 2015, 2018).  

 

1.3.1 | Geographical range expansion and contraction 

 Climate change has caused some species to shift their geographical 

range in an attempt to track tolerable climate conditions (Parmesan, 2006) and 

this is only predicted to become more common with continued warming (Krosby 

et al., 2015). However, not all species are able to shift their range easily 

meaning they are open to novel competitive interactions with species who are 

induced to migrate into their geographic range by climate change (Milazzo et 

al., 2013; Robillard et al., 2015).  

 Climate change can induce species to alter their geographical range for a 

number of reasons but at the most basic level an organisms’ physiology only 

allows them to physically tolerate a specific thermal range and any temperature 

outside of that may negatively impact their reproductive rate or survival (Barnes 

et al., 2009; Milazzo et al., 2013). Species who are unable to adapt to novel 

climate conditions can be forced to contract their geographical range, usually 

because conditions are outside their thermal tolerance, their preferred habitat is 

no longer available and/or prey availability is reduced. For example, Ethiopian 

bush crows (Zavattariornis stresemanni) only occupy a very narrow area just of 

16,000km2 that lies within an altitude-related isotherm despite there being 

extensive areas of suitable habitat, in terms of land-use, available (Donald et 

al., 2012). 

 A meta-analysis of 434 species, including plants, birds, mammals, 

insects, reptiles, fish and marine invertebrates, determined that climate change 

had caused 80% to shift their geographic range (Parmesan and Yohe, 2003). 

Polar species generally displayed range contractions (Parmesan and Yohe, 

2003) such as Arctic shelf fish communities who have contracted their range 
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northwards (Fossheim et al., 2015) and Antarctic krill (Euphausia superba; 

referred to as krill hereafter) who have contracted their range southwards 

(Atkinson et al., 2019). However, some polar species have displayed range 

expansions, such as gentoo penguins (Lynch, Naveen, et al., 2012). In causing 

such a high percentage of species to alter their range, climate change has the 

potential to bring previously isolated species into contact with others and for 

closely related species to come into contact with one another for the first time. 

This generates novel communities termed ‘non-analogue communities’ that are 

likely to have particularly high levels of inter and intra-specific competition 

(Urban et al., 2012) and in extreme cases species hybridisation may occur, 

leading to long-term negative consequences (Krosby et al., 2015). Therefore, 

understanding a species’ specific thermal range is integral for accurately 

predicting a species’ potential geographical range under future climate 

scenarios. 

 

1.3.2 | Altered Species Interactions 

 Indirect effects of climate change, such as altered species interactions, 

are often overlooked but recent studies have shown that they can dramatically 

influence the response of a species to climate change (Gilman et al., 2010). For 

example, climate change in Norway has lengthened ice-cover duration altering 

interactions between Brown Trout (Salmo trutta) and Arctic Charr (Salvelinus 

alpines). Brown Trout numbers have not been directly impacted by the 

environmental changes, except in lakes shared with Arctic Charr where they 

have experienced population declines (Helland et al., 2011; Ulvan et al., 2012). 

This demonstrates how climate change can dramatically alter species 

interactions, causing pre-existing interactions to be intensified, causing co-

occurrence, such as sympatric breeding, to switch to competitive displacement 

(Blois et al., 2013; Milazzo et al., 2013). In fact, every interaction type is 

believed to be influenced by climate change in some way as a cascade of 

effects induced by species’ thermal sensitivity (Helland et al., 2011). 

In the Antarctic food web, in addition to climate-induced changes in 

interactions, populations of previously hunted species, such as whales and 

seals, are recovering (Tulloch et al., 2019). This means that interactions 

between these species and other predators for their shared prey resource, krill, 

are increasing and many studies suggest that this is a factor in the krill 
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population reduction (Trivelpiece et al., 2011; Atkinson et al., 2019) and in some 

areas has forced other predators, penguins, to switch prey type (Ainley et al., 

2006).  

 At a basic level, animals and plants display seasonal activity patterns to 

ensure they time reproduction and growth with the most optimal environmental 

conditions and incur fitness and survivorship costs if these demanding activities 

occur outside of this optimal window (Cotton, 2003; Visser and Both, 2005). The 

timing of reproduction (phenology) is driven by the interaction of internal 

physiological and behavioural factors and external environmental influences 

(Emmerson et al., 2011). For example, breeding is initiated by hormones, and 

the timing of their release is influenced by photoperiod length and variable 

environmental factors such as prey availability and the presence of optimal 

climate conditions (Frederiksen et al., 2004; Emmerson et al., 2011; Ouyang et 

al., 2011). Climate change has triggered some species to shift their phenology 

to maintain the coordination with the optimal temperatures they require (Cotton, 

2003; Parmesan and Yohe, 2003; Visser and Both, 2005) but this, in turn, has 

caused the phenology of some predator species to become  asynchronous with 

peaks in their prey species (see section below).  

 Migratory species, especially birds, are experiencing the greatest levels 

of reproductive mistiming due to the ever increasing disconnection between the 

climate in over-wintering areas and those in summer breeding areas (Cotton, 

2003; Visser et al., 2004). They must use large-scale environmental cues to 

determine timing, meaning they are at a disadvantage compared to resident 

species who are able to use local cues at the breeding sites to more accurately 

determine when to begin breeding (Wittwer et al., 2015). This difference 

induces further mismatch in communities containing both resident and migratory 

species (Frederiksen et al., 2004; Ahola et al., 2007; Emmerson et al., 2011; 

Lynch, Fagan, et al., 2012; Wittwer et al., 2015). Overall, the phenological 

response to climate change appears to be highly variable both between species 

and within populations of the same species (Walther et al., 2002; Visser et al., 

2004). A meta-analysis found that 62% of 677 species, including plants, birds, 

mammals, insects, reptiles, fish and marine invertebrates, have advanced the 

timing of their phenology (Parmesan and Yohe, 2003), but some processes 

such as leaf fall, are now occurring later than previously for the majority of tree 

species (Cotton, 2003). 
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1.3.2.1 | Effects of climate on food abundance 

Climate change impacts are felt throughout the food web and in marine 

ecosystems these impacts are generally manifested via bottom-up effects 

(Durant et al., 2007). Meaning that primary and secondary productivity is altered 

by climate change, usually via changes in ocean circulation, which in turn 

negatively impacts the reproduction and survival of higher trophic species such 

as seabirds (Gremillet and Boulinier, 2009). The fitness of organisms in higher 

trophic levels is entirely dependent upon primary production and therefore the 

decoupling of the food web in this manner will have a significant negative 

impact upon the functioning of the entire ecosystem (Behrenfeld et al., 2006; 

Burthe et al., 2012). These large-scale changes have already been observed in 

the marine ecosystem of the North Sea, where climate change induced 

temperature changes have induced a mismatch between primary 

(dinoflagellates) and secondary producers (copepods), which is negatively 

affecting higher predators reliant on these productivity peaks (Edwards and 

Richardson, 2004). The mismatch between predators and prey is believed to be 

the most prevalent climate-induced alteration across ecosystems. However, it is 

important to note that responses are highly species specific meaning not all 

have been negatively impacted (Visser and Both, 2005; Burthe et al., 2012).  

 Primary production in Antarctica is highly dependent upon sea ice and 

both are influenced by temperature (Arrigo et al., 1997). The Antarctic food web 

is centred on krill, a species which is highly reliant on sea ice throughout its 

lifecycle for breeding and foraging (Atkinson et al., 2008). Therefore, the 

substantial shifts in sea ice in the Scotia Sea/WAP region, in terms of the timing 

of extent and advance and the overall duration of the sea ice season 

(Stammerjohn et al., 2008; Murphy et al., 2014), have all impacted the 

abundance and distribution of krill (Atkinson et al., 2004, 2019). Krill is the 

dominant component of many Antarctic penguins’ diet throughout much of their 

range, particularly Adélies and chinstraps, (Ratcliffe and Trathan, 2012) and in 

the absence of sufficient food seabird breeding attempts can be delayed, likely 

to ensure chick provisioning is timed as close as possible to the peak in prey 

availability (Vinuela et al., 1996; Kowalczyk et al., 2014), or abandoned, 

particularly if there is a lack of prey resources before the onset of breeding 

(Hamer et al., 1993; Barrett and Krasnov, 1996; Croll et al., 2006; Kowalczyk et 
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al., 2014). The window of ideal weather conditions for polar species, however, is 

generally smaller than for temperate/tropical species and as such delaying 

breeding may mean individuals do not breed successfully that season (Martin 

and Wiebe, 2004). Entire colony breeding failures have been observed in some 

penguin species (Ropert-Coudert et al., 2015, 2018). 

 

1.4 | NICHE PARTITIONING 

Seabirds are commonly used as model species to investigate niche 

partitioning because their coloniality and central-place foraging strategy have 

the potential to create high levels of interspecific competition within their shared 

foraging ranges (Ballance et al., 2009; Elliott et al., 2009). This competition 

shapes community structure, species distribution and induces large-scale 

population changes (Hardin, 1960; Carrete et al., 2005), with foraging 

competition appearing to be the most influential of all (Chase et al., 2002; Ainley 

et al., 2004; Wisz et al., 2013). Species sharing limited food resources 

experience particularly intense competition and will be unable to exist 

sympatrically, according to the ‘Competitive Exclusion Principle’ of Hardin 

(1960), if the level of competition is too great. In order to reduce this competition 

species differentiate along multidimensional niche axes (MacArthur and Levins, 

1967); including allochrony (defined as differences in breeding time (phenology) 

between conspecific individuals) (Trivelpiece et al., 1987), diet (Croxall et al., 

1997), timing of foraging behaviour (Harris et al., 2013) and, most commonly 

observed, core foraging location (MacArthur, 1958; Wilson, 2010; Thiebot et al., 

2012). This partitioning can also be defined by intraspecific niches, such as 

individual differences (Anderson et al., 2009; Ratcliffe et al., 2013), sex (Harris 

et al., 2013), age (Catry et al., 2004) and/or physical size (Field et al., 2005; Lu 

et al., 2009). 

Competition for food is potentially very high during the breeding season 

unless segregation occurs along one of the above niche axes, according to 

niche theory (Croxall and Prince, 1980; Croxall et al., 1997), or prey is 

superabundant (Forero et al., 2004). Segregation among congeners is predicted 

to occur along habitat boundaries and within habitats for conspecifics (Ratcliffe 

et al., 2014; Quillfeldt et al., 2015). This segregation can be in the form of 

different foraging habitats, areas or depths, differing food resources and/or 

differing peak resource usage (Quillfeldt et al., 2015). This can be determined 
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by a species’ physical abilities, such as size and thermal tolerance (Wilson, 

2010; Donald et al., 2012), and species habitat preference (MacArthur, 1958; 

Fraser et al., 1992). A number of seabird species display foraging behaviour 

that varies among breeding stages, meaning they access different foraging 

areas during different breeding phases (Wilson et al., 1995; Weimerskirch, 

2007). The three species of Pygoscelis penguins have become a classic case 

study for niche partitioning due to their particularly high potential for competition 

induced by colonial, sympatric breeding and central-place foraging for shared 

prey (Trivelpiece et al., 1987).   

Colonially breeding seabirds experience different levels of inter- and 

intra-specific competition throughout their annual cycle (Ratcliffe et al., 2014; 

Hinke et al., 2015). During the non-breeding period birds no longer have to 

return to the colony to feed their chick (central-place foraging) and, thus, are 

able to migrate to reach other foraging areas, which are often occupied by birds 

from other colonies during the breeding season (González-Solís et al., 2007). 

The non-breeding period has been studied less extensively than the breeding 

period due to this change and the migration behaviour of many species is 

currently unknown. In the studied species, spatial segregation, across multiple 

niche axes, has been observed during the non-breeding season (Masello et al., 

2010; Ratcliffe et al., 2014). However, there is some mixing between birds from 

the same archipelago but different breeding colonies (Hinke et al., 2015). This 

combination of segregation and mixing may be driven by a similar competitive 

process as during the breeding season or it may be induced by factors such as 

habitat boundaries, genetics or social learning (Hjeljord, 2001; Pomilla and 

Rosenbaum, 2005; Liechti, 2006).  

 

1.5 | ALLOCHRONY 

Allochrony, defined as differences in breeding time (phenology) between 

conspecific individuals, has been hypothesised by many to be an important 

differentiating axis for competition reduction. Seasonal allochrony occurs in a 

range of taxa and is a potential mechanism for sympatric speciation (Taylor and 

Friesen, 2017). There are three main types of allochrony; complete allochrony 

in which species breed in non-overlapping periods (Friesen et al., 2007), 

staggered allochrony where species breed in the same season and overlap but 

with temporal offsets in their peaks of reproduction (Birkhead and Nettleship, 
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1987; Trivelpiece et al., 1987), and allochrony in synchrony where two species 

overlap but one species’ breeding season is more spread out through time than 

that of the other (Stonehouse, 1962). Staggered allochrony is most prevalent at 

higher latitudes where cold winters impose constraints on the flexibility in 

breeding seasons (Martin and Wiebe, 2004), while the other two strategies are 

more commonly found in tropical and sub-tropical latitudes (see global species 

summary in Supporting Table S8 in Chapter 2). Sympatrically breeding 

congeneric seabirds, from both the tropics and poles, commonly display 

allochrony (Robertson et al., 2014 and see Supporting Table S8 in Chapter 2).  

In areas of sympatric breeding, Pygoscelis penguins begin breeding in 

sequence over a ~3 week period (Trivelpiece et al., 1987), with Adélies starting 

first, followed by gentoos and finally chinstraps (Black, 2015), meaning each 

species reaches the high-prey-demanding chick rearing stage at a different time 

(Lynch, Fagan, et al., 2012). Climate change could potentially disrupt these 

carefully timed systems, effectively removing niche partitioning and potentially 

causing species to move elsewhere (Wilson, 2010; Hinke et al., 2015). 

Ecologically similar species may alter their breeding phenology in response to 

warming at different rates (Chadwick et al., 2006; Lynch, Fagan, et al., 2012) 

and, where breeding cycles become more synchronised, increases in 

competitive interactions may arise (Ahola et al., 2007), which we termed 

“competitor matching.” 

Changes in temperature, sea ice cover and prey availability are 

influencing Pygoscelid penguin breeding (Emmerson et al., 2011; Lynch, 

Fagan, et al., 2012; Black, 2015). One of the few studies making direct 

comparisons between the species, studying penguins breeding on the South 

Shetland Islands, found that gentoo penguins have advanced their phenology at 

a different rate to the other two species (Lynch, Fagan, et al., 2012). This has 

caused the interval separating species onset of breeding to decrease between 

gentoos and chinstraps in particular, whereas the interval between Adélies and 

chinstraps remained similar (Lynch, Fagan, et al., 2012). The likely reason for 

this discrepancy is that gentoos differ from the other two species on a range of 

niche axes such as diet, foraging range, diving ability and they do not migrate 

over winter (Trivelpiece et al., 1987). Resident species are able to use local 

cues to determine the onset of breeding, whereas migratory species, such as 

Adélies and chinstraps, must use large scale cues (Tanton et al., 2004). The 
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importance of allochrony for these three species is often referred to in terms of 

reducing competition during the crucial chick provisioning period (Trivelpiece et 

al., 1987; Lynnes et al., 2002; Wilson, 2010), allowing maximal resource 

availability for both species (Miller et al., 2010; Black, 2015), but it’s effects in 

spatial segregation of foraging areas has not been documented. Previous 

attempts to describe the spatial segregation between these species’ foraging 

distributions (Lynnes et al., 2002; 110 Wilson, 2010) were confined to the chick-

rearing period and will have overestimated the degree of overlap as they 

assumed that the observed behaviours occurred simultaneously, when in reality 

they occurred three to four weeks apart. 

Many sympatrically breeding seabirds exhibit allochrony in some form 

(See Table S3 in Chapter 2 for a global summary) and another Antarctic seabird 

example is the two species of Giant petrels, Northern Giant Petrel (Macronectes 

halli) and Southern Giant Petrel (Macronectes giganteus). They have a 

circumpolar distribution in the southern hemisphere and have overlapping 

ranges, causing them to breed sympatrically in some locations (Hunter, 1984). 

The two species have the same prey preferences, generally feeding on carrion, 

and as such must compete for the limited prey available (Granroth‐Wilding and 

Phillips, 2018). Allochrony appears to be an important way to mitigate this 

competition for these species too, with Northern Giant Petrels breed up to 6 

weeks earlier than Southern Giant Petrels (Hunter, 1984; Granroth‐Wilding and 

Phillips, 2018).  

 

1.6 | STUDY SPECIES – Genus Pygoscelis (The Brush-tailed penguins) 

 This project focused on three Antarctic penguin species; Adélie 

(Pygoscelis adeliae), chinstrap (Pygoscelis antarctica) and gentoo penguins 

(Pygoscelis papua ellsworthi), because they breed sympatrically in the 

WAP/Scotia Sea region and are congeneric species. Sympatrically breeding 

congeneric species, such as these, have the potential to experience particularly 

high levels of competition, due to shared prey and breeding and foraging areas, 

meaning they must partition their niches, and thus any small alterations induced 

by climate change may have a particularly large impact (Hardin, 1960; 

MacArthur and Levins, 1967; Carrete et al., 2005).  
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The three species do not have identical breeding ranges but there is 

overlap across the sub-Antarctic islands (Fig. 2; Borboroglu and Boersma, 

2013; Black, 2015). Adélie penguins breed between 60° and 77° south, 

chinstrap penguins breed between 54° and 64° south and gentoo breed 

between 45° and 65° south (Carlini et al., 2005; Borboroglu and Boersma, 

2013). Therefore, the WAP is an area of extensive overlap for these three 

species and penguins constitute the vast majority of avian biomass in 

Antarctica, with populations of chinstrap and Adélie penguins accounting for 

90% of avian biomass in the Scotia Sea region (excluding South Georgia) 

(Lynnes et al., 2002; Black, 2015).  

Figure 2 – Approximate breeding ranges of Adélie penguins in blue, chinstrap 

penguins in red and gentoo penguins in grey. Adapted from figures in 

Borboroglu and Boersma, 2013 using a basemap from SCAR Antarctic Digital 

Database Map Viewer (https://www.add.scar.org/).  

Increasing temperatures in the region appear to be favouring the less 

cold-tolerant gentoo penguin (Trathan et al., 1996; Lynnes et al., 2002). 

Gentoos appear to be more able to react to the changing temperatures by 

https://www.add.scar.org/
https://www.add.scar.org/
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shifting their breeding initiation date by almost twice as much as the other 

species in sympatric populations on the South Shetland Islands (Lynch, Fagan, 

et al., 2012) and by being more generalist in their prey preferences (Ratcliffe 

and Trathan, 2012). This has led to rapid population increases while 

populations of Adélies and chinstraps have declined (Lynch, Fagan, et al., 

2012; Dunn et al., 2016).  

 

1.6.1 | Adélie penguin (Pygoscelis adeliae) 

Image 1 – An adult Adélie penguin stretches their wings in front of a crèche of 

chicks. 

 The Adélie penguin is one of only two truly Antarctic penguin species, the 

other being the Emperor Penguin (Aptenodytes forsteri), and is the most widely 

distributed penguin species in the Southern Ocean, despite it being the smallest 

(Borboroglu and Boersma, 2013). Adélie penguins migrate to the pack ice on 

completion of breeding where they moult and remain throughout the austral 

winter (Trathan et al., 1996; Clarke et al., 2003; Hinke et al., 2014). Globally, 

there are c.3.79 million breeding pairs (Lynch and LaRue, 2014), but the global 

population is predicted to decline at a rate of 20-29% over the next three 

generations and may even experience a ~46% population decline by 2099 due 

to interacting impacts of climate change (Ainley et al., 2010; IUCN, 2012; 

Cimino et al., 2016). Their diet is dominated by Antarctic krill and fish, with the 

location of their colony defining the proportions of each (Ratcliffe and Trathan, 
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2012). Their foraging habitat also varies depending on their colony location and 

they generally forage within pack-ice or in open water (Ratcliffe and Trathan, 

2012). 

The majority of Adélie penguins are found in Western Antarctica but 

populations in East Antarctica are faring much better, with some experiencing 

population increases (Croxall et al., 2002), justifying their classification as Least 

Concern by the IUCN (IUCN, 2012). The highly regional population trends 

implicate the significant influences of climate change and the Antarctic Dipole 

on Adélie penguins (Forcada and Trathan, 2009; Turner, Bindschalder, et al., 

2009). The Adélie population on Signy Island have experienced declines of 43% 

(-1.5% annually) over the last 38 years (Dunn et al., 2016) and there are now 

c.2,200 breeding pairs of Adélie penguin across the island, with the majority 

breeding in the large colony on Gourlay Peninsula (Lishman, 1985; Dunn et al., 

2016). 

 

1.6.2 | Chinstrap penguin (Pygoscelis antarctica) 

Image 2 – A chinstrap penguin incubating their chick on Signy Island, South 

Orkney islands.  

 Chinstrap penguins are the most abundant penguin in Antarctica with a 

population of c.8 million pairs (IUCN, 2012) but they are almost entirely confined 

to the WAP and islands in the Scotia arc (Forcada et al., 2006). They are 

classified as Least Concern by the IUCN (IUCN, 2012) due to the huge 
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population, consisting of around 1.3 million birds, at the South Sandwich Islands 

being stable (Lynch et al., 2016) but many other colonies further south are 

experiencing large population declines (Lynch et al., 2016). Their diet consists 

of nearly 100% krill across their geographic range and they tend to forage 

benthically in open water (Takahashi et al., 2003; Ratcliffe and Trathan, 2012). 

The chinstrap population on Signy has experienced an almost continual 

population decline since 1979 reducing numbers by 68% (-3.6% annually) and 

there are now c.1,400 breeding pairs, with the majority breeding on Gourlay 

Peninsula (Lishman, 1985; Dunn et al., 2016).  

 

1.6.3 | Gentoo penguin (Pygoscelis papua ellsworthi)  

Image 3 – A gentoo penguin protecting their chicks on Signy Island, South 

Orkneys.  

 Gentoo penguins are physically larger than their congeners, weighing up 

around 2kg more, and are the third largest of all penguin species (Borboroglu 

and Boersma, 2013). There are two subspecies of gentoo penguin, P. papua 

ellsworthi and P. papua papua (Stonehouse, 1970). The P. p. ellsworthi 

subspecies breeds on the Antarctic peninsula, South Shetland, South Orkney 

and South Sandwich Islands and P. p. papua breeds further north on the 

Falkland Islands, South Georgia and other sub-Antarctic islands (Stonehouse, 

1970; Williams, 1995). They are, however, the least abundant Antarctic penguin 

species with only c.387,000 breeding pairs globally (Borboroglu and Boersma, 

2013). Unlike the other Pygoscelis species, gentoos are usually resident at their 
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breeding grounds all year around and preferentially breed near warm water 

upwellings or fast currents to ensure sea ice does not prevent foraging during 

the austral winter (McClintock et al., 2008). Their diet consists of a smaller 

proportion krill than the other Pygoscelis species, up to 86% of their diet, 

depending on colony location, compared to up to 100% in the other two species 

(Ratcliffe and Trathan, 2012), and they consume a variety of fish, crustaceans 

and squid (Ratcliffe and Trathan, 2012). Gentoo penguins are classified as 

Least Concern by the IUCN (IUCN, 2012) because most breeding populations 

are stable or even increasing and their southerly range is expanding (Lynch, 

Naveen, et al., 2012; Borboroglu and Boersma, 2013). The gentoo population 

on Signy has experienced dramatic population increases over the last 38 years 

of 255% meaning there are now c.1,300 pairs breeding on Signy with the entire 

population breeding at North Point (Dunn et al., 2016). 

 

1.7 | STUDY SITES  

 The main study sites for this project (Fig. 3) were breeding colonies 

located on Signy Island, South Orkney Islands (60°42’S, 45°36’W) and on King 

George Island, South Shetland Islands (62°17’S, 108 58°45’W). These study 

sites were selected as the three Pygoscelis species breed in sympatry at these 

locations and they are both in the WAP region, which, as discussed above, is 

an area experiencing extensive climate changes – making them ideal study 

sites to investigate climate-induced changes in interactions between the 

species. 
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Figure 3 – Map showing the locations of the two study sites, produced using the 

package ggmap (Kahle and Wickham, 2016) in R version 3.3.0 (R Core Team, 

2015). 

 

1.7.1 | Signy Island, South Orkney Islands  

Signy Island (referred to as Signy hereafter) is located about 500 

kilometres from the other study site on the South Shetland Islands (Fig. 3) and 

is part of a group of four islands called the South Orkney Islands. Sealers 

discovered the South Orkney Islands in 1821 and a whaling station was 

established on Signy in 1907. A research station was founded in Factory Cove, 

above the old whaling station, in 1947 and scientists have worked on the island 

ever since. The island itself is only 6.5 kilometres long and less than 4.5 

kilometres wide with approximately half of the island covered by a permanent 

ice-cap (British Antarctic Survey, 2015; BirdLife International, 2019).  

 The small island is very exposed to weather systems because when 

moving westerly or easterly at the same latitude from Signy, there is no landfall 

until the South Orkneys are re-encountered, having travelled all the way around 

the globe. Signy was designated as an Important Bird and Biodiversity area by 

BirdLife International due to the exceptional diversity of seabird and seal 

species living there (Harris et al., 2015). The largest Adélie and chinstrap 

penguin colonies are located on the Gourlay Peninsula (Fig. 4; Lynnes et al., 

2002), whereas gentoo penguins are only found at the North Point of the island 

(Fig. 4) and are resident at the South Orkney Islands archipelago all year round 
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(Waluda et al., 2014; Hinke et al., 2017). These colonies have been monitored 

continuously since the 1970s (British Antarctic Survey, 1973). 

Figure 4 – Map showing the two monitored breeding sites on Signy Island, 

South Orkney Islands and the proximity of other islands within the archipelago. 

Maps were produced by the authors using the package ggmap (Kahle and 

Wickham, 2016) in R version 3.3.0 (R Core Team, 2015). 

 

1.7.2 | King George Island, South Shetland Islands 

 The South Shetland Islands are located about 120 kilometres from the 

Antarctic Peninsula and consist of 11 major islands, with King George Island 

being the largest. During the 19th and 20th centuries the islands were used for 

sealing and whaling but now this archipelago is highly concentrated with 

research stations, maintained by countries from across the globe, and is 

regularly visited by tourism cruises (Encyclopaedia Britannica, 2019). 

The vast majority of land is covered by a permanent ice-cap and the 

elevation varies greatly between the islands, reaching over 2,000 metres above 

sea level at its peak. All three Pygoscelis species breed sympatrically here and 

these penguin colonies have been monitored continually since the late 1980s 

(United States Antarctic Program, 1990).   

This study uses data collected on King George Island (62°17’S, 58°45’W) 

at multiple breeding colonies (Fig. 5). Additional samples were collected from 

colonies on Livingstone Island (62°47’S, 60°78’W) for Chapter 3. 
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Figure 5 – Map showing the four monitored breeding sites on King George 

Island, South Shetland Islands and the proximity of other islands within the 

archipelago. Maps were produced by the authors using the package ggmap 

(Kahle and Wickham, 2016) in R version 3.3.0 (R Core Team, 2015). 

 

2 | AIMS, OBJECTIVES AND RESULTS 

The overall aim of the thesis was to determine how changing 

environmental conditions are altering interactions between sympatrically 

breeding Antarctic penguin communities, thereby facilitating understanding of 

the possible impacts of future climate (see Figure 6 for a schematic linking the 

thesis chapters). This study focused on the three Pygoscelis penguin species; 

Adélie, chinstrap and gentoo penguins breeding on Signy Island, South Orkney 

Islands and, for some chapters, on King George Island, South Shetlands during 

both summer (breeding season) and winter (migration). All three species were 

not investigated in each thesis chapter as datasets for some species, gentoo 

penguins in particular, were not available. Long-term data sets were used for 

analysis throughout the thesis and, depending on the data available/analyses 

undertaken, covered at least seven years, up to a maximum of forty years. 

The objective of the Chapter 2 was to investigate niche partitioning 

during the breeding season, as we currently have limited knowledge of the 

mechanisms underlying this. Specifically, the role of allochrony, defined as 

differences in breeding time (phenology) between conspecific individuals, in 

foraging niche partitioning during the breeding season and its potential to be 

influenced by climate change was investigated. Interactions, both inter- and 

intra-specific, have the scope to induce high levels of competition during the 
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breeding season as all species are central-place foragers they are constrained 

by the need to regularly return to the colony to incubate eggs or feed growing 

chicks. The level of competition is potentially increasing due to climate change-

induced declines in their primary prey source, krill. Using data from GPS tagged 

breeding adult Adélie and chinstrap penguins we quantified, for the first time, 

the integral roles of allochrony and leapfrog foraging in reducing this high 

competition. Within breeding stages (incubation, guard and crèche) foraging 

areas used were similar, but the observed allochrony of 28 days resulted in 

birds leapfrogging each other through the breeding season such that they were 

exploiting different foraging locations on the same calendar dates. Allochrony 

reduced spatial overlap between the species by 54.0% over the breeding 

season compared to a scenario where the two species bred synchronously. If 

allochrony is reduced by just a single day, spatial overlap was found to increase 

by an average of 2.1%. However, both species advanced their laying dates in 

relation to increasing October air temperatures at the same rate, preserving 

allochrony and niche partitioning. Niche partitioning between the two species by 

allochrony is therefore resilient to climate change and so competitor matching 

cannot be implicated in the observed population declines of the two penguin 

species across the Western Antarctic Peninsula. 

The objectives of Chapter 3 were to describe the migration routes and 

overwintering areas of chinstrap penguins from the South Orkney Islands 

archipelago for the first time and to assess the spatial segregation between 

birds originating from the South Orkney Islands archipelago, specifically Signy 

Island, and the South Shetland Islands archipelago, specifically King George 

Island, and quantify migratory connectivity across the populations. Chapter 2 

highlighted the importance of spatial segregation, defined by the allochrony 

induced temporal segregation, for reducing competition during the breeding 

season and we predicted that spatial segregation would also be an important 

factor during winter. Geolocator tags were used to track adult chinstrap 

penguins from both archipelagos during their non-breeding period and results 

showed strong niche partitioning with individuals from the two archipelagos 

taking completely divergent migration paths. The majority of individuals from the 

South Shetland Islands headed directly west into the South Pacific region of the 

Southern Ocean, travelling against the prevailing ocean current, whereas all 

individuals from the South Orkneys headed north-east towards the South 
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Sandwich Trench utilising the Antarctic Circumpolar Current. The two 

archipelago populations occupied separate overwintering areas, which is 

consistent with migratory connectivity. There was evidence for fidelity as birds 

from each population consistently followed similar migration routes to similar 

wintering areas across years. These spatially segregated areas resulted in birds 

from the two archipelagos experiencing different climate conditions, which has 

the potential to affect survival and subsequent population trends – this was 

tested in Chapter 5. Birds from the South Shetlands experienced warmer sea 

surface temperatures and lower chlorophyll-a levels in their overwintering areas 

than the South Orkney birds experienced. Stable isotope ratio analysis of tail 

feathers supported the geolocator findings, showing that birds from the two 

colonies occupied different locations and isotopic niches. However, there was 

significant interannual variation in isotope ratios, contradicting the high site 

fidelity found by the geolocator tags. It is likely that much of this variation was a 

result of interannual variation in isotopic baselines, which are driven by the 

dynamic marine biogeochemical cycles (McMahon et al., 2013), and we could 

not control for using this bulk isotope analysis technique. 

The objectives of Chapter 4 were to test the widely cited sea-ice 

hypothesis, which classifies Adélies, chinstraps and gentoos as ice-loving, ice-

tolerant and ice-intolerant, respectively, by quantifying their sea ice optima for 

foraging and breeding performance. This is a highly cited hypothesis, but 

studies have only directly quantified the species’ ice tolerances in East 

Antarctica, a region experiencing significantly different climate conditions. The 

presumed ice tolerance classifications for the three species lead us to predict 

that Adélies will have a sea ice optima as quantified by previous papers (~20%) 

(Barbraud et al., 2015; Le Guen et al., 2018), chinstrap performance should 

remain level before decreasing at moderate levels of sea ice, likely well below 

Adélies’ reported optima, and gentoos performance will decline steeply as sea 

ice concentration increases. We tested this by analysing the breeding 

productivity of Adélie, chinstraps and gentoos breeding sympatrically on Signy 

Island during a 19-year period. Breeding productivity was compared to annual 

sea ice concentrations during the guard period of breeding and diet 

composition, foraging trip duration and fledging mass were also monitored to 

determine the mechanism of sea ice influence on breeding productivity. Sea ice 

was not found to have a direct influence upon breeding productivity for any of 
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the three species and it was not found to act indirectly by significantly 

influencing their diet composition or breeding productivity. Fledging mass and 

foraging trip duration were found to be influenced by sea ice but the species 

reacted in parallel, which would not occur if the species’ ice tolerance differed 

as their classifications suggest. Our findings do not support the widely asserted 

Sea Ice Hypothesis and no optima for any of the Pygoscelid populations 

breeding at Signy Island was identified. Sea ice conditions differ greatly 

between East, where all previous studies were undertaken, and West 

Antarctica, meaning the birds in the two systems are utilising and reacting to the 

sea ice differently, likely driving the divergent findings. 

The objective of Chapter 5 was to determine the role of competition and 

the environment upon historic Pygoscelis penguin population trajectories. To 

date, many studies have modelled the direct effects of environment upon 

species’ population trends, but none have included competition, an important 

driver, in their models. A multi-species population model, based on a Gompertz 

function, was used to elucidate the effect of interspecific competition, 

environmental variables and the interactions of these two factors on historical 

population trajectories, collected over a 40 year period, of Pygoscelis penguins 

from the South Shetlands and South Orkney Islands. This approach was based 

on the work of Mutshinda et al., 2011. Environmental variables were 

investigated at multiple scales, local and large atmospheric, and at multiple time 

lags to provide insight into all drivers of penguin demography. The main 

modelled components of intra/interspecific competition, environmental variables 

and the interaction between these two variables were found to have very little 

effect on the three species’ population trajectories at both archipelagos. In fact, 

environmental variation not directly driven by the variables included in the 

model accounted for more than 80% of population variation at both 

archipelagos. This is possibly due to the selected environmental variables not 

sufficiently representing the availability of key prey species such as Antarctic 

krill. The lack of support for density dependence and interspecific competition in 

the model may be due to these processes being unimportant in this system, or 

due to limitations in this modelling framework for detecting these processes in 

declining populations. 
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Figure 6 – Schematic diagram indicating links between thesis chapters.  

 

3 | CONTRIBUTION OF PUBLISHED PAPERS TO THE FIELD  

Chapter 2 – published as: Clewlow, H. L., A. Takahashi, S. Watanabe, S. C. Votier, R. 

Downie, and N. Ratcliffe. 2019. Niche partitioning of sympatric penguins by leapfrog 

foraging is resilient to climate change. Journal of Animal Ecology 88: 223–235. The 

framework for the study was developed by N.R. and H.L.C. Fieldwork was 

conducted by N.R., H.L.C., A.T. and S.W. with H.L.C. processing and analysing 

all data. H.L.C. wrote the paper with contributions from all the other authors, 

and all authors gave final approval for publication. Tracking data from 2008 was 

collected and initially processed by A.T and S.W.  
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Chapter 2 - Niche partitioning of sympatric penguins by leapfrog foraging 

appears to be resilient to climate change 
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Votier, R. Downie, and N. Ratcliffe. 2019. Niche partitioning of sympatric penguins by 

leapfrog foraging is resilient to climate change. Journal of Animal Ecology 88: 223–235. 
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Abstract   

1. Interspecific competition can drive niche partitioning along 

multidimensional axes, including allochrony. Competitor matching will 

arise where the phenology of sympatric species with similar ecological 

requirements respond to climate change at different rates such that 

allochrony is reduced.   

2. Our study quantifies the degree of niche segregation in foraging areas 

and depths that arises from allochrony in sympatric Adélie and chinstrap 

penguins and explores its resilience to climate change. 

3. Three-dimensional tracking data were sampled during all stages of the 

breeding season and were used to parameterise a behaviour-based 

model that quantified spatial overlap of foraging areas under different 

scenarios of allochrony. 

4. The foraging ranges of the two species were similar within breeding 

stages, but differences in their foraging ranges between stages, 

combined with the observed allochrony of 28 days, resulted in them 

leapfrogging each other through the breeding season such that they 

were exploiting different foraging locations on the same calendar dates. 

Allochrony reduced spatial overlap in the peripheral utilisation distribution 

of the two species by 54.0% over the entire breeding season, compared 

to a scenario where the two species bred synchronously.  
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5. Analysis of long-term phenology data revealed that both species 

advanced their laying dates in relation to October air temperatures at the 

same rate, preserving allochrony and niche partitioning. However if 

allochrony is reduced by just a single day, the spatial overlap of the core 

utilisation distribution increased by an average of 2.1% over the entire 

breeding season. 

6. Niche partitioning between the two species by allochrony appears to be 

resilient to climate change and so competitor matching cannot be 

implicated in the observed population declines of the two penguin 

species across the Western Antarctic Peninsula.  

 

Keywords: allochrony, climate change, competition, foraging ecology, tracking, 

leapfrog foraging, niche partitioning, penguin. 

 

1 | INTRODUCTION  

Competition within and between species exerts strong influences over 

population dynamics, community structure and species distributions (Hardin, 

1960; MacArthur, 1968). The potential for competition is particularly intense in 

communities where closely related species breed sympatrically at high densities 

and share limited food resources (MacArthur, 1968). Interspecific competition 

may be reduced by differentiating niche space along multidimensional axes 

such as diet (Croxall et al., 1997), foraging distribution (MacArthur, 1958; 

Wilson, 2010) and allochrony (i.e. differences in the timing of activity among 

species). Allochrony in breeding phenology has been documented for a wide 

range of taxa (Taylor and Friesen, 2017) and can partition niches by offsetting 

the timing of peak resource use by competing species (Trivelpiece et al., 1987).  

Animals’ breeding phenology is often timed to coincide with optimal 

environmental conditions, but the timing of these events is being influenced by 

climate change (Blois et al., 2013). The sensitivity of breeding phenology to 

warming may vary between species, and the resultant uncoupling in the timing 

of predator demands and prey availability (“predator-prey mismatching”) have 

become central to our thinking about climate change impacts upon ecosystems 

(Parmesan and Yohe, 2003; Visser and Both, 2005). The alteration of 

competitive interactions by climate change has received less attention, although 

a growing body evidence demonstrates that the presence of competitors may 
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have substantial effects on the magnitude and form of a species’ response to 

climate change. Examples include barnacles (Poloczanska et al., 2008), insects 

(Bulgarella et al., 2014), fish (Helland, Finstad, Forseth, Hesthagen, & Ugedal, 

2011; Milazzo, Mirto, Domenici, & Gristina, 2013), and birds (Sætre et al., 1999; 

Stenseth et al., 2015; Wittwer et al., 2015). Ecologically similar species may 

alter their breeding phenology in response to warming at different rates 

(Chadwick et al., 2006; Lynch, Fagan, et al., 2012) and, where breeding cycles 

become more synchronised, increases in competitive interactions may arise 

(Ahola et al., 2007), which we hereafter term as  “competitor matching”.  

Seabirds are frequently used as models for the study of inter-specific 

competition (Pulliam, 2000; Polito et al., 2015; Rosciano et al., 2016), since 

their coloniality and central-place foraging strategy often creates high levels of 

competition within their shared foraging ranges (Ballance et al., 2009; Elliott et 

al., 2009). Allochrony is known to reduce inter-specific competition by offsetting 

the peak period of food demand (Barrett et al., 1997) but also has the potential 

to affect spatio-temporal overlap in foraging areas. Most families of seabird 

show seasonal variation in foraging ranges (incubation trips are generally longer 

than chick rearing ones: e.g. Kitaysky et al., 1999; Barlow and Croxall, 2002; Ito 

et al., 2010, which, when combined with allochrony, will give rise to leapfrog 

foraging. Leapfrog foraging has been described in high-shore nesting 

oystercatchers that overfly low-shore nesters to reach estuarine feeding habitat 

(Ens et al., 1992), but in the case of colonial seabirds it would arise from the 

whole population of a late-nesting species performing long incubation trips 

beyond the foraging range of an earlier nesting species that is performing 

shorter chick-rearing trips. This is analogous to leapfrog migration where 

populations living at high latitudes overfly a mid-latitude, resident population of 

conspecifics to reach their lower latitude wintering areas (Newton, 2008), albeit 

on smaller spatio-temporal scales. Such behaviour has the potential to produce 

substantial reductions in the spatial overlap of two species’ foraging ranges 

compared to a situation where both species breed synchronously (Granroth‐

Wilding and Phillips, 2018). 

Adélie (Pygoscelis adeliae) and chinstrap (P. antarcticus) penguins 

(hereafter Adélies and chinstraps) are congeners that breed sympatrically 

across the Scotia Arc and Western Antarctic Peninsula (WAP). Here, the diets 

of both species are dominated by Antarctic krill Euphausia superba, constituting 
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more than 95% of both species’ diet (unpublished data; British Antarctic Survey 

annual monitoring), and they have similar foraging behaviour (Ratcliffe and 

Trathan, 2012), which has prompted several studies of how niche partitioning 

might facilitate their coexistence (Lynnes, Reid, Croxall, & Trathan, 2002; 

Trivelpiece et al., 1987; Wilson, 2010). They exhibit pronounced seasonal 

allochrony, with Adélies initiating breeding in mid-October and chinstraps 

following three to four weeks later (Black, 2015; Trivelpiece et al., 1987; see 

Lynnes et al. 2002 for diagram of phenology). This reduces competition among 

the two species by staggering peaks of prey demand of the two species in time 

(Trivelpiece et al., 1987), but its effect on partitioning foraging areas via leapfrog 

foraging is undocumented. Previous attempts to describe the spatial 

segregation between these species’ foraging distributions (Lynnes et al., 2002; 

Wilson, 2010) were confined to the chick-rearing period and will have 

overestimated the degree of overlap as they assumed that the observed 

behaviours occurred simultaneously, when in reality they occurred three to four 

weeks apart.  

The WAP is one of the most rapidly warming areas on the planet (Clarke 

et al., 2007; Vaughan et al., 2003), resulting in changes to chinstrap and Adélie 

breeding phenology (Lynch, Fagan, et al., 2012; Black, 2015) and declines in 

breeding numbers (Forcada and Trathan, 2009; Lynch, Naveen, et al., 2012; 

Dunn et al., 2016). These studies ascribed the population declines to a 

reduction in their preferred prey, Antarctic krill, in response to a range of factors 

including climate change, sea ice loss, overfishing and recovery of marine 

mammal populations. However, increased competition among the two penguin 

species for this diminishing prey resource may have further contributed to 

population declines, and competitor matching has been proposed as a possible 

mechanism for this (Lynch, Fagan, et al., 2012). An improved understanding of 

niche partitioning, the role allochrony plays in this and the sensitivities of these 

processes to climate change are therefore fundamental to understanding the 

drivers of population change in Pygoscelis penguins. 

In this study, we present a behaviour-based model of penguin foraging 

distributions to explore how allochrony contributes to spatial segregation in the 

two species. The advantage of this approach is that it takes a mechanistic 

approach to examining responses to changing environments, including those 

that have not yet been encountered by the study species (Norris, 2004). This 
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enabled us to explore how competitive overlap might alter if the two species 

became more synchronous as a theoretical exercise. We then used a 20-year 

time series of breeding phenology data in order to anchor the behaviour-based 

model’s predictions in a real-world context and determine how niche partitioning 

by leapfrog foraging might be affected by climate change. We tested the 

following hypotheses: (1) foraging behaviour differs between breeding stages; 

(2) staggering of this behaviour by allochrony will give rise to leapfrog foraging 

which will partition spatial niches; (3) this niche partitioning will be reduced as 

the degree of allochrony is shortened; (4) in areas of spatial overlap, niches will 

diverge along other axes such as dive depth and (5) the two species’ phenology 

will advance in parallel in relation to temperature, maintaining allochrony and 

hence niche partitioning.  

 

2 | MATERIALS AND METHODS 

2.1 | Study site and tag deployments 

This study was conducted at the Gourlay Peninsula on Signy Island, 

South Orkney Islands (60°42’S, 45°36’W) where Adélie and chinstraps breed 

sympatrically. Penguins were captured in a net, after being observed leaving 

the nest at the end of an incubation/brooding shift or after feeding their chick. 

This avoided exposing eggs or chicks to predation by brown skuas (Stercorarius 

antarcticus) and ensured that all birds were breeding at the time of tag 

deployment. Birds were tagged between December and February of the 

2007/08, 2011/12, 2013/14 and 2015/16 breeding seasons, meaning tracks 

were obtained from all stages of the breeding cycle (incubation, guard and 

crèche). Birds were fitted with both GPS loggers and time-depth recorder (TDR) 

tags for between two and fourteen days in order to log their three-dimensional 

foraging trips.  The number of Adélie foraging trips tracked were 5 during 

incubation, 44 during guard and 18 during crèche, while those for chinstraps 

were 21, 89 and 7, respectively. Details of sample sizes according to species, 

stage and year are provided in Supporting Information Appendix S1, along with 

justification for the relatively small samples for Adélies during incubation and 

chinstraps during crèche.  

Specifically, devices were combined GPS-TDR loggers (Little Leonardo 

GPL-380DT, Tokyo, Japan during 2007/08 and Fastloc2 GPS loggers (Sirtrack, 

Havelock, New Zealand) paired with CEFAS G5 TDRs (CEFAS Technology Ltd, 
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Lowestoft, UK) whose clocks were synchronised in other years. Two-part epoxy 

resin and waterproof tape (Tesa, Hamburg, Germany) were used to attach the 

GPS tags to the central back feathers and the TDR to the feathers on the rump. 

G5 TDRs weigh 2.7g and have a diameter of 8mm and length of 31mm, 

Fastloc2 GPS weigh 39.9g and measure 65mm long, 28mm wide and 15mm 

deep and Little Leonardo tags weigh 92g and measure 58 mm long, 28 mm 

wide and 20 mm deep. The average weight of penguins fitted with devices was 

3.84 kg (SD = 0.44) so device loads represented 2.4% (Little Leonardo) and 

1.1% (F2 + G5) of their body mass. Tags of this size and placement appear to 

have negligible effects on the foraging behaviour of Pygoscelis penguins 

(Ratcliffe et al., 2018). 

TDRs were initialised to record temperature and pressure every second 

in all years, while GPS tags recorded positions every second during the 

2007/08 season and every three minutes in other seasons. Interruption of GPS 

fix acquisition by immersion resulted in actual time intervals between positions 

being greater than those programmed into the devices.  

 

2.2 | GPS and dive data processing  

Dive statistics were extracted using the R package diveMove (Luque, 

2016). The ‘filter’ method of zero offset correction within diveMove (Luque and 

Fried, 2011) was used to define the sea-surface and a depth threshold of 5m 

was used to exclude any non-foraging dive events (Kokubun et al., 2010). 

Maximum depth and dive start time data were then extracted for each diving 

event. Foraging trips were demarcated by visualisation of tracks in ArcGIS 

10.4.1 (ESRI, Redlands, CA, USA) to determine the approximate times birds left 

and returned to the colonies. These times were further refined to the nearest 

minute using the temperature data from the TDR tags: a fast sharp decline in 

temperature indicated submersion and the reverse pattern indicated haulout. 

The spatial distribution of foraging activity was examined using the 

locations of dives rather than using locations of raw GPS fixes, which would 

include positions where birds were commuting or resting at sea. We used the R 

package CRAWL (Johnson, 2015) to interpolate dive locations along the track 

based on the time at which the dive was initiated. CRAWL uses a correlated 

random walk model to produce predictions of the location of an animal along the 

simulated track at user-defined time points. This avoids the unrealistic 
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assumption of linear travel between GPS points and also generates error 

around the dive locations based on variability in the paths followed on 

successive simulations. We drew 100 simulated locations for each of the dives 

and combined these for all individuals within species and stage groupings.  

Owing to small sample sizes of tracks within years we pooled data for all 

years for further analysis. Annual variability in distributions and explanation of 

the implications of this for our findings are presented in Appendix S1. We used 

adehabitatHR (Calenge, 2015) to generate kernel densities of dive locations 

along with their 50% and 95% isopleths. A smoothing (h) parameter of 0.06 was 

used in the kernel analysis, as this value was found to achieve an optima 

between constraining the 95% isopleth to the area that birds actually visited 

whilst smoothing their distributions within it. A utilization distribution overlap 

index (UDOI) was used to quantify the overlap between species because it 

provides the best single measure of the degree to which two species share 

space by presuming that the species use space independently (Fieberg and 

Kochanny, 2005). It is calculated using the following formula defined by Fieberg 

and Kochanny, 2005, where UˆDi,p represents the estimated conditional 

utilisation distribution (UD) for animal i (i.e. the probability distribution for animal 

i given that it is in the area associated with its home range as defined by the pth 

probability contour of UDi).  

Therefore, the resulting UDOI value would be 0 if there is no overlap, 1 if 

there is 100% overlap and the utilisation distributions are uniform, equal 

distribution across the area, and >1 if overlap is high and the utilisation 

distributions are non-uniformly distributed (Fieberg and Kochanny, 2005). 

Meaning value of <1 would suggest less overlap between the two populations 

than would expected from simple uniform space use and values >1 would 

suggest higher than normal overlap relative to uniform space use. 

 

2.3 | Statistical analysis of tracking data  

Variation in foraging behaviour among species and breeding stages was 

investigated using the processed GPS dive locations and TDR dive depth data. 

The maximum distance from the colony reached during each trip was calculated 
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using the R package move (Kranstauber and Smolla, 2016). Linear mixed 

effects models, fitted using the R package nlme (Pinheiro, 2016), were used to 

investigate differences in the average maximum distances from colony and 

average maximum dive depths between breeding stages and species. Models 

were fitted with an identity link and normal errors, and model selection was 

conducted using backward-stepwise deletion and likelihood ratio (LR) tests. The 

global model consisted of maximum distance or maximum dive depth as the 

response variable, the interaction of breeding stage (incubation, guard or 

crèche) and species (Adélie or chinstrap) as the fixed factors and individual 

(with trip nested within it in the case of dive depths) as random intercept effects. 

Overlap of the two species maximum dive depths were quantified based on the 

overlap in the kernel densities of their frequency distributions (Mouillot et al., 

2005). 

 

2.4 | Behaviour-based model of foraging areas 

Assessing the effects of allochrony on spatial overlap of the two species 

necessitates quantifying overlap in distributions at a daily resolution. It was not 

possible to design the field sampling of foraging trips in a manner that allowed 

this due to logistical constraints and availability of equipment. Instead, we 

created a virtual colony in which a pre-defined number of successfully breeding 

pairs of each species proceeded through their breeding season, making 

foraging trips with the frequency and characteristics for the given stage of the 

breeding season. 

The foraging trips we collected were accurate representations of the 

paths those birds followed during the period of tracking, but these birds on other 

occasions, or other birds in the colony, would have made trips of similar 

characteristics (in terms of start and end points, duration, speed and  tortuosity) 

but these would have followed different paths. Rather than sampling tracks from 

those observed (which would underestimate variation in paths), we generated 

random tracks around the observed ones using the CRAWL model. For each 

track we allowed observation error (SD = 3.5 km during long incubation trips, 

2.5km during short chick-rearing trips) around each GPS fix (except the start 

and end points which were fixed at the colony location). We then fitted the 

CRAWL model and generated 50 correlated random walk tracks for each 

observed trip and saved the locations of dives along each of these to an array. 
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For each breeding pair we selected a date for the completion of the 

clutch from a distribution defined by the mean and standard deviation taken 

from the Results section. Birds would then complete a fixed number of long 

incubation trips (two for Adélies, three for chinstraps) and would then perform 

short incubation trips until hatching (Williams, 1995), each resampled from the 

appropriate array. After hatching, birds would make repeated brood-guard trips 

(resampled from the brooding array) until the chicks crèched (after which trips 

would be resampled from the crèche array). Once the chicks reached fledging 

age, the simulations would begin for the next pair. This was repeated for 500 

Adélie and 750 chinstrap penguin pairs, which preserved the ratio of abundance 

of these two species on the Gourlay Peninsula. The modelled number of pairs 

had no influence over estimates and was selected to optimise computing time, 

whilst ensuring the repeatability of estimates on consecutive runs. An animated 

visualisation of the model’s process of track simulation through the breeding 

season is shown for Adélie penguins in Animation S1.  

We calculated the daily kernel density of dive locations for each species 

and their UDOI as described previously. The daily overlap values were plotted 

against date and the area under curve (AUC) was calculated as an index of the 

amount of spatial overlap between the two species through the entire season.   

The simulation model was used to investigate the degree of overlap 

between the two species’ kernels at the observed level of allochrony and in the 

absence of allochrony (by having chinstraps breed synchronously with Adélies). 

We also investigated changes in overlap resulting from reducing the level of 

allochrony in daily increments from the observed difference of 28 days to 

complete synchrony. 

Overlap in dive depths of the resampled dive depths were investigated 

using kernel density analysis as for the observed data, but dives were grouped 

according to their degree of overlap horizontally. The horizontal groupings were 

overlap in 50% isopleths (core), in 95% isopleths (peripheral) and areas outside 

the 95% isopleth overlap (no overlap). These areas were exclusive of one 

another (e.g. the peripheral overlap area did not include the core overlap area 

contained within it).  
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2.5 | Analysis of breeding phenology data 

 Long-term patterns in the phenology of both species were investigated 

by modelling their mean annual laying dates on Signy in relation to October air 

temperatures.  Mean October temperature was selected as the explanatory 

variable as it is strongly correlated with the laying dates of Adélies and 

chinstraps elsewhere owing to a link between air temperature, snow melt and 

the exposure of nesting substrates (Lynch, Fagan, et al., 2012). Temperature 

data were sourced from the nearest long-running weather station (1903 to 

present) at Laurie Island, South Orkney Islands (60°44′S 44°44′W) (British 

Antarctic Survey, 2018), which is 46 km to the east of Signy and at sea level. 

Trends in October air temperature with time were investigated using linear 

regression.  

Annual mean hatching date was calculated using nest observation data 

collected during the breeding seasons of 1996 – 2015 (excluding 2010, when 

no data were collected). During each year, observers recorded the contents of 

100 marked nests of each species every three days through to crèche. A 

binomial model was fitted using the proportion of nests containing one or more 

chicks as the response variable and the date in days after 1 Oct as the 

explanatory variable. This model was fitted for each species and year 

separately. The dose.p function in the MASS package in R (Ripley et al., 2017) 

was used to derive the day when 50% of nests contained one or more chicks to 

produce the mean hatching date for each species-year combination. Mean 

laying dates were back-calculated from the mean hatching dates by subtracting 

the average incubation periods for each species (35 days for Adélies and 36.4 

days for chinstraps, which are relatively constant between years (Williams, 

1995; Lynch, Fagan, et al., 2012). 

Changes in mean laying dates (expressed as number of days after 1st 

October) were modelled using Analysis of Covariance (ANCOVA), with laying 

date as the response variable, species as a factor and mean October 

temperature as a covariate. The annual residuals from the ANCOVA model 

were calculated for each species and a Pearson correlation was used to test 

whether their residuals from the trends with October temperature were related. 

An ANCOVA was also used to model time trends in laying dates of the two 

species over the 20-year study period, using year as a linear covariate. 
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3 | RESULTS  

3.1 | Trip and dive metrics 

Incubation stage trips ranged furthest from the colony and were directed 

to and beyond the shelf break in a SSW direction (Fig. 1a), whilst those during 

guard and crèche were shorter and occurred over the shelf within a quadrant 

delimited by southerly and westerly bearings from the colony (Fig. 1b and Fig. 

1c). Both species’ foraging patterns were broadly similar within breeding stages, 

particularly during the guard stage: overlap of the 95% and 50% isopleths of the 

two species (according to naïve UDOI statistics that do not account for 

allochrony) were 0.493 and 0.082 during incubation, 1.968 and 0.265 during 

guard, and 0.227 and 0.075 during crèche (respectively).  

The maximum distances that birds travelled from their colony during a 

foraging trip varied according to the interaction between breeding stage and 

species (linear mixed effects model; likelihood ratio test LR2 = 13.4, P < 0.005). 

Adélie trips ranged to 75.9 km ± 19.7 during incubation then shortened to 24.6 

km ± 4.8 during brood before increasing again to 95.6 km ± 11.4 during crèche. 

Those of chinstraps were longer than Adélies’ during incubation (135km ± 9.2) 

and guard (40.9 km ± 7.8) but shorter during crèche (35.9 km ± 20.21). The 

random between-individual effect explained 43% of the variability in the 

intercept. 

Dive depths were not significantly affected by the interaction of species 

and breeding stage (linear mixed effects model; LR2 = 0.53, P > 0.7) nor an 

additive effect of breeding stage (LR2 = 5.38, P > 0.05), but that of species 

alone was highly significant (LR1 = 11.37, P < 0.0001). Chinstraps dived deeper 

on average (39.4m ± 2.6) than Adélies (25.35m ± 3.19). The between-individual 

random effect explained 33.7% of the variability in the intercept and foraging trip 

within individuals just 7.9%. The overlap in the frequency distributions of the two 

species’ dive depths across all stages was 0.77. 

 

3.2 | Simulated effects of allochrony on spatial overlap 

 The behaviour-based model revealed that allochrony, in concert with the 

variation in trip characteristics among breeding stages, caused the two species 

to leapfrog each other over the course of the breeding season. Chinstraps 

leapfrogged Adélies by performing long incubation trips whilst the latter were 

performing short incubation and brood guard trips. As chinstraps began shorter 
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brood guard trips, Adélies leapfrogged back over them to perform long crèche 

trips. Chinstraps continued short trips through the remainder of their breeding 

season as Adélies completed chick rearing and departed south to moult (Fig. 2, 

Animation S2).   

Theoretical scenarios showed that, in the absence of allochrony, the 

overlap in the AUC of all the daily UDOI values was 44.4% higher in core 

foraging areas and 54.0% higher in peripheral foraging areas over the entire 

breeding season (Fig. 3). Interestingly, the level of overlap observed at the 

midpoint of the breeding season if birds bred synchronously was approximately 

double that for the observed level of allochrony: this corresponds to the guard 

period when parents are constrained to perform short trips that provide frequent 

meals for their rapidly growing chicks. We also found that if allochrony 

decreased by a single day, competitive overlap increased by an average of 

2.1% in core foraging areas and 1.8% in peripheral foraging areas over the 

entire breeding season.  

The kernel overlaps in dive depth frequency distributions differed 

according to the degree of horizontal overlap. Overlap values were 0.75 and 

0.77 in areas of peripheral and no horizontal overlap, but were lower at 0.67 in 

core foraging areas due to Adélies performing a greater proportion of their dives 

at shallower depths (Fig. 4). 

 

3.3 | Timing of breeding phenology in relation to October air temperature 

October air temperatures in the South Orkneys have increased 

significantly over the last 114 years from an intercept of -4.25oC  ± 0.35 in 1903 

at a rate of 0.017°C ± 0.005 per annum (linear regression: F1,112 = 11.28, P < 

0.005). However, there was considerable annual variability around the trend 

(SD of model residuals = 1.87) and the adjusted r2 showed that the time trend 

explained just 8.3% of the variance. There was no significant trend over the 20-

year period for which penguin phenology data were available (linear regression: 

F1,19 = 0.30, P > 0.5), although the last five years of the time series were among 

the eight coldest on record, suggesting a recent shift to cooler temperatures 

(Fig. 5).  

Modelling of the long-term time series of phenology data revealed that 

the interactive effect of species and October air temperature on laying date was 

not significant (ANCOVA; F1,30  = 0.68, P > 0.4) but the slope of temperature 
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(F1,31 = 9.04, P < 0.01) and difference in the intercept between the two species 

(F1,31 = 734.04, P < 0.001) were significant. Both species advanced laying dates 

with temperature at the same rate of 1.02 ± 0.34 days for a 1oC increase in 

temperature (Fig. 5). The mean Adélie penguin laying date when October 

temperature was 0o C was 1st November ± 1.02 days and that of chinstraps was 

27.89 ± 1.03 days later (Fig. 5). We found that the annual residuals from this 

model were correlated between the two species (Pearson correlation, r = 0.767, 

t15 = 4.64, P < 0.0005), suggesting a common phenological response to 

variables other than October air temperature. Allochrony was therefore 

conserved because the two species advanced their phenology in relation to 

environmental variability at the same rate. Laying dates of both species became 

significantly later between 1996 and 2015 at a rate of 0.37 ± 0.08 per annum 

(F1,31 = 20.8, P < 0.001) owing to the higher incidence of cool October 

temperatures in recent years. 

 

4 | DISCUSSION 

Seabirds may experience high levels of inter-specific competition due to 

their coloniality and central-place foraging strategy (Polito et al., 2015; Rosciano 

et al., 2016) and reduce this by partitioning their niches along multidimensional 

axes such as dietary, spatial or temporal segregation (Navarro et al., 2013; 

Polito et al., 2015; Pratte et al., 2017). The three species of Pygoscelis 

penguins have become a classic case study in this regard (Trivelpiece et al., 

1987). Studies of spatial overlap have mostly been directed at comparing either 

Adélie or chinstrap penguins with gentoo penguins Pygoscelis papua, which 

occupy a distinctive niche characterised by shorter foraging ranges, deeper 

dives and a more fish-based diet (Kokubun et al., 2010; Miller et al., 2010; 

Cimino et al., 2016). Only two have studied the spatial overlap of the 

ecologically similar Adélie and chinstrap penguins, both of which were confined 

to the chick-rearing period (Lynnes et al., 2002; Wilson, 2010). Our study builds 

upon previous work by analysing tracking data from the entire breeding period 

and quantifying how allochrony gives rise to spatial segregation via leapfrog 

foraging. Further to this, we tested the resilience of this niche partitioning to 

climate change, which has the potential to alter the phenology of ecologically 

similar species at differing rates (Blois et al., 2013), resulting in competitor 

matching (Ahola et al., 2007). Reduced allochrony in response to climate 
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change has been hypothesised to induce competitor matching among 

Pygoscelis penguins (Lynch, Fagan, et al., 2012) and our study quantifies this 

over a range of hypothetical and real-world scenarios.  

 

4.1 | Stage-dependent foraging distribution 

We found that foraging distribution and the maximum range of trips 

differed significantly between breeding stages, which supports Hypothesis 1. 

Trips were longest during incubation compared to brood guard and tended to 

increase from guard to crèche for Adélie but not chinstrap penguins, as found in 

previous studies (Clarke, Emmerson & Otahal, 2006; Jansen, Russell & Meyer, 

2002; Lynnes et al., 2002; Ratcliffe & Trathan 2012). Longer incubation trips 

and increasing trip length with chick age is a common pattern found across 

seabird families (Kitaysky et al., 1999; Barlow and Croxall, 2002; Ito et al., 

2010) and are related to the different energetic and time constraints that 

incubating eggs and feeding chicks place upon parents.  

 

4.2 | Allochrony and leapfrog foraging 

Allochrony has long been recognised as an axis along which niche 

partitioning can arise for sympatric species that are otherwise ecologically 

similar (Birkhead and Nettleship, 1987). Adélie penguins at Signy Island 

initiated breeding 28 days earlier than chinstrap penguins, a degree of 

allochrony which is identical to another site, Laurie Island, in the South Orkneys 

(Carlini, Coria, Santos & Bujan, 2005) but greater than the 21 days observed in 

the South Shetlands and WAP (Lynch, Fagan, et al., 2012).  

The behaviour-based model revealed that leapfrog foraging is an 

important mechanism for reducing foraging competition among the two species: 

chinstraps performed long incubation trips while Adélies were performing short 

incubation and brood-guard trips. Adélies subsequently extended their foraging 

ranges during crèche as chinstraps switched to short chick-rearing trips for the 

remainder of the season. Stage-dependent foraging ranges, combined with 

allochrony, therefore produced two instances of leapfrogging during the 

breeding season, which supports Hypothesis 2. A similar pattern of leapfrog 

foraging has been documented for northern and southern giant petrels 

Macronectes halli and giganteus (Granroth‐Wilding and Phillips, 2018) breeding 

sympatrically and asynchronously on South Georgia. We postulate that leapfrog 
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foraging will arise wherever two colonial, central place foraging species display 

a combination of allochrony and stage-dependent foraging ranges, and present 

16 further examples of where this might arise for seabirds in Table S3.  

Theoretical simulations showed that if the two penguin species were to 

breed synchronously, their peripheral spatial overlap would increase by 54.0% 

over the entire breeding season, which supports Hypothesis 3. Previous studies 

of foraging distributions in Adélie and chinstrap penguins during chick-rearing 

alone (Lynnes et al., 2002; Wilson, 2010) did not adequately account for the 

effects of allochrony and therefore overestimated the degree of spatial overlap. 

Previously, allochrony was shown to offset the timing of peak energetic 

demands associated with chick-rearing for sympatric Adélie and chinstrap 

penguins and for Brünnich’s and common guillemots Uria lomvia and U. aalge 

(Trivelpiece et al., 1987; Barrett et al., 1997). Our results demonstrate that 

allochrony can additionally reduce overlap in the foraging areas where those 

demands are met, further partitioning niches.  

 

4.3 | Partitioning of dive depths 

 Vertical niche partitioning has been found in a range of diving (Mori and 

Boyd, 2004; Kokubun et al., 2010, 2016; Cimino et al., 2016) and arboreal 

(MacArthur, 1958; Mansor & Ramli, 2017; Slagsvold, 1975) species where they 

occur in sympatry. We found that, while dive depths overlapped considerably, 

chinstraps dived to significantly deeper depths than Adélies. Wilson (2010) 

found a similar level of overlap in dive depths between these species in the 

South Shetland Islands, but there chinstraps dived to shallower depths than 

Adélies, showing that patterns of vertical partitioning among species may vary 

geographically. We also found evidence that the degree of overlap in dive 

depths was dependent on the degree of horizontal overlap in foraging areas, 

which supports Hypothesis 4. Vertical overlap in dive depths was reduced in 

core foraging areas compared to areas of peripheral or no horizontal overlap. 

This arose from Adélies diving on average three metres shallower in core 

foraging areas, which are mostly found in shallow waters close to Signy Island. 

Here, chinstraps  are known to perform benthic dives (Takahashi et al., 2003), 

whereas Adélies generally rarely do so (Ropert-Coudert et al., 2002), so it 

possible that Adélies perform shallower pelagic dives when foraging in shallow 

water with high densities of benthic-feeding chinstraps. Similarly, Cimino et al. 
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(2016) found that gentoo penguins performed deeper dives in areas of overlap 

with Adélie penguins compared to areas of no overlap, presumably to avoid 

competition with the shallower diving species. 

 

4.5 | Phenology, climate change and competitor matching 

Climate change has significantly influenced species interactions and 

ecosystem functioning on a global scale (Cotton, 2003; Parmesan and Yohe, 

2003; Visser and Both, 2005). Avian phenology is particularly sensitive to 

warming temperatures (Visser et al., 2012) and rates of change can vary among 

sympatric species with similar ecological requirements, resulting in competitor 

matching. For example, nest site competition between great tits Parus major 

and pied flycatchers Ficedula hypoleuca was greatest when environmental 

conditions synchronised their breeding phenology (Ahola et al., 2007). Analysis 

of long-term monitoring data revealed that both Adélie and chinstrap penguins 

advanced their laying phenology at the same rate of 1.02 days per 1oC increase 

in October air temperature, supporting Hypothesis 5. This rate of change is 

lower than the rate of 1.7-1.8 found for the same two species by Lynch et al. 

(2012) at colonies in the South Shetlands and Western Antarctic Peninsula. 

Importantly, phenological responses to October air temperature and residual 

variability around this relationship occurred in parallel for the two species, such 

that allochrony was preserved in the face of environmentally-induced change. 

Similarly Lynch et al. (2012) found allochrony between these two species was 

preserved in relation to October temperature within sites though time, while 

Black (2015) found it was preserved across sites situated over a wide latitudinal 

gradient.  

The ecological causes of this marked resilience of allochrony to 

environmental variability warrants further exploration. Adélies occur around the 

whole of Antarctica and only overlap with chinstraps in a small fraction of their 

range in the WAP and islands of the Scotia Sea (Williams, 1995). As such, 

avoidance of competition with chinstraps will not have been be an important 

selective pressure upon the evolution of Adélie phenology across their range. 

Rather, their early phenology is believed to have evolved to allow them to 

exploit peaks in food availability following the spring bloom, avoid competition 

with migrant baleen whales and complete the breeding and moult cycle prior to 

the onset of the Antarctic winter (Trivelpiece et al., 1987; Youngflesh et al., 
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2017). Breeding success of Adélies has a tendency to be lower when laying is 

delayed (Hinke et al., 2012; Smiley and Emmerson, 2016; Youngflesh et al., 

2017), such that there will be a selective pressure for Adélie penguins to lay as 

early as snow and sea ice conditions at a site allow.  

Chinstrap phenology may be constrained by environmental conditions in 

the same way as that of Adélies, except that their phenology is delayed to a 

greater degree as their adaptation to the milder conditions of maritime 

Antarctica results in them being less cold-tolerant than Adélies (Trivelpiece et 

al., 1987). Alternatively, chinstraps may arrive at a site and adjust their laying 

phenology according to the stage of the Adélies’ breeding season with the aim 

of minimising foraging competition. Our simulation model shows that spatial 

overlap in core foraging ranges increased by an average of 2.1% over the entire 

breeding season for each day of reduction in allochrony, which creates a strong 

selective pressure for chinstraps to maintain allochrony by adjusting their own 

breeding season relative to that of Adélie penguins. Separating these 

competing explanations for maintenance of allochrony will require comparisons 

of chinstrap phenology across multiple sites where they breed in sympatry and 

parapatry with Adélies.  

Variation in the abundance of Antarctic krill (Ratcliffe and Trathan, 2012), 

both species’ primary prey, may also influence competitive interactions, and 

thus the resilience of allochrony to environmental variability. However, current 

knowledge on seasonal prey abundance in this region is limited so it was not 

possible to investigate the role of this factor in this study. 

 

5 | CONCLUSIONS 

Our combined analytical approach has allowed important insights into 

competitive interactions among the two penguin species. The behaviour-based 

model reveals that niche partitioning by leapfrog foraging is reduced as the 

degree of allochrony between the two species is reduced but the analysis of 

long-term phenology data shows that allochrony is preserved as air 

temperatures warm and penguin laying dates advance. We conclude that 

competitor matching due to differing rates of phenological response to 

environmental change is unlikely to arise among the two species, and will not 

be a significant contributing factor to the population declines observed for these 
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two species across the WAP and Scotia Sea (Trivelpiece et al., 2011; Lynch, 

Naveen, et al., 2012; Dunn et al., 2016). These declines are more likely to be 

driven by changes in recruitment rates of Antarctic krill, recovery of the 

populations of other competitors such as baleen whales or direct weather 

effects upon penguin breeding success (Trivelpiece et al., 2011; Lynch, 

Naveen, et al., 2012).  
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6 | FIGURES 

 

 

Figure 1 - Utilization distribution kernels of peripheral (95%) (thin line) and core (50%) foraging areas (shaded area with thick line) using 

raw GPS data of foraging trips for Adélies (blue) and chinstraps (red) overlaid on bathymetry (metres) shown in greyscale shading. The 

maps were produced by the authors using R version 3.3.0.  
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Figure 2 – Leapfrog foraging behaviour throughout the breeding season based on Adélie (black line) and chinstrap (grey line) foraging 

distances. Shaded areas show when one species has leapfrogged the other by foraging further away from the colony. Areas below the 

dotted line show when Adélies have leapfrogged chinstraps and areas above show when chinstraps have leapfrogged Adélies (difference 

= daily maximum chinstrap distance – daily maximum Adélie distance). 
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Figure 3 – Daily (number of days from 1st October) utilization distribution overlap index (UDOI) values, and area under the curve (AUC) 

values, for with allochrony (top panel) and without allochrony (bottom panel) in core (left column) and peripheral (right column) foraging 

areas.
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Figure 4 – Kernel density estimation curves of vertical overlap in dive depths for 

core (a), peripheral (b) and no horizontal overlap areas (c) between Adélies 

(black) and chinstraps (grey).
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Figure 5 – Annual laying date for Adélies (black) and chinstraps (grey) against annual mean October air temperatures (°C) over the 20-

year study period. Points are marked with years and shading represents 95% confidence intervals. 
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7 | SUPPORTING INFORMATION  

 

Appendix S1 – Sampling and variability of tracks among years 

Owing to the high expense of tracking devices and the logistical 

challenges of maintaining field teams in Antarctica, the sample sizes of tracks 

within years were relatively small (Table S1), which necessitated pooling of 

samples across years. Furthermore, obtaining samples from all stages of the 

penguin breeding cycle can be challenging at Signy Island since it is a summer-

only base and input and uplift dates often prevent work during the early and late 

season. This resulted in sample sizes being particularly small, and sampling 

occurring in single years, for Adélies during incubation and chinstraps during 

crèche (Table S1). It is important to assess how this sampling pattern might 

affect our conclusions about leapfrog foraging. 

The small sample sizes during the Adélie incubation stage and chinstrap 

crèche stage does not create uncertainty in overlap statistics under the 

observed level of allochrony owing to the complete absence of the competing 

species from the focal species’ foraging range at these times of year. When 

Adélie penguins are incubating, all chinstraps are courting and nest building on 

land (Lynnes et al., 2002), whereas when chinstraps are entering crèche, 

Adélies are migrating south to the Weddell Sea (Dunn et al., 2011).  

To investigate annual variability in foraging patterns across years within stages 

we performed kernel analysis, calculated core and peripheral isopleths and 

plotted these for each species-stage-year combination for which data were 

available (for Methods see main article). Figure S1 shows that incubation trips 

of chinstraps had broadly similar offshore ranges and distributions during 2014 

and 2016. During brood guard, ranges were relatively short during all years 

except for 2016 for both species, when trips extended further offshore, and 

2014 for Adélies when trips were of an intermediate range. Importantly, the 

ranges of both species during brood guard extended in tandem during 2016, 

and so would not confound sampling of leapfrog foraging across species and 

stages in the pooled data. Crèche trips for Adélies were broadly similar in 2014 

and 2016, but short in 2012, although the latter is likely due to a single trip being 

sampled immediately after brood guard, before the crèche stage foraging 

ranges had reached their full extent (Lynnes et al., 2002). Utilisation Overlap 
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Distribution Indices for pairs of years within stages and species (for Methods 

see main article) confirms that foraging distributions were similar within stages 

across years, apart from those during brood guard during 2016 that were 

anomalous (Table S2). 

The areas used in our study are similar to those described in a satellite tracking 

study of penguin foraging at Signy Island during chick-rearing in 2000 and 2001 

(Lynnes et al., 2002). This study also found that Adélie penguins increased their 

foraging ranges from brood guard to crèche while those of chinstrap penguins 

remained similar during both stages. More broadly, the species-stage variability 

in foraging ranges, specifically Adélies performing medium-range incubation 

trips, short guard trips and long crèche trips and chinstraps performing long 

incubation trips and short guard and crèche trips, are typical of these species 

throughout their range (see Clarke et al., 2006; Ratcliffe and Trathan, 2012 for 

reviews). We therefore conclude that, despite the small sample sizes for some 

species-stage combinations and uneven sampling across years, our results 

characterise the stage-specific foraging patterns that are typical of both species 

and our inferences about leapfrog foraging are supported.  
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Table S1 – GPS/TDR tag deployments summed by breeding stage for all years 

of deployment. 

Species Stage 

Total 

equipped 

birds 

Total 

foraging 

trips 

Total 

dives 

Sampling years 

(number of 

birds tagged) 

Adélie 

Incubation 4 5 7,799 2014 (4) 

Guard 33 44 30,780 

2008(19), 

2012(3), 

2014(7), 2016(4) 

Crèche 12 18 28,764 
2012(1), 

2014(6), 2016(5) 

Chinstrap 

Incubation 19 21 44,313 
2014(10), 

2016(9) 

Guard 60 89 34,447 

2008(36), 

2012(3), 

2014(3), 

2016(18) 

Crèche 4 7 2,848 2016(4) 
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Table S2 Comparison between years within breeding stages using a Utilisation 

Distribution Overlap Index (UDOI). 

Stage Years 
chinstrap 

UDOI 50 

chinstrap 

UDOI 95 

Adélie 

UDOI 

50 

Adélie 

UDOI 

95 

Incubation 2014 - 2016 0.08 0.53 - - 

Guard 2008 - 2012 0.22 0.96 0.09 0.53 

Guard 2008 - 2014 0.16 0.91 0.11 0.63 

Guard 2008 - 2016 0.05 0.37 0.02 0.10 

Guard 2012 - 2014 0.09 0.64 0.11 0.76 

Guard 2012 - 2016 0.05 0.23 0.04 0.25 

Guard 2014 - 2016 0.01 0.19 0.06 0.37 

Guard Average of all years 0.10 0.55 0.07 0.44 

Crèche 2014 - 2016 - - 0.13 0.62 
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Figure S1 – Utilization distribution kernels of peripheral (95%; thin line) and core 

(50%; shaded area with thick line) foraging areas using raw GPS data of annual 

breeding stage foraging trips for Adélies (blue) and Chinstraps (red) overlaid on 

bathymetry. The maps were produced by the authors using R version 3.3.0.  
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Animation S1 – Animation illustrating the process of simulating tracks through 

the breeding season using Adélie penguins on Signy Island, South Orkneys as 

an example. Blue tracks represent resampled tracks from incubation, green 

from brood-guard and yellow from crèche. Accessible online - 

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2656.12919 

 

Animation S2 – Animation showing overlap in 50% (shaded area with thick 

lines) and 95% isopleths (thin lines) of Adélie (blue) and chinstrap penguin (red) 

dive locations derived from the simulation analysis.  

 

Table S3 – Examples of allochrony in sympatric congeneric seabirds. 

Definitions of allochrony type: staggered allochrony is a situation where birds 

breed during the same season but have different peaks in laying; complete 

allochrony is where birds breed in different seasons (e.g. summer, winter) such 

that their seasons do not overlap at all; Differences in breeding synchrony is 

where both species overlap their breeding seasons, but one species activity is 

more spread out through time than the other. Leapfrog foraging may arise in 

those species showing staggered allochrony where this is combined with stage-

dependent foraging ranges. 

Species 
Allochrony 

type 
Broad 
region 

Allochrony 

Northern (NGP) 
(Macronectes halli) 
and Southern Giant 

Petrel (SGP) (M. 
giganteus) 

Staggered 
allochrony 

and 
differences in 

breeding 
synchrony 

Polar 

NGPs breed ~6 weeks 
earlier (Hunter, 1984) and 

their brooding and guarding 
is 11 days longer (Hunter, 
1984) and display dietary 

partitioning (Gonzalez-Solis 
et al., 2000). 

Common Murres 
(Uria aalge) and 

Thick-billed Murres 
(U. lomvia) 

Staggered 
allochrony 

Sub-
Polar 

Common murres breed ~15 
days earlier and display 

dietary segregation between 
species in sympatric 

colonies (Barrett et al., 
1997) 

Adélie, Chinstrap 
and Gentoo (P. 

papua) penguins 

Staggered 
allochrony 

Polar 

Species breed at 
approximately 2 week 

intervals – Adélie followed 
by Gentoo, followed by 

Chinstrap (Trivelpiece et al., 
1987) 

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2656.12919
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/1365-2656.12919
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Rockhopper 
(Eudyptes 

chrysocome) and 
Macaroni (E. 
chrysolophus) 

penguins 

Staggered 
allochrony 

Sub-
Polar 

Dietary segregation with 
Macaronis eating at a higher 

tropic level (i.e. more fish) 
(Whitehead et al., 2017) and 
~3 week difference in onset 
of breeding (Brown, 1987). 

Erect-crested (E. 
sclateri) and 
Rockhopper 

penguins 

Differences 
in breeding 
synchrony 

Sub-
tropical 

Breed in sympatry in New 
Zealand (Williams, 1995) 
and display allochrony via 
hatching asynchrony (St. 

Clair, 1996). 

Common diving 
(CDP) 

(Pelecanoides 
urinatrix) and South 

Georgia diving 
(SGDP) (P.  

georgicus) petrels 

Staggered 
allochrony 

Polar 

Competition between 
species is reduced by SGDP 

utilising more barren 
habitats (Fischer et al., 
2017) and the species 

display a ~4 week 
allochrony offset with CDP 
breeding first (Payne and 

Prince, 1979). 

Wandering 
(Diomedea exulans) 
and Amsterdam (D. 
amsterdamensis) 

albatross 

Complete 
allochrony 

Sub-
polar 

Wandering albatross are 
biennial breeders and in 
breeding years are active 
between December and 

April, whereas Amsterdam 
albatross breed from March 
to January (Weimerskirch et 

al., 1997) 

Black footed 
(Phoebastria 
nigripes) and 
Laysan (P. 
immutabilis) 

albatross 

Staggered 
allochrony 

Polar 
Species display a ~2 week 
allochrony offset (Rice and 

Kenyon, 1962). 

Black browed 
(Thalassarche 

melanophris) and 
grey headed  

(T. chrysostoma) 
albatross 

Staggered 
allochrony 

Polar 

Species breed ~3 weeks 
apart with grey headed 
albatross breeding first 

(Weimerskirch et al., 1986). 

Sooty (Phoebetria 
fusca) and light 

mantled sooty (P. 
palpebrata) 
albatross 

Staggered 
allochrony 

Polar 

A ~4 week allochrony offset 
is displayed with Sooty 
albatross breeding first 

(Weimerskirch et al., 1986). 

Great-winged 
(Pterodroma 

macroptera) and 
white headed  

(P. lessoni) petrel 

Complete 
allochrony 

Sub-
tropical 

White headed petrels breed 
biennially during the summer 

and great-winged petrels 
breed annually during the 

winter (Chastel, 1995). 
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Great-winged, 
Atlantic (Pterodroma 

incerta) and soft 
plumaged (P.  
mollis) petrel 

Complete 
allochrony 

Sub-
tropical 

The three species breed in 
sympatry on Gough Island 

and they have a large 
allochrony offset. Great-

winged petrels breed in July, 
Atlantic petrels breed in 

September and soft-
plumage petrels breed in 

December/January 
(Cuthbert et al., 2013; Dilley 

et al., 2015). 

Murphy’s 
(Pterodroma ultima) 
and Kermadec (P. 

neglecta) petrel 

Staggered 
allochrony 

Tropical 

Significant breeding offset 
with most 

Kermadec  petrels chicks 
hatching before  Murphy’s  

petrels  begin  to  lay 
(Brooke, 1995) 

Brown (Stercorarius 
antarcticus) and 
south polar (S. 

maccormicki) skuka 

Staggered 
allochrony 

Polar 

The species are sympatric 
for part of their ranges and 

in these areas they 
segregate their foraging 

niches. Brown skuas breed 
~4 weeks earlier, laying at 

the end of November 
(Trivelpiece and Volkman, 

1982). 

Red-billed 
(Phaethon 

aethereus) and 
Yellow-billed 

tropicbird 

Complete 
allochrony 

Tropical 

Yellow-billed tropicbirds 
seem to breed all year round 

with a peak between 
December and April. 
Whereas, red-billed 

tropicbirds breed in a single 
period between March and 
December (Stonehouse, 

1962). 

Crested (Aethia 
cristatella), least (A. 

pusilla) and 
whiskered (A. 

pygmaea) auklet 

Differences 
in breeding 
synchrony 

Sub-
tropical 

All three species arrive at 
the breeding colonies and 

begin laying at a similar time 
but display allochrony in 

their incubation periods, with 
Crested auklets having the 

longest (Knudtson and Byrd, 
1982) 
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ABSTRACT   

 Migration, the seasonal movement of individuals between breeding and 

over-winter sites, is common across a range of taxa. Developing a full 

understanding of a species’ life cycle and migratory connectivity, the linkage 

between their breeding and over-winter sites, may help to elucidate the 

mechanisms underlying population change and determine the impacts of 

environmental variation between over-winter sites on these population trends. 

This is particularly the case for migratory species experiencing large-scale 

population declines. Chinstrap penguins (Pygoscelis antarcticus) breed across 

the Scotia Arc on island archipelagos and most populations are experiencing 

rapid population declines. The mechanisms underlying these declines are 

poorly understood and is impaired by a limited knowledge of migration routes 
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and wintering areas, from breeding sites other than the South Shetland Islands. 

This study used geolocation and stable isotope analysis to describe the 

migration routes, wintering areas and diets of chinstrap penguins from the 

South Orkney archipelago for the first time and compares these with data from 

the South Shetland Islands. Birds from both archipelagos were found to display 

strong migratory connectivity and strong spatial segregation in over-winter sites. 

Individuals from the South Orkney Islands consistently migrated eastwards and 

northwards, in line with prevailing currents, to an area to the northeast of the 

South Sandwich Islands, while most of the individuals from the South Shetland 

Islands migrated westwards to the Pacific region of the Southern Ocean, 

apparently against prevailing currents. These migration routes and over-

wintering sites were consistent across years (South Orkneys – 3 years, South 

Shetlands – 2 years). The two discrete wintering areas differed in their long-

term sea surface temperature and primary productivity, in terms of their 

averages, trends, and annual variability. Isotopic analysis of tail feathers 

supported this, finding significant differences in average δ13C and δ15N values 

between birds from the two archipelagos. Additionally, birds from the two 

archipelagos experienced different environmental conditions at their over-winter 

sites, with birds from the South Orkneys experiencing higher concentrations of 

chlorophyll-a (0.21mg m-3 higher on average) across study years, while the 

South Shetlands birds experienced higher SST (0.81°C higher on average). Our 

findings provide novel insights into the behaviour of this rapidly declining 

species during winter, support current marine protected area designations and 

may prove valuable in elucidating the role of environmental variability during the 

winter period in breeding population declines. 

 

1 | INTRODUCTION   

Long-distance migration is the directed seasonal movement of 

individuals between widely spaced breeding and non-breeding/ over-winter 

areas and occurs across a range of taxa globally, including mammals, reptiles, 

fish, birds and insects (McGuire and Fraser, 2014). Migratory connectivity 

describes the links between breeding and over-winter sites. Strong connectivity 

occurs when all individuals from one breeding site migrate to the same over-

winter site and weak connectivity occurs when individuals from the same 
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breeding site migrate to multiple over-wintering sites (Webster et al., 2002). 

Populations displaying weak connectivity, or weak inter-annual site fidelity, are 

less threatened by localised change as the risk is spread across several sites 

and individuals may have flexibility to relocate to alternative sites in response to 

deteriorating conditions. Species exhibiting strong connectivity, and inter-annual 

site fidelity, are likely highly adapted to their specific regions and conditions 

meaning they will be impacted by any adverse change that occurs in their single 

winter site. The occurrence and effects of migratory connectivity are well 

documented in terrestrial birds, shorebirds and wildfowl (Drent et al., 2007; 

Trierweiler et al., 2014; Finch et al., 2017), but are less well studied in seabirds 

(but see González-Solís et al., 2007; Ramos et al., 2015). 

During the breeding season many seabirds’ foraging areas are 

constrained by their central-place foraging strategy and spatial segregation 

arises where colonies exist within travelling distances of one another. This 

occurs because it is more cost-effective to travel a short distance and compete 

with high densities of birds from the same colony than to travel a long distance 

and compete with the same density of birds from a neighbouring one (Wakefield 

et al., 2013). This results in seabirds from neighbouring colonies exhibiting 

spatially segregated foraging areas (Wakefield et al., 2013; Masello et al., 

2016). Central-place foraging constraints are relaxed in the winter period and 

birds would be expected to disperse, and potentially mix with individuals from 

other colonies, particularly where the distance among sites is short comparative 

to the distances they travel (Frederiksen et al., 2012; Ratcliffe, Crofts, et al., 

2014). However, tracking studies have shown that over-winter distribution is 

strongly defined by the bird’s breeding colony of origin, with birds from nearby 

colonies migrating to spatially segregated sites (Tranquilla et al., 2013; Ratcliffe, 

Crofts, et al., 2014; Clay et al., 2016) and isotope tracking studies have 

identified strong regional trends in migratory behaviour (Polito et al., 2017). 

Seabirds are long-lived and have low annual reproductive success, such 

that their population trends are particularly sensitive to small variations in 

overwinter survival (Frederiksen et al., 2008). The degree of migratory 

connectivity and spatial segregation during winter can therefore have important 

implications for population trends. Studies have shown that conditions in 

wintering areas, such as the environmental variability, food availability or 

anthropogenic threats, can all influence an individual’s fitness in the following 
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breeding season and are often termed ‘carry-over effects’ (Webster et al., 2002; 

Harrison et al., 2011). 

Chinstrap penguins (Pygoscelis antarcticus; hereafter chinstraps) are 

largely confined to the Western Antarctic Peninsula (WAP) and islands of the 

Scotia Arc (see Figure 2 in Chapter 1 for breeding range), a region experiencing 

rapid climate change (Forcada and Trathan, 2009) and the target of an 

industrial fishery for Antarctic krill (Euphausia superba; hereafter krill; Nicol et 

al., 2012). They play an important role in the community in terms of food-web 

dynamics (Fraser and Trivelpiece, 1996) but are experiencing large-scale 

population declines (Trivelpiece et al., 2011; Lynch et al., 2012; Dunn et al., 

2016). Currently, the role that drivers operating during winter have in explaining 

this decline are largely unknown. One of the barriers to achieving this is a poor 

understanding of the migration routes and wintering areas of different 

populations and the environmental conditions and prey that birds encounter 

there. 

 Winter movements and diets of chinstrap penguins have only been 

studied from the South Shetland Islands (e.g. Hinke et al., 2007, 2015; 

Trivelpiece et al., 2007; Polito et al., 2017) and data from other important 

breeding localities in the South Orkney and South Sandwich Islands are lacking. 

A combination of geolocator tracking (GLS) and stable isotope analysis (SIA) 

was used to address this knowledge gap by determining the migratory 

behaviour, over-wintering areas, migratory connectivity and winter isotopic 

niches, defined by diet and foraging habitat, of chinstrap penguins from the 

neighboring South Orkney and South Shetland Islands archipelagos (referred to 

as the two or both archipelagos hereafter). Our objectives are to describe 

whether; (1) chinstrap penguins display strong migratory connectivity, (2) 

chinstrap penguins from different archipelagos exhibit spatial segregation in 

wintering areas (3) populations show fidelity (i.e. are the same locations utilised 

year after year) to their wintering sites across years, (4) environmental 

conditions and their patterns of change through time differ between wintering 

areas, (5) migration routes are influenced by prevailing ocean currents (i.e. 

consistently observed strong currents) and (6) isotopic niches differ between the 

two archipelagos and between sampling years within archipelagos.  
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2 | MATERIALS AND METHODS 

2.1 | Geolocator deployment sites and location data processing 

GLS technology was used to track , n=106 (Table 1), chinstrap penguins 

throughout their migration as their long battery life and small size and weight 

enabled them to function for the entire period, whilst causing minimal impact to 

the birds (Phillips et al., 2004).  

South Orkney Island archipelago (hereafter South Orkneys) chinstrap 

penguins were captured whilst incubating chicks at Gourlay Peninsula on Signy 

Island (60°42’S, 45°36’W) during 2012/2013, 2013/2014 and 2015/2016 

breeding seasons (Table 1). Each bird was fitted with a Biotrack BAStag Mk9 

archival geolocator logger (Biotrack, Wareham, UK), which recorded time, light 

level and activity (wet/dry using a salt water sensor). Tags were attached to 

each penguin’s tarsus using the ring design of Ratcliffe, Takahashi, et al. 

(2014). 

South Shetland Island archipelago (hereafter South Shetlands) chinstrap 

penguins were tagged at Cape Shirreff on Livingston Island (62°47’S, 60°78’W) 

and at Admiralty Bay on King George Island (62°17’S, 58°45’W) during the 

2011/2012 and 2014/2015 breeding seasons (Table 1) and fitted with Lotek 

Nano-Lat 2900-series archival GLS tags (Lotek Wireless, St. Johns, 

Newfoundland, Canada) using a Darvic plastic band, as detailed in Hinke et al. 

(2015). At both archipelagos the GLS tags were attached in December or 

January and recovered in the following November or December. GLS data 

collected at the South Shetlands during 2011/2012 have previously been 

published in Hinke et al. (2015) but data from 2014/2015 have not been 

published previously. 

Bird locations were estimated primarily from the light and time data 

recorded by the GLS tags using geolocation, which produces up to two 

locations per day with an accuracy of between 40 km and 150 km depending on 

a number of factors, including the physical tag and environmental conditions 

(Phillips et al., 2004). GLS tags deployed at the two archipelagos provided raw 

data sets in slightly different formats and thus required different processing 

techniques. Tags used at the South Orkneys provided raw light data and this 

was processed using the BAStag (Wotherspoon, 2014) and SGAT 

(Wotherspoon et al., 2016) packages in the statistical analysis program ‘R’ (R 

Core Team, 2015). SGAT uses a Bayesian approach that estimates possible 
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locations by taking account of an animal’s travelling speed, fixed start and end 

points of trips (i.e. known locations such as the colony location), masking land 

masses and comparing tag recorded sea surface temperatures (SST) to weekly 

mean SST data from NOAA online sources (NOAA/ESRL/PSD Climate Data 

Repository, 2018). Interpolation was then used to fill any gaps between 

locations and final processed tracks were provided with estimates of 

uncertainty. Tags used at the South Shetlands provided a single location 

estimate per day, with all light processing carried out internally and, thus, were 

processed using a combination of speed filters and correction factors, as 

outlined in Hinke et al. (2015). Locations were further refined by eliminating 

locations falling clearly within the mean maximum winter sea-ice extent as 

defined by National Snow and Ice Data Center (2018) because previous studies 

have shown that chinstrap penguins spend the winter to the north of the pack-

ice (Ainley et al., 1994; Trivelpiece et al., 2007).  

During equinox, it is impossible to accurately determine latitude as the 

day length is approximately the same across the world (Hill, 1994; Phillips et al., 

2004). Chinstrap penguins migrate during the September equinox, and despite 

additional processing using the SST correction of latitude within the SGAT 

package (Wotherspoon et al., 2016), the data from this period could not provide 

location estimates and so are not presented. 

 

2.2 | Spatial segregation and site fidelity 

Monthly GLS derived locations for birds from each archipelago were 

pooled to produce population level kernel densities, estimated using the 

adehabitatHR package (Calenge, 2015) within the statistical program ‘R‘ (R 

Core Team, 2015), for April to November, excluding September. These monthly 

kernel densities were then used to produce 95% isopleths for each archipelago. 

These isopleths indicate the outer bounds of the population’s distribution, whilst 

removing any major outliers, thereby allowing the distributions of the two 

archipelago populations to be compared. 

Site fidelity, meaning the tendency to return to a previously occupied 

location year after year, was estimated by quantifying the overlap of the annual 

kernel densities, all monthly locations pooled, within archipelago using a 

utilization distribution overlap index (UDOI). A UDOI was also used to describe 

overlap between distributions of birds, pooled across years, from each 
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archipelago. The UDOI measures the degree to which two populations share 

space by presuming that the species use space independently (Fieberg & 

Kochanny, 2005). If there is no overlap the UDOI value would be 0, it would be 

1 if there is 100% overlap and the utilisation distributions are uniform and the 

UDOI value would be >1 if overlap is high and the utilisation distributions are 

non-uniformly distributed (Fieberg and Kochanny, 2005). Meaning value of <1 

would indicate a smaller degree of overlap between the two populations than 

expected from uniform space use and values >1 would suggest higher than 

normal overlap relative to uniform space use (for equation see thesis Chapter 

2). 

 

2.3 | Migratory connectivity  

 The strength of migratory connectivity for the two archipelagos was 

determined using the R package ade4 (Dray et al., 2018) to calculate the 

Mantel Correlation Coefficient (rM). This analysis compares pairwise breeding 

and winter site locations to determine connectivity within a population. This test 

has been extensively used to investigate banding (or ringing) 

deployment/recovery data from terrestrial birds, due to the test’s basis in 

disease research meaning it requires just two “locations” (Mantel, 1967), rather 

than GLS datasets containing multiple locations for the winter site. Thus, winter 

site locations for the analysis were produced by averaging all locations recorded 

for each individual during July, the middle of their core winter period (June - 

August), when they can be thought of as resident in their winter areas as their 

location is relatively stable. The significance of the rM value was determined by 

running 9,999 random permutations (Dray et al., 2018). The rM value can fall 

within a range between -1 to 1 and will be negative when populations move 

further apart between seasons, low migratory connectivity, positive when 

populations remain close together between seasons, strong migratory 

connectivity, and zero when populations have no patterns in distribution 

between seasons (Ambrosini et al., 2009). Therefore, the closer the value is to 

1 the stronger the migratory connectivity.  

 

2.4 | Environmental conditions within wintering sites 

 Environmental conditions experienced by birds within their wintering 

areas during June – August were investigated using average chlorophyll-a 
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concentrations and SST recorded by the Moderate-Resolution Imaging 

Spectroradiometer (MODIS) Aqua satellite (Ocean Biology Processing Group, 

2015) at a 4km resolution. These environmental variables were selected as they 

act as a proxy for of the abundance of krill (Atkinson et al., 2019), which 

comprise chinstrap penguins’ primary prey across the majority of their range 

during breeding (Lishman, 1985b; Miller et al., 2010; Ratcliffe and Trathan, 

2012). Krill are a cold water species and require chlorophyll-a for growth and 

reproduction (Hill et al., 2013; Murphy et al., 2017). Additionally, SST is thought 

to have indirect effects on penguin survival by influencing sea ice formation and 

distribution (Croxall et al., 2002).  

Due to MODIS coverage issues arising from sea ice and cloud cover, a 

common limitation of remote sensing (Marshall et al., 1993), during the austral 

winter, environmental conditions were estimated using an average of daily fields 

from September to December. Values were extracted by overlaying the GLS 

derived locations recorded during the core over-winter period for each study 

year on the rasterised chlorophyll-a and SST data sets from the same year 

using the R package raster (Hijmans, 2017). The extracted values were then 

averaged to produce an annual mean chlorophyll-a and SST value for each 

archipelago populations’ over-winter site. Changes in these environmental 

variables through time and between archipelagos were modelled using Analysis 

of Covariance (ANCOVA), with either SST or chlorophyll-a concentration as the 

response variable, time (Year) as the covariate and archipelago as the factor. 

To visualise current flows encountered by penguins during migration, we 

calculated and plotted the annual mean near-surface velocity field over 2012 to 

2016 from altimetry-derived daily fields of geostrophic velocity at 0.25o 

horizontal resolution (Copernicus Marine Environment Monitoring, 2018). 

 

2.5 | Biological sampling for stable isotope analysis  

Stable isotope analysis (SIA), was used to infer trophic level at which 

animals were feeding (from δ15N) and the habitat or latitudes animals exploited 

(from δ13C) (Hobson and Clark, 1992).  

Tail feather samples were used to investigate trophic niches during their 

outbound migration. Samples, n=116 (Table 1), were collected by plucking 

(South Shetlands) or clipping a central tail feather as close to the skin as 

possible (South Orkneys), when deploying or recovering the GLS tags 



 

99 
 

(depending on year and archipelago; Table 1). Within these samples, seven 

individuals from the South Orkneys were sampled on both deployment and 

recovery of the GLS tags (2015/2016 and 2017/2018 seasons respectively), 

allowing consistency in isotope ratios to be investigated between two 

consecutive years. Adult chinstrap penguins undergo a catastrophic moult after 

completion of breeding but do not grow the tail feathers until after they depart 

the colony, meaning the sampled section of tail feather was grown between 

March and June (59±11 days after the onset of moult) according to growth 

calculations by Hinke et al (2015). Therefore, we can be confident that the 

isotopic information contained in the sampled section represents the over-winter 

period when penguins were migrating to, or already located at, their over-

wintering areas (Hinke et al., 2015).  

Eggshell samples were used to investigate foraging behaviour and diet at 

the end of migration, just prior to egg laying. Samples were collected from 

hatched, predated or abandoned eggs at both archipelagos during the 

2006/2007 season. Females fast for 10-19 days prior to egg laying and egg 

formation, once initiated, occurs over a 24 hour period (Astheimer and Grau, 

1985; Lishman, 1985a; Emslie and Patterson, 2007). Therefore, eggshell stable 

isotope values provide information on foraging locations and diets at the end of 

winter migration when birds are returning to their colony, though it may also 

include some foraging close to the colony just prior to fasting and egg formation 

(Emslie and Patterson, 2007; Polito et al., 2009, 2011). These data have been 

previously published in Brasso et al. (2012) and are presented here to provide 

further insight into GLS data and a comparison to winter diet. 

 

2.6 | Stable isotope analysis technique 

Tail feather samples were trimmed into 3cm long sections, measured 

from the end closest to where the feather exited the skin, and cleaned by 

soaking in 2:1 chloroform:methanol solution for 24 hours. Sections were then 

rinsed and air-dried to ensure all solvent was removed. A 1cm section of shaft, 

located closest to where the feather exited the skin, was then sampled for 

isotopes by trimming off small slices (~0.7mg) with stainless steel scissors from 

the black area of the shaft only, to ensure the results were not affected by the 

melanin content of the sample (Michalik et al., 2010). Eggshells from the two 

archipelagos were processed by removing eggshell membranes, rinsing in 
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distilled water to remove any organic material and then grinding to a powder 

using an analytical mill. Acidification, through titration with five 20 μl aliquots of 

6M HCl, was used to remove carbonates from 10 mg samples of cleaned 

eggshell. 

Feather and eggshell samples were weighed into individual tin capsules 

and then combusted (Elementar PYRO cube and Costech ECS4010 elemental 

analyzers) and analysed for δ15N and δ13C through interfaced Thermo Scientific 

Delta PLUS XP and Delta V PLUS continuous-flow stable isotope ratio mass 

spectrometers. To ensure consistency between instruments and laboratories, 

raw δ values were normalized on a two-point scale using the same glutamic 

acid reference materials with low and high values (USGS40, USGS41, US 

Geological Survey, USA. Laboratory standards (Fluka gelatin, Sigma alanine or 

Sigma glycine, Sigma-Aldrich Company Ltd, Gillingham, UK) were run between 

every 4-10 samples. Inter and intra-laboratory sample precision based on 

duplicate standard and sample materials was 0.1% and 0.2% for δ13C and δ15N, 

respectively. Stable isotope abundances are expressed in δ notation in per mill 

units (‰), according to the following equation:  

δX = [(Rsample / Rstandard) - 1] ∙ 1000 

Where X is 13C or 15N and R is the corresponding ratio 13C /12C or 15N /14N.  The 

Rstandard values were based on the Vienna Pee Dee Belemnite (VPDB) for δ13C 

and atmospheric N2 (air) for δ15N values. 

 

2.7 | Isotopic niche analysis 

 Studies commonly use consumer stable isotope values to delineate the 

trophic (δ15N) and geographic habitat use (δ13C) axes of their isotopic niche 

space (Newsome et al. 2007), which is comparable, although not identical, to 

the ecological niche space defined by Hutchinson (1959). As such, we used a 

modification of the isotopic niche metrics described by Hinke et al. (2015) to 

compare stable isotope values between the two archipelagos and within each 

archipelago. An ANOVA was used to test for differences in mean δ15N and δ13C 

ratios between the two archipelagos, in both tail feathers and eggshells. Inter-

annual consistency in isotope ratios was tested using a paired t-test on tail 

feathers collected in two consecutive years from seven South Orkneys 

individuals. 
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The R package SIBER (Jackson and Parnell, 2017) was used to 

calculate and compare isotopic niches within and between archipelagos and 

sampling years. The core niche estimate (SEAc), the Bayesian core niche 

estimate (SEAb) and the total niche (TA), were calculated for each sampling 

year within each archipelago and for the archipelago overall by combining all 

available samples (Layman et al., 2007; Jackson et al., 2011). The centroid of 

each group’s TA was determined and the Euclidean distances between the 

centroids were calculated, using the methods outlined in (Turner et al., 2010; 

Bowes et al., 2017), to determine niche similarity. Distances close to 0 indicate 

high isotopic niche similarity (Turner et al., 2010). Niche similarity was also 

directly quantified by determining the overlap between each sampling group’s 

isotopic niche area using the nicheROVER package (Lysy et al., 2014). A niche 

region (Nr) was calculated for each group based on 10,000 Monte Carlo draws 

of elliptical projections using a 95% threshold (i.e. where there is a 95% 

probability of finding data from that group) and overlaps calculated, a higher 

percentage indicating greater overlap. The overlap between niches is defined 

as the probability that an individual drawn randomly from group A is found in the 

niche region of group B. Therefore, overlap is not necessarily symmetrical and 

is dependent upon how evenly a species uses its niche area (Swanson et al., 

2015). 

 

3 | RESULTS  

3.1 | Migration routes and over-wintering areas  

 Migration routes from the two archipelagos were directed and targeted to 

relatively discrete overwintering sites (Fig. 1). The South Orkney birds appeared 

to use some strong elements of the eastward flowing Antarctic Circumpolar 

Current (ACC) to migrate towards South Georgia and then across to the 

northern end of the South Sandwich Islands, pausing in the South Sandwich 

Trench area just to the north of the average winter maximum sea-ice edge, for 

the core over-winter period (Fig.1 and Fig.2). They then travelled through 

relatively slack water on their return to the breeding colony. In contrast, the 

majority of South Shetland birds initially travelled against the mean flow of the 

ACC, along routes where the flow is weaker (Fig.2), ultimately occupying the 

relatively slack waters of the South Pacific region (Fig.2) of the Southern Ocean 

for their core over-winter period (Fig.1). Their return journey to the colony was in 
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the direction of the ACC flow and therefore potentially assisted their progress. 

The routes followed by all birds circumvented the region of high current flow 

found in and to the east of the Drake Passage. 

The migration routes undertaken by each population were highly 

divergent with all individuals from the South Orkneys heading eastwards and 

northwards, while the majority of individuals from the South Shetlands headed 

westwards (Fig.1). During each GLS sampling year a single bird from the South 

Shetlands migrated in the same direction as the South Orkneys birds, although 

only the bird sampled in 2014 travelled the full distance to the South Orkney 

over-winter area, while the other bird remained close to the sea-ice edge 

around the South Orkney Islands for the duration of the core over-winter period. 

By July both of the South Shetland birds had moved west to join the other 

individuals in the Pacific. The largely divergent migratory pathways resulted in 

essentially no overlap between individuals from the two archipelagos (average 

monthly UDOI=0.0003, pooled across years). Birds from breeding colonies on 

King George Island and Livingston Island within the South Shetlands 

archipelago displayed shared routes and over-winter site fidelity between years 

(UDOI=1.24). Birds from both archipelagos showed strong fidelity to their 

migration route and over-winter sites across years (South Shetlands: 

UDOI=1.49; South Orkneys: UDOI=1.00). A UDOI value of 1 or above indicates 

strong overlap between the groups (Fieberg and Kochanny, 2005). The Mantel 

correlation coefficient supported this by finding that they displayed strong 

migratory connectivity, as the value is close to the maximum possible value of 

1, between breeding and over-winter areas (rM = 0.76, n = 61, p=0.0001). 

 In terms of environmental conditions, the South Orkneys over-winter site 

had consistently higher concentrations of chlorophyll-a (0.21mg m-3 higher on 

average; Fig. 3) than the South Shetlands’ site across years, while the South 

Shetlands over-winter site had consistently higher SST (0.81°C higher on 

average; Fig. 4) than the South Orkneys’ site. An ANCOVA revealed that SSTs 

and chlorophyll-a concentrations differed significantly between each 

archipelago’s over-wintering site (Chlorophyll-a: F1,9555=740.44, p=<0.0001; 

SST: F1,7164=559.91, p=<0.0001) and between sampling years within each 

archipelago’s over-wintering site (Chlorophyll-a: F1,9555=3.40, p=0.05; SST: 

F1,7164=523.46, p=<0.0001). Krill growth and reproduction occurs most efficiently 

in areas with high chlorophyll-a levels and lower temperatures, meaning the 
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conditions at the South Orkneys over-winter area were likely to be more 

favourable (Hill et al., 2013; Murphy et al., 2017).  

 

3.2 | Isotopic niche overlap between the two archipelagos  

Overall, the average δ13C and δ15N in tail feathers was significantly 

different between the two archipelagos (ANOVA: δ13C: F1, 113=5.50, p= 0.02; 

δ15N: F1, 113=39.18, p= <0.0001), with South Shetlands individuals displaying 

higher ratios of both isotopes (δ13C=+0.39 ‰, δ15N=+0.84‰; Table 2). 

Nonetheless, variation around these means resulted in the isotopic niches of 

the two archipelagos overlapping extensively (Euclidean distance=0.92; mean 

overlap of NrShetlands/Orkneys=75.89%, Fig.4.A). These results suggest that birds 

from the two archipelagos occupied somewhat different marine habitats and 

consumed prey of different trophic levels.  

 The average δ13C and δ15N in eggshells from the two archipelagos were 

not significantly different (ANOVA: δ13C: F1,43=1.71, p=0.20; δ15N: F1,43=0.03, 

p=0.87; Table 2), although sample sizes were smaller than for feathers, and the 

resulting isotopic niches also overlapped extensively (Euclidean distance=0.27; 

mean overlap of NrShetlands/Orkneys=77.18%; Fig.4.B). In contrast, these results 

suggest that birds from the two archipelagos were occupying similar marine 

habitats and consuming prey of a similar trophic level. 

Unfortunately, it is not possible to directly compare the two tissue types 

directly as their levels of isotopic enrichment differ (Polito et al., 2009; Hahn et 

al., 2012).  

 

3.3 | Annual isotopic niche variation within each archipelago 

The average δ13C and δ15N in tail feathers differed significantly between 

years within both archipelagos (South Shetlands: δ13C: F1, 60=22.80, p=<0.001; 

δ15N F1, 60=1.21, p=0.28; Table 2, South Orkneys: δ13C: F1, 51=10.80, p= 0.002; 

δ15N: F1, 51=16.62, p=0.0002; Table 2). At the South Shetlands archipelago, the 

average δ13C was particularly high in 2014 and at the South Orkneys 

archipelago, the average δ13C was particularly high and δ15N was particularly 

low during 2013. Overlap between the isotopic niches of the two sampling years 

at the South Shetlands was high (Euclidean distance=0.84; mean niche 

overlap2012/2014=72.23%; Fig.4.C), whereas overlap between the three sampling 

years at the South Orkneys was low (Mean Euclidean distance=1.31; mean 
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overlap of Nr2013/2015/2018=32.49%; Fig.4.D). A higher percentage overlap value 

indicates that the area of overlap between the two archipelagos’ isotopic niches 

is larger and the larger the Euclidean distance the greater the distance between 

the centroids of the two isotopic niches.  

The seven SOI birds sampled in consecutive years, at device 

deployment and recovery in the subsequent year, displayed consistent average 

tail feather δ13C values between years (t= -1.74, df=6, p =0.13) but δ15N values 

differed (t= -3.21, df=6, p =0.02). This resulted in relatively low overlap between 

the two groups’ isotopic niches (Euclidean distance=0.96; mean overlap of 

Nr2016/2017=48.75%; Fig.4.E). 

 

4 |DISCUSSION  

4.1 | Migratory behaviour and environmental conditions 

In this study, we identified the over-winter behaviour of chinstrap 

penguins from the South Orkney Islands for the first time and then compared 

their behaviour to the birds from the neighbouring South Shetland Islands. Birds 

from the two study archipelagos displayed high migratory connectivity, strong 

spatial segregation and consistent migration routes and over-winter sites across 

sampling years. This led the two populations to experience differing marine 

habitat types and occupy different dietary niches, defined by environmental 

conditions and isotopic values.  

Spatial segregation within species among colonies of seabirds 

(Wakefield et al., 2013; Masello et al., 2016) and between species within 

colonies (Wilson, 2010; Barger et al., 2016; Clewlow et al., 2019) has been 

observed during both the breeding season and over-winter period (Thiebot et 

al., 2011, 2012; Ratcliffe, Crofts, et al., 2014; Hinke et al., 2015). There is 

discussion around the drivers of this segregation with many hypothesising it to 

be driven by intra- and interspecific competition for shared prey resources. 

Chinstrap penguins consume krill almost exclusively during the breeding 

season (Lishman, 1985b; Takahashi et al., 2003; Lynnes et al., 2004; Ratcliffe 

and Trathan, 2012; Polito et al., 2015; Niemandt et al., 2016; Dimitrijević et al., 

2018). Krill plays a central role in the Antarctic food-web as it links lower-trophic 

levels to all higher predators in the ecosystem (Barrera-Oro, 2002), meaning the 

demand, and therefore competition, for this resource is particularly high (Barlow 

et al., 2002; Ainley et al., 2006). Additionally, climate changes occurring in the 
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WAP region are causing krill to gradually contract their range southwards, away 

from these breeding colonies, and their recruitment is declining so fewer krill are 

available than historically (Atkinson et al., 2019), potentially further increasing 

competition for this resource. 

Birds from the two study archipelagos displayed strong spatial 

segregation, which is often driven by prey availability (Whitehead et al., 2017; 

Sánchez et al., 2018), and birds within each archipelago displayed high 

migratory connectivity. Migration routes are thought to be influenced by a 

combination of expected prey availability, genetics, social learning and 

environmental conditions (Hjeljord, 2001; Pomilla and Rosenbaum, 2005; 

Liechti, 2006; Thiebot et al., 2013). However, genetic studies suggest that 

intermixing occurs between chinstrap populations in the Scotia Arc and WAP 

(Clucas et al., 2014, 2018; Freer et al., 2015), which suggests that a genetic 

driver is unlikely in this case. Therefore, cultural fidelity, defined as behaviour or 

information shared within a community that is acquired from conspecifics 

through social learning, may be defining the migration routes, and therefore 

segregation, based on ancestral knowledge of ocean currents and prey 

availability (Thiebot et al., 2013). Currents often define long-distance migration 

routes, as they can facilitate or impair movement depending on the animals’ 

direction of travel relative to the currents. Site faithful species are often travel 

against currents on at least one leg of their migration and this is not 

unprecedented for penguin species (Ballard et al., 2010; Thiebot et al., 2013; 

Sherley et al., 2017). There are no gyres of the appropriate spatiotemporal 

scale available in the Southern Ocean to assist penguin migration, as used by 

Atlantic salmon (Dadswell et al., 2010), meaning the only alternative is utilising 

strong currents when they are in the direction of travel and seek slack currents 

or travel against weaker currents in the opposite direction (Luschi, 2013). Our 

results indicate that this method is used by chinstrap penguins from the two 

archipelagos. The penguins from both archipelagos travel eastwards in the 

direction of the Antarctic Circumpolar Current (ACC), South Orkney birds on 

their outward leg and South Shetland birds on their return leg, but when they 

travel westwards the South Orkney birds travel through relatively slack waters 

whilst South Shetland birds travel against the prevailing current direction. This 

means birds from the South Shetlands probably experience higher travel costs 

on their outward journey (Green et al., 2009), which is just after their annual 
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moult, a 3-week fasting period, meaning their energy reserves are already 

diminished (Williams, 1995). Therefore, the areas accessed via this more costly 

travel direction are most likely of particularly high quality for this species and 

thus worth the risk of high energy expenditure during a time of low energy 

availability (Bon et al., 2015). Birds from both archipelagos circumvent the very 

strong currents of the Drake Passage, likely due to the high locomotion costs of 

maintaining position in this area and the reduced availability of prey (Silk et al., 

2016; Atkinson et al., 2019). This may act as a physical barrier between the 

migration routes and over-wintering areas of the two archipelagos and so may 

explain the minimal overlap observed.  

In terms of environmental conditions, our findings are representative of 

the long-term trends observed for both SST and chlorophyll-a. A study of a 34 

year dataset, 1979–2013, showed that the South Shetland over-winter site has 

warmed whilst the South Orkneys’ over-winter site has cooled slightly (Purich et 

al., 2016). In terms of chlorophyll-a concentrations, a study of an 11 year time 

series, 1997–2008, found consistently lower levels at the South Shetland over-

winter site in comparison to the South Orkneys’ over-winter site (Park et al., 

2010). These variables are highly valuable as indicators of primary production, 

thus providing insights into prey availability and density (Montes-Hugo et al., 

2009; Hill et al., 2013; Dehnhard et al., 2016). Chinstrap penguins consume krill 

almost exclusively during the breeding season (Lishman, 1985b; Takahashi et 

al., 2003; Lynnes et al., 2004; Ratcliffe and Trathan, 2012; Polito et al., 2015; 

Niemandt et al., 2016; Dimitrijević et al., 2018), and therefore we assume they 

would preferentially consume krill during the over-winter season if it is available. 

Unfortunately, there are no direct diet studies available for this species during 

the winter period and the isotope data presented here unfortunately cannot not 

add any knowledge to this. However, krill are stenothermic, meaning their 

abundance and distribution is strongly influenced by environmental conditions 

(Atkinson et al., 2008). In general, the environmental conditions at the South 

Orkney population’s over-winter site, lower SST and higher chlorophyll-a 

concentrations, are more optimal for krill growth and reproduction (Atkinson et 

al., 2004; Murphy et al., 2017). This is supported by information on the known 

distribution of krill, which indicates that there are far higher densities of krill in 

this region than in the South Shetland population’s over-winter site (Atkinson et 

al., 2008, 2019). Moreover, the South Shetland chinstrap penguins occupy a 
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much broader area than the South Orkneys population throughout their 

migration (Fig.1), despite the breeding population sizes being comparable 

(Trivelpiece et al., 2011; Dunn et al., 2016). This broader dispersion of South 

Shetland birds is consistent with a lower krill density in the South Pacific sector 

and the need to reduce inter-specific competition for the available prey.  

The ability to obtain adequate prey availability throughout the annual 

cycle is critical for survival and reproduction and is particularly crucial during 

pre-moult, pre-breeding, during egg synthesis and during chick growth 

(Walsberg et al., 1983; Carey, 2009). Since the 1970s both populations have 

experienced large-scale population declines with monitored colonies declining 

by 68% in the South Orkneys and >50% in the South Shetlands (Hinke et al., 

2007; Trivelpiece et al., 2011; Dunn et al., 2016). The similar magnitudes of 

decline between the two populations indicate a common environmental driver 

and this is further supported by observations of population declines in the 

closely related Adélie penguin (Pygoscelis adeliae) breeding at our study 

archipelagos, that winter in the marginal ice zone of the Weddell Sea and show 

low overlap with chinstraps (Trivelpiece et al., 2011; Lynch et al., 2012; Dunn et 

al., 2016). Therefore, declines in the shared primary prey of these species 

across the WAP and Scotia and Weddell Seas, rather than local variability at 

over-winter and breeding locations, could be driving these concurrent 

population declines. Studies have suggested that regime shifts in primary 

production, driven by shifts in sea-ice cover and wind, are responsible for the 

reduction in krill availability across the WAP region (Montes-Hugo et al., 2009; 

Atkinson et al., 2019).  

The migration route from the South Orkneys converged at an over-winter 

site in the South Sandwich region, where the largest known chinstrap colonies 

in the world are located, containing roughly half of the global breeding 

population of chinstrap penguins (Lynch et al., 2016). The over-winter behaviour 

of the South Sandwich population is currently unknown but it is plausible they 

are largely resident in this area during the over-winter season as levels of 

primary production in this region are particularly high and they are not displaced 

by expansion of sea ice as for sites further south. Evidence from Biuw et al., 

2010 showed that a bird from a colony on Bouvet Island  travelled to the South 

Sandwich Islands during a pre-moult trip, suggesting that migrating birds may 

converge in this high productivity region from both the east and west. Therefore, 
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this area may be able to support birds from multiple colonies but further 

research is needed to determine the over-winter behaviour of the South 

Sandwich Islands population. Should this area be utilised by birds from the 

South Sandwich population as well as that from the South Orkneys it would be 

an important feature to conserve within the South Georgia and South Sandwich 

Island Marine Protected Area. Protection of these over-winter sites is 

particularly crucial for the conservation of this species, as their strong migratory 

connectivity means they are less able to react to changes at these sites and, 

thus, are more likely to be negatively impacted.  

 

4.2 | Isotopic niches 

4.2.1 | Variation between archipelagos  

 Nitrogen Isotope ratios from tail feather samples suggested that the 

South Shetlands birds fed at higher trophic levels during outbound migration/the 

early wintering period. Across the chinstrap penguin breeding range their diet is 

almost exclusively krill, except individuals breeding at the South Shetland 

Islands where fish accounts for up to 45% of their diet during some breeding 

stages (Ratcliffe and Trathan, 2012). The isotopic analysis of their feather 

suggests that they also feed on higher level prey, likely fish, during the winter, 

suggesting a continued lack of krill availability or a socially learnt prey 

preference. The closely related gentoo penguins (Pygoscelis papua) at South 

Georgia switch to fish during summers when krill abundance is low (Croxall et 

al., 1999; Waluda et al., 2017) and also during winter (Williams, 1991). 

Alternatively, the higher δ15N ratios in the South Shetland wintering area might 

arise from elevated baseline values, higher levels of omnivory by krill (Price et 

al., 1988) or penguins feeding on carnivorous crustaceans such as amphipods 

(Negrete et al., 2017). Isotope baselines are defined by physical conditions 

(e.g., temperature), nutrient availability and the composition of primary 

producers (Graham et al., 2010), which can all vary greatly between years. 

 δ13C ratios increase with latitude and are higher in pelagic compared to 

inshore or benthic habitats (Cherel and Hobson, 2007). Our GLS findings show 

that South Orkney birds occur at lower latitudes than South Shetlands birds but 

they display higher δ13C ratios, which is the opposite to the general pattern. 

These higher ratios may be due to the extensive movement of water masses in 

this area and how they bend through the Scotia Arc, being forced northwards 
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along the Scotia Trench (Venables et al., 2012), such that the South Orkney 

over-winter site is in waters from further south than that of the South Shetlands 

over-winter site. Therefore, the observed differences are most likely due to the 

differing location of the two populations’ over-winter sites; the South Orkney 

over-winter site is located just downstream of land, whereas the South Shetland 

over-winter site is pelagic. This discrepancy between the isotope values and the 

tracking data is likely due to the influence of the inter-annual isotopic baseline 

shifts, which our bulk isotope analysis technique is unable to account for (Polito 

et al., 2017; Whiteman et al., 2019). Compound specific isotopic analysis can 

remove these concerns over baseline influence and a study by Polito et al. 

(2017) hypothesised that birds from our two study archipelagos wintered in 

different areas based on this isotopic information alone, which our tracking data 

supports.  

 The GLS data show that, at the end of migration, birds are near the 

colony during the period of egg formation and δ13C ratios suggest that birds 

from both archipelagos are foraging over the shelf and δ15N ratios indicate that 

they are feeding on low trophic level prey, most likely krill as they do during the 

breeding season (Lynnes et al., 2002; Takahashi et al., 2003; Hinke et al., 

2007).  

  

4.2.2 | Variation within archipelagos 

 Interannual variation in the isotopic niche, derived from feather samples, 

of both populations was high, particularly for the South Orkneys population, with 

significant differences in average δ13C and δ15N values. In the absence of GLS 

data, the variation in δ13C might have been interpreted as birds accessing 

different wintering areas between years, which varied in either latitude and/or 

distance from land. However, the GLS data showed that they consistently used 

the same over-winter areas between years and thus the variability in this 

isotope is likely an artefact of interannual baseline shifts, as discussed above. 

The bulk isotope analysis method employed in this study has been used 

extensively to explain differences in isotopic niches among site and year groups 

in a range of penguin species but it is unable to account for interannual baseline 

shifts (Polito et al., 2011, 2017; Ceia et al., 2015; Dehnhard et al., 2016; 

Dimitrijević et al., 2018; Whiteman et al., 2019). Therefore, to account for this, 

studies require information on annual or spatial baseline interannual variability 
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or need to use compound specific methods, which can account for baseline 

shifts, to make any conclusions about variation in wintering areas from isotopes 

alone. Alternatively, tracking birds provides more accurate data but it is more 

logistically challenging, time consuming and expensive (Polito et al., 2017).  

 

5 | CONCLUSIONS 

This study extends our knowledge of winter migratory behaviour of 

chinstrap penguins, revealing the distribution of birds from the South Orkney 

Islands, during this period, for the first time. This novel insight into the behaviour 

of this rapidly declining species during winter, is integral in the development of 

new, and support of current, marine protected areas (MPAs) to reduce the 

impacts of the local krill fishery. Additionally, it provides valuable information for 

elucidating the role of environmental variability during the winter period in 

breeding population declines.  

Comparing the newly identified migration areas and over-winter sites of 

the South Orkney population with the South Shetlands population showed that 

birds from the two archipelagos wintered in spatially segregated areas, 

experiencing different environmental conditions and likely consumed prey at 

different trophic levels, as is the case during the breeding season. The similar 

rate of population decline occurring at both archipelagos indicates a large-scale 

regime shift affecting the region, rather than changes within individual wintering 

or breeding areas. Interestingly, this possible large-scale regime shift is not 

currently affecting the huge South Sandwich Islands chinstrap population where 

numbers are currently stable (Lynch et al., 2016). The winter distribution of this 

population is currently unknown, meaning that they may share wintering areas 

with birds from the South Orkney Islands and if so, the differing population 

trends must arise from factors operating in the summer but if their wintering 

areas differ it could arise from factors in either the summer, the winter, or both. 

Therefore, further investigation is required to elucidate the drivers of these 

contrasting population trends and implement conservation action accordingly. 
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6 | FIGURES  

 

Table 1 – Sample sizes of geolocator (GLS) tracks and biological samples 

collected from Signy Island, South Orkney Islands archipelago. 

Year Site 

Number 

of GLS 

tracks 

Number of tail feathers 

Number 

of egg 

shells 

2006/2007 

South Orkneys - - 15 

South 

Shetlands  

(King George 

Island) 

- - 15 

South 

Shetlands 

(Livingstone 

Island) 

- - 15 

2011/2012 

South 

Shetlands  

(King George 

Island) 

19 

16 

(collected on recovery - 

2012) 

- 

South 

Shetlands 

(Livingstone 

Island) 

33 

21 

(collected on recovery - 

2012) 

- 

2012/2013 South Orkneys 8 - - 

2013/2014 South Orkneys 14 

27 

(collected on deployment - 

2013) 

- 

2014/2015 

South 

Shetlands 

(Livingstone 

Island) 

26 26 - 

2015/2016 South Orkneys 6 

19 

(collected on deployment - 

2015) 

- 

2017/2018 South Orkneys - 

7 

(collected on recovery - 

2018) 

- 
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Table 2 – Summary of tail feather and eggshell (2007 only) isotopic values 

(mean±SD) and Bayesian core niche area estimate (SEAb) for each sampling 

year at each archipelago. Values in parentheses are 95% credibility intervals.  
  

Sample 

number (n) 
δ13C ‰) δ15N (‰) SEAb (‰) 

S
o

u
th

 O
rk

n
e

y
s

 

All years 

(tail feathers) 
53 -23.08±1.01 8.79±0.66 

2.03 

(1.55–2.69) 

2007 15 -24.09±0.40 9.15±0.95 
1.12 

(0.69–1.98) 

2013 27 -22.42±0.81 8.56±0.58 
1.22 

(0.84–1.83) 

2015 19 -23.97±0.43 8.81±0.61 
0.79 

(0.51–1.30) 

2018 7 -23.17±0.95 9.58±0.44 
1.00 

(0.49–2.47) 

S
o

u
th

 S
h

e
tl

a
n

d
s
 

All years 

(tail feathers) 
62 -22.69±0.77 9.63±0.76 

1.77 

(1.38–2.29) 

2007 30 -23.82±0.74 9.19±0.59 
1.32 

(0.94– 1.95) 

2012 37 -23.02±0.69 9.71±0.82 
1.73 

(1.26–2.44) 

2014 25 -22.20±0.61 9.50±0.66 
1.06 

(0.72–1.62) 

 



 

113 
 

Figure 1 – Monthly 95% contours of birds from the South Orkney Islands (dashed lines – colony location at red triangle) and South Shetland 

Islands (solid line – colony location red circle) with April to November coloured in the following order: red, brown, blue, green, orange, 

purple and grey. The maps were produced by the authors using R version 3.6.1. and the ggplot2 packages (R Core Team, 2015; Wickham 

and Chang, 2016).  
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Figure 2 – Mean near-surface ocean velocity field (2012-2016) for the Southern Ocean, with the colour axis set to a maximum of 0.3 m s-1 

for clarity of visualisation. Arrows indicate current velocity (larger arrow = faster flow) plotted at every 1° latitude and 2° longitude. Data 

were obtained from the E.U. Copernicus Marine Service information (Copernicus Marine Environment Monitoring, 2018). South Shetland 

Islands highlighted with red circle and South Orkney Islands highlighted with red triangle. 
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Figure 3 – Annual Chorophyll-a vaues at the over-winter site of each archipelago population during each tracking year.  
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 Figure 4 – Annual sea-surface temperature values at the over-winter site of each archipelago population during each tracking year.  
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Figure 5 - Total (TA–dashed line) and core isotopic niche area (SEAc–solid line) and group centroid (cross) for chinstrap penguin 

biological samples. Plot A–All feather samples from both archipelagos–black=South Shetland Islands, red=South Orkney Islands; B–All 

eggshell samples–black=South Shetland Islands, red=South Orkney Islands; C–South Shetlands individual years tail feathers–black= 

2012, red= 2014; D–South Orkney individual years tail feathers–black= 2013, red= 2015 and grey=2018; E–tail feathers of individual 

birds sampled on successive years–black= 2016 samples, red=2017 samples. 
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Chapter 4 – Investigating the effect of sea ice on breeding and foraging 
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ABSTRACT  

 Rapid warming in West Antarctica is associated large-scale population 

and extent. The “sea ice hypothesis” states that the loss of sea ice has led to 

declines in numbers of the “ice-loving” Adélie (Pygoscelis adeliae) and “ice 

tolerant” chinstrap (Pygoscelis antarctica) penguins and increases in the 

numbers and range of the “ice averse” gentoo penguin (Pygoscelis papua). 

Based on this hypothesis and values in published literature, we predicted that 

Adélies will have a sea ice optima of around 20% for breeding and foraging 

performance, chinstrap performance will remain constant before decreasing at 

sea ice concentrations (SIC) below 20% and gentoo performance will decline 

steeply as SIC increases. We tested these predictions in the WAP region for the 

first time by modelling penguin performance metrics collected on Signy Island, 

South Orkney Islands, in relation to concentrations of pack ice within the 

foraging ranges of each species’ during the guard stage. All metrics showed 

substantial species and interannual variability but SIC only explained a 

significant amount of the variation in the cases of trip duration and fledging 

mass. In both cases, the relationships were linear and only in the case of trip 

duration did the rate of response differ according to species, with the Adélie 

response being steeper than that of chinstraps. Our findings do not support the 

hypotheses that the three Pygoscelis penguin species have differential 

tolerances of sea ice, nor that any species have an optimum SIC in this region. 

Alternative explanations for the contrasting populations trends of the three 

species here and elsewhere in West Antarctica need to be sought, which are 
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likely to include regional changes in food availability and environmental 

conditions.  

 

1 | INTRODUCTION  

 Over recent decades, ecosystems across the globe have been 

experiencing large-scale shifts in climate and these shifts are forecast to 

continue into the next century (Intergovernmental Panel on Climate Change, 

1996, 2007). There is abundant evidence that species are responding to these 

shifts, causing changes to their distributions, phenology and population 

dynamics (Walther et al., 2002; Parmesan, 2006), contributing to a 60% 

decrease in global biodiversity since 1970 (Grooten and Almond, 2018). Climate 

change is highly variable between regions and ecosystems, meaning the type 

and magnitude of impacts on species differs geographically (Intergovernmental 

Panel on Climate Change, 2007).  

The Polar regions are experiencing some of the most rapid rates of 

climate change globally, and temperatures here have already increased by 

twice as much as the global average (Intergovernmental Panel on Climate 

Change, 2007). These dramatic climate changes have produced concurrent 

declines in sea ice duration and extent (Stammerjohn, Martinson, Smith and 

Iannuzzi, 2008; Overland and Wang, 2010), snow and frozen ground layers 

(Intergovernmental Panel on Climate Change, 2007). Particularly harsh climates 

and strong seasonality define the Polar Regions, meaning species are highly 

adapted to a narrow optimal range of environmental conditions and any 

conditions outside of this range will impact their breeding success and even 

their survival (Clarke, 1991; Clarke et al., 2007; Milazzo et al., 2013). Therefore, 

the effects of climate change on species are exacerbated in these regions 

(Parmesan, 2006; Intergovernmental Panel on Climate Change, 2007). 

  Sea ice is a significant driver of biogeochemical cycles and thus crucial 

to the functioning of Polar ecosystems (Post et al., 2013; Wang et al., 2014). 

The melting of sea ice in spring releases nutrients that trigger phytoplankton 

blooms and nutrient cycling (Wang et al., 2014). Additionally, sea ice provides a 

habitat for microalgae and bacteria (Thomas and Dieckmann, 2002), which 

support pagophilic (ice-loving) fish and crustaceans, including Antarctic krill 

(Euphausia superba; hereafter krill) larvae (Daly and Macaulay, 1988; Atkinson 

et al., 2004). Air-breathing predators use sea ice as a platform to haul out on, 
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which helps them to reduce energy expenditure and avoid predators (Watanabe 

et al., 2012), although high coverage of sea ice may negatively affect their 

foraging by acting as a physical barrier between them and their prey (Clarke et 

al., 2006; Massom et al., 2009; Ropert-Coudert et al., 2018). These opposing 

drivers may result in optimal concentrations of sea ice for foraging and 

demography, whose peaks will vary between species according to their 

ecological requirements (Kovacs et al., 2011; Post et al., 2013).  There is 

evidence of a sea ice optima in numerous Antarctic seabirds (see Barbraud et 

al., 2012 for review) and in Arctic seabirds, including, Brünnich’s guillemot (Uria 

lomvia) (Gaston, Gilchrist and Hipfner, 2005; Smith and Gaston, 2012) and 

black‐legged kittiwake (Rissa tridactyla) (Gaston, Gilchrist and Mallory, 2005) 

and Arctic marine mammals, including whales, seals and polar bears (Ursus 

maritimus) (Laidre et al., 2008; Moore and Huntington, 2008). This suggests 

that a sea ice optima for population growth is a widespread phenomenon in high 

latitude predators (see Barbraud et al., 2012 for review).  

 The rapid climate changes occurring in West Antarctica are causing the 

three species of Pygoscelis penguins to experience contrasting trends in 

abundance and range, with Adélie (Pygoscelis adeliae; hereafter Adélies) and 

chinstrap penguins (Pygoscelis antarctica; hereafter chinstraps) declining by 

more than 40% over the last four decades while gentoo penguin (Pygoscelis 

papua; hereafter gentoos) populations increased by more than 255% (Lynch et 

al., 2012; Dunn et al., 2016). The “sea ice hypothesis” proposes that these 

patterns are driven by the reduction in sea ice extent across the Western 

Antarctic Peninsula (WAP), which have benefited the “ice averse” gentoos but 

caused declines of the “ice loving” Adélies and “ice tolerant” chinstraps (Fraser 

et al. 1992, Trivelpiece et al. 2011). This hypothesis is based on the different 

biogeography of the species, with gentoos having a more northerly distribution 

that includes the ice-free sub Antarctic Islands, Adélies being found around the 

Antarctic continent including areas with high sea ice concentrations (SIC) and 

chinstraps being intermediate (Borboroglu & Boersma, 2013). Quantification of 

chick-rearing habitat within the WAP also finds that Adélie colonies have higher 

SIC within their foraging ranges compared to the other two species (Cimino et 

al. 2013), while habitat preferences during the non-breeding period are also 

consistent with Adélies having a greater affinity for sea ice than chinstraps or 

gentoos (Hinke et al., 2015, 2017). The responses of Adélie penguins to varying 
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SIC are well documented and include effects upon foraging performance (Kato 

et al., 2002; Ballard et al., 2010), breeding success (Clarke et al., 2002; 

Emmerson and Southwell, 2008; Le Guen et al., 2018) and overwinter survival 

(Ballerini et al., 2009) with evidence for an optimum value around 20% (Ballard 

et al., 2010; Barbraud et al., 2015; Le Guen et al., 2018). However, these 

studies are mostly from east Antarctica and are often confounded by the effects 

of huge icebergs (Dugger et al., 2014) or weather, so the effects of sea ice loss 

on Adélies in the WAP region are less clear. Studies of the effects of SIC on 

chinstrap breeding success are sparse and inconsistent (Lishman, 1985; 

Trathan et al., 1996; Rombolá et al., 2003) and we are not aware of any that 

document its effects on that of gentoos. The behavioural and demographic 

responses of the three species to variations in SIC within the WAP therefore 

require further investigation in order to test the predictions of the sea ice 

hypothesis within the region in which it was formulated. 

 In order to fully understand the mechanisms underlying the influence of 

SIC on annual breeding productivity, we need to understand its influence on 

foraging performance metrics including foraging trip duration, diet composition 

and fledging mass. The metrics link together as follows, long foraging trips 

combined with small or low-quality meals will reduce food provisioning rate, 

chick growth and ultimately fledging mass, which in turn will lead to higher chick 

mortality and therefore, lower breeding productivity. Previous studies on Adélies  

have found foraging trip duration and distance to increase with increasing SIC, 

even in the presence of a polynya (Clarke et al., 2006), as the ice impairs 

access to open water needed for foraging and walking across the ice is slower 

than swimming (Pinshow et al., 1977). This shift may also be driven by the 

influence of SIC on krill, the primary prey of all three species in the WAP region 

(Ratcliffe and Trathan, 2012), abundance and distribution (Atkinson et al., 

2008), and thus the proportion of the species in penguins’ diet. Obtaining 

adequate amounts of high calorific prey is crucial for chick survival because it is 

strongly dependant on them attaining optimal fledging mass (Salihoglu et al., 

2001; Croll et al., 2006). 

Based on the presumed ice tolerance classifications for the three 

species, we can make some predictions about their respective sea ice optima 

for breeding and foraging performance metrics. Adélies will have a sea ice 

optima as quantified in previous studies (~20%) (Barbraud et al., 2015; Le Guen 
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et al., 2018), chinstrap productivity should remain level before decreasing at 

low-moderate levels of sea ice, likely well below Adélies’ reported optima, and 

gentoos productivity will decline steeply as sea ice increases (Fig. 1). In this 

chapter we will test these predictions on Adélie, chinstraps and gentoos 

breeding sympatrically on Signy Island, South Orkney Islands (60°42’S, 

45°36’W), the first direct test of the ‘sea ice hypothesis’, and attempt to quantify 

each species’ sea ice optima for the first time in this region. This archipelago 

lies to the north of the marginal ice zone during the austral summer, but 

persistent southerly winds can result in dense pack ice, originating from the 

Weddell Sea, collecting on south-facing shorelines during the penguin’s 

breeding season. We monitored breeding productivity, trip duration, diet 

composition and fledging weights and compared them to annual SIC to 

determine the influence of SIC on these species in this region.   

 

2 | MATERIALS AND METHODS 

2.1 | Sea ice concentration in foraging area 

 Sea ice concentration (SIC) were obtained from the NOAA/NSIDC 

passive microwave satellite derived dataset (NOAA OI SST V2) (Reynolds et 

al., 2018) for each species’ guard stage, December to January for Adélies and 

gentoos and January to February for chinstraps (Black, 2015) (Pers. Obs.), from 

1998/1999 to 2016/2017. The 0.25 x 0.25 degree gridded data was rasterised 

using the raster (Hijmans, 2017) package in the statistical program ‘R’ (R Core 

Team, 2015), allowing SIC values to be extracted from a 30km buffer region. 

This region size was selected based on breeding season foraging ranges 

(Clewlow et al., 2019), and the findings of Emmerson et al. (2008) that 

nearshore SIC was the most influential on breeding success, and was centred 

on the breeding colonies at Gourlay Peninsula for Adélies and chinstraps and 

on the breeding colonies at North Point for gentoos (Fig. 2). Extracted values, 

expressed as a percentage of the area covered by sea ice, were averaged for 

each year. 

 

2.2 | Breeding productivity 

 The breeding cycle of all three penguin species was monitored annually 

from the 1998/1999 breeding season to the 2016/2017 breeding season, with 

data missing for the 2010/2011 season due to logistical issues. Experienced 
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observers carried out direct ground counts of 9 Adélie, 11 chinstrap and 10 

gentoo subcolonies using methods standardised by the Commission for the 

Conservation of Antarctic Marine Living Resources (CCAMLR) Ecosystem 

Monitoring Programme (CEMP) (CCAMLR, 2014). Breeding productivity was 

defined as the average number of chicks fledged per breeding pair with eggs, 

aggregated at the level of sub-colony for Adélie and chinstrap and across all 

subcolonies for gentoos (since their subcolonies are close together and fledged 

chicks move among them). The number of breeding pairs was established in 

November for Adélies and gentoos and in December for chinstraps. The 

number of fledglings was counted annually in early January for Adélies, late 

January/early February for gentoos and late February/early March for 

chinstraps.  

 

2.3 | Diet composition 

 Adult foraging performance was investigated using diet samples and 

fledging mass. Diet samples were collected from the 2001/2002 breeding 

season to the 2016/2017 breeding season and fledging weights were collected 

from the 1996/1997 breeding season to 2016/2017 breeding season. Data were 

only available for Adélies and chinstraps as the diet sampling technique is not 

appropriate for gentoo penguins and their fledging weights were unavailable.  

Diet samples were collected each breeding season from adult birds, as 

soon as they returned from foraging trips, during their respective guard stages 

of breeding, using the stomach flushing technique (also termed stomach 

pumping or gastric lavage) as standardised by CCAMLR (2014). Samples were 

collected from multiple individuals each year (Samples per year – Adélie: 34±9 

(mean±SD); chinstrap: 35±6). Information on the proportion of krill was obtained 

from each diet sample. Results are unlikely to have been affected by digestion 

before sampling as birds are able to preserve food for their chicks in their 

stomach for long periods, up to three weeks in some penguin species 

(Gauthier-Clerc et al., 2000).  

Adélie and chinstrap chicks were weighed to the nearest 0.1g using a 

5kg Pesola spring-scale (Pesola AG, Feusisberg, Switzerland) just prior to 

fledging (Samples per year – Adélie: 247±94; chinstrap: 207±78) following the 

CCAMLR (2014) standardised methods. 
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2.4 | Foraging trip duration   

Breeding Adélie and chinstrap penguins were tagged with GPS loggers 

(Little Leonardo GPL-380DT, Tokyo, Japan) during 2007/08 and Fastloc2 GPS 

loggers (Sirtrack, Havelock, New Zealand) during guard stage in four breeding 

seasons (2007/2008, 2011/2012, 2013/2014 and 2015/2016), totalling 92 

Adélies and 42 chinstraps (see Table S1 in Chapter 2 for number of samples 

per year). Gentoos were not tagged due to the logistical demands of accessing 

their breeding colonies from the Signy Island Base. GPS tags were attached to 

the central back feathers using two-part epoxy resin and waterproof tape (Tesa, 

Hamburg, Germany). Fastloc2 GPS weigh 39.9g and measure 65mm long, 

28mm wide and 15mm deep, equating to an estimated surface area of 

6430mm2 and Little Leonardo tags weigh 92g and measure 58 mm long, 28 mm 

wide and 20 mm deep, equating to an estimated surface area of 6688mm2. 

Surface areas are provided for information only and estimates are based on a 

basic rectangle and thus do not account for the aerodynamic angle of the front 

of the tags, which differ between the two models. Further details of tagging and 

processing regime can be found in Chapter 2. The duration of each foraging trip 

(hours) was calculated using the move package (Kranstauber and Smolla, 

2016) in ‘R’ (R Core Team, 2015). 

 

2.5 | Analytical methods 

 The breeding and foraging performance metrics, specifically foraging trip 

duration, proportion of krill in diet, fledging mass and breeding productivity, of 

Pygoscelis penguins were analysed using linear, generalised linear or additive 

models (GAM), all fitted using the mgcv package (Wood, 2018). Explanatory 

variables were year and species as factors, sea ice concentration (SIC) as a 

covariate and, in the case of the model of breeding productivity, sub-colony as a 

random intercept. The effects of SIC were fitted as a smooth term using a cubic 

regression spline with three knots: this allowed fitting of the quadratic 

relationship assumed for optima, whilst providing the flexibility to fit linear or 

asymptotic relationships of the forms depicted in Fig 1. For productivity, the 

response variable was the number of fledglings with the natural log of the 

number of pairs specified as an offset, which expresses the response as a ratio 

(Crawley, 2002). This was modelled with a negative binomial distribution (owing 

to over dispersion around the Poisson distribution) and a log link. Fledging 
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mass and trip duration responses were modelled using an identity link and 

normal errors. The proportion of krill in the diet was modelled with beta errors 

and a logit link.  

For each response, the global time and species dependent model 

(Year*Species) was simplified by fitting additive time and species effects, 

removing time and species terms altogether or replacing the time term with the 

time-dependent covariate of SIC (which could be specific to, or common across, 

species) to determine the best fit model. We used Akiake’s Information Criteria 

(AICc) to guide model selection: the minimum adequate model was that with the 

lowest AIC score, unless a simpler model differed from this by less than two AIC 

units. This procedure was followed to identify both the minimum adequate time-

dependent model and SIC model.  

Where models that included an effect of SIC were supported, analysis of 

deviance (ANODEV) was used to determine the proportion of the annual 

variability explained, calculated as (Devc-Devx)/(Devc-Devt), where c, x, and t 

indicate models with no time dependence (sampling colony only), with the SIC 

covariate and full time dependence (sampling year), respectively (Frederiksen 

et al., 2008).  

 

3 | RESULTS  

 Overall, SIC during the species’ guard stages showed substantial annual 

variation, ranging from 0 to 69% concentration. Chinstraps experienced 11 ice 

free years compared to 9 for the other two species, likely due to the former’s 

later breeding phenology. Chinstraps also experienced no years with greater 

than 50% SIC in comparison to four years for Adélies and three years for 

gentoos.  

 

3.1 | Trip duration 

 Modelling of annual variation in trip duration found that the minimum 

adequate model consisted of the interaction between year and species, as 

removing either of these variables caused an increase in AIC (Table 1). Trip 

durations differed between years and between species, with Adélies 

consistently undertaking longer trips, on average, than chinstraps (Table 2). 

Trips were relatively short in 2008 and 2012, intermediate in 2014 and longest 
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in 2016. Both species had similar trip durations in 2008 and 2012 but Adélie 

trips were longer in 2014 and 2016 (Table 2).  

 Modelling of the effect of SIC on trip duration found that the minimum 

adequate model was the global model (Year*Species) and removing other 

variables caused an increase in AIC (Table 1). Both species displayed a linear 

reduction in trip duration as SIC increased (Fig. 3). No trip duration data were 

available for Adélies in SIC values under 40% so it is uncertain whether the 

linear trend continues in years when SIC is low (Fig. 3). ANODEV showed that 

SIC explained 75% of the annual variability in trip durations across the two 

species.  

  

Table 1 - Annual variation in trip duration (hours) and the effect of sea ice 

concentration (SIC), where t is year, s is species, x is SIC, K is the number of 

model parameters and ΔAICc is the difference in AICc between the model in 

question and the best fit model. 

Model/parameter ΔAICc QDeviance K 

t*s 0 592.86 8 

t+s 1.77 607.93 5 

s+x+(s*x) 10.66 611.74 8 

s+x 11.09 621.11 4 

t 20.42 620.78 4 

x 26.28 633.63 3 

Null model 52.46 648.33 1 

s 53.9 645.37 2 

 

Table 2 – Mean annual trip durations and standard deviations for Adélies and 

chinstraps 

Species Year Mean±SD 

Adélie 
2008 

13.3±7.6 

chinstrap 8.7±8.1 

Adélie 
2012 

23.0±11.8 

chinstrap 10.0±9.4 
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Adélie 
2014 

55.8±43.9 

chinstrap 9.5±5.3 

Adélie 
2016 

82.4±49.7 

chinstrap 36.8±37.4 

 

3.2 | Diet composition 

 The annual variation in the percentage of krill in diet samples was found 

to be best explained by the global model, consisting of the interaction between 

year and species (Table 3). Removing year and species and an additive model 

of the two caused AIC values to increase. Both species fed on similar diets (Fig. 

4), characterised by very high krill composition, up until 2012 with the exception 

of 2010 (when krill declined in diets of both species). From 2013 diet 

compositions of the two species uncouple and Adélies start to feed on 

alternative prey, particularly in 2014, 2016 and 2017 (Fig. 4). The proportion of 

krill in chinstraps’ diets was lower in 2014 and 2017 but not in 2016. Overall, 

chinstraps consumed a slightly greater proportion of krill on average (0.98±0.08) 

than Adélies (0.95±0.17; Fig. 4). 

 There was no support for an effect of SIC on diet composition, as shown 

by AIC. The AIC for the covariate models were 12.19 units higher than that with 

the species factor alone. The models including the SIC covariate were a poor fit 

to annual diet composition estimates and did not explain the low krill 

composition of diets in 2014, 2016 and 2017 (Fig. 5).  

 

Table 3 - Annual variation in percentage krill in diet samples models and the 

effect of sea ice concentration (SIC), where t is year, s is species, x is SIC, K is 

the number of model parameters and ΔAICc is the difference in AICc between 

the model in question and the best fit model. 

Model/parameter ΔAICc QDeviance K 

t*s 0 -20315.60 32 

s+x 1.70 -20303.40 4 

s+x+(s*x) 2.86 -20302.90 8 

x 15.54 -20297.20 3 

t+s 39201.21 -669.39 17 
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t 39221.84 -662.19 16 

s 39309.35 -647.92 2 

Null model 39326.32 -642.35 1 

 

3.3 | Fledging mass 

 The best fit model contained all factors from the global model, as 

removing species or year increased the model AIC and the interactive model of 

year and species produced a lower model AIC than the additive interaction 

between the factors (Table 4). Chinstrap fledglings (3.07±0.48kg) were heavier 

than Adélies (2.72±0.46kg) throughout the study period, equating to 0.4kg on 

average. Chinstrap fledglings were lighter in 2005 and 2010 relative to Adélies, 

and Adélies were heavier relative to chinstraps in 2013 and 2016 (Fig. 4).  

 The minimal adequate covariate model, comprising an additive effect of 

species and SIC upon fledging mass was supported by AIC values. The 

intercept for chinstraps (i.e. fledging mass in the absence of sea ice) was 

0.39kg higher than that of Adélies and both species weight increased slightly 

with increasing SIC (Fig. 6). ANODEV showed that only 11% of the annual 

variability in fledging mass across both species was explained by SIC.  

 

Table 4 – Annual variation in fledging mass models and the effect of sea ice 

concentration (SIC), where t is year, s is species, x is SIC, K is the number of 

model parameters and ΔAICc is the difference in AICc between the model in 

question and the best fit model. 

Model/parameter ΔAICc QDeviance K 

t*s 0 5472.15 42 

t+s 745.86 5820.01 22 

s+x+(s*x) 2224.63 6502.12 8 

s+x 2291.67 6557.89 4 

t 2352.74 6618.96 21 

s 2544.86 6681.01 2 
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x 3817.52 7318.74 3 

Null model 3829.86 7320.70 1 

 

3.4 | Breeding productivity 

 The best fit model contained all factors from the global model, as 

removing colony increased the model AIC, and the interaction between year 

and species produced a lower model AIC than the additive one (Table 5). 

Adélies and chinstraps produced a similar number of chicks until 2007 after 

which their annual variations differed. Gentoos experienced particularly low 

productivity in 2010, 2013 and 2016. Chinstrap productivity was also low in 

2013 and 2016, and Adélie productivity was low in 2009 and 2010 (Fig. 4). The 

mean number of chicks produced each year by Adélie pairs was 0.74±0.46 

(mean±SD), chinstrap pairs produced 0.73±0.43 and gentoo pairs produced 

0.99±0.45. 

 The smoothed model terms did not provide any support for a significant 

relationship between productivity and SIC, either across species or within any 

one of them. The model to the data was a poor fit, with high non-random 

deviance owing to years of poor productivity that were not explained by SIC 

(Table 5). The poor fit of the species-specific smooths of SIC to the annual 

variability in productivity is shown in Fig. 7 and although the smooths show 

some similarities to the hypothetical relationships in (Fig. 1) we emphasise that 

these are non-significant and, therefore, could have arisen by chance.  

 

Table 5 – Annual variation in breeding productivity models and effect of sea ice 

concentration (SIC), where t is year, s is species, x is SIC, K is the number of 

model parameters and ΔAICc is the difference in AICc between the model in 

question and the best fit model. 

Model/parameter ΔAICc QDeviance K 

t*s+Colony 0 1517.35 55 

t+s+Colony 115.84 1590.14 21 

t*s 121.18 1548.35 54 

s+x+(s*x)+Colony 143.55 1602.06 12 

s+x+Colony 146.89 1604.01 6 



 

141 
 

x+Colony 146.99 1603.85 4 

1+Colony 156.3 1605.47 2 

 

4 | DISCUSSION  

 Our results highlight the substantial annual variability in breeding 

productivity, fledging mass, diet composition and foraging trip duration between 

years for these species. We find little support for our predictions of differing sea 

ice tolerance between species and no evidence for a sea ice optima in any 

species. Therefore, we provide compelling evidence that the ‘sea ice 

hypothesis’ is not applicable to the Pygoscelis species in the WAP region. 

 

4.1 | Links between breeding and foraging performance metrics 

 Annual breeding productivity has previously been shown to vary 

depending upon a number of factors including foraging trip duration, meal mass 

(amount of food) and fledging mass (Clarke et al., 2002; Rombolá et al., 2003). 

Basically, long foraging trips combined with small or low-quality meals will 

reduce food provisioning rate, chick growth and ultimately fledging mass, which 

in turn will lead to higher chick mortality and lower productivity.  

 Our results show that foraging trip duration differs greatly between years 

and between species. Longer foraging trips are correlated with a greater mass 

of krill caught (Rombolá et al., 2003) and this is particularly important during the 

later stages of breeding as chicks require regular meals of high calorific prey to 

ensure they attain optimal fledging mass, which greatly increases their chances 

of survival (Salihoglu et al., 2001; Croll et al., 2006). Therefore, fledging mass 

can be used as an indicator of the quantity and quality of food available to 

adults: chicks fed small krill with low calorific value will have a lower weight at 

fledging than those fed larger krill with higher calorific values (Salihoglu et al., 

2001). However, in years of poor food supply, selective mortality of chicks with 

low body mass can, paradoxically, mean that fledging mass can be higher in 

years of poor food supply (Williams and Croxall, 1990; Bost and Jouventin, 

1991). Adélie fledglings at our study colonies weighed slightly less than the 

optimal fledging mass (2.8kg-3.2kg) calculated at the highly studied South 

Shetlands archipelago (Salihoglu et al., 2001), likely contributing to low 

breeding productivity. Breeding population size has also been identified as a 

driver of chick mass, with a negative relationship between population size and 
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chick mass, a decrease of 3gr with every 1,000 breeding pair increase in colony 

size, in multiple Adélie colonies, accounting for 9% of the global population 

(Dugger et al., 2014). The opposite trend was observed at our study site, but 

the population sizes are likely too similar, c. 2,200 pairs of Adélies to ~1,400 

pairs of chinstraps (Dunn et al., 2016), to induce this density-dependence driven 

pattern. There were only two years, 2013 and 2016, where chinstrap chicks had 

a lower average weight than Adélie chicks and during these years the 

proportion of krill in Adélies diet was lower than average. This may be because 

Adélies are known to shift prey type when krill quality or abundance is reduced 

(Ridoux and Offredo, 1989; Ainley et al., 2003) but chinstraps appear to be krill 

specialists across their range (Lishman, 1985; Takahashi et al., 2003; Lynnes et 

al., 2004; Ratcliffe and Trathan, 2012; Polito et al., 2015; Niemandt et al., 2016; 

Dimitrijević et al., 2018). 

  

4.2 | Responses to SIC 

 We predicted that SIC would be important in explaining the substantial 

annual variations in the breeding and foraging performance metrics and 

differences in patterns among the species. Sea-ice variation has been widely 

cited as the major mechanism mediating the impacts of climate change in the 

polar regions, influencing marine and terrestrial ecological dynamics (Post et al., 

2013). Many studies have identified sea ice as a major driver of penguin 

demographic change (Spurr, 1975; Lishman, 1985; Barbraud and 

Weimerskirch, 2001; Clarke et al., 2006; Forcada et al., 2006; Emmerson and 

Southwell, 2008; Ballerini et al., 2009; Forcada and Trathan, 2009; Barbraud et 

al., 2015; Le Guen et al., 2018). In contrast to previous work, our models did not 

find SIC to have any effect on breeding productivity or diet composition, 

highlighting the complexity of the connections between SIC and penguins. This 

discrepancy is likely due to differing sea ice conditions between East, where all 

previous studies were carried out, and West Antarctica, meaning that the way 

the species utilise and interact with the sea ice is very different. At our study 

site, the sea ice conditions are largely driven by the seasonal cycle, as the 

archipelago is located near the northern extent of the winter pack-ice. In spring, 

pack-ice retreats westwards and southwards away from the islands (Parkinson, 

1992) and fast-ice can remain for around 14 days after the pack-ice retreat 

(Murphy et al., 2014). This fast-ice usually breaks out in mid-October (Murphy et 
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al., 1995), meaning that the sea ice present during the chick rearing period 

comprises brash-ice blown up from the Weddell Sea, which becomes trapped 

on the south coast of Coronation Island to form dense pack-ice (Pers. Obs.). A 

similar situation occurs at other archipelagos in the region (Massom et al., 

2008), particularly the South Shetland Islands (Trivelpiece et al., 1987). 

 Foraging trip duration was found to be strongly influenced by SIC at our 

study colony, explaining 75% of annual variation, with both species undertaking 

shorter trips when SIC is high. Sea ice conditions vary greatly across Antarctica, 

as it is a large continent (Stammerjohn, Martinson, Smith, Yuan, et al., 2008). In 

East Antarctica fast-ice in summer is more prevalent, whereas in the 

WAP/Scotia Sea region pack-ice is the dominant type (Stammerjohn et al., 

2012). This means that penguins in East Antarctica are highly reliant on 

polynyas (open water surrounded by sea ice) for foraging (Raymond et al., 

2015). Pack-ice is more challenging for penguins to walk across but there are 

often more holes in the pack, allowing birds to access the water (Pers. Obs.). 

Most importantly, however, is the distribution of ice in relation to the colony, with 

high SIC nearshore negatively effecting penguin breeding but the same SIC 

offshore can be beneficial as it provides penguins with haul outs for predator 

avoidance and rest and krill is usually more abundant along the ice edge 

(Brierley et al., 2002; Emmerson and Southwell, 2008). Additionally, sea ice can 

act as a physical barrier to foraging areas (Massom et al., 2009), forcing adults 

to undertake longer (Rombolá et al., 2003) and, thus, more energetically 

demanding foraging trips (Rombolá et al., 2003; Ballance et al., 2009), with 

fewer, and shorter, foraging trips (Watanuki et al., 1997; Rodary et al., 2000). 

Sea ice close to breeding colonies, particularly large icebergs, has been linked 

to lower breeding productivity by a number of previous studies (Dugger et al., 

2014; Le Guen et al., 2018). The relationship between SIC and trip duration 

differs across colonies, with some studies finding duration increases with SIC 

(Clarke et al., 2002; Watanuki et al., 2002, 2004; Ballard et al., 2010) and others 

finding a reduction (Watanuki et al., 1997, 2002). It should, however, be noted 

that our tracking data are limited, and little is available from years with 

particularly high or particularly low SIC, meaning the shape of the response in 

trip duration at the extremes of SIC are unknown. 

 We predicted that diet composition would be influenced by SIC as the 

lifecycle of the species’ main prey, during the breeding season, krill, is closely 
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connected to sea ice (Atkinson et al., 2008). Sea ice acts as a nursey for krill 

larvae and its abundance and SIC have been linked at a regional scale (Daly 

and Macaulay, 1988; Atkinson et al., 2004). However, our results showed no 

relationship between diet composition and SIC. The sea ice during our study is 

mostly transient and wind-blown, which is not associated with krill larvae in the 

same way, and the krill caught by the penguins are mostly adults and 

associated with the shelf breaks (Lynnes et al., 2002; Takahashi et al., 2003; 

Clewlow et al., 2019), meaning strong relationships between the two are less 

likely. Recent studies suggest that wind and other large-scale environmental 

variables may play more of a role than SIC in influencing breeding success 

(Lowther et al., 2018; Atkinson et al., 2019). 

 Fledging mass was found to increase with SIC, however this only 

explained 11% of the annual variation meaning this is a minor driver. The 

majority of previous studies investigated the effects ice on chick growth rate 

rather than fledging mass, except see Dugger et al. (2014), as in this study and 

found it to be negatively impacted by high levels of fast- and pack-ice prior and 

during breeding (Watanuki et al., 1993; Vinuela et al., 1996), with precipitation 

(Ropert-Coudert et al., 2018) and region also being highlighted as important 

factors. The differences, highlighted above, between sea ice conditions across 

the continent may explain why our findings differ to previous studies, which 

have all been carried out in East Antarctica. Additionally, there is a large 

amount of interannual variation, with the two years with particularly low 

chinstrap fledging mass, 2013 and 2016, having highly contrasting SIC. SIC 

was particularly high during both chinstrap and Adélie guard in 2013 but very 

low during chinstrap guard and average during Adélie guard in 2016.  

  Our results, therefore, find little support for the 20-30% SIC optima for 

Adélie breeding success (Barbraud et al., 2015; Le Guen et al., 2018), foraging 

trip duration and meal mass (Ballard et al., 2010) identified by previous studies. 

In fact, we fail to find any significant relationship between SIC and breeding 

productivity and only found linear relationships between SIC and foraging trip 

duration and fledging mass. Importantly, it may be that there is a regional trend 

influencing the Adélie sea ice optima, as all three of the studies that identified a 

sea ice optima were carried out in East Antarctica, making direct comparisons 

between studies invalid. However, whilst these regional differences may impact 

the value of the sea ice optima, we would still expect to identify an optima and 
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to see differences in sea ice tolerance between the species, as their contrasting 

sea ice classifications have been used for decades to describe the species. Our 

findings are in line with a previous study at the South Orkneys for time series 

prior to the one we analysed (Trathan et al., 1996) which found no relationships 

between productivity and SIC. No other studies of long time-series of breeding 

and foraging performance metrics have found any relationship between SIC and 

gentoo or chinstrap breeding success, although some studies have found lower 

breeding success and for chinstraps during single years affected by high SIC 

(Lishman, 1985; Rombolá et al., 2003) compared to ice free ones. 

In rejecting this hypothesis, we must consider alternative explanations for 

the variability observed in the breeding and foraging performance metrics. 

Breeding productivity was found to vary greatly between years, with recent 

years having particularly low productivity (Fig. 4). This is reflected in the 

population declines of Adélies and chinstraps on Signy Island, with chinstraps 

declining at more than twice the rate of Adélies between 1978/79 to 2015/16, 

equating to reductions of 68% (-3.6% per annum) compared to Adélie penguin 

declines of 42% (-1.5% per annum) (Dunn et al., 2016). This suggests that the 

main driver must be a factor disproportionately impacting chinstraps. The 

warming temperature trends occurring in the region are not likely to be the 

driver as Adélies display a preference for cooler temperatures, nesting further 

south on the Antarctic continent, and therefore would be expected to display the 

greater population declines. Therefore, shifts in the abundance and availability 

of chinstraps’ primary prey, krill, driven by climate changes (Atkinson et al., 

2019), are likely to be the major driver of these population trends. Adélies 

generally display a preference for krill but appear to be more able to alter their 

diet based on krill availability. There is little fine scale data available on krill 

distribution and abundance and it is often temporally mismatched with the 

penguins’ breeding. Therefore, detailed direct sampling of krill targeted in the 

penguins’ foraging areas during the breeding season is required to truly 

elucidate this as a driver.    

 

5 | CONCLUSIONS 

 This study represents the first test of the ‘sea ice hypothesis’ in Western 

Antarctica and the first attempt to identify a sea ice optima for chinstrap and 

gentoo penguins. We found that SIC has no direct influence upon breeding 
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productivity for Adélies, chinstraps and gentoos breeding in the South Orkney 

Islands and that it did not act indirectly on their breeding productivity by 

significantly influencing all of the important foraging performance metrics. Whilst 

we did find fledging mass and foraging trip duration to be influenced by SIC, the 

species reacted in parallel to SIC conditions, which would not occur if the 

species’ ice tolerance differed as their classifications suggest. Therefore, our 

findings do not support the ‘sea ice hypothesis’ or the hypothesised optimal 

SICs for the Pygoscelid species breeding at Signy Island. Instead the observed 

patterns in annual breeding productivity suggest a driver that is disproportionally 

influencing chinstraps, which is most likely to be krill availability. 
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6 | FIGURES  

Figure 1 – Conceptual graph of the sea ice optima for Adélies’ (blue), chinstraps’ (red) and gentoos’ (grey) breeding productivity (ratio 

chicks to pairs). 
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Figure 2 – Map showing the monitored breeding sites on Signy Island, South Orkneys and the proximity of other islands within the 

archipelago. Maps were produced by the authors using the package ggmap in R version 3.3.0. 
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Figure 3 – Average annual foraging trip duration against average annual sea ice cover for Adélies (blue) and chinstraps (red) with bars 

representing the standard error of model prediction values. Note that both species had similar trip durations in 2008 and 2012 but Adélie 

trips were longer in 2014 and 2016. 
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Figure 4 – Annual variation in the proportion of krill in diet, fledging mass and breeding success for Adélies (blue) and chinstraps (red) 

with error bars representing the standard error.  
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Figure 5 – Annual proportion of krill in diet against average annual sea ice cover for Adélies (blue) and chinstraps (red) with error bars 

representing the standard error of model prediction values.  
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Figure 6 – Average annual fledging mass against average annual sea ice cover for Adélies (blue) and chinstraps (red) with error bars 

representing the standard error of model prediction values. 
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Figure 7 – Breeding productivity (ratio of chicks per pair) with sea ice cover (SIC) for Adélies (blue), chinstraps (red) and gentoos (grey) 

with error bars representing the standard error of model prediction values.  
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Chapter 5 – Investigating the interacting roles of competition and the 

environment upon long-term Pygoscelis penguin population trends 
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ABSTRACT 

The global climate is changing dramatically, particularly at the poles, 

altering trophic interactions and affecting population trajectories. However, the 

majority of previous studies have investigated climate change impacts upon 

single species in isolation, overlooking the potentially important role of species 

interactions in modifying the response. The three species of Pygoscelis 

penguins in the Western Antarctic Peninsula (WAP) have undergone significant 

population and range changes over the last few decades which are linked with 

rapid climate warming in the region. Adélie (Pygoscelis adeliae) and chinstrap 

(Pygoscelis antarctica) penguin populations have declined whilst gentoo 

penguin (Pygoscelis papua) populations have increased, leading to speculation 

that climate change has given the latter a competitive advantage and that the 

increased competition from gentoos might exacerbate climate impacts on the 

other two species. To date, the relative roles of environmental drivers and 

competition upon population trends have not been fully quantified within a single 

modelling framework for this system. We hypothesised that the population 

changes experienced by Pygoscelis penguins were driven by an interaction of 

interspecific competition and environmental drivers. This chapter investigated 

this hypothesis using a multi-species population model to quantify strength of 

the effects of interspecific competition and environmental variables upon the 

three Pygoscelis penguin species breeding at two colonies in the South Orkney 

and South Shetland Islands where they nest in sympatry. The models found 

that stochastic environmental variability was important for driving variability in 

population trends, but the environmental covariates and competition parameters 
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fitted in the model only explained a small proportion of the variance. Further 

research should be directed at identifying the important environmental drivers of 

the annual variability in the three penguins’ population trends and the 

demographic rates underpinning these. 

 

1 | INTRODUCTION  

Quantifying the effects of climate change on ecosystems is a key focus 

of contemporary ecological research, and predicting its impacts on biodiversity 

is of ever-growing importance (Walther et al., 2002; Parmesan and Yohe, 

2003). Shifts in species distribution (Parmesan and Yohe, 2003; Svenning et al., 

2014), alterations in population dynamics (Saether et al., 2000) and changes in 

breeding phenology have been widely documented (Thackeray et al., 2016).  

Interspecific competition may also constrain species distributions and 

abundance where dominant species exclude subordinate ones from their 

fundamental niche and confine them to a smaller realised niche (Hutchinson, 

1957). Since a species’ thermal tolerance is often an important component of 

their niche (Hutchinson, 1957; Barnagaud et al., 2012; Donald et al., 2012), it 

follows that changes in climate may alter competitive dominance among 

species (Helland et al., 2011; Milazzo et al., 2013). Additionally, the population 

shifts induced by climate change may also affect the strength of density 

dependence (i.e. population growth is regulated by the density of the 

population) (Barbraud and Weimerskirch, 2003). Therefore, the response of a 

given species to a changing environment will likely depend on the suite of 

competitors present, or those that colonise as a result of such changes (Araújo 

and Luoto, 2007; Gilman et al., 2010; Urban et al., 2012). These competitive 

interactions are often overlooked in the climate impact literature, but there is 

growing empirical evidence that changes in temperature can alter competitive 

dominance to such a degree that species’ abundance is affected and there are 

examples from a wide range of taxa, as discussed in Chapter 2.  

Environmental warming events have been magnified at the poles 

(Walther et al., 2002; Vaughan et al., 2003; Clarke et al., 2007) and the Western 

Antarctic Peninsula (WAP) is one of the most rapidly warming areas on the 

planet (Clarke et al., 2007). This region has experienced a 3°C rise in average 

surface temperature since 1951 (Vaughan et al., 2003; Turner and Overland, 
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2009; Turner et al., 2016) with associated reduction in sea ice extent 

(Stammerjohn et al., 2008), although cooling has occurred since 2000 (Turner 

et al., 2016). In response to these shifts in environmental conditions, species 

across the ecosystem have displayed shifts in their range, populations and 

breeding phenology (Lynch, Fagan, et al., 2012; Dugger et al., 2014; Dunn et 

al., 2016; Clewlow et al., 2019).  

The ranges of the three species of Pygoscelis penguins, Adélie 

(Pygoscelis adeliae), chinstrap (P. antarcticus) and gentoo (P. papua ellsworthi) 

overlap on the WAP and southerly islands of the Scotia Sea and they breed 

sympatrically at multiple colonies (Woehler, 1995). These species share broadly 

similar foraging ecology and, in this region, their diets are dominated by 

Antarctic krill, (Euphausia superba; hereafter krill) (Ratcliffe and Trathan, 2012). 

The species’ populations show different responses to climate change in the 

region: populations of Adélie and chinstrap penguins have declined while 

gentoos have experienced population growth and range expansions (Lynch, 

Naveen, et al., 2012; Dunn et al., 2016). The “sea ice hypothesis” attributes the 

differing population trends to differential tolerances of the species to sea ice 

concentration directly, in which Adélies are ice loving, chinstraps are ice tolerant 

and gentoos are ice averse (Fraser et al., 1992; Lynch, Naveen, et al., 2012). 

Other studies have questioned these classifications and formulated what we call 

here the “krill habitat hypothesis”. The hypothesis proposes that the observed 

reduction in krill recruitment and range contractions since the 1970s (Atkinson 

et al., 2019), are due to climate change induced reduction in the sea ice 

required for krill nursery habitats and increasing sea surface temperatures 

reducing the amount of suitable marine habitat (Hill et al., 2013; Murphy et al., 

2017), which in turn is reducing the amount of prey available for penguins 

(Trivelpiece et al., 2011; Lynch, Naveen, et al., 2012). Implicit in this hypothesis 

is the greater ability of gentoos to switch prey preference from krill to fish 

(Ratcliffe and Trathan, 2012), which would allow their populations to increase 

even when krill stocks decline. Alternatively, according to the wider predictions 

of the “competitive exclusion hypothesis” (Hutchinson, 1957), the altered 

climate conditions may increase gentoos competitive dominance over Adélies 

and chinstraps allowing them to be displaced in new areas of overlap, likely 

mediated by gentoos’ dietary plasticity and ability to access prey at greater 

depths (Kokubun et al., 2010; Ratcliffe and Trathan, 2012). An extension of this 
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theory is the “krill surplus” hypothesis”, in which the recovery of krill-eating 

marine mammals in the 1970s from over exploitation is causing penguin 

population declines via interspecific competition (Surma et al., 2014). 

Additionally, the WAP is also the focus of a krill fishery (Nicol et al., 2012; 

Commission for the Conservation of Antarctic Marine Living Resources, 2019), 

which could decrease the amount of krill available to penguins, and other krill-

feeding predators, but the fishery is closely monitored and controlled by 

CCAMLR to ensure the krill-feeding predators are impacted as little as possible 

(Commission for the Conservation of Antarctic Marine Living Resources, 2019). 

The relative contribution of these drivers upon penguin population trends is a 

matter of long-running debate, and studies that simultaneously investigate the 

importance of environmental drivers and competition across species, replicated 

at different sites, are required to disentangle these complex and inter-related 

effects. 

In this chapter, we use long-term count data collected from two colonies, 

one in the South Shetland Islands and the other in the South Orkney Islands, 

where all three species breed in sympatry. These are analysed with a multi-

species Gompertz population model that simultaneously estimates the relative 

importance of interspecific competition and environmental variables upon 

population trends, whilst controlling for effects of density dependence. We use 

this framework to test the level of support for the hypotheses discussed above.  

 

2 | MATERIALS AND METHODS  

2.1 | Study site and species 

Long-term data on Adélie, chinstrap and gentoo penguin population 

trajectories were obtained from study colonies on the South Orkney Islands 

(Signy Island: 60°42’S, 45°36’W) and South Shetland Islands (King George 

Island: 62°17’S, 58°45’W) archipelagos (Fig. 1a). Direct ground counts of active 

penguin nests were carried out by experienced observers using methods 

standardised by the CCAMLR (Commission for the Conservation of Antarctic 

Marine Living Resources) Ecosystem Monitoring Programme (CCAMLR, 2014). 

Counts are conducted during the incubation and guard phases of the breeding 

season, when observers walk carefully around and through selected study 

colonies, verifying nest contents and then marking individual nests with 
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temporary, animal-safe, stock marker or a nest marker to avoid double counting 

or omission. 

On Signy Island, nest counts were carried out from 1979 to 2018 in 9 

colonies of Adélie penguins, 11 of chinstrap penguins and 10 of gentoo 

penguins, which were located at Gourlay Peninsula (Adélie and chinstrap), Fyr 

Channel (chinstrap) and North Point (Gentoo; Fig. 1b). On King George Island, 

nest counts of the three species were carried out from 1987 to 2013 at Point 

Thomas for Adélies and gentoos, Copacabana for Adélies and gentoos and 

Patelnia and Uchatka for chinstraps (Fig. 1c).  

 

2.2 | Modelling annual variation in abundance  

 Counts of all study colonies were not available for all years, and so these 

needed to be interpolated from the colonies available to produce complete time 

series. These were generated by combining count data from all available study 

sites and inputting them into a generalised linear mixed model framework 

(Bolker, 2008), where each study site for a given species was treated as a 

sampling unit. For each species, the count of penguin pairs at site j and 

breeding season t was yt,j, and it was modelled as 𝑦𝑡,𝑗 ~ 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆𝑡,𝑗), where  

𝜆𝑡,𝑗 was a function of a site fixed effect and random site and random year 

effects ςjt, log(𝜆𝑡,𝑗) = 𝐾𝑗 + 𝜍𝑗𝑡, with 𝐾𝑗  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜇, 𝜎𝜅
2) and 𝜍𝑗𝑡  ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0, 𝜎𝜍

2). 

This model was fitted using Markov Chain Monte Carlo methods, with BUGS 

language and program JAGS (Plummer, 2003) and run using package jagsUI in 

the statistical program ‘R’ (R Core Team, 2015). Diffuse Normal (0, 100) priors 

were selected on the K and placed Uniform (0, 3) priors on the standard 

deviations. The model ran 500,000 iterations of three Markov chains using 

dispersed parameter values as starting values and discarded the first 250,000 

samples of each chain as burn-in, thinning the remainder to every 50th sample. 

Convergence was visually assessed using trace plots, through the mixing of the 

chains and sample autocorrelation plots. 

 

2.3 | Principal Component Analysis selection of environmental variables 

A Principal Component Analysis (PCA) was used to select and integrate 

environmental variables for use as covariates in the Gompertz model. This 

selection was based on the highest correlation between variables and principal 
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components (PCs), which were new orthogonal variables and uncorrelated to 

each other. Both local, for each individual archipelago, and large-scale 

environmental variables were inputted into the PCAs to characterise variables 

operating at different spatial scales. Local variables were sea ice extent, sea 

surface temperatures (SST) and air temperature and large-scale variables were 

the Southern Annular Mode (SAM) and Southern Oscillation Index (SOI).  

Annual sea ice extent (SIE) was calculated using passive microwave 

data from Nimbus-7 SMMR and DMSP SSM/I-SSMIS (Cavalieri et al., 2016), 

with a grid square being classified as sea ice if there was more than 15% sea-

ice coverage, a commonly used threshold in sea ice index products and first 

used by Parkinson et al. (1987). This data indicated the northern limit of the sea 

ice edge in February and the limit was taken as the mean of the values between 

longitudes 46–44°W for the South Orkneys and 62–57°W for the South 

Shetlands. The SIE for February, when it usually reaches a minimum, was 

selected as high SIE at this time is indicative of a particularly cold summer 

season.  

Annual SST was calculated using the National Oceanic and Atmospheric 

Administration (NOAA) Optimum Interpolation V2 dataset (NOAA/OAR/ESRL 

PSD, Boulder, Colorado, USA, 2018). Data was extracted for the summer 

period, defined as January to March, using the R packages raster (Hijmans, 

2017) and ncdf4 (Pierce, 2017) in R (R Core Team, 2015). Locations from GPS 

tracking of South Orkney Pygoscelis penguins, see Clewlow et al., (2019), was 

overlaid on rasterised annual SST data and values were extracted for each 

underlying grid square to produce an average annual SST value for the colony. 

Detailed tracking data was not available from the South Shetlands archipelago 

to allow values to be extracted for each location so a 25km buffer around each 

study site was used to extract SST values, which were then averaged to 

produce a single annual value. This buffer distance was selected based on 

previously published GPS tracking of Pygoscelis penguins from the South 

Shetlands, which showed that this distance covered both species’ entire 

foraging area (Kokubun et al., 2010). 

Air temperature data was obtained from the nearest long-running 

weather station to each archipelago. Orcadas Station (60°44′S 44°44′W) was 

selected for the South Orkney Islands, which is located on Laurie Island at 6 

metres above sea level and around 40km from the study colonies on Signy 
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Island (British Antarctic Survey, 2018), and Great Wall Station (62°20′S 

58°57′W) was selected for the South Shetland Islands, which is located on King 

George Island at 10 metres above sea level and around 26km from the study 

colonies (British Antarctic Survey, 2018). October air temperatures were 

selected for each year as this is the start of the breeding season and has been 

shown to correlate with shifts in species’ phenology via timing of snowmelt 

(Lynch, Fagan, et al., 2012; Clewlow et al., 2019) and so has the potential to 

affect breeding propensity.  

The Southern Annular Mode (SAM) is a large-scale atmospheric variable 

based on the zonal pressure difference between the latitudes of 40°S and 65°S. 

Positive values of the SAM index correspond with stronger-than-average 

westerlies over the mid-high latitudes (50°S-70°S) and weaker westerlies in the 

mid-latitudes (30°S-50°S). Southern Hemisphere atmospheric circulation is 

strongly influenced by SAM and any variability within SAM has large impacts on 

Antarctic surface temperatures, ocean circulation, and many other climate 

variables (Turner, 2004; Stammerjohn et al., 2008). SAM data was obtained 

from the NERC Polar Data Centre (http://www.nerc-

bas.ac.uk/icd/gjma/sam.html) based on the methodology of (Marshall, 2003). 

The Southern Oscillation Index (SOI) is another large-scale atmospheric 

variable, which provides a measure of the development and intensity of El Niño 

and La Niña episodes. It is calculated by comparing sea-level air pressure 

between Tahiti and Darwin, Australia. This index provides an indication of 

fluctuations in SST, precipitation, wind and sea-ice concentration due to El 

Niño/La Niña episodes (Kwok et al., 2016).  

Annual values were produced for all climate variables, but they were 

investigated at different time lags. This was  because the influence of some 

variables is not evident in life-history events until years later (Guinet et al., 1998; 

Barbraud et al., 2011) since they are often acting directly on productivity at 

lower trophic levels than those of penguins (Cullen et al., 2009). Therefore, air 

temperature and SST were investigated using values from year t (i.e. same year 

as population data), allowing impacts on breeding propensity to be investigated. 

SAM and sea ice extent were investigated using values from year t-1, as this 

could affect overwinter survival from the previous year or have carry over 

effects on breeding propensity in the focal year (Trathan et al., 1996; Forcada et 

al., 2006). SOI was analysed using values from year t-2 as this is the lag at 

http://www.nerc-bas.ac.uk/icd/gjma/sam.html
http://www.nerc-bas.ac.uk/icd/gjma/sam.html
http://www.nerc-bas.ac.uk/icd/gjma/sam.html
http://www.nerc-bas.ac.uk/icd/gjma/sam.html
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which El Nino affects acoustic estimates of krill biomass around the South 

Shetland archipelago (Richerson et al., 2017) and Signy Island’s penguin 

population trends according to previous analyses (Forcada et al. 2006). 

 Imputation of missing entries within these environmental data sets was 

carried out using an iterative procedure developed in R package missMDA 

(Josse and Husson, 2012). The PCA for each archipelago was performed using 

R package FactoMineR (Le and Husson, 2008) and penguin abundance data, 

generated by the population model, were used as supplementary variables in 

the analysis for a better ecological interpretation of the principal components 

and their effects on the different species. By including the species in the PCA 

analysis we could explore how the species’ responses differed to one another 

and their relationships with the environmental variables. 

 Unfortunately, there are two potentially important factors that we could 

not directly include in this analysis due to lack of data, the abundance and 

distribution of krill and predation rates on adults and chicks. Both of these 

factors have been shown to influence population trends (Trivelpiece et al., 2011; 

Horswill et al., 2014). Additionally, it is worth noting that krill stocks have been 

observed to vary cyclically, usually every in cycles of four or five years (Fielding 

et al., 2014; Richerson et al., 2017) but as our data covers multiple decades, 39 

years at the South Orkneys and 26 years at the South Shetlands, and therefore 

multiple krill cycles, our analysis should not be notably biased by this 

phenomenon.  

 

2.4 | Multi-species population model 

 A simplified population dynamics modelling framework, based on the 

work of Mutshinda et al. (2011), was used to investigate the effects of 

environmental variables, density dependence and interspecific competition 

upon population growth rates. A hierarchical Bayesian approach with a state-

space formulation (De Valpine and Hastings, 2002) approach allowed flexibility 

in the incorporation of population count uncertainty, inference on variance 

components, and quantification of variance explained, carrying over the 

uncertainty. The state process had a Gompertz formulation at its core, with a 

similar structure to other multispecies approaches (Loreau and de Mazancourt, 

2008; Mutshinda et al., 2011) and well established methods of analysis of 

environmental variance (Saether et al., 2000; Ripa and Ives, 2003). The 
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Gompertz formulation was used because it mirrors growth patterns in the real 

world with a sigmoid growth rate, growth is slowest at the start and end of a 

given time period (Tjørve and Tjørve, 2017). The number of penguins of species 

i at the study population and breeding season t, Ni,t, was estimated as: 

  𝑁𝑖,𝑡 = 𝑁𝑖,𝑡−1𝑒𝑥𝑝[𝑟𝑖(1 − ∑ 𝛼𝑖,𝑗𝑙𝑜𝑔𝑁𝑗,𝑡−1/𝑘𝑖
𝑆
𝑗=1 ) + ∑ 𝛽𝑖,𝑚𝑍𝑚,𝑡 + 𝜀𝑖,𝑡]   

where ri is the intrinsic growth rate and ki the carrying capacity for species i; the 

interaction coefficient αi,j quantifies the effects of species j on growth of species 

i; and the βi,m are fixed effects of m environmental variables, Z. The εi,t are error 

terms represent demographic and unmodelled environmental stochasticity (or 

variation); they are assumed to be serially independent and normally 

distributed. Environmental stochasticity consists of un-modelled aspects of the 

physical and biological environment, such as predation by and of other trophic 

level species, prey dynamics and other intrinsic dynamics, such as local 

physiogeography or incidence of disease. In natural logarithmic scale, and 

using the results of the PCA analysis on environmental variables, the population 

model was: 

𝑥𝑖,𝑡 = 𝑥𝑖,𝑡−1 + 𝑟𝑖 (1 − ∑ 𝛼𝑖,𝑗𝑥𝑗,𝑡−1/𝑘𝑖
𝑆
𝑗=1 ) + 𝛽𝑖,1𝑃𝐶1 + 𝛽𝑖,2𝑃𝐶2 + 𝜀𝑖,𝑡  

where xi,t is the natural logarithm of Ni,t,  and PC1 and PC2 the estimated 

coordinates of principal components 1 and 2, representing the environmental 

variables, which were standardized to unit variance. The serially independent 

vectors of 𝜀𝑖=1,..,𝑆;𝑡 were assumed to be multivariate normally distributed, 

𝜀𝑡 ~ 𝑀𝑉𝑁(0, Σ𝑡) with covariance matrix Σt, that could be further decomposed as 

Σt = C + Dt, where C is the environmental covariance matrix. This matrix 

represented the variability not explained by intrinsic dynamics or the 

environmental covariates; and Dt is the demographic variance affecting species 

i between seasons t-1 and t (Saether et al., 2000), scaled inversely with 

population size, as D𝑡 = 𝑑𝑖𝑎𝑔(𝛿𝑖
2 𝑁𝑖,𝑡−1⁄ ), where diag is the diagonal elements 

of the matrix.  

 The elements of C, Ci,i and Ci,j, for i ≠ j, for species i and j are 

respectively species-specific and joint species responses to unmodelled 

environmental factors. From these, 𝜌𝑖,𝑗 =  𝑐𝑖,𝑗 √𝑐𝑖,𝑖 𝑐𝑗,𝑗⁄   quantified the correlation 

between the responses of species i and j to environmental fluctuations, and the 

synchrony of the species responses (Loreau and de Mazancourt, 2008) was 

estimated as 
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𝜑𝑒 = [1 + (𝑆 − 1)𝜌𝑖,𝑗] 𝑆⁄ , where 𝜌𝑖,𝑗 is the average correlation between species 

environmental responses. In case there were no interactions between species 

(all of αi,j were close to zero), the environmental correlations and the 

correlations in abundance between species (𝜑𝑖,𝑗) should be very similar, and 

this was tested as, 𝜑𝑖𝑗 = 𝜃𝑖,𝑗𝜌𝑖,𝑗, where 

𝜃𝑖𝑗 = √
(1−𝑎𝑖,𝑖

2)(1−𝑎𝑗,𝑗
2)

(1−𝑎𝑖,𝑖
2)(1−𝑎𝑗,𝑗

2)+(𝑎𝑖,𝑖−𝑎𝑗,𝑗)
2  and ai,i was 𝑟𝑖 𝑘𝑖⁄  (Ripa and Ives 2003). 

 The other quantities were derived following Mutshinda et al. (2011), 

including total environmental variance for species i, 𝐸𝑖 = 𝐶𝑖,𝑖 + 𝛽𝑖,1
2 + 𝛽𝑖,2

2 , where 

𝛽𝑖,1
2 + 𝛽𝑖,2

2  was the part attributable to the environmental covariates; the 

proportion of this environmental variance was (𝛽𝑖,1
2 + 𝛽𝑖,2

2 ) 𝐸𝑖⁄ . The 

environmental covariance between the dynamics of species i and j 

was 𝛽𝑖,1𝛽𝑗,1 + 𝛽𝑖,2𝛽𝑗,2 + 𝐶𝑖,𝑗; and for 𝐶𝑖,𝑗 > 0 when covariate effects for species i 

and j were of the same sign, the proportion of the environmental covariance 

between species explained by the covariates 

was (𝛽𝑖,1𝛽𝑗,1 + 𝛽𝑖,2𝛽𝑗,2) (𝛽𝑖,1𝛽𝑗,1 + 𝛽𝑖,2𝛽𝑗,2 + 𝐶𝑖,𝑗)⁄ . 

 The observation process used the modelled estimates of site counts for 

species i in year t, yi,t, assuming that 𝑦𝑖,𝑡|𝑁𝑖,𝑡 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝑛𝑖,𝑡, 𝜏𝑖
2), where ni,t was 

𝑒𝑥𝑖,𝑡   and 𝜏𝑖
2were the estimated standard errors of the modelled site counts. This 

model was fitted using Markov Chain Montel Carlo methods, with BUGS 

language and program JAGS run from program R using package jagsUI.  

 The αi,j coefficients of species interactions for spurious values were 

investigated using stochastic search variable selection (SSVS) (George and 

McCulloch, 1993), as implemented by (Mutshinda et al., 2011). This method 

prevented interspecies interactions that were close to zero to affect the model 

results. A Bernoulli (0.2) prior was specified to the probability of interspecific 

interactions (αi,j). A diffuse Normal (0, 100) prior was used for each of the βi,1 

and βi,2, and  Normal(0, 10) and Normal(0, 𝜎𝑟
2) for the log-carrying capacities 

and the intrinsic growth rates of species i respectively. An inverse Wishart prior 

(Gelman and Hill, 2007) with scale matrix Ω was used as the identity matrix and 

S+1 degrees of freedom, where S is number of species, for the covariance 

matrix C. For the standard deviation of 𝛿𝑖
2 a Uniform (0, 10) prior was selected. 
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 The model ran 200,000 iterations of three Markov chains using dispersed 

parameter values as starting values and discarded the first 50,000 samples of 

each chain as burn-in, thinning the remainder to every 10th sample. The 

convergence was assessed visually using trace plots, through the mixing of the 

chains and sample autocorrelation plots. 

 

3 | RESULTS 

 Population models of annual variability in numbers of breeding pairs 

produced similar broad trends across both study sites, with Adélie and chinstrap 

populations experiencing overall declines, whilst the gentoo populations 

increased (Fig. 2). Annual fluctuations around these trends were evident, 

particularly on Signy Island where periodic dips in numbers occurred across the 

three species in the same year (1991, 1995, 2000, 2013 and 2017).  

 At Signy Island, the first two principal components (PC) of the PCA 

explained 61.36% of the variance in the environmental variables (Fig.3a; Table 

1). The first PC axis showed the highest positive correlation with air temperature 

and the lagged SOI and negative correlation with SST the second PC had 

highest correlations with the lagged SAM and sea ice extent for Signy Island 

(Table 3). At King George Island, the first two PC of the PCA explained 50.05% 

of the variance (Fig. 3b; Table 2). The first PC for King George Island had a 

positive correlation with lagged SOI, lagged SAM and SST and the second PC 

was positively correlated with air temperature and negatively correlated with sea 

ice extent (Table 4).  

 Interestingly, relationships of local environmental variables (SST, SIE 

and air temp) to regional climate variables (SAM, SOI) differed among the two 

archipelagos: SST was positively related to SAM/SOI in the South Shetlands 

but negatively so in the South Orkneys. SIE and air temperatures at the two 

sites showed opposite loadings along the two PCA axes. Therefore, in the 

South Orkneys positive SAM/SOI tended to produce higher SIE and warmer air 

temperatures but cooler SST, whereas in the South Shetlands they produced 

lower SIE and cooler air temperatures but warmer SST. The population 

abundances of the three penguin species showed consistent PCA scores in 

relation to SAM and SOI across the two archipelagos. Adélie and chinstrap 

penguin abundances were negatively associated with positive SAM/SOI while 

that of gentoo penguins was positively related. PCA scores of penguin 
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abundance relative to SIE, SST and air temperatures were inconsistent across 

sites.  

 The Gompertz multispecies population models run for each archipelago 

suggested that the main modelled components of interspecific competition, 

density dependence and environmental covariates had a modest effect on the 

three species’ population trajectories at both King George and Signy Islands. 

The influence of interspecific competition accounted for less than 2% of the 

observed population variance for the South Orkneys population (Table 5) and 

less than 0.4% for the South Shetlands population (Table 6). Linked to this, 

density-dependence was also found to have little effect, representing less than 

6% of the total population variance respectively for any species at the South 

Orkneys (Table 5; Fig. 4) and less than 1% at South Shetlands (Table 6; Fig. 4). 

The modelled environmental variables (PCA axes 1 and 2) only accounted for a 

small proportion of variance in penguin abundance: between 6 and 13% for the 

South Orkneys (Table 5; Fig. 5) and 7% for the South Shetlands (Table 6; Fig. 

5). The model showed that environmental stochasticity (C) has the greatest 

influence on species’ population trends, explaining between 81 and 93% of the 

annual variation in penguin numbers at the South Orkneys (Table 5) and 

between 91 and 92% of variation at the South Shetlands (Table 6).  

 

4 | DISCUSSION 

 Determining the drivers and mechanisms underlying population trends 

has been a major focus of climate change researchers for decades. Developing 

this understanding is crucial for conservation of biodiversity and for elucidating 

impacts under future climate scenarios. Interspecific competition has been 

shown to alter species’ responses to climate change (Araújo and Luoto, 2007; 

Helland et al., 2011; Pigot and Tobias, 2013) but has often been overlooked in 

previous studies. This study has applied the modelling techniques of Mutshinda 

et al. (2011) to Pygoscelis penguin population counts in the rapidly shifting 

climate of the WAP, which allowed us to investigate the relative importance of 

environmental variables and interspecific competition as drivers of change. Our 

study is differs from previous investigations of population trends in that we 

simultaneously model the effects of environment, interspecific competition and 

density dependence in a single framework, which provides greater power to 

disentangle these effects and quantify their relative importance. 
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4.1 | Patterns of population change among species and archipelagos 

 The broad patterns of population change that we observed, Adélie and 

chinstrap penguin populations declined while those of gentoo penguins 

increased, are typical of these species in a wider analyses across the South 

Shetlands and WAP (Lynch, Naveen, et al., 2012). Elsewhere in the Antarctic 

(i.e. south of the Polar Front), Pygoscelis population trends differ: at the South 

Sandwich Islands, populations of Adélie and chinstrap penguins have been 

relatively stable (Lynch, Naveen, et al., 2012) on South Georgia gentoo 

populations are fluctuating with no long-term trend (Forcada and Trathan, 2009) 

while in East Antarctica Adélie populations are increasing (Southwell et al., 

2015). 

 

4.2 | Principal component analysis 

 The PCA analyses showed that Adélie and chinstrap responses to 

environmental variables were similar whilst gentoos showed an opposing 

response. At both archipelagos, the three species displayed the same 

relationship with SOI and SAM: Adélies and chinstraps showed a strong 

negative relationship, whilst gentoos displayed a strong positive relationship 

(Fig. 3). However, their responses to SIE differed, which is possibly due to the 

slightly differing sea ice durations and the type of sea ice at each site 

(Stammerjohn et al., 2012). The local environmental variables showed differing 

relationships with SAM and SOI across the two sites, which meant our 

replicated study design offered power to disentangle these often interrelated 

effects. Penguin abundances showed consistent patterns with SAM and SOI 

across the two sites, as indicated by PCA, but their association with local 

variables differed, which indicates that climate variables operating across the 

region were more important in driving penguin population trends than local sea 

ice extent in winter or the air/sea temperatures during the breeding season.  

 SAM and SOI are large-scale drivers of climate in the Scotia Sea and 

WAP, influencing environmental variables such as wind, SST, air temperature, 

precipitation and sea ice (Turner, 2004; Stammerjohn et al., 2008; Kwok et al., 

2016). A negative SOI or SAM phase usually produces colder air and sea 

surface temperatures, higher primary productivity and more extensive sea ice 

extent during winter which in turn enhance krill recruitment and growth 
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(Richerson et al., 2017). The warming of the WAP and Scotia Sea region has 

been associated with a general southward contraction of krill through time 

(Atkinson et al., 2019) and reductions in Adélie and chinstrap penguin 

populations (Trivelpiece et al., 2011; Lynch, Naveen, et al., 2012), providing 

support for the “krill habitat hypothesis”. These region-wide changes in the 

availability of these species’ main prey explain why large scale climate 

covariates are more strongly and consistently related to penguin population 

changes than local covariates.  

The increase in gentoo populations in relation to positive SAM and SOI is 

inconsistent with the krill habitat hypothesis, which might be a result of them 

being less dependent on krill for prey than the other two species (Ratcliffe and 

Trathan, 2012). Reduced sea ice extent during winter would be expected to 

increase the survival rates of gentoos, as they are a resident (Hinke et al., 

2017) and thought to be ice intolerant species (Lynch, Naveen, et al., 2012). 

Therefore, the reduced winter SIE during periods of positive SAM and SOI 

would be expected to produce increases in gentoo populations, providing 

support for the “sea ice hypothesis”. The inconsistent effects of local SIE on 

population trends across the archipelagos contradict this expectation though: 

gentoos were negatively correlated with local SIE in the South Shetlands but 

showed a weak positive association the South Orkneys. Further studies of 

winter movements and overwinter survival of gentoo penguins at the two 

archipelagos in relation to SIE are required to test the sea ice hypothesis 

further.  

 

4.3 | Multi-species population model 

The population model results, using the environmental variables selected 

by the PCA, demonstrated that environmental stochasticity was the main driver 

of the observed population trends and only a small proportion of variance was 

explained by the specific environmental covariates. Mutshinda et al. (2011) also 

found that environmental stochasticity explained the greatest amount of 

variance in long-term population fluctuations. Environmental stochasticity 

consists of environmental drivers that are not included in the environmental 

covariates (including the same variables but sampled during different seasons 

or lags), or biotic variables such as predation, disease and prey availability. The 

most influential of these is likely to be krill availability, whose stocks tend to be 
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subject to pronounced four or five year cycles that are is only partially explained 

by environmental covariates such as SAM or SOI (Fielding et al., 2014; 

Richerson et al., 2017). Local availability of krill to penguins can also be further 

influenced by its advection in ocean currents and wind, which are inherently 

unpredictable (Hofmann et al., 1998; Flores et al., 2012). Additionally, predation 

is likely to be an important factor and has been shown to be an influential driver 

of penguin population trends in combination with bottom-up environmental 

effects (Horswill et al., 2014). Penguin population change is a complex outcome 

of variability in survival rates, fecundity, immigration and emigration, all of which 

can be affected by multiple drivers operating in varying locations, seasons or 

lags. It is therefore to be expected that the small suite of covariates fitted in this 

study did not explain a large proportion of the environmental variance in 

penguin abundance. 

The model found that species interactions explained a trivial proportion of 

the variation in population changes across species and sites and so did not 

support the “competitive exclusion hypothesis”. We therefore conclude that the 

decline of Adélie and chinstrap penguins are due to opposite reactions to the 

same environmental driver rather than gentoo penguins usurping the other two 

species from their niches. A similar analysis, found that long-term common 

guillemot Uria aalge population trends were affected by prey abundance but not 

competition from sympatric and congeneric Brünnich’s guillemot (Durant et al., 

2012). 

Competition is predicted to increase as shared resources decline 

(Hutchinson, 1957) and so the southward contraction in krill biomass in the 

Scotia Sea and WAP region (Atkinson et al., 2019) might be expected to have 

caused elevated competition among the species. It is likely that niche 

partitioning among the species has prevented this outcome. During the 

breeding season Adélie and chinstrap penguin niches are segregated by 

allochrony (Trivelpiece et al., 1987; Clewlow et al., 2019) and foraging 

behaviour such as dive depth (Clewlow et al., 2019), while gentoos niches are 

segregated from the other species by diet, shorter foraging ranges and deeper 

dives (Kokubun et al., 2010; Wilson, 2010; Herman et al., 2017; Pickett et al., 

2018). During winter, the species segregate completely with gentoos being 

resident (Hinke et al., 2017), chinstraps migrating to open water off the South 

Sandwich Islands (South Orkneys population) or SE Pacific (South Shetlands 
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population (Chapter 3, Hinke et al. 2015) and Adélies migrating into the pack ice 

and marginal ice zone of the Weddell Sea from both archipelagos (Dunn et al., 

2011; Hinke et al., 2015). Furthermore, despite increases in gentoo penguin 

populations they are small compared to the other two species in the region 

(Poncet and Poncet, 1985; Hinke et al., 2007; Dunn et al., 2016) and so would 

not be expected to exert high levels of competition at anything other than local 

scales. 

While competition among the penguin species was not evident, that from 

other biota, such as recovering whales and seals, as proposed by the “krill 

surplus hypothesis” is not addressed. No annual index of whale abundance was 

available for inclusion as a competitor term in the model, so this variance would 

have been subsumed into the variance explained by environmental 

stochasticity. Trivelpiece et al. (2011) proposed that the competition from 

marine mammals was an important consideration in the decline of penguins at 

the South Sandwich study colonies, but this was a supposition since no 

evidence was presented to support this claim. More recently, foodweb 

simulations indicate that environmental change, rather than whale and seal 

recovery is more likely to explain the decline of krill stocks and penguins in the 

Scotia Sea region, which diminishes the support for the krill surplus hypothesis 

(Surma et al., 2014). 

 

5 | CONCLUSION 

 Our approach has provided further insight into the role of environmental 

factors and interspecific interactions in driving Pygoscelis population trends and 

how this varies greatly among conspecifics and archipelagos. The analysis 

revealed that interspecific competition is likely to be a minor driver of these 

population trends. We found that the environmental covariates that correlated 

with penguin population trends in previous studies only explained a small 

proportion of the variance in population change, with environmental 

stochasticity being the main driver. The models therefore emphasised the need 

to explore alternative environmental or biotic drivers of penguin population 

change rather than continuing to explore those found to be “important” in the 

past. Food availability is preeminent among these, and time series of acoustic 

krill biomass off the South Shetlands, South Orkneys and South Georgia are 
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available since 1997 to support such endeavours (Fielding et al., 2014; 

Richerson et al., 2017) but were not able to be included in this study.  

 Further investigation should focus on the effects of environmental and 

biotic changes upon individual demographic rates, such as survival and 

breeding success, so that environmental data can be sampled from appropriate 

seasons, locations and time lags. These can then be used to construct an 

integrated population model which have the power to combine environmental, 

demographic and count data in order to understand past change in penguin 

numbers and predict those that might occur in the future (Horswill et al., 2016). 

 Penguins are a crucial component of the Antarctic ecosystem, linking 

trophic levels and transporting nutrients between land and sea and enriching 

both via their faeces. Therefore, their conservation is crucial in maintaining a 

healthy and fully functioning Antarctic ecosystem for the benefit of both 

terrestrial and marine species living there.  
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6 | FIGURES  

Figure 1 – Maps of (a) the region with the locations of the two study archipelagos, (b) a fine-scale map of the study colonies on Signy 

Island, South Orkney archipelago and (c) a fine-scale view the study colonies on King George Island, South Shetlands archipelago. Maps 

were produced by the authors using ggmap and ggrepel in R version 3.3.0 (Kahle and Wickham, 2016; Slowikowski et al., 2018). 

a 

c 
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Figure 2 – Modelled Pygoscelis penguin population trends at (a) Signy Island, South Orkney Islands and (b) King George Island, South 

Shetland Islands with 95% confidence limits (shaded bands). Note: Signy Island gentoo data is actual number of pairs counted annually 

in whole island population. Signy Island Adélie and chinstrap data is modelled from numbers of pairs counted annually in selected study 

colonies.
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Table 1 – Principal Component Analysis results for South Orkney Islands (Dim 

= principal component axes). 

Eigenvalues Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 

Variance 1.63 1.43 0.88 0.56 0.50 

% of variance 32.67 28.69 17.58 11.15 9.91 

Cumulative % of 

variance 
32.67 61.36 78.932 90.09 100.00 

 

Table 2 – Principal Component Analysis results for South Shetland Islands (Dim 

= principal component axes). 

Eigenvalues Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 

Variance 1.37 1.14 0.96 0.89 0.65 

% of variance 27.35 22.70 19.26 17.70 12.99 

Cumulative % of 

variance 
27.35 50.05 69.31 87.01 100 

 

Table 3 – Model selected environmental variables for South Orkney Islands 

(Dim = principal component axes). 

Environmental 

variable 
Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 

Air 

temperature 
0.67 -0.28 -0.51 0.46 0.03 

SAM index 0.43 0.75 0.12 0.08 -0.48 

SOI index 0.64 -0.05 0.71 0.15 0.27 

SST -0.74 0.35 0.14 0.55 0.09 

Sea Ice Extent 0.20 0.82 -0.30 -0.14 0.43 
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Table 4 – Model selected environmental variables for South Shetlands (Dim = 

principal component axes). 

Environmental 

variable 
Dim 1 Dim 2 Dim 3 Dim 4 Dim 5 

Air 

temperature 
-0.28 0.79 0.34 0.08 0.41 

SAM index 0.78 -0.22 -0.03 -0.21 0.55 

SOI index 0.60 0.30 0.55 -0.30 -0.40 

SST 0.54 0.23 -0.17 0.78 -0.10 

Sea Ice Extent -0.16 -0.56 0.72 0.36 0.11 
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Figure 3 – First and second Principal Components from the Principal Component Analysis based on environmental variables (SST=sea 

surface temperature, SIE=Sea ice extent, SAM=Southern Annular Mode, SOI=Southern Oscillation Index, AIR=October air temperature) 

with the abundance series of each penguin species incorporated as supplementary variables (AP=Adélie penguin, CP=chinstrap 

penguin, GP=gentoo penguin) for the South Orkney Islands (a) and the South Shetland Islands (b). 

b 
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Table 5 – Estimates of components of the temporal variance and proportions of the different components with respect to the total 

temporal variance for the South Orkney Islands.  

 

Component 

Adélie penguin chinstrap penguin gentoo penguin 

value 
proportion of 

total 
value 

proportion of 

total 
value 

proportion of 

total 

Total 
0.11 

(0.06 - 0.18) 
- 

0.06 

(0.04 - 0.09) 
- 

0.06 

(0.04 - 0.10) 
- 

density-dependence  

(αi,i) 

0.0075 

(0 - 0.05) 

0.06 

(0.00001 - 0.31) 

0.0007 

(0 - 0.01) 

0.01 

(0 - 0.09) 

0.0009 

(0 - 0.01) 

0.02 

(0 - 0.10) 

Interspecific 

competition   

(αi,j; i≠j) 

0.002 

(0 - 0.02) 

0.015 

(0 - 0.13) 

0.0002 

(0 - 0.002) 

0.002 

(0 - 0.03) 

0.00003 

(0 - 0.0003) 

0.0005 

(0 - 0.005) 

Environmental 

covariates  

(βi,PC) 

0.01 

(0.001 - 0.04) 

0.11 

(0.01 - 0.3) 

0.01 

(0.001 - 0.02) 

0.13 

(0.01 - 0.30) 

0.003 

(0.0001- 0.01) 

0.06 

(0.002 - 0.18) 

Environmental  

stochasticity 

(C) 

0.10 

(0.06 - 0.16) 

0.81 

(0.47 - 0.98) 

0.06 

(0.03 - 0.09) 

0.86 

(0.66 - 0.98) 

0.06 

(0.04 - 0.10) 

0.93 

(0.79 – 1.00) 
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Table 6 – Estimates of components of the temporal variance and proportions of the different components with respect to the total 

temporal variance for the South Shetland Islands.   

Component 

Adélie penguin chinstrap penguin gentoo penguin 

value 
proportion of 

total 
value 

proportion of 

total 
value 

proportion of 

total 

Total 
0.08 

(0.05- 0.16) 
- 

0.08 

(0.04 - 0.14) 
- 

0.07 

(0.04 - 0.13) 
- 

density-dependence  

(αi,i) 

0.002  

(0 - 0.01) 

0.01 

(0 - 0.12) 

0.001 

(0 - 0.007) 

0.01 

(0 - 0.09) 

0.0003 

(0 - 0.003) 

0.004  

(0 - 0.03) 

Interspecific 

competition   

(αi,j; i≠j) 

0.0006  

(0 - 0.005) 

0.004  

(0 - 0.05) 

0.0002 

(0 - 0.001) 

0.002 

(0 - 0.01) 

0.00006 

(0 - 0.0005) 

0.0007  

(0 - 0.007) 

Environmental 

covariates  

(βi,PC) 

0.007 

(0.0002 - 0.03) 

0.07  

(0.002 - 0.24) 

0.006 

(0.0001 - 0.02) 

0.07  

(0.002 - 0.22) 

0.006 

(0.0001 - 0.02) 

0.07 

(0.002 - 0.24) 

Environmental  

stochasticity 

(C) 

0.09  

(0.04 - 0.16) 

0.91 

(0.70 – 1.00) 

0.08  

(0.04 - 0.14) 

0.92 

(0.74 – 1.00) 

0.07  

(0.04 - 0.13) 

0.92 

(0.75 – 1.00) 
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Figure 4 – Estimated means and credible intervals (95%) parameters 

representing the effects of species interactions (αi,j; i≠j) on the growth of 

individual penguin species on the South Orkney Islands (a) and South Shetland 

Islands (b). A, C and G correspond to Adélie, chinstrap and gentoo penguins 

respectively so AC denotes Adélie compared to chinstrap. 
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Figure 5 – Estimated means and credible intervals (95%) for environmental 

fixed effects denoted by Principal Components (PC1 and PC2) on the growth of 

individual penguin species at the South Orkney Islands (a) and South Shetland 

Islands (b). A, C and G correspond to Adélie, chinstrap and gentoo penguins 

respectively. 
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Chapter 6 - Synthesis chapter 

 This thesis sought to elucidate the mechanisms driving the large-scale 

population changes observed in Pygoscelis penguin in the Western Antarctic 

Peninsula (WAP)/Scotia Sea region since the 1970s (Dunn et al., 2016) using 

various data collected from penguins breeding on Signy Island, South Orkney 

Islands, and King George Island, South Shetland Islands. Since the 1970s, the 

climate in the region has changed dramatically, with rapid warming and sea ice 

declines occurring until the late 20th century to be followed by a pause in 

warming (Stammerjohn et al., 2008; Turner et al., 2016). These changes have 

shifted the prevailing conditions in the penguins’ ecosystem and researchers 

widely agree that this is driving their population changes (Hinke et al., 2007; 

Forcada and Trathan, 2009; Lynch, Fagan, et al., 2012). However, the exact 

mechanisms are still poorly understood. In order to elucidate these 

mechanisms, we attempted to fill crucial knowledge gaps throughout their 

annual cycle, with particular focus on the interactions between the three 

Pygoscelis species. These species are crucial components of the Antarctic food 

web, linking trophic levels and conveying nutrients between land and sea, and 

thus their conservation is important for the functioning of the Antarctic 

ecosystem. 

 The breeding season is the most extensively studied period of the 

species’ life cycle because individuals are consistently located at their colonies 

and are relatively easily accessible. As the three species, Adélie (Pygoscelis 

adeliae; hereafter Adélie), chinstrap (P. antarcticus; hereafter chinstraps) and 

gentoo penguins (Pygoscelis papua ellsworthi; hereafter gentoos), breed 

sympatrically in our study region, share prey resources (Antarctic krill, 

Euphausia superba) and foraging areas, there is scope for high levels of 

interspecific competition. Therefore, niche partitioning is particularly important in 

enabling them to obtain the necessary nutrients for successful breeding. The 

species display pronounced seasonal allochrony, differences in the timing of 

activity among species, to reduce levels of interspecific competition (Trivelpiece 

et al., 1987; Lynch, Fagan, et al., 2012). However, allochrony can be impacted 

by climate change causing timing shifts and it has been interrupted in other 

species (Parmesan, 2006). The amount of niche partitioning induced by 

allochrony, and the effect of leapfrog foraging, had not been quantified before 
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our analyses in Chapter 2. We compared data from Adélies and chinstraps, as 

detailed tracking data for gentoos was not available, to reveal that if the degree 

of allochrony is reduced, i.e. the number of days offset in the start of breeding 

between the species, then niche partitioning by leapfrog foraging is reduced. 

However, analysis of long-term phenology data shows that allochrony is 

preserved as air temperatures warm and penguin laying dates advance (+1.02 

days per 1oC increase in October air temperature). We concluded that 

competitor matching, due to differing rates of phenological response to 

environmental change, is unlikely to arise among the two species, and thus will 

not be a significant contributing factor to the large-scale population declines 

observed for these two species, as investigated in Chapter 5.  

 Interspecific competition between these congeneric species is thought to 

occur throughout their annual cycle and therefore also influence their behaviour 

throughout the entire period. This means that in order to fully understand the 

mechanisms underlying the observed population changes we must develop a 

full understanding of impacts and interactions throughout the species’ life cycle. 

Adélie and gentoo non-breeding behaviour in the WAP region is relatively well 

known (Tanton et al., 2004; Dunn et al., 2011; Hinke et al., 2015) but our 

knowledge of chinstrap behaviour during their non-breeding period is relatively 

limited (except see Hinke et al. 2015), meaning there is a significant period of 

influence that is currently not factored into population analyses. In Chapter 3 we 

addressed this knowledge gap for chinstraps breeding on Signy Island. Utilising 

geolocator tracking tags, we identified the migration routes and over-winter sites 

of chinstrap penguins from the South Orkney Islands for the first time and 

compared it with similar data from the South Shetlands archipelago to 

determine if niche partitioning also played a role during this period. Birds from 

the two archipelagos displayed near complete partitioning of over-winter sites, 

indicating strong migratory connectivity. Ocean currents appeared to play a role 

in the migration routes of birds from both archipelagos and, possibly due to this, 

they were faithful to both their migration routes and over-winter sites throughout 

the multi-year study period. The over-wintering areas of the two archipelago 

populations differed in their long-term sea surface temperature and primary 

productivity (chlorophyll-a concentration), in terms of their averages, trends, and 

annual variability. Stable isotope analysis of tail feathers indicated that birds 
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from the South Shetlands archipelago foraged in different marine habitats and 

consumed prey at a higher tropic level than birds from the South Orkney 

Islands. Identifying these over-winter sites will assist in elucidating the role of 

environmental variability during the winter period, since variables for use in 

population models can be sampled from appropriate locations. Conditions at 

over-winter sites have been shown to influence breeding success in the 

following year, survival and juvenile recruitment (Harrison et al., 2011; 

Bogdanova et al., 2017). However, the population changes occurring at the two 

archipelagos are happening at a similar rate, suggesting over-winter conditions 

are not a major driver. The data from the South Orkneys population identified a 

previously unknown wintering site that will comprise an important interest 

feature in the South Georgia and South Sandwich Islands Marine Protected 

Area (SGSSI MPA) and raises questions about potential 

interactions/competition with the large number of chinstraps breeding in this 

area, whose winter behaviour is currently unknown. 

 Developing on our findings of contrasting environmental conditions 

across the chinstrap over-wintering sites, we investigated the effect of multiple 

environmental variables on population trends in the final two thesis chapters. 

Sea ice is a major component of the Antarctic ecosystem and this region 

experiences large-scale seasonal changes in sea ice concentration (SIC) as it is 

located near the northern extent of winter ice. Adélie penguin breeding 

performance has been shown to be strongly influenced by the level of SIC 

around breeding colonies because the sea ice has multiple direct, reducing 

access to foraging areas and increasing foraging trip duration, and indirect 

effects, impacting prey abundance (Fraser et al., 1992; Trathan et al., 1996; 

Croxall et al., 2002; Jenouvrier et al., 2012). Studies of the effects of SIC on 

chinstrap breeding success are sparse and inconsistent (Lishman, 1985; 

Trathan et al., 1996; Rombolá et al., 2003) and we are not aware of any that 

document its effects on that of gentoos. The three Pygoscelis species are 

widely cited as having different ice tolerances, termed the ‘sea ice hypothesis’ 

(Fraser et al., 1992; Trivelpiece et al., 2011), with Adélies being described as 

‘ice-loving’, chinstraps as ‘ice tolerant’ and gentoos as ‘ice averse’. These 

differing ice tolerances are also thought to be a major cause of the species’ 

contrasting population changes in this region. Previous studies have identified a 
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sea ice optima for Adélie breeding and foraging success of 20% (Le Guen et al., 

2018) but no such values are available for chinstraps and gentoos. In Chapter 4 

we tested the ‘sea ice hypothesis’ and attempted to identify a sea ice optima for 

breeding and foraging performance of the three species in this region. Metrics 

of breeding and foraging performance, including foraging trip duration, diet 

composition, fledging mass and breeding productivity, were investigated in 

relation to SIC within each species’ guard breeding stage foraging range. 

Interspecific and interannual variation was high for all metrics but SIC only 

explained variation in trip duration and fledging mass. Our findings do not 

support the ‘sea ice hypothesis’, that the three Pygoscelis penguin species have 

differential tolerances of sea ice, nor do they support a sea ice optimum in any 

of the species at this location. Alternative explanations for the contrasting 

populations trends of the three species here and elsewhere in West Antarctica 

are likely to include regional changes in food availability, changes in the 

weather conditions experienced at the breeding colonies and carry-over effects 

from the non-breeding season. 

In the final chapter, Chapter 5, we built on previous studies of climate 

effects (Forcada et al., 2006; Hinke et al., 2007; Lynch, Fagan, et al., 2012) by 

also investigating the interaction between these environmental drivers and inter- 

and intra-specific interactions, which has not been undertaken for this system 

before. These interactions have been observed to alter species responses to 

climate change and thus are a potentially important driver of population trends 

(Helland et al., 2011; Stenseth et al., 2015; Wittwer et al., 2015). A multispecies 

population model, based on the work of Mushinda et al. (2011), was used to 

quantify the relative contribution of interspecific competition, environmental 

variables (including sea ice conditions, air temperature, sea surface 

temperature and atmospheric variables) and specifically test the competing 

roles of intra- and interspecific competition on long-term population trajectories 

of the Pygoscelis penguin species from the South Shetland and South Orkney 

archipelagos. The model found that neither the interactions nor any of the fitted 

environmental covariates explained a substantial proportion of the population 

variance, with stochastic environmental variability to be identified as the 

strongest driver. Environmental stochasticity consists of un-modelled aspects of 

the physical and biological environment, such as predation by and of other 
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trophic level species, prey dynamics and other intrinsic dynamics, such as local 

physiogeography or incidence of disease. The most influential of these is likely 

to be krill availability, whose stocks tend to be subject to pronounced four or five 

year cycles that are is only partially explained by environmental covariates such 

as SAM or SOI (Fielding et al., 2014; Richerson et al., 2017). Therefore, 

obtaining detailed data on prey availability during all phases of the annual cycle 

is crucial in developing a full picture of the effects of both climate change and 

species interactions on the observed population trends.  

 Throughout this thesis a combination of techniques have been utilised to 

provide novel insights into penguin foraging ecology, migration, breeding 

success and population trajectories. It has also identified a number of priorities 

for future research into penguins. The study particularly identified the need for a 

greater emphasis on modelling the effects of krill biomass, rather than climate 

variables, upon penguin demographic variables and population trajectories in 

order to test the krill habitat hypothesis for Adélie and chinstrap penguins more 

robustly. There is also a need for better data on gentoo penguin survival and 

winter movements in relation to winter sea ice conditions around the South 

Shetland and South Orkney Islands in order to test the sea ice hypothesis for 

this species. The migration routes and wintering areas of the enormous 

chinstrap colonies at the South Sandwich Islands remain a mystery, meaning 

tracking data are needed to identify important areas and inform marine spatial 

planning, particularly if these occur outside the current SGSSI MPA. Comparing 

long-term patterns of environmental change in the wintering areas of the three 

archipelagos may also help to explain how the South Sandwich chinstrap 

population has remained stable (Lynch et al., 2016) whilst those in the South 

Shetlands and South Orkneys have declined (Lynch, Naveen, et al., 2012; 

Dunn et al., 2016). Therefore, whilst this project has succeeded in filling some 

important gaps in our understanding of Pygoscelis behaviour and interactions 

between the three species, it has not been able to fully answer the overall 

question due to the complexity of the interacting mechanisms driving the 

system. 
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