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Abstract 

 

The rate of biodiversity loss has been increasing since the beginning of the 

Anthropocene, driven by climate change, human population expansion and 

environmental degradation. Consequently, ecosystems have become simplified 

through the loss of important processes and species. Ecological restoration aims to 

reverse such changes through reinstating habitats, native species and their associated 

relationships, as well as removing invasive, non-native species. One strategy to 

restore ecological function is through the re-establishment of top-down processes 

driven by predators. The cascading effects of these predators, through direct predation 

and the fear they induce in prey can restore predator-prey dynamics in a disrupted 

food web. 

 

In this thesis, I investigate the restoration of a native and recovering predator, the pine 

marten Martes martes, with particular focus on its ecology and behaviour after a 

translocation event from Scotland to Wales. Subsequently, I assess its impact on the 

behaviour of one of its prey species, the invasive, non-native grey squirrel Sciurus 

carolinensis to better understand the relationship between these two species. 

 

I first introduce predator restoration using translocation in a project that aims to 

reintroduce and restore the native pine marten. I demonstrate that the phases of post-

translocation movement comprise a period of ‘exploration’ followed by ‘settlement’ in 

all individuals, however the extent and duration of these movements differ between 

release groups. I show that conspecific presence is important in site fidelity and the 

resulting habitat in which martens establish themselves. I then investigate the diet of 

translocated martens at a population and individual level, before and after 

translocation. I reveal that pine martens consume a more diverse diet post-

translocation, which incorporates grey squirrels, a prey item not found in their source 

sites in Scotland. Furthermore I document a degree of dietary specialisation within 

individuals, which is maintained relative to others after translocation. This suggests 

pine martens are facultative specialists with dietary preferences that they are able to 

supplement with readily available prey groups, enhancing their probability of survival 

after translocation.  
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Next, I address the impact of translocated pine martens on grey squirrel space use 

and survival. Grey squirrel range size and daily distance travelled was found to 

increase with increasing marten exposure. However, an impact on grey squirrel 

survival and range location was not found within the timeframe of this study. I then 

investigated the role that fear plays in the relationship between pine martens and grey 

squirrels. Using feeding experiments, I document a reduced volume of food consumed 

by squirrels in woodlands containing pine martens, suggesting that squirrels ‘give-up’ 

foraging earlier under such conditions. This suggests that squirrels display a fear-

mediated response to pine marten risk, which in time may be detrimental to grey 

squirrel fitness. I consider the role of predation and fear in predator-prey dynamics and 

its importance in species management. 

 

Finally I conclude the key findings of this thesis with regards to pine marten and grey 

squirrel management in the UK, as well as their contribution to carnivore restoration 

and species management strategies. This work identifies that social structure and 

dietary flexibility are key considerations for predator restoration projects. Furthermore, 

the cascading effects of predators can play a potential role in the management of 

invasive non-native species, which may be more economically and socially acceptable 

than current strategies. This work highlights the importance of studying ecological 

processes underlying landscape-scale patterns to better inform the management of 

native and non-native species alike. 
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Chapter 1: Introduction 

 

Ecosystem restoration 

Since the beginning of the Anthropocene, rates of global biodiversity loss have been 

increasing (Barnosky et al. 2004; Christopher et al. 2014; Rounsevell et al. 2018). As 

a result, important ecological processes have been lost and ecosystems have become 

simplified or dramatically altered, requiring increased management and monitoring 

(Estes et al. 2011; Svenning et al. 2016). In recent decades, a solution to reduce the 

need for ongoing human intervention has been to reinstate natural processes and re-

establish self-sustaining ecosystems. This is broadly known as ecological restoration 

(Jackson & Hobbs 2009).  

 

Ecological restoration is defined as ‘the process of assisting the recovery of an 

ecosystem that has been degraded, damaged, or destroyed’ (SER 2004). The primary 

aim of restoration is to return environments to a ‘pre-disturbance’ state, often through 

reinstating biotic conditions, which particular target species require to thrive (Miller & 

Hobbs 2007; Sandom et al. 2013). However, with an ever-shifting baseline and a 

history of environmental manipulation by humans, the ‘natural’ state of an ecosystem 

can vary depending on what point in history is perceived to be pre-disturbance 

(Jackson & Hobbs 2009). The time period to which ecosystems should be restored, 

and what is truly ‘natural’ remains a contentious issue (Jackson & Hobbs 2009; 

Jørgensen 2015). However, there is agreement that restoration should consider entire 

ecosystems and the processes that help to sustain them (Atkinson 2001). Ecological 

restoration therefore exists as a spectrum (Jørgensen 2015), from passive restoration, 

where there is minimal human interference (Höchtl et al. 2005; Jørgensen 2015; 

Navarro & Pereira 2015), to the managed introduction of non-native taxa to fill the 

ecological niches of extinct species (ecological replacement; Hansen 2008). Since the 

late 1980s, ecological restoration has increasingly been referred to as ‘rewilding’ 

(Soulé & Noss 1998). A term, which, in its most literal sense, means ‘to make wild 

again’ (Jørgensen 2015). However, this word has been interpreted in a multitude of 

ways over time, varying in scale, scope and predicted timelines (Jørgensen 2015; Prior 

& Ward 2016).  
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Rewilding 

The model for rewilding was initially centred on the three main concepts; cores, 

corridors and carnivores (Soulé & Noss 1998) and primarily focussed on ‘restoring the 

big wilderness based on the regulatory roles of predators’ (Soulé & Noss 1998). 

Rewilding in its current state is primarily focussed on keystone species (Sandom et al. 

2013) and their function as ecosystem engineers (Paine 1969; Hastings et al. 2007), 

with less emphasis on cores and corridors (Jørgensen 2015). Although occurring in 

disproportionately small numbers in relation to other species within a food web, 

keystone species, particularly large predators, can have significant impacts on entire 

ecosystems and their function (Donlan et al. 2006; Sandom et al. 2013). These 

impacts are often manifest as cascading effects (Terborgh et al. 1999; Estes et al. 

2011), from the alteration of species interactions and population numbers, to changes 

in vegetation structure and soil nutrient levels (Estes et al. 2011). In degraded 

systems, restoring processes that are driven from the top-down can enable the re-

establishment of complete food webs and predator-prey cycles that aid population 

control and enhance biodiversity (Estes et al. 2011; Svenning et al. 2016). If a natural 

state of predation and population regulation is attained, the need for human 

involvement and the resulting economic costs could be much reduced. However, for 

rewilding to be successful, a thorough understanding of ecological processes and 

species interactions is required (Sandom et al. 2013). These processes can manifest 

differently across spatial and temporal scales, resulting in a complex array of 

relationships (Sandom et al. 2013). 

 

Predator restoration & cascading effects 

The restoration of predator populations is often the primary approach for rewilding 

projects (Seddon 2010). This can be achieved through augmentation of depleted 

populations (re-stocking or reinforcement; IUCN/SSC 2013) or through the release of 

wild-caught or captive-bred animals into regions of their historic range (reintroduction; 

IUCN/SSC 2013). Both approaches aim to create viable, self-sustaining populations 

(Seddon 2010). The top-down effects of restoring these predator populations often 

result in regulating the density and behaviour of species at lower trophic levels, 

whether these are herbivores and/or mesopredators (Svenning et al. 2016), through 

mechanisms including predation, fear and competition. The most well-known, 
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although contentious, example of rewilding and the associated trophic cascades is 

that of the restoration of grey wolves Canis lupus to Yellowstone National Park 

(Fig.1.1). The absence of these native carnivores for 70 years had resulted in largely 

unregulated numbers and movement of elk Cervus elaphus populations, whose 

browsing had negatively affected aspen and cottonwood Populus spp. recruitment. 

After their reintroduction in 1995, the landscape scale impacts of wolves on elk were 

first documented 5 years later, indicating the potential role they may have in 

ecosystem restoration (Fig. 1.1; Ripple et al. 2001). Elk distribution and behaviour was 

altered such that they remained in open areas, away from aspen saplings, to be able 

better to detect approaching predators (Ripple et al. 2001). Such restoration effects 

became evident in following years as saplings were allowed to escape browser 

suppression and develop into trees (Ripple & Beschta 2003, 2004). The processes 

underlying such changes were then investigated, revealing that a combination of lethal 

and non-lethal effects were at play, establishing the existence of a ‘landscape of fear’ 

(Halofsky & Ripple 2008; Laundré et al. 2010). The cascading effects of wolves on the 

overall ecosystem are still being studied, revealing indirect effects of wolves on other 

species such as beavers Castor canadensis through an increase in willow Salix spp. 

communities (Ripple & Beschta 2012), grizzly bears Ursus arctos horribilis through an 

increase in serviceberry Amelanchier alnifolia shrubs (Ripple et al. 2014) and red foxes 

Vulpes vulpes. through interactions with coyotes Canis lantrans (Newsome & Ripple 

2015). 

 

Predator restoration and the resultant top-down effects have also been demonstrated 

in other ecosystems. Re-introduction of Eurasian lynx Lynx lynx has shown such an 

effect in Fennoscandia, resulting in large mesopredator suppression and enabling the 

recovery of smaller mesopredators and black grouse Lyrurus tetrix (Ludwig 2007; 

Ritchie et al. 2012). In arid Australia, the loss of the dingo Canis lupus dingo, a top 

predator, has been associated with the increase of invasive mesopredators and the 

resulting decline of native mammals (Letnic et al. 2012). Restoration of dingo 

populations has thus been suggested as a strategy to control invasive red fox and feral 

cat Felis catus populations, which in turn could aid native mammal and vegetation 

recovery (Letnic et al. 2012). Such predator reintroduction and recovery is not limited 

to terrestrial mammals and has been undertaken with numerous birds of prey. Through 

conservation efforts, white-tailed eagle Haliaeetus albicilla populations have been able 
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to recover in the archipelagos of Finland. Fear of predation by eagles has had knock-

on effects on invasive American mink Neovison vison found there, leading to reduced 

movement and associated reduction in predation pressure on native species at lower 

trophic levels (Salo et al. 2008; Ritchie et al. 2012). 

  

Figure 1.1. Trophic interactions with and without predators in northern 

ecosystems of Yellowstone National Park where a) shows the system when wolves 

had been extirpated (1926-1995) and b) shows the system after wolf recovery (1995 

onwards). Solid arrows indicate documented responses, dashed arrows indicate 

predicted or inferred responses. Figure from Ripple & Beschta (2004).  

 

Although apex predators are often the primary focus of reintroductions, particularly 

with regards to reinstating trophic cascades and controlling smaller predators and 

herbivores, the recovery of smaller mesopredators (predators weighing <15kg) has 

also been advantageous to ecological processes. The restoration of sea otter Enhydra 

lutris populations in North America has enabled the recovery of kelp beds and their 

associated fauna through the depredation of grazing sea urchins Mesocentrotus 

franciscanus (Estes & Palmisano 1974). Mesopredators are often found in a higher 

abundance than apex predators, but due to their small size and diverse ecology their 

role in ecological processes is frequently overlooked (Roemer et al. 2009). In the 

absence of apex predators, mesopredators ascend to an apex position, however their 
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ecology and impact can be substantially different to that of their predecessors (Roemer 

et al. 2009). These species often demonstrate greater dietary flexibility than apex 

predators, resulting in more complex ecological interactions and cascading effects 

than experienced in communities structured by apex-predators.  

 

The landscape of fear 

It is clear that the impacts of predators extend beyond the straightforward effects of 

predation, and the restoration of top predators or keystone species can alter the roles 

and importance of other predators and prey animals in a system (Ritchie et al. 2012). 

Alongside the lethal effects of predators on their prey, non-lethal impacts, such as the 

creation of a ‘landscape of fear’ can have a multitude of consequences for the 

surrounding ecosystem. The landscape of fear is a conceptual landscape perceived 

by prey, comprising areas of high and low predation risk. The way in which prey 

animals perceive and respond to this risk within the landscape can alter the physical 

environment in a multitude of ways. With this in mind, the restoration of predation risk 

might be used as a tool in conservation to manage populations of species that are 

over-abundant or deemed to be pests (Estes & Palmisano 1974; Salo et al. 2010; 

Letnic et al. 2012; Suraci et al. 2016). This ‘biological control’ is, in essence, part of a 

trophic cascade and if these top-down effects of fear and predation are reinstated, 

they might help re-shape and restore ecosystems. Therefore, not only the species, but 

the density, social structure and context of predator reintroductions must be thoroughly 

considered prior to their implementation (Ritchie et al. 2012). These factors may 

influence the strength of the reintroduced predators’ impact and the success of their 

reintroduction. 

 

Reintroduction failures 

For every successful reintroduction, there are numerous failed attempts, which often 

go unreported in scientific literature (Fischer & Lindenmayer 2000; Armstrong & 

Seddon 2008). Failure has been attributed to inadequate translocation methods (Oro 

et al. 2011), insufficient numbers of individuals being translocated (Fischer & 

Lindenmayer 2000; Armstrong & Seddon 2008), failure to remove the cause of the 

initial species decline (Bright 2000), predation (Moseby et al. 2011), unsuitable habitat, 

and long-distance dispersal from release sites (Armstrong & Seddon 2008). The role 
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of social context, with regards to humans, in reintroduction projects is also being 

acknowledged as more central to restoration success than ever before (Armstrong & 

Seddon 2008; Sandom et al. 2013). Without stakeholder engagement, social feasibility 

assessment and effective communication, the introduction of predators can lead to 

social conflicts (O’Rourke 2014). This can also lead to reintroduction failure through 

hunting or persecution of reintroduced species (Davies & Du Toit 2004) and overall 

lack of support for the reintroduction project (Graham et al. 2005). There is therefore 

a degree of risk accompanying the introduction of a species. However, the return of a 

native predator that had declined as a result of human influence is typically considered 

to be a relatively low threat due to evidence that it had previously co-existed with 

humans in the region (Wolf et al. 1996). The historic presence of the species would 

also suggest the habitat and prey base is appropriate for species persistence and 

establishment. Therefore, with an aim to reinstating self-sustaining ecosystems, native 

species restoration is an attractive and potentially viable option.  

 

UK species restoration & recovery  

 

In recent years, species restoration in the UK has been undertaken through official 

means, however there is a history of restoration actions, particularly with regard to 

carnivores and other medium-sized mammals, that has occurred on an ad-hoc basis, 

sometimes undertaken by enthusiasts. This has resulted in the sporadic appearance 

of small numbers of pine martens Martes martes, polecats Mustela putorius (Birks 

2008; Sainsbury et al. 2019) and beavers Castor fiber (Crowley et al. 2017) outside of 

their current ranges. Although some of these releases have resulted in the local 

establishment of animals, such as polecats in Cumbria and Argyll (Birks 2015) and, 

more recently, beavers in Devon (Crowley et al. 2017) and Tayside (Campbell et al. 

2012), the long-term success of these reintroductions has generally been poor. 

Notwithstanding these interventions, the recovery of many UK carnivore populations 

has been occurring naturally. Native carnivores experienced dramatic declines 

throughout the 18th and 19th century as a result of predator control, hunting and habitat 

loss (Langley & Yalden 1977; Sainsbury et al. 2019). Since the late 1900s, following 

increased legal protection, changes in management practices, reduction in 

environmental pollutants, species conservation and public support, many species 
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have shown signs of recovery (Sainsbury et al. 2019). Since the 1970s, native 

mesocarnivores, particularly the polecat, badger Meles meles, otter Lutra lutra and 

pine marten, have shown rapid signs of population recovery (Sainsbury et al. 2019).  

 

The pine marten 

Of these mustelid carnivores, the pine marten has the most limited distribution and, 

although expanding from its strongholds in the Scottish Highlands, in 2015 this species 

was still restricted in its distribution in England and Wales with very few, low density 

populations only existing in Northumberland (Fig. 1.2.; Croose et al. 2013). The latter 

population is likely a result of a combination of spread from reintroductions in Galloway 

in the 1980s (Shaw & Livingstone 1992), releases of rehabilitated animals in the 

Borders and potential relict populations in Northumberland and the Borders. However, 

despite recurring surveys (reviewed by Sainsbury et al. 2019), there has been little 

evidence of substantial marten numbers in England or Wales. The further expansion 

of the species’ native range in Scotland is thought to be constrained by the relatively 

slow life history of martens, combined with urban development of Scotland’s central 

belt, reducing connectivity of the population with southern parts of the UK (Croose et 

al. 2013). The arboreal nature of marten species, and their preference for forested 

areas over open ground (Balharry 1993; Balestrieri et al. 2010; Manzo et al. 2012) 

likely makes this type of fragmented and urban environment a constraint on dispersal 

and expansion. As a result, additional locations for marten reintroduction have been 

sought. After extensive UK-wide feasibility studies (Bright & Harris 1994; Macpherson 

2014), woodland blocks in mid-Wales were selected as optimum sites for a pine 

marten reintroduction (Macpherson 2014). This region not only had high availability of 

forested habitats but a low-density road network, reducing this risk of mortality for 

introduced martens. Scat surveys carried out between 2011 and 2015 found no 

evidence of pine marten occupation in this part of the species’ historic range, 

suggesting any population of remaining individuals in the region was, at best, 

functionally extinct. The Vincent Wildlife Trust’s ‘Pine Marten Recovery Project’ 

therefore aimed to create a viable population of martens in Wales, which, with time 

would facilitate the species’ spread throughout Wales and into western England.
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Figure 1.2. European pine marten Martes martes distribution in Great Britain from 1960 to 2018. Black circles indicate presence. 

All presence points were scaled to hectads. Only verified records are included. No surveys were carried out in Scotland in the 2000s, 

and the 2010s Scotland surveys covered only central and southern Scotland. Figure and legend adapted from Sainsbury et al. (2019).  
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Pine marten & grey squirrel 

 

The return of the pine marten has received wide attention from conservationists and 

practitioners alike, following findings from a study by Sheehy and colleagues in Ireland 

(2014). Their research suggested that the resurgence of the pine marten in the Irish 

Midlands had resulted in a population crash and range shift of the invasive, non-native 

grey squirrel Sciurus carolinensis (Sheehy & Lawton 2014). Their findings suggested 

that martens could play a role in the biological control of this pest species and in turn 

enable vegetation recovery (in the form of reduced tree damage), much like the 

positive, cascading impacts of predator recovery elsewhere (Estes & Palmisano 1974; 

Ripple et al. 2001; Letnic et al. 2012). Distributional evidence from this study in Ireland 

was the first attempt to substantiate the potentially negative impacts that pine martens 

could have on grey squirrel populations (Sheehy & Lawton 2014). Non-invasive survey 

techniques, including collation of sightings data and hair-tube surveys, were employed 

to determine the location, density and distribution of pine martens, grey squirrels and 

the native red squirrel Sciurus vulgaris. In the last century, the red squirrel has declined 

considerably in the UK, predominantly due to competitive exclusion by, and disease 

transmission from, grey squirrels (Tompkins et al. 2002; Gurnell et al. 2004; Bertolino 

et al. 2014). As a result, the suppression of grey squirrel populations was considered 

to have positive ramifications for red squirrel recovery (Rushton et al. 2006). Results 

from the study in Ireland showed that where pine martens were found in high densities, 

grey squirrels numbers had declined, whereas red squirrels populations had increased 

and were co-existing with the low number of remaining greys (Sheehy & Lawton 2014). 

These findings have led to the proposition that pine marten presence is somehow 

inhibiting the persistence of, and causing range contraction in, grey squirrel 

populations in the region. Furthermore, it was concluded that red squirrels may have 

experienced competitive release and their populations may have benefited in the 

presence of pine martens.  

 

The results of this study were further substantiated in 2018 when a similar survey was 

undertaken in Scotland (Sheehy et al. 2018). The study assessed the density and 

distribution of pine martens, grey squirrels and red squirrels across the country, 

ranging from where the marten population had been long-established and was at a 
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relatively high density in the Highlands, to the Scottish Borders, an area that martens 

had only recently populated. This study found similar distributional patterns to Ireland; 

where marten connectivity (a function of marten density and the extent to which they 

used their landscape) was highest, the occupancy of grey squirrels was lowest. Red 

squirrels showed the opposite trend and their occupancy was positively correlated with 

marten connectivity (Sheehy et al., 2018; Fig 1.3.). Where recovering marten 

populations were more established, such as in the Highlands, the strength of the 

relationship between the three species was strongest, suggesting a predator-mediated 

change in competition between the two squirrel species (Sheehy et al. 2018). 

 

Figure 1.3. The relationship between pine marten connectivity and squirrel 

occupancy in three regions of Scotland. Plots depict model-averaged predictions 

of relationships between squirrel occupancy (the probability of squirrels being found in 

the habitat and being detected), and pine marten density weighted connectivity (a 

measure representing marten density and their space use). Invasive grey squirrels are 

negatively affected by pine marten connectivity (left panel), whereas native red 

squirrels are positively affected (right panel). Figure from Sheehy et al. 2018.  
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The grey squirrel 

The grey squirrel is native to North America and is considered an invasive non-native 

species in Europe. It has not only driven the decline of red squirrels through 

competition and transmission of the squirrel-pox virus (Rushton et al. 2006), but 

continues to have significant impacts on native flora and plantations. Bark stripping, 

the removal of outer bark and consumption of unlignified tissue beneath (Mayle et al. 

2007), is intermittently undertaken by grey squirrels and can permanently damage 

trees, making them more vulnerable to insects and fungi (Kenward & Parish 1986; 

Lurz et al. 2001; Mayle et al. 2009), as well as altering main stem growth (i.e. apical 

dominance). The reasons for this behaviour are unknown, although aggression, 

calcium deficiency (Nichols et al. 2016) and squirrel density have been proposed as 

influential (Kenward & Parish 1986; Mayle et al. 2007). Bark stripping degrades the 

quality of timber and it is estimated that, when combined with the cost of control 

programmes, the grey squirrel incurs costs in the UK of approximately £6 million per 

annum (Bertolino & Genovesi 2002; Forestry Commission 2002; Williams et al. 2010). 

The species has been resident in the UK for over a century, with the first individuals 

documented in Great Britain in the 1830s (Middleton 1931), reaching Ireland in 1911 

(Lawton & Rochford 2007), and introductions continuing into the 1920s. The intentional 

introduction and dispersal of the species as gifts, began in Bedfordshire (Signorile et 

al. 2016) however their rapid success and population establishment could not have 

been predicted. By the mid-20th century the grey squirrel was found across most of the 

UK and its population continues to expand. The species’ ability to reproduce rapidly 

and colonise new areas has been the key to its success. This species has yet to 

colonise mainland Europe, however a population has been established in north-west 

Italy since 1948 (Bertolino & Genovesi 2002). Since the 1970s, the range of these 

individuals in Italy has been increasing and, aided by the presence of contiguous 

woodland patches, the spread of grey squirrels in Europe continues (Bertolino & 

Genovesi 2002). In order to conserve the native red squirrel and limit damage caused 

by bark-stripping, programmes for grey squirrel control have included shooting, 

poisoning and trapping (Lawton & Rochford 2007). Success has been demonstrated 

on the Isle of Anglesey, where, after an extensive culling operation spanning many 

years, the grey squirrel has now been eliminated allowing the recolonization of a red 

squirrel population (Schuchert et al. 2014). However these approaches are highly 

labour intensive, fragmented and, unless performed in a co-ordinated manner during 
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the correct seasons for an extended period of ime, are ineffective (Forestry 

Commission 2002; Tattoni et al. 2006). Grey squirrels are able to re-colonise managed 

areas soon after culling operations and often the removal of a proportion of individuals 

from a densely populated woodland reduces pressure on remaining squirrels, allowing 

them to thrive and facilitating immigration of others (Lawton & Rochford 2007). It would 

appear, as is often the case with well-established invasive species, that complete 

eradication of the grey squirrel in the UK is currently unfeasible (Bertolino & Genovesi 

2002).  

 

Context for this study 

The proposed impact of pine martens on grey squirrels, as demonstrated by Sheehy 

et al. (2014, 2018), provides a promising solution for the reduction or control of this 

invasive pest. If a similar situation is replicated in other regions where martens and 

both squirrel species co-occur, the potential ramifications for the control of grey 

squirrels and recovery of red squirrels are profound. However, the conclusions of 

Sheehy et al. (2014, 2018) are somewhat tentative and their findings are based on 

non-invasive monitoring techniques, lacking study system manipulation. The predator-

mediated change in competition and the resulting differences in squirrel occupancy 

are therefore correlative, rather than causative. To truly understand this relationship, 

interactions between pine martens and grey squirrels should ideally be tested more 

experimentally. The processes underlying the landscape-scale patterns observed in 

Scotland and Ireland may be driven by lethal or non-lethal effects, or a combination of 

both. A more thorough understanding of grey squirrel-pine marten interactions will help 

to inform current grey squirrel management strategies. With further pine marten 

reintroductions proposed elsewhere in the UK (for example, in 2019 in the Forest of 

Dean by Gloucestershire Wildlife Trust), understanding the impacts of the recovery of 

this native carnivore are vital for managing the expectations of stakeholders and 

funders. This thesis therefore aims to provide further insight into the viability of marten 

reintroductions and their impact on invasive squirrel populations. The Vincent Wildlife 

Trust ‘Pine Marten Recovery Project’ in mid-Wales, which commenced in 2015, 

provided a unique opportunity to study the behaviour of newly translocated pine 

martens in an unoccupied part of their historic range. Furthermore, in the presence of 
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an established grey squirrel population, it is possible to assess the immediate impacts 

of pine martens, and their interactions with grey squirrels. 

 

Thesis aims and outline 

 

In this thesis, I investigate the spatial and behavioural ecology of pine martens and 

grey squirrels using a combination of biotelemetry, experimental and observational 

techniques. The initial focus of the thesis is to investigate the behaviour of pine 

martens in Wales within the first two years of their release, and understand how this 

might have impacted resident invasive grey squirrel behaviour and populations. In so 

doing, I aim to contribute to the developing field of predator restoration, as well as 

addressing the ongoing need for grey squirrel management strategies. Specifically, I 

aim to i) investigate the post-release movement of translocated pine martens in mid-

Wales, to understand how these animals move and settle, providing new information 

on marten colonisation in novel environments ii) document the dietary habits of pine 

martens before and after translocation to observe marten response to a sudden 

change in habitat and differing prey base. These are both hoped to enable review of 

feasibility work and inform future translocation studies, iii) explore the response of grey 

squirrels to pine marten introduction with regards to space use, movement and 

survival, and iv) understand the behavioural responses of grey squirrels to the risk of 

predation by pine martens to try to better understand the relationship between the two 

species on a fine scale. This thesis is comprised of four chapters addressing these 

objectives, concluding with a general discussion. In each chapter, I have addressed 

gaps in the current knowledge with regards to mesocarnivore restoration and the 

impacts pine martens might have on grey squirrels. 

 

In Chapter 2 I have described the post-release movement of two cohorts of pine 

martens translocated from Scotland to mid-Wales in 2015 and 2016. In this chapter, I 

reveal distinct phases of movement comprising dispersal and settlement and the effect 

of resident conspecifics on marten movement strategies. 

 

In Chapter 3, I investigated the diet of pine martens before and after translocation, at 

their source sites in Scotland and release sites in Wales, through hard-part analysis 
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of scats, and stable isotope analysis of tissues from martens and their putative prey. 

This chapter explores dietary variability within and between martens at population and 

individual levels as well as the role of grey squirrels in marten diets.  

 

In Chapter 4, I have documented space-use by grey squirrels in response to pine 

marten presence using GPS and radio tracking data. This chapter investigates the 

impact of variation in exposure to martens on the survival, range sizes, daily 

movements and range locations of grey squirrels. 

 

In Chapter 5, I assayed squirrel foraging environments to understand if pine martens 

create a ‘landscape of fear’ for grey squirrels. This chapter combines a ‘giving-up 

density’ framework with behavioural observations to investigate grey squirrel 

responses to pine marten predation risk. 

 

Finally, in Chapter 6 I have provided a synthesis and general discussion of my 

findings. I have addressed the contribution of my work to understanding of pine marten 

and squirrel interactions, as well as the broader implications for native species 

recovery, invasive species management and trophic cascades. 
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Chapter 2: Post-release movement and habitat selection of 

translocated pine martens Martes martes 

 

This chapter has been submitted for publication as: 

C.M. McNicol, D. Bavin, S. Bearhop, J. Bridges, E. Croose, R. Gill, C.E.D. Goodwin, 

J. Lewis, J. Macpherson, D. Padfield, H. Schofield, M.J. Silk, A.J. Tomlinson, & R.A. 

McDonald. Post-release movement and habitat selection of translocated pine martens 

Martes martes. Biological Conservation. 

 

Abstract 

Translocation is now common practice in population restoration and vertebrate 

conservation. Monitoring of post-release movement patterns made by animals is 

important in evaluating translocation protocols and outcomes, though the processes 

of establishment are often poorly understood. We translocated 39 wild pine martens 

Martes martes (19 females and 20 males) from Scotland to mid-Wales. We released 

them into forested areas with no conspecifics in 2015, followed by a second release 

in 2016, alongside the animals released the previous year. We used VHF radio 

tracking to describe their post-release movement and habitat selection. 15% of 

individuals (n=6) were not re-encountered during the tracking period and four of these 

were thought to have undertaken long-distance dispersal. For the remaining 

individuals we characterised two main phases of movement, ‘exploration’ followed by 

‘settlement’. The rate and duration of exploration differed between the two releases. 

In the first year, martens remained in the exploration phase for a mean of 14.5 days 

(SE = 3.9 days, n = 23) and settled at a mean distance of 8.7 km (SE = 1.8 km, n = 

23) from the release sites, whereas animals released in the second year, when 

conspecifics were present, travelled away from release pens at a faster rate, settling 

after a lower mean of 6.6 days (SE = 1.8 days, n = 23) but at a greater mean distance 

of 14.0 km (SE = 1.7 km, n = 23) from release sites. Animals released in year one did 

not exhibit strong habitat preferences overall but within forests they favoured recently-

felled areas. In contrast, animals released in year two showed strong selection for 

forested habitat but did not discriminate between forest types. Our results show that 

the presence of conspecifics appeared influential for settlement and site fidelity of 

translocated pine martens but was also associated with more distant but more rapid 
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dispersal of the second release cohort. Intense tracking of released animals in the first 

few weeks post-release ensured contact was maintained and reintroduction success 

criteria can be assessed. The release of cohorts of animals in close spatial proximity 

appeared to maintain site fidelity and promoted the rapid establishment of ranges in 

the new environment. 

 

 

 

Introduction 

 

Translocation, the deliberate movement of organisms from one site for release in 

another (IUCN/SSC 2013), is a long-established and frequently used tool in species 

conservation. In recent years, conservation translocations have increasingly been 

associated with restoration ecology (Seddon 2010) as well as being effectively 

implemented in threatened species recovery projects (Hayward et al. 2007). The 

return of species to their historic ranges can benefit not only the species in question, 

but improve functionality and biodiversity within the recipient ecosystem (Seddon 

2010). Successful reintroductions require a sound knowledge of the species’ ecology 

within its native range as well as some insight into its likely post-release behaviour and 

habitat requirements. Understanding post-release movement, habitat selection and 

the drivers of these is therefore necessary for appraising and improving current and 

future translocation projects. 

 

Two key components of the success of translocation and reintroduction projects are 

release site fidelity and the survival rate of the translocated individuals (Armstrong & 

Seddon 2008). The selection of appropriate habitat for release sites and, thereby, 

access to adequate resources for individual animals, is paramount for their retention 

on, or near, the release site (Armstrong & Seddon 2008). Alongside site 

characteristics, sex ratio, release schedule and numerous other factors can influence 

the likelihood of a new population establishing successfully (Letty et al. 2007; 

Armstrong & Seddon 2008). Lack of site fidelity is clearly unfavourable and often 

implies poor selection of release sites, inappropriate release protocols and/or 

unforeseen conspecific interactions (Letty et al. 2007). Thus, understanding the 
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patterns of movement of translocated individuals after their release, and the 

characteristics of their selected habitats during the initial release period, are vital in 

evaluating and improving conservation translocations (Armstrong et al. 2013). 

 

The first individuals to be released into a new area may be more likely to leave the 

vicinity of release sites, due to the inherent absence of resident conspecifics and/or 

lack of mating opportunities (Mihoub et al. 2011). Exploration by the introduced 

animals of the novel environment in search of ideal habitat is a central but 

unpredictable part of a reintroduction project (Armstrong et al. 2013). Such exploratory 

movements by translocated individuals can be detrimental to survival, since extended 

periods of exploration and habitat searching are often erratic and extend over long 

distances, making them energetically costly (Robertson & Harris 1995; Yott et al. 2011; 

Spinola et al. 2018) and exposing animals to diverse hazards. Three major post-

release movement patterns have been identified: i) immediate settlement, ii) dispersal 

followed by settlement and iii) long-distance dispersal or failure to settle (Davis 1983; 

Slough 1989; Broquet et al. 2006; Woodford et al. 2013; Tolhurst et al. 2015). Among 

translocated carnivores, these patterns have been described in American marten 

Martes americana (Davis 1983; Slough 1989; Woodford et al. 2013), otters Lontra 

canadensis (Sjoasen 1997; Spinola et al. 2018), red foxes Vulpes vulpes (Tolhurst et 

al. 2015) and swift foxes Vulpes velox (Moehrenschlager & Macdonald 2003). 

However, explanations for the ecological mechanisms driving among-animal variation 

in the observed patterns remain ambiguous, with conspecific attraction, habitat 

suitability and predation risk all thought to play a role (Davis 1983; Sjoasen 1997; Letty 

et al. 2007). Reduction of problems arising from exploration, long-distance dispersal 

or attempted ‘homing’ has most commonly been achieved through adopting a soft-

release protocol, allowing acclimatisation of individuals to the release site in an 

enclosure provisioned with food for a short period of time prior to release 

(Moehrenschlager & Macdonald 2003; Tolhurst et al. 2015).  

 

The presence of conspecifics may be beneficial at low densities, and founding 

individuals might discriminate less between habitat types and instead favour proximity 

to other founder members and the establishment of a ‘neighbourhood’ (Ydenberg et 

al. 1988; Stamps 2001; Shier & Swaisgood 2011). Alternatively, founding individuals 

might intuitively be expected to select the highest quality locations in an uninhabited 
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landscape, in line with an ideal free distribution (Fretwell & Lucas 1962; Stamps 2001). 

With a continual influx of translocated animals, however, competition would be 

expected gradually to increase (Stamps 2001; Stamps & Krishnan 2005), perhaps 

leading later arrivals to disperse away from otherwise ideal release sites (Selonen & 

Hanski 2007; Stamps & Swaisgood 2007). Therefore, the social structure of the 

species as well as the habitat, site and landscape characteristics must be key 

considerations in translocation project design and implementation. 

 

Reintroductions have been proposed and implemented as measures to combat the 

decline of carnivores worldwide. In Great Britain, several native mammalian carnivores 

have experienced historic declines as a result of predator control, environmental 

contaminants, deforestation and demand for fur (Sainsbury et al. 2019). Current efforts 

are being made to reverse these declines. Since the mid-20th century, considerable 

recoveries in the ranges and populations of otter Lutra lutra, polecat Mustela putorius, 

badger Meles meles and pine martens Martes martes have arisen largely through 

combinations of increased legal protection, changed control practices, reduction in 

pollution and habitat enhancement (Sainsbury et al. 2019). Translocations have also 

played a role in these species’ recoveries with releases of captive bred, wild-caught 

or escaped individuals (Sainsbury et al. 2019). The recovery of British otter 

populations was accelerated by captive breeding and release of otters (Jefferies et al. 

1986). Polecats have also benefited from reintroduction, primarily through illicit 

releases such as those in Cumbria & Argyll (Birks & Kitchener 1999). The pine marten 

is currently showing natural range extension in Scotland (Sainsbury et al. 2019), 

though its expansion has also been aided by translocation to southern Scotland (Shaw 

& Livingstone 1992) and there have likely been sporadic illicit releases in England 

(Birks & Messenger 2010; Jordan et al. 2012).  

 

Recovery of the pine marten throughout the UK has been an area of focus for statutory 

(Bright & Smithson 1997) and non-governmental organisations (Macpherson 2014), 

with an aim to expand the range extent of what was a sparse and fragmented 

population through translocations and population reinforcements. Previous 

translocation studies on Martes species have indicated strong site affinity by released 

individuals (Davis 1983; Slough 1989; Shaw & Livingstone 1992; Woodford et al. 

2013). This may partly have been related to the use of soft-releases (Davis 1983; 
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Woodford et al. 2013). Martens are, however, highly mobile animals and are capable 

of dispersing large distances (Broquet et al. 2006). Long-distance post-release 

movements have been attributed to territorial saturation or the absence of suitable 

habitat near to release sites (Woodford et al. 2013). In some instances, male martens 

have been found to disperse further than females (Slough 1989). This is likely related 

to sexual dimorphism with regards to body size, energetic demands of reproduction 

and ranging extent (Zalewski 2007; Caryl et al. 2012), as well as pronounced intra-

sexual territoriality, allowing for the overlap of male and female ranges, but exclusivity 

of ranges within each sex (Powell 1979; Erlinge & Sandell 1986; Balharry 1993). 

These studies also found that although many translocated individuals settled in mature 

forest, their movement was not impeded by landscape features or the presence of 

different habitat types (Slough 1989).  

 

Martens are predominantly viewed as forest-specialists (Slough 1989; Storch 1990; 

Balharry 1993; Balestrieri et al. 2010; Manzo et al. 2012; Weber et al. 2018) and often 

den in tree cavities found in ancient woodland. Nevertheless martens can traverse and 

utilise areas of scrub and low canopy cover (Pereboom et al. 2008; Balestrieri et al. 

2010; Manzo et al. 2012; Lombardini et al. 2015; Moll et al. 2016). In many regions 

with fragmented forest, pine marten diet is dominated by grassland voles Microtus 

spp., found in edge and open habitats containing tussock grass (Hansson 1978; Caryl 

et al. 2012). This contrasts with studies in highly forested regions which have identified 

the greater importance of forest-dwelling voles Myodes spp.. Although mature forest 

provides the structural complexity required for marten denning and foraging (Caryl 

2008), varied habitat use is linked not only to the level of forest fragmentation but also 

prey availability and conspecific density (Powell 1979; Caryl et al. 2012; Lombardini et 

al. 2015). This suggests that martens are capable of exploiting both forest interiors 

and the edge habitats abundant in mosaic habitat structure. However, few of these 

studies have looked at marten movement and habitat selection after a translocation 

event. 

 

Mid-Wales was identified as the optimal location for a species recovery programme 

(Macpherson 2014) to facilitate the spread of martens throughout Wales and into 

England due to its high availability of forested habitats and low-density road network. 

Scat surveys undertaken between 2011 and 2015 found no evidence of pine marten 
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presence in this part of the species’ historic range, suggesting the former resident 

population of pine martens was, at best, functionally extinct in the region. Our study 

examined the movements and habitat use of translocated pine martens immediately 

after their release. We tracked two cohorts of martens taken from the wild in their core 

range in Scotland and released in an unoccupied region of their historic distribution in 

mid-Wales. First we describe the initial post-release movements of martens, 

characterising phases of exploration and settlement in years with and without resident 

conspecifics in a novel environment. Second, we investigate habitat selection by 

individual martens across a large and diverse habitat matrix and within wooded areas, 

again in the absence (year 1) and presence (year 2) of conspecifics. The results of our 

study improve understanding of marten habitat requirements and post-translocation 

movement ecology in unoccupied areas of their historic range. This can be used to 

inform and maximise the success of future reintroduction programmes and to 

understand the movement ecology of a recovering and expanding population.  

 

 

 

Methods 

 

Trapping, translocation and release 

Between September and November in both 2015 and 2016 pine martens were 

translocated from forests in the Scottish Highlands to mid-Wales (Fig. 2.5). Source 

sites in Scotland were surveyed for marten scats before live-capture traps (Tomahawk 

205, Tomahawk Live Trap, Hazelhurst, USA) were installed and pre-baited for 2-3 

weeks. Traps were monitored for marten activity by motion sensitive trail cameras 

(Bushnell NatureView HD, Bushnell Corp, Kansas, USA) before being set for one night 

per week until 2-4 individuals per woodland had been caught. This reduced the chance 

of translocating related individuals and unsustainably depleting resident populations. 

Trapped individuals were anaesthetised and given a full health screening by a wildlife 

veterinarian. Adult martens in good physical condition, at an equal ratio of males to 

females, were selected for translocation. Any juveniles, surplus individuals, those with 

any obvious injuries or deemed too old (on the basis of their dentition) were re-

released at their site of capture. Individuals to be translocated were tagged with a sub-
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cutaneous passive integrated transponder (PIT: Avid Identification Systems Inc., 

California, USA) and fitted with a collar equipped with a VHF transmitter (Biotrack Ltd., 

Wareham, UK).  

 

Martens were translocated overnight from Scotland to four main sites in mid-Wales. 

The sites were dominated by commercial conifer plantations managed on a short 

rotation clear fell regime. The forest was dominated by Sitka spruce Picea sitchensis 

with varying proportions of Norway spruce Picea abies, Douglas fir Pseudotsuga 

menziesii, larch Larix kaempferi, L. eurolepis and lodgepole pine Pinus contorta. 

Deciduous and mixed woodland within and surrounding these sites is characterised 

by small proportions of these conifers alongside sessile oak Quercus petraea, beech 

Fagus sylvatica, rowan Sorbus aucuparia, birch Betula spp. and willow Salix spp. 

 

The translocated martens were placed in individual soft-release pens furnished with 

vegetation and containing a den box and camera trap to enable behavioural 

observation. Animals were held in these pens for up to 5 days and supplied with food 

(day-old chicks, raw eggs, peanut butter and raisins) ad lib. Release was subject to 

confirmation, from serological testing of samples taken at the time of capture in 

Scotland, that individuals had not been exposed to canine distemper virus, following 

which, the pen door was then opened and animals were allowed to leave. Upon 

removal of soft release pens, a den-box was installed nearby and food was provided 

until the martens ceased to return. Trapping and release protocols in year 1 and year 

2 were consistent. 

 

Telemetry locations of pine martens were collected for up to 10 months post-release 

with each marten being relocated at least once per week. Tracking was undertaken at 

dusk and after sunset to ensure locations were representative of marten movement 

during their active hours (Zalewski 1997; Mccann et al. 2017). Animals released in 

2015 (year 1) were not monitored in 2016 (year 2) as VHF collars were removed 6-10 

months after their release. Pine marten locations were triangulated from locations and 

bearings taken in the field (two bearings used to calculate each location) using 

Location of a Signal (LOAS) software (Version 4.0; n=1413, mean=37 locations per 

individual, range=1-110). Single bearings that were taken over one hour apart, or did 

not converge to give a triangulated location, were excluded from the final dataset. To 
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estimate the error of VHF triangulated locations in relation to true collar locations, two 

observers took simultaneous bearings on collars in unknown locations (n=14). These 

points were triangulated and the distance (m) of the triangulated location from the true 

collar location was then measured. The median error of VHF locations was estimated 

as 70m (n=14, IQR=98m). 

 

Post-release movements 

For each individual we calculated the straight-line distance (km) from the release pen 

to each triangulated location and modelled these with time since release from pen, 

measured in days, as a predictor. We fitted a piecewise (‘broken-stick’) linear 

regression model (Toms & Lesperance 2003) forced through the origin, representing 

a period of exploration, followed by settlement. The piecewise regression model was 

constrained to fit two segmented linear relationships with one intersection point 

(breakpoint), taken as the point at which settlement took place. The time to settlement 

(t) in days (i.e. where the breakpoint lies on the x-axis), distance to settlement (d) in 

km (i.e. where the breakpoint lies on the y-axis), and the rate of dispersal (r), in km 

day-1 (i.e. the slope of the initial exploration period from the origin to the breakpoint) 

were treated as parameters of post-release behaviour. As model convergence of 

piecewise regression can be sensitive to the start parameters and number of 

iterations, the model fitting was attempted up to 1000 times, with the first successful 

fit being extracted. The fit of the piecewise model was compared to that of a simpler 

linear least squares model of distance and time since release using Akaike’s 

Information Criterion, adjusted for sample size (AICc; Burnham & Anderson 2004). In 

six cases, a piecewise model could not be fitted due to sparsity of data in the earliest 

stages following release (i.e. animals went missing for a number of days before being 

located for the first time), which caused problems with model fit. These individuals 

were excluded from further post-release movement analyses.  

 

An individual was considered to be ‘settled’ if the distance moved from their release 

pen reached a plateau (i.e. the slope of the second line was not significantly different 

from zero). Before analyses of the post-release movement parameters, we confirmed 

there was no correlation between the distance (d) and the number of days since 

release (t) at which martens moved from the transition into the establishment phase 
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(Pearson’s correlation; =0.21, t= 1.00, df=21, p=0.32). Piecewise regressions were 

fitted using the R package ‘segmented’ (Muggeo 2017) and all analyses were 

undertaken in R version 3.3.3 (R Core Team 2017). 

 

Analysis of movement 

Generalised linear models (GLMs; Marschner and Donoghoe, 2018) were used to 

examine the effect of sex and year of release on the three response variables; time to 

settlement (t), distance to settlement (d; rounded to whole numbers) and rate of 

dispersal (r). We did not include an interaction term between sex and year in any of 

the models due to the small sample size of each sex within each group. Day of 

settlement (t) was modelled using a negative binomial GLM with a (default) log-link, 

distance of settlement (d) was modelled using a Gaussian GLM with a square-root link 

and rate of dispersal (r) was log-transformed to normalise distribution of residuals. We 

used backwards stepwise elimination to determine the minimum adequate model. 

Variables were retained at each stage if removing them had a significant effect on 

model fit, as measured using an ANOVA (α=0.05). We back-transformed model 

estimates from the final model to the original scale to obtain response values using 

the R package ‘emmeans’ (Lenth et al. 2019). 

 

Range size asymptotes were produced prior to generation of home range kernels to 

ensure ranging data were only generated using individuals with adequate relocation 

data and stable range sizes. Asymptotes with 95% confidence intervals (CIs) were 

calculated using an increasing number of resampled locations (Laver & Kelly 2008) 

taken after the breakpoint only, up to 100 days post-release (i.e. during the ‘settlement’ 

phase). All individuals were initially included in this analysis (n=29), including those for 

which a segmented model (and thus breakpoint) could not be fitted (n=6). For these 6 

martens, linear model plots were visually inspected and a breakpoint of zero days was 

assigned, therefore including all of the locations recorded (Fig. 2.1). Individuals (n=3) 

with an inadequate number of relocations were excluded from calculation of ranging 

metrics. Home ranges of remaining individuals (from the breakpoint until 100 days 

post-release; n=26) were then characterised by 90% Kernel Density Estimates 

(KDEs), with 95% CIs calculated using 100 bootstrap samples with replacement. 

KDEs were calculated with the reference smoothing parameter h-ref which is suited to 
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small sample sizes and reduced over-smoothing of data (Fieberg & Kochanny 2005; 

Borger et al. 2006; Laver & Kelly 2008), in the R package ‘adehabitatHR’ (Calenge 

2012). We investigated the effect of sex, year of release, distance to settlement (d), 

time to settlement (t) and an interaction between year of release and sex on the mean 

home range size of martens using a Gaussian linear model. Range size was log-

transformed to normalise the distribution of residuals. Model selection was undertaken 

using backward stepwise elimination as above.  

 

Habitat preference 

Preferences for broad habitat types and then for forest types were investigated 

separately. Geo-referenced land-use data were obtained from the CORINE Land 

Cover (CLC) 2012 database (scale 1:100,000; created in 2011-2012, released in 

2016). Land use classifications were grouped into three biologically relevant classes; 

Agricultural land, Forest and Grassland (Table 2.1). Forest-type data were acquired 

from the National Forest Inventory (NFI) 2016 database (created and released by 

Forestry Commission 2016). Forest-type classifications were condensed into five 

major groups; Broadleaf, Conifer, Felled, Open areas and Young or sparse woodland 

(Table 2.1). 

 

The habitat preferences of all pine martens (for both broad land-use and forest type) 

during the post-release ‘settlement’ period, up to 100 days post-release, were 

assessed using a use-availability design, where preference is the ratio of used to 

available habitat (Aebischer et al. 1993; Warton & Aarts 2013). We compared the 

habitat types and characteristics of ‘used’ locations with ‘available’ habitat at randomly 

sampled locations. Available habitat was sampled randomly from a uniformly-sized 

area around the home-range centroid of each marten. The radius of this area (7.15km) 

was defined by calculating the mean maximum Euclidean distance that each marten 

with an adequate fix number (n=26) was located from their home range centroid. To 

ensure thorough representation of ‘available’ habitat, each ‘used’ location had five 

corresponding ‘available’ locations. This unequal ratio was then accounted for by 

weighting locations within subsequent models so that five ‘available’ points were 

equivalent to one ‘used’ point. Both ‘used’ and ‘available’ points were overlaid on 

habitat spatial polygons and the underlying habitat-type data were extracted. For 
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analysis of forest type preference, available locations were only generated within NFI 

forest polygons to ensure complete representation of available forested habitat. For 

individuals situated close to the coast, areas were clipped to avoid selection of the 

marine environment and intertidal zones (< 500m of the low water mark). All habitat 

use data was processed using the R package ‘sp’ (Pebesma & Bivand 2012). 

 

We fitted generalized estimating equations (GEEs) in a general linear model (GLM) 

framework to investigate the habitat preference of martens in different release years 

and between sexes. GEEs enhance GLMs by accounting for the spatial and temporal 

autocorrelation within locations recorded for individuals. The assumption of 

independence, made in a GLM, is replaced with a correlation structure that groups 

individuals, allowing for correlation within but not between individuals. GEE-GLMs use 

the empirical standard error in analysis, which is more robust to misspecification of 

correlation structure and non-independence of data points, an inherent feature of 

telemetry data (Zuur et al. 2009; Booth et al. 2013). Incorporating these correlation 

structures makes it possible to generate a population mean response rather than 

making inferences about single individuals (Zuur et al. 2009; Braaker et al. 2014). 

GEE-GLMs with a binomial error distribution and logit link function were used to model 

the habitat preference of pine martens. The response variable was binary: used vs. 

available. Habitat type, and its interaction with both release year and sex were factor 

variables. The weight of the point (used = 1, available = 0.2) was also specified. 

Release year, either 2015 or 2016, was included to test for variance arising from a) 

differences in release sites between years and b) the presence of conspecifics in the 

second year of releases. Animals released in 2015 (year 1) were not monitored in 

2016, and therefore each year contains a different set of newly released individuals. 

Individual martens were defined as clusters and the correlation structure was assumed 

to be independent, i.e. correlation structure was expected among locations from the 

same individual but not between individuals (Fieberg & Kochanny 2005; Pirotta et al. 

2011; Braaker et al. 2014). 

 

Models contained fixed effects of sex, habitat type and year. We included all main 

effects and the two-way interactions between sex and habitat type, and year and 

habitat type. We used backward-step selection using GEE-GLM p-values to obtain the 

minimum adequate model. Models were assessed using Wald’s tests (GEE-GLM 
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anova function in geepack) to ensure that all retained variables had a p-value <0.05 

(Ventura et al. 2019). Based on the significance of an interaction term, data from each 

year or sex were then modelled separately to identify the differences in preference 

within each group. Parametric bootstrapping 1000 times using GEE-based uncertainty 

parameters was implemented to calculate 95% CIs around the population mean 

(Pirotta et al. 2011; Russell et al. 2015). All models were fitted using the ‘geeglm’ 

function in the ‘geepack’ package (Halekoh 2006) in R version 3.5.1. 

 

Ethical statement 

The study was approved by The University of Exeter Animal Welfare and Ethical 

Review Board and under licences from Scottish Natural Heritage and Natural 

Resources Wales and from The Home Office under the Animals (Scientific 

Procedures) Act. 

 

  



 44 

 

Table 2.1. Broad habitat and forest types and grouping for marten habitat 

preference analysis. All ‘Forest’ habitat identified in’ Broad habitat type’ was then 

subset and assigned ‘Forest type’. These categories assigned within the National 

Forest Inventory (NFI) are grouped into types are based on structural and ecological 

similarities. 

 

 

  

Broad 

habitat type 

CORINE Level 3 Description CORINE 

Level 3 Code 

Agricultural Non-irrigated arable land 211  
Land principally occupied by agriculture, with significant areas 
of natural vegetation 

243 

  Pastures 231 

Forest Broad-leaved forest 311  
Coniferous forest 312 

  Mixed forest 313 

Grassland Natural grasslands 321  
Moors and heathland 322  
Transitional woodland-shrub 324  
Beaches, dunes, sands 331  
Bare rocks 332 

  Sparsely vegetated areas 333 

Forest type NFI description 
 

Broadleaved Broadleaved 
 

  Mixed mainly broadleaved 
 

Conifer Conifer 
 

  Mixed mainly conifer 
 

Felled Felled 
 

 
Windblow 

 

  Ground Prep 
 

Open Agricultural land 
 

 
Bare area 

 

 
Windfarm 

 

 
Grassland 

 

  Open water 
 

Undefined Young trees 
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Results 

 

In 2015 and 2016, 39 pine martens (10M and 10F in 2015 and 10M and 9F in 2016) 

were translocated from Scotland and released into mid-Wales. Ten individuals were 

completely excluded from subsequent analyses due to an inadequate number of fixes 

(<6) within 100 days. This was a result of either shedding the radio collar in the release 

pen (n=1), mortality (n=3; two individuals died after 13 days due to infection and one 

individual was thought to have been predated after 16 days), or inability to relocate 

animals for a long period of time immediately after release (n=6; although 4 of these 

were subsequently relocated and identified 27-230 days post-release, they were not 

included in the analyses). Within the first 100 days post-release, the mean number of 

fixes recorded for the 29 (6M and 7F in 2015 and 9M and 7F in 2016) successfully 

tracked individuals was 35 (SD = 20 fixes; range = 7-84).  

 

We identified two clear stages of post-release movement by translocated pine martens 

within the first 100 days post-release of ‘exploration’ followed by ‘settlement’. For 23 

of the 29 pine martens, a segmented linear model with two stages characterised 

marten movements post-release better (lower AICc score) than a simple linear 

regression (Fig. 2.1). The distance (d) and time (t) taken to settlement differed 

significantly between the two release years, while the rate of exploration (r) varied both 

with year of release and pine marten sex. The minimum adequate model for settlement 

time identified an effect of year of release on settlement time (t) (2
2,1 = 3.83, p = 0.05). 

Pine martens released in the second year took significantly less time to settle than 

those released in the first. Settlement occurred at a mean of 14.5 days (SE = 3.9 days) 

in the first year, compared to 6.6 days (SE = 1.8 days) in the second year. The longest 

time taken to settle by an individual was 56 days. There was no difference between 

the sexes (2
2,1 = 0.078, p = 0.78). The minimum adequate model for settlement 

distance (d) showed that year of release significantly affected settlement distance 

(2
2,1= -161.48, p = 0.03). Pine martens released in the first year settled closer to their 

point of release than those in the first year. Animals in the first year settled a mean of 

8.7 km (SE = 1.8 km) away from the release site, whereas animals in the second year 

travelled a mean of 14.0 km (SE = 1.7 km; Fig. 2.2a). The maximum distance at which 

the tracked martens settled within 100 days was 21.5 km and the minimum was 1.1 
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km. There was no difference in settlement distance between male and female martens 

(2
2,1 = -115.01 , p = 0.074). Of the 6 individuals that were not relocated immediately 

after release, 4 were later found 1.0 – 103.0 km from their release locations. The 

minimum adequate model for exploration rate (r) included effects of year of release 

(2
2,1= -10.92, p = 0.001) and sex (2

2,1 = -5.22, p = 0.026). When averaged over sex, 

animals released in the second year dispersed from their point of release at a greater 

rate than those released in the first year. Year one animals travelled at a rate of 0.8 

km day-1 (SE = 0.2 km day-1) compared to year two animals at a rate of 3.0 km day-1 

(SE = 0.9 km day-1). When averaged over years, males also showed a significantly 

greater rate of dispersal than females. Females travelled at a mean rate of 0.9 km day-

1 (SE = 2.8 km day-1) whereas males travelled at 2.4 km day-1 (SE = 0.8 km day-1) on 

average. 

The mean home range size of martens in the settlement phase (i.e. from the 

breakpoint up to 100 days) was 9.5 km2 (SD = 10.6 km2, range = 0.2 - 65.6 km2, n = 

26; Fig. 2.3). Variance in range size was not significantly affected by sex, year of 

release, the interaction between sex and year of release, settlement time or settlement 

distance. 

 

The preference of martens for broad habitat types after settlement and up to 100 days 

since release differed significantly between release years (GEE-GLM;  =55.2, 

p<0.001). When broad habitat type preference was assessed separately for each year, 

pine martens did not display a strong habitat preference in year one, but in the second 

year martens preferred forest habitats and avoided agricultural areas and grassland 

(GEE-GLM; =76.6, p<0.001; Fig. 2.4a). Marten preferences for forest type also 

differed between years (GEE-GLM; =17.15, p=0.004, Fig. 2.4b). When each year 

group was assessed separately, martens showed strong preference for felled areas in 

year one (GEE-GLM; =28.9, p<0.001; Fig. 2.4b), while in the second year, martens 

did not show preference for any forest types. 
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Figure 2.1. Post-release movement of translocated pine martens Martes martes 

away from release sites over 100 days after release. Each panel represents the 

movement of an individual marten. The green line shows a ‘broken-stick’ regression 

fitted to the data, representing a two-phase movement pattern. The purple line shows 

a linear regression fitted to the data representing continuous movement away from the 

release pen. The AICc values for each model are provided. When AICc=NA, a broken-

stick regression could not be fitted due to scarcity of locations immediately after 

release. Animal number is shown in parentheses. Animals 1-13 were released in 2015 

and 14-29 in 2016. 
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Figure 2.2. Summaries of post-release movement of translocated pine martens 

away from release pens over 100 days after release. a) Distance (d) from release 

pen (km) at which pine martens switched from the ‘exploration’ phase and entered the 

‘settlement’ phase during which they established stable home ranges. b) Time (t) since 

release (days) at which pine martens switched from the ‘exploration’ phase and 

entered the ‘settlement’ phase during which they established stable home ranges. c) 

Rate (r, in km/day) that pine martens dispersed from their release pen before entering 

the settlement phase. d) Rate (r, in km/day) that female and male pine martens 

dispersed from their release pens. The first release group (2015) is shown in red and 

the second group (2016) is shown in blue. Females are shown in orange and males 

are shown in green. Raw data are shown in black. 
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Figure 2.3. Home range size of translocated pine martens, calculated using locations recorded from the time of settlement 

up until 100 days post-release. Tops and bottoms of the bars represent the 75th and 25th percentiles of the data, the black lines are 

the medians and the whiskers extend from their respective hinge to the smallest or largest value, no further than 1.5 times that of the 

interquartile range. Points outside this range are outliers. The first release group (2015) is shown in red and the second group (2016) 

is shown in blue. Individual pine marten numbers correspond to animals in Figure 2.1. ID 1,22 and 29 have been excluded from range 

calculations due to an inadequate number of locations collected post-settlement.
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Figure 2.4. Habitat preferences of translocated pine martens released in year 

one (2015; red) and two (2016; blue). Top plot shows broad-scale habitat 

preferences, bottom plot shows forest habitat preferences. Plots show the ratio of use 

to availability of habitat types plotted on the scale of the response. Mean values and 

95% confidence intervals are shown in bold. Raw data for each marten are shown by 

small points. A value of 0 indicates use of a habitat in equal proportion to its availability. 

Positive values indicate preferential use of a habitat type in relation to its availability. 

Negative values indicate lower use of a habitat than expected in relation to its 

availability. 
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Discussion 

 

Post-release movement of translocated martens followed distinct patterns and the 

presence of previously released conspecifics altered the duration and extent of 

dispersal by individuals in a subsequent release. This in turn influenced home range 

location and resulting habitat use. Animals released in phases should thus not be 

expected to follow identical post-release strategies, but instead are influenced by the 

presence and location of conspecifics. 

 

We observed a clear two-phase, post-release movement pattern undertaken by pine 

martens translocated from their core range in Scotland to mid-Wales. This pattern 

comprised exploration followed by settlement and was likely a result of initial searching 

of the new environment for denning and foraging habitat (Slough 1989; Sjoasen 1997; 

Stamps 2001; Moehrenschlager & Macdonald 2003). A switch to settlement suggests 

identification of adequate habitat in which to establish a territory. Post-release 

movement strategies differed between subsequent years of release, with animals 

travelling further and faster before settling in year two. Here, the main period of 

exploration predominantly occurred within the first two weeks post-release. Intensive 

tracking of animals within this initial time period is therefore clearly desirable to avoid 

loss of contact with dispersing animals. Preferences for broad-scale habitat and forest-

type also differed between years. It is likely that conspecific density and habitat quality 

are major factors influencing these differences.  

 

The initial retention of translocated individuals closer to their release sites is central to 

the long-term viability and establishment of a new population (Yott et al. 2011). 

Although they differed between years, in Wales the mean distances of pine marten 

dispersal prior to settlement (8km in 2015 and 14.0km in 2016) were comparable to 

those recorded for Martes americana translocations over similar time periods (0.4-

75.3km within 4-161 days; Davis 1983, 0.4-45.7km within 1-64 days; Woodford et al. 

2013). Year 1 individuals established territories near to their release sites (Fig. 2.5). 

Although consisting of large forestry blocks, these release sites are surrounded by 

pasture, moorland and farmland. Such areas were selected for marten release as they 

provided a diverse structural environment required for denning, combined with fields 
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and edge-habitat in which to forage, resulting in the use of habitat proportional to its 

availability. Within large compartments of commercially managed forestry, tree 

thinning and felling are common. The felled woodland, favoured by animals released 

in the first year (Fig. 2.4b), often comprises wind thrown trees or large areas of debris, 

and offers structural complexity utilised by martens for denning and foraging 

(Clevenger 1994; Caryl et al. 2012; Lombardini et al. 2015). Growth of new vegetation 

as a result of felling has been shown to increase diversity and biomass of rodent 

species, the primary food source of martens (Sidorovich et al. 2010; Caryl et al. 2012). 

In newly felled areas, martens have been found to respond to this through increased 

predation, not only on field voles Microtus agrestis but bank voles Myodes glareolus 

and wood mice Apodemus sylvaticus (Steventon & Major 1982; Sidorovich et al. 

2010). The preferential use of these areas by martens in the first year of the releases 

may therefore be a result of high prey abundance in close proximity to denning sites. 

 

As marten density in the release area increased as a result of territorial establishment 

by year one individuals, animals released under the same protocols and conditions in 

year two likely dispersed further in response to territory or site saturation and 

competition for resources (Yott et al. 2011; Woodford et al. 2013). A study on released 

otters similarly found that the movement (i.e. exploration) distance of individuals 

released into unoccupied areas was much lower than those released into areas 

containing conspecifics (Sjoasen 1997). Density-dependent dispersal (Massaro et al. 

2017) is therefore a likely driver of greater settlement distance in second year animals. 

However, these second-year animals did settle faster than those released in the first 

year (Fig. 2.2b), possibly spending less time searching for appropriate habitat near to 

release sites and dispersing immediately out of the large forest blocks into empty 

territories. These individuals quickly settled in smaller forest fragments on the 

periphery of the core population (Fig. 2.5), suggestive of saturation around the release 

sites. The mosaic structures made up of non-commercial woodland, scattered within 

and around areas dominated by farmland, explain the broad-scale preferential use of 

forested habitat but lack of selectivity of forest type.  

 

Movement of some individuals was unpredictable and, in both years, a small number 

of martens (six individuals in total; 15% of 39 animals) were lost after release. Four of 

these individuals were found again after a long period of absence, some having 
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travelled exceptionally long distances (e.g. one individual was relocated 103km away 

from its release site 172 days post-release). When a population is in flux, processes 

such as habitat preference and range size may be less predictable, demonstrated here 

as animals try to re-establish themselves, with a lack of mutually exclusive ranges in 

individuals released in year one (Fig. 2.5). High numbers of these long-distance 

dispersers may be detrimental to the viability of the translocated populations. With the 

next nearest established population of martens located in Kielder forest, over 300km 

away, the likelihood of new individuals arriving in the area and compensating for loss 

of highly dispersive translocated individuals is low (Mihoub et al. 2011). This long-

distance dispersal has been observed in slightly higher proportions in other 

translocation studies of marten species (26%; Davis, 1983, 30%; Slough, 1989) and 

is often indicative of local territorial saturation (Yott et al. 2011). Here, the driving forces 

behind long-distance dispersal remain unclear, although it has been suggested that 

individual personality and stress levels may be influential (Clobert et al. 2009). The 

drivers of range size variation were also unclear and could not be attributed to sex, 

year of release or any post-release metrics. The home range sizes estimated for 

settled martens were, however, similar to those previously recorded for martens in 

source locations (5.6-23.6 km2; Caryl, 2008). On visual inspection, these range sizes 

of martens do show overall differences, with ranges being more defined and apparent 

in year two individuals who show distinct territorial formation akin to those typical of 

established populations (Powell 1979; Balharry 1993); Fig. 2.5). This may potentially 

be a result of stronger territorial distinction by established individuals in their second 

year, when sex-based differences in ranging become more apparent prior to mating 

and offspring being born in following years (Powell 1979; Erlinge & Sandell 1986; 

Slough 1989; Sjoasen 1997; Yott et al. 2011; Tolhurst et al. 2015). 
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Figure 2.5. Map of home ranges of translocated pine martens released in 2015 

(red) and 2016 (blue) in Wales. Home ranges are 90% kernel density estimates. 

Individuals with multiple home range centres are grouped with dotted lines. Release 

pens, indicated by X, are shown for 2015 (red) and 2016 (blue). Rivers are indicated 

in blue. Inset map of UK indicates trapping locations in Scotland (green) and the 

release site area in Wales (dashed box).  

 

 

The difference in post-release strategies by year one and year two animals in this 

study suggests that the role of conspecifics, particularly established residents, can 

influence post-translocation movement by released animals. In translocation projects, 

release of animals is frequently performed in phases due to logistical constraints 

(Richardson & Ewen 2016). There is often an assumption that individuals in initial and 

subsequent releases will behave in a comparable manner (Richardson & Ewen 2016). 

However, as shown in this study, the presence or absence of an established 
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population can result in different dispersal strategies (Richardson & Ewen 2016). The 

response of released animals to conspecific presence and density should thus be 

central to reintroduction planning (Richardson & Ewen 2016). Reinforcement of social 

or colonial species can exploit conspecific attraction to aid the success of projects, 

either translocating animals in family units or releasing individuals into pre-established 

colonies (Ward & Schlossberg 2004). The presence of other individuals can indicate 

suitability of habitat as well as mate availability, having an anchoring effect on 

subsequently released animals (Ward & Schlossberg 2004). Even in mammals that 

are not obviously social or colonial, such as the pine marten, social information is still 

important in dispersal decisions. Translocation and release of animals therefore 

requires consideration of the social structure and demographic processes driving 

movement and ranging behaviour. In a translocated population however, this social 

structure is initially undefined and can result in unpredictable responses to 

conspecifics and increased dispersal or mortality, particularly if neighbours are 

unfamiliar (Shier & Swaisgood 2011; Richardson & Ewen 2016). Conspecific attraction 

might, however, improve the establishment of a release-site population and can be 

achieved through i) translocation of large numbers of individuals, such as in year one 

of this study, ii) translocation of neighbouring individuals from source sites (Ydenberg 

et al. 1988; Shier & Swaisgood 2011), although this may result in a higher level of 

relatedness amongst individuals, or iii) translocation of individuals into pre-

established, low-density populations, such as in year two of this study (Richardson & 

Ewen 2016). 
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Chapter 3: Dietary variation in pine martens Martes martes before 

and after a conservation translocation 

 

Abstract 

Adaptation and survival of translocated individuals to a new environment is a 

requirement for successful conservation reintroductions and diet is a key dimension of 

this adaptation. Through investigating the diet of animal populations in source and 

destination sites, and of individuals before and after translocation, we can better 

understand how translocated animals adapt and survive, improving the outcomes of 

reintroductions. Very few studies have investigated the diet of translocated animals 

before and after translocation. We translocated 39 pine martens Martes martes from 

Scotland, where resident populations are expanding in range and abundance, to 

Wales, an unoccupied part of their historic range. We investigated the diets of martens 

before and after translocation, using conventional hard-part analysis of collected 

scats, combined with stable isotope analysis of whisker samples from known 

individuals. We show that martens eat significantly fewer voles, berries and 

amphibians in Wales but more invertebrates, rabbits and rats. Martens in Wales were 

also found to consume grey squirrels Sciurus carolinensis (10% frequency of 

occurrence in scats), which they had not previously encountered, as grey squirrels are 

absent in the source locations in Scotland. Isotopic analysis of individual whiskers 

show that individuals retain their relative trophic position (15N value) after 

translocation, however all individuals appear to be feeding at a higher trophic level. 

This suggests this generalist population is composed of facultative specialists. 

Although voles appear to be a preferred prey group in both source and destination 

sites, martens are capable of prey-switching and feeding on locally abundant prey, 

including novel species, such as the grey squirrel, that are not present in source sites. 

This is of particular interest because of the importance of marten restoration for the 

future of grey squirrel management in the U.K. However, the impact of prey-switching 

should be considered in feasibility studies and mitigation planning for threatened prey 

species prior to translocations. The combination of dietary flexibility and individual 

specialisation displayed here in the form of facultative specialisation enables 

translocated animals to complement their preferred diet with abundant prey sources, 
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enhancing the probability of individual survival and, ultimately, the success of 

conservation translocations.  

 
 
 

Introduction 

 

In a period of climate change, increasing habitat fragmentation and urbanisation, an 

accelerated level of biodiversity loss is being experienced worldwide (Walther et al. 

2002; Gaston 2005). Biodiversity losses can, in some cases, be mitigated establishing 

protected areas, ex-situ conservation measures such as captive breeding and 

translocations of species that have declined or been lost. Population restoration or 

reinforcement through the translocation of animals into regions of their historic range 

is now a common practice in conservation (Seddon 2010; IUCN/SSC 2013). The 

success, or otherwise, of such translocations is indicated by the establishment of self-

sustaining populations and this favourable outcome depends upon the selection of 

locations with adequate habitat and sufficient resources (IUCN/SSC 2013). In many 

instances, characteristics for the selection of the ‘best’ or most suitable destination 

sites for restoration are based on knowledge of the species in nearby elements of its 

contemporary range. However, habitats are often limiting in some way and so using 

currently occupied habitat as the basis for future site selection could still miss 

important elements, particularly in territorial species where some individuals may be 

‘forced’ into habitats they would otherwise not have chosen. It is therefore almost 

impossible to quantify all elements of a species’ niche and thus prospects for 

identically matching pre- and post-release habitats are poor. As such, the responses 

of individuals to new habitats may differ from expectations. The behaviour of animals 

in refugia and their residual habitats may not be representative of that displayed in 

high-quality habitats, and translocation of individuals to part of the species’ historic 

range might allow selection of different and/or better habitats and foods. 

One of the key ways in which the ecology of translocated individuals might vary is 

through the exploitation of different food resources. If the resource bases of the pre- 

and post-release habitats differ, then one of the potential responses of introduced 

individuals could be to expand their realised niches and exploit these differences, 

particularly with respect to diet (Crego et al. 2018). The diet of resident species may 
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also change to incorporate an introduced species (Wanink & Goudswaard, 1994; 

Bilney et al., 2006). Introductions have thus been shown to have both positive and 

negative impacts on native or local flora and fauna in the recipient ecosystems 

(Atkinson et al., 2001; Traba et al., 2017), and these can occur through a number of 

mechanisms. For example, even the best-matched habitats are likely to differ with 

respect to relative and absolute abundance of different food resources. The specificity 

and flexibility of predator diet is therefore likely to influence the success of the 

translocation (Baker et al., 2001; Bodey et al., 2009). Populations of generalist species 

may be comprised of individuals that are either generalists (Type A generalists) or 

individuals that specialise on different things (Type B generalists) (Bearhop et al. 2004; 

Vander Zanden et al. 2010). Therefore, the type of generalist will be a factor in the 

outcomes of translocation for threatened species. If the translocated sample of 

animals comprises type A generalists, or a broad range of type B generalists, then we 

would expect broad translocation success and survival of individuals. However, if the 

translocated population comprises a restricted sample of type B individuals, we would 

expect some individuals to thrive and others to fail if their favoured resources are not 

readily available. Species that are dietary generalists often thrive by adapting to take 

the most abundant and easy to capture prey (Sidorovich et al. 2010; Medina et al. 

2011), following the alternative prey hypothesis (Lack 1954). This opportunistic 

variation in prey selection based on availability, known as prey-switching (Murdoch & 

Oaten 1975), can be beneficial to fitness (Ben-David et al. 1997). Mesocarnivores, 

such as foxes, mustelids and feral cats, are often characterised by such variable diets 

and as a result have thrived as invasive species, with devastating impacts on native 

prey (King 1984). Thus, the impact of translocated animals on vulnerable or pest 

species not encountered in their source location may have unexpected knock-on 

effects in the recipient ecosystem, which may itself be of conservation or economic 

interest (Polak & Saltz 2011; Svenning et al. 2016).  

In conservation terms, the restoration of native top predators has generally had 

positive knock-on impacts on ecosystem function (Ritchie et al. 2012), often through 

the control of animals perceived to a nuisance or pest: grey wolf Canis lupus 

reintroduction and the resulting control of large ungulate populations in Yellowstone 

National Park has enabled vegetation recovery (Ripple et al. 2001; Beschta & Ripple 

2009). To facilitate detection of wolves, elk avoided scrub and remained in open areas, 
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enabling the growth and establishment of young saplings that had, in the absence of 

wolves, suffered from browser suppression (Ripple et al. 2001; Beschta & Ripple 

2009). Furthermore, wolf recovery has also limited coyote Canis latrans numbers and 

ranging. In both instances these changes were not driven solely by direct predation 

but also by avoidance of wolves and the risk of encounters with wolves (Berger & 

Gese 2007). The reintroduction of mesocarnivores, as opposed to apex predators, is 

perhaps less likely to elicit such top-down ecological change, though, for reasons of 

their relatively great abundance, ecosystem impacts might nevertheless be widely felt. 

Restoration of mesocarnivore populations in the absence of apex predators can result 

in intensified impacts of foraging due to their ‘fearlessness’ of predation (Suraci et al. 

2017). Effectively, this is a form of ‘mesopredator release’, allowing for rapid expansion 

of native mesopredator populations and associated impacts on prey populations 

(Prugh et al. 2009; Roemer et al. 2009). Although more often related to invasive, non-

native mesopredators (Johnson et al. 2007), this has also been demonstrated by 

native species such as the coyote in the absence of wolves in North America (Crooks 

& Soule 1999). 

 

The pine marten Martes martes is a mustelid carnivore that is native to the UK and 

which suffered population and range declines in the 19th and early 20th centuries, as a 

result of intensive predator control and habitat loss (Langley & Yalden 1977). However 

since the 1990s, the species has begun to recolonize its former range from its refugia 

in the Scottish Highlands (Sainsbury et al. 2019). Although populations have spread 

to the central belt of Scotland and been re-established as far south as Dumfries and 

Galloway (Croose et al. 2013), the pine marten has yet to re-establish in England and 

Wales. Surveys in 2013 and 2014 (Croose et al. 2013; Macpherson 2014) found no 

evidence of populations in England and Wales, aside from small numbers in 

Northumberland, Shropshire and Hampshire, the latter two of which are most likely 

the result of illicit releases (Sainsbury et al. 2019). As a result, we undertook a project 

to reinforce the marten population in Wales, with the aim of establishing a viable 

population in the region (Macpherson 2014).  

 

Pine martens are somewhat adaptable carnivores with regards to diet, hunting 

technique and activity schedule (McDonald 2002; Birks 2017). This variation is driven 

largely by temporal fluctuations in the abundance of their primary rodent prey (Helldin 
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1999). In recent years, there has been an increased focus on the ecology of pine 

martens due to their potential role in controlling the invasive non-native grey squirrel 

Sciurus carolinensis (Sheehy & Lawton 2014; Sheehy et al. 2018). Grey squirrels are 

of particular concern to the forestry industry, due to their tendency to strip bark and 

the damage this causes to timber quality and yield (Mayle et al. 2009). Thus far, grey 

squirrel control methods, including poisoning, trapping and shooting, have been 

unsuccessful in reducing grey squirrel abundance and the resulting tree damage at 

anything other than local spatial and temporal scales. However, studies in Ireland and 

Scotland (Sheehy & Lawton 2014; Sheehy et al. 2018) have shown promise, whereby 

in areas of high and increasing pine marten density, grey squirrel densities are low or 

declining. This, in turn, is thought to benefit the native red squirrel Sciurus vulgaris, 

which has suffered major declines as a result of competition and disease transmission 

from the non-native grey squirrel (Rushton et al. 2006). Predation of squirrels by pine 

martens, which has been demonstrated to varying degrees across their range (Storch 

1990; Zalewski 2005; Sidorovich et al. 2010; Sheehy et al. 2014), is therefore of 

primary interest for conservationists and foresters alike. 

 

We have taken advantage of the pine marten restoration project in Wales 

(Macpherson 2014) to study variation in the diet of translocated mesocarnivores in 

their source and release sites. We were able to document diet composition at the level 

of the individual and the population, before and after their translocation. We 

translocated wild-caught animals, sourced from resident marten populations in 

Scotland, where they co-occur with red squirrels, to create a new population in an 

unoccupied region in Wales, with no nearby red squirrels but a long-established grey 

squirrel population (Lucas 1997). Through a combination of conventional analysis of 

undigested hard parts and stable isotope analysis of tissue from martens and their 

prey, we have documented dietary variation in both environments. Although the 

assessment of post-translocation diet is frequently used to assess predator impact on 

the recipient ecosystem (Koprowski 1994; Baker et al. 2001; Ripple et al. 2014), it is 

rarely compared to the diets of populations at source locations. This assessment of 

pre- and post-translocation diet at population and individual levels is therefore an 

unusual approach in the review of a translocation. Analysis of pine marten scats 

provided a ‘snapshot’ overview of population-level dietary composition of unknown 
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individuals and qualitative detail to enable interpretation of stable isotope data. Stable 

isotope analyses of marten whiskers using carbon and nitrogen isotopes provide an 

insight into individual-level differences and longer-term diets. We expected that if 

martens are Type A generalists, there would be little evidence of dietary consistency 

across locations but a high level of variance in both locations, as all individuals should 

consume what is most abundant. This would be reflected in differing prey occurrences 

in marten scats and differing niche breadths. However, if martens are Type B 

generalists, we expect the majority of individuals to retain similar diets and to maintain 

a degree of dietary specialisation at either end of the translocation. This would result 

in low levels of isotopic variance, i.e. small individual niche breadth before and after 

translocation, and a high degree of correlation between mean isotopic values. 

 

 

Materials & Methods 

 

Study sites 

Sample collection was undertaken in source sites in the Scottish Highlands and 

destination sites in mid-Wales (Fig. 3.1). Habitat in both locations was dominated by 

commercial conifer plantations, largely comprising Sitka spruce Picea sitchensis, 

interspersed with Norway spruce Picea abies, Douglas fir Pseudotsuga menziesii, 

larch Larix kaempferi, L. eurolepis and lodgepole pine Pinus contorta. Commercial 

plantations also incorporated smaller areas of plantation and naturally regenerating 

mixed deciduous woodland, comprising sessile oak Quercus petraea, beech Fagus 

sylvatica, rowan Sorbus aucuparia, birch Betula spp. and willow Salix spp., and were 

surrounded by agricultural land, primarily marginal, unimproved and semi-improved 

grassland for livestock grazing. 
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Figure 4.1. Pine marten scat survey and whisker collection sites from 2015-2018. 

Scat collection and pine marten source sites in Scotland are indicated in green. Scat 

collection and pine marten release sites in Wales are indicated in orange.  
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Scat collection and analysis 

Pine marten scats were collected at source sites in Scotland in March in 2015, 

2016 and 2017. Scat surveys comprised a 1.5km transect within every 4km2 in 

regions thought to contain marten populations (Survey method from The Vincent 

Wildlife Trust). DNA was extracted from a subset of all scats (n = 569) collected 

in Scotland from 2015-2016 and tested for pine marten DNA to determine if scat 

identification was correct (See methods in O’Meara et al., 2014; C. Powell & C. 

O’Reilly, Waterford Institute of Technology, unpublished data). These analyses 

confirmed that all identifiable scats came from pine martens (n = 432), with none 

being assigned to any other small carnivore species. Remaining scats were of 

insufficient quality to identify (n = 137). A sample of 255 scats, collected from six 

main sites in Scotland (102 from 2015, 18 in 2016 and 135 in 2017; Fig. 3.1), 

were used in analysis of marten diet in source populations. In recipient sites in 

Wales, scats were collected from around release and den sites and 

opportunistically from forestry tracks and baited camera traps after martens were 

released. Formalised scat transect surveys were not feasible due to the low 

density of animals and apparent absence of territorial marking. A total of 181 

scats collected in Wales (4 from 2015, 17 from 2016, 108 from 2017 and 52 from 

2018) were used. All were assumed to be from translocated individuals, as earlier 

surveys had found no evidence of a resident population (Macpherson 2014). 

Following collection, all scats were frozen at -20C until being processed.  

 

For processing, scats were first soaked in water and biological detergent solution 

for 24 hours before being broken apart over a 0.5mm sieve. Remains were 

washed thoroughly and stored in 70% ethanol prior to examination. Hard-parts 

(i.e. teeth and jaws, bone fragments and seeds) were examined using a binocular 

dissection microscope to identify prey remains to the lowest possible taxon group 

using reference keys (Day 1966; Teerink 1991; Wolfe & Long 1997; Yalden & 

Morris 2003). It was not possible accurately to identify bird remains to species, 

therefore the presence of feathers was used to indicate only the presence of birds 

as a Class. Seeds, berries and invertebrate remains were identified using field 

guides and reference samples collected from sites. For analysis, species were 

grouped into major food categories, based on taxonomic, ecological or 

morphological features (i.e. size). Pine marten scats are dominated by hair and 

a sub sample of scats from each country (n = 22 from each country) were 
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sampled for hair (n = 24 hairs per scat). Imprints of hair were made into clear nail 

polish on microscope slides. These were then examined under 400x 

magnification and, if high enough quality to assess, identified to species level 

(Teerink 1991). Only 3 scats (<7%) within this sub-sample contained the hair of 

more than one prey item. Other studies have suggested that scats from species 

of a similar size, such as ferrets (Bodey et al. 2011), represent one complete prey 

item. We found that 81% of scats analysed for hair (36 out of 44 scats) contained 

hair that matched the bone fragments found in the same scat. The remaining 8 

scats did not contain any bone fragments with which to compare the hair samples. 

This investigation would suggest that bone fragments are representative of the 

range of prey consumed. We present diet composition with frequency of 

occurrence (FO), representing number of instances of each prey type, where 

identification of one prey type in one scat represents one occurrence. We also 

calculate the percentage frequency of occurrence (%FO), which represents the 

occurrence of each prey group as a proportion of all occurrences. We calculated 

niche breadth B, using Levins’ (1968) measure:  

 

where pi is the proportion of scats containing prey group i. The measure is then 

standardised (onto a scale of 0-1) to enable comparison between different 

sample sizes from each country: 

 

 

The higher the value of BA, the more diverse the diet is considered to be. 
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Stable isotope sample collection and analysis 

 

Sampling martens 

Pine martens were live-trapped in September-November 2015, 2016 and 2017 

in Scotland using live-capture traps (Tomahawk 205, Tomahawk Live Trap, 

Hazelhurst, USA). Two whiskers were plucked from each captured marten (n = 

49), while they were anaesthetised for fitting radio-collars prior to translocation 

from Scotland to Wales. 39 of these animals were then translocated to Wales in 

2015 and 2016. The remaining 10 individuals were surplus to requirement and 

were re-released at capture locations. Two whiskers were taken again from 21 

(9M, 12F) animals in Wales when they were either re-trapped to remove radio 

collars 8-10 months after their release (n = 19) or were found dead (n = 2). When 

recaptured for collar removal, animals were not anaesthetised and samples were 

cut with scissors as close to the whisker base as possible, rather than plucked. 

Not all individuals had been recaptured in Wales by the time of this study (n = 18 

remained uncaptured), therefore we have not included post-translocation 

samples from all translocated animals. 

 

Reference prey collection 

To account for spatial and temporal variation in marten isotopic signatures, 

reference prey samples based on scat contents were collected to enable 

adjustment of marten samples to a common baseline. Prey samples were 

collected in source and release sites during the months preceding whisker 

sampling, ensuring isotopic signatures of foods were spatially and temporally 

matched to those assimilated into the marten whiskers (Inger & Bearhop 2008). 

In Scotland, samples were collected approximately eight weeks prior to marten 

capture and translocation (July-August in 2015, 2016 and 2017). In Wales, 

samples were collected in release site woodlands in the spring following release 

of martens (March-April 2016 and 2017), but prior to re-trapping to remove radio-

collars in May-July. To collect small mammal prey, 40 Longworth traps (Penlon 

Ltd., Abingdon, UK) were set in a grid formation in marten trapping (Scotland) or 

release sites (Wales) for two days. Traps were filled with hay, baited with 

commercial dried food  for rodents and fly pupae for shrews, and checked twice 

daily. Up to 10 specimens of each species per site were euthanised for use in 
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stable isotope analysis, further individuals were released at point of capture. 

Small mammal carcasses were stored at -20C. 

 

Sample preparation 

Whisker samples (one from each capture event) were rinsed in distilled water to 

remove any oil and dirt and left to air dry (Robertson et al. 2013). Small mammal 

samples were defrosted and a section of muscle was taken from the right hind 

leg of each animal. All samples were then freeze-dried for 36 hours to remove 

any residual moisture. Whiskers were weighed, measured and cut into sections 

weighing approximately 0.7 mg each. Sections were then cut into several smaller 

pieces and decanted into tin cups. Each whisker provided a mean of 2 sections 

(SD = 0.8, range = 1-4). The growth rate of marten whiskers could not be 

measured directly but was considered to be comparable to that of badgers Meles 

meles (Robertson et al. 2013) and stoats Mustela erminea (Spurr 2002), which 

have been estimated to grow at 0.43mm and 0.6mm per day, respectively. These 

values were used to estimate the mean time period represented by each whisker. 

Of the martens sampled, the mean whisker length was 52mm (range = 26-76) 

and was therefore estimated to represent approximately 3-4 months (87-122 

days). The limited number of whisker sections did not provide an adequate 

number of sections to compare diet through time and account for seasonal 

effects. Furthermore, whisker samples taken from animals in Wales do not all 

reflect the same time period, as animals were recaptured opportunistically over a 

2 month period. Freeze-dried prey muscle samples were homogenised into a fine 

powder using a pestle and mortar. Approximately 0.7mg of each sample was 

decanted into tin cups and sealed for simultaneous carbon and nitrogen stable 

isotope analysis. We determined the masses of the stable isotopes of carbon and 

nitrogen using elemental analysis-isotope ratio mass spectrometry. Both isotope 

ratios are expressed as  values in parts per mil (‰), representing the ratio of the 

heavy to light isotope based on the international standard for each element 

(atmospheric nitrogen, N2, for 15N and Vienna Pee Dee Belemnite VPDB for 

13C). Precision of measurements was estimated to be 0.1‰ calculated from 

standards run within batches of samples. The incorporation of carbon and 

nitrogen from foods into metabolically inert tissues, such as whiskers, enables 

the preservation of a dietary isotopic record at the time of tissue formation 

(Crawford et al. 2008). The breadth of carbon sources being utilised is indicated 
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by the ranges of 13C, while 15N signatures broadly represent the trophic levels 

at which consumers are feeding (Post 2002; Bearhop et al. 2004; Inger & 

Bearhop 2008). 

 

Statistical analysis 

 

Scat content analysis 

We used a resampling approach to identify differences in pine marten scat 

content between Scotland and Wales. We generated null distributions by creating 

10,000 pseudo-samples of diet in Wales, with sample size of 181, based on the 

composition of sample of scats from Scotland. The probability of sampling each 

prey item in Wales was based on their percentage frequency of occurrence 

(%FO) in the Scottish dataset. We then compared the observed %FO value 

generated from Welsh scats to the predicted %FO distributions generated from 

Scottish data. We generated exact p-values by comparing the observed %FO 

values to the null distributions generated using the resampling approach. Each 

p-value therefore represents the proportion of the frequency histogram (for the 

null distribution) found below the observed %FO value. The observed 

consumption of each species group in Wales was considered to be significantly 

different from the predicted values in Scotland if the observed %FO in Wales lay 

outside the 95% confidence limits. 

 

Stable Isotope analysis 

We inspected the 13C and 15N values of marten whiskers in relation to those of 

their prey (Fig. 3.4). Prey groups, whether based on ecological function or 

taxonomic divisions, were not well differentiated, therefore exact dietary 

composition could not reliably be assessed using mixing models (Phillips et al. 

2014). Furthermore, after adjustments using trophic discrimination factors 

(TDFs), which are calculated based on the phylogeny and dietary ecology of 

consumers and generated in SIDER (Healy et al. 2018; -4.41‰ for 15N and -

2.88‰ for 13C for all marten samples), some marten signatures fell outside of 

the isotopic ranges occupied by the prey items collected. This suggested that 

either i) there was spatial or temporal heterogeneity between prey and predator 

samples that we had not captured or, ii) there were prey sources that we had not 

sampled or, iii) the trophic discrimination factors generated for this species were 
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incorrect. As a result, we focussed analyses on the marten whisker signatures 

only. We analysed variation in marten 13C and 15N values in three ways; (1) a 

between-country population analysis to assess variation in isotope values 

between source and destination, sites while controlling for variation between 

years, (2) a between location, within-individual correlation in mean isotope values 

per whisker to assess consistency (specialisation) in individuals between 

Scotland and Wales and (3) a between location within-individual correlation in the 

standard error of the mean isotope values per whisker, to assess within-individual 

variation in isotope values in Scotland relative to those in Wales.  

 

The between-country population analysis (analysis 1) included all martens that 

were trapped throughout the entire study in both Scotland (n = 49) and Wales (n 

= 21). This model comprised a linear mixed effects model with a Gaussian error 

distribution and a random effect of individual ID nested within country, since 

multiple whiskers and whisker sections were treated as repeat measures of 

individual martens. Country of capture, sex, weight, age (juvenile, sub-adult or 

adult), translocation year (2015 or 2016) and a sex*weight interaction were 

explanatory variables. The interaction term was included to account for the 

pronounced sexual size dimorphism seen in martens. Model selection was 

performed using an information theoretic framework using the R package ‘MuMIn’ 

(Barton 2018). Model performance was assessed using Akaike’s information 

criterion corrected for small sample size (AICc). Models within ∆AICc ≤ 2 of the 

top model were included in the top model set (Burnham & Anderson 2004), 

averaged to identify the main explanatory variables and to calculate effect sizes 

and 95% confidence intervals (Burnham & Anderson 2004). If only one model 

was in the top set then these results are reported. Variables in averaged models 

with 95% confidence intervals that did not overlap zero were considered 

significant. The relative importance (RI) of each variable and the full model 

averages are reported as these are deemed more conservative (Grueber et al. 

2011). The explanatory power of full averaged models was estimated with 

Nagelkerke R2 defined by Nakagawa and Schielzeth (2013) in the package 

‘MuMIn’ (Barton 2018). The marginal R2 represents the percentage of variance 

explained by the fixed effects alone and the conditional R2 represents the 

explanatory power of fixed and random effects combined.  
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For analyses 2 and 3, only martens with samples from both Scotland and Wales 

were used. This gave a paired before and after translocation comparison for each 

individual. Only individuals whose whiskers could be divided into more than 1 

section, and therefore generate mean and standard error (SE) values (n = 15), 

were analysed. For both 13C and 15N we used Pearson’s product moment 

correlation coefficient (r) to test if isotopic position of an individual in Scotland was 

correlated with its isotopic position once translocated to Wales, relative to other 

translocated individuals. The closer the correlation coefficient to 1, the more 

closely correlated the values and the more consistent an individual’s isotopic 

position before and after the translocation. 

 

Isotope values of individual Scottish and Welsh martens were adjusted to a 

common baseline to control for spatial and temporal variation of the isotope 

signatures of food sources. Plots of food sources (Fig. 3.4) suggested that the 

mean isotopic baseline of 13C and 15N differed between countries. Therefore to 

enable comparison of individuals between countries, we established a baseline 

for each country using the isotope signature of a commonly eaten prey animal 

(Post 2002), the field vole Microtus agrestis. Field voles were used as they were 

frequently captured and eaten in both Scotland and Wales. An overall baseline 

mean 13C and 15N was first generated using all field vole samples from Scotland 

and Wales. The baseline mean of 13C and 15N for each country was then 

generated using samples from each country. This baseline mean of each country 

was then subtracted from the overall mean baseline. This gave the distance of 

each country mean from the mean overall isotopic baseline. This country-specific 

distance was then subtracted from each individual marten whisker value to give 

an adjusted 13C and 15N. The resulting value represents the relative position of 

each marten from the isotopic baseline of their country and enables comparison 

between countries. All statistical analyses were performed using R version 3.5.2. 

 

Ethical Statement 

The study was approved by The University of Exeter Animal Welfare and Ethical 

Review Board and under licences from Scottish Natural Heritage and Natural 

Resources Wales and from The Home Office under the Animals (Scientific 

Procedures) Act. 
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Results 

 

Hard-part analysis 

A total of 436 scats were analysed, 352 of which contained identifiable remains 

(Table 3.1). The standardised Levins’ measure of niche breadth revealed that 

martens in Wales (BA = 0.43) exhibited a broader dietary niche than those in 

Scotland (BA = 0.26; Table 3.1). The percentage frequencies of occurrence 

(%FO) of a number of prey items in marten scats in Wales was significantly 

different from those in Scotland (Fig. 3.2, Table 3.1). Among key components of 

marten diets, voles, comprising field voles Microtus agrestis and bank voles, were 

the most dominant item in both locations, but comprised a significantly smaller 

(p<0.001) proportion of items in Wales (40%) than in Scotland (53%). Squirrel 

remains were only found in marten scats from Wales, where they amounted to 

10% of identifiable prey occurrences (p<0.001). Bird remains, in the form of 

feathers, comprised a similar proportion of items in Wales (19%) and Scotland 

(15%), as did mice (Wales 4%, Scotland 4%). Among the less frequent prey 

categories, shrew remains also occurred at a similar proportion (Wales 8%, 

Scotland 5%), whereas invertebrate remains appeared with significantly greater 

frequency in Wales (9%) than in Scotland (4%; p<0.001) as did medium-sized 

mammals (rats and rabbits; Wales 3%, Scotland 1%, p<0.001). By contrast, 

berries were found less frequently in Wales (6%) than in Scotland (14%; 

p<0.001), as were amphibians (Wales 1%, Scotland 3%, p<0.02). 
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Table 3.1. Results of examination of pine marten scat contents from 

Scotland (source sites) and Wales (release sites) collected between 2015 

and 2018. Species are grouped based on taxonomic, ecological or morphological 

features (i.e. size). Squirrels have not been grouped with ‘medium-sized 

mammals’ due to the interest in their role in marten diet as well as differing diet 

to rabbits and rats. Totals of prey groups are given above individual species 

values. 

 Scotland Wales 

Prey item FO %FO FO %FO 

Voles (total) 159 52.6 83 39.9 

Myodes glareolus 17 5.6 3 1.4 

Microtus agrestis 73 24.2 46 22.1 

Vole spp. 69 22.8 34 16.3 

Mice (total) 13 4.3 8 3.9 

Apodemus sylvaticus 3 1.0 3 1.4 

Mus musculus 0 0.0 3 1.4 

Mouse spp. 10 3.3 2 1.0 

Shrews and Moles (total) 16 5.3 17 8.2 

Sorex minutus 5 1.7 2 1.0 

Sorex araneus 4 1.3 6 2.9 

Shrew spp. 5 1.7 5 2.4 

Talpa europaea 2 0.7 4 1.9 

Medium size mammals (total) 3 1.0 7 3.4 

Rattus norvegicus 1 0.3 5 2.4 

Oryctolagus cuniculus 2 0.7 2 1.0 

Squirrels Sciurus spp. 0 0.0 20 9.6 

Amphibians 10 3.3 2 1.0 

Invertebrates 13 4.3 18 8.7 

Birds 45 14.9 40 19.2 

Berries 43 14.2 13 6.3 

Total no. of identified prey items 302   208   

Total no. of scats examined 255  181  
No. of scats containing unidentifiable 

items 47  37  
No. of scats containing bones & 

teeth 184  124  
No. of scats containing hair only 24  20  
No. of scats analysed for hair 22  22  
Levins’ standardised niche 

breadth 0.26   0.43   
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Figure 3.2. Diet composition of pine martens derived from scats in Scotland (left) and Wales (right). Values represent the percentage 

frequency of occurrence (%FO) of each prey group in each country – a breakdown of these values is also provided in Table 3.1. Prey 

groups are represented by colours.  
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Figure 3.3. Comparison of the relative importance of prey categories in diet 

of translocated pine martens in Wales, compared to resident martens at 

source sites in Scotland. Observed percentage frequency of occurrence %FO 

of each prey category in Welsh marten scats is indicated with a red dotted line. 

Predicted distribution of the %FO of each prey category based on the %FO of 

each prey category in Scottish marten scats is shown as a histogram, derived 

from bootstrapping with replacement. The range of the 95% quantile of the 

predicted %FO is shown in grey shading behind each distribution plot. Prey items 

which were consumed less than predicted are marked with ‘-’ in the top right of 

each plot and those which were consumed more than predicted are indicated with 

a ‘+’. The %FO is given on the x-axis and the number of bootstrapped samples 

out of 10,000 samples is given on the y-axis.  
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Stable Isotope analysis 

In analysis of the stable isotope values of all individuals captured (Model 1), the 

null model was in the top model set for both 15N and 13C. 15N values of marten 

whiskers did not vary significantly by sex, weight, the interaction between sex and 

weight, age, translocation year or country of capture. 13C values of marten 

whiskers were significantly greater for translocated martens in Wales than in 

Scotland (Table 3.2), but were not affected by any other terms in the model. For 

both isotopes, models explained a large proportion of the variance when 

encompassing the random effect of individual marten (R2c; Table 3.2). However, 

the marginal R2, which does not take into consideration the nested random effect 

of individual marten within country, showed the fixed effects had poor explanatory 

power alone R2m; Table 3.2). This suggests that unmodeled differences between 

individuals explained the majority of variation in marten isotope values. Further 

analysis of a subset of individuals sampled in both countries, adjusted to a 

common baseline, enabled comparison of diet within individuals (n = 15; 7M 8F). 

There was a significant correlation between the isotope values of individuals in 

Scotland and in Wales for mean 15N (r = 0.65, p = 0.009, Table 3.2; Fig. 3.5) but 

not mean 13C (r = 0.37, p = 0.179 Table 3.2) or standard error of the mean 15N 

or 13C (15N: r = -0.30, p = 0.271, 13C: r = -0.22, p = 0.439; Table 3.2). 

Adjustment of marten isotopic signatures using mean field vole values accounted 

for differences in the isotopic baseline in both countries. The mean 13C values 

for field voles in Scotland was -29.4‰  0.17 SE in Scotland and -29.6‰  0.20 

SE in Wales. The mean 15N values were 5.60‰  0.40 SE in Scotland and 

3.29‰  0.64 SE in Wales. These differences could also be observed when prey 

sources were plotted together (Fig. 3.4). This baseline adjustment of marten 

values revealed that, as well as mean 15N values being correlated, values were 

also, on average, over 2‰ higher in Wales (Scotland mean: 6.26‰  0.34 SE, 

Wales mean: 8.61‰  0.26 SE; Fig. 3.5).To investigate the potential dietary 

composition of martens using whiskers, prey groups were plotted in isotopic 

space (Fig 3.4). To account for trophic enrichment of consumer tissues, a result 

of the retention of heavier isotopes during consumer metabolisation (Kelly et al. 

2012), pine marten whisker values were adjusted using Trophic Discrimination 

Factors (TDFs) calculated in SIDER (Healy et al. 2018) based on marten 

phylogeny and ecology (Fig 3.4). Values produced (-4.41‰ for 15N and -2.88‰ 
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for 13C) were comparable to those of badger, red fox Vulpes vulpes (Kelly et al. 

2012) and sea otter Enhydra lutra nereis (Newsome et al. 2009). However, due 

to unclear partitioning between prey groups, dietary reconstruction using isotopic 

data was not possible.
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Figure 3.4.  Isotopic signatures of food sources and pine marten whiskers in source (Scotland) and release (Wales) sites. Marten 

whiskers are adjusted using trophic discrimination factors (TDFs) generated in SIDER (-4.41‰ for 15N and -2.88‰ for 13C; black points) 

to account for enrichment at higher trophic levels. Prey sources are represented by mean  standard deviation of 13C and 15N.  
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Table 3.2. Models assessing the importance of biotic and abiotic variables on the 15N and 13C in pine marten whiskers, and 

the correlation between Scottish and Welsh samples from the same pine marten.  For linear mixed effects models, the effect size, 

95% confidence interval (CI) and relative importance (RI) of each variable retained in the top averaged model are given. The fit of the 

averaged model is represented by the conditional R2 (R2c) and marginal R2 (R2m). For Model 2 and 3, Pearson’s correlation coefficient r, 

and the associated p-value are reported. Results in bold are significant.

Model 
Name 

Full model Analysis/test used Average model result 

Variable Effect 
size 

95% CI RI R2c R2m 

Model 1 15N~sex*weight+age+country*year+(ID/country) 

[Top model] 15N~ year+age+(ID/country) 
 

13C~sex*weight+age+country*year+(ID/country) 

[Top model] 13C~country+(ID/country) 

Linear mixed effects 
model 

 
Linear mixed effects 

model 

Year  
Age 
 
 
Country 

-0.69 
-0.23 
 
 
0.61  
 

-1.14, 0.29 
-0.98, 0.52 
 
 
0.28, 0.95 

0.6 
0.3 
 
 
1 

0.639 
 
 
 
0.529 

0.078 
 
 
 
0.043 

Model 2 mean Scottish 15N ~ mean Welsh 15N 
 

mean Scottish 13C ~ mean Welsh 13C 

Pearson's product-
moment correlation 

r = 0.65, p = 0.0009 
 
r = 0.37, p = 0.179 

Model 3 SE of mean Scottish 15N ~ SE of mean Welsh 15N 
 

SE of mean Scottish 13C ~ SE of mean Welsh 13C 

Pearson's product-
moment correlation 

r = -0.30, p = 0.272 
 
r = -0.21, p = 0.439 
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Figure 3.5. The correlation between isotopic 15N signatures (A) and 13C 

(B) of individual martens in Scotland and Wales, scaled to a common 

baseline. Common baseline values were based on variation in field vole 15N 

and 13C values, and pine marten whisker values in each country were adjusted 

accordingly. Values are not adjusted using a trophic discrimination factor (TDF). 

Each point represents an individual marten. Scottish 15N values (A) were 

significantly correlated with Welsh values for each individual (r = 0.65, p < 0.01; 

Table 3.2), this correlation is represented by a solid black line. There was no 

significant correlation between 13C values therefore no line has been added. 
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Discussion 

 

At a population level, pine marten diet before and after translocation from 

Scotland to Wales was found to differ substantially. In Wales, marten diets were 

more diverse than in Scotland and consisted of significantly smaller proportions 

of voles, berries and amphibians but greater proportions of rabbits and rats, 

invertebrates and squirrels, the last of which was not available in Scotland (Table 

1; Fig 3.2 & 3.3). As a result, after translocation, the majority of individuals 

appeared to be feeding at a higher trophic level (Fig. 3.5) This demonstrates that 

as a species, pine martens are dietary generalists that are able to vary their diets 

in relation to changing prey availability. Martens studied before and after 

translocation retained their dietary specialisations relative to one another, 

suggesting that at an individual level they are dietary specialists (Type B 

generalists; Bearhop et al., 2004). However, the recorded change in trophic level 

reveals that this specialisation is not completely rigid and that specialist 

individuals can display a degree of dietary flexibility, likely through the 

consumption of abundant species to complement their dietary preferences.  

 

At a population level, the carbon sources that martens are utilising differ between 

Scotland and Wales. Carbon isotope ratios (13C) vary spatially, driven by the 

photosynthetic pathways of primary producers, therefore 13C may be enriched or 

depleted due to variation in vegetation type and the associated photosynthetic 

metabolisms as well as climatic conditions (Marra et al. 2000; Bearhop et al. 

2004; Layman et al. 2007). For example, 13C is often used to differentiate 

between marine and terrestrial plant sources. Here, as a result of the spatial shift, 

individuals did not maintain consistent 13C position between countries, even 

when controlling for the between-country variation in isotopic baselines. This is 

likely driven by such climatic differences and variation in vegetation type. 

However,, analyses of martens that were sampled before and after translocation 

found that individuals maintained their relative trophic position (15N values). 

Furthermore, adjusting for baseline differences, 15N values in Wales were 

almost one trophic level higher (2.5-5‰ increase in 15N with each trophic level; 

Bearhop et al., 2004) than in Scotland. This highlights that, although flexible in 

their overall diets as a population, individual martens appear to consistently feed 

at a similar trophic position relative to other individuals within the population, even 
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when experiencing different environmental conditions. This would imply a degree 

of sustained foraging specialisation (Type B generalists) and/or dietary 

preferences by individuals, similar to that seen in badgers Meles meles 

(Robertson et al. 2014), turtles Caretta caretta (Vander Zanden et al. 2010) and 

guillemots Uria lomvia (Woo et al. 2008). Robertson et al. (2014) found that 

badgers within the same social group occupied different dietary niches, even 

though resource availability was the same. This was thought to be driven by 

intraspecific competition but also determined by the size of the social group and 

the composition of their territory (Robertson et al. 2014). It is therefore possible 

that social and territorial factors may also drive marten specialisation, such that 

more dominant individuals may occupy ‘prime’ territories, resulting in younger or 

subordinate animals settling in less optimal habitat where prey sources are more 

variable or less favourable. 

 

Martens in Wales exhibited greater niche breadth than those in Scotland, 

indicative of a broader diet. This would suggest that they are facultative 

specialists (Glasser 1982), i.e. a combination of a Type A and Type B generalist. 

More specifically, each individual displays a degree of dietary specialisation or 

preference which constitutes a substantial proportion of their diet. The remaining 

part of their diet is supplemented by prey that is locally or seasonally abundant, 

particularly when preferred prey are in low abundance (Glasser 1982; Shipley et 

al. 2009). This flexible specialisation enables efficient foraging and can reduce 

competition with conspecifics through differing prey preferences (Shipley et al. 

2009). Other dietary studies on Martes species have shown that when the 

preferred small rodent prey are in low abundance, larger mammals such as 

rabbits and squirrels, as well as insects and berries play a more important role in 

this predators’ diet, particularly during winter and spring (Lockie 1960; Zalewski 

et al. 1995; Caryl 2008; Paterson & Skipper 2008). A combination of intraspecific 

competition, as newly released martens establish territories, and varying prey 

availability in Wales may thus be contributing to the broader niche breadth 

observed in Welsh martens (Fig 3.2, Table 3.1). The temporal variation in sample 

collection should also be considered. The collection of Welsh samples over a 

longer time period to those collected in Scotland may contribute to dietary 

variation recorded. Martens have been demonstrated to vary their diet seasonally 

and therefore findings of this study should be interpreted with this in mind. Similar 
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dietary behaviour can be found in black footed ferrets Mustela nigripes, which 

show dietary specialisation in prairie dogs Cynomys spp., however adjust their 

degree of specialisation subject to abundance of this prey source (Brickner et al. 

2014). Canada lynx Lynx canadensis also display this plasticity to tolerate the 

cyclic prey abundance of the snowshoe hare Lepus americanus (Roth et al. 

2007). This allows the predator species to become ‘decoupled’ from the cyclicity 

of its preferred prey and consume more abundant prey sources (Roth et al. 2007).  

 

We also showed how these differences in diet arose between Scottish and Welsh 

marten populations. Martens in Wales showed a reduced consumption of berries 

and voles (Fig. 3.2 & 3.3), both of which had lower 13C and 15N values than 

other prey sources (Fig. 3.4). The replacement of these low 15N prey types in 

the Welsh marten diet with larger mammals such as squirrels, rabbits and rats 

seen in scats (Fig. 3.2 & 3.3, Table 3.1), as well as marginally more birds and 

shrews (Fig. 3.3, Table 3.1), may be contributing to the increase in trophic level 

(15N) observed (Fig. 3.5). These prey animals have a more varied diet than field 

voles, incorporating a variety of plant matter and, particularly with regards to 

squirrels, may have very different carbon signatures due to their nut-based diet 

(Ben-David et al. 1997). The marginal increase in bird and rabbit consumption 

may also contribute to this trophic level shift. However, we were unable to 

reconstruct detailed marten diet using isotopic data from prey sources due to 

unclear partitioning between prey groups (Fig. 3.4). When animals are 

nutritionally stressed, i.e. experiencing starvation, 15N has been shown to be 

enriched by 0.5-2‰, with 13C remaining relatively unaffected (Newsome et al. 

2009). Therefore it may be possible that the nutritional and physiological state of 

pine martens post-translocation is contributing to the elevated 15N values 

observed in Wales. However, the body condition of recaptured pine martens was 

comparable, if not better than when they were translocated (VWT, unpublished 

data) and so it is unlikely that nutritional stress is a contributing factor. The 

reproductive status, sex and/or weight of individuals may also be influencing this 

apparent trophic shift, however population-level analyses did not detect an effect 

of sex and weight on isotopic signatures, and the sample size of recaptured 

animals did not allow for more detailed assessment of these effects. 
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In this study, marten diet was generally comparable to previous studies of the 

species across their Eurasian range, which found small rodents, namely field 

vole, bank vole and wood mouse Apodemus sylvaticus, to dominate diet 

throughout the year (Gurnell et al. 1994; Zalewski 2005; Caryl 2008; Sidorovich 

et al. 2010). Field voles, the primary constituent of marten diet in both Scotland 

and Wales (Fig. 3.2, Table 3.1), undergo cyclic fluctuations in parts of their range 

(Lambin et al. 2000), as well as seasonal fluctuations where populations are 

lower over winter (Putman 2000). This results in a marked spatial and temporal 

variation in the availability of a key food source for martens. The varying 

availability of this prey item means that martens which specialise purely on field 

voles are at a disadvantage, and thus a degree of dietary flexibility will likely 

provide a fitness advantage over more specialised individuals. 

 

A species which is readily available in Wales but absent from most parts of 

northern Scotland is the invasive grey squirrel. The importance of grey squirrels 

in pine marten diets is of particular interest, given the potential for restored marten 

populations to effect change in grey squirrel populations (Sheehy & Lawton 2014; 

Sheehy et al. 2018) and, thereby reduce their impacts on forestry interests and 

on native red squirrel populations. Our translocation of martens was from an area 

with only red squirrels (Bryce 1997; Sheehy et al. 2018) to an area with only grey 

squirrels (Lucas 1997). No evidence of predation of red squirrels was found in 

Scottish samples, while predation of grey squirrels was recorded on multiple 

occasions Wales. Negative correlations between the distributions of martens and 

grey squirrels and positive correlations between martens and red squirrels 

(Sheehy & Lawton 2014; Sheehy et al. 2018) have provided compelling 

indications that the presence of martens could be used to control grey squirrel 

populations to the benefit of red squirrel populations. However, the mechanisms 

for this relationship are not clear and may encompass predation, as is apparent 

here, and non-lethal behavioural effects, as indicated by Chapter 4, and most 

likely, combinations of the two. We have identified similar levels of grey squirrel 

consumption by translocated martens in Wales (10% FO in scats) as by resident 

martens in Ireland (10% FO in scats; Sheehy et al., 2014). Squirrel consumption 

had also previously been documented in Russia and Scandinavia, where red 

squirrels comprised a high proportion of marten scats, particularly during winter 

(8.1-29.7% FO of prey items; Zalewski, 2005, 7-50% FO in scats; Storch, 1990, 
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1.2-1.6% FO in scats; Sidorovich et al., 2010). Grey squirrels have not yet 

invaded these red squirrel ranges, and therefore are not available as a prey 

source. There are substantial red squirrel populations in Scotland (Bryce 1997), 

within the range of pine martens (Sheehy et al. 2018), but red squirrel remains 

were not detected in any marten scats during this study and were similarly scarce 

in previous studies (0% FO in scats; Gurnell et al., 1994, 0.4% of prey items; 

Halliwell, 1997). In Wales, predation of grey squirrels may therefore be occurring 

for a number of reasons, including: i) relatively low small rodent abundance, ii) 

high abundance of grey squirrels, and iii) ease of capture of grey squirrels within 

dreys (Zalewski 2005; Pulliainen & Ollinmäki 2014). Although impacts of 

predation by martens on squirrel survival at a population level may not yet be 

detectable in Wales (Chapter 4), grey squirrel movement and foraging behaviour 

appear to be impacted by this risk of predation (Chapter 4 & 5). The potential 

ramifications of marten predation for current grey squirrel management strategies 

are substantial, however the long-term ecological effects of this in the area 

around the reintroduction site require further investigation. With time, squirrel 

predation by pine martens may contribute to, and drive, similar landscape-scale 

patterns to those documented in Ireland and Scotland (Sheehy & Lawton 2014; 

Sheehy et al. 2018).  

 

There, are however additional considerations, given the dietary flexibility of re-

introduced martens revealed by this study. While, the introduction of martens to 

areas with an abundant pest species, such as grey squirrels, may be beneficial 

for establishing a marten population and controlling an invasive species (Sheehy 

& Lawton 2014), it could have negative implications for species of conservation 

concern, such as hazel dormouse Muscardinus avellanarius, pied flycatcher 

Ficedula hypoleuca, black grouse Lyrurus tetrix and certain bat species 

(Macpherson 2014). In regions where ‘at risk’ species are present (unlike in our 

destination sites in Wales), the opportunistic dietary habits of martens may prove 

detrimental to their populations and generate conflict between different 

conservation interests. This may be of particular concern for predator species 

that show preference for prey with cyclic dynamics, not only with regard to 

predation of vulnerable species, but also for the resilience of re-establishing 

predator populations to low prey abundance. In the context of species 

translocation, dietary flexibility is of particular interest and concern during initial 
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years when reintroduced carnivore populations may still be establishing. 

Translocation of dietary specialists could result in poor translocation success, 

subject to the degree and flexibility of specialisation. This may be of particular 

relevance if reintroducing dietary specialists that have been reared in captivity as 

part of a breeding programme. Evidence suggests that reintroductions of captive-

reared animals have a low success rate (Griffith et al. 1989). Preconditioning 

these animals to the prey that will be available to them on release can enhance 

post-release predation skills and survival (Biggins et al. 1999). However, if 

translocating animals from the wild, selecting a broad range of individuals from 

different habitats, which may therefore have different dietary preferences, may 

enhance the success of individual survival and population establishment post-

translocation, as well as spread predation pressure across multiple prey groups. 

The impact of a facultative specialist on prey populations must therefore be 

carefully considered. Consumption of a readily preferred prey group may be 

beneficial from a species control perspective, however the ability of predators to 

switch or specialise could also be detrimental. If a locally abundant and protected 

species becomes a source of preference for some individuals, the impact of their 

predation may be substantial. However, if anticipated, these negative impacts of 

predation can be mitigated through protecting areas of importance, using 

exclusion techniques (Hayward & Kerley 2009) and monitoring at-risk 

populations.  

 

This study demonstrates that dietary studies combining hard-part analyses and 

stable isotope methods provide a multi-faceted approach to understanding 

species diet at both a population and individual level. Populations of generalists 

can be made up of individual specialists that could affect the success of 

individuals after a translocation event. However, specialisation is not necessarily 

rigid and individuals displaying facultative specialisation are able to maintain a 

degree of dietary preference, which is then supplemented by readily available 

prey. Such opportunistic predation can be detrimental to at-risk prey populations, 

however it may also be beneficial in the control of invasive, non-native species. 

Consideration of the degree of dietary flexibility, the retention of any dietary 

preferences, as well as the resulting predation impacts of translocated animals 

are thus vital aspects of any translocation and should be incorporated into 

species reintroduction planning.  
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Chapter 4: Translocated native pine martens Martes martes 

disrupt short-term space use by invasive non-native grey 

squirrels Sciurus carolinensis 

 

This chapter has been submitted for publication as: 

C.M. McNicol, D. Bavin, S. Bearhop, M. Ferryman, R. Gill, C.E.D. Goodwin, J. 

Macpherson, M.J. Silk & R.A. McDonald. Translocated native pine martens 

Martes martes disrupt short-term space use by invasive non-native grey squirrels 

Sciurus carolinensis. Journal of Applied Ecology. 

 

Abstract 

 

Predators can shape the distributions and dynamics of their prey through direct 

and indirect mechanisms. Where prey animals are regarded as pests, the 

augmentation of predator populations might offer a potential tool in their 

management. Declines in invasive non-native grey squirrel Sciurus carolinensis 

populations in Ireland and Scotland have been related to an increase in range 

and density of native pine marten Martes martes populations. These reductions 

in grey squirrel abundance have, in turn, been linked to recovery of native red 

squirrels Sciurus vulgaris. Taking the opportunity presented by a conservation 

translocation of pine martens from Scotland to Wales, we investigated the short-

term effects of exposure to translocated martens on the space use and survival 

of resident grey squirrels. Grey squirrel range size and daily distance travelled 

increased significantly with increasing exposure to martens but we found no 

effect of marten exposure on the recapture probability (i.e. apparent survival) of 

the sampled squirrels within the study timeframe. This is suggestive of 

contemporary non-lethal effects changing the ranging or foraging regimes of 

squirrels, due either to predator avoidance and/or earlier lethal effects associated 

with a reduction in intraspecific competition. Synthesis and applications. Our 

evaluation mimics the conditions experienced by grey squirrels at the front edge 

of natural recovery of pine marten populations and presents the first direct 

evidence that pine marten translocations could play an influential role in the 

dynamics of invasive non-native grey squirrel populations. Translocations of 

native predators, undertaken primarily for biodiversity conservation, could 
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therefore find additional application in managing the ecological and economic 

impacts of invasive non-native prey. 

 

 

Introduction 

 

The direct effects of a predator on its prey are often obvious, however indirect 

effects can play an equally influential role on prey demography and distribution 

(Brown, Laundre, & Gurung 1999; Preisser, Orrock, & Schmitz, 2007). In a 

‘landscape of fear’, cues to predator activity can elicit behavioural changes in prey 

species (Laundré, Hernández, & Altendorf, 2001; Suraci, Clinchy, Dill, Roberts, 

& Zanette, 2016) that manifest in anti-predatory behaviours, including 

modifications of space use, that often come at the expense of foraging and 

reproduction (Heithaus et al., 2007; Suraci et al., 2016). Regulation of prey 

populations, their behaviour and ecosystem impacts, can stem from fear-

mediated responses (Jacob & Brown, 2000; Ripple & Beschta, 2004). Raccoons 

Procyon lotor, for example, exert impacts on potential prey animals by reducing 

the time they spend foraging (Suraci et al., 2016). Prey animal fitness can also 

be linked to anti-predator responses; Green turtles Chelonia mydas generally 

avoided areas of high tiger shark Galeocerdo cuvier predation risk, but those in 

poorer body condition took greater risks to exploit areas of higher forage quality. 

These condition-dependent decisions affected not just turtle fitness but extended 

to alteration of seagrass community composition (Heithaus et al., 2007). Thus, 

fear of predators not only affects fitness of prey but can also result in trophic 

cascades with ecosystem effects. 

Diversity in the responses of prey animals to their predators (Parsons et al., 2017) 

is related to the forms that cues to predation risk can take. These range from 

direct evidence of predator presence through sounds and scents (Apfelbach, 

Blanchard, Blanchard, Hayes, & McGregor, 2005; Suraci et al., 2016), to the 

association of risk with particular habitat types (Heithaus et al., 2007; Lima et al., 

1985). The variability and complexity of non-lethal effects of predation and 

predator presence can therefore make the relatively simple concept of a 

landscape of fear difficult to demonstrate or quantify, particularly when lethal and 

non-lethal effects co-occur (Polis, 1991). 
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The direct and indirect effects of predators upon their prey may result in 

comparable population effects, i.e. reduced abundance of prey animals, and so 

patterns observed at landscape scales might not distinguish mechanistic drivers. 

By investigating the mechanisms underlying observed patterns relating the 

distributions and abundances of predators and their potential prey at finer 

temporal and spatial scales, we might predict and understand landscape scale 

trends (Levin, 1992). This study therefore takes advantage of a unique situation 

in which predator abundance, and hence the risk environment of prey animals, 

has been manipulated and monitored on a fine scale. 

The manipulation of predator-prey relationships has long been used as a method 

of population control. In some circumstances, biological control agents provide a 

‘natural’ method of managing problem species, reducing the need for ongoing 

human interventions (Atkins, Redpath, Little, & Amar, 2017; Wanger et al., 2010). 

However, the introduction of predators has often led to unexpected outcomes, 

many of which have been detrimental to non-target, native species (Doody et al., 

2009; Parkes & Murphy, 2003; Simberloff & Stiling, 1996). Although the use or 

restoration of native predators to control non-native prey is relatively untested, it 

has potential in invasive species control. In North America the native blue crab 

Callinectes sapidus limited the abundance and range of the introduced European 

green crab Carcinus maenas through predation (DeRivera, Ruiz, Hines, & Jivoff, 

2005), while in Indonesia, the endemic Celebes toad Ingerophrynus celebensis 

negatively affected invasive ant Anoplolepis gracilipes populations through 

predation, thereby enhancing native ant abundance (Wanger et al., 2010). In 

these cases, the density of the native predator was an important factor in their 

impact on the invasive prey. More importantly, the differing evolutionary histories 

of native predator and invasive prey have resulted in a spectrum of ineffective 

anti-predatory responses by naïve prey, from failure to recognise predation risk 

to anti-predatory responses that do not enable predator evasion (Salo et al., 

2007; Sih et al., 2010; Wanger et al., 2010). 

The recovery of the native pine marten Martes martes in the U.K. and Ireland, 

after an extended period of decline and near-absence (Langley & Yalden, 1977; 

Sainsbury et al. 2019), has been hailed as an advance in controlling invasive non-

native grey squirrel Sciurus carolinensis populations (Sheehy & Lawton, 2014; 

Sheehy, Sutherland, O’Reilly, & Lambin, 2018). Grey squirrels are classified as 
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a pest in the UK due to the damage they cause to timber through bark-stripping 

(Kenward & Parish, 1986), as well as competing with, and spreading infection to, 

native red squirrels Sciurus vulgaris (Rushton et al., 2006). In regions of Ireland 

(Sheehy & Lawton, 2014) and Scotland (Sheehy et al., 2018) where pine martens 

have been recovering for a substantial period and now live at high, medium and 

even low densities, grey squirrel populations have been negatively affected. The 

resulting lower densities of grey squirrels have in turn been associated with 

increases in red squirrel populations, thereby indirectly linking pine marten 

recovery to that of red squirrels. To date, the mechanistic basis of these 

observations remains unknown. Where they co-occur, grey squirrels, along with 

other native squirrel species, feature in the diets of both the American marten 

Martes americana and the ecologically and taxonomically similar fisher Pekania 

pennanti (Arthur et al., 1989; Hales, Belant, & Bird, 2008). However, range 

overlap between grey squirrels and these arboreal mustelid predators is 

somewhat limited and the grey squirrel thus largely evolved in an environment 

containing primarily terrestrial and aerial predators, and has been exposed to 

arboreal mustelids at only the limits of their native range. It might be expected 

that grey squirrels are therefore unlikely to demonstrate effective anti-predatory 

responses to arboreal mustelids in either their native or non-native ranges. As a 

result, this prey species population is likely to suffer directly from the native 

predator’s recovery. Understanding the grey squirrels’ response to perturbations, 

such as introducing a novel predator, is therefore important in predicting the 

impact of increasing pine marten populations on the future status of grey squirrels 

in their non-native range. 

The translocation of pine martens as part of a species reinforcement program has 

created a unique opportunity to investigate the responses of resident, non-native 

grey squirrels to the arrival of native but newly establishing pine martens. By 

simultaneously tracking martens and squirrels we were able to record how the 

distribution of the martens influenced the spatial behaviour of the squirrels. We 

predicted that in areas experiencing higher pine marten activity, grey squirrels 

would 1) occupy restricted home ranges, due to increased vigilance and reduced 

foraging or roaming behaviours which are associated with the presence of other 

predators (Lima et al., 1985) 2) show little shift in the location of their home range 

and 3) move less per day in order to reduce their encounter rate with martens by 

restricting their ranges, as suggested by findings from Sheehy & Lawton (2014). 
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We would also expect grey squirrels to 4) exhibit lower survival, when compared 

to squirrels in areas with lower pine marten density as a result of direct predation.  

 

 

 

Materials & Methods 

The study was undertaken in Mid-Wales, UK in six similar broadleaf (>80% 

broadleaved trees) and mixed broadleaf (>50% broadleaved trees) woodland 

compartments (National Forest Inventory, 2016) (Fig. 4.1, Table 4.1). In all 

compartments there was minimal understorey and a closed canopy. Tree species 

composition on all sites was similar, comprising mature beech Fagus sylvatica, 

sessile oak Quercus petrea and silver birch Betula pendula, interspersed with low 

numbers of conifer trees, comprising European larch Larix decidua and lodgepole 

pine Pinus contorta. The study compartments were surrounded by large blocks 

of similar commercial conifer woodland (comprising >80% coniferous trees) and 

marginal upland farmland, largely comprising semi-improved and unimproved 

grasslands. Sites were selected based on their similarity in habitat, i.e. primarily 

broadleaf woodland with relatively open understorey, which was a favourable 

habitat for grey squirrels and their proximity to marten release sites. The six 

compartments had a mean area of 32.9ha (Range 17.9-77.0ha) and were >3km 

apart. Given the mean range size of grey squirrels in the U.K. is <5ha (Gurnell et 

al., 2001; Lawton & Rochford, 2007; Wauters et al., 2002), each compartment 

was assumed to host independent populations (Fig. 4.1). Grey squirrels had been 

established in this area of mid-Wales for over 60 years (Lucas, 1997) and the 

sites had no record of grey squirrel culling, through trapping or poisoning, in the 

last 20 years. The nearest population of native red squirrels was 20km to the 

south.   

Between September and December 2015, squirrel traps were positioned on the 

ground and pre-baited for seven days before being set for 7-12 days and checked 

every morning and evening. Trap density was approximately 0.9 per hectare, with 

an average of 24 traps per woodland (Table 4.1). Adult squirrels were tagged 

with a subcutaneous passive integrated transponder (PIT: Avid Identification 

Systems Inc.) to enable identification on recapture. Adult squirrels over 500g 

were fitted with collars equipped with GPS loggers (modified i-gotU GT-120, 
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MobileAction Technology, Taiwan) configured to record locations at hourly 

intervals and VHF beacons (Biotrack, UK) to enable confirmation of residency 

and recovery of the GPS unit by recapturing the squirrel after three weeks. GPS 

units successfully recorded between 5 and 24 days (SE 0.9 days) of movement 

data. A subsample of trapped individuals were collared (87%), remaining 

individuals were only tagged and juveniles, or individuals below 500g were 

excluded from all tagging or collaring. Locations taken within one hour of collar 

application (Delehanty & Boonstra, 2009) and 12 hours before collar removal 

were removed from the dataset. As a further part of data cleaning, individual 

points recorded further than 2km from the edge of the trapping woodland block 

were considered spurious and removed (n = 12 of 8598 points). This 

conservatively allowed for movement out-with woodland patches based on 

evidence that when woodland habitat is unavailable, or during dispersal, squirrels 

have been found to remaining within approximately 400m of the nearest habitat 

patch (Stevenson et al., 2013).  

 

 

Figure 4.1. Locations of pine marten release sites and grey squirrel trapping 

sites in mid-Wales. Release sites are shown as red dots and grey squirrel 

trapping sites 1-6 as hatched areas. Insert shows location in Wales. Woodland is 

indicated in green. 
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Between September and November 2015, 20 pine martens were trapped in the 

Scottish Highlands, equipped with VHF radio collars (Biotrack, Wareham) and 

transported to three release sites in Wales (Fig. 4.1). They were, held individually 

in soft release pens for up to 5 days, released, tracked and located 1-7 times per 

week for up to 10 months following release. Locations were triangulated from 

bearings using LOAS 4.0 (Ecological Software Solutions). Bearings that did not 

converge were excluded. Systematic scat surveys, undertaken as transects 

between 2011 and 2015, had found no evidence of pine martens in the region 

and the translocated martens were considered to be the only ones in the area 

(Macpherson et al., 2014).  

 

Squirrel ranging 

We derived four measures of squirrel ranging; home range (90% Kernel Density 

Estimate – KDE, as used by Borger et al., 2006) and core range (50% KDE) sizes 

(km2), daily distance travelled (km) and home range centroid shift (m). Range 

sizes were calculated using the R package ‘adehabitatHR’ (Calenge, 2006) using 

reference smoothing parameter ‘h-ref’ (Borger et al., 2006; Laver & Kelly, 2008). 

We ensured there were sufficient data for all squirrels to have reached the 

asymptote of a home-range area curve before including them in analysis (Laver 

& Kelly, 2008) and one squirrel was consequently excluded (see Supporting 

Information). We checked for spatial autocorrelation by plotting the semi-variance 

of location positions against time lag between each location using the R package 

‘ctmm’ (Calabrese, Fleming, & Gurarie, 2016; Fleming et al., 2014). Variograms 

were visually inspected to ensure they reached an asymptote and there was no 

observable patterning. None displayed spatial autocorrelation and all were 

retained. 

The mean daily distance (km) travelled was estimated using ‘distm’ in the R 

package ‘geosphere’ (Hijmans, Williams, & Vennes, 2017) by summing the 

straight-line distances between consecutive locations across the whole of the 

squirrel’s collaring period. Home range shift (Janmaat, Olupot, Chancellor, Arlet, 

& Waser, 2009) was the Euclidean distance (m) between the centroids of the 

home ranges in the first and last weeks of tracking using gCentroid (R package 

‘rgeos’; Bivand, Rundel, Pebesma, Stuetz, & Hufthammer, 2017).  
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Marten exposure  

For each squirrel, we extracted locations of all pine martens during the same 

monitoring period, plus the week prior to account for exposure before squirrels 

were collared. Marten locations were used to create a density surface (Sims, Witt, 

Richardson, Southall, & Metcalfe, 2006) using the package ‘adehabitat’ (Calenge, 

2006). The surface comprised grid cells (100x100m) and the size and 

composition of the grid remained constant. The kernel density estimates of 

marten locations were then generated using increasing bandwidth resolutions (h) 

of 0.5, 1, 2 and 3km which enable the effect of one point to extend through more 

adjacent cells, with increasing bandwidth size (see Appendix 1). The home range 

of each squirrel was then mapped onto its matched marten density surface. The 

underlying marten densities in each cell within this squirrel range were then 

extracted and summed to give the total ‘marten exposure’ (martens per km2) for 

each squirrel. The number of individual martens present in the whole landscape, 

i.e. the number of animals that had been released by the start date of individual 

grey squirrel monitoring, was calculated to account for the increasing likelihood 

of a squirrel-marten encounter over time. 

 

Apparent survival 

We estimated apparent survival for squirrels in relation to pine marten exposure 

at each woodland site, rather than at an individual squirrel level, as some PIT 

tagged squirrels were not collared, preventing the calculation of marten exposure 

for these individuals across their home range. We used a measure of recapture 

probability as a proxy for squirrel survival. The encounter histories for all PIT 

tagged squirrels were used and individual apparent survival was scored as 1 if 

an individual was caught in both the first and second trapping period, and 0 if it 

was only caught in the first. Trapping duration and interval between trapping 

periods were unequal. To make sites comparable, we sampled, with 

replacement, 5 days on which trapping occurred. This was the lowest duration of 

trapping in one period at one site. We resampled 1000 times and calculated the 

proportion of iterations that each individual had an apparent survival of 1. For 

every squirrel we had an indication of its likelihood of being recaptured in the 

second trapping period, if a) it was captured in the first trapping period and b) had 

that trapping period lasted 5 days. Marten exposure was estimated as above, but 

in this analysis we used the maximum grey squirrel home range size recorded 
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over the entire study area (25.5 ha), centred on the centroid of the squirrel trap 

line. This was taken as the most conservative characterisation of marten 

exposure for each woodland. 

 

 

Statistical analysis 

To test the effect of marten exposure on grey squirrel ranging, we fitted a series 

of generalised linear models to three responses: home range (90% KDE) size 

(ha), core range (50% KDE) size (ha), and mean daily distance travelled (km). 

Response variables were log-transformed to normalize their distribution and 

models used a Gaussian error structure. We included sex of the squirrel, marten 

exposure and number of martens as fixed effects and included the interaction 

between sex and marten exposure. All explanatory variables were standardised 

to have a mean of 0, and SD of 0.5 (for continuous variables). Sex was rescaled 

to have a lower value of -0.5 and upper value of 0.5 (Gelman, 2008). Each of 

these models was fitted four times using the estimates of marten exposure 

calculated at the four spatial bandwidths. One squirrel had exceptionally high 

levels of marten exposure and on close inspection of a Cook’s distance plot, this 

individual had high leverage and was removed from analyses (see Supporting 

Information for analyses including this outlier). We evaluated the performance of 

models using Akaike’s information criterion corrected for small sample size 

(AICc) and all models within ∆AICc ≤ 2 of the top model were included in the top 

model set (Burnham & Anderson, 2004).  Model selection used the package 

‘MuMIn’ (Barton, 2018). Full model averages were then used to identify main 

explanatory variables and generate effect sizes and 95% confidence intervals 

(Burnham & Anderson, 2004; Grueber, Nakagawa, Laws, & Jamieson, 2011). If 

95% confidence intervals of variables did not overlap zero, variables were 

deemed significant. The relative importance (RI) of each variable within the top 

model set was also used. The explanatory power of full averaged models was 

then estimated using a likelihood-ratio based pseudo-R2 where a value of 1 

represents 100% of variance explained by the model. 

 

Apparent survival analysis 

A high number of squirrels were not recaptured in the second trapping period, 

resulting in zero-inflated indices of apparent survival. Therefore we used a zero-
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inflated beta-binomial Bayesian model to test the relationship between marten 

exposure and apparent survival. This approach simultaneously fits two processes 

to the data, one that models whether apparent survival is zero or not, and another 

which models survival if greater than zero. Models were fitted in ‘stan’ (Carpenter 

et al., 2017) using the R package ‘brms’ (Burkner, 2015). Marten exposure was 

a fixed effect. Parameter values were estimated using Markov-chain Monte-Carlo 

(MCMC) methods, using ‘brms’ defaults for priors and initial values. Four chains 

were run for 2000 iterations of which 1000 were discarded as burn-in. MCMC 

chains for all parameters converged (R-hat<1.01) and had an effective sample 

size greater than 2000. From the remaining MCMC chains, we calculated the 

mean estimate and 95% credible intervals. The statistical significance of the 

effect of all model parameters was determined by the 95% credible interval not 

overlapping zero. 

 

Ethical statement 

This study was approved by the University of Exeter Animal Welfare and Ethical 

Review Board and licenced by the Home Office, Scottish Natural Heritage and 

Natural Resources Wales. 

 

 

Results 

A total of 53 individual squirrels were collared over a 90 day period, 37 of which 

were recaptured, 16 collars were not recovered due to VHF antenna damage, 

animals dispersing, collars detaching in inaccessible dreys or mortality of animals 

in areas where they could not be relocated. Eight recovered collars could not be 

used due to GPS logger loss or failure. Ranging data from 29 squirrels (18F and 

11M) were therefore suitable for analysis. These squirrels were tracked for a 

mean duration of 16 days (SE 0.9 days, range 5-23) and the mean number of 

locations per individual was 265 (SE 17, range 82-437). Mean home range (90% 

KDE) was 10.4ha (SE 1.1ha) and the mean core range (50% KDE) was 2.0ha 

(SE 0.2ha). Models of space use included 28 squirrels, after exclusion of an 

outlier (Tables 4.2 & 4.3, Fig. 4.2). When marten exposure was considered at 

larger scales (h≥2000m; Table 4.1) but not at a finer scale (h≤1000m), home and 

core ranges increased significantly as marten exposure increased (Table 4.3; Fig. 

4.2). The daily distance travelled was also significantly and positively related to 



 100 

marten exposure (Tables 4.2 & 4.3), though this effect was only detectable at 

larger spatial scales (h≥1000m). There was a significant interaction between sex 

and distance travelled at the 1000m bandwidth. Males showed increased daily 

distance travelled with higher marten exposure, whereas females did not (Tables 

4.2 & 4.3, Fig. 4.3). There was no significant effect of marten exposure on shift in 

home range centroids (Table 4.3) at any spatial scale, though exposure was 

retained in the top model set and model estimates were consistently positive, 

providing some suggestion that greater marten exposure may be associated with 

greater shifts in range centroids. Sex was retained in all top model sets as a main 

effect, though it did not appear to account for significant differences in range size 

or shifts. Survival analysis included 61 PIT tagged squirrels that were captured 

four times on average (SD 2.7, range = 1-11); 16 squirrels were captured only 

once. The number of consecutive trap days at sites ranged from 5-17 and the 

mean interval between the first and second trapping period was 37 days. There 

was no significant effect on apparent squirrel survival of exposure to martens for 

either the zero inflated (Estimate = 0.19, 95% credibility interval = -0.19-0.66) or 

beta-binomial (Estimate = -0.05, 95% credibility interval = -0.15-0.08) parts of the 

model and the 95% credible intervals overlapped zero for both estimates. 
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Figure 4.2. Relationships between grey squirrel home range sizes and pine 

marten exposure (martens/km2). Home ranges are 90% Kernel Density 

Estimates (KDEs). (a)-(d) represent the different bandwidths used (500, 1000, 

2000 & 3000m) in calculation of marten exposure. Panels on the right show 

example maps of the pine marten density surface at each bandwidth for an 

individual squirrel with its 90% home range represented by a black cross. Darker 

colours represent higher marten density and thus higher levels of exposure 

experienced by an individual squirrel in that location. 
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Figure 4.3. Effect of variation in exposure to translocated pine martens on 

daily distance travelled by grey squirrels. Sexes respond differently to pine 

marten exposure, male squirrels are shown as blue triangles and females as red 

circles. Pine marten exposure (martens per km2) is calculated using a bandwidth 

of 1000m.   
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Table 4.1. Description of the six woodland compartments used for grey 

squirrel trapping and the number of squirrels caught and used in analyses. 

 

  

Site Compartment 
Area (ha) 

No. of 
traps 

Trap 
density 

No. of 
individual 
squirrels 
trapped 

Nearest 
marten 

release pen 
(km) 

No. of 
squirrels in 

analysis (M:F) 

Dominant 
tree species 

1 17.9 36 2.02 8 0.7 1:1 F. sylvatica 
B. pendula 

2 25.7 22 0.86 8 0.4 0:8 F. sylvatica 
P. contorta 

3 77.0 25 0.32 10 2.6 3:2 F. sylvatica 
P. contorta 

4 30.5 18 0.59 10 5.0 3:3 F. sylvatica 
Q. petrea 
L. decidua 

5 23.5 19 0.81 10 6.7 2:1 F. sylvatica 
Q. petrea 
L. decidua 

6 22.8 24 1.05 15 8.9 1:3 F. sylvatica 
L. decidua 
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Table 4.2. Summary of models of variation in exposure to introduced native 

pine martens upon the space use of invasive non-native grey squirrels. Full 

averaged models include terms from models in the top model set, where ∆AICc 

≤ 2. Terms in the averaged models included the effect of variation in local density 

of translocated pine martens within the squirrel home range (exposure), the 

number of martens that had been released into the landscape (martens), squirrel 

sex and an interaction exposure*sex. For each squirrel behaviour variable, four 

models were run; one for each pine marten kernel bandwidth used to estimate 

marten density (500, 1000, 2000 and 3000m). Significant effects are where 95% 

confidence intervals do not cross zero (see Table 4.3) and are shown in bold. R2 

represents the likelihood-ratio based pseudo-R-squared value for the model. 

Response Marten 
bandwidth (m) 

Full averaged model  R2 

Core range 
(50% KDE) 
  
  
  

500 sex + martens + exposure 0.147 

1000 sex + martens + exposure 0.207 

2000 sex + martens + exposure 0.402 

3000 sex + martens + exposure 0.626 

Home range 
(90% KDE) 
  
  
  

500 sex + martens + exposure 0.100 

1000 sex + martens + exposure 0.148 

2000 sex + exposure 0.327 

3000 sex + exposure + exposure*sex 0.636 

Daily Distance 
travelled (km) 
  
  
  

500 sex + exposure + exposure*sex 0.213 

1000 sex + exposure + exposure*sex 0.385 

2000 sex + exposure + exposure*sex 0.308 

3000 sex + exposure + exposure*sex 0.314 

Centroid Shift 
  
  
  

500 sex  0.058 

1000 sex + exposure 0.073 

2000 sex + exposure 0.132 

3000 sex + exposure 0.153 
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Table 4.3.  Effects of variation in exposure to introduced native pine martens upon the space use of invasive non-native grey 

squirrels. For each behavioural variable, four models were run; one for marten exposure (martens/km2) calculated at each pine marten 

kernel bandwidth (500, 1000, 2000 and 3000m). Estimates of effect sizes are from Generalised Linear Models (Table 4.2). For each squirrel 

space use metric the averaged standardised effect size across the top model set, lower and upper 95% confidence limits and relative 

importance (RI) of marten exposure is shown at each kernel bandwidth size. NR indicates pine marten exposure was not retained in the 

top model set. In one instance (daily distance, bandwidth 1000m), results are given for males and females separately because the effect 

of variation in marten exposure significantly interacted with the effect of squirrel sex (Figure 4.3). 

Kernel 
bandwidth 

Mean marten 
exposure 

(martens/km2) 
Core (50%) range Home (90%) range Daily distance travelled (km) Centroid shift (m) 

 Estimate 
Confidence 

Limits 
Relative 

importance Estimate 
Confidence 

Limits 
Relative 

importance  Estimate 
Confidence 

Limits 
Relative 

importance Estimate 
Confidence 

Limits 
Relative 

importance 

500m 0.007 ± 0.003 0.03 -0.20, 0.26 0.45 0.03 0.18, 0.24 0.2 0.10 -0.13, 0.32 0.6 NR - - 

1000m 0.014 ± 0.004 0.29 -0.25, 0.83 0.66 0.18 -0.25, 0.62 0.6 
(M) 1.03 
(F) 0.28 

0.41, 1.66 
0.09, 0.47 

1 
1 

0.05 -0.32, 0.42 0.18 

2000m 0.025 ± 0.005 0.66 0.27, 1.05 1 0.56 0.21, 0.90 1 0.25 0.01, 0.42 1 0.24 -0.46, 0.94 0.46 
3000m 0.028 ± 0.004 0.83 0.51, 1.14 1 0.76 0.48, 1.03 1 0.25 0.05, 0.45 1 0.29 -0.46, 1.04 0.52 
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Discussion 

 

Using the unique opportunity presented by a conservation translocation of pine 

martens, our study sheds light on some of the likely processes underlying the 

landscape-scale responses of non-native prey, grey squirrels, to the return of a, 

native predator (Sheehy & Lawton, 2014; Sheehy et al., 2018). We found that, 

contrary to our predictions of diminished ranging, squirrel range size and daily 

distance travelled increased with increasing exposure to the novel predator. We 

found that male and female grey squirrels increased the daily distances they 

travelled to different extents in response to marten exposure, potentially reflecting 

the typical wider ranging behaviour of males (Gurnell et al., 2001). An increase 

in ranging behaviour may be a strategy utilised by squirrels to enable them to 

tolerate and respond to marten exposure without shifting their home range 

location. These differences in space use were observed over even brief time 

periods, during which new martens were still being released into the area, 

suggesting that the impact of pine martens in a landscape may be manifest 

almost immediately after their reintroduction to, or dispersal into, the region. Our 

results complement the observations of landscape-scale negative correlations 

between grey squirrel abundance and pine marten presence (Sheehy & Lawton, 

2014; Sheehy et al., 2018). Contrary to expectations, particularly in view of the 

observed behavioural changes, we saw no relationship between squirrel survival 

and marten exposure. Perhaps this is unsurprising given the relatively short time 

frame and small sample size, resulting in a small chance of detecting differences 

in mortality rates. 

 

These findings might be interpreted in a number of ways. First, we could infer that 

pine marten presence does not directly affect the behaviour of surviving grey 

squirrels but that the observed changes are driven by changes in intraspecific 

competition. This may be a result of pine marten predation of grey squirrels in 

surrounding areas, prior to the study, or of un-monitored individuals, which in turn 

has changed the territorial and social environment for surviving individuals. 

Alternatively, there may be an immediate, fear-mediated response, contrary to 

the prediction arising from Sheehy et al.’s (2018) models, which suggested grey 

squirrels were naïve to the presence of pine martens. In this scenario, we propose 
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that grey squirrels are able to detect and identify the martens as a threat and 

consequently change their behaviour. This change could be permanent or plastic, 

resulting in either long-term population level changes or merely temporary 

behavioural changes which, after an initial period of disruption, return to ‘normal’. 

The presence of such a landscape of fear would suggest that the prey species 

exposed to this novel threat then used the landscape differently to individuals not 

facing the new threat, or changed their behaviour in areas of high perceived 

predation risk (Apfelbach et al., 2005; Jacob & Brown, 2000; Rosell, 2001). Due 

to the timing of this study we are only able to compare grey squirrel behaviour 

across a spectrum of exposure to newly introduced martens, as opposed to a 

clear before-after-control-impact design. While the distribution and movement of 

prey can be dramatically altered by the presence of a predator (Heithaus & Dill, 

2006), the temporal and spatial scales at which these changes occur depends 

upon the system being studied. Valeix et al. (2009) found that African herbivores 

displayed varying spatial and temporal habitat shifts in response to lion predation 

risk; grazers had limited habitat providing their required resources and did not 

alter their distribution while browsers altered their distribution to encompass the 

available alternative feeding habitats. In the face of high predation risk, a trade-

off is made between resource acquisition and safety from predation (Lima et al., 

1985) and these trade-offs may occur on a small scale, through behavioural 

changes while feeding (Laundré et al., 2001; Suraci et al., 2016), and on a large 

scale, through spatial expansions and shifts to alternative feeding areas 

(Heithaus & Dill, 2006;  Maillard & Fournier, 1995; Valeix et al., 2009). The 

findings of our study are consistent with the latter of these responses, suggesting 

squirrels are extending, rather than shifting, their ranges in response to predation 

risk. The duration of such behavioural responses is thus also important to 

consider. Behavioural plasticity may allow for a temporary change in squirrel 

space use during a time of novel perturbations, but a return to ‘normal’ ranging 

behaviour once this novel predator becomes ‘familiar’ (Bateman & Fleming, 

2014). Such plastic or habituation responses in squirrels have been 

demonstrated by fox squirrels Sciurus niger across urban and rural gradients 

(Mccleery, 2009).  

 

One explanation for differences in space use by squirrels is a change in range 

utilisation and foraging regime. Behaviour may be altered for the avoidance of 
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predation in time (Griffin, Griffin, Waroquiers, & Mills, 2005), space (van Beest, 

Vander Wal, Stronen, Paquet, & Brook, 2013) or both. Some species under 

elevated risk of predation display higher vigilance and reduced time spent 

foraging at a particular location (Heithaus & Dill, 2006; Laundré, et al., 2001; 

Maillard & Fournier, 1995; Valeix et al., 2009). Here, with increasing predation 

risk and reduced foraging returns, the trade-off between safety and resource 

acquisition becomes biased towards safety (Laundre et al., 2001; van Beest et 

al., 2013; van der Merwe & Brown, 2008; ). Consequently, increased vigilance 

and movement would likely reduce time foraging at single patches and increase 

the number of patches exploited, elevating the daily distance travelled between 

patches and range sizes.  

 

Squirrel range size is a function of season, habitat quality and density of 

conspecifics (Lawton & Rochford, 2007; Wauters et al., 2002) and the link 

between marten density and quality of grey squirrel habitat warrants attention. It 

is conceivable that, within the ostensibly similar habitats of these six woodland 

compartments, martens selected habitats that were poor for grey squirrels. In 

such a scenario, squirrels that were resident where martens spent more time 

would require larger home ranges to acquire sufficient resources. Studies of 

marten habitat preference suggest that woodland was preferred over other locally 

available habitats, such as grassland, though this preference was not tied to 

woodland type but to structural complexity and cover within the woodland; 

moreover, marten habitat selection operates at a scale that is an order of 

magnitude, or more, greater than that for squirrels (Caryl, 2008 & 2012; 

Pereboom et al., 2008). Grey squirrels show preference for mixed broadleaf 

forests (Gurnell et al., 2001; Kenward, 1986) and our study sites were selected 

on this basis. The habitats surrounding the broadleaf and mixed broadleaf 

woodland compartments of our study, were predominantly grasslands and mixed-

age conifer plantation, interspersed with areas of clear-fell and dense 

understorey, where we would expect to find naturally low densities of grey 

squirrels. Marten habitat preference might nevertheless be influencing squirrel 

density in surrounding habitats and thus altering the overall squirrel population 

dynamics through a change in population density and composition. Incorporation 

of fine-scale habitat composition in future assessments of grey squirrel and pine 

marten ranging may shed some light on the potential for such relationships. The 
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effect of season and the associated reproductive and dispersal behaviours of 

squirrels may play a role in variation in space use as squirrels might display 

different ranging behaviours in the latter months of the year, towards the end of 

the period of this study. Our analyses suggest that the effects of marten exposure 

were independent of sex effects, except in one model of daily distances, where 

there was a significant interaction between sex and exposure. In relation to 

dispersal, the tracked animals were resident during the observation period, and 

we have shown that they did not shift their range centroids. Thus, reproductive 

and dispersal behaviours are unlikely to have introduced a systematic bias with 

respect to variation in marten exposure. Again, future work at appropriate spatial 

and temporal scales could consider the potential for effects on dispersing animals 

as well as residents. 

 

The impact of marten exposure on grey squirrel space use was calculated over 

a range of different spatial scales, by using different bandwidths for marten 

ranges (Fig. 4.2) to capture the high mobility of the predator (Caryl, 2008; 

Zalewski et al., 1995) and effectively “allow” the effect of pine martens to be felt 

over a wider area. Pine marten ranges are highly variable, depending on habitat 

quality and conspecific density (Powell, 1979) and are likely larger for 

translocated animals that are exploring new landscapes. As models incorporated 

the greater potential extent of pine marten influence (through increasing 

bandwidths), we identified a more consistent effect on squirrel behaviours. 

 

This study presents an initial insight into the fine-scale, short-term effects that a 

recovering native predator can have on its invasive, non-native prey. Our results 

suggest that even shortly after translocation and while living at low densities, pine 

martens affect grey squirrel behaviour. However, exact timing of onset, duration 

and persistence of such changes remains unknown. We utilised a conservation 

translocation to simulate the natural range expansion of recovering marten 

populations and their use as a native agent of biological control. Our main 

methodological approach was not that of a capture-mark-recapture (CMR) study, 

therefore the trapping periods were not consistent across sites, and so larger 

studies of density and survival across habitat types may provide an insight into 

direct, lethal effects of marten presence. There is now a need to understand the 

wider implications of such behavioural changes for grey squirrel populations over 
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longer time periods and whether this might help explain the downstream 

consequences for red squirrel populations described in Ireland and Scotland 

(Sheehy et al., 2014, Sheehy et al., 2018) and for forestry economics. The re-

establishment of martens may alter the abundance, behaviour and/or distribution 

of grey squirrel populations, not only in initial stages, as shown here, but over 

longer time periods, as shown in Ireland and Scotland. 
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Chapter 5: Behavioural responses of resident non-native grey 

squirrels Sciurus carolinensis to the presence of translocated 

native pine martens Martes martes 

 

Abstract 

 

Predators can influence the dynamics of their prey by direct, usually lethal, and 

indirect, usually non-lethal, mechanisms. Risks of predation can alter the 

behaviour of prey animals, and spatial variation in such risks can create a 

‘landscape of fear’ in which predators can have heterogeneous effects on prey 

fitness. We have investigated the impact of a translocated native predator, the 

pine marten Martes martes, on the behaviour of the invasive non-native grey 

squirrel Sciurus carolinensis. Using a giving-up density (GUD) framework and 

observations of squirrel behaviour, we compared the foraging behaviour of grey 

squirrels at paired feeding stations, near to and distant from trees, in woodlands 

with and without translocated pine martens. The volume of food remaining in 

feeding trays at the end of foraging periods was measured to determine when 

squirrels ‘gave-up’ foraging under these different conditions of risk. We found that 

the proportion of trays fully depleted by squirrels was significantly lower overall 

and trays had significantly more food remaining after a foraging session, in 

woodlands where pine martens were present than in those where they were 

absent. This suggests a fear-mediated response to increased predation risk. 

Squirrels did not show any differences in their foraging at trays near to or distant 

from trees, but exhibited differences in fear-associated behaviours in these 

locations, with such behaviours increasing with time near to trees and decreasing 

with time far from trees. This suggests that predation risk in woodlands is driven 

by multiple factors such as and the threat of predation by other species as well 

as the pine marten. Differences driving variation in food consumption, such as 

vigilance or head-down behaviours, could not be detected in behavioural 

observations, but we conclude that differences in when squirrels ‘gave-up’ 

foraging are the result of a pine marten avoidance strategy. Reductions in 

foraging time in woodlands with resident pine martens may have detrimental 

impacts on grey squirrel fitness. We have demonstrated that the impacts of pine 

martens on grey squirrels extend beyond direct predation into non-lethal, fear-
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mediated effects. Furthermore, fear in predator-prey interactions might be 

incorporated into management strategies for pest species and considered as part 

of feasibility studies for predator translocations.  

 

 

 

Introduction 

 

The structure and function of communities are influenced by predator-prey 

interactions (Lima 1998). Predation is regarded as a key driving force of 

community level population dynamics, though in some cases the non-lethal 

effects of predators can be greater than the direct effects of predation (Lima & 

Dill 1990; Brown 1999; Brown et al. 1999; Creel & Christianson 2007). When 

faced with the risk of predation, prey animals often have to prioritise safety over 

other activities such as reproduction and foraging. The trade-off between 

ensuring safety and undertaking other activities could result in reduced energy 

intake, reduced reproductive effort or increased predation risk (Brown et al. 

1999). This in turn may have a negative impact on the overall fitness and 

demography of prey that can be comparable at a population level to the lethal 

effects of predation (Lima & Dill 1990; Brown et al. 1999; Lima & Bednekoff 1999; 

Creel & Christianson 2007). Quantifying the non-lethal effects of predators, and 

the ‘landscape of fear’ (Brown 1999) that they create, is thus key to understanding 

the role of fear in predator-prey relations. 

 

The ‘landscape of fear’ created by the presence of a predator can not only 

influence behaviour and demography of prey animals, but also the wider 

ecological community, indicating its potential as a tool in wildlife management 

(Creel & Christianson 2007; Laundré et al. 2014). Practical applications of the 

landscape of fear have been demonstrated experimentally through the 

manipulation of apparent predation risk in order to manage nuisance species. For 

example, the negative impacts of raccoon Procyon lotor foraging on lower trophic 

levels in the absence of predators was decreased using the playback calls of 

larger carnivores in the form of domestic dog Canis lupus familiaris barks (Suraci 

et al. 2016). Importantly, the role of fear will only remain impactful if associated 

with true experience or risk of predation. Creation of a true ‘landscape of fear’ 
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requires behavioural conditioning, in which the suggested presence of a predator 

is associated with exposure to, or attack by that predator. This has been 

demonstrated in the use of Harris’ hawks Parabuteo unicinctus to reduce the 

abundance of the pest species, Egyptian geese Alopochen aegyptiaca on golf 

courses. The vigilance displayed by remaining geese continued to be higher in 

the presence of hawk-associated vehicles even when hawks were absent (Atkins 

et al. 2017). Although scarce, it is clear from studies that have manipulated the 

‘landscape of fear’ that it could be exploited in an applied setting, with significant 

implications for both management and conservation.  

The complexity of interactions involved in the ‘landscape of fear’ has meant that 

design, implementation and demonstration of fear and its effects as a tool in 

wildlife management, as opposed to behavioural research, is challenging. When 

fearful, there are a variety of anti-predator strategies that might enable prey 

animals to persist, by altering the areas that they use or the way they behave. In 

some instances, prey animals improve their risk perception and become 

habituated to the presence of particular predators and threats (Deecke et al. 

2002; Rodriguez-Prieto et al. 2009). Studies have also found physiological 

changes in prey animals such as an increase in stress hormones (Sheriff et al. 

2010) or reduction in reproductive hormones under increased predation risk 

(Boonstra et al. 1998; Creel & Christianson 2007). Alternatively, anti-predator 

behaviours can comprise a shift in range away from areas or times where 

predators are present to avoid peak predator activity (Moreno et al. 1996; Lima 

& Bednekoff 1999; Jacob & Brown 2000; Heithaus & Dill 2006; Gehr et al. 2017). 

These avoidance strategies may not always be possible and individuals may 

have to make a trade-off between resource acquisition and safety (Brown 1999). 

Safety can be improved by an increase in vigilance (Brown 1988, 1999; 

Apfelbach et al. 2005; Watson et al. 2007), reduced handling time of food or 

foraging in a less exposed location (Brown 1999; Ripple et al. 2001; Brown & 

Kotler 2004). Although this may be beneficial over short time periods, increased 

vigilance detracts from other fitness-related activities and can be detrimental at 

an individual and population level (Brown 1999; Ripple et al. 2001; Creel & 

Christianson 2007; Watson et al. 2007).  
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Investigation of antipredation strategies can be undertaken through tracking 

studies, behavioural observations and foraging experiments. One approach used 

to quantify risk as perceived by animals is to use a ‘Giving-Up Density’ (GUD) 

framework (Brown 1988, 1999; Jacob & Brown 2000; Bedoya-Perez et al. 2013). 

The fundamental principle of this is that foragers will give-up feeding in a patch 

when food supply reaches a density, the GUD, at which the benefits gained from 

the food being received no longer outweigh the risk being taken to obtain it (Jacob 

& Brown 2000). This process of optimal foraging is a primary principle of the 

marginal-value theorem (Charnov 1976), which predicts that a forager will harvest 

a depletable resource patch for as long as the benefits outweigh the costs. These 

costs can include predation risk, food availability and physiological constraints 

(Bedoya-Perez et al. 2013), all of which can be manipulated, and the variation in 

GUD measured under an experimental framework. GUD studies use a depletable 

food resource, which is measured before and after a foraging bout. The GUD 

represents the density of food at which the animal ‘gives-up’ foraging and leaves 

the resource patch (Jacob & Brown 2000; van der Merwe & Brown 2008). Higher 

foraging costs are incurred when the threat of predation is high, foragers will quit 

patches sooner and the resulting amount of food left, i.e. the GUD, will be higher 

(Brown 1988). The decision of when to cease foraging therefore provides a 

valuable insight into prey animals’ perceptions of risk in their environment. GUD 

can be used to compare the risk of predation in different habitats and 

microhabitats. If two foraging patches have the same energetic value and 

foraging costs, any variation in GUD can be attributed to predation risk (van der 

Merwe & Brown 2008). This variation across an environment enables us to map 

animal perceptions of the ‘landscape of fear’ (Brown & Kotler 2004; van der 

Merwe & Brown 2008) and manipulation of this landscape therefore holds 

potential in establishing if there is a detrimental effect of predator presence on 

prey foraging behaviour. If these effects are detrimental at a prey population level, 

the role of predators could be incorporated into wildlife management strategies. 

 

A potential application of the ‘landscape of fear’ in wildlife management is in 

understanding the control of the invasive grey squirrel Sciurus carolinensis in the 

UK, through the restoration and recovery of a native carnivore, the pine marten 

Martes martes. Grey squirrels are widely perceived by people as a pest species, 

responsible for disease transmission to native red squirrels Sciurus vulgaris 
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(Rushton et al. 2000; McInnes et al. 2006) and tree damage (Mayle et al. 2009), 

and as a result there is significant ecological and economic interest in their 

eradication. Following recent studies in Ireland and Scotland (Sheehy & Lawton 

2014; Sheehy et al. 2018), the pine marten has been identified as a potential 

influence upon the distribution and abundance of grey squirrels. Surveys found 

increased pine marten density and long-term residency were correlated with grey 

squirrel declines and, in turn, with higher numbers of red squirrels (Sheehy & 

Lawton 2014; Sheehy et al. 2018). The direct causes of these changes in relation 

to marten presence have yet to be fully understood. Squirrels of both species are 

known prey of the pine marten (Ben-David et al. 1997; Putman 2000; Sheehy et 

al. 2014, Chapter 3), and though not generally their primary food source, squirrels 

will be consumed opportunistically and are therefore at risk of predation (Putman 

2000; Sheehy et al. 2014, Chapter 3). The use of predators as biological control 

agents is a method typically utilised to control pest species (Symondson et al. 

2002; Paz et al. 2013). Lethal control of grey squirrels, although capable of 

limiting populations at local scales, has been largely unsuccessful in reducing the 

density and spread of the species at a national level, in part due to a combination 

of challenges of funding and logistics as well as inconsistent culling practices on 

a local and regional scale (Schuchert et al. 2014). However, grey squirrel 

management continues to be widespread (Mayle et al. 2007; Schuchert et al. 

2014). The control and reduction of UK grey squirrel populations nevertheless 

remains a major challenge for both conservationists and foresters that would 

benefit from additional and alternative approaches. The recent conservation 

translocation of the pine marten to mid-Wales (Macpherson 2014) presents a 

unique opportunity to investigate the roles of this native predator through not only 

lethal effects, but also the potential creation of a ‘landscape of fear’ for grey 

squirrels.  

Here, we aimed to determine whether pine martens create a landscape of fear 

for grey squirrels. We assessed the perceived predation risk through behavioural 

observation and quantification of foraging decisions made by grey squirrels using 

a standardised feeding experiment. We implemented a ‘Giving-Up Density’ 

(GUD) framework in combination with behavioural observations to quantify risk 

perception and response within different micro-habitats (foraging station level) 

and macro-habitats (woodland-level). The use of GUD studies on squirrels has 
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been successfully used to quantify local predation hazards, anthropogenic 

impacts and diet selection (Lima & Valone 1986; Bowers et al. 1993; Bowers & 

Breland 1996), however we have no understanding of how grey squirrels respond 

to pine marten predation risk in particular. Since squirrels are not social foragers, 

they generally rely on proximity to cover to evade predation (Lima et al. 1985; 

Newman & Caraco 1987; Bowers et al. 1993). Studies have shown that squirrel 

patch use varies as a result of predation risk (Newman & Caraco 1987), with 

areas near to cover being preferred, and therefore more heavily depleted, 

compared to sites distant from cover (van der Merwe & Brown 2008). We thus 

expected higher levels of food depletion (i.e. low GUD) and visitation in locations 

near to trees, with lower levels of fear-associated behaviours and vigilance 

(Arenz & Leger 2008). In woodlands where there were resident martens, we 

expected to see lower levels of food depletion (i.e. high GUD) and visitation, 

accompanied by high levels of fear-associated behaviour and high proportion of 

time spent vigilant (Brown & Kotler 2004).  

 

 

 

Materials & Methods 

 

Study area 

The study was conducted in May-June 2017 in six mixed broadleaf and conifer 

plantation woodlands in mid-Wales. Three sites were known to have pine 

martens present on the basis of radio-tracking translocated and released 

martens, camera trapping and/or scat collection, while three other sites had no 

such evidence of marten presence. Martens had been translocated as part of a 

pine marten recovery project, aiming to restore marten populations in Wales and 

England (Macpherson 2014). All martens in the region were recently translocated 

individuals that had been radio-collared for post-release monitoring. Populations 

of grey squirrels were well established across all woodland sites, and none of 

these woodlands had recent records of red squirrels. The distances between 

sites was between 2.5km and 17.5km, and the composition and structure of these 

woodlands was similar throughout, reducing the potential for spatial and climatic 

variation.  
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Giving-up density experiment 

Eight GUD feeding stations were established in the six woodlands (n = 48 

stations). Each station comprised a pair of trays (n = 96 trays), one in a ‘near’ 

location, at the base of a tree (mean ± SE = 25 ± 2cm from a tree, range = 3-

286cm) and one in a ‘distant’ location, in more open ground away from cover (356 

± 12cm from a tree, range = 129-883cm). The mean distance between trays, 

within a pair was 639cm ± 13cm and stations within a woodland site were at least 

30m apart. Each station comprised a plastic seed tray (L 38 x W 24 x H 5cm, 

approximately 4.6L) with a plastic-coated mesh grid of 5 x 5cm squares placed 

on top, which could be moved up and down but not removed, preventing foraging 

squirrels from kicking contents out of the tray. This also meant that foraging was 

made more difficult without having to increase the volume of foraging substrate. 

Bases of trays were perforated to enable drainage and were pinned to the ground 

using ground hooks to prevent tipping. Trays were left in-situ throughout the 

study. Prior to commencement of the study, feeding station sites were pre-baited 

for a minimum of seven days using peanuts, whole maize and cobnuts. These 

encouraged the squirrels to feed at these locations on the ground and were 

checked daily for signs of squirrel feeding. Three days prior to the study 

commencing, plastic trays used in the GUD study were filled with bait and left at 

the feeding station locations, enabling habituation by the squirrels to feeding in 

the trays and reducing neophobic responses that might influence GUD in the 

early days of the trial. A foraging mixture of peanuts and sieved, coarse sand was 

added to each tray on a daily basis. The mixture comprised 25g of whole peanuts 

mixed evenly into 2.5L of sand. Volumes were based on pilot studies and allowed 

for space below the tray brim, preventing sand from being kicked out during 

foraging. Foraging mixtures were added to trays before first light (at 

approximately 4am) prior to squirrels beginning to forage, and collected six hours 

later (at approximately 10am). The remaining foraging mixture from each tray was 

then sieved through a soil riddle (grid 1 x 1cm) to separate the remaining whole 

and large peanut fragments from the sand. The experiment was only undertaken 

on predominantly dry days, preventing water-logging of foraging stations and 

ensuring conditions were well suited to grey squirrel foraging.  
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Foraging behaviour observations 

All visitation by squirrels to the trays was recorded using motion sensitive infra-

red trail cameras (Bushnell Trophy Cam HD). These were set to record 60 second 

videos with a one second interval throughout the active hours of the study. The 

camera set-up was standardised at all trays. Cameras were mounted on wooden 

stakes 2m from the tray on a north-south axis, reducing glare at dawn. Videos 

recorded during each six hour session were watched to identify the number of 

visits made by a) squirrels and b) non-target species. The latter were retained 

and used in statistical models to account for food depletion not associated with 

grey squirrels (Bedoya-Perez et al. 2013). The number of videos containing 

squirrels was used as a proxy for squirrel visitation rate. Individual squirrels were 

not identified during this study and the GUD was attributed to the last squirrel to 

have foraged at that site. If the last forager observed was not a squirrel, then trays 

were excluded from the analysis as the GUD, which is determined by the last 

forager, was not representative of squirrel foraging. However an exception was 

made if the last foraging bout after a squirrel was made by a small passerine as, 

after close observation of videos, their impact on remaining food was deemed 

negligible. Sessions in which cameras malfunctioned and squirrel visitation could 

not be quantified were excluded from any analyses (n = 194). Only data for all 

trays meeting these inclusion criteria were used in GUD analysis (n = 286 

sessions), however video footage of all squirrel behaviour from all trays was 

included in behavioural analyses. 

 

Giving up densities (GUDs) 

Giving-up density was successfully recorded for 8 foraging stations with paired 

trays per day across six woodland sites for 5 days (n = 480 trays). Squirrel 

visitation could not be quantified at a number of trays (n = 78) due to camera 

malfunction and these trays were excluded from any analyses. Of the trays with 

full video footage (n = 402), those with a squirrel (n = 262) or a small passerine 

(n = 24) as the last forager to deplete the station were included in GUD analyses 

(n = 286). Trays that did not have small passerines or squirrels as the last forager 

(n = 116) were excluded from GUD analyses.  
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Videos were analysed by 13 trained observers using BORIS event-recording 

software (Friard & Gamba 2016) to identify foraging and vigilance-based 

behaviours. Behavioural categorisation was based on previous squirrel 

behavioural studies and initial observations of videos to ensure behaviours were 

distinct enough to categorise (Lurz et al. 2005; Makowska & Kramer 2007; Partan 

et al. 2010; Table 5.1). In each 60 second video, the duration of squirrel presence 

and the duration and/or frequency of behavioural states were recorded (Table 

5.1). Each video was treated as a separate observation for behavioural analyses 

since squirrels were not individually identifiable, however we address some of 

this non-independence in foraging analyses by including tray as a random factor 

in analyses. Videos with poor light levels were discarded as observations could 

not be made confidently. Continuous behaviours were grouped as either 

‘foraging-focussed’, predominantly head-down, or ‘vigilance-focussed’, 

predominantly head-up, behaviours (Table 5.1). The proportion of time spent 

performing these behaviours at each tray, each day, was then calculated by 

dividing the duration of these behaviours by the total time the squirrel was 

present. The number of ‘fear’-associated behaviours (Table 5.1) was also 

counted and summed for each tray each day. Videos were randomly allocated to 

observers and observations were carried out blindly. Between-observer 

consistency (inter-rater reliability, IRR; Hallgren, 2012) was estimated by 

comparing five selected videos that all observers watched to assess the level of 

agreement between observers. The intra-class correlation coefficient score of 

agreement generated was 0.98 (95% CI = 0.95 - 0.99), where 1 was 100% 

agreement. Therefore, we did not control for observer ID in analyses (Kaufman 

& Rosenthal 2009; Gamer et al. 2010; Hallgren 2012). 

 

Statistical Analysis 

We used generalised linear mixed models (GLMMs) to analyse variation in giving 

up densities and squirrel behaviour. Following Forstmeier and Schielzeth (2011), 

we report the full model due to all terms being of interest and the importance of 

non-significant results for our hypotheses. For all models, we estimated their 

explanatory power with Nagelkerke R2 as defined by Nakagawa and Schielzeth 

(2013), where the value (between 0 and 1) represents the proportion of variance 

explained by the fixed effects alone (marginal R2), as well as the fixed effects plus 

the random effects (conditional R2). Terms were deemed significant if 95% 
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confidence intervals did not cross zero. Nagelkerke R2 values were calculated in 

the package MuMIn (Barton 2018). All statistical analyses were performed using 

R version 3.5.2. 

 

We investigated variation in the giving-up density in a two-step process. First, we 

tested whether a tray had been fully depleted or not, scoring trays with 1 if they 

were fully depleted and 0 if there was food remaining after a foraging session 

(Depletion model). Depletion was modelled using a GLMM with a Binomial error 

distribution. Second, we tested what affected the volume of food remaining in 

trays that were not fully depleted (GUD model). GUD was log-transformed and 

modelled using a linear mixed model (LMM) with Gaussian errors using the ‘lme4’ 

package (Bates et al. 2015) to meet assumptions of homoscedasticity and 

normality of residuals. Both depletion and GUD models contained explanatory 

variables of marten presence (present or absent), location (near or distant), day 

(1-5), and all possible two-way interactions (Table 5.2). Day was centred to assist 

in model output interpretation. The number of videos that contained non-target 

species was also included as a covariate to control for any additional effect on 

food depletion. Random effects of tray ID, nested within site, were also included. 
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Table 5.1. Description of squirrel behaviours recorded during foraging. 

Individual behaviours are categorised into Foraging-focussed – predominantly 

head-down behaviours, Vigilance-focussed – predominantly head-up behaviours 

and Fear-associated behaviours for behavioural analyses. 

 

  

Behaviour Description 

Foraging behaviours 

Foraging 

 

Head below plane of shoulders. Squirrel is looking for 

food/digging. May be caching food. 

Sitting eating Bipedal eating: head is above plane of shoulders. Sitting, 

body motionless, head or eyes may be scanning. Sitting 

or standing on hind legs holding food and eating or 

chewing. 

Quadrupedal eating Head is at or above plane of shoulders. On all fours or 

three legs with one leg raised chewing. Body motionless. 

Head or eyes may be scanning. 

Vigilance behaviours 

Bipedal vigilance 

 

Stops current behaviour, on hind legs, not manipulating 

food/chewing. May be holding food in hands or in mouth 

but not chewing. May be raised on hind legs. 

Quadrupedal vigilance Stops current behaviour, head above plane of shoulders, 

four legs on ground, sometimes one front leg is raised. 

May be holding onto edge of tray with one or more limbs. 

Grooming Scratches or grooms self. 

Fear-associated behaviours 

Tail flag 

 

Tail waved with high vigour, longer duration, above the 

axis of the back, usually up over the head, involves most 

of the tail in movement. 

Foot stamping Shifts from foot to foot. 

Retreat Sniffs tray but backs away or moves in direction not 

towards tray. 
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Table 5.2. Variables used to explain squirrel foraging behaviours and 

predictions of how they will affect giving-up density and behaviours 

undertaken. 

Predictors Levels Prediction 

Marten 

presence 
Present/ Absent 

The presence of pine martens in the woodland 

will affect the volume of food consumed and the 

behaviours displayed in trays due to different 

risk of predation in each location 

Location Near/ Distant 

The location of the tray near to or distant from a 

tree will affect the volume of food consumed and 

the behaviours displayed in trays due to 

different levels of risk in each location 

Day  Day 1-5 

The day of experiment (1-5) will affect the 

volume of food consumed and the behaviours 

displayed in trays due to habituation to feeding 

in trays over time 

Marten 

presence x 

Location 

Present + Near, 

Present + Distant, 

Absent + Near, 

Absent + Distant 

The location of the tray near to or distant from a 

tree combined with the risk of pine marten 

predation (marten is present/absent) will affect 

the volume of food consumed and the 

behaviours displayed in trays due to different 

levels of risk and predation in each location 

Marten 

presence x 

Day 

Present + Day 1-5, 

Absent + Day 1-5 

The presence of pine martens in the woodland 

will affect the volume of food consumed and the 

behaviours displayed in trays due to different 

risk of predation in each location, however this 

will vary with time due to habituation to feeding 

in trays 

Location x Day 
Near + Day 1-5, 

Distant + Day 1-5 

The location of the tray near to or distant from a 

tree will affect the volume of food consumed and 

the behaviours displayed in trays due to 

different levels of risk in each location, however 

this will vary with time due to habituation to 

feeding in trays 
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Behaviour while foraging 

We then constructed four behavioural models. We first tested what influenced the 

number of visits to a tray (Visitation model) with the number of squirrel videos 

recorded per tray per day as a proxy for visitation rate. We then analysed the 

number of fear-associated behaviours displayed (Fear model) and the proportion 

of time spent undertaking ‘foraging-focussed’ and ‘vigilance-focussed’ 

behaviours (Foraging and Vigilance models respectively). All four models 

contained marten presence, location, day, and all possible two-way interactions 

as fixed effects (Table 5.2) and nested random effects of tray ID within site. 

Visitation and Fear models were negative binomial GLMMs modelled using the 

‘lme4’ package (Bates et al. 2015), with the Fear model containing an offset to 

account for the total time that the squirrel was present (log-transformed duration 

of squirrel presence; Francis et al., 2018). Day was centred in both models. A 

high number of squirrels displayed either no foraging or no vigilance during their 

foraging bouts resulting in zero-inflated behaviour proportions. Foraging and 

Vigilance models therefore comprised zero-inflated beta-binomial models. These 

models simultaneously fit two modelling processes, one which models if the 

squirrel performed the behaviour or not, and one which models the proportion of 

time spent doing that behaviour if it was greater than zero. Zero-inflated beta-

binomial models contained the full set of explanatory variables (fixed and random 

effects) in both parts of the model. Zero-inflated beta binomial models were fitted 

using Bayesian inference in ‘stan’ (Carpenter et al. 2017) using the R package 

‘brms’ (Burkner 2015). Parameter values were estimated using Markov-chain 

Monte-Carlo (MCMC) methods, using ‘brms’ defaults for the priors and initial 

values. Four chains were run for 2000 iterations of which 1000 were discarded 

as burn-in. MCMC chains for all parameters converged (R-hat<1.01) and had an 

effective sample size greater than 2000. From the remaining MCMC chains we 

calculated the mean estimate and 95% credible intervals. The statistical 

significance of the effect of all model parameters was determined by the 95% 

credible interval not overlapping zero.  
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Results 

 

Giving-up densities (GUDs) 

 

The proportion of trays that were fully depleted differed between sites with and 

without pine martens. 29 trays were fully depleted across the entire study, 22 of 

these were in sites without martens. At sites where martens were not found, the 

proportion of trays that were fully depleted increased with the day of experiment. 

All model estimates are presented in Table 5.3. At sites with martens, the 

proportion of fully depleted trays was lower overall (estimate averaged over time 

= 0.05; 95% Confidence Interval [CI] = 0.0004 - 0.09) than sites without martens 

(estimate averaged over time = 0.16; 95% Confidence Interval [CI] = 0.11 - 0.21). 

The proportion of trays fully depleted changed differently through time where 

martens were present compared to where they were absent. Full depletion 

decreased with time in the presence of martens (slope = -0.03, 95% CI = -0.06 - 

0.00; Table 5.3; Fig. 5.1a), whereas in sites without martens, depletion increased 

with time (slope = 0.05, 95% CI = 0.01 - 0.08; Table 5.3, Fig. 5.1a). The marginal 

R2 for the global Depletion model was 0.15, increasing to 0.22 when the variation 

explained by tray and site effects was included. 
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Table 5.3. The effect of pine marten presence, location in relation to cover, and day of experiment on squirrel foraging behaviours. 

The baseline of ‘Marten’ is marten absence and the baseline of ‘Location’ is distant from cover. Models (Generalised Linear Mixed Models – 

GLMMs) comprise Depletion: the proportion of trays that were fully depleted, GUD: the volume of food remaining after the last individual has 

foraged, Visitation: the number of visits to each tray and Fear: the number of fear behaviours displayed at each tray. The values provided comprise 

the model estimate with the 95% confidence interval in parentheses. Below the dotted line are results of zero-inflated beta binomial models where 

the values comprise the model estimate (lower 95% credible interval, upper 95% credible interval). Models comprise Vigilance: was vigilance 

behaviour performed (Y/N) and if it was, what proportion of time was spent vigilant, and Foraging: was foraging behaviour performed (Y/N) and 

if it was, what proportion of time was spent foraging. The explanatory power of models is detailed by the marginal R2, representing the proportion 

of variance explained by the main effects of the model. The conditional R2 which incorporates the variance explained by the random effect is 

given in parentheses.

Model Predictors   

  Marten Location Day Marten x 
Location 

Marten x Day Day x Location R² (R²c) 

Depletion -1.79 (-3.74, -0.16) 0.19 (-0.87, 1.24) 0.28 (-0.22, 0.77) -0.25 (-2.50, 2.00) -1.35 (-2.26, -0.43) 0.24 (-0.43, 0.91) 0.15 (0.22) 

GUD 1.25 (0.10, 2.40) -0.05 (-0.78, 0.69) -1.09 (-1.38, -0.79) -0.16 (-1.15, 0.83) 0.85 (0.51, 1.20) 0.17 (-0.18, 0.51) 0.18 (0.49) 

Visitation 0.15 (-0.21, 0.50)  0.40 (0.12, 0.67) -0.005 (-0.10, 0.11) -0.31 (-0.67, 0.05) -0.07 (-0.19, 0.05) 0.02 (-0.10, 0.13) 0.03 (0.25) 

Fear 0.35 (-0.06, 0.77) -0.25 (-0.56, 0.06) -0.13 (-0.27, 0.01) -0.05 (-0.45, 0.36) -0.05 (-0.20, 0.09) 0.25 (0.12, 0.38) 0.08 (0.23) 

Vigilance (Y/N) 0.36 (-0.11, 0.84) -0.11 (-0.18, 0.40) -0.03 (-0.04, 0.10) 0.01(-0.23, 0.24) 0.02 (-0.05, 0.10) -0.06 (-0.13, 0.02) 0.06 

Vigilance  
(Proportion of time) 

-0.10 (-0.30, 0.09) -0.15 (-0.35, 0.06) 0.00 (-0.06, 0.05) 0.09 (-0.09, 0.25) 0.00 (-0.05, 0.06) 0.01 (-0.04, 0.07) 0.06 

Foraging (Y/N) -0.08 (-0.97, 0.75) 0.16 (-0.26, 0.59) 0.07 (-0.03, 0.18) -0.17 (-0.50, 0.18) 0.09 (-0.02, 0.20) -0.10 (-0.20, 0.01) 0.15 

Foraging  
(Proportion of time) 

0.11 (-0.09, 0.33) 0.04 (-0.13, 0.21) 0.0 (-0.04, 0.05) 0.04 (-0.10,-0.19) 0.01 (-0.04, 0.06) -0.01 (-0.06, 0.03) 0.15 



 129 

Of the trays not fully depleted (n=257), GUD ranged from 0.01-25g (mean = 

5.58g). At sites without martens, the GUD was lower overall (0.46g, 95% CI: 0.29-

0.72) compared to sites where martens were resident, where GUD was 

significantly higher overall (1.13g, 95% CI: 0.76-1.69). Marten presence also 

affected the relationship through time and where martens were present, the GUD 

declined rapidly with time (slope = -1.02, 95% CI: -1.32--0.72; n = 114) compared 

to where martens were absent and the GUD decreased less with time (slope = -

0.17, 95% CI: -0.45 -- 0.11; n = 143; Table 5.3; Fig. 5.1b). Whether a tray was in 

a location near to, or distant from a tree, and its interaction with other variables 

was not significant. The marginal R2 for the global GUD model was 0.18, rising 

to 0.49 when the variation explained by tray and site effects was included. 

 

Visitation 

There was large variation in visitation rates between trays (1-79 times in a single 

day). The visitation rate to trays near cover (18.5 visits per day, 95% CI: 15.6 - 

22.0) was significantly higher than that for trays further away (14.6 visits per day, 

95% CI: 12.2 - 17.5; Table 5.3). Visitation rate was not affected by the presence 

of absence of pine martens or the day of the experiment. There was a large 

amount of variance not explained by the model (marginal R2 = 0.03), however on 

inclusion of the random effects (tray nested within site) the model fit was improved 

(conditional R2 = 0.25; Table 5.3), suggesting this variable explains a large 

proportion of the variance. 

 

Behaviour while foraging 

After removal of unobservable footage, the number of one minute videos 

analysed was 9988, comprising 166 camera trap hours. The number of fear-

related behaviours ranged from 1-25 per minute. Initially, the number of fear 

behaviours were similar, however in distant trays, the number of fear behaviours 

declined with day of experiment (slope = -0.33, 95% CI: -0.54 - -0.11; Table 5.3; 

Fig. 5.1c). In near trays the number of fear behaviours increased slightly with day 

of experiment (slope = 0.18, 95% CI: -0.01-0.37; Table 5.3; Fig. 5.1c). Whether 

the site contained pine martens or not had no effect on the numbers of fear-

related behaviours displayed (Table 5.3). The Fear model did not explain a large 

proportion of the variation in fear behaviours (marginal R2 = 0.08), however the 

random effect of tray nested within site was important (conditional R2 = 0.23). 
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Within the Foraging model, the display of any foraging behaviours at all, namely 

foraging, sitting eating or quadrupedal eating, in one minute videos (zero-inflated 

portion of model) was unaffected by tray location, the day of experiment or marten 

presence or by the interactions between variables (Table 5.3). Furthermore, if 

squirrels were foraging, the proportion of time spent foraging (beta-binomial 

portion of model) was not explained by these variables (Table 5.3). The Foraging 

model was a reasonable fit to the data (Bayes-R2 = 0.15). The same was found 

within the Vigilance model with regards to non-foraging focussed behaviours, 

namely bipedal vigilance, quadrupedal vigilance and grooming, however this 

model explained the data less well (Bayes-R2 = 0.06; Table 5.3). 
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Figure 5.1. The effect of marten presence and tray location on grey squirrel 

foraging: a) The proportion of trays fully depleted when pine martens are absent 

(blue) versus when they are present (red) with day of experiment b) The Giving-

Up Density (g) when pine martens are absent (blue) versus when they are 

present (red) with day of experiment c) The number of fear-associated 

behaviours displayed per minute, in trays near to (green) and distant from 

(orange) trees, plotted against day of experiment- excluding trays where no fear 

behaviour was displayed. All plots comprise modelled outputs. Model fit is 

quantified by R2 values in Table 5.3. 



 132 

Discussion 

 

Pine marten presence was associated with a fear response by grey squirrels, 

reducing their depletion of provisioned food resources over time (Fig. 5.1). This 

is suggestive that a ‘landscape of fear’ exists, where the presence of a predator 

affects the behaviour of prey, in a way which is detrimental to prey fitness. 

However, this effect was not apparent in behavioural observations of squirrels 

during foraging bouts. Current evidence suggests that the presence of martens 

negatively impacts the population density of grey squirrels over large spatial and 

temporal scales (Sheehy & Lawton 2014; Sheehy et al. 2018). The process 

underlying this squirrel-marten relationship is still not fully understood and aside 

from direct predation (Chapter 3), it is possible that pine martens may shape the 

grey squirrels’ landscape of fear. Previous work on this squirrel population 

(Chapter 4) has demonstrated that in the presence of martens, grey squirrel 

range size and daily distance travelled is higher, which was suggested to be a 

predator avoidance strategy, combined with a reduction in grey squirrel density 

as an outcome of earlier predation.  

 

The proportion of fully depleted trays and the giving-up density (GUD) in relation 

to marten presence was found to interact with time. By the final day of the study, 

fewer trays were fully depleted by squirrels in sites where martens were resident 

(Fig. 5.1a). Of the trays not fully depleted, more food remained in sites where 

pine martens were present, i.e. GUD was higher overall (Fig. 5.1b). This reduced 

resource depletion in sites where martens had been reintroduced may result from 

a combination of lethal and non-lethal effects. As well as a potentially lower 

number of foragers due to direct predation (lethal effects; Chapter 3), squirrels 

may undertake shorter foraging bouts as they move around more to avoid 

predation (non-lethal effects; Chapter 4). As a result, less food would be 

consumed and the depletion of a food source would be expected to take longer 

(Brown 1999; Carthey & Banks 2018). Furthermore, predator detection 

strategies, such as vigilance, would be costly to food acquisition and drive the 

earlier quitting rate observed in marten-occupied sites. We therefore expected 

these fear-induced feeding modifications to be detectable in foraging footage. 

However, our behavioural observations did not find such differences. This may 

be a result of an inadequate video length (one minute) to capture the true 
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combinations of behaviours in full foraging bouts by single individuals. Vigilance 

periods themselves may not differ in relation to marten presence but their 

frequency might (i.e. interscan duration; Beauchamp and Ruxton, 2016; 

Bednekoff and Lima, 1998), an aspect that we were unable to measure due to 

each one minute video being treated as a separate observation. Alternatively, 

behavioural changes by squirrels in the presence of martens may be too subtle 

to detect in videos, particularly due to the categorisation of behaviours required 

for observations undertaken by multiple people. The laterally facing position of 

the eyes on squirrel species’ heads do not enable the determination of an 

individual’s gaze (Arenz & Leger 2008; Hirschler et al. 2016) and subtle changes 

in head and body position, not associated with traditional vigilance positions, may 

enable changes in predator detection (Arenz & Leger 2008; Fernández-Juricic et 

al. 2011).  

 

Food density has also been shown to influence the amount of foraging and the 

degree of vigilance displayed by foragers, regardless of predation risk 

(Beauchamp 2009). This can mask or confound risk effects at high food densities 

and only become apparent when food availability passes a lower threshold. In 

this study, the proportion of trays fully depleted at the start of this study was 

similar in woodlands with and without martens (Fig. 5.1a), potentially due to the 

appearance of patches of high food abundance during a time when natural food 

availability is low (Beauchamp 2009). Initially, squirrels may be trading-off safety 

for food acquisition, however this depletion was found to change differently with 

time in woodlands with and without martens (Fig. 5.1a & b). In marten occupied 

woodlands, this prioritisation of food appeared to decline with time. Here, food 

consumption may be traded for safety, demonstrated by fewer trays being fully 

depleted over time as predicted by the marginal value theorem (Charnov 1976). 

Habituation to feeding in trays may also contribute to this variation in GUD and 

depletion over time, suggesting that in woodlands without martens, habituation 

occurred much more rapidly (Fig. 5.1a & 1b). 

 

The presence of martens did not significantly affect the locations in which 

squirrels elected to forage (i.e. near to or distant from trees; Table 5.3). Tray 

location was, however, associated with higher numbers of fear behaviours early 

in the study, with more fear behaviours observed at trays distant from cover 
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during this period (Fig. 5.1c). In squirrels, tail flagging and foot stamping (Table 

5.1) are both behaviours linked to aggression and alarm, often associated with 

predator or intruder presence (Lurz et al. 2005; Digweed & Rendall 2009). In 

addition to the reintroduced pine marten, the red fox Vulpes vulpes and goshawk 

Accipiter gentilis, are important predators of grey squirrels in the UK, contributing 

to predation risk on the ground and from above respectively. The display of fear 

behaviours declined with time in distant trays and increased with time in trays 

near to trees (Fig. 5.1c), suggesting that there may be a degree of habituation 

occurring and that risk is perhaps realised at a different rate in near and distant 

trays. These fear-associated behaviours are likely driven by multifaceted 

predation risks from aerial, terrestrial and arboreal predators, therefore having no 

specific marten-associated effect on GUD.  

 

We found that fear of predation by pine martens is a likely factor in observed 

changes in the foraging behaviour of grey squirrels, suggesting that martens 

create a ‘landscape of fear’ for the grey squirrel. The reduction in foraging by 

squirrels may be a contributing element of the local (Chapter 4) and landscape 

scale (Sheehy & Lawton 2014; Sheehy et al. 2018) patterns observed, where 

grey squirrel movement is increased and densities are reduced in the presence 

of martens. In periods of low food availability for squirrels, the effects of reduced 

food consumption, driven by fear, may be accentuated. As a result, if squirrels 

are unable to acquire adequate resources prior to winter months and before bud-

burst in spring, their fitness may be compromised and a reduced level of survival 

may be observed. When combined with unexpected perturbations such as low 

temperatures, high levels of predation or disease outbreak (Gurnell 1996; Karels 

et al. 2000; Rushton et al. 2006), poor fitness can have significant effects on 

populations. When evaluating the prospect of pine marten impact on grey 

squirrels, this study demonstrates that their influence can extend beyond solely 

lethal effects. Fear of martens could therefore have an effect on squirrels at a 

population level over time (Suraci et al. 2016; Lurgi et al. 2018). The continued 

pressure of fear, and the resulting reduction in fitness, might also reduce the 

capacity of squirrel populations to recover after an intense culling event. A 

strategy that optimises low-level pressure on populations has been effective in 

invasive mammal control in Australia, as demonstrated on rabbits Orytolagus 

cuniculus (Wells et al. 2016), following a ‘press and pulse’ approach (Bender et 
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al. 1984; Lurgi et al. 2018). In the rabbit system, the ‘press’ was in the form of 

rabbit haemorrhagic disease or myxomatosis, putting long-term, low-level 

pressure on the population, and ‘pulses’ were periods of baiting and warren 

ripping, characteristic of unexpected perturbations (Lurgi et al. 2018). A similar 

multifaceted approach to squirrel control, which incorporates the non-lethal, fear-

related effects of martens as a background level ‘press’ on grey squirrel 

populations, could play a role in reducing the density of grey squirrels below a 

critical level. This could, in turn, limit disease risk for red squirrels (Rushton et al. 

2006), as well as decrease the amount of labour-intensive trapping and killing 

currently required. 

 

Understanding the impact of predator presence on the fine- and broad-scale 

behaviour of prey is important in teasing apart landscape-scale patterns in 

species distribution. The giving-up density framework removes the need to 

observe individual behaviour and provides a directly quantifiable comparison of 

foraging under different conditions. In this instance we demonstrate that the 

impact of pine martens extends beyond direct predation into non-lethal, fear-

mediated effects, altering grey squirrel foraging. With mounting interest in 

predator restoration in the UK and elsewhere, clarifying both lethal and non-lethal 

predator-prey processes is vital in predicting predator impacts. Here we have 

demonstrated that marten presence initiates a fear response in grey squirrels, 

however before widely advocating use of pine martens as a biological control 

agent, we should ideally understand the population-level impact of these fear 

induced changes. A reduction in grey squirrel density as a result of lethal and 

non-lethal effects may alter broad-scale population dynamics such as survival, 

reproduction, individual dispersal and immigration and this in turn may influence 

effects on bark-stripping behaviour and native red squirrels. Discovering the 

mechanisms, such as the role of fear, underlying predator-prey interactions can 

help conservationists manage expectations of stakeholders and develop 

strategies that enhance the effects of predator restoration. It is unlikely that 

predator restoration alone will be a ‘silver-bullet’ in invasive species eradication, 

however the lethal and non-lethal effects they introduce may both play a crucial 

part in any management framework. 
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Chapter 6: Discussion 

 

Overview 

 

Ecological restoration is a key component of worldwide conservation (Svenning 

et al. 2016). However, it is important that the processes underlying ecosystem 

function are understood before species and habitat composition are altered 

through human intervention. Carnivore restoration particularly, raises 

considerable interest and concern due to the potentially influential impacts that 

predators can have on ecosystems (Ritchie et al. 2012), and the social and 

economic effects this may have (Root-Bernstein et al. 2018). Although there are 

examples of carnivore restoration from North America (Estes & Palmisano 1974; 

Ripple et al. 2001) and Fennoscandia (Ludwig 2007), the re-introduction of 

carnivores is a relatively new strategy in the UK, but is now widely discussed, 

especially in the context of the reintroduction of charismatic apex predators. 

Currently, their restoration is still many years away. However, restoration of 

mesopredator populations is occurring naturally, by virtue of range expansion 

(Sainsbury et al. 2019), and the assisted re-colonisation and recovery of these 

species is a key priority in UK conservation (e.g. the European Unions’ Habitat 

Directive 1992). With this in mind, the restoration of pine marten populations in 

mid-Wales is an attempt to use translocation to restore one of these recovering 

carnivores at a regional level. Understanding the ecological impacts of this 

restoration at an individual and population scale is central to guiding future 

conservation planning for this species. Given the relationship that pine martens 

have displayed with the native and invasive squirrel species in this region 

(Sheehy & Lawton 2014; Sheehy et al. 2018), there was a need to further 

investigate the processes driving the landscape-scale patterns observed 

between them.  

 

This thesis investigates the potential mechanisms underlying the landscape-

scale declines in grey squirrel abundance that have been documented in areas 

with pine martens (Sheehy & Lawton 2014; Sheehy et al. 2018). I investigated 

the spatial and behavioural ecology of translocated pine martens and resident 

grey squirrels in mid-Wales using biotelemetry, dietary analyses and behavioural 

experiments. Specifically, I described the post-translocation movement of pine 
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martens introduced from Scotland to Wales, revealing that the presence of 

conspecifics can drive post-release movement patterns (Chapter 2). I 

documented pine marten diet before and after translocation and found that 

individual martens have a degree of dietary specialisation, which they retain after 

translocation. Furthermore, martens in their new environment in Wales have a 

more diverse diet, which includes grey squirrels (Chapter 3). I explored the 

impact of pine marten presence on grey squirrel space use and behaviour using 

telemetry techniques, finding that in areas where grey squirrels experienced 

greater levels of exposure to pine martens, squirrels had larger home ranges and 

moved around more on a daily basis (Chapter 4). Finally I constructed foraging 

experiments and undertook behavioural observations on grey squirrels, showing 

that in the presence of martens, grey squirrels abandoned foraging sooner and 

as a result their food intake was reduced Chapter 5). 

 

Here, I review the findings of my thesis in relation to the two main themes of this 

work: factors affecting the successful translocation and restoration of carnivores, 

and the potential role of predators in wildlife management, resulting from 

predator-prey interactions. I will discuss the implications of my work for future 

conservation and management planning and suggest further research that can 

build on the foundations provided in this thesis. 

  

Restoration  

 

Predator population restoration requires a number of considerations prior to 

implementation. Animals must be moved into appropriate locations comprising 

adequate habitat and a suitable prey base (IUCN/SSC 2013). The behaviour of 

translocated animals can reveal if feasibility studies and release site selection 

have appropriately addressed the requirements of the species (Letty et al. 2007). 

Such that the retention and survival of individuals at release sites would indicate 

the suitability of reintroduction sites with regards to habitat and prey availability 

(Armstrong & Seddon 2008). Translocation may even provide better habitat and 

prey conditions than found in the species’ source location. In Chapter 2 and 3, 

the translocation of martens from their core range in Scotland to an unoccupied 

part of their historic range in mid-Wales provided insight into the response of this 

species to translocation. These chapters revealed some of the factors influencing 
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movement, habitat and dietary selection of this recovering predator, as well as 

their potential impact on release site ecosystems. 

 

Reintroduction of the pine marten - Movement 

The ‘Pine Marten Recovery Project’ undertaken by the Vincent Wildlife Trust 

aimed to establish a population of martens in mid-Wales, which would facilitate 

the recolonization of Wales and western England by the species. The presence 

of conspecifics appeared to be an important aspect of translocation success and 

site residency, and is an important consideration for management and planning 

of future translocations. This translocation was undertaken in multiple phases 

(Chapter 2), allowing us to investigate the difference between individuals 

introduced into unoccupied regions (year one) and individuals introduced to areas 

where there were established populations (year two). Animals introduced in year 

two dispersed further from release sites but settled faster, suggesting that they 

used the social information provided by settled conspecifics in their settlement 

decisions. Therefore once a population becomes established in an area, further 

reintroductions to that area may become more straightforward and predictable, 

with the loss of individuals to long-distance dispersal events perhaps less likely 

(e.g. (Stamps 2001; Ward & Schlossberg 2004). This work demonstrates that 

phased introductions of wide-ranging, solitary mesocarnivores in large numbers 

is effective in reducing unnecessary loss of translocated individuals through 

dispersal and associated mortality. Post-release differences between cohorts is 

informative in not only how a species will behave when introduced into empty 

habitats (i.e. true reintroduction; IUCN/SSC 2013), but how individuals may 

respond to release into territories occupied by residual populations (i.e. 

reinforcement; IUCN/SSC 2013). When reintroducing solitary individuals, the 

species’ social system and individuals’ interactions with conspecifics are thus 

important to consider with regards to territoriality, competition and breeding.  

 

Reintroduction of the pine marten - Diet 

In Chapter 3 I investigated the dietary response of these martens to 

translocation. Although martens are considered to be generalist predators, 

individuals did show a degree of specialisation, retaining their relative trophic 

position across the translocation. This dietary specialisation however, was not 

limiting and overall, the translocated population of martens showed a broader 



 141 

dietary niche in Wales compared to Scotland. Source and release sites were 

broadly comparable with regards to habitat composition however the variation in 

diet would suggest a differing prey base. With regards to future marten 

reintroductions, these findings would suggest that perfect matching of prey bases 

and habitat types is not vital. At an individual level, the differing prey availability 

in the release area likely led to prey-switching by martens to readily abundant 

species to complement their dietary preferences, a characteristic of facultative 

specialists. The retention of such behavioural strategies after an environmental 

change such as translocation are important in buffering environmental variation, 

through flexibility, and also reducing competition between individuals, through 

specialisation. The degree of dietary specialisation demonstrated here, and its 

retention over a translocation event, also indicates the value of considering 

individual variation in reintroductions. The translocation of generalist species may 

focus on a group of animals and consider their overall responses (e.g. 

(Moehrenschlager & Macdonald 2003; Woodford et al. 2013; Spinola et al. 2018), 

however this group is comprised of individuals whose behavioural strategies and 

personalities may differ. Therefore, considering the effect of individual variation, 

such as dietary specialisation and behavioural traits, for example boldness and 

aggressiveness, can contribute to our understanding of post-translocation 

outcomes (Clobert et al. 2009).  

 

A further finding of this work was the prominence of grey squirrels in pine marten 

diet so soon after reintroduction to Wales (10% Frequency of occurrence). 

Confirmation of the lethal effect of marten re-introduction on grey squirrels 

provides support to previous suggestions that this recovering carnivore could play 

a role in pest management (Stockstad 2016; Hodgetts 2017). The role of native 

predator restoration in the reduction in invasive or abundant species has been 

documented in other systems such as recovery of otters and decline of invasive 

mink in England (McDonald et al. 2007), dingo suppression of invasive foxes and 

cats in Australia (Letnic et al. 2012) and wolf recovery leading to reduced 

distribution and density of elk in North America (Ripple et al. 2001).  

 

Reintroduction of other predators 

I focused on the pine marten, a recovering carnivore that is native to, and was 

resident in, the UK. However, the reintroduction of this species could be seen as 
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a gradual step towards quantifying the ecological and social feasibility of, and 

working out the most effective strategy for, apex predator reintroduction in the 

UK. The long-term success of conservation strategies require public support and 

acceptance. Without addressing the governance and social perception of 

conservation interventions, failure is likely, particularly with regard to 

controversial projects involving carnivores (Dickman 2010; Ritchie et al. 2012). 

Predator population restoration in the UK, and worldwide, is occurring at a greater 

frequency than ever before (Seddon 2010). This is partially driven by advances 

in captive breeding programmes, monitoring technology and better 

understanding of species requirements. The positive ramifications of predator 

reintroduction, such as pest control, can enhance public opinion and support for 

such projects, such that the proposed restoration of dingo populations in Australia 

for this purpose has been received with relative enthusiasm (van Eeden et al. 

2019). In Scotland, the social feasibility of the restoration of predators such as 

lynx and wolves has also documented a lower level of resistance than 

anticipated, with a main motivation of support owed to deer control (Nilsen et al. 

2007). However predator restoration does raise concerns regarding safety, 

economic loss and management (Kleiven et al. 2004). Nevertheless, attempts of 

predator restoration still continue and are partially driven by an increased drive to 

‘fix’ or ‘undo’ human-driven declines of predator populations and degradation of 

entire ecosystems (Scherer 1994; Sandom et al. 2013). This self-imposed 

obligation to return landscapes to a pre-disturbance state can lead to poor 

conservation decisions being made with little consideration of how much 

environments have changed (Jackson & Hobbs 2009). In a human-dominated 

landscape, it is unrealistic to expect that all species present prior to disturbance 

will behave and thrive in an identical manner when reintroduced. The correct 

social and environmental conditions must be in place for such restoration projects 

to be successful. Reintroductions, whether for species recovery alone or with the 

intention of restoring particular ecosystem processes, should be based on a solid 

understanding of both species-specific, and broad ecological requirements and 

impacts. The knowledge generated in this thesis contributes to our understanding 

of ecological processes occurring in a small part of a larger trophic cascade. 

Thus, the time scales of restoration projects, especially when involving long-lived 

predators, must be incorporated into planning as the positive and negative 

impacts of predator restoration may take many years to become evident. Even in 
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systems where reintroduced predators have become established (Estes & 

Palmisano 1974; Ripple et al. 2001), the cascading effects are still emerging and 

ecosystem dynamics and food webs continue to change (Pace et al. 1999; Ripple 

& Beschta 2012).  

 

 

Predator-prey interactions 

 

Cascading effects 

Predator restoration can have far-reaching impacts on ecosystems, and this can 

be manifest through different trophic cascades, across multiple spatial and 

temporal scales. These can be positive and negative. The impact of predators 

can, through a series of processes, alter vegetation structure and soil nutrients 

(Kardol & Wardle 2010) as well as alter predator-prey dynamics at various trophic 

levels (Ritchie et al. 2012). More recently, the trophic cascade concept has 

incorporated the impact of non-lethal effects of predator presence; the idea of 

prey species existing in a ‘landscape of fear’. The landscape of fear generated 

by predators can shape predator-prey dynamics as much as the lethal effects of 

predation (Laundré et al. 2010). Although the behaviour of sciurid species has 

been studied in a number of contexts relating to risk and fear (Lima et al. 1985; 

Partan et al. 2010; Jayne et al. 2015), the effect of pine martens has not yet been 

investigated. In Chapter 4 and 5 I quantified these effects of fear through studies 

on space use and foraging of grey squirrels in the presence of pine martens. 

 

In Chapter 4 I demonstrated that variation in levels of exposure to translocated 

pine martens did not affect apparent survival and home range location of grey 

squirrels, but was related to differences in ranging behaviour. With increasing 

exposure to martens, squirrel range size and daily distance travelled increased 

significantly, suggesting a reduced density and a change in ranging patterns by 

squirrels. I hypothesised that this may be driven by either predator avoidance 

(non-lethal effects) and/or competitive release as result of marten predation 

(lethal effects). Then, in Chapter 5, I showed that grey squirrels gave up foraging 

sooner in sites containing pine martens. This is likely a result of a trade-off 

between safety and resource acquisition, which is more prominent in marten-

occupied woodland. As a result, squirrels have a reduced energy intake, which 
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may be detrimental to fitness and survival at a population level. The conditions 

experienced by squirrels in this study are comparable to those at the front edge 

of natural pine marten recovery, where pine martens are occupying new habitats 

in low numbers and grey squirrel populations are well-established. In 

combination, Chapter 4 and 5 reveal the existence of a ‘landscape of fear’, where 

the presence of a predator alters the behaviour of its prey (Laundré et al. 2010). 

This landscape is manifest very shortly after marten introduction, even when 

these predators remain at low densities relative to established populations in 

Ireland and Scotland. Fear forms an important aspect of predator-prey dynamics 

and can drive substantial declines in prey populations, beyond those caused by 

lethal effects alone (Boonstra et al. 1998). Fear, and the stress hormones it 

produces, can have detrimental effects on reproduction and immune responses 

of species, potentially leading to reduced reproductive output (Sheriff et al. 2009) 

and increased disease susceptibility (Clinchy et al. 2013). The long-term 

ramifications of fear and reduced foraging displayed by grey squirrels in the 

presence of martens have yet to be investigated and studies into such 

physiological impacts, life-history consequences and the population-level 

implications may enable further predictions to be made about long-term grey 

squirrel dynamics in the presence of a recovering predator. 

 

 

Implications & future directions 

 

In this thesis I investigated the relationship between pine martens and grey 

squirrels to understand the processes driving landscape-scale spatial patterns 

(Sheehy & Lawton 2014; Sheehy et al. 2018). Although I did not find any 

immediate effects of martens on apparent grey squirrel survival, the presence of 

grey squirrels in marten diet (Chapter 3), changes in space use by grey squirrels 

indicative of reduced conspecific density and potential avoidance behaviour 

(Chapter 4) as well as reduced foraging behaviour in marten-occupied woodland 

(Chapter 5) would suggest that the influence of pine martens is multifaceted. 

There are a limited number of opportunities to study both the movement of 

reintroduced martens as well as the interactions between martens and grey 

squirrels together. It is therefore likely that modelling the behaviour, survival and 

movement of these species will be key to enhancing our understanding of grey 
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squirrel and pine marten interactions, as well as predicting pine marten 

movement following translocation. Using the data presented in this thesis to 

populate landscape-scale models of movement could be integrated into feasibility 

studies for future marten reintroductions. To further elucidate the relationship 

between the two species in question, I suggest a number of avenues of additional 

investigation which should be addressed: 1) better understanding of variation in 

grey squirrel survival, followed by 2) the use of marten presence as a tool in grey 

squirrel management, and, over longer time scales, 3) how any change in grey 

squirrel populations affects red squirrels and bark stripping. 

 

Grey squirrel survival 

The most pertinent question remaining to be answered surrounds the effect of 

marten predation, documented in Chapter 3, and reduced squirrel foraging, 

documented in Chapter 5, on grey squirrel survival. Although I used trapping data 

in a capture-mark-recapture (CMR) structure to quantify squirrel survival 

(Chapter 4), it is likely that the time period employed was too short to reveal any 

true effect sizes. A longer-term capture-mark-recapture (CMR) study would be an 

effective approach to reveal changes in survival in squirrel populations recently 

exposed to a known density of pine martens. While this may still be possible in 

Wales, it would be more insightful if undertaken prior to, and immediately 

following marten releases. Such a study may be more revealing if carried out 

during the upcoming marten reintroduction in the Forest of Dean (Gloucestershire 

Wildlife Trust in 2019). A study which incorporates squirrel survival as well as 

assessing physiological impacts of martens on squirrels could contribute to our 

understanding of the impact of both predation (Chapter 3) and fear (Chapter 5). 

A CMR study would reveal any changes in population composition with regards 

to sex and age, as well as reproductive output by individuals. Trapping of squirrels 

could also be used as an opportunity to assess grey squirrel physiology through 

body condition assessment and stress level measurement. These studies would 

reveal short and long term patterns which may be tied in to predation, movement, 

resource acquisition or a reduction in foraging demonstrated by squirrels in 

Chapter 3, 4 and 5. 
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Integrated pest management 

While it is perhaps unlikely that marten recovery could cause the eradication of 

grey squirrels, my results, combined with those of previous studies suggest that 

martens could play a role in an integrated approach to grey squirrel management. 

If combined with trapping and killing, reintroduction of martens may contribute to 

a sustainable and widespread effort to control grey squirrel numbers. Grey 

squirrel culling is, in general, socially undesirable (Morgia et al. 2016; Hodgetts 

2017, Dunn et al. 2018). The ‘control’ or killing of grey squirrels by humans is 

seen as intentional and ‘un-natural’, and killing for no purpose (e.g. not for 

consumption) is especially problematic (Crowley et al. 2018). Predation by the 

pine marten, conversely, is seen as a ‘natural’ process. By pairing the killing or 

reduction of grey squirrels with the recovery of a charismatic, native carnivore, 

the consequential eradication of grey squirrels is viewed in a more positive light 

(Hodgetts 2017; Crowley et al. 2018). Once the population-level impacts of pine 

marten lethal and non-lethal effects on grey squirrel populations can be quantified 

through survival studies, then trials of integrated management, which combine 

intensive trapping with low level marten predation, could be undertaken in 

experimental woodlands. This may facilitate greater social acceptability of grey 

squirrel eradication, allowing for more widespread management strategies and 

countrywide reduction in this invasive species. 

 

Long-term aims 

A second avenue of future investigation is driven by the over-arching aim of 

marten recovery in relation to grey squirrels. This is to i) facilitate red squirrel 

population recovery and ii) reduce tree damage. While the findings of this thesis 

do not directly address either of these aims, this work does represent the first 

step towards understanding the cascading effects of pine martens (Fig. 6.1). 

 

i) Red squirrel recovery 

Grey squirrel eradication is often discussed in the light of the conservation of the 

native red squirrel. With regards to the recovery of red squirrel populations, 

previous studies have suggested that reducing grey squirrels below a critical level 

may reduce disease transmission and competitive exclusion (Rushton et al. 

2006), enabling the red squirrel to recover in the absence, or intense 

suppression, of this invasive species (Wauters et al. 2002; Gurnell et al. 2004). 
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Where grey squirrel populations have been much reduced or eradicated, such as 

on the island of Anglesey, red squirrel populations experienced reduced 

competition and disease exposure (Schuchert et al. 2014).  

 

 

Figure 6.1. Potential trophic interactions with and without pine martens in 

the UK where a) shows the system when pine martens had been extirpated 

(1800’s onwards) and b) shows the potential system after pine marten recovery 

(1995 onwards). Solid arrows indicate documented responses, dashed arrows 

indicate predicted or inferred responses. Based on figure from Ripple & Beschta 

(2004). 

 

ii) Bark-stripping reduction 

Grey squirrels are also an important pest species for commercial forestry 

operations. The economic interest in grey squirrel eradication is therefore centred 

around a reduction in bark stripping and improvement of UK timber quality and 

production for commercial purposes (Kenward & Parish 1986; Crowley et al. 

2018). As yet, there lacks a clear driving force behind bark stripping behaviour 

(Kenward & Parish 1986), however when populations are above a certain density, 

bark stripping behaviour is thought to be initiated (Mayle et al. 2007). If bark 

stripping is driven by a nutrient deficiency (Moller 1983; Nichols et al. 2016), 

aggression (Mayle et al. 2007) and/or juvenile dispersal (Kenward & Parish 

1986), it is not clear how marten presence will affect this. If predation can reduce 

grey squirrel density but this in turn increases squirrel movement, reproduction in 
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the absence of competition, and/or dispersal into new territories (as suggested in 

Chapter 4), it is possible that conspecific aggression, a potential driver of bark-

stripping, may in fact increase (Kenward & Parish 1986). Alternatively, if bark-

stripping is driven by a lack of food, then the reduction in foraging demonstrated 

in Chapter 5, and potentially the resulting lack of cached nuts, may drive squirrels 

to increase bark stripping to access nutrient-rich tissues under tree bark in a time 

of food shortage (Gurnell 1996). There is great appeal in the potential role of pine 

martens in the reduction of tree damage via grey squirrel control (Crowley et al. 

2018), with various organisations now funding projects to support the 

reintroduction of this species. There are however, many steps between pine 

marten recovery and reduction in tree damage (Fig. 6.1). Each of these steps 

occurs over very different spatial and temporal scales (Fig. 6.1). If the anticipated 

cascading effects do arise, a tangible difference in timber quality may not be 

manifest for a number of decades. Therefore, if the recovery of martens is to be 

utilised as a tool in grey squirrel control, marten populations must remain self-

sustaining in the long-term. 

 

Concluding remarks 

 

The restoration of wolves to Yellowstone National Park is often referred to in 

studies investigating cascading effects and the landscape of fear. This is 

unsurprising given its encapsulation of the fundamental processes involved in 

ecosystem restoration. The Yellowstone study system demonstrates the 

progressive understanding of trophic cascades, from landscape scale patterns 

(Ripple et al. 2001), to predator-prey interactions (Ripple & Beschta 2003, 2004), 

to the consequences of such dynamics across entire food webs (Ripple & 

Beschta 2003, 2004, 2012; Halofsky & Ripple 2008; Ripple et al. 2014; Newsome 

& Ripple 2015). Cascading effects of predators are complex and can be 

expressed differently across ecosystems. The time scales required for the 

manifestation of predator impacts can vary substantially and, if the Yellowstone 

system represents a framework of investigation into trophic cascades, the 

exploration of the pine marten – grey squirrel dynamic is still in its early phases. 

Downstream consequences of predator restoration can only be predicted to a 

certain extent, but studies such as in this thesis can improve our knowledge of 

the ecological processes occurring at each step. My findings form a foundation 
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from which to advance our understanding of the cascading effects of pine marten 

recovery on grey squirrel population dynamics and consequently, red squirrel 

recovery and tree damage via interactions with grey squirrels. Without the 

knowledge of marten responses to translocation and reintroduction, and the 

resulting impacts they have on grey squirrels, it would not be possible to move 

forward in our investigation and understanding of this complex system. As plans 

for pine marten restoration across other parts of the UK continue, building on the 

information and interactions revealed in this work will help to construct a true 

understanding of the cascading effects instigated by the recovery of this 

charismatic small predator.  

 

Restoration of ecosystem processes through predator reintroduction is an 

exciting field of research. The return of species such as the grey wolf and sea 

otter to North America stand as testimony to the success and wide-reaching 

positive impacts of such restoration attempts. We should therefore be 

encouraged and motivated that restoration of elements of ecosystems through 

predator reintroduction might be possible in the UK, but such projects should 

continue to be undertaken with caution, patience and most importantly, robust 

scientific evidence. 

  



 150 

  



 151 

Appendices 

 

Appendix 1: Methodological details of pine marten exposure 

calculation (Chapter 4) 

 

Methods 

Marten exposure calculation 

The influence of martens and their potential ranging extent was investigated over 

a range of spatial scales to understand how far-reaching their effects may be on 

prey (Levin 1992; Borger et al. 2006). Multiple smoothing parameters (500m, 

1000m, 2000m & 3000m) were used to represent an increasing spatially-diffuse 

effect of martens. As the smoothing bandwidth (h) increases, we were ‘allowing’ 

the effect of the martens to extend further beyond the point at which they were 

located. By rasterising pine marten data across different spatial scales we were 

able to provide a range of estimates of pine marten exposure (density and 

distribution) when their precise locations generally remained unknown. Pine 

marten home ranges vary dramatically in size and have been shown to range 

from <1-8km2 (Balharry 1993; Caryl 2008) subject to habitat quality and 

conspecific density, therefore these smoothing parameters represent a 

conservative estimate of ranging extent. The lowest parameter (500m) is thus 

close to the range extent of a grey squirrel and the upper parameter (3000m) is 

similar to that of many female martens. Absolute marten and squirrel locations 

could not be matched on a daily basis due to mismatch in the temporal and spatial 

resolution of location information from tracking each species (i.e. hourly locations 

from squirrels versus daily or weekly locations of martens). ‘Marten exposure’ 

therefore represents the potential marten density to which individual squirrels 

would be exposed over a period of approximately three weeks, the approximate 

duration of their tracking period 
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Results 

 

Analyses including outlier 

One individual had exceptionally high levels of marten exposure due to its 

residency adjacent to marten release pens, and was excluded from main text 

analyses due to its high leverage. Models were re-run including this individual 

(n=29). Results of analyses can be found in Table S1.1 & 1.2 and Fig. S1.1. The 

inclusion of this male squirrel did not change the overall significance of marten 

exposure on squirrel movement metrics at large spatial scales of marten extent 

(2000 and 3000m). However, an interaction between sex and marten exposure 

was found at 3000m, with male squirrels range sizes being larger than females 

at high levels of exposure (Table S1.1 & S1.2; Fig. S1.1). 

Figure S1.1. Effect of variation in exposure to translocated pine martens on 

home range size of grey squirrels. Sexes respond differently to pine marten 

exposure, male squirrels are shown in blue and females in red. Pine marten 

exposure (martens per km2) is calculated using a bandwidth of 3000m. One male 

had exceptionally high levels of exposure and was not included in analyses in the 

main text. 
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Table S1.1. Effects of variation in exposure of grey squirrels to translocated 

pine martens on grey squirrel ranging behaviours. Calculated used the full 

dataset (n=29), one male had exceptionally high levels of exposure and was not 

included in analyses in the main text. For each behavioural variable, four models 

were run; one for marten exposure (martens/km2) calculated at each pine marten 

kernel bandwidth (500, 1000, 2000 and 3000m). Effect sizes are from 

Generalised Linear Models. For each squirrel space use metric the averaged 

standardised effect size and relative importance (RI) of marten exposure in top 

models (lower and upper 95% confidence limits) is shown at each kernel 

bandwidth size. Light shading indicates a significant relationship between squirrel 

behaviour and marten exposure as the 95% confidence interval did not cross 

zero. NR indicates pine marten exposure was not retained in the top model set. 

Dark shading indicates marten exposure also had a significant interaction with 

sex. In this instance, the main effect of marten exposure is given first, followed 

by that of the interaction. 

 

 

 

 

 

 

 

  

Kernel bandwidth  500m 1000m 2000m 3000m 

Mean marten 
exposure 
(martens /km2) 

0.009 ± 0.003 0.019 ± 0.006 0.031 ± 0.007 0.033 ± 0.006 

Core (50%) range 0.08 (-0.29, 0.45) 
RI=0.27 

0.50 (0.05, 0.95) 
RI=1 

0.74 (0.17, 1.30) 
RI=1 

1.06 (0.66, 1.47)  
RI =1 
-0.94 (-1.64, -0.24) 
RI=1  

Home (90%) range 0.122 (-0.28, 0.52) 
RI=0.4 

0.50 (0.12, 0.88) 
RI=1 

0.63 (0.28, 0.98) 
RI=1 

1.03(0.69, 1.37) 
RI=1 
-0.82 (-1.41, -0.23) 
RI=1 

Daily distance 
travelled (km) 

0.22 (-0.01, 0.44) 
RI=1 

0.28 (0.08, 0.48) 
RI=1 

00.31 (0.12, 0.50) 
RI=1 

0.33 (0.15, 0.52) 
RI=1 

Centroid shift (m) -0.04 (-0.31, 0.40) 
RI=0.17 

0.15 (-0.43, 0.73) 
RI=0.36 

0.30 (-0.46, 1.05) 
RI=0.53 

0.36 (-0.43, 1.15) 
RI=0.59 
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Table S1.2. Summary of models of variation in grey squirrel ranging 

behaviours. Results are from models including all individuals (n=29), one male 

had exceptionally high levels of exposure and was not included in analyses in the 

main text. Full averaged models included the effect of variation in local density of 

translocated pine martens within the squirrel home range (exposure), the number 

of martens that had been released into the landscape (martens), squirrel sex and 

an interaction exposure*sex. For each squirrel behaviour variable, four models 

were run; one for each pine marten kernel bandwidth used to estimate marten 

density (500, 1000, 2000 and 3000m). Significant effects are where 95% 

confidence intervals do not cross zero and are shown in bold. R2 represents the 

likelihood-ratio based pseudo-R-squared value for the model. 

 

Response 
Variable 

Marten 
Bandwidth (m) 

Full averaged model R2 

50% Core range 500 sex + exposure + martens 0.210 
  1000 sex + exposure + martens 0.262 

  2000 Sex + exposure + martens + sex*exposure 0.440 

  3000 sex + exposure + martens + sex*exposure 0.630 

90% home range  500 sex + exposure + martens 0.185 

  1000 sex + exposure 0.253 

  2000 sex + exposure 0.368 

  3000 sex + exposure + martens + sex*exposure 0.671 

Daily Distance 500 sex* exposure 0.329 

  1000 exposure 0.223 

  2000 exposure 0.278 

  3000 exposure 0.318 

Centroid Shift 500 sex + exposure 0.084 

  1000 sex + exposure 0.110 

  2000 sex + exposure 0.147 

  3000 sex + exposure 0.168 
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