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Abstract—Mobile Social Networks (MSNs) provide real-time
information services to individuals in social communities through
mobile devices. However, due to their high openness and autono-
my, MSNs have been suffering from rampant rumors, fraudulent
activities and other types of misuses. To mitigate such threats,
it is urgent to control the spread of fraud information. The
research challenge is: how to design control strategies to efficiently
utilize limited resources and meanwhile minimize individuals’
losses caused by fraud information? To this end, we model the
fraud information control issue as an optimal control problem,
in which the control resources consumption for implementing
control strategies and the losses of individuals are jointly taken as
a constraint called total cost, and the minimum total cost becomes
the objective function. Based on the optimal control theory,
we devise the optimal dynamic allocation of control strategies.
Besides, a dynamics model for fraud information diffusion is es-
tablished by considering the uncertain mental state of individuals,
we investigate the trend of fraud information diffusion and the
stability of the dynamics model. Our simulation study shows that
the proposed optimal control strategies can effectively inhibit the
diffusion of fraud information while incurring the smallest total
cost. Compared with other control strategies, the control effect
of the proposed optimal control strategies is about 10% higher.

Index Terms—Mobile social networks, fraud information dif-
fusion, system dynamics, optimal control, simulation.

I. INTRODUCTION

W ITH the boom of the Internet and the rapid popular-
ization of intelligent mobile devices, Mobile Social

Networks (MSNs) have grown up to become an important
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platform for information dissemination [1]. MSNs can provide
people with a variety of real-time information services, and
have already penetrated into our daily life. The Internet-based
MSNs have exhibited their great charm and broad prospect
in many application fields, such as instant communication,
life service, interactive entertainment, etc., and have attracted
extensive attention of the industry and the academia [2], [3].

However, the development of MSNs is like a double-edged
sword [4], [5]. When MSNs are increasingly becoming an
indispensable part of people’s lives, a series of unhealthy
phenomena such as fake news, rumors, online promotion and
fraudulent activities are becoming more and more rampant,
which pose a serious threat on the normal social network
activities [6], [7]. Besides, by means of the emerging tech-
nologies of intelligent terminals, wireless networks, and online
payment in recent years, the high rate of fraud has caused great
losses to people [8]. According to the official data released by
the security ministry, telecommunications fraud in MSNs has
grown at an annual rate of 20%− 30% [9]. The following are
two representative scenarios:

Scenario A: One scenario is the Veracruz incident in
August of 2015 [10]. A piece of rumor saying “shootouts and
kidnappings by drug gangs happening near schools in Veracruz
spread in Twitter and Facebook. This rumor caused severe
chaos in the city and many serious car crashes happened amid
the hysteria.

Scenario B: Another shocking scenario occurred in Au-
gust 2016 when a Chinese university professor suffered a
telecommunication-based fraud, leading to a serious loss of
17.6 million yuan [11]. Criminals fabricated an elaborate hoax,
used the network to transmit fraud information and perform
remote frauds to victims.

Fraud information diffusion has become a prominent prob-
lem in social networks [12]. Those evidence highlight that
effectively controlling the fraud information in MSNs appli-
cations is of great significance. Here we define the so-called
fraud information as a piece of malicious information or false
information, which aims to intentionally cause adverse effects
such as mass panic, or defraud victims of their property. In
order to cope with the spread of such information in MSNs
more effectively, it is an urgent need to study the pattern
of fraud information diffusion and further put forward the
corresponding control measures.

Previously, some mathematical models have been used to
model the diffusion evolutionary process of fraud information
in the network. Most of these models are based on the theory
of biological infectious disease, because the spread process
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of infectious diseases in biology and the diffusion process
of fraud information in the network are very similar [13],
[14]. The most widely used model is the Susceptible-Infected-
Recovered (SIR) model, in which all individuals are divided
into three categories: susceptible, infected and recovered [14].
From the perspective of information diffusion, the semantics
of susceptible, infected and recovered can fully correspond to
the process of fraud information diffusion. If an individual
has not yet received any fraud information, it belongs to the
susceptible state. If an individual received fraud information
and was misled, it belongs to the infected state. If an individual
was ever infected and now no longer believes the fraud
information, it belongs to the recovered state.

Although the existing SIR based derivation models can
correctly describe the transitional relationship and the dynamic
evolutionary processes of node states, the spread of fraud
information in MSNs shows some new characteristics. Firstly,
the information sender and receiver are human beings, and
human mental activities are often complex. For example, the
individual will likely experience a series of mental activities
such as thinking, hesitating and wandering when receiving
a piece of information [15], [16]. Secondly, the fraud infor-
mation diffusion processes in MSNs are the complex results
of the continuous interactions of nodes in different states
[17]. Thirdly, because of the psychological effect, repeated
reception of the same information may give users the feeling
of disgust and lead to reverse psychology. The data analy-
sis about 4.4 million Twitter messages diffusion shows that
in the process of information diffusion, users will deviate
from the original intention of information and produce the
phenomenon of emotional transfer [18]. Due to these new
characteristics, the existing SIR based inference models fail
to describe the evolutionary process of information diffusion
accurately. Therefore, if the above characteristics can be taken
into account in the model, the dynamic evolution process of
fraud information diffusion can be described more effectively.

Besides establishing dynamics models and revealing fraud
information diffusion laws, our ultimate goal should be to
effectively control the diffusion of fraud information. However,
the implementation of any control or intervention for the
system will incur a certain “price” [19]. As for the process
of controlling fraud information diffusion in MSNs, some
operational control measures will inevitably consume a certain
amount of precious manpower and material resources. For
example, in response to the crisis of fraud information, the
government constantly sends authoritative messages to the
network to prevent individuals from being misled by it. All
this need to cost a lot of limited communication and other
resources. Furthermore, fraud information can also cause great
harm to individuals [9], [12]. Therefore, how to efficiently
utilize limited control resources and minimize losses of indi-
viduals by adopting proper control strategies has become an
urgent issue to address.

Some of the existing research works can control the diffu-
sion of fraud information to some extent, but there are still
some obvious issues [20]–[22]. The first issue is that the they
usually adopts a single continuous or pulse control strategy,
and mostly do not consider the implementation efficiency of

the control strategy and the utilization efficiency of the control
resources. The second issue is that while some works have
realized the constraint of control resources and transformed
the control problem into the optimal dynamic allocation of
control resources, they ignore the harm of fraud information
diffusion to individuals.

In order to overcome the above limitations, in this paper,
we put forward a novel dynamics model, called SWIR,
which can accurately describe the dynamic process of fraud
information diffusion. Importantly, for the sake of efficiently
utilizing the limited resources and minimizing the losses of
individuals, we establish the optimal control system to solve
the optimal dynamic allocation problem of control strategies
for fraud information diffusion. The main contributions of this
paper are summarized as follows:

• Fraud information diffusion model: In consideration
of the uncertain mental state of individuals and the
transitional relationship of individuals in different states,
we establish the SWIR model. It can more effectively
describe the dynamic diffusion process of fraud infor-
mation in MSNs. Additionally, we theoretically analyze
the stability of the SWIR model and the trend of fraud
information diffusion.

• Dynamic allocation of the control strategies: In order to
efficiently utilize limited control resources and minimize
losses of individuals caused by fraud information, we
propose two synergistic control strategies. We take the
control resources consumption and the losses of individ-
uals as the total cost constraint. Then, we formulate the
optimal control problem to minimize the total cost, and
model the control strategies as functions varying over
time. Finally, based on the optimal control theory, the
optimal distribution of the control strategies functions
over time is derived.

• Simulation experiments on datasets: We validate the
correctness and efficiency of the proposed diffusion mod-
el and the optimal control strategies on both synthetic
datasets and real social network datasets. The result-
s demonstrate that our proposed diffusion model can
accurately describe the dynamic diffusion process of
fraud information and our proposed control strategies can
effectively inhibit the fraud information in MSNs. In par-
ticular, the optimal dynamic allocation control strategies
can achieve minimum control resources consumption and
losses of individuals.

The rest of the paper is organized as follows. In Sec.
II, some previous works are reviewed. In Sec. III, we first
establish a novel dynamics model of the fraud information
diffusion in MSNs. Then, we analyze the trend of fraud
information diffusion and the stability of the dynamics model.
Consequently, we propose two synergistic control strategies to
suppress the spread of fraud information, and derive the opti-
mal distribution of the control strategies. Extensive simulations
are conducted in Sec. IV. Sec. V concludes this paper.

II. RELATED WORK

In recent years, research that explores social relationship
structure for information diffusion in MSNs has been very
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active. Especially, the problem of maximizing the influence of
information has attracted the attention from both the academia
and industry, and a number of innovative research results
[23], [24] have been achieved. Nevertheless, the research on
the diffusion and control methods of fraud information is
merely in its infancy. At present, the research on information
diffusion mainly develops along two branches: modeling of
the information diffusion process, and control of information
diffusion process.

In view of the modeling of the information diffusion
process, most scholars use the infectious disease diffusion
model, the independent cascade model, the linear threshold
model, the real dataset fitting method and so on, to model the
spatiotemporal dynamic evolutionary process of information
diffusion [17], [25]–[30]. Zhou et al. [17] established a dynam-
ics model for the information propagation problem in MSNs,
and discussed how the user preference affects the information
diffusion process. Their work provides a new theoretical
method for dynamics modeling of the information diffusion,
but not for malicious information diffusion. Li et al. [29]
introduced a time-dependent payment function based on game
theory. Considering the global influence and social influence
of users, a time dynamic prediction model of information
diffusion in online social network was proposed, which can
predict whether the user’s diffusion behavior will occur within
a specified period of time. However, the model only focuses
on the time dynamics of information diffusion, and it does
not take into account the spatial impact factors of information
diffusion.

Targeting at the problem of information diffusion in the
post-disaster rescue network, [30] proposes an information d-
iffusion model based on the probability stopping mechanism in
finance, as well as an analysis method based on Markov chain.
The model and method can reduce the energy consumption
and save the storage space of communication equipment to
some extent in small-scale network scenarios. Nevertheless,
this method will confront the problem of the explosive growth
of state space in large-scale MSNs, so it is difficult to be
effectively applied in actual large-scale network scenarios.

From the perspective of big data analysis, some scholars
have studied and excavated the rules and influencing factors
in the process of information diffusion. Using a large dataset
from Twitter about Hurricane Sandy, Yoo et al. [31] empirical-
ly examined the impact of key elements on information prop-
agation rates on social media. The analysis results show that
internal diffusion through social media networks advances at a
significantly higher speed than information in these networks
coming from external sources, and the information posted
earlier exhibits a significantly higher speed of diffusion than
information that is introduced later. Zhu et al. [32] collected
several real topics propagating data on Sina Microblog and
analyzed individuals’ propagation intentions. Results show
that the topic with one-sided opinions can spread faster and
more widely, and intervention with the opposite opinion is an
effective measure to guide the topic propagation. The rules and
conclusions found in these works are worthy of our reference
in modeling the information diffusion process.

In view of the control of information diffusion process,

scholars generally adopt the optimal control method, the pulse
control method, the Top-K nodes influence method and so
on, to control the spatiotemporal dynamic diffusion process
of information in the network [33]. A number of papers [19],
[34]–[37] proposed a defensive strategy to disseminate correct
messages for combating the spread of malicious information.
In [6], [34] it has been proven that the use of fixed costs to
maximize the control of malicious information diffusion is an
NP-hard problem. This conclusion leads the later researchers
to explore the approximate optimal strategies for similar
problems.

Inspired by the diffusion process of biological infectious
diseases, Chen et al. [36] put forward a “vaccination” control
strategy to control the diffusion of malicious information in
a time-varying network. Thereafter, they designed a dynamic
programming algorithm to minimize the cost of the control
strategy, and obtained the distribution of the control signals
over time. However, their work assumed that upon receiving
information all users immediately participate in the informa-
tion forwarding activities. They did not consider the time delay
caused by the psychological cognition and the interactions
between psychology and behavior of users. This results in the
low accuracy of control measures.

Borrowing the idea from the control of infectious disease
diffusion, Aung et al. [37] presented a method to control the
malicious information dissemination in MSNs, and studied the
adaptability and extensibility of the SIR model in MSNs. Their
results show that the theory of infectious disease spread is ef-
fective for modeling and controlling the information diffusion
process in MSNs. However, their work has not considered the
problem of modeling the dynamics of malicious information
diffusion and maximizing the utilization efficiency of system
resources. Jeong et al. [35] modeled diffusion process of
rumors in social networks by using the traditional infectious
disease diffusion model. Considering that users have different
interests in information at different times, they put forward
three control strategies for rumors at different diffusion stages,
and consider optimal control problems to minimize the number
of spreaders. Their work takes into account the optimal control
of rumors and saves control resources to a certain extent.
However, they did not consider the spread characteristics of
rumors on social networks, so they did not propose a new
diffusion model. Moreover, the proposed control strategies can
not be synergistically implemented at the same time, which
limits the control effect to a certain extent.

To sum up, fraud information diffusion has become one
of the major security threats faced by MSNs. Among the
research effort, how to conduct accurate dynamics modeling
and design optimal control method for fraud information
diffusion are two important problems to be solved. Based on
the above works, this paper combines the system dynamics
modeling method and the optimal control theory, and studies
the dynamics modeling and the optimal control problem of the
fraud information diffusion in MSNs.

III. SYSTEM MODELS

On the basis of the above descriptions, we first summarize
the main challenges to effectively control the spread of fraud
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information in MSNs as follows:

• How to establish an information diffusion model to ac-
curately describe the dynamic diffusion process of fraud
information in MSNs by considering the uncertain mental
states of individuals?

• How to analyze the trend of information diffusion and the
stability of the dynamics model from a theoretical point
of view, and explore the theory of dynamic evolution of
information diffusion model?

• How to determine the optimal distribution of the control
strategies, and restrain the diffusion of fraud information
under the minimum cost constraint?

To cope with the above three challenges, in this section, we
first establish a dynamics model to describe the dynamic evolu-
tionary process of fraud information diffusion in MSNs. Then,
we derive the theoretical boundary conditions for persistent
diffusion and automatic disappearance of fraud information,
and analyze the characteristic solution of the dynamics model,
which provide the basis for constructing the optimal control
system for the fraud information diffusion in MSNs. Finally,
we propose two synergistic control strategies to combat the
spread of fraud information in the network, and derive the
optimal dynamic allocation of the control strategies.

A. Information Diffusion Model

According to the theory of information cognitive psycholo-
gy, when users receive a piece of information, they usually go
through thinking, trust and diffusion, the three psychological
cognitive and behavioral states [15], [16]. Suppose there are
N nodes in the network region Θ of a MSN, and nodes
can interact and communicate with each other. When fraud
information is propagated within the network region Θ, we
divide the nodes into four states according to the different
situations of the nodes, which are whether the node has
received fraud information or not, whether the node has
believed fraud information or not, and whether the node has
participated in the diffusion of the information or not. As
shown in Table I, (1) the susceptible state (S) indicates that
the nodes have not received any fraud information, but may be
infected with fraud information by other nodes in the network;
(2) the wandering state (W ) indicates that the nodes have
received the fraud information at present and are questioning
the authenticity of the information. Such nodes neither believe
in the fraud information nor engage in the diffusion of fraud
information; (3) the infected state (I) indicates that the nodes
believe the received fraud information and are misled by the
fraud information to diffuse the information; (4) the recovery
state (R) indicates that the nodes in this state no longer believe
the fraud information and stop spreading the information.
Furthermore, for the sake of clearer presentation, we briefly
summarize the notations of the key parameters we will use in
the following models (as shown in Table II).

Any node within the network region Θ must belong to one
of four states at any time, and each node can be transformed
among four states as time passes. Here we define the node
state transition rules as follows:

TABLE I: Classification of node states.

Node Whether received Whether believed Whether diffused
state fraud information fraud information fraud information

S No No No
W Yes Uncertainty No
I Yes Yes Yes
R Yes No No

TABLE II: Notations in the information diffusion model.

Symbol Description

α0 The probability of state transfer occurring in W
β0 The conditional probability of state transfer occurring

in S when it receives the fraud information
θ The conditional probability of W turning to I

when state transfer occurs
ε The conditional probability of S turning to W

when state transfer occurs
ω0 The conditional probability of I being cured or self

reversed to R when it encounters R or I state node
γ0 The probability of I transferred to R after self healing
ϕ0 The probability of losing immunity of R
µ The probability of nodes moving out of Θ
Λ The number of nodes that are newly moved into Θ

• When the node in S state receives fraud information from
nodes in I state, the node will make a state transition
with probability β0. It will either transfer to W state with
probability ε×β0 and enter the process of wandering; or
transfer to I state with probability (1− ε)β0, believe the
fraud information and participate in the diffusion of the
information.

• The node in W state is in the process of thinking and
judging the received fraud information. After a period
of mental activity, the node will make a state transition
with probability α0. If the node believes the fraud infor-
mation, it will transfer to I state with probability θ×α0,
otherwise, it will transfer to R state with probability
(1− θ)α0.

• If the node in I state repeatedly receives the fraud
information from other nodes in I state over a period of
time, it is no longer willing to believe the fraud informa-
tion because of its psychological aversion or antagonistic
effect. Then, it will transfer to R state with probability
ω0.

• The node in I state contacts nodes in R state and receives
the correct information sent by it, and then no longer
believes the fraud information held by itself. It will
transfer to R state with probability ω0.

• After a period of time, the node in I state may become
aware of the harm of the fraud information, and thus
no longer believes the fraud information. Then, it will
transfer to R state with probability γ0.

• After a period of time, a node in R state will gradu-
ally lose the awareness of fraud information due to its
forgetting psychology, it may be infected again by fraud
information in the future. Then, it will transfer to S state
with probability ϕ0.

We have β0, ε, α0, θ, ω0, γ0, ϕ0 ∈ [0, 1]. In addition, we
use S(t),W (t), I(t), R(t) to represent the number of nodes
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in S,W, I,R state at any time t, respectively, and use N(t) to
represent the total number of nodes within the network region
Θ at any time t . Obviously, we have S(t) +W (t) + I(t) +
R(t) = N(t). Due to node’s activity and the openness of the
network, we assume that nodes in various states may leave the
network region Θ with probability µ at any time t. At the same
time, there are Λ nodes from outside extending the network
region Θ at any time t, and we assume that the incoming
nodes belong to S state. Accordingly, node states transition
relationships in Θ are shown in Fig. 1.

S
S(t)

W

I

R

S(t)I(t)

R(t)

I(t)

I(t)

W(t)

W(t)

W(t)

S(t)I(t)

R(t)

(R(t)+I(t))I(t)

Fig. 1: Node state transition diagram.

Based on the relationships of node state transition proposed
above, we can establish the mean field equations for the
number of nodes S(t),W (t), I(t) and R(t) as follows:

dS (t)

dt
= Λ+ ϕ0R (t)− β0

S (t) I (t)

N (t)
− µS (t), (1)

dW (t)

dt
= εβ0

S (t) I (t)

N (t)
− α0W (t)− µW (t), (2)

dI (t)

dt
=(1− ε)β0

S (t) I (t)

N (t)
+ θα0W (t)− γ0I (t)

− ω0
[R (t) + I (t)] I (t)

N (t)
− µI (t) ,

(3)

dR (t)

dt
=(1− θ)α0W (t) + γ0I (t)− ϕ0R (t)

+ ω0
[R (t) + I (t)] I (t)

N (t)
− µR (t) .

(4)

Eqs. (1)-(4) constitute a nonlinear dynamics system model,
and the initial values of the model are defined as:

S (0) ≥ 0, W (0) ≥ 0, I (0) ≥ 0, R (0) ≥ 0. (5)

The total number of nodes N(t) varying over time in the
network Θ is as follows:

dN (t)

dt
= Λ− µN (t) . (6)

By solving Eq. (6), we have N (t) = N(0)e−t +
Λ

µ
and

lim
t→+∞

N (t) =
Λ

µ
. It can be seen that the total number of

nodes N(t) tends to be stable at t→ ∞, that is, the maximum

node capacity of the network is
Λ

µ
. Let s (t) =

S (t)

N (t)
,

w (t) =
W (t)

N (t)
, i (t) =

I (t)

N (t)
and r (t) =

R (t)

N (t)
. As such,

s (t), w (t), i (t) and r (t) refer to the proportions of nodes
in S,W, I and R state, respectively. Thereafter, let τ = µt,

β =
β0
µ

, α =
α0

µ
, ω =

ω0

µ
, γ =

γ0
µ

, ϕ =
ϕ0
µ

, and s (τ),

w (τ), i (τ), r (τ) satisfy the following differential equations:

ds (τ)

dτ
= 1 + ϕr (τ)− βs (τ) i (τ)− s (τ), (7)

dw (τ)

dτ
= εβs (τ) i (τ)− αw (τ)− w (τ), (8)

di (τ)

dτ
=(1− ε)βs (τ) i (τ) + θαw (τ)− γi (τ)

− ω (r (τ) + i (τ)) i (τ)− i (τ) ,
(9)

dr (τ)

dτ
=(1− θ)αw (τ) + ω (r (τ) + i (τ)) i (τ)

+ γi (τ)− ϕr (τ)− r (τ) .
(10)

Eqs. (7)-(10) constitute a nonlinear dynamics system model,
called SWIR model. We have s (τ)+w (τ)+i (τ)+r (τ) = 1,
and it satisfies the initial conditions:

s (0) ≥ 0;w (0) ≥ 0; i (0) ≥ 0; r (0) ≥ 0. (11)

Next, we replace τ with t, and make r (t) = 1 − s (t) −
w (t)− i (t). We simplify the set of differential equations Eqs.
(7)-(10) as follows:

ds (t)

dt
=1 + ϕ (1− s (t)− w (t)− i (t))

− βs (t) i (t)− s (t)
dw (t)

dt
= εβs (t) i (t)− αw (t)− w (t)

di (t)

dt
=(1− ε)βs (t) i (t) + θαw (t)− γi (t)

− ω (1− s (t)− w (t)) i (t)− i (t)

(12)

We define the feasible region of Eq. (12) as
Ω, indicating the non-negative cone and its
lower dimensional face. We study Eq. (12) in
A = {(s (t) , w (t) , i (t)) ∈ Ω |0 ≤ s (t) + w (t) + i (t) ≤ 1}.
Obviously, A is positively invariant with respect to Eq. (12).
Then, let the value of each differential equation in Eq. (12)
equal to 0, that is, the system is in a stable state, we have:

ds (t)

dt
=1 + ϕ (1− s (t)− w (t)− i (t))

− βs (t) i (t)− s (t) = 0
dw (t)

dt
= εβs (t) i (t)− αw (t)− w (t) = 0

di (t)

dt
=(1− ε)βs (t) i (t) + θαw (t)− γi (t)

− ω (1− s (t)− w (t)) i (t)− i (t) = 0

(13)

By solving Eq.(13), the equilibrium points of Eq. (12) can be
obtained, which are P0 (1, 0, 0) and P ∗ (s∗, w∗, i∗). Here, in
order to simplify the expression, let’s make:

a = (1− ε) (ϕd+ β) (β + ω + θαd)− (1 + ϕ)ωd,
b =(1− ε)ϕβ + ϕθαd+ ωϕ+ (1 + ϕ)ωd,

− (ω + γ + 1) (ϕd+ β)
c = −ϕ (ω + γ + 1) ,

d =
εβ

α+ 1
.
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Then we can get P ∗ (s∗, w∗, i∗) as follows:
s∗ =

−b+
√
b2 − 4ac

2a

w∗ =
εβs∗ (1 + ϕ) (1− s∗)

ϕεβs∗ + (ϕ+ βs∗) (α+ 1)

i∗ =
(α+ 1) (1 + ϕ) (1− s∗)

ϕεβs∗ + (ϕ+ βs∗) (α+ 1)

Obviously, P0 is a disease-free equilibrium of Eq. (12), and
P ∗ is a endemic equilibrium of Eq. (12) [38].

Without loss of generality, we assume K = (w, i, s)
T , then

Eq. (12) can be rewritten as:

dK

dt
= F (Z)− V (Z), (14)

in which:

F (Z)=

 εβsi
0
0

 ,

V (Z)=

 αw+w
(ε− 1)βsi− θαw + ω (1− s− w) i+ γi+ i

−1− ϕ (1− s− w − i) + βsi+ s

 .

The disease-free equilibrium of K about Eq. (12) is K0 =
(w0, i0, s0)

T
= (0, 0, 1)

T . Let DF (Z0) and DV (Z0) be:

DF (Z0) =

(
F1 0
0 0

)
, DV (Z0) =

(
V1 0
J1 J2

)
,

where F1 and V1 are the 2× 2 matrix. Because w(t) and i(t)
are the proportions of wandering state nodes and infected state
nodes respectively, so we define:

F1 =

(
∂Fi (Z0)

∂Zj

)
, V1 =

(
∂Vi (Z0)

∂Zj

)
,

where i = 1, 2; j = 1, 2. By solving the above formulas, we
can further obtain that:

F1 =

(
0 εβ
0 0

)
, V1 =

(
α+ 1 0
−θα (ε− 1)β + γ + 1

)
.

Considering that V1 is a nonsingular matrix, we have:

F1V1
−1 =

 θαεβ

(εβ − β + γ + 1) (α+ 1)

εβ

(ε− 1)β + γ + 1
0 0

 .

Therefore, we can further define the basic reproduction
number of Eq. (12) as:

R0 = ρ
(
F1V1

−1
)
=

θαεβ

(εβ − β + γ + 1) (α+ 1) .

in which ρ
(
F1V1

−1
)

is the spectral radius of F1V1
−1. The

basic reproduction number R0 of Eq. (12) is closely related
to the stability of equilibrium point [38], and we will analyze
it in detail in the following Section.

B. System Stability Analysis
By analyzing the stability of the equilibrium point of Eq.

(12), we can accurately predict the future diffusion trend of
fraud information in the network [38]. If the disease-free
equilibrium P0 (1, 0, 0) in Eq. (12) is stable, the diffusion
of fraud information will finally die out; if the endemic
equilibrium P ∗ (s∗, w∗, i∗) in Eq. (12) is stable, the fraud
information will continuously propagates and the number of
nodes in infected state will finally reach a constant level.

First, we analyze the stability of the P0 (1, 0, 0) in Eq. (12).
We have the following conclusion:

Theorem 1. The disease-free equilibrium P0 (1, 0, 0) of Eq.
(12) is globally stable in the range of set A if and only if the
R0 ≤ 1. If R0 > 1, P0 (1, 0, 0) is unstable in the range of set
A, and the solutions of Eq. (12) starting sufficiently close to
P0 (1, 0, 0) in A move away from P0 (1, 0, 0) except that those
starting on invariant x-axis approach P0 (1, 0, 0) along this
axis.

Proof. We first construct an auxiliary Lyapunov equation as
follows:

L =
θ

α+ 1
w +

1

α
i. (15)

Substituting
ds (t)

dt
and

di (t)

dt
of Eq. (12) into the above

equation, the derivative equation about the solutions of Eq.
(12) can be obtained as follows:

L′=
− (α+ 1) [(ε− 1)βs+ γ + ω (1− s− w) + 1] i

α (α+ 1)

+
αθεβsi

α (α+ 1)

≤ [αθεβ − (α+ 1) (εβ − β + γ + 1)] si

α (α+ 1)

=
(εβ − β + γ + 1) (R0 − 1) si

α
≤ 0.

(16)
From Eq. (16), we can obtain that if and only if w = 0 and

i = 0, L′ takes the maximum value as 0 when R0 ≤ 1.
The maximum invariant set in {(s, w, i) : L′ = 0} is the
{P0 (1, 0, 0)}. When R0 ≤ 1, the global stability of the
P0 (1, 0, 0) follows the LaSalle invariance principle [39].

Then, we analyze the stability of the P ∗ (s∗, w∗, i∗) in Eq.
(12). We have the following conclusion:

Theorem 2. If R0 > 1, the endemic equilibrium
P ∗ (s∗, w∗, i∗) of Eq. (12) is locally asymptotically stable.

Proof. First, we construct the following equation. It is worth
noting that we omit the (t) in the equation for the sake of
conveniently formulation.

f (s, w, i) =
ds

dt
= 1 + ϕ (1− s− w − i)

− βsi− s

g (s, w, i) =
dw

dt
= εβsi− αw − w

h (s, w, i) =
di

dt
= (1− ε)βsi+ θαw

− ω (1− s− w) i− γi− i

(17)
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By expanding f (s, w, i) , g (s, w, i) , h (s, w, i) in a Taylor
series at P ∗ (s∗, w∗, i∗), then we can obtain the linear approx-
imation equation of Eq. (12) as follows:



ds

dt
=fs (s

∗, w∗, i∗) s+ fw (s∗, w∗, i∗)w

+ fi (s
∗, w∗, i∗) i

dw

dt
=gs (s

∗, w∗, i∗) s+ gw (s∗, w∗, i∗)w

+ gi (s
∗, w∗, i∗) i

di

dt
=hs (s

∗, w∗, i∗) s+ hw (s∗, w∗, i∗)w

+ hi (s
∗, w∗, i∗) i

(18)

Substituting s (t) , w (t) , i (t) of Eq.(12) into the above
equation, we have:



ds

dt
=(−βi∗ − ϕ− 1) s+ (−ϕ)w

+ (−βs∗ − ϕ) i
dw

dt
= (εβi∗) s+ (−α− 1)w + (εβs∗) i

di

dt
= [(1− ε)βi∗ + ωi∗] s+ (θα+ ωi∗)w

+ [(1− ε)βs∗ + ωs∗ + ωw∗ − ω − γ − 1] i

(19)

Furthermore, we derive Jacobian matrix J (P ∗) of the approx-
imate linear system (19) at P ∗ (s∗, w∗, i∗) as follows:

J (P ∗) =

 −βi∗ − ϕ− 1 −ϕ −βs∗ − ϕ
εβi∗ −α− 1 εβs∗

(1− ε)βi∗ + ωi∗ θα+ ωi∗ e

 ,

(20)
where:

s∗ =
−b+

√
b2 − 4ac

2a
,w∗ =

εβs∗ (1 + ϕ) (1− s∗)

ϕεβs∗ + (ϕ+ βs∗) (α+ 1)
,

i∗ =
(α+ 1) (1 + ϕ) (1− s∗)

ϕεβs∗ + (ϕ+ βs∗) (α+ 1)
,

a = (1− ε) (ϕd+ β) (β + ω + θαd)− (1 + ϕ)ωd,
b =(1− ε)ϕβ + ϕθαd+ ωϕ+ (1 + ϕ)ωd

− (ω + γ + 1) (ϕd+ β) ,

c = −ϕ (ω + γ + 1) , d =
εβ

α+ 1
,

e = (1− ε)βs∗ + ωs∗ + ωw∗ − ω − γ − 1.

Let characteristic equation |λE − J (P ∗)|=∣∣∣∣∣∣
λ+βi∗+ϕ+1 ϕ βs∗+ϕ

−εβi∗ λ+α+1 −εβs∗
− (1− ε)βi∗ − ωi∗ −θα− ωi∗ λ− e

∣∣∣∣∣∣=0 ,

in which E is a 3 × 3 unit matrix. By simplifying the above
equations, we have:

|λE − J (P ∗)| = λ3 +A1λ
2 +A2λ+A3 = 0,

where:
A1 = B −D + α+ 1,
A2 =B −D − βD + βα−Dα− Cϕ− Cβs∗ + βεϕi∗

− αβθεs∗ − βεωs∗i∗,
A3 =− Cϕ− Cαϕ− β (D +Dα+ Cs∗ + Cαs∗)

+ εϕβ
(
ωi∗2 + αθi∗ − Cs∗ −Di∗

)
+ εβ2s∗

(
ωi∗2 + αθi∗ − αθ − ωi∗

)
,

B = βi∗ + ϕ+ 1, C = − (1− ε)βi∗ − ωi∗,
D = (1− ε)βs∗ + ωs∗ + ωw∗ − ω − γ − 1.

Further, we can obtain A1A2 − A3 > 0. According to the
Routh-Hurwitz stability criterion [40], the P ∗ (s∗, w∗, i∗) of
Eq. (12) has local asymptotic stability.

C. Optimal control strategies

Next, we show how to efficiently utilize limited control
resources and minimize losses of individuals caused by the
diffusion of fraud information. First of all, we propose the
following two synergistic control strategies for fraud informa-
tion diffusion, which can assist individuals in different states
to achieve better control effect.

• Prevention: we take proactive measures of providing
immunity for the nodes in the W state. For instance,
by sending volunteers to communicate, persuade and
educate, some nodes will not believe in the received fraud
information, and transfer to the R state with probability
σ. The intensity of the implementation of the prevention
control strategy is denoted as u(t).

• Correction: we take proactive measures of treatment
for the nodes in the I state. By publishing authoritative
information in MSNs, some nodes in the I state will
no longer believe the received fraud information, and
transfer to the R state with probability η. The intensity
of the implementation of the correction control strategy
is represented as v(t).

Through the artificial intervention of the above control
strategies, if the SWIR model has a disease-free equilibrium
and it is stable, we can accelerate the extinction time of
fraud information in the network. If the SWIR model has
an endemic equilibrium and it is stable, we can promote the
extinction of fraud information in the network.

According to the control strategies proposed above, we
improve the SWIR model as controlled− SWIR model:



ds (t)

dt
= 1 + ϕr (t)− βs (t) i (t)− s (t)

dw (t)

dt
= εβs (t) i (t)− αw (t)− w (t)− σu (t)w (t)

di (t)

dt
=(1− ε)βs (t) i (t) + θαw (t)− γi (t)

− ω [r (t) + i (t)] i (t)− i (t)− ηv (t) i (t)
dr (t)

dt
=(1− θ)αw (t) + ω [r (t) + i (t)] i (t)

+ γi (t)− ϕr (t)− r (t) + σu (t)w (t)

+ ηv (t) i (t)
(21)
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Obviously, the system (21) has the same initial condition
(11) as the above SWIR model, and has the following
boundary conditions of control strategies:

0 ≤ u (t) ≤ umax, 0 ≤ v (t) ≤ vmax. (22)

Among them, umax and vmax represent the upper bound of
control strategies u (t) and v (t) respectively, and 0 ≤ umax ≤
1, 0 ≤ vmax ≤ 1. Besides, we assume u (t) and v (t) are
convex functions.

We hope that fewer users in the network are infected by
fraud information. We assume that the loss caused by fraud
information to the system is proportional to the proportions of
nodes in I state, and the benefit of the system is proportional
to the proportion of nodes in R and S states. In other words,
the larger i(t), the more nodes that were affected by fraud
information and the greater the system losses. On the contrary,
the larger r(t)and s(t), the more nodes in the system not
harmed by the fraud information and the greater benefit of
the system. Additionally, suppose that the control resources
consumption for implementing control strategies of u (t) and
v (t) are mu2 (t) and nv2 (t) at any time t, respectively, where
m and n are positive constants. Note that, we do not impose a
strong assumption on the quadratic form of control resources
consumption since any other form of convex function could
also be used here to derive the solution. It is assumed that
all losses, benefits and control resources consumption can be
accumulated over the entire period of time [0, T ], and we
define the cumulative total cost function of the system as:

J (u (t) , v (t)) =

∫ T

0

[qi (t) +mu2 (t) + nv2 (t)

− ps (t)− pr (t)] dt.

(23)

Among them, q and p are positive constants, which represent
the losses of individuals in I state and the system benefits of
individuals in R or S states, respectively. Because u (t) and
v (t) are convex functions, here we assume J (u (t) , v (t)) is
convex function.

As such, within the entire control time [0, T ], the ultimate
objective of the optimal control system is that the fraud
information in the network is completely controlled and the
cumulative total cost of the system is minimal. Thus, we
explore the optimal distribution of control strategies u∗ (t) and
v∗ (t) over time, which satisfy:

J (u∗ (t) , v∗ (t)) = min [J (u (t) , v (t)) |(u (t) , v (t)) ∈ U ] ,
(24)

where U= {u (t) , v (t) |0 ≤ u (t) ≤ umax, 0 ≤ v (t) ≤ vmax }.
Then, we introduce the optimal control theory [41] to

analyze the existence and uniqueness of the solution of the
controlled− SWIR system. We have:

Theorem 3. For the controlled − SWIR system (21) with
given initial condition, there exists a optimal distribution of the
control strategies u∗ (t) , v∗ (t) such that J (u∗ (t) , v∗ (t)) =
min [J (u (t) , v (t)) |(u (t) , v (t)) ∈ U ] in a time step [0, τ ].

Theorem 4. For a time step [0, τ ], the optimal dis-
tribution of control strategies u∗ (t) , v∗ (t) satisfying the

J (u∗ (t) , v∗ (t)) = min [J (u (t) , v (t)) |(u (t) , v (t)) ∈ U ] is
unique.

The detailed proof of Theorem 3 and Theorem 4 can be
easily found in [41], we will not provide in this paper. Next, we
use the optimal control theory to solve the optimal distribution
of the control strategies u∗ (t) , v∗ (t) and the distribution of
the corresponding system state variables s∗ (t) , w∗ (t) , i∗ (t)
and r∗ (t). First, we construct a Lagrangian equation L for
solving the optimal solution of the problem (24) as follows:

L=qi (t)+mu2 (t)+nv2 (t)− ps (t)− pr (t) . (25)

Furthermore, we transfer the problem (24) into finding the
minimal value of the Lagrangian equation L. Accordingly, we
define the Hamiltonian function H for the problem (24) as
follows:

H =L+ λs (t)
ds (t)

dt
+ λw (t)

dw (t)

dt
+ λi (t)

di (t)

dt

+ λr (t)
dr (t)

dt
,

(26)

where λs (t) , λw (t) , λi (t) , λr (t) are the adjoint func-
tions to be determined appropriately. Assuming that
λ∗s(t), λ

∗
w(t), λ

∗
i (t), λ

∗
r(t) are the values of adjoint equa-

tions λs (t) , λw (t) , λi (t) , λr (t) at the optimal solution of
u∗ (t) , v∗ (t). Substituting (21) and (25) to (26), we have:

H =qi (t)+mu2 (t)+nv2 (t)− ps (t)− pr (t)+λs (t)

× [1 + ϕr (t)− βs (t) i (t)− s (t)]+λw (t)

× [εβs (t) i (t)− αw (t)− w (t)− σu (t)w (t)]

+λi (t) [(1− ε)βs (t) i (t) + θαw (t)− ω(r (t)

+ i (t))i (t)− γi (t)− i (t)− ηv (t) i (t)]

+λr (t) [(1− θ)αw (t) + ω (r (t) + i (t)) i (t)

+ γi (t)− (ϕ+ 1)r (t) + σu (t)w (t) + ηv (t) i (t)].
(27)

After that, we use the the Pontryagin minimum principle to
solve the optimal solution of the problem (24) [42]. It is
assumed that the set of optimal solutions satisfying the sys-
tem (21) at time t is M= [s∗ (t) , w∗ (t) , i∗ (t) , r∗ (t) , u∗ (t) ,
v∗ (t) , λ∗s (t) , λ

∗
w (t) , λ∗i (t) , λ

∗
r (t)]. There must be a non-

trivial vector function λ (t) = [λs (t) , λw (t) , λi (t) , λr (t)]
of M that satisfies the following conditions:

dk (t)

dt
=
∂H [k∗ (t) , l∗ (t) , λ (t) , t]

∂λ
, (28)

∂H [k∗ (t) , l∗ (t) , λ (t) , t]

∂l
= 0, (29)

dλ (t)

dt
= −∂H [k∗ (t) , l∗ (t) , λ (t) , t]

∂k
, (30)

where k (t) ∈ {s (t) , w (t) , i (t) , r (t)} , k∗ (t) ∈
{s∗ (t) , w∗ (t) , i∗ (t) , r∗ (t)}, l (t) ∈ {u (t) , v (t)} , l∗ (t) ∈
{u∗ (t) , v∗ (t)}.

According to the condition Eq. (30) and the Hamiltonian
function Eq. (26), we can obtain the adjoint functions of the
system as follows:

dλ∗s (t)

dt
=− ∂H

∂s (t)
= p− (−βi (t)− 1)λ∗s (t)

− εβi (t)λ∗w (t)− (1− ε)βi (t)λ∗i (t) ,

(31)
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dλ∗w (t)

dt
=− ∂H

∂w (t)
= (α+ 1 + σu (t))λ∗w (t)

− θαλ∗i (t)− [(1− θ)α+ σu (t)]λ∗r (t) ,

(32)

dλ∗i (t)

dt
=− ∂H

∂i (t)
= −q + βs (t)λ∗s (t)− εβs (t)λ∗w (t)

− [(1− ε) βs (t)− ωr (t)− 2ωi (t)− γ − 1

− η v (t)]λ∗i (t) − (ωr (t) + 2ωi (t) + γ

+ ηv (t))λ∗r (t) ,
(33)

dλ∗r (t)

dt
=− ∂H

∂r (t)
= p− ϕλ∗s (t) + ωi (t)λ∗i (t)

− (ωi (t)− ϕ− 1)λ∗r (t) ,

(34)

When t = T , the boundary conditions of the system (31) -
(34) are:

λ∗s (T ) = λ∗w (T ) = λ∗i (T ) = λ∗r (T ) = 0. (35)

Further, according to Eq. (26) and Eq. (29), we can derive
the following equations:

∂H

∂u (t)
= 2mu∗ (t) + (λ∗r (t)− λ∗w (t))σw∗ (t) = 0, (36)

∂H

∂v (t)
= 2nv∗ (t) + (λ∗r (t)− λ∗i (t)) ηi

∗ (t) = 0. (37)

Considering the bound property on u∗ (t) and v∗ (t), from
Eq. (36) and Eq. (37), we can obtain the optimal distribution of
the control strategies u∗ (t) and v∗ (t) over time t as follows:

u∗ (t) =

 0 if ψ1 < 0
umax if ψ1 > umax

ψ1 otherwise,
(38)

v∗ (t) =

 0 if ψ2 < 0
vmax if ψ2 > vmax

ψ2 otherwise,
(39)

in which ψ1 = (λ∗w (t)− λ∗r (t))σw
∗ (t)/2m, ψ2 =

(λ∗i (t)− λ∗r (t)) ηi
∗ (t)/2n.

Then, we rewrite the expressions of u∗ (t) and v∗ (t):

u∗ (t) = max {min {ψ1, umax} , 0} , (40)

v∗ (t) = max {min {ψ2, vmax} , 0} . (41)

Finally, combining Eq. (40), Eq. (41), controlled−SWIR
model (21) and adjoint functions Eqs. (31) - (34), we obtain
the optimal control system for fraud information in MSNs as
follows:

ds (t)

dt
= 1 + ϕr (t)− βs (t) i (t)− s (t), (42)

dw (t)

dt
=εβs (t) i (t)− αw (t)− w (t)

− σw (t)max {min {ψ1, umax} , 0} ,
(43)

di (t)

dt
=(1− ε)βs (t) i (t) + θαw (t)− γi (t)

− i (t)− ηi (t)max {min {ψ2, vmax} , 0}
− ω (r (t) + i (t)) i (t) ,

(44)

dr (t)

dt
=(1− θ)αw (t) + ω (r (t) + i (t)) i (t) + γi (t)

− r (t) + σw (t)max {min {ψ1, umax} , 0}
− ϕr (t) + ηi (t)max {min {ψ2, vmax} , 0} ,

(45)
dλ∗s (t)

dt
=p− (−βi (t)− 1)λ∗s (t)− εβi (t)λ∗w (t)

− (1− ε)βi (t)λ∗i (t) ,
(46)

dλ∗w (t)

dt
=(w (t) + 1 + σmax {min {ψ1, umax} , 0})

× λ∗w (t)− θαλ∗i (t)− [(1− θ)α

+ σmax {min {ψ1, umax} , 0}]λ∗r (t) ,
(47)

dλ∗i (t)

dt
=− q + λ∗s (t)βs (t)− εβs (t)λ∗w (t)− [(1− ε)

× βs (t)− ωr (t)− ηmax {min {ψ2, vmax} , 0}
− 2ωi (t)− γ − 1]λ∗i (t)− (ωr (t) + 2ωi (t)

+ γ + ηmax {min {ψ2, vmax} , 0})λ∗r (t) ,
(48)

dλ∗r (t)

dt
=p− ϕλ∗s (t) + ωi (t)λ∗i (t)

− (ωi (t)− ϕ− 1)λ∗r (t) .
(49)

Eqs. (42) - (49) constitute the optimal control system, the
system has boundary conditions Eq. (11), Eq. (22) and Eq.(35)

IV. SIMULATION RESULTS

In this section, we verify the effectiveness of the proposed
information diffusion model and the correctness of the stability
analysis theory firstly. Secondly, we use the iterative method
with a Runge-Kutta fourth order scheme to solve the optimal
dynamic allocation of control strategies and the cumulative
total cost of the system in the case of different control
strategies being implemented [43].

In addition, in order to verify efficiency and practicality
of our proposed control strategies, we compare the effect
of the control strategies to fraud information diffusion on
the synthetic datasets and the real social network datasets,
respectively. The real social network datasets we used are
the Twitter datasets collected by Arizona State University,
which record the information interaction of nodes on the
Twitter network [44]. The datasets consist of two parts, the
first part is the set of nodes, including the attributes of all
nodes, and the second part is the set of node interaction
records, which records all information exchanges among all
nodes. The original datasets contain more than 11 million
nodes and 85 million relations. Because of the limited storage
capacity and computing resources, we randomly chose one
hundred thousand nodes (ID from 371408 to 471407) and their
interaction records to carry out our experiments. Through 500
experiments shown in the Fig. 2, we verify the randomness
and universality of the nodes we choose.

Considering the practical significance of the parameters
used in the simulations, we randomly set the default values
for the basic parameters, as shown in Table III. Note that we
set q much larger than m and n because we consider that
the loss caused by fraud information to an infected individual
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Fig. 2: Random experiments on node selection.

is much more expensive than taking the corresponding control
strategy. The synthetic datasets we use is a randomly generated
network whose parameters are derived from Table III.

TABLE III: Basic parameters in our simulations.

Parameter Description Value
Λ The number of adding into individuals 100
µ The rate of moving out individuals 0.1

u1max The upper bound of u(t) 1
v2max The upper bound of v(t) 1

σ The probability of prevention 0.9
η The probability of correction 0.9
q The system loss weight caused

by an infected individual 20
p The system income weight caused by

a susceptible or recovered individual 0.2
m The cost weight of conducting

the prevention strategy 0.6
n The cost weight of conducting

the correction strategy 0.8

A. Diffusion model validation

In order to validate the correctness of the dynamic evo-
lutionary process and stability analysis theory of the fraud
information diffusion model, we simulate the proposed model
in two scenarios with different information diffusion capabili-
ties. According to the two real events (we will introduce them
later), some reasonable node state transition probabilities and
scenario parameter values that we fit are shown as follows:

• Scenario 1: We set parameters β0 = 0.1, α0 =
0.16, γ0 = 0.05, ϕ0 = 0.01, ε = 0.9, θ = 0.9.
Then R0 = 0.356. We test the temporal evolution of
the proportions of various state nodes in the presence of
disease-free equilibrium in the network.

• Scenario 2: We set parameters β0 = 0.6, α0 =
0.1, γ0 = 0.03, ϕ0 = 0.01, ε = 0.9, θ = 0.4.
Then R0 = 1.5429. We test the temporal evolution of
the proportions of various state nodes in the presence of
endemic equilibrium in the network.

In the absence of any control intervention, we simulate
the diffusion process of fraud information in two scenarios.
In order to eliminate the influence of different initial states
on the diffusion process of fraud information, we carried out
simulations under the same initial state (s(0) = 0.05, w(0) =
0.7, i(0) = 0.2 and r(0) = 0.05). The simulation results are
shown in Fig. 3.

From Fig. 3 (a), we can see that in the case of R0 ≤ 1, i(t)
gradually decreases after a rapidly increasing. After a period

of time, there are only two kinds of nodes in the system, which
belong to either S or R states, and the fraud information will
not be diffused again. As we can see from Fig. 3 (b), in the
case of R0 > 1, the fraud information begins to show the trend
of spreading. Nevertheless, after the peak, as r(t) increase,
i(t) decreases. Finally, the values of s(t), w(t), i(t) and r(t)
become stable. In this stable state, the fraud information will
constantly spread unless some external interventions or control
measures are taken. The simulation results in Fig. 3 fully
illustrate that the evolutionary relationship of various state
nodes is closely related to R0, which conforms to our stability
analysis conclusions of the diffusion model. That is, in the case
of R0 ≤ 1, the fraud information will automatically die out.
On the contrary, the fraud information will constantly spread
and reach a steady state. In addition, we select two sets of
data records of real events spreading in real networks. The
Real Event 1 in Fig. 3 (a) represents the trends of diffusion of
the derivative topic of “Shenzhen sports car accident in May
2012” collected from Sina Weibo [45], and the Real Event 2
in Fig. 3 (b) represents the trends of rumor diffusion on Sina
Weibo after the serious earthquake in Japan, 2011 [46]. We
can see that the changing trend of i(t) in SWIR model in
Fig. 3 (a) is well fitted to the trend of the Real Event 1, and
we can get the same result from i(t) and Real Event 2 in Fig.
3 (b), which also verifies the correctness and practicability of
our proposed information diffusion model.
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Fig. 3: The dynamic evolution of the proportions of individuals
in case of no control strategy employed.

B. Validation on dynamic allocation of control strategies

In this section, we simulate the control effect of our pro-
posed control strategies on the spread of fraud information.
Firstly, we explore the influence of the parameters σ and η
related to the control strategies prevention and correction on
the infected nodes in the network, where σ and η represent
the probabilities of successful implementation of the control
strategies prevention and correction, respectively. When the
optimal control strategies are adopted, the simulation results
in Scenario 1 and Scenario 2 are shown in Fig. 4.

We can see that with the increasing probability of successful
implementation of control strategies, the maximum proportion
of individuals infected by fraud information i(t) in the net-
work decreases significantly. This shows that the maximum
spreading area of fraud information has been controlled in
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Fig. 4: The impact of the probabilities of successful imple-
mentation of control strategies on the maximum i(t).

both scenarios. Furthermore, we can find that both σ and η
are positively related to the effect of optimal control strategies.
Especially, the change of η has a slightly greater impact on
the control strategy than that of σ. It indicates that the control
effect of the correction control strategy is slightly stronger than
the prevention control strategy, because the correction control
strategy directly affects the I state individuals in the network.

Then, we use our proposed diffusion model and control
strategies to simulate the dynamic evolution of fraud infor-
mation on the synthetic datasets and the real Twitter datasets
under the default parameter configuration. We use i(t) and
i′(t) to represent the proportions of infected state nodes in time
t on the synthetic datasets and the real Twitter datasets, respec-
tively, and we use w(t) and w′(t) to represent the proportions
of wandering state nodes in time t on the synthetic datasets
and the real Twitter datasets, respectively. We investigate and
compare the effects of different control strategies on fraud
information diffusion and the cumulative total costs of the
system in the following Cases.

Case 1: all control strategies are not implemented in Sce-
nario 1, i.e., u (t) = 0, v (t) = 0.

Case 2: all control strategies are not implemented in Sce-
nario 2, i.e., u (t) = 0, v (t) = 0.

Case 3: two control strategies prevention and correction are
implemented in Scenario 1, i.e., u (t) ̸= 0, v (t) ̸= 0.

Case 4: two control strategies prevention and correction are
implemented in Scenario 2, i.e., u (t) ̸= 0, v (t) ̸= 0.

Case 5: only prevention control strategy is implemented in
Scenario 1 , i.e., u (t) ̸= 0, v (t) = 0.

Case 6: only prevention control strategy is implemented in
Scenario 2 , i.e., u (t) ̸= 0, v (t) = 0.

Case 7: only correction control strategy is implemented in
Scenario 1 , i.e., u (t) = 0, v (t) ̸= 0.

Case 8: only correction control strategy is implemented in
Scenario 2 , i.e., u (t) = 0, v (t) ̸= 0.

The dynamic evolution of the proportions of individuals
in Case 1 and Case 2 is consistent with that in Fig. 3 (a)
and Fig. 3 (b), respectively. Because Fig. 3 (a) and Fig. 3
(b) demonstrate the dynamic evolution of the proportions of
individuals without any control strategy implemented (u (t) =
0, v (t) = 0) in Scenario 1 and Scenario 2, respectively. We
first give the cumulative total costs of the system in Cases 1-8,
which are shown in Fig. 5. Then, the simulation results of the
Cases 3-8 are shown in Figs.6-8.

Case
1

Case
3

Case
5

Case
7

Case
2

Case
4

Case
6

Case
8

0

50

100

150

200

250

C
u

m
u

la
ti

v
e
 t

o
ta

l 
c
o

s
ts

  
J

86.7

63.4
75.1 72.7

193.9

104.5

157.3
148.1

Fig. 5: The cumulative total costs of the system in Cases 1-8.
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Fig. 6: The dynamic allocation of the control strategies and
the dynamic evolution of the proportions of individuals with
control strategies u (t) ̸= 0, v (t) ̸= 0.

Fig. 6 demonstrates the dynamic evolution of the propor-
tions of individuals in infected and wandering states and
the dynamic allocation of the optimal control strategies over
time in Case 3 and Case 4, respectively. Clearly, in the case
of implementing two control measures, i.e., prevention and
correction, i(t) in both scenarios are obviously reduced, which
fully demonstrates that the fraud information has been obvi-
ously controlled. Compared to Case 1, Case 3 shows that the
peak value of i(t) has decreased significantly. In addition, the
same conclusion can be obtained from the comparison of Case
4 and Case 2. This proves the effectiveness of our proposed
optimal control strategies in suppressing the diffusion of fraud
information. In particular, the cumulative total costs of the
system caused by the optimal dynamic allocation of the control
strategies in the Case 3 and Case 4 are the smallest, which
are 63.4 and 104.5, respectively (see Fig. 5). The results
indicate that the proposed optimal control strategies can not
only reduce the propagation of fraud information at a small
cost, but also minimize the losses of the system caused by
fraud information. Finally, we can see that the changing trends
of the proportions of individuals in the synthetic datasets are
exactly the same as that in the real Twitter datasets. This shows
our proposed models are practical and effective.

Fig. 7 shows the dynamic evolution of the proportions of
individuals in infected and wandering states and the dynamic
allocation of the single prevention control strategy over time
in Case 5 and Case 6, respectively. We can see that in the
case of only implementing the prevention control strategy,
i(t) in both scenarios have relatively declined, and the fraud
information has been controlled to some extent, which proves
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Fig. 7: The dynamic allocation of the control strategies and
the dynamic evolution of the proportions of individuals with
control strategies u (t) ̸= 0, v (t) = 0.

the effectiveness of prevention control strategy in suppressing
fraud information dissemination. However, by contrast, the
values of i(t) and i′(t) in Case 5 and Case 6 are higher than
that in Case 3 and Case 4. It shows that the single prevention
control strategy is far less effective than the optimal control
strategies of the two control measures. Moreover, the cumula-
tive total cost caused by the optimal dynamic allocation of the
prevention control strategy alone is greater than that in optimal
control strategies with two control measures in Scenario 1 and
Scenario 2, which are 75.1 and 157.3 respectively (see Fig. 5).
This explains that in the case of limited costs, the effect of
implementing the single prevention control strategy to control
fraud information diffusion is not ideal, so the cumulative loss
of the system is more severe. Finally, we can still see that the
simulation results under the synthetic datasets are consistent
with those in the real Twitter datasets. The fluctuations of
w′(t) and i′(t) are due to the nonuniform of social contacts
and relationships among nodes in the real Twitter datasets.
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Fig. 8: The dynamic allocation of the control strategies and
the dynamic evolution of the proportions of individuals with
control strategies u (t) = 0, v (t) ̸= 0.

Fig. 8 shows the dynamic evolution of the proportion of
individuals in infected and wandering states and the dynamic
allocation of the single correction control strategy over time
in Case 7 and Case 8, respectively. We can draw conclusions
that in the case of only implementing the correction control
strategy, the values of i(t) in both scenarios will decline,
and the diffusion of fraud information will be controlled.
However, compared to other cases, it can be seen that the

single correction control strategy is not as effective as the
optimal control strategies with two control measures, but
slightly better than the single prevention control strategy. At
the same time, the cumulative total costs caused by the optimal
dynamic allocation of single correction control strategy are
greater than that of optimal control strategies with two control
measures in the Scenario 1 and Scenario 2, which are 72.7 and
148.1 respectively (see Fig. 5). However, the cumulative total
costs caused by the single correction control strategy are less
than that of the single prevention control strategy. This fully
demonstrates that correction control measure is more effective
in response to the nodes in I state.
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Fig. 9: The dynamic evolution of the proportions of I state
individuals with different control strategies.

In addition, we then compare our proposed optimal control
strategies with the existing control strategies. We modify the
heuristic information diffusion control strategy proposed by
[47] slightly to adapt to the information diffusion model
proposed in this paper, and we call the modified strategy
Greedy. In the Greedy control strategy, as long as the control
resources used to control fraud information are sufficient, the
system greedily adopts the strongest control strategy (u (t) =
1, v (t) = 1), until the control resources are exhausted. More-
over, we compare the proposed optimal control strategies with
the Uniform control strategy and Random control strategy.
The Uniform control strategy means that the system distributes
control resources evenly to each control time step. That is to
say, the same intensity control strategy is adopted in each time
step (u (t) = f, v (t) = g, where 0 ≤ f ≤ 1, 0 ≤ g ≤ 1, f
and g are constants). Similarly, the Random control strategy
means that the system randomly allocates control resources to
each control time step, i.e. the intensity of the control strategy
adopted in each time step is random (u (t) = j, v (t) = k,
where 0 ≤ j ≤ 1, 0 ≤ k ≤ 1, j and k are random variables).
On the premise of the same control resources and control
time, the control effects of the above four strategies on fraud
information in two scenarios are shown in Fig. 9.

Fig. 9 demonstrates the dynamic evolution of the pro-
portions of I state individuals over time in Scenario 1 and
Scenario 2 under different control strategies. From Fig. 9, we
can see that under the premise of consuming the same control
resources, the proportion of I state individuals in the network
is the least when the optimal control strategies is adopted.
There is no doubt that the optimal control strategies has the
best effect on the control of fraud information diffusion in the
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network. The Greedy control strategy takes the greatest control
in the early stage of the spread of fraud information, which
can restrain the spread of fraud information to a certain extent.
However, fraud information cannot be completely eradicated
because of the excessive consumption of resources. Overall,
the control effect of the proposed optimal control strategies is
about 10% higher than that of the other control strategy. The
Random control strategy and the Uniform control strategy do
not have an efficient allocation scheme for control resources,
resulting in poor control effect on fraud information.

To summarize, the optimal control strategies combined with
the two control measures can minimize the cumulative total
costs in the case of completely controlling the diffusion of
fraud information. In addition, the effectiveness and efficiency
of the proposed optimal control strategies are demonstrated by
comparing the trends of the dynamic evolution of individuals
and the cumulative total costs in Cases 1-8.

V. CONCLUSIONS

The goal of this paper is to put forward the optimal control
strategies to efficiently utilize limited control resources and
minimize losses of individuals caused by the diffusion of fraud
information. Firstly, a novel SWIR dynamics model is pro-
posed to describe the dynamic evolutionary process of fraud
information diffusion in MSNs. Thereafter, this paper analyzes
and proves the information diffusion trends and stability of
the dynamics model. In particular, this paper proposes two
synergistic control strategies to suppress the spread of fraud
information, and derives the optimal dynamic allocation of
the control strategies. Finally, we validate the efficiency of
our proposed diffusion model and optimal control strategies
in both synthetic datasets and real social network datasets.

This paper can provide a theoretical basis and a feasi-
ble technical approach for the applications of controllable
information diffusion based on MSNs, and further promote
the development and application of information diffusion and
optimal control technology in MSNs. In the future, we will
further study the diffusion modeling and control of coupling
of positive and negative information. In addition, we will
also study the impact of users’ social identity cognition on
information diffusion.
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