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Abstract—With the rapid development of Internet-of-Things
(IoT), mobile crowdsensing, i.e., outsourcing sensing tasks to
mobile devices or vehicles, has been proposed to address the
problem of data collection in the scenarios such as smart city.
Despite its benefits for a wide range of applications, mobile
crowdsensing lacks an efficient incentive mechanism, restricting
the development of IoT applications, especially for Internet-of-
Vehicles (IoV) – a typical example of IoT applications; this
is because vehicles are usually reluctant to participate these
sensing tasks. Moreover, in practice some sensing tasks may
arrive suddenly (called an emergent task) in the IoV environment,
but the resources of a single vehicle may be insufficient to
handle, and thus multi-vehicles collaboration is required. In
this case, the incentive mechanisms for the participation of
multiple vehicles and the task scheduling for their collaborations
are collectively needed. To address this important problem, we
firstly propose a new model for the scenario of two vehicles
collaboration, considering the situation of emergent appearance
of a task. In this model, for a general sensing task, we propose
a bidding mechanism to better encourage vehicles to contribute
their resources, and the tasks for those vehicles are scheduled
accordingly. Secondly, for an emergent task, a novel time-window
based method is devised to manage the tasks among vehicles
and to incent the vehicles to participate. Finally, we develop
a blockchain framework to achieve the secured information
exchange through smart contract for the proposed models in
IoV.

Index Terms—Mobile crowdsensing, Incentive mechanism, In-
ternet of Things, Internet of Vehicles, Blockchain

I. INTRODUCTION

W ITH the rapid development of smart mobile devices
and embedded sensors, Internet-of-Things (IoT) has

become an indispensable part of people’s lives. As suggested
by Gartner [1], IoT is and will still be the fastest-growing,
the largest market potential, and the most attractive emerging
economy. IoT has revolutionized a wide range of fields, and
its applications, such as Internet-of-Vehicles (IoVs) [2], in
the context of smart cities are of particular interest in the
community. IoV is an open and integrated networking system
composed of vehicles, users and networks, and a vehicle
possesses the computation, sensing and storage resources. To
better improve every aspects of people’s lives and to make
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the smart city a reality, more sophisticated data needs to be
collected through IoV.

A promising way to collect such a huge volume of data in
IoVs is through mobile crowdsensing (MCS) [3]–[11], which
outsources the sensing tasks to the sensors of vehicles. MCS
usually involves an IoT center for receiving data collection
requests and delegating the data sensing tasks to the participat-
ing devices like the vehicles in the IoV environment. It takes
advantage of the computation, sensing and communication
resources of vehicles and avoids to deploy a large number of
task-specific sensors [3]. However, vehicles may be reluctant
to contribute their resources to complete MCS tasks [12].
Thus, an effective incentive mechanism is urgently needed to
encourage vehicles to participate the data sensing so as to
promote the development of IoV and smart cities.

Many incentive mechanisms [13]–[23] have been reported
in the literature. Most of them fail to consider the situation
of an emergent sensing task in IoV. This kind of task has the
characteristic of delay-sensitive nature and needs to be handled
timely. In addition, there has not been any mechanism in IoV
to secure the information exchange for incentive mechanisms,
which is a critical issue in IoV [12], [24]. Blockchain as the
most popular distributed ledger technology [25] has enabled
vehicular applications for secured authentication [26] and
communication [27]. It is promising to integrate blockchain to
handle the information exchange of IoV in an MCS system.

Aiming at these shortcomings of the existing incentive
mechanisms and MCS task allocation problems in IoV, we
propose a new MCS incentive mechanism with regard to
timing constraints. In addition, a new model for multi-vehicles
collaboration and delay-sensitive task assignment is developed
and analyzed. The main contributions of this paper are sum-
marized as follows:
• We distinguish between a general task and a delay-

sensitive emergent task, and innovatively combine the
two types of tasks into one unified scheduling problem.
To solve the general task assignment problem, we model
the MCS task allocation as a budget constraint bidding
problem.

• To handle the delay-sensitive emergent task whilst pro-
cessing general tasks, we develop a new multi-vehicles
task assignment model. The model elaborates the at-
tributes of emergent tasks and considers the resource
limitation nature of vehicles due to the processing of gen-
eral tasks. A multi-vehicles collaboration method based
on idle time window is proposed, which can effectively
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ensure the real-time and effectiveness of multi-vehicles
resource allocation and improve the vehicle resource
utilization rate.

• To improve the efficiency and transparency of vehicle
collaborations, a blockchain framework is envisioned to
realize the bidding and secured information exchange
between vehicles and the IoT center. The novelty is that
we take into account how the participants are actually
paid with incentive mechanisms, which is largely ignored
in previous works.

• Experiment results demonstrate the advancement of the
proposed method in terms of more efficient task alloca-
tion and processing, leading to shorter task running time,
and extra profits gained due to the processing of emergent
tasks.

The rest of the paper is organized as follows. The related
work is summarized in Section II. The multi-vehicles collabo-
ration problem is described in Sections III - V. Specifically, in
Section III, we distinguish two types of tasks: the general task
and the delay-sensitive emergent task; we describe the general
task assignment problem and the emergent task assignment
problem in Sections IV and V, respectively. A time-window
based method to solve multi-vehicles collaboration issue is
proposed in Section VI. The proposed method is validated
and evaluated by extensive experiments in Section VII. Finally,
Section VIII concludes this study.

II. RELATED WORK

A. Mobile Crowdsensing

Extensive studies have been carried out to investigate the
incentive mechanisms to encourage the participation of mobile
devices in MCS. They can be generally grouped into three
categories, namely, location based, social network based and
time based.

For location based incentive methods [15], [16], [18], the
location and the coverage of mobile devices are of great impor-
tance, and they become part of the constraints for optimization.
As pointed out by Huang and Tseng [28], the coverage is a
fundamental issue in wireless sensor networks to reflect how
well an area is monitored. Zheng et al. [13] utilized the idea
of coverage and considered the task allocation as a coverage
problem. The authors modeled the scenario that the service
provider publishes a number of points of interests and the data
providers bid with a pair of the task and its cost. Wang, Wei
and Qi [15] studied the vehicle MCS and took into account
not only the current location but also the future location of
vehicles when recruiting vehicles for MCS tasks. Tao and Song
[16] studied the location of tasks with regard to a clustering
effect. They only modeled the reward for data providers as the
combined cost of sensing and travelling to a certain location,
but the participatory and selfishness nature of data providers
are omitted. Ko, Pack and Leung [18] proposed a coverage
guaranteed and energy efficient participant selection model
for MCS. They modeled the sensing tasks of static users
and focused on reducing the energy consumption for devices,
and they assumed that delay is allowed so that data can be
sent in batch. For all the methods discussed above, where

only the location or coverage requirements of MCS tasks are
considered, the sensing is performed only once in a task.
However, several tasks, such as traffic monitoring in [29],
[30], require repeated sensing in an area. In addition, the time
constraint of delay-sensitive tasks is largely ignored.

As for the social network based incentive mechanisms [17],
[20]–[22], they considered social cost of participation and
utilized social platform to recruit. Jiang et al. [17] proposed a
social network based MCS model and discussed the prevention
of sybil attack after introducing the idea of social networks.
They also considered time-sensitiveness of tasks, but they
failed to consider the repeated sensing in a task. Chen et al.
[21] proposed a three-layer incentive structure involving the
social applications, so as to taking advantage of the user base
from social applications instead of finding and stimulating
users per sensing tasks. Nie et al. [20], [22] considered the
network effect, which refers to the phenomenon that public
goods or services are more valuable if it is adopted by more
users, with incentive. They modeled the interaction between
service providers and users as a game. These studies [20]–[22]
can be generally treated as platform-centric solutions where
the rationality and selfishness nature of users is ignored.

Although time-based incentive mechanisms have been pro-
posed in [14], [19], they focused only on the time constraint
aspect without considering the repeated sensing nature in a
task. Zhan et al. [14] assumed the selfishness of mobile users
and modeled the data collection process as a cooperative game
between data provider and requester. They took into account
the time constraint of a task which needs to be finished within
a limited time. Xu et al. [19] proposed a novel scenario where
the platform needs the data collection to be completed in a
requested time window. Besides, they showed that the data
collected in the time window has sufficient integrity. However,
these incentive mechanisms focus on the fact that tasks need to
be finished within a time limit; they failed to plan the sensing
tasks for several time slots, which is the case for the tasks
requiring repeated monitoring. Duan et al. [12] studied vehicle
monitoring scenarios and proposed two different modes, i.e.,
an offline mode and an online mode, with regard to the lack of
fairness, unconsciousness and randomness of mobile devices
of the current incentive mechanisms. The novelty of their work
is that they modeled the bidding with not only the demanding
price but also the location-time pair of the vehicle, so that
repeated sensing tasks can be allocated on time. However, they
omitted the resource requirements for each bidding.

In summary, the existing literature lacks the attention to
the time constraint of MCS tasks in two perspectives. On
the one hand, a number of studies failed to take the delay-
sensitive emergent tasks into account. On the other hand, for
those who considered the time constraints of a task, they
performed the sensing only once in a task. In the environment
with heterogeneous sensing requests, time-sensitive emergent
tasks should be considered on top of the fact that devices are
carrying out repeated sensing tasks. This combined framework
is not shown in any of the reviewed literatures. Moreover, for
all the works investigated above, how the payment is securely
dealt with is not considered.
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B. Blockchains

The blockchain has become a promising solution to tackle
trust and privacy issues of information sharing in MCS.
Feng and Yan [31] proposed an MCS-chain to solve privacy
and fault-tolerance of existing MCS networks. They focused
on an innovative consensus algorithm and trust evaluation,
but the execution of the bidding and information exchange
are ignored. Chatzopoulos et al. [32] studied the usage of
blockchains in MCS by proposing an effective incentive
auction. The bidding and information exchange problems are
addressed, but it is for location-based MCS and only location
privacy is preserved. Zhao et al. [33] also discussed the
blockchains in MCS focusing on preventing malicious nodes
that publish false information or intentionally not provide data
after accepting a task.

III. AN OVERVIEW OF BLOCKCHAINS

Blockchains, which are developed as the key technology
behind Bitcoin [34], have gained popularity in various areas of
applications. It is composed of blocks, and each block contains
a hash of the previous block along with a time stamp. The
blocks combined to form a distributed ledger is transparent
in a way that all the transactions made since the creation of
the blockchain can be available to check. It is tamper-proof,
meaning that the data recorded on the blockchain cannot be
modified and with no fraud [35]. It can be seen as a log whose
records are batched into time-stamped blocks [36], and it can
be used by various parties to efficiently record transactions
between each other in a verifiable and permanent way [37].

A. Blockchain Networks

A blockchain network [38] consists of a set of nodes which
are the entry point for multiple users or devices to interact with
each other. The nodes make executions on behalf of these users
or devices, and they keep both a replicated copy of the ledger
of the blockchain, which will be updated when transaction is
made on the blockchain, and the smart contract for execution
of the transactions [39]. The transaction encompasses a variety
of data which is valuable in the blockchain network, such as
the information collected by the IoT devices [40], bitcoin, etc.
Before being recorded on a block, a transaction needs to be
signed off by a node using its private key, and its contents can
be examined by other nodes using the corresponding public
key. After the transaction is validated and accepted by nodes in
the blockchain network, the record of the new block containing
the information about this transaction will be broadcasted to
the whole network where each node updates its ledger by
adding this block.

B. Smart Contracts

Smart contract can ensure a secure, efficient and automatic
data exchange between different parties without the traditional
contracting process such as search, negotiation and commit-
ment [38]. The basic idea behind smart contracts is that many
contractual clauses (such as collateral, bonding, delineation of
property rights, etc.) can be embedded in the hardware and

software, in which case the breach of contract is expensive
[41]. A smart contract is a predefined set of rules that agreed
by multiple parties on how a transaction affects their status,
such as their account. For example, a smart contract can be
used to query a certain data on the blockchain with regard to
some kind of information, and it can also be used to move
10 certain assets from node A to node B. The execution of
a transaction will result in a status which will be recorded in
the ledger by each party in the blockchain network.

IV. MOBILE CROWDSENSING IN INTERNET-OF-VEHICLES

As classified by Ganti, Ye and Lei in [3], MCS applications
can be classified into three categories, namely, environmental,
infrastructural, and social applications.

For environmental applications like noise monitoring [42],
and infrastructure applications like traffic congestion moni-
toring [29], as well as social applications like BikeNet [43]
relying on individuals to contribute the location and bike route
quality, continuous data collection is needed. In other words,
for a single task in these applications, repeated sensing is
required. We name this type of sensing task as general sensing
tasks or general tasks in short. For safety related applications
suggested in [44], data collection is delay-sensitive, and we
term this kind of task as emergent tasks.

For a general task, e.g., noise monitoring that requires data
to be collected continuously, the IoT center will publish the
task descriptions including task name, required resource and
time constraint through smart contract to the blockchain. The
task name can be noise monitoring; required resource can
be feedback on noisy level; and time constraint can be a
time period. Then, data providers can use smart contracts to
view tasks and offer biddings if they intend to participate
the sensing task. The related bidding information including
participant ID and its bidding and resource pair will be stored
on the blockchain. Upon receiving bidding information after a
predefined period of time, smart contract will be executed on
behalf of IoT center to select an optimal vehicle set and publish
the result on blockchain. Next, the vehicles will be asked to
provide the required data to store on the blockchain when
being notified that they are selected. The IoT center retrieves
the provided data from the blockchain, and then it will offer
reward to the participants in terms of tokens through the use
of smart contract.

While the vehicles are carrying out the general tasks in
this area, suddenly, suppose an ambulance carrying a patient
plans to go through this area, which publishes the task of
inquiring the area traffic congestion onto the blockchain. The
IoT center then publishes the tasks and does the same thing
as with general tasks. In this situation, the tasks are delay-
sensitive and emergent, and the vehicles need to utilize their
idle resources such as camera and acceleration sensors to help
with the emergent tasks.

In what follows, we propose a bidding mechanism with
regard to time and resource constraints to schedule the vehicles
with general tasks in Section IV. Then, a time-window based
algorithm is proposed in Section V, to schedule the delay-
sensitive emergent tasks. All the communications between
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vehicles and the IoT center are handled by a blockchain plat-
form [25]–[27], including bidding, payment, and scheduling
information.

V. MULTI-VEHICLES GENERAL TASK ASSIGNMENT

A. Problem Description

The problem solved in this section is for the general task
scheduling in multi-vehicles collaboration environment. In this
scenario, tasks are scheduled by an IoT center through a per-
missioned blockchain [26], where all the nodes have already
been registered on it. In this phase, it is assumed that there are
M tasks, denoted by T = {T1, T2, . . . , TM}, to be scheduled
by the IoT center, and each task Ti has a requirement with the
pair (ti, di), where ti represents all the required time periods
to carry out the task and it is defined as {t1i , t2i , . . . , tni }, and
di, defined by the quality parameters {d1i , d2i , . . . , dni }, is the
minimum data quality requirement. For example, for a noise
monitoring task which needs the data to be collected from the
road, the sensing time can be every single hour from 7:00 to
10:00 and from 16:00 to 19:00. The data quality requirements
can be the noisy level (a vague value, e.g., OK and not noisy,
or accurate decibel which can be mapped to a certain value
representing the quality) and continuous sensing time. The IoT
center publishes tasks on the blockchain and waits for the
response from the vehicles offering biddings; the publishing
and bidding can be performed on the blockchain through a
smart contract [27]. Assume there are N vehicles, denoted by
A = {A1, A2, . . . , AN}, willing to finish the tasks in order
to gain rewards, and each vehicle Aj will offer a bidding Bj
which comprises a pair of bidding price along with their data
quality (Bj , Dij , τj). For the task Ti, the quality Dij contains
n quality parameters {D1

ij , D
2
ij , . . . , D

n
ij}, and τi contains all

the possible time periods {τ1i , τ2i , . . . , τni } that a vehicle is
able to contribute their resources.

For the tasks to be scheduled, the IoT center chooses the
vehicle, considering its own budget limit and the combined
data quality provided by the vehicle. Next, the IoT center
schedules the tasks and waits for the data to be collected from
the vehicle which will be rewarded with their corresponding
bidding and task completion. These processes are recorded and
are also performed on the blockchain through a smart contract.
We consider the token as the monetary reward in this study,
and the processes are shown in Fig. 1.

In the blockchain network, the devices from data providers
and IoT center are both peer nodes, and they can execute smart
contracts to store or retrieve information from the blockchain
of their network.

B. Basic Assumptions

1) Resource Awareness: The vehicles are aware of the con-
sumption of their resources such as battery and computation
capability when finishing the allocated tasks, so they can bid
with a price higher than the cost of the resources they need to
spend out for their own interest [12], [17].

Fig. 1. The senario of vehicles mobile crowdsensing: bidding and selecting
processes

2) Quality and Value: A value function V (d1i , d
2
i , . . . , d

n
i )

is proposed to compute the value of the provided data, and it
satisfies Equation (1).

∂V (d1i , d
2
i , . . . , d

n
i )

∂dki
≥ 0 (1)

The above equation shows that the value of data will increase
with the value of data quality. Therefore, the higher data
quality per quality parameter is needed, the higher value of
the data is for the IoT center. We can simply represent the
value of data by combining the quality parameters.

3) Malicious Bidding: Vehicle nodes could bid with un-
reasonable price and false data quality. For the high price,
the IoT center can ignore bidding requests, because it has a
budget limit and is for the benefit of itself; it selects a set of
vehicles with lowest price and highest data quality. For the
nodes reporting false data quality parameters, when their data
is gathered by the IoT center during data collection phase, the
IoT center will spot the difference between the real data quality
and the reported one. Then, these nodes will no longer be able
to participate data collection and have no reward. This can be
done by removing these nodes from the network. However,
vehicles will not maliciously use their resources to attack other
vehicles [45], [46].

C. Quality Requirement

To finish a task Ti, all the parameters of its quality require-
ments must be satisfied by:

dai ≥
m∑
j=1

Da
ij ,∀a ∈ {1, 2, . . . , n} (2)

where Da
ij is provided by the vehicle Aj belonging to the

selected set of vehicles. All the quality parameters ranging
from 1 to n must be satisfied.

D. Budget Requirement

The IoT center has a budget limit b which means the
combined bidding price of the selected vehicles must satisfy:

b ≥
m∑
j=1

Bj (3)
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where Bj is the bidding price of vehicle Aj . Therefore, for
those malicious nodes who bid with unreasonable price, their
bid will not be accepted by the IoT center when other nodes,
with similar resources, bid with reasonable price due to the
price limit of the IoT center.

E. Time Availability

For a bidding vehicle Ai, the time availability variable
Li = {L1

i , L
2
i , . . . , L

n
i } is formed by comparing the bidding

contribution time of the vehicle and the task requirement time.
For the value of Lαi = 1 where the vehicle can participate in
the required time, the vehicle can continuously contribute to
sensing data; Lαi = 0, is for the situation that the vehicle
cannot participate during that period of time.

F. Optimal Set Selection

Combining with Equations (1) and (2), the optimal set for
the general tasks is selected for the maximal benefit of the IoT
center:

max

∑K
t=1

∑N
j=1

∑n
k=1D

k
ijLt∑m

j=1Bj
(4)

where N vehicles are selected for the set with the n quality
parameters of M satisfied tasks, and K is the number of time
slots.

VI. MULTI-VEHICLES EMERGENT TASK ASSIGNMENT

A. Problem Description

The problem to be solved in this section is for real-time
scheduling of the burst of tasks in multi-vehicles collaboration
environment. Because the tasks to be dealt with are emergent
tasks, meeting the task resource requirement is of great impor-
tance. Thus, the data quality can be ignored, while ensuring
the idle resources of vehicles. The bidding process can be
omitted, and the IoT center makes vehicles cooperate and
rewards the selected optimal set after the tasks are completed.
Because of the time constraint, the emergent tasks have both
resource attribute and time attribute. In this problem, we take
the time requirement as X-axis and the resource demand as
Y-axis. We consider a typical scenario that there are M tasks
T = {T1, T2, . . . , TM} in the range Q = [0, s]× [0, s], where
each task is represented by a pair of resource requirement and
time attribute. Here, the time attribute is the duration of the
time needed to be taken for processing the task. The type and
quantity of resources required to process Ti are expressed as
Ri = {R1

i , R
2
i , . . . , R

m
i }, where Rki represents the demand for

the k-th resource for handling the emergent task Ti. The N
types of heterogeneous vehicles A = {A1, A2, . . . , AN} are
used to indicate the running vehicles in the current area Q,
and the vehicles in the area where the current burst of tasks
are located can cooperate to complete the task processing.
Corresponding to the attribute requirements in the target task,
the remaining resources Rj = {R1

j , R
2
j , . . . , R

n
j } of different

types of vehicles are different.
For the burst of tasks to be processed, the goal of multi-

vehicles collaborative task processing includes two aspects: a)

within the range Q, allocate vehicle resources to maximize the
benefits of task processing for both the IoT center and vehicles,
where vehicles can gain more profits by bidding with higher
price than the original cost, and the IoT center can have their
tasks finished; b) for a burst of tasks, it is necessary to respond
to and process the task request in time, and process as many
tasks as possible within the shortest time, which can improve
the efficiency of overall task processing.

B. Resource Requirements

The vehicle task assignment module performs the initial task
assignment for the tasks within the range Q, and multiple types
of vehicles perform the assigned tasks; we have discussed this
in the previous section, i.e., Section V. During the period when
a vehicle has idle resources, if a new task Tj arrives, the
vehicle processes it with the following two scenarios:

Scenario 1: The vehicle is constrained by its own resource
limit. There is a situation where the resources of a single
vehicle are not enough to handle a new task, as shown in
Equation (5):

xkijr
k
i ≤ Rki ,∀k ∈ {1, 2, . . . ,m} (5)

where xkij indicates whether the k-th attribute of the vehicle i
satisfies the resource requirement corresponding to the target
task Tj , and rki represents the amount of the k-th resource of
a vehicle i. xkij = 1 indicates that the task is assigned to the
vehicle i for processing, otherwise, xkij = 0.

Scenario 2: The vehicle may not be constrained by its own
resource limit, and thus Equation (5) does not need to be
satisfied.

In both scenarios, in order to complete the processing of the
task Tj , it is necessary to form a multi-vehicle set IA together
with the other vehicle Ai possessing the idle resources. The
total resources of IA must meet the resource requirements of
the target Tj , and thus the Equation (6) holds.∑

Ai∈IA

xkijr
k
i ≥ Rki ,∀k ∈ {1, 2, . . . ,m} (6)

C. Execution Profit

To encourage more vehicles to participate the data collection
process for emergent tasks, the IoT center rewards the vehicles
with execution profit based on the contribution that each
vehicle makes. The vehicle gains the execution profit after
processing a task. Firstly, the task execution profit function
is defined as follow. When a vehicle processes the target
task, different types of tasks are processed, and thus different
benefits are obtained. Therefore, when the vehicle Ai is
allocated to process the task Tj , the net income that can be
obtained is expressed as

Ckij =

I∑
k=1

Gkij − I(XD
ij = 0), I = 1 iff XD

ij = 0 (7)

where Gkij denotes the profit gained by the vehicle Ai from
processing the task Tj .

Gkij = pkijV
k
j , (p

k
ij = fki

Rki
Rkj

) (8)
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Fig. 2. The task processing sequence of a vehicle

where pkij represents the completion probability of assigning
the vehicle Ai to process the task Tj . fki denotes the proba-
bility that the vehicle Ai can satisfy the k-th resource demand
of Tj . For each resource provided by a vehicle, the profit V kj
is a constant which is set by the IoT center.

Given the profits described above, the total profit of a multi-
vehicles task assignment problem can be expressed as:

CA =

n∑
i=1

m∑
k=1

xkijC
k
ij (9)

where xkij denotes whether the k-th resource of vehicle Ai can
process the task Tj .

D. Task Processing Time

When multiple vehicles are working with their assigned
tasks, due to the occurrence of emergent tasks, the running
vehicles which have the available remaining resources and
time of each resource will collaborate to process the emergent
task. In this case, a multi-vehicle alliance is formed to jointly
complete the processing of an emergent task. When the multi-
vehicles jointly process a task, it is required that the vehicles
in the respective vehicle alliance can achieve the same idle
time and meet the resource requirements of the emergent task.
That is to say, each vehicle has appropriate idle resources in
the current time period, which can meet the task requirements.
Due to the current operating state of a vehicle, and the devices
may be heterogeneous, the remaining resources and time
attributes of the vehicles and devices that make up the alliance
are different. This requires the time and resource coordination
for each vehicle and device. Therefore, the vehicles with
matching resources will have a waiting time, and when the
resources and time meet the conditions, the vehicle alliance
will be formed to coordinate the tasks.

In what follows, we explain the multi-vehicles cooperation
problem from the time dimension. As shown in Fig. 2, each
vehicle has a time sequence to process tasks. Each task in
vehicles is processed sequentially. We assume (tj−1,i, tj,0) is
the adjustment time the vehicle resets to process the task Tj
from the previous task Tj−1, and (tj,1, tj,2) is the processing
time of the next task Tj . Then, the idle time window of a
vehicle is (tj,0, tj,1), i.e., the vehicle is available between task
tj,0 and task tj,1.

Let us first illustrate the process of collaborative task
processing for multiple vehicles using the idle time window.

Fig. 3. The task processing sequence of a vehicle with idle time window

Fig. 4. The type of the starting time of a vehicle

As shown in Fig. 3, we insert task T3 before task T0, and insert
task T4 between task T1 and T2. Then, we can see that multi-
vehicles in IoV can process more tasks than the one shown in
Fig. 2

Let us define, at the moment, the new task that the vehicle
can process is tfk , which is the starting time of an idle time
window. According to different situations of vehicles, there
are three types of starting time of an idle time window, as
shown in Fig. 4. Let T0 denote the next processing task, Tj
be the new arrival task, and θ represent the current situation of
vehicles. As shown in Fig. 4(a), when there is no previous task
assigned to the current vehicle, we can assign the emergent
task Tj to it. The starting time of task Tj is shown in Equation
10:

tjk = tcur−jk + tcur (10)

where tcur denotes the current time, tcur−jk represents the
waiting time that the vehicle Ak is assigned to process task
Tj .

In Fig. 4(b), the initial waiting time of a vehicle to process a
task is T0, i.e., the vehicle can process Tj before T0. Then, the
task T0 is assigned to the vehicle before the task Tj is in the
initial waiting time. The starting time of task Tj is the same
as Equation (10). The starting time of T0 is changed because
of inserting the task Tj before it, and it is shown in Equation
(11).

t0
′

k = tjwait

k + tj−0k + tjk (11)

where tjwait

k is the waiting time of a vehicle processing task
Tj , and tj−0k denotes the adjustment time of processing task
Tj to task T0.

In Fig. 4(c), the waiting time of a vehicle is T0, and the
processing time of the task Tj is longer than the current
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Fig. 5. Idle time window of multi-vehicles collaboration

waiting time. Then, the starting time of a vehicle to process
task Tj is shown in Equation (12):

tjk = tcur−0k + t0wait

k + t0−jk + tcur (12)

Let us define the waiting time between the finish time of
task Tj and the new task as the termination time of the idle
time window. Let t0processk be the initial appointment time of
assigning the vehicle to task T0. Then, the finish time of the
idle time window tj

′

k is shown in Equation (13):

tj
′

k = t
0process
k − tj−0k (13)

With Equations (10) - (13), we can calculate the start time
and termination time of processing an emergent task. Each
vehicle decides if inserting an emergent task to the current
task list according to the time constraint shown as follows.
When the k-th vehicle is assigned a new task Tj , the starting
time of this new task, tjk , needs to satisfy Equation (14) :

tprek + tpre−jk ≤ tjk ≤ t
follow
k − tj−followk (14)

where tprek and tfollowk are the starting time of the previous
task and the following task, with respect to the new task Tj .

When multiple vehicles collaborate to process an emergent
task, the idle time window of multi-vehicles and the resource
demand of the emergent task should be satisfied. As shown
in Fig. 5, the multiple vehicles with the idle time window
overlapped can be collaborated to process the emergent task.
Let us use wi to denote the idle time window of multi-vehicles
collaboration Ai. The idle time window should satisfy the
following constraint shown in Equation (15).

∀Ai, Aj ∈ IA, wi ∩ wj 6= ∅ (15)

E. Multi-vehicles Collaboration Model

After modelling the multi-vehicles collaboration of task pro-
cessing issues mentioned above, we evaluate the multi-vehicles
collaboration in three aspects: a) maximizing the total profit
of processing tasks by multi-vehicles, b) when an emergent
task occurs, the real-time requirement is another evaluation
parameter, and c) minimizing the number of vehicles in multi-
vehicles collaboration. In other words, using less number of
vehicles in multi-vehicles collaboration, there will be more
concentrations on the resources of the involved vehicles, which
will be more conducive to improving resource utilization.

Because the starting time of multi-vehicles collaboration is
determined by the start time of previous idle time window
T ′A, and the total number of vehicles in the multi-vehicles
collaboration NA, we use the total waiting time of multi-
vehicles collaboration and the total number of vehicles in
the collaboration to indicate the timeliness of task processing.
With regard to the Scenario 1 of Section VI.B, where the
vehicle is constrained by its own resource limit, combined
with the total profit of processing tasks, the objective function
of multi-vehicles task assignment collaboration is shown by
Equation (16).

max
∑n

i=1

∑m
k=1 x

k
ijC

k
ij∑n

i=1 x
k
ijvTA

s.t.


xkijr

k
ij ≤ Rkl ,∀k ∈ {1, 2, . . . ,m},∑n

i=1 x
k
ijr

k
i ≥ Rkj ,∀k ∈ {1, 2, . . . ,m},

wA =
n⋂
i=1

wi 6= ∅,∀Ai ∈ IA,

TA = sup(minwA)

(16)

As for the Scenario 2 of Section VI.B, where the vehicle
is not constrained by its own resource limit, the objective
function of multi-vehicles task assignment collaboration is
shown by Equation (17).

max
∑n

i=1

∑m
k=1 x

k
ijC

k
ij∑n

i=1 x
k
ijvTA

s.t.


∑n
i=1 x

k
ijr

k
i ≥ Rkj ,∀k ∈ {1, 2, . . . ,m},

wA =
n⋂
i=1

wi 6= ∅,∀Ai ∈ IA,

TA = sup(minwA)

(17)

Since the time window constraint has been introduced,
the existing integer programming method is not suitable for
solving the model. In what follows, a new method is designed
to solve the above model.

VII. THE PROPOSED MULTI-VEHICLES COLLABORATION
METHOD

We propose a multi-vehicle time-coordinated task assign-
ment method to solve the above-mentioned time window-
based multi-vehicles task assignment problem model. First,
when a vehicle among multiple vehicles finds an emergent
task, it immediately broadcasts the set of tasks and the
previously assigned tokens within the current vehicles. The
role of the token is to determine that the vehicle in the
network reserves the token, and the vehicle that does not
want to be networked automatically discards the token and
broadcast information. The purpose of this is to ensure that the
competition of multi-vehicle resources is avoided on the basis
of task broadcast in the whole network, avoiding the deadlock
situation of resources and the waste of resources. After the
vehicle Ai gets a token and obtains the team qualification, the
task Tj is auctioned in the format Rj = {Aj , Tj}. Then, the
other vehicles in the IoV calculate the time window wj =
{w1

j , w
2
j , . . . , w

m
j } after inserting the task Tj into the current

task list Ej = {E1
j , E

2
j , . . . , E

m
j } according to Equations (12)

- (16). Then, we calculate the profit Cj = {C1
j , C

2
j , . . . , C

m
j }
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after processing the task Tj using Equations (7) - (9). After
that, we provide the time window and profit results to vehicle
Ai. The vehicle Ai calculates the best collaboration, based on
Equation (16), to process task Tj . It then sends the message to
the vehicles of this collaboration. They insert task Tj to their
task lists and process it accordingly.

The task request initiator adopts the time window based
multi-vehicles collaboration method to form a set of vehicles
to process tasks. In order to eliminate the influence of time
window overlap on the problem solving, the task request
initiator first sorts the vehicles in ascending order according to
the start time of the vehicle’s idle time window to form a set of
candidate vehicles. Then, the requirements of the resources are
matched according to the task. Once the resources required by
the current task are met, the candidate vehicle set is formed. It
is then possible to determine the earliest start time of a vehicle
in this set to perform the task processing. Therefore, the time
window constraint in the objective function is removed, and
the model is transformed into a standard integer programming
problem. The optimal set of vehicle candidates can be then
readily solved.

Let di denote the resource contribution degree of a vehicle.
The vehicle, in the candidate set, with the biggest contribution
is selected using a greedy algorithm according to di, thereby
forming a final task processing set. di can be expressed by the
contribution ratio of the resources that a vehicle i can provide
to process the target task.

dj =

l∑
j=0

wj
Dj
i

RjA
(18)

where wj represents the weight of the j-th resource, RjA
denotes the number of j-th resources that the candidate set
is still missing under the condition that the existing vehicle
has been added, and Dj

i is the j-th resource of the vehicle i
to contribute to task processing.

Dj
i =

{
Rji , R

j
i ≤ R

j
A

RjA, otherwise
(19)

When optimizing the solution, we need to keep the last
vehicle in the candidate set added. Otherwise, the final task
collaboration will not meet the resources required by the target
task.

VIII. EXPERIMENTAL RESULTS AND ANALYSIS

In this section, the proposed solution is validated through
extensive experiments using a simulator developed in MAT-
LAB. To show the merit of our method of adding critical
resource constraints as discussed in Section V, we compare
it with the related work in [12]. In addition, the efficiency of
the proposed time window based mechanism is validated and
evaluated.

A. Simulation Setup

Initially, the vehicle number, task number and resource types
are initialized. In the default scenario there are 5 types of
resource types, and the number of vehicles ranges from 100

Algorithm 1 The TWA time-window based algorithm
Input: Candidate vehicle set IA
Output: Multi-vehicles collaboration task processing set IC

1: Initial candidate vehicle set IB ← ∅
2: if wi < wj ,∀Ak ∈ IA then
3: select Aj to form the preparation set IB
4: delete Aj from IA
5: end if
6: calculate vn the number of vehicles in IA
7: for in = 1 to vn do
8: if

∑n
i=1 x

k
ijr

k
i ≥ Rkj ,∀k ∈ {1, 2, . . . ,m} then

9: break
10: end if
11: if wa < wk,∀Ak ∈ IA then
12: if ∀Aj ∈ IA,Wk ∩Wj 6= ∅ then
13: add Aa to preparation set IB
14: end if
15: end if
16: end for
17: if IB contains only Aj or

∑n
i=1 x

k
ijr

k
i ≤ Rkj ,∀k ∈

{1, 2, . . . ,m} then
18: the collaboration fails
19: a new vehicle is added to IA
20: goto 7
21: end if
22: initialize the task collaboration set IC ← ∅
23: select last added Aj in IB to task set IC
24: if

∑n
i=1 x

k
ijr

k
i ≥ Rkj ,∀k ∈ {1, 2, . . . ,m} then

25: goto 33
26: else
27: while

∑n
i=1 x

k
ijr

k
i ≤ Rkj ,∀k ∈ {1, 2, . . . ,m} do

28: if da < dk,∀Aa ∈ IB then
29: add Aa to task set IC
30: end if
31: end while
32: end if
33: return IC

to 1000 as compared to [12], while we study the effect of
the number of vehicles, the number of tasks, and the benefits
introduced by our model. It is worth noting that the number of
tasks indicates the number of tasks allocated in a general task
scheduling. Then, an emergent task is assigned to vehicles
at the time duration with no task occupying, according to
Equations (6) - (10). The tasks are represented by a tuple
with its start time and duration. After assigning all the tasks to
vehicles using Equations (2) - (4), if an emergent task appears,
we assign it to the vehicles. The resources for each individual
vehicle follow a uniform distribution in [1, 20]. Besides,
whether the resources of each vehicle can satisfy a certain
resource requirement is generated. We randomly generate an
emergent task represented by its start time, finish time and
resource demand. Then, we use the proposed algorithm to find
the optimal vehicle set.

Each experiment is obtained by repeatedly running 500
times and being averaged. The upper limit of each treatment
time is 1000. The unit processing speed of a vehicle type
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Fig. 6. The percentage of time advance with regard to the number of vehicles
and the number of tasks

is the value uniformly distributed within the range of [10,
90], and the processing speed of each vehicle is different. In
addition, the resource requirements and time points of each
vehicle and each emergent task are randomly generated, and
the generation curves of the respective resource demand are
subject to a normal distribution.

B. Experimental Results and Analysis

1) Time Advance: We evaluate the effectiveness of our
collaboration mechanism in two ways. Firstly, we demonstrate
that the proposed method can save time comparing to the
scheduling mechanisms proposed in [12], [17], [19]. With their
models, the emergent task can only be added to the end of the
task queue because their models either can only process a
complete task or do not consider the case of idle resources
while carrying out a general task. The time saved can be
measured with regard to how much time earlier an emergent
task can be handled by the proposed mechanism. We use an
index l called the percentage of time advance as shown in
Equation (20), where temergentStart is the start processing
time of an emergent task, and tfinish is the finish time of
the last task for each vehicle, so that we can measure how
much time saved.

l =
temergentStart

tfinish
(20)

As shown in Fig. 6, regardless of the number of tasks,
the percentage of time advance is decreasing as the number
of vehicles increases. This is because for a fixed number
of tasks, if there are more vehicles, due to the setting that
tasks are assigned randomly to vehicles, each vehicle has
fewer tasks in a fixed time interval. When each vehicle has
only a relatively small number of tasks, the attribute of an
emergent task is dimmed, which means that the task is no
longer urgent because there is a large probability that the
starting time of the emergent task is located in the idle time
duration of a vehicle. On the contrary, if the number of tasks

Fig. 7. The percentage of time advance of collaboration and non-collaboration
vehicles

is fixed, for a small number of vehicles, each vehicle has
a larger number of general tasks assigned. Therefore, if the
collaboration mechanism is not used, the vehicle has to wait
until all their tasks finish in order to process this task, which
takes longer time, so the percentage of advance is significant.
We can also obtain that when the number of vehicles is
fixed, the more tasks there are, the more effective that this
mechanism proves to be in the sense that the more time is
saved. The reason is similar to the explanation above. For a
fixed number of vehicles, if there are less tasks, an emergent
task will no longer be urgent, and the time advance is less
significant. It is worthy to be noted that when the vehicles are
heavily loaded with tasks (e.g., 100 vehicles and 500 tasks),
the time advance is nearly 90% which shows that the vehicles
make full use of the idle time window.

We also compare the percentage of time advance in collab-
oration and non-collaboration scenarios, as shown in Fig. 7.
The non-collaboration represents that the vehicles’ resources
are not constrained, and it is possible that the resource of a
single vehicle can meet the requirement.

We can intuitively make a conclusion from Fig. 7 of whether
vehicles need to collaborate to meet the resource requirement,
given that the percentage of time advance is almost the same.
This is because even if one vehicle’s resource is enough for the
requirement, part of the resource may not satisfy the need of
the task as explained in Equation (5); there is a parameter xijk

which is randomly generated in the experiment to simulate the
real-world situation. In addition, the final objective function
takes into consideration that the time window needs to be as
small as possible, while the time window of a single vehicle
processing the task is not necessarily smaller than that of
multi-vehicles collaboration.

2) Profit Gain: Secondly, we show that our proposed mech-
anism is effective because it can bring profits. If an emergent
task is handled within a required time interval, the vehicle
which has contributed its resources will be rewarded a profit.
The profit index shows the profit defined in Equation (8).

As shown in Fig. 8, the profit is increasing when the
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Fig. 8. The profit of different number of vehicles and tasks

Fig. 9. The profit index of non-collaboration and collaboration vehicles

number of vehicles increase regardless of the number of tasks.
However, the changing of the slope of profit with regard to
the changes of the number of vehicles is different for different
number of tasks. The reason is that the profit increases with
the increasing number of vehicles; given a number of tasks,
when there are more vehicles, more combinations of vehicles
can be formed to the candidate set, because more vehicles will
be in an idle state when an emergent task comes.

In Fig. 9, it can be seen that the profit made by ve-
hicles is also irrelevant to whether the vehicle’s resources
are constrained, and the profit increases as the number of
vehicles goes up. The reason is the same as explained above
in the percentage of advance between collaboration and non-
collaboration vehicles.

3) Successful Rate: We also investigate the success rate
of our time-window based algorithm. We make 500 times of
random resource generation, and when the number of tasks and
the number of vehicles are set to 300 and 500, respectively, in
the collaboration scenario we obtain the success rate as shown
in Fig. 10. Given that the resources of each vehicle is uni-

Fig. 10. The success rate of allocating a task

formly distributed in [1, 20], and assume that each individual
vehicle’s resources cannot satisfy the resource requirement, we
choose 4 different ranges of resource requirements. The result
is expected, as indicated by the figure, and when the range
increases, the success rate decreases. That means it is harder
to find a set of vehicles that not only have a relatively high
profit but also a small time-window.

4) Performance Improvement: Apart from the aforemen-
tioned advantages of using our time-window based method,
we compare the efficiency of our model with the online
model proposed in [12] in terms of running time. Specifically,
we implement their online incentive mechanisms with our
experimental settings, where an emergent task appears when
the vehicles are carrying out general tasks. The comparison
results are shown in Fig. 11.

From the figure 11, we can observe that the running time
decreases with the increasing number of vehicles. This is
because more vehicles can provide more resources, and it is
easier to find idle time window from a larger pool of par-
ticipants. Besides, our proposed method runs faster because,
their methods do not consider the use of idle resources of
vehicles, so it is harder for their models to find optimal
vehicles to allocate emergent tasks. In addition, our method
performs multi-vehicles collaboration while their methods can
only accept one vehicle for a task.

IX. CONCLUSIONS

This paper has presented a set of solutions to vehicular
mobile crowdsensing in IoV. Repeated general sensing tasks
and delay-sensitive emergent tasks have been discussed and
defined. An incentive mechanism with time and resource
constraints has been proposed to handle the repeated general
tasks allocation. A time-window based method has been de-
veloped to assign emergent tasks to the vehicles while they are
processing general tasks but have idle resources. The method
has made full use of the idle time duration between assigned
tasks, and it is capable of handling emergent tasks by utilizing
these idle resources of multiple vehicles. An objective function
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Fig. 11. Performance in terms of running time

aiming to reduce the processing time while increasing the
profit generated by the task processing has been proposed,
and an algorithm has been designed to sort time window of the
available vehicles, so that the objective function can be solved
as an integer programming problem. Extensive experimental
results have demonstrated the effectiveness of the proposed
mechanisms by showing that using our time-window based
method, the amount of time of processing emergent tasks can
be saved, and more profits can be gained. Finally, a blockchain
framework has been proposed so that secured information
exchange can be handled among participated vehicles in the
mobile crowdsensing network.
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