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ABSTRACT 25 

In comparison with temperature reconstructions, New Zealand proxy records for 26 

paleo-precipitation are rare, despite the importance of precipitation in contemporary 27 

climate variability and for projected climate impacts. In this study, records of mid-late 28 

Holocene palaeomoisture variation were derived for two hydrologically separate 29 

ombrotrophic Restionaceae bogs in northern New Zealand, based on peat 30 

humification analysis. At each site, three cores were analysed for peat humification, 31 

facilitating both intra- and inter-site comparisons. Age models for the six sequences 32 

were developed using radiocarbon dating and tephrochronology. Twelve tephras 33 

(including six cryptotephras) were recognised, four of which were used to precisely 34 

link the two sites and to define start and end points for the records at 7027 ± 170 35 

(Tuhua tephra) and 1718 ± 10 cal. yr BP (Taupo tephra) (2σ-age ranges), respectively. 36 

We find individual differences between the six peat humification records at short-term 37 

timescales that are presumably due to local site factors, in particular changing 38 

vegetation and microtopography, or to changes in the composition of the material 39 

analysed. Stronger longer-term coherence is observed between all six records but is 40 

attributed to slow anaerobic decay over time because the implied trend towards wetter 41 
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summers in the late Holocene cannot be corroborated by independent climate proxies. 42 

Despite these confounding factors, centennial scale shifts in bog surface wetness are a 43 

pervasive feature of all six records with varying degrees of overlap in time that show 44 

strong correspondence with El Niño-Southern Oscillation reconstructions from the 45 

eastern equatorial Pacific. These results indicate the potential for peat humification 46 

records from New Zealand’s ombrotrophic bogs to elucidate past climate variability 47 

and also demonstrate the importance of developing multiple well-dated profiles from 48 

more than one site.  49 

 50 

KEYWORDS: peat humification, ENSO, tephrochronology, effective precipitation, 51 

Bayesian age modelling  52 

 53 

1.0 Introduction 54 
 55 
During the past few decades, changes to the hydrological cycle and precipitation 56 

patterns across the planet have been linked to short-term (annual to decadal) 57 

variability in regional climate modes (e.g.,Wang & Cai, 2013; Hartmann et al., 2013). 58 

In extratropical regions of the Southern Hemisphere such as New Zealand, these 59 

patterns, in large part, are explained by a shift towards the high-index positive phase 60 

of the Southern Annular Mode (SAM; Marshall, 2003; Renwick, 2005; Kidston et al., 61 

2009) and in northern New Zealand by stronger or more frequent El Niño events as 62 

part of more variable ENSO cycles (Salinger & Mullan, 1999; Ummenhofer & 63 

England, 2007; Gergis & Fowler, 2009). The recent trend in the SAM has been linked 64 

both to increases in greenhouse gases and stratospheric ozone depletion (Fogt et al., 65 

2009; Thompson et al., 2011) and may be unprecedented in the last millennium at 66 

least (Abram et al., 2014; Jones et al., 2016). However, as the observational record 67 

extends for just a few decades, there is an important need to set these projections and 68 

the recent observed trend into a longer historical context. As precipitation variability 69 

is a primary indicator for both SAM and ENSO in the southern extratropics (Garreaud 70 

et al., 2007), the key to reconstructing past variability in these climate modes lies with 71 

finding suitable localities, depositional environments, and proxies to reconstruct 72 

paleoprecipitation.  73 

 74 
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New Zealand is well-served in the first two of these three requirements, but with the 75 

notable exception of hydroclimate inferences drawn from speleothem stable isotope 76 

records (e.g., Williams et al., 2004), there have been only a few attempts to develop 77 

other precipitation proxies. Here we explore the potential of peat humification 78 

analysis applied at two raised bogs in northern New Zealand for reconstructing past 79 

effective precipitation (precipitation minus evapotranspiration). The method has been 80 

widely applied in other regions of the world, although some questions have been 81 

raised about its suitability as a paleo-precipitation proxy (see section 2.0). Yet to date 82 

only two humification studies have been reported from New Zealand, both from sites 83 

in the southern South Island (McGlone & Wilmshurst, 1999; Wilmshurst et al., 2002). 84 

Nevertheless, there appears to be good potential in this oceanic setting characterised 85 

by strong regional differentiation of hydroclimate and an abundance of raised 86 

ombrotrophic (rain-fed) bog sites.  87 

 88 

We present multiple humification records, linked precisely via tephrochronology and 89 

dated using multiple AMS and conventional radiocarbon (14C) ages, from two 90 

hydrologically separate ombrotrophic bogs in northern New Zealand, that span the 91 

interval ca 7.0–1.7 calendar/calibrated (cal) ka (all ages calibrated in this study are 92 

referred to as cal years BP or cal ka). We test the feasibility of northern New Zealand 93 

humification records for reconstructing past precipitation at two time scales for the 94 

Holocene: (1) decadal-centennial and (2) millennial scales. Within- and between-site 95 

replicability and comparison with other paleo-climate records provide a basis for 96 

evaluation: coherent humification patterns within and between the two sites and with 97 

other records would support the conclusion that they represent regional precipitation 98 

patterns.  99 

 100 
2.0 Peat humification as a paleoclimate proxy: potential and limitations 101 
 102 
Humification of peat deposits is a widely used paleoclimate proxy that extends back 103 

to the 19th century in northern Europe (; Zaccone et al., 2018). The modern era of 104 

climate reconstruction from peat bogs follows the principle that raised mires in 105 

particular could provide continuous records of past hydroclimatic change because 106 

they are directly coupled with the atmosphere (Aaby & Tauber, 1975; Barber, 1981). 107 

The underlying premise is that peat humification is a measure of organic decay that 108 
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mainly reflects changing paleohydrological conditions in the thin upper layer or 109 

acrotelm. This layer experiences seasonal water table fluctuations, determined largely 110 

by the balance between precipitation and evapotranspiration, with associated 111 

variability in rates of decomposition. In contrast, decomposition proceeds much more 112 

slowly in the anaerobic catotelm and so the degree of peat humification is thought to 113 

represent the environmental conditions and in particular bog surface wetness (BSW) 114 

at the time of peat accumulation (Aaby & Tauber, 1975; Blackford & Chambers, 115 

1993). Building on this important premise, a suite of climate proxies has been 116 

developed and applied to Late Quaternary peat archives.  117 

 118 

Although there is a sound conceptual basis, questions have been raised about the 119 

wider applicability of humification as a paleoclimate proxy (Chambers et al, 2012; 120 

Hughes et al., 2012; Zaccone et al., 2018), such questions being supported by studies 121 

that reported inconsistencies between humification and other proxy-records of surface 122 

wetness in a peat profile (Yeloff & Mauquoy, 2006; Amesbury et al., 2012). One 123 

likely issue is that past changes in botanical composition at the core site may have an 124 

influence on humification measurements (Chambers et al., 1997; Payne & Blackford, 125 

2008; Hughes et al., 2012). This issue may be compounded by the small sample sized 126 

used for measurement.  Others have suggested that local topography and geochemical 127 

characteristics of the peat may also influence humification values, while some work 128 

has questioned the reliability of the colorometric technique itself for determining 129 

humification values (Caseldine et al., 2000; Morgan et al., 2005).  Amesbury et al. 130 

(2012) also challenged the use of composite curves of BSW that combined results 131 

from multi-proxy studies. They showed that climate proxies derived from analyses of 132 

testate amoebae, plant macrofossils, and peat humification at an ombrotrophic bog 133 

from western Sweden were correlated with climate parameters but at different time 134 

scales, suggesting that climate-proxy response times and regional variability may be 135 

greater than previously hypothesised. In another study from Sweden that used a 136 

similar approach to ours, Borgmark & Wastegård (2008) analysed five peat 137 

humification records from three ombrotrophic bogs in order to reduce the influence of 138 

local fluctuations and extract regional climate signal.  139 

 140 

Historically, peatland proxy-climate research has been undertaken mostly in northern 141 

Europe, but is becoming more prominent in parts of Asia and North America. In New 142 
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Zealand, a long history of peatland research extends back to the seminal work of 143 

Cranwell and von Post (1936) and has perhaps gained less international recognition 144 

than in other areas (the reader is referred to McGlone, 2009, for an account of New 145 

Zealand Holocene peat records; see also Davoren, 1978). Nevertheless, climate 146 

reconstructions from New Zealand peatlands are being applied increasingly to 147 

elucidate hemispheric and global patterns and test postulated climate forcing 148 

mechanisms (e.g., Newnham et al., 2012; Turney et al., 2017). The New Zealand 149 

work has mostly deployed pollen analysis, sometimes combined with plant 150 

macrofossil analysis (e.g., Newnham et al., 1993; 1995a; Ogden et al., 1993; McGlone 151 

& Wilmshurst, 1999; Haenfling et al., 2015; Jara et al., 2017), stable isotopes of plant 152 

macrofossils (McGlone et al., 2004), or testate amoebae (Wilmshurst et al., 2002). 153 

Recent investigations of the stable isotopic composition of New Zealand Restionaceae 154 

peat across modern climate gradients also indicate strong potential for these proxies in 155 

climate reconstruction (Amesbury et al., 2015a and b). In northern New Zealand, 156 

considerable effort has been applied to developing tephrostratigraphic records from 157 

peat profiles, both to provide a robust chronostratigraphic framework for correlating 158 

sites, for independently dating climate reconstructions, and to help evaluate volcanic 159 

history and risk (Lowe et al., 1999, 2008, 2013; Alloway et al., 2004; Gehrels et al., 160 

2006; Newnham et al., 1995a, 1995b; Newnham et al., 1999). Tephrostratigraphy 161 

provides a key chronstratigraphical tool in the current study. 162 

 163 
3.0 Study sites and regional setting  164 

 165 
Two raised, ombrotrophic bogs, ca 55 km apart in the Waikato region, were 166 

investigated (Fig. 1). At Kopuatai and Moanatuatua bogs, thick sequences of peat 167 

have accumulated on the surface of volcaniclastic alluvial deposits (Hinuera 168 

Formation) of the river systems that drained the central North Island volcanic plateau 169 

during the last glacial (Selby and Lowe, 1992; Manville and Wilson, 2004; Edbrooke, 170 

2001, 2005). The peat profiles at the two sites span much the same timeframe, and 171 

contain similar suites of tephra layers that enable correlation between sequences and 172 

help test and constrain 14C age models developed for them. Cored peat deposits 173 

extracted from the bogs have been described in a number of earlier studies (de Lange 174 

and Lowe 1990; Hodder et al., 1991; Newnham et al., 1995a; Shearer, 1997; Gehrels 175 

et al., 2006; Haenfling et al., 2015; Jara et al., 2017) and are summarised in Fig. 2.  176 
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*Fig 1 here 177 

*Fig 2 here 178 

The vegetation communities growing at both bogs show low plant diversity with only 179 

10-15 common species. Most prominent are two species of the Southern Hemisphere 180 

Restionaceae (or restiad) family: Empodisma robustum (lesser wire rush) and 181 

Sporadanthus ferrugineus (greater wire rush or cane rush) (de Lange et al., 1999; 182 

Wagstaff and Clarkson, 2012), while other common species include Leptospermum 183 

scoparium (Myrtaceae), the fern Gleichenia dicarpa, epacrids Dracophyllum 184 

scoparium and Epacris pauciflora, and several sedges in the genera Schoenus and 185 

Baumea. Sundews (Drosera) may be locally common along with Sphagnum 186 

cristatum.  The two restiad species, and in particular Empodisma, are the main peat 187 

formers and have an essential role in the development of bog environments in this 188 

region. Their extensive surface-growing rhizome systems and extremely low 189 

evapotranspiration rates enable far greater water retention in a region that experiences 190 

frequent summer moisture deficits and therefore is not otherwise considered 191 

conducive to peat development (Campbell and Williamson, 1997; Kuder et al., 1998; 192 

Thompson et al., 1999; Campbell and Jackson, 2004; Ratcliffe et al., 2019). The 193 

detailed vegetation composition and structure of these bogs were described by 194 

Clarkson (2002), Clarkson et al. (2004), and Wagstaff and Clarkson (2012).  195 

 196 

Climate of the Waikato region is classed as warm temperate and fully humid (class 197 

Cfb as defined in Kottek et al., 2006). In recent decades, annual precipitation has 198 

ranged between 1112 and 1500 mm and annual mean temperatures between 13.0 and 199 

14.3 °C in lowland regions (Clarkson et al., 2004). Precipitation is stronger in winter 200 

(July, ~126 mm) than in summer (February, ~71 mm), and monthly rainfall minima 201 

often coincide with the two warmest months, January and February (NIWA, 2009).  202 

As a consequence, summer moisture deficits are common at these bogs and typical 203 

annual water deficits exceed ~60 mm (Clarkson et al., 2004; Amesbury et al., 204 

2015a&b; Goodrich et al., 2017). Weather conditions (mean air temperature, annual 205 

rainfall) across the two sites are broadly similar (Ratcliffe et al., 2019). 206 

 207 

3.1. Kopuatai (centre: 37o26’S, 175o34’E) 208 
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Kopuatai Bog is an internationally-recognised wetland (Ramsar Site 444) and the 209 

largest remaining natural-state peat bog in New Zealand at 18 km long and 10 km 210 

wide (Maggs, 1997). It is situated 2-6.5 m above sea level in the Hauraki Depression, 211 

a 20-30 km wide rift in the Hauraki lowlands (de Lange & Lowe, 1990; Persaud et al., 212 

2016). Its raised centre is 3 m above the surrounding edges and the maximum peat 213 

depth is 12-14 m in central areas (Davoren, 1978; Newnham et al., 1995a). Around ca 214 

7400 cal years BP the northern end of the site was flooded by a marine transgression, 215 

directly depositing a thick deltaic mud in the flooded areas and indirectly resulting in 216 

the deposition of a minerogenic, freshwater deposit associated with local ponding in 217 

the northern area (Newnham et al., 1995a). Two such mud layers were recorded in 218 

cores K106 and K204 (Fig. 2). The evolution of the bog and its Holocene vegetation 219 

history have been reported previously from pollen, plant macrofossil, and charcoal 220 

records (Newnham et al., 1995a).  221 

 222 

3.2. Moanatuatua (centre: 37o58’S, 175o72’E)  223 

Situated ~55 km inland and southwest of Kopuatai, Moanatuatua bog was once of 224 

similar size, but extensive agricultural drainage schemes since the 1930s have reduced 225 

its extent to just 1.1 km2 (Cranwell, 1939; Clarkson et al., 1999; Thompson et al., 226 

1999; Clarkson, 2002; Pronger et al., 2014). The remaining bog, protected as a 227 

scientific reserve, is 65 m above sea level, with a peat dome 1-2 m above the 228 

surrounding farmland and peat depths reaching 13 m. In the surrounding pasture, 229 

farming practices have removed the top 1-2 m of sediment from the edges of the 230 

peatland, as demonstrated by the comparison of depths of tephra layers from within 231 

and outside the reserve (Shearer, 1997; Schipper and McLeod, 2002). The Holocene 232 

vegetation history of Moanatuatua Bog has been shown previously from pollen (Jara 233 

et al., 2017) and plant cuticle (Haenfling et al., 2015) records.  234 

 235 
4.0 Material and methods 236 
 237 
4.1. Fieldwork 238 
 239 
At each site, three cores were collected within 300-500 m of one another (Fig. 1) to 240 

test replicability between sequences and to develop composite records from multiple 241 

cores. Sampling was guided by two prominent tephra layers that were visible in all 242 
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core sequences (Fig. 2): Tuhua Tephra, c. 7.0 cal ka (Lowe et al., 2013), and Taupo 243 

Tephra, c. 1.7 cal ka (Hogg et al., 2012). The humification analyses were confined to 244 

the peats in this interval because, below the Tuhua Tephra, marine influence on the 245 

Kopuatai hydrology could not be discounted and the near-surface post-Taupo 246 

sediments proved in some cases to be too sloppy or fibrous to sample intact. Two 247 

other marker tephras were common to both bogs hence further enabling core 248 

correlation: Mamaku Tephra, c. 8.0 cal ka and Whakaipo Tephra, c. 2.8 cal ka (see 249 

chronology section below). All but one core location were from protected areas, 250 

sufficiently far from the drained margins to avoid the likely impacts on peat 251 

composition and hydrology (Fig. 1). The exception, core M102, sampled from 252 

pastureland adjacent to the Moanatuatua reserve, has a very similar pre-Taupo tephra 253 

record to that of the other two cores from this site and so the sediments analysed in 254 

this study are unlikely to have been affected by the land use modifications of the past 255 

few decades.  256 

 257 

All cores were extracted using “Russian”-type D-shaped corers. Core sections were 258 

extracted in alternate, overlapping sections from two holes c. 1 m apart to avoid gaps 259 

and to prevent disturbance of the adjacent, lower-lying sediment by the corer’s 260 

pointed nose. Once retrieved, all cores were stored in plastic piping, wrapped in non-261 

PVC clingfilm, and refrigerated at 4oC.  262 

 263 
 264 
4.2 Laboratory analyses 265 
 266 
4.2.1 Core subsampling 267 

 268 
The uppermost subsample from each core was taken from the 1 cm section 269 

immediately below the Taupo Tephra layer, with subsequent samples extracted down-270 

core at regular intervals. For humification, water content, and total organic carbon 271 

analyses, one core from each site (Kopuatai K204 and Moanatuatua M206) was 272 

sampled every 2 cm, which represents an estimated between-sample time interval of 273 

20 to 40 years. The other two cores at each site were sampled every 4 cm. Each sub-274 

sample was 1-cm thick due to the fibrous nature of the peat preventing finer-275 

resolution subsampling. A suite of analyses was carried out on each sample as 276 

described below.  277 
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 278 
4.2.2 Total organic carbon 279 

 280 
Samples were oven-dried overnight then water content was calculated as a percentage 281 

of the total wet weight. Total organic carbon (TOC) was measured using a Shimadzu 282 

TOC5000 TOC analyser, with the solid sample module-5000A furnace at 900oC. This 283 

method was used in preference to loss-on-ignition because of the small amount of 284 

sample required for processing. For each sample, three repeat measurements were 285 

taken, and averaged. The results were used to correct for mineral content within peat 286 

samples, to determine a cut-off point for inclusion in humification analyses as 287 

described below, and to assist in determining the positions of cryptotephra deposits in 288 

these sequences (Gehrels et al., 2006). 289 

 290 

4.2.3 Humification 291 

Peat humification was determined using the colorimetric method based on the light 292 

transmission of the alkali-extracted humic acids in solution (Blackford and Chambers, 293 

1993). Light transmission is inversely related to the degree of peat decomposition: the 294 

more decomposed or humified the sample, the less light transmitted. The degree of 295 

peat humification is largely controlled by moisture level of the near-surface peats, 296 

which in ombrotrophic bogs is determined by effective precipitation. Thus light 297 

transmission can be used as a proxy for ‘bog wetness’ reflecting the balance of 298 

precipitation and evaporation. In this study, following the method of Blackford and 299 

Chambers (1993), percentage light transmission was measured at a wavelength of 550 300 

nm on a Zeiss Specord M500 spectrophotometer. For each sample, three readings 301 

were taken and the mean value calculated.  302 

 303 

Correction for minerogenic content 304 

The relationship between light transmission and peat humification can be distorted in 305 

peat samples containing minerogenic constituents, which may be comparatively high 306 

in the Waikato peats because of volcanogenic (tephra-fall derived) matter. The 307 

presence of some highly minerogenic (tephra, clay) samples made it necessary to 308 

determine a cut-off point beyond which light transmission values could not be used 309 

confidently to reflect peat humification. In this study, light transmission data for 310 

samples with <45% TOC were ignored as these samples corresponded with visible 311 
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tephra or clay layers. For the remaining (peat-rich) samples with >45% TOC, it was 312 

necessary to correct light transmission values for any distortion caused by varying 313 

levels of minerogenic matter. Previous work recommended a simple linear correction 314 

for this effect based on the minerogenic content determined by LOI (Blackford and 315 

Chambers, 1993; Roos-Barraclough et al. 2004; Chambers et al., 2011). Hazell (2004) 316 

developed a modified procedure after finding a non-linear relationship between 317 

mineral content and light transmission in these Waikato peats. In this study we use the 318 

procedure developed by Hazell (2004) to correct for mineral matter based on this non-319 

linear relationship (see Supplementary Information for details).  320 

 321 

Detrending for long-term decay effect 322 

Because humification proceeds incrementally with time, it is necessary to consider the 323 

possibility that the corrected humification measurements may in part reflect the 324 

effects of long-term decay (Clymo, 1984). To counter this possible effect, some 325 

workers (e.g., Borgmark and Wastegård, 2008) have presented humification data as 326 

normalised and detrended, usually by linear regression with the assumption that long-327 

term anaerobic decay of peat occurs linearly over time. This approach is valid when 328 

the goal is solely to investigate shorter term climate ‘shifts’ but it precludes the 329 

possibility of investigating longer term shifts in climate. To allow for this possibility 330 

as well, our approach was to present the humification values in both detrended and 331 

non-detrended form. We use the detrended data to investigate shorter term climate 332 

shifts and the raw corrected (non-detrended) data to consider the possibility of longer 333 

term climate trends. We then compare these longer term humification trends with 334 

independent climate proxy records from these sites and elsewhere in the region to 335 

evaluate whether long-term decay or climate is the more likely controlling factor.  336 

 337 

To detrend the data, simple linear regression by age was applied to each humification 338 

record and residuals from the regression line were calculated. Both detrended 339 

residuals and raw data were normalised to the period between the Tuhua and Taupo 340 

tephras (c 7000-1700 cal. yr BP), a period common to all cores.  341 

 342 
Correlation of humification records at decadal-centennial scale 343 
 344 
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We conducted correlation analysis to test for the coherence between the three 345 

humification records developed at each site. Using the age models developed, we 346 

divided each sequence into 100-year bins and calculated the mean humification value 347 

for each bin. We then calculated the Pearson product moment correlation coefficients 348 

between each pair of sequences. The associated P values enabled a test of significance 349 

for each correlation. 350 

 351 

4.3 Chronology 352 
 353 
The cores comprised mainly peat with sparse occurrences of small plant macrofossils 354 

(or fragments of such material), occasional visible tephra layers each between a few 355 

millimetres or centimetres in thickness, and a 30-50 cm clay layer in two cores from 356 

Kopuatai (Fig. 2). A combination of tephrochronology and radiocarbon dating was 357 

used to derive detailed age-depth models and to correlate cores within and between 358 

sites. 359 
 360 
4.3.1 Stratigraphy and chronology of tephras 361 
 362 
Twelve tephras in total were identified, six as visible layers, five as cryptotephras 363 

(glass shard and/or crystal concentrations insufficiently numerous, or too fine, to be 364 

visible as a layer to the naked eye: Lowe, 2011), and one (Whakaipo) as a thin layer in 365 

one core but as a cryptotephra deposit in others (Fig. 2). All but two of the tephras are 366 

rhyolitic in composition and were able to be correlated with characterised and defined 367 

equivalent deposits elsewhere; two are andesitic and remain uncorrelated but their 368 

compositions indicate that they were derived from Egmont volcano (Fig. 1; Table 1). 369 

The tephras were correlated using a combination of stratigraphic position, field 370 

properties, ferromagnesian mineralogical assemblages (Lowe, 1988; Hodder et al., 371 

1991; Newnham et al., 1995a), and new major element analyses of volcanic glass 372 

shards as reported below.  373 

*Table 1 here 374 
 375 
Glass-shard major element compositions were obtained for nine samples from 376 

Kopuatai and eight samples from Moanatuatua (Tables 2 and 3, respectively) using a 377 

Jeol-JXA ‘Superprobe’ electron microprobe housed at the Analytical Facility, 378 
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Victoria University of Wellington. The Kopuatai analyses were supplemented by 379 

previously-reported analyses on four cryptotephras and on Kaharoa Tephra (Table 2).  380 

*Tables 2&3 here 381 

 382 
4.3.2 Radiocarbon dating 383 

Fifty-five radiocarbon ages were obtained from the two sites (Fig. 2; Table 4). Of 384 

these, seven were radiometric dates on bulk peat samples, processed at the Waikato 385 

Radiocarbon Dating Laboratory, University of Waikato, Hamilton, New Zealand. 386 

These dated specific stratigraphic layers (base of sequence, tephra layers, and the clay 387 

layer in Kopuatai cores K106 and K204) and confirmed the preliminary field-based 388 

tephra identifications. Two of these bulk ages were taken from nearby cores not used 389 

in this study but are included here for completeness (Table 4). 390 

*Table 4 here 391 

 392 

The remaining fourty-eight ages were determined by accelerator mass spectrometry 393 

(AMS) on above-ground plant macrofossils, processed at the NERC Radiocarbon 394 

Laboratory, East Kilbride, UK. These were spaced between the already well-dated 395 

Tuhua and Taupo tephra layers. Macrofossils used for dating were mainly 396 

Leptospermum scoparium and Epacris pauciflora leaves as these were generally 397 

common and well-preserved or, where these were absent or infrequent, Epacris and cf. 398 

Empodisma seeds, and Gleichenia dicarpa fronds.  399 

 400 

4.3.3  Age-depth models  401 
 402 
*Figure 3 here 403 
 404 
The age-depth models presented here (Fig. 3) were developed using the SHCal13 405 

atmospheric curve (Hogg et al., 2013) in OxCal v4.3.2 (Bronk Ramsey, 2017). Both 406 

the 55 radiocarbon dates (Table 4) and preferred Lowe et al. (2013) ages for nine 407 

tephras (Table 1) were modelled using P_Sequence commands (Bronk Ramsey, 2008) 408 

for each of the six cores; outliers were analysed with the General model (Bronk 409 

Ramsey, 2009). Running the P_Sequence models together permits cross-referencing 410 

tephras between cores, treating these deposits as coeval isochrons.  411 

 412 
5 Results 413 
 414 
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5.1. Kopuatai 415 

The three Kopuatai cores comprise dark brown peat throughout, interbedded with 416 

millimetre-to-centimetre scale visible tephra layers. As noted earlier, two of the 417 

Kopuatai cores include a minerogenic layer dated to c. 7400‒6900 cal yr BP and 418 

thereafter transitioning upwards into peat. As the light transmission properties of clay 419 

are distinctly different to those of peat, humification results are not presented for the 420 

clay layer and we restrict our comparisons of humification records to the period 421 

6500—1700 cal yr BP, when peat formation is dominant at all six core sites.  422 

 423 

In all three sequences, moisture content and TOC remain consistent at 90-95% and c. 424 

60%, respectively, except around tephra layers. Marked oscillations are evident in the 425 

light transmission values which vary between 10-30% away from prominent tephra 426 

layers.  427 

 428 

The light transmission curves for the three sequences are compared against a common 429 

timescale in Figure 4a. All three records show similar short-term oscillations 430 

superimposed on a long-term trend towards increasing light transmission (reduced 431 

humification) commencing between 5000 and 4000 cal yr BP.  432 

 433 
*Figure 4 here 434 
 435 
In Figure 5a, the 100-year averages for the three detrended Kopuatai humification 436 

records are able to be compared. They display coherent intervals where all three 437 

records gave the same trend (positive or negative humification trends). Consistently 438 

wetter intervals are indicated for 3800–3300 cal yr BP and for 2000–1700 cal yr BP 439 

whereas the period 2400–2000 is mostly wetter than average. Consistently dry 440 

conditions are indicated for the interval 4900–4300 cal yr BP and the period 3300–441 

2400 is mostly drier than average. Outside of these intervals, there is no coherent 442 

pattern indicated across the three records.  443 

 444 

*Fig 5 here 445 

Correlation analysis indicates a significantly (p<0.05) positive relationship overall 446 

between the 100-year humification averages for K204 and the other two core records, 447 

but not between K106 and K108 (Table 5).  448 
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 449 

*Table 5 here 450 

5.3 Moanatuatua 451 

 452 

The three Moanatutua cores, similar to the Kopuatai cores, comprise dark brown peat 453 

throughout, interbedded with millimetre-to-centimetre scale visible tephra layers as 454 

well as cryptotephra glass concentrations (Fig. SI2). In all three sequences, moisture 455 

content and TOC remain consistent at 85-90 % and c. 50 %, respectively, except 456 

around tephra layers. As for the Kopuatai cores, marked oscillations are evident in the 457 

light transmission values which range from 10-25 %.  458 

 459 

The corrected light transmission curves for the three sequences are compared against 460 

a common timescale in Figure 4b. As at Kopuatai, there is a consistent long-term 461 

trend towards increasing light transmission values after c. 4500 cal yr BP.  462 
 463 
Comparison of the three detrended Moanatuatua humification records in 100-year 464 

bins (Fig. 5b) shows mostly wetter intervals for 7000–6400 cal yr BP, 4600–4200 cal 465 

yr BP, 3600–3400 cal yr BP, 2900–2500 cal yr BP, and 2100–1700 cal yr BP. The 466 

intervals 5500–4600 cal yr BP and 4200– 3700 cal yr BP are mostly dry and 2500–467 

2100 cal yr BP is consistently dry for all three records. Outside of these intervals, 468 

there is no coherent pattern indicated across the three records.  469 

 470 

Correlation analysis indicates a significantly (p<0.05) positive relationship between 471 

the 100-year humification averages for M103 and M102 only with the other two core 472 

pairs not significantly correlated with one another (Table 5).  473 

 474 

6 Discussion 475 

6.1 Interpretation of peat humification records 476 

Light transmission indicates the overall degree of peat humification for the estimated 477 

c. 20-40 year time period encapsulated by each sample. Large changes in 478 

humification should be predominantly representative of the average aeration at the 479 

bog surface during this interval, which in ombrotrophic bogs is a function of the 480 

balance between precipitation and evapotranspiration (P-E). Under normal conditions 481 
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of a high and stable water table, seen today at Kopuatai and prior to drainage at 482 

Moanatuatua (Ratcliffe et al., 2019), bog surface wetness and hence P-E balance vary 483 

markedly through the seasonal cycle (Maggs, 1997; Fritz et al., 2008; Ratcliffe et al., 484 

2019). During winter,  the water table typically reaches a maximum and excess 485 

precipitation may be lost as runoff - during this time the water table rarely drops 486 

below a threshold that permits aerobic decay in the surface peat. The main period of 487 

peat decay is therefore the summer season when the near-surface peat is subject to 488 

biologically important changes in moisture and aeration and also to the highest 489 

temperatures.  In Northern Hemisphere temperate peatlands, warm-season moisture 490 

deficit has been shown to be the main driver of decadal-scale changes in water table 491 

(Charman, 2007; Charman et al., 2009) and it seems likely that a similar relationship 492 

exists in New Zealand restiad peatlands. However, temperature can also be a direct 493 

driver of humification, independent of evaporation, through stimulation of microbial 494 

activity. In a number of bogs with very deep water tables, water table fluctuation can 495 

have little effect on peat surface moisture content, and thus decay, with humification 496 

almost entirely driven directly by temperature, rather than P-E and water table. This is 497 

the case in a number of un-modified bogs (Lafleur et al., 2005; Euskirchen et al., 498 

2014) and in Moanatuatua post-drainage (Ratcliffe et al., 2019). However, we would 499 

anticipate that any disconnect between water table and humification would be 500 

accompanied by a sustained shift towards high humification, itself indicative of a low 501 

frequency change in P-E. We are thus cautious about attributing high-frequency 502 

changes in humification to P-E in the more humified sections of the core but consider 503 

that the downcore variations in peat humification will generally reflect the combined 504 

effects of summer precipitation and temperature variability.  ‘Summer’ in this context 505 

may actually be defined as an extended summer season covering all the months in 506 

moisture deficit rather than simply a notional December to February period (Charman 507 

et al., 2009).  508 

 509 

6.2. Millennial-scale inferred moisture variability  510 

The sampling strategy and analyses deployed here were designed to allow for the 511 

possibility of climate forcing of long-term (millennial scale) humification values by 512 

examining raw corrected light transmission values at this scale. As stated earlier, light 513 

transmission is inversely related to the degree of peat decomposition so the more 514 
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decomposed or humified the sample, the less light transmitted. The underlying 515 

premise is that replicated patterns in humification between and within sites are more 516 

likely to represent regional climate signals.  517 

 518 

The most striking pattern evident in all records at both sites is that corrected light 519 

transmission values show an increasing positive trend, indicating decreasing 520 

humification overall after c. 4000 cal yr BP, albeit with strong variability. Because the 521 

same long-term trends, well-constrained chronostratigraphically, are observed at these 522 

hydrologically-independent sites, a climate forcing should be considered, with a 523 

pervasive shift to a more positive P-E balance after c. 4000 cal yr BP being the most 524 

plausible conclusion. However, as discussed above, our approach does not preclude 525 

the possibility of long-term peat decay rather than climate determining any millennial 526 

scale trends and we point out that an increase in humification with age is what would 527 

be expected with progressive anaerobic decay over time. Therefore it is important to 528 

evaluate this postulated climate reconstruction against independent climate proxy 529 

records from these sites and also from the wider region. 530 

 531 

6.3. Comparison with other New Zealand Holocene climate records 532 

Holocene pollen records for Kopuatai (Newnham et al., 1995a) and Moanatuatua (Jara 533 

et al., 2017) have been interpreted as indicating a mid-Holocene change from 534 

comparatively warm, wet climate to drier, possibly frostier climate (Fig. 6). Key 535 

indicators for this change are the expansion of pollen of Agathis australis, which 536 

prefers dry conditions for growth, particularly in spring (Fowler & Boswijk, 2007), 537 

and the decline in the frost and drought sensitive Ascarina lucida. The Agathis 538 

australis pollen records at Kopuatai (Newnham et al., 1995a) and Moanatuatua (Jara 539 

et al., 2017) are insightful. Agathis was absent during the early Holocene, but 540 

expanded from c. 7000 - 5000 cal yr BP, a pattern evident in other records from the 541 

region (e.g. Newnham et al., 1989; 1991;1995a; 1995b; van den Bos et al., 2018). 542 

Dendroclimatological analyses of Agathis australis has shown the width of growth 543 

rings is strongly linked to ENSO, with wide rings associated with El Niño events 544 

(Fowler et al., 2007; 2012) when drier summers typically occur in the Waikato region.  545 

 546 
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These assertions are further supported by the pollen-climate reconstructions reported 547 

previously from Moanatuatua bog by Jara et al (2017). A pollen-derived moisture 548 

index independent of Agathis shows a long-term drying trend commencing by ca. 549 

7000 cal. yr BP, although persistent below-average values are not observed until c. 550 

3500 cal yr BP (Fig. 6). A similar drying trend is reported at Lake Pupuke, Auckland, 551 

~90-130 km to the northwest of the study sites (van den Bos et al., 2018; Fig. 1; Fig. 552 

6). At the same site, a Holocene summer temperature reconstruction derived using 553 

chironomids also provides informative insight into seasonal climate variability for the 554 

region (van den Bos et al., 2018). At Pupuke, reconstructed summer temperatures rise 555 

to peak in the mid-late Holocene, despite mean annual temperatures remaining 556 

comparatively constant, implying cooler winters (Fig. 6). Similar mean annual 557 

temperature patterns are reconstructed for Moanatuatua (Jara et al., 2017; Fig. 6).  558 

Taken together, these quantitative climate reconstructions from Auckland and 559 

Waikato are consistent with earlier observations for these regions during the late 560 

Holocene, and point strongly to comparatively warm, dry summers but cooler winters 561 

at that time. Similar conclusions were drawn from a multi-proxy study in southern 562 

South Island that incorporated pollen, testate amoebae, and humification analyses 563 

(Wilmshurst et al., 2002). 564 

 565 

In contrast to these climate inferences drawn from the Kopuatai and Moanatuatua 566 

pollen records and from Pupuke chironomid and pollen records, a climate 567 

interpretation of our humification records from these sites would indicate primarily 568 

wetter summers during the interval c. 5000–2000 cal. yr BP, albeit punctuated at 569 

times by phases of dry summers (see below). We conclude therefore that this long-570 

term trend signalling decreasing humification in younger sediments cannot be 571 

attributed to regional climate variability and is likely to be more indicative of long-572 

term decay of peat. 573 

 574 

6.4. Inferred moisture variability at decadal-centennial scales 575 

Turning to the light transmission residuals (Fig. 5), we observe numerous decadal-576 

centennial scale phases in all six records. As these residual values are assumed to be 577 

independent of any long-term decay effect, they seem likely to represent shorter-term 578 

variability in summer P-E balance along with other, local site factors. A less-than-579 
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complete consistency across the records within and between sites suggests that local 580 

site factors at times may over-ride a regional climatic signal from an individual 581 

humification record. The most likely confounding factor arises from changes in 582 

vegetation composition at the core site over time, as has been pointed out for other 583 

regions (e.g. Chambers et al., 1997). Marked changes in vegetation composition over 584 

time at a particular core site have been reported previously from plant macrofossil 585 

analyses at Kopuatai (Newnham et al., 1995a) and Moanatuatua (Haenfling et al., 586 

2015).  587 

 588 

Other complicating factors could arise from specific characteristics of these restiad 589 

bog sites. The bog surfaces exhibit patterns of moist swales and intervening drier 590 

hummocks (Clarkson et al., 2004; McGlone, 2009) and it has been suggested that 591 

these features may migrate across the surface of the bog over time as part of a natural 592 

process of growth dynamics and hence independently of climate variability 593 

(McGlone, 2009). This process would likely cause variation in the degree of 594 

evapotranspiration and hence bog surface wetness experienced between hummocks 595 

and swales which would change as these topographic features migrated across the 596 

core sites.  Also, the extensive Waikato restiad bogs may lack the climate sensitivity 597 

of smaller sites, which, together with the significant water holding properties of 598 

restionaceae rootlets (Clarkson et al., 2004), may serve to buffer the sites from 599 

paleohydrological change.  600 

 601 

Nevertheless, there are some consistent patterns evident between the different 602 

humification records which points to broader scale climate processes that at times 603 

outweigh these local site factors. All six profiles show pronounced centennial-scale 604 

phases of predominantly wetter or drier summers suggesting that strong centennial 605 

scale variability in bog surface wetness was a prevalent feature of Holocene climate. 606 

Similar conclusions were drawn from the two previous New Zealand studies 607 

involving humification analyses, albeit from single peat profiles (McGlone & 608 

Wilmshurst, 1999; Wilmshurst et al., 2002).  In the next section, we consider the 609 

climate forcing implications of these centennial scale shifts in Waikato bog surface 610 

wetness. 611 

 612 

6.5. Climate forcing mechanisms 613 
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It is hardly surprising that Holocene climate proxy records from New Zealand display 614 

considerable spatio-temporal variability. Strong regional diversity is evident in the 615 

modern climate, arising from complex interactions between the main axial mountain 616 

ranges and the principal atmospheric circulation systems, played out across a broad 617 

latitudinal domain (e.g., Lorrey & Bostock, 2017). These distinctive spatial patterns 618 

are often accentuated by short-term climate variability, largely explained by the 619 

dynamic interplay between ENSO and SAM and their modulating effect on the 620 

Southern Westerly Winds (SWW) (Kidston et al., 2009; Ummenhofer and England, 621 

2007). Largely for these reasons, previous explanations of New Zealand Holocene 622 

palaeoclimate variation have typically invoked changes in atmospheric circulation 623 

patterns operating on a hemispheric scale. Numerous records support the conclusion 624 

drawn by the Pole-Equator-Pole II (Asia-Australasian) group that the circum-625 

Antarctic westerlies strengthened and possibly expanded equatorwards during the 626 

Late Holocene (Shulmeister et al., 2004; Lamy et al., 2010). Others have suggested 627 

intensification of ENSO from the mid-Holocene resulting in highly variable rainfall 628 

throughout New Zealand and the occurrence of severe droughts in eastern and 629 

southern regions (McGlone et al., 1992, McGlone and Wilmshurst, 1999). Given the 630 

interplay between ENSO/SAM and the SWW observed in modern climate today, all 631 

of these mechanisms may be relevant to the records presented here but, as 632 

precipitation variability today in the Waikato region of northern New Zealand is 633 

strongly linked to ENSO cycles (Ummenhofer and England, 2007), this is likely to be 634 

a dominant factor.   635 

 636 

In the context of other proxy records from the region, the peat humification records at 637 

Moanatuatua and Kopuatai are consistent with the model of ENSO intensification. At 638 

these sites today, drier summers and droughts are more likely during El Niño phases, 639 

with increased precipitation from strengthened north-easterly rain-bearing winds 640 

during La Niña phases. A mid-Holocene transition towards drier summers, but with 641 

increasing variability and stronger seasonality including more extreme droughty 642 

summers, suggests that a strengthening of both phases of the ENSO cycle occurred. In 643 

pollen records, the late Holocene expansion of Agathis australis (described earlier) 644 

may also be linked to this ENSO strengthening as was first suggested by McGlone et 645 

al (1992). More recently, a quantitative precipitation record using carbon isotope 646 
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ratios from leaves preserved in lake sediments from subtropical eastern Australia 647 

(27°S) revealed enhanced centennial-scale ENSO variability with more frequent El 648 

Niño event resulting in several dry anomalies after 3200 cal. yr BP (Barr et al., 2019).  649 

 650 

Variation in strength of ENSO is thought to be due to precessional forcing affecting 651 

seasonal insolation values at low latitudes (Clement et al., 2001) although some 652 

paleoclimate data do not support this contention (Cobb et al., 2013). We suggest a 653 

similar driver for the enhanced seasonality evident in these Waikato bog-based 654 

records during the late Holocene. The difference between summer (December) and 655 

winter (June) insolation values for the approximate latitude of these sites increased 656 

progressively through the Holocene to a maximum at c. 2000 cal. yr BP. Increasing 657 

seasonality of local insolation would have exacerbated the precession-driven inter-658 

annual variations and overall strengthening of ENSO at these sites, promoting 659 

frequency of summer drought despite an overall wetter climate over decadal scales. In 660 

contrast, during the Early Holocene, reduced seasonality coupled with weaker pole-to-661 

equator temperature gradients are consistent with evidence for weaker ENSO forcing 662 

at that time (e.g. Rodbell et al., 1999; Moy et al., 2002).  663 

 664 

At shorter timescales, the strong controls exerted by ENSO cycles on precipitation in 665 

the Waikato region today support the contention that they have contributed to the 666 

pronounced centennial-scale variability we observe in the humification residuals at 667 

both our bog sites. We test this assertion by comparing the Waikato bog humification 668 

records with the flagship Holocene record of ENSO events from Laguna Pallcacocha, 669 

Ecuador (Moy et al., 2002). For this comparison we have derived a regional 670 

humification record by summing the humification residuals for all six records in 100-671 

year bins (Fig. 7). With this approach, we assume the regional climatic signal inherent 672 

across the six records is likely to overshadow any individual local site ‘noise’. We test 673 

this assumption by comparing the composite regional record with a proxy index for 674 

water-table variability derived independently at a different core site at Moanatuatua 675 

Bog, using pollen corrosion analysis (Jara et al., 2017). This comparison (Fig. 7) 676 

shows a strong match between regional wet (dry) phases inferred from the composite 677 

humification record and phases of high (low) water table at Moanatuatua inferred 678 

from pollen corrosion.  679 
 680 
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 681 
Turning to the comparison with ENSO, at the centennial scale, the Laguna 682 

Pallcacocha record shows four phases of enhanced warm El Niño activity during the 683 

timeframe of our humification records (~6200–1700 cal yr BP) when the frequency of 684 

these events exceeded ten per century: at 5.7–5.5 cal yr BP, 5.0–4.8 cal yr BP, 3.0–2.8 685 

cal yr BP, and 2.6–2.4 cal yr BP. Each of these four phases corresponds with 686 

relatively dry phases in northern New Zealand when composite light transmission 687 

residuals are approximately at or below average for the interval. Conversely, each of 688 

the five wettest Waikato phases inferred from the composite humification record, 689 

when summed light transmission residuals are ≥2, correspond to phases of reduced 690 

warm El Niño events (≤ 5 per century) when La Niña events can be assumed to be 691 

more frequent: at 6.2–6.0 cal yr BP, 4.4–4.2 cal yr BP, 3.5–3.4 cal yr BP, 2.8–2.6 cal 692 

yr BP, and 1.9–1.7 cal yr BP. We note that the last interval broadly corresponds with 693 

an inferred intense period of La Niña in concert with positive SAM reconstructed 694 

from a sedimentological record at Lake Tutira, east-central North Island (Gomez et 695 

al., 2012).  696 

 697 

Although the teleconnection between these two records at distant points of the ENSO 698 

domain is not perfectly matched, the alignment of the more extreme phases of ENSO 699 

activity with Waikato paleohydrology demonstrates the potential of peat humification 700 

analyses of Waikato bogs to serve as a proxy for paleo ENSO.  Similar assertions 701 

have been drawn using peat humification records from northeast Queensland (Turney 702 

et al., 2004, Burrows et al., 2014) 703 

 704 

7.0. Conclusions 705 

There is considerable interest in developing longer-term reconstructions of SWW 706 

shifts and associated key modes of climate variability such as SAM and ENSO. 707 

However, as recently pointed out by Turney et al. (2017), there is much regional 708 

variability in these climate modes whilst the timing of maximum westerly airflow 709 

strength and its core latitude may also vary considerably in time and space. Not 710 

surprisingly, these complexities raise questions over the value of extending 711 

reconstructions from one region to the wider hemisphere (Fletcher and Moreno, 712 

2012). On the other hand, if the local climate signatures for the different phases of 713 

these climate modes are well understood, and if they can be translated with 714 
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confidence into local climate proxies that can be shown to vary consistently across 715 

multiple well-dated sedimentary records, then regional-hemispheric comparisons are a 716 

viable and potentially powerful means of reconstructing these past modes of climate 717 

variability. 718 

  719 

The underlying premise to the current study is that a conceptual relationship between 720 

peat humification analysis and paleohydrology potentially has an important 721 

contribution to this effort. The primary rationale has been to assemble multiple 722 

records of peat humification to test their suitability as a proxy for past effective 723 

precipitation in northern New Zealand, where precipitation variability is a key 724 

manifestation of ENSO cycles. We sought to mitigate some of the confounding 725 

factors reported previously for humification analysis by developing robust 726 

independent chronologies for each of the six records, based on high resolution, local, 727 
14C dating, and an independently-derived tephrochronological record, and by targeting 728 

two hydrologically separate but ecologically similar raised bogs from the Waikato 729 

region. We applied an underpinning rationale that replicability across these records 730 

would point strongly to climatic forcing of humification trends over and above other 731 

confounding factors.  732 

 733 

Our results suggest that humification records from ombrogenous bogs can provide 734 

insight into past climate dynamics but that non-climatic confounding factors must also 735 

be critically considered. We argue from comparison with independent climate proxy 736 

records that slow anaerobic decomposition of the peat deposits over time rather than 737 

climate best explains a long-term trend in humification, despite this trend being 738 

observed in all six records. On the other hand, once this decay factor is detrended, 739 

replication between records provides a useful approach, both in terms of testing the 740 

applicability of the method in a certain region or site, and in developing a level of 741 

confidence in any paleoclimate assertions drawn. An important ramification from this 742 

study is that a single humification record may not always be reliable for indicating 743 

wet-dry shifts at decadal-centennial timescales, as has also been found at other multi-744 

site humification studies (Payne & Blackford, 2008; Amesbury et al., 2012). The most 745 

likely confounding local site factors are changing vegetation at the core site over time 746 

affecting the composition and decomposition of accumulating peat, which occurred at 747 

both sites. Another factor at these sites may be changes in local topography over time.  748 
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 749 

Despite these likely local confounding factors, when our six humification records are 750 

aggregated at the regional level, they display good correspondence with key phases of 751 

the well-documented Holocene ENSO record at Laguna Pallcacocha in the eastern 752 

Equatorial Pacific. Within the timeframe common to the two records the most 753 

prominent phases of El Niño at Pallcacocha coincide with relatively dry intervals at 754 

Waikato, consistent with local signatures of El Niño climate. Conversely, all of the 755 

wettest phases in the Waikato record coincide with inferred extensive La Niña phases 756 

at Pallcacocha, again consistent with local Waikato signatures of ENSO climate 757 

variability. Among the latter, the interval 2.1–1.7 cal ka stands out as a pronounced 758 

wet phase in all six humification records, in line with findings from previous work in 759 

eastern North Island that invokes sustained La Niña and positive SAM conditions at 760 

this time. Other less-pronounced centennial-scale shifts in bog surface wetness are a 761 

pervasive feature of all six records with varying degrees of overlap in time, and may 762 

arise from other permutations of these predominant climate forcing mechanisms. 763 

Future work aimed at showing how these modes of climate variability have operated 764 

in the past could be informed by replicated humification records from New Zealand’s 765 

raised bogs.  766 
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Figure Captions 1289 

 1290 

Figure 1. a) Regional setting of New Zealand in southwest Pacific Ocean, showing 1291 

principle atmospheric circulation systems and ocean currents; b) part of North Island 1292 

with site locations; c) and d) locations of coring sites at Kopuatai bog and 1293 

Moanatuatua bog, respectively. Elevations (triangles) are in metres above sea level.   1294 

 1295 

Figure 2. Stratigraphy of peat cores at Kopuatai and Moanatuatua showing positions 1296 

of tephras and cryptotephras in them (ages are given in Table 1) along with 14C 1297 

sampling positions (laboratory codes and other details are given in Table 4). 1298 
aStratigraphy after Gehrels et al. (2006) 1299 
bGrid reference of the New Zealand Topo50 series (1: 50,000) 1300 
cIdentification after Ballinger (2003) 1301 
dIdentification after Gehrels et al. (2008); other identifications after Hazell (2004) 1302 
eThese two 14C samples were taken from an immediately adjacent core (at BE34 1303 

090001) (Hazell, 2004) 1304 

 1305 

Figure 3. Linearly-interpolated age-depth models for Kopuatai (a) and Moanatuatua 1306 

(b). Tephra ages are indicated by tephra names, and AMS radiocarbon ages by lab 1307 

code. Error bars indicate radiocarbon calibration errors (2-sigma ranges). 1308 

 1309 

Figure 4. Corrected light transmission plotted against age for (a) the three Kopuatai 1310 

cores and (b) the three Moanatuatua cores. Bolder curves indicate three-point running 1311 

mean. 1312 

 1313 

Figure 5. Light transmission residuals averaged in 100-year bins for a) three Kopuatai 1314 

cores, 6200–1700 cal yr BP and b) three Moanatuatua cores, 7000–1700 cal yr BP. 1315 

Each bar consists of 3 segments, each representing the average light transmission 1316 

value for that period at one core site.  1317 

 1318 

Figure 6. Comparison of Holocene climate proxy records from Waikato and 1319 

Auckland for the interval 16,000 yr BP to present. From top to bottom, period of 1320 

Agathis australis expansion at Kopuatai Bog (Newnham et al., 1995a);  composite 1321 

light transmission records for Kopuatai and Moanatuatua bogs (data, this study, Fig 4) 1322 
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with red curves indicating LOWESS smoother with span = 0.25; Pollen Moisture 1323 

Index (PMI) derived at Moanatuatua Bog (Jara et al., 2017); PMI derived at Lake 1324 

Pupuke, Auckland (van den Bos et al., 2018); period of Agathis australis expansion at 1325 

Lake Pupuke (van den Bos et al., 2018); Mean annual Temperature (MAT) derived at 1326 

Moanatuatua Bog (Jara et al., 2017); MAT derived at Lake Pupuke (van den Bos et 1327 

al., 2018); Mean Summer Temperature derived at Lake Pupuke (van den Bos et al., 1328 

2018); summer insolation at 37 oC (van den Bos et al., 2018). 1329 

 1330 

Figure 7. Comparison of warm ENSO (El Niño) events record from Lake Pallcacocha, 1331 

Ecuador (Moy et al., 2002) with  a composite Waikato bog humification record 1332 

derived as the sum of six individual light transmission residuals records from 1333 

Kopuatai and Moanatuatia bogs (this study), and water table extremes derived from 1334 

pollen corrosion analysis at Moanatauatua bog (Jara et al., 2017). Vertical green bands 1335 

indicate extended wet phases in Waikato bogs when summed light transmission 1336 

residuals are ≥2. Vertical yellow bands indicate extended El Niño phases (manifest in 1337 

Waikato as dry phases) when warm ENSO events at Lake Palcacocha ≥ 10 per 100 1338 

yrs.  1339 

 1340 
 1341 

 1342 
For Table Captions  - please see file with tables 1343 

1344 
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Supporting Information 1345 

 1346 

Humification correction for mineral content 1347 

 1348 

Peat samples containing mineral (inorganic) matter (‘contamination’) are likely to 1349 

affect light transmission readings. The presence of mineral matter lowers the organic 1350 

proportion of the peat sample resulting in a reduction in the amount of extracted 1351 

humic acid and hence higher light transmission values. When the environmental 1352 

factors relating to the peat forming process are the primary consideration, as is the 1353 

case here, the higher light transmission values for such samples may be misleading. 1354 

To overcome this problem, Blackford and Chambers (1993) suggested a linear 1355 

correction for light transmission values on peat samples containing mineral matter, 1356 

which was subsequently revised by Chambers et al. (2011).  1357 

 1358 

Whilst processing the peat samples in this study, it became evident that enhanced light 1359 

transmission was occurring as a result of abundant glass shards representing 1360 

cryptotephra deposits in the stratigraphy and that the effect was non-linear. An 1361 

experiment was devised to test the relationship between mineral content and light 1362 

transmission, and to quantify more accurately the effect of highly minerogenic peats 1363 

on light transmission readings. As a result, we have developed a revised correction 1364 

procedure based on an exponential relationship between light transmission and 1365 

mineral ‘contamination’, to enable the calculation of light transmission values that 1366 

reflect the peat forming process, independently of mineral matter. We applied this 1367 

correction in the humification analyses in this study. 1368 

 1369 

Method 1370 

Test samples were made using typical Empodisma-dominated peat from Kopuatai 1371 

Bog with a small amount of background mineral content (2.24% from the loss-on-1372 

ignition [LOI] measurement). Samples were mixed with fine, dried silica sand (Grade 1373 

HH) then dried, ground to powder in a Specamill, and thoroughly mixed until 1374 

homogeneous. Samples of varying proportions of peat and sand were then made and 1375 

weighed. For each of these samples, three replicates were measured for light 1376 

transmission, LOI and total organic carbon (TOC). LOI was measured, along with 1377 

TOC, as this is the standard technique regularly used for determining the organic 1378 
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content of samples in determining their correction equation. Thus, the correction can 1379 

therefore be applied to either of these indices of organic content. 1380 

 1381 

Results 1382 

We found a non-linear relationship between mineral content and light transmission (SI 1383 

Fig 1).   1384 

 1385 

*SI Fig 1 here 1386 

 1387 

The results of the experimental data described the exponential curve: 1388 

 1389 

(1)   light transmission = 17.855e(0.0171*mineral content) (SI Fig 1) 1390 

 1391 

From the exponential relationship ( ) it was then possible to calculate a and b 1392 

for any given peat sample by solving equations: 1393 

 1394 

(2)     1395 

 1396 

(3)     1397 

 1398 

where: x0 = the mineral content of the sample, 1399 

xe = 100, 1400 

y0 = the light transmission value of the sample,  1401 

and ye = 100. 1402 

 1403 

Correcting for mineral content could then be done on any data point - where a is the 1404 

corrected light transmission for the sample if it contained no mineral matter. 1405 

 1406 

Results for TOC also showed an exponential relationship with light transmission (SI 1407 

Fig 2) 1408 

*SI Fig 2 here 1409 

bxay e=
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 1410 

To calculate the corrected light transmission for samples on which TOC, not LOI, had 1411 

been measured, the LOI values would have to be replaced using the relationship 1412 

between TOC and LOI (SI Fig 3).  1413 

 1414 

*SI Fig 3 here 1415 

 1416 

These two variables, LOI and TOC, were related linearly (r2 = 0.9983) : 1417 

 1418 

(4)     1419 

 1420 

Hence, for a TOC measured sample, x0 in equations (2) and (3) can be replaced such 1421 

that: 1422 

 1423 

(5)     1424 

 1425 

(6)          1426 

 1427 

These formulae could then be applied to any peat humification light transmission 1428 

result of known LOI or TOC. 1429 

 1430 

Supporting Information figure captions 1431 

 1432 

Figure SI1. Light transmission plotted against mineral content (calculated from LOI) 1433 

for experimental samples.  1434 

 1435 

Figure SI2. Light transmission plotted against TOC for experimental samples (note 1436 

reversal of x axis).  1437 

 1438 

Figure SI3. The relationship between TOC and mineral content (expressed as 100-1439 

LOI) for experimental samples. 1440 
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Table 1. Calendrical ages of visible tephras and cryptotephras in Kopuatai and Moanatuatua bogs
 

Core Tephraa, e Depth.min Depth.max Depth.ave Age (± 2σ) cal yr BP Basis of aged Reference
K106 Taupo 281 282 281.5 1718 ± 10 Dendro Hogg et al. (2012)

Whakaipo (ct) 375 375 375 2800 ± 60 Tau bound Lowe et al. (2013)

?Unit Q (Stent) (ct)c 537 537 537 4322 ± 112 Tau bound Lowe et al. (2013)
Unit K (ct) 546 546 546 5088 ± 73 P sequen Lowe et al. (2013)

Whakataneb (ct) 563 563 563 5542 ± 48 P sequen Lowe et al. (2013)

Tuhua 785 786 785.5 7027 ± 170 Tau bound Lowe et al. (2013)

Mamaku 809 810 809.5 7992 ± 58 P sequen Lowe et al. (2013)

K108 Taupo 336 337 336.5 1718 ± 10 Dendro Hogg et al. (2012)

Tuhua 737 738 737.5 7027 ± 170 Tau bound Lowe et al. (2013)
Mamaku 778 779 778.5 7992 ± 58 P sequen Lowe et al. (2013)

Rotoma 794 795 794.5 9472 ± 40 P sequen Lowe et al. (2013)
Waiohau 874 875 874.5 14018 ± 91 P sequen Lowe et al. (2013)

K204 Kaharoac 230 235 232.5 636 ± 12 Dendro Hogg et al. (2003)
Taupo 370 371 370.5 1718 ± 10 Dendro Hogg et al. (2012)

Tuhua 875 876 875.5 7027 ± 170 Tau bound Lowe et al. (2013)
M102 Taupo 50 51 50.5 1718 ± 10 Dendro Hogg et al. (2012)

Whakaipo 102 103 102.5 2800 ± 60 Tau bound Lowe et al. (2013)

Tuhua 307 308 307.5 7027 ± 170 Tau bound Lowe et al. (2013)
Mamaku 336 337 336.5 7992 ± 58 P sequen Lowe et al. (2013)

M103 Taupo 159 160 159.5 1718 ± 10 Dendro Hogg et al. (2012)
Whakaipo (ct) 210 210 210 2800 ± 60 Tau bound Lowe et al. (2013)

Tuhua 473 475 474 7027 ± 170 Tau bound Lowe et al. (2013)



Mamaku 489.5 490.5 490 7992 ± 58 P sequen Lowe et al. (2013)

M206 Taupo 157 158 157.5 1718 ± 10 Dendro Hogg et al. (2012)

Tuhua 500 510 505 7027 ± 170 Tau bound Lowe et al. (2013)
Mamaku 537 538 537.5 7992 ± 58 P sequen Lowe et al. (2013)

a See Fig. 2; ct = cryptotephra. Depths in centimetres
b Also contained Unit-K glass  (Gehrels et al., 2006)
c Not used in age modelling here. 
d Dendro = age based on dendrochronology and wiggle-matching
 Tau bound = age modelled using Tau-boundary function of OxCal
 P sequen = age modelled using P_sequence function of OxCal
e Two uncorrelated Egmont-derived cryptotephras, one aged c. 5.2 cal ka in K108 and one aged c. 7.4 cal ka in K204 (Fig. 2), were not used in age modelling.



Table 2 Electron microprobe analysesa of glass shards from tephras/cryptotephras in Kopuatai bog 
Tephrab Kaharoa Taupo (Y) Whakaipo 

(V)
Stent (Q) (?) Unit K Unit K (5a)  and 

Whakatane (5b)          
Core 

number
Hodder et 
al. (1991)e

Z106
(1a)f

Z108 Z204 Z106
(2)f

Z106
(3a)f

Z106
(4)f

Z106
(5a)f                             (5b)f

Depth (m) 2.50-2.52 2.79-2.80 3.36-3.37 3.70-3.71 3.75-3.76 5.37-5.38 5.46-5.47 5.63-5.64

SiO2 78.22 (0.31) 75.00 (0.35) 75.86 (0.72) 75.88 (0.83) 76.64 (0.25) 75.81 (0.57) 74.89 (0.76) 75.86 (0.20) 77.52 (0.73)

Al2O3 12.49 (0.15) 13.45 (0.20) 13.21 (0.42) 13.40 (0.31) 12.77 (0.25) 13.33 (0.20) 13.01 (0.22) 13.32 (0.10) 12.57 (0.35)

TiO2   0.13 (0.04)   0.29 (0.06)   0.23 (0.06)   0.25 (0.06)   0.16 (0.03)   0.19 (0.03)   0.21 (0.05)   0.24 (0.05)  0.11 (0.03)

FeOc   0.76 (0.26)   2.02 (0.28)   1.82 (0.19)   1.75 (0.28)   1.59 (0.20)   1.79 (0.14)   1.64 (0.24)   1.66 (0.15)   0.90 (0.07)

MnO na   0.12 (0.05)   0.10 (0.06)   0.08 (0.06)   0.13 (0.02)   0.09 (0.08)   0.09 (0.06)   0.10 (0.10)   0.05 (0.04)

MgO   0.09 (0.13)   0.28 (0.04)   0.24 (0.05)   0.26 (0.05)   0.13 (0.02)   0.18 (0.03)   0.19 (0.03)   0.19 (0.02)   0.10 (0.02)

CaO   0.55 (0.06)   1.49 (0.11)   1.42 (0.18)   1.42 (0.10)   1.02 (0.04)   1.30 (0.10)   1.29 (0.11)   1.25 (0.08)   0.69 (0.06)

Na2O   3.42 (0.19)   4.37 (0.20)   4.07 (0.14)   3.99 (0.25)   4.28 (0.14)   4.08 (0.43)   4.20 (0.13)   4.25 (0.15)   3.90 (0.15)

K2O   4.22 (0.43)   2.79 (0.13)   2.88 (0.32)   2.82 (0.11)   3.17 (0.14)   3.08 (0.20)   3.12 (0.21)   2.98 (0.11)   3.98 (0.14)

Cl   0.14 (0.03)   0.18 (0.05)   0.16 (0.03)   0.17 (0.05)   0.16 (0.06)   0.13 (0.03)   0.12 (0.03)   0.16 (0.04)   0.19 (0.05)

Waterd   0.93 (0.68)   2.95 (1.00)   1.76 (1.62)   4.18 (2.93)   3.10 (1.82)   2.07 (1.43)   1.25 (0.89)   1.97 (0.16)   3.60 (0.98)

n 10 16 (+4)g 13 (+1)g 13 12 13 (+1)g 12 10   8

 



Table 2 cont
Tephrab Egmont-

derived 
(uncorr)h

Tuhua Mamaku Rotoma Waiohau

Core 
number

Z204 Z106
(6)f

Z108 Z204 Z106 Z108 Z108 Z108

Depth (m) 8.42-8.43 7.84-7.85 7.37-7.38 8.75-8.76 8.09-8.10 7.78-7.79 7.94-7.95 8.74-8.75

SiO2 69.72 (0.82) 74.04 (0.59) 74.60 (0.40) 73.51 (0.98) 78.31 (0.30) 78.06 (0.30) 77.95 (0.07) 77.91 (0.51)

Al2O3 15.75 (0.30)   9.53 (0.20)   9.58 (0.20)   9.92 (0.55) 12.28 (0.16) 12.35 (0.21) 12.41 (0.09) 12.62 (0.39)

TiO2   0.48 (0.06)   0.30 (0.06)   0.26 (0.04)   0.27 (0.08)   0.13 (0.04)   0.12 (0.05)   0.10 (0.00)   0.14 (0.06)

FeOc   1.94 (0.29)   5.68 (0.38)   5.44 (0.18)   5.57 (0.29)   0.81 (0.09)   0.88 (0.11)   0.74 (0.02)   0.84 (0.10)

MnO   0.10 (0.05)   0.15 (0.06)   0.15 (0.12)   0.19 (0.07)   0.07 (0.06)   0.06 (0.04)   0.08 (0.01)   0.11 (0.09)

MgO   0.48 (0.13)   0.01 (0.02)   0.02 (0.02)   0.03 (0.05)   0.11 (0.03)   0.11 (0.02)   0.07 (0.02)   0.12 (0.02)

CaO   1.34 (0.19)   0.24 (0.04)   0.24 (0.03)   0.28 (0.18)   0.71 (0.07)   0.72 (0.05)   0.52 (0.03)   0.77 (0.03)

Na2O   4.62 (0.16)   5.61 (0.27)   5.26 (0.17)   5.64 (0.38)   3.78 (0.15)   3.93 (0.07)   4.03 (0.02)   3.97 (0.15)

K2O   5.33 (0.12)   4.22 (0.12)   4.20 (0.14)   4.36 (0.14)   3.63 (0.14)   3.61 (0.14)   3.93 (0.06)   3.38 (0.10)

Cl   0.24 (0.04)   0.21 (0.02)   0.25 (0.04)   0.23 (0.03)   0.17 (0.04)   0.15 (0.04)   0.17 (0.03)   0.15 (0.04)

Waterd   0.92 (1.26)   1.35 (1.22)   0.45 (0.51)   1.78 (1.16)   2.58 (1.24)   2.89 (1.95)   0.36 (0.33)   1.82 (1.29)

n 18 12 (+1)g 10 16 13 12   2 13
aMeans and standard deviations (in parentheses) of n analyses (individual glass shards) normalised to 100% loss-free basis (wt%) (Lowe et al., 
2017). Analyses by wavelength-dispersive Jeol JXA-733 Superprobe at the Analytical Facility, Victoria University of Wellington, were 
undertaken by Dr Kathryn Wilson using Smithsonian microbeam glass standards VG-568 and VG-99 (Jarosewich et al., 1980; Jarosewich, 



2002) and other reference samples including KN18 (Froggatt, 1983) to correct for machine drift, defocussed beam diameter 20 µm, current  8 
nA, and accelerating voltage 15 kV; Na analysed first, no peak search; analyses calculated from 11 x 2 s counts across the peak, curve integrated. 
na, not available.
bTephra names from Froggatt and Lowe (1990); letters are equivalent volcanological units of Wilson (1993). Stent tephra (Unit Q) defined by 
Alloway et al. (1994). 
cTotal Fe expressed as FeO.
dWater by difference from original analytical total. 
eFrom Hodder et al. (1991, p. 198) (core 22 of Newnham et al., 1995).
fAnalyses from Gehrels et al. (2006, p. 178) (numbers in parentheses in column headers refer to their analysis numbers).
gValues in parentheses in this line refer to minor subpopulations of different glass composition (not reported here; see Gehrels et al., 2006).
hThis currently-uncorrelated Egmont-derived cryptotephra (c. 7.4 cal. ka) is possibly a correlative of Eg-7 of Lowe (1988) and likely to be a 
correlative with a unit of the lower part of Tephra Sequence C (c. 9.5-6.8 cal. ka) of Damaschke et al. (2017). The Egmont-derived cryptotephra 
at c. 5.7 m (c. 5.4 cal. ka) in core K108 (no glass analyses) is likely to be a correlative with a unit of the upper part of Tephra Sequence C (c. 6-
4.3 cal. ka) of Damaschke et al. (2017). 



 Table 3 Electron microprobe analysesa of glass shards from tephrasb in Moanatuatua bog

Tephrac Taupo (Y) Whakaipo 
(V)

Tuhua Mamaku

Core 
number

M103 M206 M102 M102 M102 M103 M203 M206

Depth (m) 1.59-1.60 1.57-1.58 1.02-1.03 3.07-3.08 3.36-3.37 4.90-4.91 3.45-3.46 5.37-5.38
SiO2 75.47 (0.27) 75.32 (0.69) 77.45 (0.46) 74.63 (0.42) 78.14 (0.46) 78.20 (0.17) 77.52 (0.20) 77.59 (0.37)

Al2O3 13.43 (0.10) 13.50 (0.23) 12.40 (0.27)   9.98 (0.61) 12.57 (0.34) 12.36 (0.10) 12.57 (0.18) 12.62 (0.26)

TiO2   0.26 (0.04)   0.21 (0.09)   0.16 (0.06)   0.27 (0.04)   0.11 (0.05)   0.11 (0.02)   0.11 (0.04)   0.10 (0.03)

FeOd   1.94 (0.14)   1.81 (0.17)   1.45 (0.08)   5.40 (0.28)   0.82 (0.08)   0.85 (0.08)   0.88 (0.10)   0.92 (0.17)

MnO   0.12 (0.05)   0.12 (0.10)   0.09 (0.04)   0.14 (0.05)   0.08 (0.04)   0.08 (0.05)   0.06 (0.05)   0.09 (0.06)

MgO   0.27 (0.07)   0.26 (0.11)   0.14 (0.04)   0.02 (0.03)   0.11 (0.03)   0.10 (0.01)   0.14 (0.05)   0.13 (0.08)

CaO   1.49 (0.06)   1.40 (0.15)   0.98 (0.15)   0.23 (0.03)   0.71 (0.06)   0.72 (0.06)   0.75 (0.05)   0.73 (0.10)

Na2O   4.08 (0.18)   4.32 (0.30)   4.05 (0.22)   4.92 (0.65)   3.70 (0.26)   3.82 (0.15)   3.99 (0.15)   4.00 (0.19)

K2O   2.77 (0.07)   2.90 (0.15)   3.13 (0.10)   4.16 (0.06)   3.59 (0.11)   3.60 (0.12)   3.81 (0.18)   3.65 (0.18)

Cl   0.17 (0.04)   0.15 (0.03)   0.15 (0.03)   0.24 (0.03)   0.17 (0.04)   0.17 (0.04)   0.16 (0.02)   0.16 (0.03)

Watere   0.77 (0.70)   1.88 (1.14)   1.08 (0.48)   0.81 (0.72)   1.46 (1.28)   1.47 (0.94)   1.44 (1.53)   2.25 (1.48)

n   9 16   4 11 11   7 10 16
aMeans and standard deviations (in parentheses) of n analyses (individual glass shards) normalised to 100% loss-free basis (wt%) 
(Lowe et al., 2017). Analyses were undertaken as described in Table 2. 
bSee also analyses of glass shards of older Waiohau and Rotorua tephras from the base of Moanatuatua bog presented by Jara et al. (2017, their 
Table S1).
cTephra names from Froggatt and Lowe (1990); letters are equivalent volcanological units of Wilson (1993).



dTotal Fe as FeO.
eWater by difference from original analytical total.



Table 4. AMS and bulk radiocarbon ages from Kopouatai and Moanatuatua bogs and age calibrations. 
Unmodelled ModelledCore Lab numbera Ave. depth and 

sample width (cm)
14C ageb

± 1 σ δ13C 95% max 95% min Mean 95% max 95% min Mean Aindex

K106 AA-54136 341.5 (1.8) 2347 ± 38 -26.4 2436 2161 2310 2455 2188 2332 114.6
AA-54137 390.0 (1.0) 2962 ± 38 -29.1 3209 2930 3064 3165 2925 3036 101.6
AA-54138 445.0 (1.2) 3618 ± 39 -29.8 3984 3719 3873 3975 3721 3855 101.5
AA-54139 498.8 (1.1) 4116 ± 41 -29.9 4812 4425 4597 4695 4420 4536 107.4
SUERC-1481 556.2 (1.1) 4433 ± 37 -30.2 5267 4851 4976 5270 4952 5100 54.8
SUERC-1482 609.5 (1.0) 4925 ± 34 -30.1 5715 5488 5621 5714 5490 5621 103.1
SUERC-1483 664.5 (2.3) 5039 ± 39 -30.0 5892 5613 5745 5893 5613 5745
SUERC-1517 736.6 (1.0) 6017 ± 34 -30.9 6930 6679 6810 6968 6732 6853 88.0

K108 AA-54140 379.7 (1.1) 2404 ± 40 -29.8 2694 2310 2426 2686 2308 2413 104.5
AA-54141 425.7 (1.0) 2832 ± 37 -29.7 2995 2782 2890 3000 2781 2894 100.7
AA-54142 464.3 (1.5) 3352 ± 38 -30.2 3679 3446 3537 3681 3446 3537 100.5
AA-54143 512.7 (1.1) 4145 ± 40 n/a 4821 4447 4642 4817 4445 4628 100.4
AA-54144 559.2 (1.1) 4514 ± 41 -28.5 5303 4894 5131 5303 4963 5138 102.0
SUERC-1484 603.1 (2.0) 4999 ± 37 -29.0 5863 5596 5690 5874 5596 5692 100.4
SUERC-1485 648.7 (2.1) 5707 ± 33 -28.9 6551 6320 6446 6550 6320 6444 100.9
SUERC-1486 689.0 (2.1) 6101 ± 30 -27.3 7005 6791 6911 7008 6790 6911 100.9

K204 SUERC-1496 417.5 (1.0) 2165 ± 28 -28.6 2299 2010 2116 2299 2017 2129 104.6
SUERC-1497 462.5 (1.0) 2543 ± 28 -28.8 2741 2458 2591 2736 2497 2622 102.8
SUERC-1501 506.5 (1.0) 3056 ± 28 -30.7 3340 3076 3208 3331 3076 3199 106.1
SUERC-1502 551.5 (1.0) 3484 ± 29 -29.3 3829 3610 3710 3833 3629 3727 97.9
SUERC-1503 595.5 (1.0) 3992 ± 32 -30.7 4520 4256 4398 4514 4250 4376 97.6
SUERC-1504 640.5 (1.0) 4344 ± 34 -30.2 5026 4825 4880 5033 4827 4902 84.0
SUERC-1505 684.5 (1.0) 5084 ± 33 n/a 5903 5663 5800 5888 5652 5745 80.7
SUERC-1507 730.0 (2.0) 5429 ± 31 n/a 6286 6017 6188 6288 6029 6203 108.2
Wk-11111 777.0 (2.0) 5983 ± 185 -29.1 7252 6399 6798 6948 6495 6721 122.9
Wk-11110 827.0 (2.0) 6526 ± 174 -30.2 7681 6992 7369 7430 7049 7248 92.0
Wk-11109 845.0 (2.0) 6571 ± 151 -28.7 7693 7030 7420 7553 7257 7399 120.3
Wk-11108 929.0 (2.0) 7624 ± 165 -30.1 8857 8014 8401 8549 8024 8295 104.0



Unmodelled ModelledCore Lab no. Ave. depth and 
sample width (cm)

14C age 
± 1 σ δ13C 95% max 95% min Mean 95% max 95% min Mean Aindex

M102 SUERC-
2520

79.5 (1.0) 1962 ± 24 n/a 1928 1755 1867 1928 1755 1867

SUERC-
1508

109.0 (2.0) 2825 ± 28 -28.0 2960 2785 2880 2958 2792 2882 105.3

SUERC-
1511

138.5 (1.0) 3434 ± 29 -28.2 3816 3515 3639 3717 3515 3628 103.1

SUERC-
1512

164.0 (2.0) 3789 ± 29 n/a 4231 3984 4099 4239 3995 4131 98.4

SUERC-
1513

192.5 (1.0) 4474 ± 29 -27.8 5279 4872 5057 5254 4866 5000 106.3

SUERC-
1514

221.5 (1.0) 4340 ± 27 -28.2 4961 4827 4870 4961 4827 4870

SUERC-
1515

248.5 (1.0) 5574 ± 29 -28.5 6400 6283 6336 6401 6281 6332 101.7

SUERC-
1516

277.5 (1.0) 6106 ± 36 n/a 7151 6788 6921 7141 6795 6927 106.4

Wk-11106 348.5 (3.0) 6071 ± 127 -28.3
Wk-11112 533.5 (3.0) 9454 ± 206 -28.6

M103 AA-54133 195.6 (1.2) 2408 ± 38 -28.5 2690 2315 2429 2496 2348 2435 93.9
SUERC-
1473

237.6 (1.2) 3111 ± 28 -29.1 3365 3180 3279 3341 3179 3257 100.3

SUERC-
1474

267.9 (1.4) 3574 ± 32 -28.2 3914 3695 3804 3885 3715 3794 109.4

SUERC-
1475

302.0 (1.0) 3801 ± 33 -27.8 4240 3985 4119 4240 3985 4119

SUERC-
1476

331.8 (2.3) 4386 ± 35 -29.0 5038 4839 4922 5026 4845 4923 106.2

AA-54134 366.6 (1.2) 4817 ± 43 -28.4 5600 5327 5499 5603 5472 5548 107.8
SUERC-
1480

403.1 (1.1) 5466 ± 40 -29.1 6306 6025 6222 6301 6189 6251 113.2

AA-54135 440.0 (1.1) 6240 ± 46 -28.2 7249 6969 7097 7119 6927 7015 84.9



M206 SUERC-
1490

196.5 (1.0) 2139 ± 24 -29.0 2149 2008 2075 2300 2009 2122 80.0

SUERC-
1491

234.5 (1.0) 2899 ± 28 -28.5 3075 2865 2973 3058 2863 2948 101.1

SUERC-
1492

271.5 (1.0) 3256 ± 26 -29.4 3555 3364 3433 3548 3364 3431 103.8

SUERC-
1493

308.5 (1.0) 3609 ± 30 -28.3 3974 3724 3860 4065 3733 3895 96.5

SUERC-
1495

346.5 (1.0) 4294 ± 32 -29.0 4875 4630 4800 4873 4629 4786 91.3

SUERC-
1518

383.5 (1.0) 4755 ± 25 -29.3 5581 5323 5441 5580 5323 5438 99.3

SUERC-
1521

422.0 (2.0) 5381 ± 31 -28.1 6268 5997 6115 6269 6000 6124 100.9

SUERC-
1522

458.5 (1.0) 6079 ± 37 -29.0 6999 6753 6882 6980 6751 6868 102.2

Wk-11107 542.5 (1.0) 5952 ± 152 -28.3 7157 6410 6755 7157 6411 6755
aAA- and SUERC- samples were processed as two separate batches at the NERC Radiocarbon Laboratory (East Kilbride, UK), while Wk- 
samples were processed at the Waikato Radiocarbon Dating Laboratory (Hamilton, New Zealand). AA- and SUERC- samples were measured 
using AMS on above-ground plant macrofossils, mainly Leptospermum scoparium and Epacris pauciflora leaves. Where these were absent, 
Epacris and cf. Empodisma seeds and Gleichenia dicarpa fronds were used. Wk- samples comprised bulk peat. Age-depth models were 
developed using OxCal v4.3.2 (Bronk Ramsey, 2009) and the SHCal13 atmospheric curve (Hogg et al., 2013). Each core was modelled with 
P_Sequence (Bronk Ramsey, 2008) and tephra layers were cross-referenced between cores. Outliers are denoted by missing Aindex values, “n/a” 
indicates no result because of insufficient sample, and Wk-11106 and Wk-11112 were sampled from separate cores adjacent to M102. Although 
not used in this study, these last two dates are included here for completeness.
bConventional radiocarbon ages in 14C year BP ± 1 standard deviation (σ)



Table 5. Pearson correlation coefficients (r) and p-values for correlation between the 
100-year bins of humification records for the three Kopouatai and Moanatuatua cores
_____________________________________________________________________

 K106R K108R
K108R 0.009 (p=0.951)
K204R 0.329 (p=0.029)* 0.313 (p=0.038)*

______________________________________________________________
* Denotes a significant correlation at the 95% certainty level.

 M102R M103R
M103R 0.284 (p=0.043)*
M206R 0.130 (p=0.365) 0.085 (p=0.552)


