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Abstract The North Atlantic Ocean is a region of intense uptake of atmospheric CO2. To assess how this
CO2 sink has evolved over recent decades, various approaches have been used to estimate basin‐wide
uptake from the irregularly sampled in situ CO2 observations. Until now, the lack of robust uncertainties
associated with observation‐based gap‐filling methods required to produce these estimates has limited the
capacity to validate climate model simulated surface ocean CO2 concentrations. After robustly quantifying
basin‐wide and annually varying interpolation uncertainties using both observational and model data, we
show that the North Atlantic surface ocean fugacity of CO2 (fCO2−ocean) increased at a significantly slower
rate than that simulated by the latest generation of Earth System Models during the period 1992–2014.
We further show, with initialized model simulations, that the inability of these models to capture the
observed trend in surface fCO2−ocean is primarily due to biases in the models' ocean biogeochemistry. Our
results imply that current projections may underestimate the contribution of the North Atlantic to mitigating
increasing future atmospheric CO2 concentrations.

1. Introduction

About 50% of the carbon dioxide (CO2) emitted from fossil fuel and land‐use change activities is absorbed each
year by the natural terrestrial and marine sinks, in similar proportions (Le Quéré et al., 2018). While the land
and ocean carbon sinks play a fundamental role in controlling the levels of atmospheric CO2, and hence
mitigating climate change, the limited number and spatial coverage of the CO2 observations makes the
quantification of their intensity and variability at both the global and regional scale challenging. Due to
the land spatial heterogeneity, which is difficult to capture by point measurements (especially compared to
the relatively well‐mixed ocean), the land sink is difficult to quantify and is commonly estimated as the resi-
dual from total emissions, atmospheric CO2 growth, and ocean sink (Le Quéré et al., 2018). As such, robust
estimates of the marine carbon sink's response to natural variability and climate change must be produced,
so that (1) change in the CO2 airborne fraction can be quantified and (2) the relationship between anthropo-
genic CO2 emissions and atmospheric CO2 concentrations represented inmodels can be confidently evaluated.

The North Atlantic Ocean is a region of strong natural and anthropogenic CO2 uptake (Khatiwala et al.,
2013; Mikaloff Fletcher et al., 2007; Sabine et al., 2004). While the large‐scale processes controlling atmo-
spheric CO2 uptake by the North Atlantic are well understood, estimates of the time‐varying sink over recent
decades range from a decline (Schuster &Watson, 2007), through variability (Bates et al., 2014; Gruber et al.,
2009), to an increase (Landschützer et al., 2016; Schuster et al., 2013; Ullman et al., 2009). These differences
are likely to arise from the choice of study interval (Fay & McKinley, 2013; McKinley et al., 2011), internal
climate variability (McKinley et al., 2011, 2016), and limited quantification of the uncertainty arising from
the interpolation of CO2 observational coverage (Jones et al., 2015). Indeed, despite international efforts to
provide a well‐distributed CO2 observational coverage (both spatially and temporally), substantial gaps
remain, including in the North Atlantic (Figures 1 and S1 in the supporting information). While various
techniques (e.g., Landschützer et al., 2013; Rödenbeck et al., 2015; Schuster et al., 2013) have been developed
to estimate the surface ocean fugacity of CO2 (fCO2−ocean) away from measurement locations and have been
widely used to determine air‐sea CO2 fluxes across the oceans, basin‐wide and time‐varying interpolation
uncertainties either have not been calculated (e.g. Rödenbeck et al., 2015) or are too broad to allow the
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detection of significant temporal trends in surface fCO2−ocean (Jones et al., 2015, 2019). This lack of well‐
delimited interpolation uncertainty on observational‐based products limits our ability to understand the
marine carbon response to increasing atmospheric CO2 and climate change, and also inhibits our
evaluation of surface CO2 concentrations simulated by climate models. By making use of the strengths of
both observational and model data, here we robustly quantify basin‐wide interpolation uncertainties of
North Atlantic surface fCO2−ocean from 1992 to 2014, which allows us to (1) determine whether the
change in the surface ocean CO2 concentrations is significant, and (2) robustly compare the observation‐
based results with those simulated by the current generation of Earth System Models (ESMs) and identify
potential shortcomings in those models.

We first present the observation‐based interpolation technique used to provide basin‐wide fCO2−ocean

estimates and the novel interpolation uncertainty assessment (section 2). Once an appropriate method for
robustly quantifying the uncertainties of the annually varying fCO2−ocean and its trend is identified, we then
determine the recent change in the North Atlantic surface fCO2−ocean and evaluate the corresponding
simulated change in state‐of‐the‐art ESMs from CMIP5, the Coupled Model Intercomparison Project
Phase 5 (section 3). Finally, we investigate the reasons behind the discrepancy between the models and
the observation‐based results by (1) using themodels' preindustrial control runs to discuss the role of internal
variability and (2) generating a set of ocean model simulations initialized with observations to study the role
of biogeochemical initial conditions in driving the North Atlantic surface fCO2−ocean trend (section 4).

2. Methods
2.1. The MLR Interpolation Technique

Multiple linear regression (MLR) approaches rely on the mechanisms that link the predicted variable, which is
described here by the spatially and temporally discontinuous observations of surface fCO2−ocean, to a set of
explanatory variables, which could be any available basin‐wide variables that are involved in the fCO2−ocean

response to anthropogenic changes, as well as physical and biogeochemical oceanic properties. To account
for specific relationships between the predicted and explanatory variables across different biogeochemical
regimes (e.g., a surface fCO2−ocean signal mostly temperature driven in the subtropical North Atlantic
and principally temperature and biologically driven in the subpolar region; Schuster & Watson, 2007),
MLR‐based studies commonly build a linear fit within each geographical regime, whose separated fCO2−ocean

results are finally merged to reconstruct the basin of interest (e.g., Iida et al., 2015; Watson et al., 2009).

Figure 1. (a) Spatial and (b) temporal description of the Surface Ocean CO2 ATlas (SOCAT) monthly gridded product
Version 4 (Bakker et al., 2016) in the North Atlantic, for the period 1992–2014. Waters shallower than 1,000‐m depth
have been removed using the ETOPO1 bedrock product (Amante & Eakins, 2015). The term “fCO2−ocean values” refers to
the monthly gridded values in SOCAT Version 4, calculated from the fCO2−ocean observations that were submitted to the
SOCAT database. See Figure S1 for a representation of the annual spatial coverage of SOCATv4 for 1992–2014.
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Most studies assess the interpolation uncertainty through the comparison of the predicted results against the
observations used to train theMLR and/or against observations that were not included in theMLR (indepen-
dent products), therefore limiting the uncertainty assessment to the irregular observational coverage (e.g.,
Landschützer et al., 2014; Schuster et al., 2013). Substantial assumptions are therefore made when applying
the “localized” uncertainty to the basin‐wide and continuous predicted field; one assumption being that the
interpolation method does not add any bias on the surface fCO2−ocean trend. By contrast, Watson et al. (2009)
(hereinafterW09) used, for the first time, a biogeochemical model to evaluate the basin‐wide uncertainty and
test for potential biases introduced by the interpolation. Specifically, the model's surface fCO2−ocean field was
subsampled at the same locations and days of the year of study as the observational coverage and was then
treated as “real observations” in a separate MLR. By comparing the MLR‐predicted fCO2−ocean to the
model‐truth values, W09 were able to generate a basin‐wide uncertainty. As such, the MLR approach and
uncertainty assessment developed by W09 is here extended and improved through a set of observation‐based
(section 2.1.1) and model‐based MLRs (section 2.1.2).
2.1.1. The Observation‐Based MLR
W09 built, for each 2‐month interval of the year 2005 and for subdivisions of the North Atlantic of 30°, 20°, and
10° latitude, a linear relationship between the surface fCO2−ocean and three explanatory variables: the sea sur-
face temperature (SST), mixed layer depth (MLD), and longitude. By being directly linked to changes of CO2

concentration in seawater, the SST and MLD are characterized as mechanistically driven explanatory vari-
ables. Indeed, the solubility of CO2 increases as the temperature of the surface waters decreases, and the dee-
pening of theMLD through density‐influenced and/or wind‐mixing events can (1) enhance the dilutionwithin
the mixed layer of additional CO2 taken up by the surface ocean and hence stimulate further uptake; (2) bring
nutrient‐enriched waters to the euphotic layer, potentially enhancing photosynthesis and the CO2 uptake; and
(3) bring dissolved inorganic carbon (DIC)‐enriched waters to the surface, leading to local CO2 outgassing
(Sarmiento & Gruber, 2006). The longitude explanatory variable used here, and in W09's method, is included
to account for east‐west differences in water properties, for example, resulting from the contrasting tempera-
ture histories of water in eastern and western boundary currents, not accounted for by the other variables.

Here, we extend the W09 MLR method by (1) optimizing the approach by testing the use of latitude band
widths of 60°, 30°, 20°, 10°, 5°, 2°, and 1° in order to account for the approximately latitudinally separated
biogeochemical regimes resulting from the basin's circulation but also to investigate the impact of the spatial
division on the predicted fCO2−ocean; (2) widening the temporal extent of study from a single year to the
period 1992–2014 (dates chosen to correspond to the starting year of the MLD product; Table S1); and
(3) incorporating a further explanatory variable, the atmospheric CO2 mixing ratio (xCO2), in order to account
for the time‐varying impact of anthropogenic CO2 emissions on the marine carbon system. The MLR
analysis performed on observational products is hereinafter referred to as the “observation‐based MLR.”

The observation‐based MLR was performed using surface fCO2−ocean from the Surface Ocean CO2 ATlas
(SOCAT) monthly gridded product Version 4 (hereinafter SOCATv4; Bakker et al., 2016), and using for
the monthly SST, MLD, and xCO2, the Optimum Interpolation Sea Surface Temperature (OISST) Version
2 product (Reynolds et al., 2007), the Estimating Circulation and Climate of the Ocean (ECCO2) version 2
product (Menemenlis et al., 2008), and the GLOBALVIEW‐CO2 reference matrix (GLOBALVIEW‐CO2,
2013), respectively, from which (1) the period 1992–2014 and the North Atlantic (defined here as 10° N to
70° N and from 75° W to 5° E) were extracted, and (2) the regions shallower than 1,000‐m water depth (as
in W09) were removed using the ETOPO1 Bedrock product (Amante & Eakins, 2015) to minimize the fresh-
water inputs from rivers and coastal effects (cf. Table S1 for further description on the observational data pro-
cessing). The observation‐based MLR followed two steps:

1. The explanatory variables were subsampled at the locations and times at which fCO2−ocean values were
available within SOCATv4 (in the North Atlantic over 1992‐2014), referred as the “subsampled” data.
The subsampled data were used to feed the MLR as follows:

fCO2 ‐ocean; SOCATv4 ¼ β0 þ β1·SSTsubsampled þ β2·MLDsubsampledþ
β3·xCO2subsampled þ β4·Lonsubsampled;

(1)

where β0 is the intercept and β1,2,3,4 are the regression coefficients returned by the statistical model.
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2. The β coefficients were applied to the monthly basin‐wide explanatory variables, to predict the monthly
basin‐wide fCO2−ocean from 1992 to 2014:

fCO2 ‐ocean ¼ β0 þ β1·SSTþ β2·MLDþ β3·xCO2 þ β4·Lon: (2)

TheMLR computed over the 60° latitude bandwidth (corresponding to the entire North Atlantic basin width)
therefore generated one set of β coefficients. To potentially improve the model's predictive skill (section 2.2),
separate MLRs were trained over each latitude band of 30°, 20°, 10°, 5°, 2°, and 1° width, returning 2, 3, 6, 12,
30, and 60 sets of β coefficients (one set per subregion), respectively. The observation‐based MLR analyses
therefore included a total of 113 MLRs, leading to seven different monthly fCO2−ocean estimates for the
North Atlantic from 1992 to 2014 (one for each spatial division method). The uncertainty assessment,
achieved through theCMIP5‐basedMLR analyses (section 2.1.2), will allowus to identify the optimum spatial
division method that provides bias‐free (i.e., nonsignificant error) North Atlantic surface fCO2−ocean annual
means and trend (section 2.2).
2.1.2. The CMIP5‐Based MLRs
To quantify the annually varying interpolation uncertainty in the North Atlantic over 1992–2014, we use
data from the 19 Coupled Model Intercomparison Project phase 5 (CMIP5) models (Table S2), obtained from
the Earth System Grid Federation (ESGF) online portal. Outputs from the first ensemble member were
downloaded at monthly frequency, for the historical experiment prior to 2006 and the Representative
Climate Pathways (RCP) 8.5 from 2006 (Riahi et al., 2007; Taylor et al., 2012), and were regridded to the
SOCAT 1° × 1° grid using the CDO package (http://www.mpimet.mpg.de/cdo; cf. Text S1 for further descrip-
tion on the CMIP5‐data processing), from which North Atlantic shelf waters (<1,000‐m water depth) were
also removed using the ETOPO1 Bedrock product (Amante & Eakins, 2015).

Assuming the CMIP5 models to be perfectly known plausible alternative worlds, we use their outputs as
investigation tools. This investigation approach offers a way to test how well the interpolation method per-
forms, crucially, at places where no observational data are available. By providing a largemodel diversity, the
CMIP5 framework specifically allows us to statistically investigate the effectiveness of the MLR interpolation
technique used in the real world. Unlike W09, which assessed the interpolation uncertainty by training a
MLR on a biogeochemical‐modeled fCO2−ocean field with observational‐based explanatory variables (a first
attempt that unrealistically relied on the assumption that the model captures the real‐world variability),
the present analysis performs Observation Sampling Experiments (OSEs). By subsampling each CMIP5
model outputs (uniformly regridded) at the months and grid cells at which CO2 observations were gathered
within SOCATv4 over the period 1992–2014, OSEs allow to generate separate model‐consistent MLRs, here-
inafter referred as the “CMIP5‐based MLRs.”

For each CMIP5‐based MLR, the steps described in the observation‐based MLR (section 2.1.1) are followed
using the subsampled fCO2−ocean model field from one of the 19 CMIP5 models and the SST, MLD,
atmospheric xCO2 fields from that CMIP5 model (and longitude, which is not a model‐specific variable).
Note that since the CMIP5 model simulations are conditioned with global annual atmospheric xCO2 values,
and not with seasonally and spatially varying values as in the real world, the CMIP5‐based MLRs are built on
model‐relevant variables for consistency purposes (i.e., choosing annual atmospheric xCO2 for CMIP5‐based
MLRs, while consistently selecting the seasonally and spatially varying xCO2 for the observation‐basedMLR).
As for the observation‐based MLR, the CMIP5‐based MLRs were also generated across the latitudinally
divided North Atlantic. As such, the CMIP5‐based MLRs generated over latitude band of 60°, 30°, 20°, 10°,
5°, 2°, and 1° width, returned a total of 19, 38, 57, 114, 228, 570, and 1,140 sets of β coefficients. For each spatial
divisionmethod, the 19 reconstructed basin‐wide surface fCO2−ocean products generated by the CMIP5‐based
MLRs were subtracted by their corresponding model‐truth fCO2−ocean values (calculated interactively within
each of the CMIP5 models), defining the fCO2‐residuals (i.e., fCO2‐residuals = fCO2‐ocean; MLR‐predicted ‐ fCO2‐ocean,

model‐truth). The study of the fCO2‐residuals enables us to investigate which of the seven spatial divisions used
in the MLR method provides the best predictive skills for the North Atlantic surface fCO2−ocean annual
means and the corresponding 1992–2014 trend (section 2.2).

2.2. Identifying the Appropriate MLR Setup
2.2.1. Annually Varying Uncertainty
To study whether the MLR method introduces a significant bias on the predicted annual fCO2−ocean in the
North Atlantic over the period 1992–2014, the annual time series of the fCO2‐residuals produced by each
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CMIP5‐based MLR analysis is first calculated from the basin area‐weighted monthly means. Then, the
annually varying model mean (thick black line in Figure 2) and standard deviation σ (dark shading in
Figure 2) errors are calculated, respectively, by

MEy ¼ ∑
M

m¼1

fCO2 ‐residual;y;m

M
; (3)

σðMEyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
M

m¼1

fCO2 ‐residual;y;m−MEy
� �2

M ‐1

s
; (4)

where the horizontal line represents the North Atlantic area‐weighted monthly means, which are averaged
to the year y (from 1992 to 2014) andm to the CMIP5‐basedMLR analysis withM the total number of models
(19).

Analysis of the annual bias in the North Atlantic averaged fCO2−ocean field derived by the MLR method
(Figure 2) shows that (1) the smaller the width of the latitude band over which the MLR is trained, the
smaller the overall width of the uncertainty (the gray shadings in Figure 2 are much wider for the
60° study than for the 5° or 1° studies, with indiscernible visual improvements between the 5°, 2°,
and 1° studies); (2) the uncertainty generally gets smaller over time, in line with the idea that the
increase in number of fCO2−ocean values (Figure 1b) improves the MLR's predictive skill; and (3) the
MLR analyses built on latitude bands of 5°, 2°, and 1° width present similar results, suggesting that
those three statistical methods provide a similar predictive skill on annual means. A t test is used to
identify whether the uncertainty over the period 1992–2014 is significantly different from a distribution
of mean zero at the 5% significance level. The MLR analyses computed successively over latitude bands
of 10°, 5°, 2°, and 1° width reproduce the model‐averaged fCO2−ocean time series without the addition of
a significant bias (the black thick line is statistically indistinguishable from the zero red line), at the 5%
significance level (Figures 2d–2g). However, for the analyses using the larger latitude bands, the MLR
overestimates the model‐true annual fCO2−>ocean values at the 5% significance level (Figures 2a–2c).
We conclude from this first assessment that the 10°, 5°, 2°, and 1° MLR analyses are potentially appro-
priate for calculating the annually varying surface fCO2−ocean.
2.2.2. Temporal Trend Uncertainty
The error introduced by the MLR interpolation technique on the North Atlantic surface fCO2−ocean trend is
studied using the CMIP5‐based MLR analyses. For each CMIP5‐based MLR analysis, linear trends in North

Figure 2. Annually varying uncertainty from the Coupled Model Intercomparison Project Phase 5‐based multiple linear
regression analyses. Each panel corresponds to the results from one of the seven latitudinally divided multiple linear
regression methods. The black line corresponds to the multimodel mean of annual average fCO2‐residuals (equation (3)).
The dark, medium, and light gray shadings correspond, respectively, to the 1σ, 2σ, and 3σ across the 19 annual averages of
fCO2‐residuals (equation (4)). The dashed red line indicates the zero level. The t test result is indicated in each panel, where
0 means that there is no statistically significant mean bias in the residuals at the 5% significance level.
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Atlantic surface fCO2−ocean were calculated using the MLR‐predicted (ΓMLR‐predicted) and CMIP5 model‐
truth (Γmodel‐truth) fields. Specifically, each basin‐wide surface fCO2−ocean product was first averaged into
North Atlantic area‐weighted monthly means over 1992–2014 and then averaged into annual means, from
which the linear surface fCO2−ocean trend and its associated standard error (returned by the linear fit)
were obtained. By studying the differences between ΓMLR‐predicted and Γmodel‐truth across the 19 CMIP5‐
based MLR analyses, we can therefore quantify the error on the North Atlantic surface fCO2−ocean trend
over 1992–2014 introduced by the MLR (Figure 3).

For each of the seven different spatially divided MLR analyses, the R2 and the root mean square error
(RMSE) between ΓMLR‐predicted and Γmodel‐truth were calculated (Figure 3). Across themethods, the 5° latitude
bands analysis provides the highest R2 value (0.734) but most importantly the smallest RMSE (0.060 μatm/
year; Figure 3). The fact that the MLR methods on smaller latitude bands (over 2° and 1° width) provide
slightly higher RMSE than the method on 5° latitude bands (Figures 3f and 3g) suggests that overfitting
might be occurring. Indeed, the smaller the region over which the MLR is trained within a given period,
the fewer observations are available, which could lead the MLR to become too specific to the trained data
set and provide slightly poorer predictive skill for the overall population than when training the MLR over
a wider region (Hastie et al., 2016).

In summary, the MLRmethod computed over 5° latitude bands across the North Atlantic provides unbiased
(i.e., nonsignificant mean error) and robust results for both the annually varying surface fCO2−ocean and its
corresponding trend over 1922–2014. As such, the observation‐based MLR results generated from the 5°
latitude bands method are adopted for the remaining analysis. Observation‐based results are hereinafter
presented with the associated interpolation uncertainty determined from the CMIP5‐based MLR analyses
(the ones generated from the 5° latitude band width setup). Specifically, the North Atlantic annually varying
surface fCO2−ocean is constrained with the annually varying 1σ, 2σ, and 3σ (equation (4)), displayed in Figure
2e. The uncertainty on the observation‐based trend in surface fCO2−ocean over the period 1992–2014 is given
by the standard deviation of the difference between ΓMLR‐predicted and Γmodel‐truth calculated across the
19 CMIP5 models (Figure 3e), which equals 0.060 μatm/year. Note that the annually varying uncertainties
are in agreement with the uncertainty assessment carried out in W09 for 2005. Indeed, W09 quantified a
1σ error on the fCO2−ocean annual mean between 0.8 and 1.8 μatm, similar to the 1σ errors determined by
our analysis (which ranges between 1.0 and 1.8 μatm across 1992–2014).

Figure 3. Trend uncertainty from the Coupled Model Intercomparison Project Phase 5 (CMIP5)‐based multiple linear
regression (MLR) analyses. Each panel corresponds to the results from one of the seven spatially divided MLR method.
North Atlantic fCO2−ocean linear trends calculated from annual means over the period 1992–2014 from the CMIP5‐based
MLR product (ΓMLR‐predicted) versus the CMIP5 model‐truth value (Γmodel‐true; circles). The corresponding standard
error of each linear trend (returned by the linear fit applied to basin‐wide North Atlantic annual means) is indicated by the
vertical and horizontal lines. Each panel includes the R2 value and the root mean square error (RMSE) between ΓMLR‐

predicted and Γmodel‐true. The dashed line indicates the one‐to‐one line. Points above the one‐to‐one line indicate that, for
the corresponding CMIP5 models, the MLR overestimates the model‐truth fCO2−ocean trend.
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Further justification for using the CMIP5‐based MLR uncertainty results
to constrain the observation‐based interpolated estimates is provided in a
complementary analysis (Text S2; Figure S2). We show there that the
two MLR studies (the one using the observational‐based products and
the one using the CMIP5 outputs) react similarly to their corresponding
proxy variables. At the locations and times at which observations were
made, the CMIP5‐based MLR uncertainties are in agreement with the
observation‐based MLR uncertainties (on annual means; Text S2 and
Figure S2). Since the annually varying uncertainty assessment is valid
for the current CO2 observational coverage, one can assume that the
basin‐wide annually varying uncertainty assessment is a robust estimate
to delimit the annually varying observation‐based fCO2−ocean estimates.

3. Results
3.1. Recent Change in the North Atlantic Surface fCO2−ocean

In this section we explore the implications of the uncertainties in annual
variation and trend on the North Atlantic fCO2−ocean using the MLR tech-
nique applied to 5° latitude bands as determined above (Figures 2e and 3e).
While the observation‐based fCO2−ocean predicted by the MLR is available
at a monthly frequency and over 5° latitude bands, a study of the long‐term
change (23 years) at those resolutions would require estimates that are
bias‐free (i.e., the mean interpolation error not statistically different from
zero) and robust within each subregion in each season, requirements that
are not met for the month of August (Figure S3) and for some subregions
of the North Atlantic (Figures S4 and S5). For instance, the MLR over
5° latitude band widths shows that while the method is robust in the sub-
tropical North Atlantic, the range of uncertainties increases as we move
northward (Figure S4), suggesting that the proxy variables used within

the MLR might miss some information regarding the long‐term change in the subpolar region and/or that
not enough observations exist at high latitudes to detect a well‐delimited signal. As such, we deliberately
focus on basin‐wide annual means for which we can demonstrate that the MLR results are unbiased and
robust—a requirement for the comparison with the CMIP5 models (section 3.3).

The North Atlantic surface fCO2−ocean obtained from the observation‐based MLR is first area‐weighted into
monthly means and then averaged into annual means (thick blue line in Figure 4). Over the period 1992–
2014, the North Atlantic surface fCO2−ocean increased approximately linearly at a rate of 1.47 ± 0.06 μatm/year
(Figure 4). The standard error on the trend due to the linear fit is 0.04 μatm/year, which is encompassed by the
1σ interpolation uncertainty. The relatively small year‐to‐year variability in surface fCO2−ocean (as character-
ized by the relatively small standard error on the linear fit) is expected because (1) interpolation methods sys-
tematically tend to smooth high‐frequency variability and hence ultimately smooth the interannual signal and
(2) the interpolation method used here is a linear regressionmodel, which by construction we expect to lead to
a robust estimate of the first‐order trend. The increase of surface fCO2−ocean is considerably less than that of
fCO2‐atmosphere over the same interval (1.88 ± 0.02 μatm/year; Text S3; dashed line in Figure 4;
GLOBALVIEW‐CO2, 2013; Kalnay et al., 1996; Reynolds et al., 2007), resulting in an increased atmosphere‐
ocean fCO2 gradient (Figure S6). With all else being equal, this would result in increased oceanic CO2 uptake.

The idea that atmospheric and surface ocean CO2 concentrations can be seen to diverge in response to
anthropogenic CO2 emissions, while ultimately an inevitable consequence of the Revelle factor (Revelle &
Suess, 1957), could be considered counterintuitive. Indeed, McKinley et al. (2011) found ocean and atmo-
sphere CO2 trends to converge in the North Atlantic on multidecadal time scales but also highlighted that
in the latter period of study (1993–2005), the largest region examined in their study, the permanently strati-
fied Subtropical Atlantic, had a lower ocean than atmosphere CO2 trend. While McKinley et al. (2011) sug-
gest that the permanently stratified Subtropical Atlantic trendmay be the result of multidecadal variability in
the Atlantic, studies other than that presented here, which further extend the ocean CO2 time series (Iida

Figure 4. North Atlantic area‐weighted annual averaged surface
fCO2−ocean, taken from the observation‐based multiple linear regression
(MLR; blue). The dark, medium, and light gray shadings represent the ±1σ,
2σ, and 3σ annual uncertainties obtained from the Coupled Model
Intercomparison Project Phase 5‐based MLR analysis, respectively
(Figure 2e). The other lines present results from previous independent
observation‐based studies, using different techniques to reconstruct the
trends, but similar data: The pink is from the neural network method of
Landschützer et al. (2016, 2017), the brown is from aMLRmethod from Iida
et al. (2015), and the green is from the Jones et al. (2019) statistical gap‐filling
method, which also provided an estimate for basin‐wide uncertainties
shown by the dashed lines. Note that Landschützer et al. (2016, 2017) and
Iida et al. (2015) specifically provided pCO2‐ocean, but in terms of the
illustrative analysis presented here, the difference between pCO2‐ocean and
fCO2−ocean is negligible. The bar plot shows the contribution of the xCO2,
mixed layer depth (MLD) and sea surface semperature (SST) variables to the
predicted fCO2−ocean trend (section 3.2).
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et al., 2015; Jones et al., 2019; Landschützer et al., 2017) and from which can be calculated the area‐weighted
North Atlantic mean (in opposition to McKinley et al., 2011, which provide trends from nonbasin‐
interpolated values), support our results that at a basin scale the North Atlantic is maintaining a lower
CO2 trend than that observed in the atmosphere (Figures 4 and S7b). Indeed, our multidecadal fCO2−ocean

surface results are consistent with three methodologically independent and complementary techniques
(Figure 4) based on similar data: a Neural Network approach (Landschützer et al., 2016, 2017), an alternative
MLR approach Iida et al. (2015), and the Jones et al. (2019) statistical gap‐fillingmethod, which also provided
a corresponding basin‐wide uncertainty (Figure 4; Table S1). For each of the three independent techniques,
the interpolated monthly surface fCO2−ocean (or pCO2‐ocean) was extracted for the North Atlantic open ocean
and for the period 1992–2014 (Table S1), spatially averaged using area‐weighted means and averaged to
annual means, from which the trend was finally calculated. The methods from Landschützer et al. (2016,
2017), Iida et al. (2015), and Jones et al. (2019) obtained a fCO2−ocean (or pCO2‐ocean) trend of 1.49 ± 0.05,
1.71 ± 0.03, and 1.69 ± 1.03 μatm/year over 1992‐2014, respectively (where the uncertainty corresponds to
the standard error returned by the linear fit for the first two methods and corresponds for Jones et al.
(2019) to the range of possible trends given their annually varying uncertainty), which is comparable to
our trend estimate of 1.47 ± 0.06 μatm/year. While the results from Iida et al. (2015) are reaching the limit
of agreement with the present work (given the 3σ range), the lack of time‐varying uncertainties, which would
likely be greater than the uncertainty on the linear fit (i.e., 0.03 μatm/year), might alter the interstudy com-
parisons. The uncertainty provided by Jones et al. (2019) covers a wide range of possible fCO2−ocean trends
within that interval, limiting what can be concluded about North Atlantic CO2 trends from this approach.
Finally, while our method was specifically designed to provide robust basin‐wide fCO2−ocean annual esti-
mates, we show in an additional analysis that the localized surface fCO2−ocean is in good agreement with
the monthly CO2 measurements obtained within Bermuda Atlantic Time‐series Study (BATS) vicinity over
our period of study (Figure S8).

3.2. Identifying the Drivers of the Recent Change in the North Atlantic Surface fCO2−ocean

To examine the drivers of the North Atlantic surface fCO2−ocean trend, the role of each explanatory variable
in the interpolation technique is studied. The set of β coefficients from the observation‐based MLRs over
5° latitude band width (equation (1)) was applied, within each band, to the separately varying subregional
xCO2, MLD, and SST following equations (5), (6), and (7), respectively (note that this approach was not used
for longitude as it is a nontemporally varying variable). For example, the contribution of xCO2 to the rate of
change of the North Atlantic surface fCO2−ocean was studied by calculating a new (unrealistic) fCO2−ocean

field within each 5° latitude band, using the corresponding β coefficients to the mean value of each
explanatory variable, except for xCO2, which was allowed to vary in time and space (equation (5)). The
12 fCO2 ‐ocean<−xCO2 monthly varying fields (one per each 5° latitude band) were then merged to reconstruct
the basin‐wide North Atlantic, monthly averaged with an area‐weighted mean and annually averaged, from
which the mechanistic trend was finally calculated. As such, by studying the sign and amplitude of the
mechanistic trends in fCO2 ‐ocean < ‐xCO2 , fCO2‐ocean<‐MLD, and fCO2‐ocean<‐SST, the dominant driver (among
the given explanatory variables) and the mechanisms involved in the rate of change in surface fCO2−ocean

can be identified (bar plot in Figure 4).

fCO2 ‐ocean<− xCO2 ¼ β0 þ β1·SST þ β2·MLD þ β3·xCO2 þ β4·Lon; (5)

fCO2 ‐ocean < ‐ MLD ¼ β0 þ β1·SST þ β2·MLDþ β3·xCO2 þ β4·Lon; (6)

fCO2 ‐ocean < ‐ SST ¼ β0 þ β1·SSTþ β2·MLD þ β3·xCO2 þ β4·Lon; (7)

where β0 is the intercept and β1,2,3,4 are the regression coefficients (for a given 5° latitude band) returned
by the linear model (equation (1)) and horizontal lines indicate that the data are averaged to a constant
value.

The fCO2−ocean trends resulting from separately varying xCO2, MLD, and SST are 1.60, −0.18, and
0.057 μatm/year, corresponding to 108.5%, −12.4%, and 3.9% of the original trend (i.e., 1.47 μatm/year),
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respectively (bar plot in Figure 4). By having the largest trend amplitude, the atmospheric xCO2 appears as
the predominant driver explaining the increase in surface fCO2−ocean over the period 1992–2014, while
expected provides evidence that the anthropogenic signal dominates the annual surface fCO2−ocean in the
North Atlantic over this period. This result anticipates the results of McKinley et al. (2011), which found
thata 25‐year‐long interval was required for the long‐term signal in surface fCO2−ocean to emerge from
the North Atlantic decadal variability (note however that their study was based on a different
interval, 1981–2009). Over the period 1992–2014, the MLD and SST play a less important role than the
atmospheric xCO2 in controlling the surface fCO2−ocean, and their signs are consistent with our
understanding of the mechanisms between those two variables and the surface fCO2−ocean. The negative
sign in the fCO2‐ocean<‐MLD trend indicates that an overall increase in the MLD would lead to a decrease
in the surface fCO2−ocean, suggesting that the enhancement of the dilution of CO2 in the mixed layer
and/or the stimulation of the biological activity from the input of nutrient‐enriched deep waters to the
surface are the main MLD‐related mechanisms involved in the surface fCO2−ocean for the basin‐wide
North Atlantic. As such, the impact of carbon‐enriched deep waters to the surface as MLD deepens
appears to be minimal over the period 1992–2014 and is unlikely to explain the rate of change of surface
fCO2−ocean. The positive sign in the fCO2‐ocean<‐SST trend indicates that, over the period 1992–2014, an
increase in the SST leads to an increase in the North Atlantic surface fCO2−ocean, which is consistent with
the decrease in the solubility of CO2 into seawater as surface waters warm. Nonetheless, we acknowledge
that the drivers in the recent change in the North Atlantic surface fCO2−ocean would vary across the basin
(with a remaining dominance from atmospheric xCO2), for instance in the subpolar region, which
experienced localized deep water formation events at the beginning of the period of study (Yashayaev
et al., 2007) and which could therefore result in a MLD‐driven mechanism (Figure S9).

3.3. Evaluating the Recent Change in the North Atlantic Surface CO2 Concentrations in the
CMIP5 Models

Recent change in the surface fCO2−ocean simulated by 19 CMIP5 models (Table 1) is evaluated through com-
parison with our new error‐bounded observational‐based time series and trend (Figure 5). We find that (1)

Table 1
Trends in Surface fCO2−ocean for Each CMIP5 Model and From the Observation‐Based Estimates

Model name fCO2−ocean trend
(μatm/year)

CESM1‐BGC 1.92 ± 0.03
CanESM2 2.02 ± 0.03
GFDL‐ESM2G 1.73 ± 0.04
GFDL‐ESM2M 1.77 ± 0.05
GISS‐E2‐H‐CC 1.76 ± 0.04
GISS‐E2‐R‐CC 1.84 ± 0.04
HadGEM2‐CC 2.06 ± 0.05
HadGEM2‐ES 1.99 ± 0.05
IPSL‐CM5A‐LR 1.94 ± 0.04
IPSL‐CM5A‐MR 1.83 ± 0.05
IPSL‐CM5B‐LR 1.94 ± 0.06
MIROC‐ESM‐CHEM 1.98 ± 0.05
MIROC‐ESM 1.97 ± 0.05
MPI‐ESM‐LR 1.96 ± 0.03
MPI‐ESM‐MR 1.90 ± 0.05
MRI‐ESM1 1.91 ± 0.05
NorESM‐ME 1.81 ± 0.02
bcc‐csm1‐1‐m 1.85 ± 0.04
bcc‐csm1‐1 1.89 ± 0.03
Model‐mean 1.90 ± 0.09
Observation‐based 1.47 ± 0.06

Note. CMIP5 = CoupledModel Intercomparison Project Phase 5. All trends were calculated over the North Atlantic and
over the period 1992–2014. Significant air‐sea CO2. The uncertainty on the CMIP5 models estimates corresponds to the
standard error of the linear fit, except for the model‐mean values, which correspond to the intermodel variability.
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the CMIP5 models overall behave similarly to each other in response to the increase in atmospheric CO2

concentrations and (2) the CMIP5 models differ from the observation‐based estimates in terms of the
amplitude of the surface fCO2−ocean, and importantly its trend (Figures 5a and 5b). Over the period
1992–2014, the North Atlantic fCO2−ocean trend in the CMIP5 models is on average 1.90 ± 0.09 μatm/year
(where the ±1σ value corresponds to the intermodel variability; Table 1). The models' surface ocean
concentration closely follows the rise of atmospheric CO2, which they experienced (the model‐mean
fCO2‐atmosphere trend, i.e., the calculation of fCO2‐atmosphere from the prescribed historical and RCP8.5
xCO2 using modeled temperature and pressure, over the period 1992–2014 is 1.92 ± 0.01 μatm/year;
Figure S7b), consequently limiting the air‐sea CO2 gradient and therefore the removal of CO2 from the
atmosphere. The fCO2−ocean trends in the CMIP5 models (1.90 ± 0.09 μatm/year) are significantly larger
than the observation‐based fCO2−ocean trend (i.e., 1.47 μatm/year), at the 5% significance level (right‐tailed
t test statistics).

The fact that the CMIP5 models have a larger fCO2−ocean trend than the observations means that the differ-
ence between fCO2‐atmosphere and fCO2−ocean (i.e., ΔfCO2) increases at a slower rate in the models than in the
real world (for a negligible difference in the fCO2‐atmosphere between the real‐world and the models, as shown
in Figure S7b). Therefore, the air‐sea CO2 flux, which is proportional to ΔfCO2, would increase at a slower
rate in the models than in the real world (with potential CO2 outgassing), in the absence of significant trend
in the gas transfer velocity and solubility.

4. Discussion

The statistically significant discrepancy in the surface fCO2−ocean trends between the CMIP5 models and the
observation‐based estimate is likely to result from one or more of four factors: (1) the CMIP5 models and the
real world could be forced with slightly different atmospheric CO2 concentrations, which could have
impacted the surface fCO2−ocean and led to slightly different trends between the two systems; (2) the specific
number and/or combination of the chosen CMIP5‐based MLR analyses used to calculate the trend uncer-
tainty may result in an anomalous fCO2−ocean trend uncertainty, impacting the outcome of the model‐
observation comparison; (3) the real world could be experiencing, over the period of study, a phase of natural
variability not captured by any of the CMIP5 models; and/or (4) the CMIP5 models could poorly represent or
miss some key characteristics of themarine CO2 system necessary to capture the observed surface fCO2−ocean

trend. These four possibilities are explored here.

Figure 5. Evaluation of the recent change in surface fCO2−ocean in the Coupled Model Intercomparison Project Phase 5
(CMIP5) models against observation‐based estimates. (a) Annually area‐weighted averaged North Atlantic fCO2−ocean
over the period 1992–2014 (except for the blue dashed line, which corresponds to the annually varying observation‐derived
atmospheric fCO2; GLOBALVIEW‐CO2, 2013; Kalnay et al., 1996; Reynolds et al., 2007; Text S3; which is closely followed
by the CMIP5 models' atmospheric fCO2, as shown in Figure S7b) and (b) resulting linear trends over the 1992–2014
interval. Blue corresponds to observation‐based multiple linear regression (MLR) results and orange to each of the avail-
able CMIP5 models (Table 1). The dark, medium, and light gray shadings, respectively, represent the ±1σ, 2σ, and 3σ
annual and trend interpolation uncertainties. In (b), the thick orange line corresponds to the CMIP5 model‐mean trend
value, and the ±1σ, 2σ, and 3σ across the models by the associated error bars.
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4.1. A Model Bias due to Different Atmospheric xCO2?

To verify that the discrepancy in the surface fCO2−ocean does not arise from differences in the respective
atmospheric xCO2 products, the annual atmospheric xCO2 values in the real world and in the model world
are compared (Figure S7a). Overall, the xCO2 annual time series from GLOABALVIEW‐CO2 (extracted for
the North Atlantic and area‐weighted into annual means) and from the “historical+RCP8.5” scenarios are
similar, with indistinguishable resulting trends over 1992–2014 (i.e., 1.95 ± 0.02 ppm/year and
1.98 ± 0.02 ppm/year, respectively; Figure S7a). For the period up until 2005 (year from which the CMIP5
models are forced with RCP8.5 scenario xCO2 values), the atmospheric xCO2 trends from the observation‐
based product and the RCP8.5 projection values are also indistinguishable (1.83 ± 0.04 ppm/year and
1.80 ± 0.03 ppm/year, respectively; Figure S7a). As such, the trend discrepancy in surface fCO2−ocean

between the real world and the models cannot be explained by the minimal differences in atmospheric
xCO2 between the two systems.

4.2. Model‐Observation Discrepancy Explained by a Sensitive Interpolation Uncertainty?

The trend uncertainty assessment, which was used to constrain the observation‐based trend estimate, relied
on the CMIP5‐basedMLR analyses and was determined from the distribution across the 19 CMIP5 models of
the difference between ΓMLR‐predicted and Γmodel‐true (see section 2.2). As such, we performed a sensitivity
analysis on the trend uncertainty to test whether the difference between the observation‐based and the
CMIP5 fCO2−ocean trends remains significant if we were to determine the uncertainty using fewer and differ-
ent combinations of CMIP5‐based MLR analyses. We calculated the trend uncertainty using a number of
models k (a subset of the available models) that varies from 2 to 18 and considers the different possible com-
binations CM

k of those models:

CM
k ¼ M!

k!ðM−kÞ! ; (8)

whereM is the total number of models available (19) and k the number of selected models (from 2 to 18) in a
subset used to calculate the uncertainty. The standard deviation (i.e., trend uncertainty) calculations are
repeated for each model subset size and combination.

The observation‐based fCO2−ocean trend with the uncertainties resulting from the sensitivity analysis (i.e.,
1.47 ± (1, 2, 3) σCM

k
μatm/year are compared to the CMIP5 model ensemble of fCO2−ocean trends with an

unpaired two‐sample left‐tailed t test, for each of the possible combinations (Figure S10). A t test statistics
show that in all scenarios, the fCO2−ocean observation‐based trend is always significantly smaller than the
CMIP5 trends, at the 5% significance level (Figure S10). The sensitivity analysis therefore indicates that
the CMIP5 models robustly overestimate the observation‐based fCO2−ocean trend.

4.3. Internal Variability

One of themajor challenges when interpreting the time‐varying behavior in a model ensemble against obser-
vations on decadal to multidecadal time scales is that the model ensemble and the real world could be experi-
encing different phases of internal variability (e.g., the North Atlantic Oscillation or Atlantic Multidecadal
Variability, both of which have been implicated in North Atlantic CO2 uptake variability; McKinley et al.,
2011; Schuster et al., 2009; Thomas et al., 2008). The model ensemble may therefore be significantly different
from the observations because it does not capture the component of natural variability sampled by the real
system. To assess this possibility, the internal variability in the model ensemble and in the real world should
be quantified. While studies (e.g., DeVries et al., 2019; Landschützer et al., 2016; Rödenbeck et al., 2015) sug-
gest substantial decadal variability within observation‐based estimates linked to climate variability (e.g.,
Landschützer et al., 2019), the relatively short length of the fCO2−ocean observational record limits our con-
fidence in the representation of the true internal variability and its interaction with CO2 uptake at decadal
and longer time scales (e.g., McKinley et al., 2011). A further complication is that this variability is superim-
posed on the anthropogenically forced climate change and the two can only be disentangled by assuming the
validity of internal variability generated by models (e.g., Hegerl & Zwiers, 2011).

To investigate the role of internal variability within the North Atlantic surface fCO2−ocean trend, an initial
analysis was conducted using the forced model fields. We specifically calculated the surface fCO2−ocean
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trends simulated by the CMIP5 models within relatively shorter intervals than the period of study 1992–2014
(precisely over the periods 1992–2013, 1993–2014, 1992–2012, and 1994–2014; Figure S11). We show that the
surface fCO2−ocean trends within 21‐ and 22‐year‐long intervals, as simulated by the CMIP5 models, are
within the same range as the trends over the period 1992–2014 (Figure S11), suggesting that the signal
captured by the CMIP5 models is consistent with overall forced system, as opposed to internal variability.

Nevertheless, models offer idealized platforms to fully quantify the internal climate variability using their
unforced control simulations. To attempt to quantify internal variability in surface ocean CO2 concentrations
in a more robust manner (relative to the analysis conducted in Figure S11), we use the CMIP5 model prein-
dustrial control simulations. The North Atlantic internal variability (i.e., the unforced variability) in themod-
els' surface pCO2‐ocean contained in 23‐year‐long intervals is quantified by using the models' preindustrial
experimental runs, which describe the climate system without anthropogenic forcing. Out of the 19 CMIP5
models used in themodel trend evaluation study, 14 provided pCO2‐ocean data from their preindustrial control
simulation (Table S2). In the context of this study, the difference between pCO2‐ocean and fCO2−ocean is
assumed to be negligible. Since the 14 CMIP5 models' control simulations were run over different lengths
of time (from 240 to 1,000 years), the first 240 years in each of the control simulations was used for
consistency. Over 240 years, 217 possible 23‐year‐long continuous intervals are defined, leading to the genera-
tion of 217 pCO2‐ocean linear trends for each of the 14 CMIP5 control simulations (Figure 6). The standard
deviation σunforced of the pCO2‐ocean trends calculated across all the possible 23‐year‐long intervals and across
the available control simulations (a total of 217 × 14 = 3,038 trends) equals 0.036 μatm/year
(corresponding to the dark green shading in Figure 6) should represent the amplitude of the unforced
variability in the models. The internal variability in the surface pCO2‐ocean trend over a 23‐year‐long

Figure 6. Quantifying the North Atlantic internal variability in the modeled trend. Histogram of the pCO2‐ocean linear
trends calculated over 23‐year running intervals, using the first 240 years of the preindustrial experiment outputs,
available for 14 Coupled Model Intercomparison Project Phase 5 models (Table S2). The dark to light green bands corre-
spond to 1σunforced, 2σunforced, and 3σunforced of those pCO2‐ocean trends, respectively.
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interval (up to 3σunforced = 0.108 μatm/year), as simulated by the CMIP5 models, is about four times
smaller than the difference between the CMIP5 model mean and the observation‐based fCO2−ocean trend
(i.e., 1.90 − 1.47 = 0.43 μatm/year), indicating that the systematic trend overestimation in the CMIP5
models cannot be explained by the models' internal variability. To further support this statement, addi-
tional analysis (Text S3 and Figure S12) suggests that an ensemble of 19 forced model runs (with the
model diversity as provided by the CMIP5 framework) is large enough to sample most of the models'
unforced variability captured within an interval of 23 years. Due to the increase in atmospheric CO2 con-
centrations since the beginning of the industrial era, the surface fCO2−ocean in the present day is higher
than during preindustrial times, leading to the surface ocean being less buffered and potentially more
variable than prior to the existence of anthropogenic forcing. As such, the dispersion of the trends simu-
lated by the preindustrial runs may not necessarily be directly comparable with the dispersion of the
trends simulated in an anthropogenically forced climate. However, the fact that none of the models used
to investigate the trends over 1992–2014 capture the observation‐based trend, while they all experienced
the anthropogenic atmospheric CO2 rise and consequent reduction in buffering, further suggests that
the ensemble size is large enough to account for model internal variability (Text S3 and Figure S12).

While the fCO2−ocean trends in the 19 ensemble members seems to predominantly capture the forced change
rather than the models' unforced variability, it cannot be ruled out that the observation‐based fCO2−ocean

trend estimate (calculated over a 23‐year‐long interval) may describe a phase of multidecadal internal varia-
bility, which is not generated by the models (McKinley et al., 2017; Schuster et al., 2009; Thomas et al., 2008).
Indeed, the observational‐based study of McKinley et al. (2011) identified that in the North Atlantic, the
long‐term trend took 25 years to emerge from the variability occurring on decadal time scales. Multiple lines
of evidence—observational analysis indicating that xCO2 was the dominant driver of our identified trend,
model unforced control run analysis, and use of a 19 member model ensemble—have pointed to the trend
difference being anthropogenically forced and further evidence that the discrepancy between the CMIP5
model and the observed trends is anthropogenic in origin comes from a mechanistic exploration of the dif-
ference in trends below.

4.4. Investigating the Mechanisms Explaining the CMIP5 Model Bias

While the CMIP5 models are the most advanced tools available at this time to explore the Earth's climate
response to anthropogenic forcing, and the coordination of their simulations to provide multimodel ensem-
bles helps us avoid drawing model‐specific conclusions, such multimodel analyses lead to challenges.
Different modeling groups will have made different assumptions in building and setting up the model, for
example, with different initial conditions and spinup procedures (Séférian et al., 2016). As such, to under-
stand and identify the potential mechanisms responsible for the systematic bias in the fCO2−ocean trends
in the CMIP5 models, we performed five ocean‐only ensembles using a single model. The five ensembles
are identically initialized with observation‐based products but are forced with surface conditions from five
different sources spanning the interval of interest, which allow us to investigate the impacts of the initializa-
tion and of the surface forcing fields on the simulated fCO2−ocean trends.

Simulations were performed using a 1°, 75 vertical level, global ocean‐only physical‐biogeochemical
model, the GO5.0 (Megann et al., 2014) configuration of the Nucleus for European Modelling of the
Ocean (NEMO) hydrodynamic model (Madec, 2008) coupled with v4.1 of the CICE model (Hunke et al.,
2010), and the Hadley Centre Ocean Carbon Cycle (HadOCC; Palmer & Totterdell, 2001) biogeochem-
ical model. All NEMO fields were initialized to zero, except for temperature and salinity, which were
taken from the EN4 objective analysis v4.1.1 (Good et al., 2013; Gouretski & Reseghetti, 2010). For
HadOCC, initial conditions for nutrients were taken from the World Ocean Atlas climatology (Garcia
et al., 2010), for DIC and Total Alkalinity (TA) from the Global Ocean Data Analysis Project
(GLODAP) climatology (Key et al., 2004; whose version is more representative of the 1980s, period over
which the simulation initialization is made, than the second updated version), and for phytoplankton,
zooplankton, and detritus from the end of a previous simulation (Ford et al., 2012). The atmospheric
pCO2 values were prescribed using globally and monthly averaged surface data based on observations
(Dlugokencky & Tans, 2016).

Considering initially the first ensemble member, five simulations were run from 3 January 1979 to 31
December 2014 and were forced by prescribing the surface conditions from five different sources (one
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source for each experiment). The prescribed surface forcing includes air temperature, snowfall, specific
humidity, vector winds, precipitation, downwelling shortwave, and longwave radiation. The motivation
behind running five simulations forced with five different surface conditions was to test whether the fCO2

−ocean simulated trend was highly impacted by the atmospheric forcing (heat, moisture, and momentum
fluxes) or by the initialization of the ocean variables, which was kept the same across the simulations. The
first simulation used daily surface conditions from the European Centre for Medium‐Range Weather
Forecasts (ECMWF) ERA‐Interim reanalysis (Dee et al., 2011) and is hereinafter referred as the “ERA‐
Interim forced simulation.” The remaining four simulations used daily surface conditions from four
CMIP5 model outputs, specifically from the GFDL‐ESM2M, HadGEM2‐ES, IPSL‐CM5A‐LR, and
CanESM2 (Text S1) and are hereinafter referred as the “CMIP5‐forced simulations.” The four CMIP5
models were chosen to approximately span the fCO2−ocean CMIP5 model behaviors (Table 1).

For each of the five simulations of the first ensemble member, the surface fCO2−ocean outputs were (1)
regridded into a 1° × 1° regular grid using the bilinear interpolation within the CDO package (http://
www.mpimet.mpg.de/cdo), (2) extracted for the open waters of the North Atlantic (the shelf waters above
1,000‐m depth were removed using ETOPO1; Amante & Eakins, 2015), (3) monthly averaged (as the outputs
were saved at a daily frequency), and (4) averaged into annual area‐weighted means; leading for each simu-
lation to a fCO2−ocean annual time series from 1979 to 2014. For each of the five annual fCO2−ocean annual
time series, the linear trend was calculated over the period of interest 1992–2014. As such, the first 13 years
of the simulations (i.e., from 1979 to 1991) correspond to the spinup period. While a 13‐year spinup is inevi-
tably of insufficient length for the model to reach equilibrium, an analysis of the model fields suggested that
the large initial drifts had settled down during this period (the initial perturbation settles after ∼3–4 years,
example in Figure S13), certainly for the surface processes which we are most interested in over the time
scales of this study, and which are most driven by the atmospheric forcing. As such, we are satisfied that
the hindcast is sufficiently able to reproduce the mean state and observed variability of the ocean (Ford &
Barciela, 2017). Furthermore, we require a short spinup to avoid the DIC and TA fields drifting too far from
their initialized observed state and therefore to test the carbon cycle behavior when the model's DIC and TA
are close to the observed (initialized) state on the simulated surface fCO2−ocean trends. Three additional

Figure 7. North Atlantic fCO2−ocean trends (thick magenta line) and uncertainty due to interannual variability in the
atmospheric forcing (dashed magenta lines) returned from the ocean‐only simulations that were forced with (a) ERA‐
Interim, (b) GFDL‐ESM2M, (c) HadGEM2‐ES, (d) IPSL‐CM5A‐LR, and (e) CanESM2 daily surface conditions. The orange
dashed line in (b)–(e) shows the trend value for the corresponding Coupled Model Intercomparison Project Phase 5
(CMIP5) model (e.g., in b, the dashed orange line is the fCO2−ocean trend calculated from the GFDL‐ESM2Mmodel, as in
Table 1). All simulated trends are here model‐drift corrected (see Text S4; Figures S13 and S14). The blue and red lines
correspond to the observation‐based fCO2−ocean trend and the CMIP5 model‐mean, respectively. The gray and orange
shadows correspond to the 3σ returned by the CMIP5‐based multiple linear regression analysis and by the intermodel
spread.

10.1029/2019GB006186Global Biogeochemical Cycles

LEBEHOT ET AL. 14

http://www.mpimet.mpg.de/cdo
http://www.mpimet.mpg.de/cdo


members were run with constant atmospheric CO2mixing ratio for each of the five different atmospheric for-
cing experiments to (1) quantify the model drift in each forcing experiment and (2) confirm that the drift in
the trend is not overly sensitive to interannual variability in the forcing (Text S4; Figure S13).

After quantifying and removing the model drift on the simulated fCO2−ocean trends using the runs from the
constant atmospheric CO2 mixing ratio members (Text S4; Figure S14), we find that the simulated North
Atlantic fCO2−ocean trends show good agreement with the observation‐based trend and among themselves
(potentially less agreement when considering the CanESM2‐forced simulation; Figure 7). By being forced
with an observation‐based product, the ERA‐Interim run provides an improvement in simulating the
North Atlantic fCO2−ocean trend compared to the averaged CMIP5 model (Figure 7a). Nevertheless, a realis-
tic surface forcing field is not a necessary condition for simulating an appropriate North Atlantic fCO2−ocean

trend. Crucially, however, the initialization with observation‐based biogeochemical (DIC and TA) and phy-
sical (T and S) fields is necessary for the trend to match the observations. Indeed, the CMIP5‐forced simula-
tions are performed with nonrealistic atmospheric conditions, and yet they provide realistic North Atlantic
fCO2−ocean trends (Figures 7b‐7e). Over the period 1992–2014, the resulting surface fCO2−ocean trends calcu-
lated from the four CMIP5‐forced simulations (i.e., using the surface fluxes from GFDL‐ESM2M, HadGEM2‐
ES, IPSL‐CM5A‐LR, and CanESM2) are, respectively, 1.52 ± 0.09 μatm/year, 1.54 ± 0.09 μatm/year,
1.43 ± 0.04 μatm/year, and 1.68 ± 0.11 μatm/year, corresponding to a change that is respectively 83%,
86%, 92%, and 62% closer to the observation‐based fCO2−ocean trend than their corresponding CMIP5
model‐truth trends were (Figures 7b–7e). Besides being ocean‐only simulations, the major difference
between our new simulations and the CMIP5 simulations is that ours are initialized from observed ocean
physics and biogeochemistry shortly before the results are produced, whereas the CMIP5 models have been
spun up for periods up to 10,000 years to allow them to approach their unique preindustrial equilibrium
(Séférian et al., 2016), from which the CMIP5 transient simulations are initiated. Over a long spinup period
important carbon cycle fields, such as alkalinity, will drift from the observed state toward the models own
equilibrium state (Figures S15–S18). Our simulations are therefore attempting to quantify the surface ocean
CO2 response to the real‐world carbon cycle state, whereas the CMIP5 models describe a surface ocean CO2

response with their model state.

5. Conclusions

While the latest generation of ESMs are widely used to underpin policy making, and of particular relevance
here, to determine the allowable CO2 emissions to remain below agreed levels of global warming, their eva-
luation typically focuses on how well they represent the climatological state. Since questions asked by policy
makers relate to how the system is changing, which are answered by using ESMs, it is important to assess
how these models simulate change. Evaluation of the models' ability to simulate change requires observa-
tional information about how the real world has changed; a challenge in a field such as ocean biogeochem-
istry, where observational records are short and often sparse. By carefully assessing and refining a method to
interpolate sparse surface fCO2−ocean observations across the North Atlantic over the period 1992–2014 and
quantifying robust annually varying uncertainties associated with the resultant time series and trend, and by
investigating the impact of internal variability on the simulated trends, we have been able to identify that the
CMIP5 model ensemble significantly overestimated the trend in the North Atlantic surface CO2 concentra-
tion over the period 1992–2014. The possible mechanisms impacting the simulated North Atlantic surface
fCO2−ocean were explored with an ocean‐only model, which suggested that the discrepancy between the sur-
face fCO2−ocean trend in the real world and in the CMIP5models arises from inadequacies in their simulation
of the background biogeochemical state. Inadequacies in CMIP5 physics and/or biology lead to substantial
biases in TA that may be the cause for the fCO2−ocean trend overestimation in the models through its impacts
on the buffer capacity (Figure S18). The present analysis therefore challenges our ability to predict the
decadal‐to‐centennial evolution of the North Atlantic sink for CO2 in the future using the current state‐of‐
the‐art ESMs. The model biases identified here and the extension of continuous ocean CO2 measurements
must be addressed if the climate‐science community is to provide the best possible guidance on what anthro-
pogenic CO2 emissions are consistent with agreed atmospheric CO2 targets. Nevertheless, our study further
shows that models provide an essential platform to investigate the uncertainty and error associated with an
observation‐based interpolation technique. We therefore encourage the community to use OSEs to provide
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further critical understanding of the robustness of interpolated products and their corresponding basin‐wide
and time‐varying uncertainties.

Acronyms

BATS Bermuda Atlantic Time‐series Study
CMIP5 Coupled Model Intercomparison Project Phase 5

DIC Dissolved Inorganic Carbon
ECMWF European Centre for Medium‐Range Weather Forecasts

ESGF Earth System Grid Federation
ESM Earth System Model

GLODAP Global Ocean Data Analysis Project
HadOCC Hadley Centre Ocean Carbon Cycle

MLD Mixed Layer Depth
MLR Multiple Linear Regression

NEMO Nucleus for European Modelling of the Ocean
RCP Representative Concentration Pathways

RMSE Root Mean Square Error
SOCAT Surface Ocean CO2 Atlas

SST Sea Surface Temperature
TA Total Alkalinity
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