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Toward Optimal Resource Scheduling for Internet
of Things under Imperfect CSI
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Abstract—The Internet of Things (IoT) increases the number
of connected devices and supports ever-growing complexity of ap-
plications. Owing to the constrained physical size, the IoT devices
can significantly enhance computation capacity by offloading
computation-intensive tasks to the resource-rich edge servers
deployed at the base station (BS) via wireless networks. However,
how to achieve optimal resource scheduling remains a challenge
due to stochastic task arrivals, time-varying wireless channels
and imperfect estimation of channel state information (CSI). In
this paper, by virtue of the Lyapunov optimization technique,
we propose the toward optimal resource scheduling algorithm
under imperfect CSI (TORS) to optimize resource scheduling in
an IoT environment. A convex transmit power and subchannel
allocation problem in TORS is formulated. This problem is then
solved via the Lagrangian dual decomposition method. We derive
analytical bounds for the time-averaged system throughput and
queue backlog. We show that TORS can arbitrarily approach
the optimal system throughput by simply tuning an introduced
control parameter $ without prior knowledge of stochastic task
arrivals and the CSI of wireless channels. Extensive simulation
results confirm the theoretical analysis on the performance of
TORS.

Index Terms—Resource scheduling, imperfect CSI, channel
estimation, Lyapunov optimization.

I. INTRODUCTION

N the coming era of Internet of Things (IoT), an increasing

number of IoT devices, ranging from RFIDs to biologi-
cal sensors, are connected to the base station (BS) through
wireless networks. Due to the limited computing resources
and battery capacities, most [oT devices cannot afford the so-
phisticated IoT applications which are computation-intensive
and time-sensitive. The performance of IoT devices can be
boosted by offloading the complex tasks to a capable edge
server, which is located at the BS and has high computation
capability and large storage capacity. This is so-called mobile
edge computing (MEC). By utilizing the resources and ser-
vices offered by edge cloud, MEC has obtained the potential
benefits (e.g., low energy consumption, low latency and high
reliability, efc.), which are of particular interest to the future
IoT community [1]-[4].

To accommodate the ever-increasing volume of mobile
traffic and offload the overloaded traffic, orthogonal frequency
division multiplexing access (OFDMA) technology has been
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widely used in modern and envisaged cellular standards
such as WiMAX and 3GPP LTE [5][6]. Extensive research
works have been devoted to maximize the overall throughput
of OFDMA-based systems by devising appropriate resource
scheduling policies [7]-[12], such as power allocation, sub-
channel assignment, mode selection and BS operation. All
these research works are studied on the assumption that
the perfect channel state information (CSI) can be obtained.
However, due to channel estimation error, the transmitting
nodes only have imperfect CSI in practical networks. More-
over, optimal resource scheduling has also been hindered by
the stochastic and complex nature of real-world networking
environment, including time-varying wireless channels and
stochastic task arrivals. We therefore need to take the stochas-
ticity and unpredictability into consideration and optimize
resource scheduling to maximize the system throughput of IoT
networks.

The resource scheduling problem under the imperfect CSI
for OFDMA systems has drawn tremendous research interests
[13]-[19]. A power allocation scheme was proposed in [13]
to maximize the energy efficiency of small cells for downlink
non-orthogonal multiple access (NOMA) heterogeneous net-
works based on imperfect CSI. The authors in [14] proposed
an optimal power allocation solution to maximize the energy
efficiency in NOMA systems with imperfect CSI and user
quality of service constraint. A new optimization framework
was developed in [15] for jointly optimizing power allocation,
user selection and precoding in multi-cell multi-user multiple-
input multiple-output (MU-MIMO) systems with imperfect
CSI. Bai et al. [16] studied the fair resource allocation of
device-to-device (D2D) communication underlaying cellular
systems with CSI estimation error; they developed a joint
resource scheduling scheme about resource chunk and power
allocation among the D2D and cellular network users. Liu
et al. [17] proposed an optimal power allocation scheme for
the downlink multi-user NOMA beamforming system with
imperfect CSI. However, these works [13]-[17] do not con-
sider the stochastic packet arrival characteristics and network
stability (i.e., poor channel situation and/or low transmit power
may lead to network congestion). Liu et al. [18] proposed a
joint power and subchannel allocation policy for the downlink
of an OFDMA system, with various practical considerations
including stochastic packet arrivals, time-varying channels,
and imperfect CSI, but the objective of their work was to
minimize the total power consumption. In [19], a resource
allocation scheme was developed to maximize a network
utility, but they ignored the factors of IoT device finite buffer
size and subchannel dynamic assignment policy.
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In this paper, we propose a joint traffic admission con-
trol, transmit power allocation and subchannel assignment
mechanism to maximize the overall system throughput, while
considering CSI estimation error and the constraints of IoT
device buffer size and network stability. Specifically, we
employ a stochastic optimization model to cope with evolving
network environment. We aim at maximizing the long term
time-averaged system throughput while guaranteeing queue
stability to avoid network congestion. The main contributions
of this work are summarized as follows:

1) The resource scheduling problem is formulated as a
stochastic optimization model to maximize the long term
time-averaged system throughput subject to network sta-
bility constraint.

2) Based on our model, we develop a general and effec-
tive algorithm, referred as the toward optimal resource
scheduling algorithm under imperfect CSI (TORS). By
exploiting Lyapunov optimization technique, this algo-
rithm performs resource scheduling without any prior
knowledge of network state information, while at the
same time guaranteeing network stability.

3) We theoretically analyze the performance of the pro-
posed TORS algorithm and prove the network stability
and system throughput performance. Extensive simulation
results are conducted to verify the theoretical analysis and
the performance of TORS. The evaluation conforms that
our solution can flexibly tune the time-averaged system
throughput and data queue length by simply adjusting an
introduced control parameter 5.

Compared to our previous work [19], the main differences
are as follows: (1) Owing to the finite buffer size of IoT
devices, we employ the virtual admission queue technique
and a carefully designed Lyapunov function to avoid buffer
overflow. (2) We build a more general resource scheduling
model which combines the power allocation and subchannel
alignment. (3) We conduct extensive simulation results to
validate the effectiveness of the proposed TORS algorithm.

The remainder of this paper is organized as follows. Section
II provides an overview of the system model followed by the
problem formulation in Section III. The TORS algorithm is
developed in Section IV. Section V carries out the performance
analysis of the proposed TORS algorithm. Simulation results
and analysis are presented in Section VI. Finally, we conclude
our paper in Section VII.

II. THE SYSTEM MODEL

As shown in Fig 1, we consider a typical IoT system,
consisting of a BS and M IoT devices (e.g., smart TVs,
smart speakers, wearables and smart cameras). An edge server
deployed at BS has computation capacity to process the
sensory data offloaded from the IoT devices through wireless
channels.

A. Uplink Traffic Admission Control

We assume that the IoT system operates in a time-slotted
manner with time slot index ¢ € {0,1,2,...}. The sensory
data generated by IoT devices arrives randomly every time
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Fig. 1. An illustration of IoT systems

slot. Each device maintains a buffer to temporally store the
arrived data until they are transmitted to the edge cloud for
further processing. We introduce A(t) = {4,,(¢)} to denote
the random process of data arrivals with the maximum Ay,
where A,,(t) is the amount of new sensory data that arrives
at the IoT device m at time slot ¢. Assume that A(t) is
an independently and identically distributed (i.i.d.) random
process with arrival rate A = {),,,}, where A, is the time-
averaged sensory data arrival rate of the IoT device m.

To avoid congestion under massive sensory data or continu-
ous poor network condition, we employ an admission control
strategy to adjust the traffic rate that the amount of sensory
data can be admitted to the device buffer at each time slot.
The admission control scheme is involved with adjusting the
admission rate, denoted by R(t) = {R,(t)}, where R,,(t) is
the admission rate of the device m at time slot ¢, and it should
satisfy the following constraint

Rm(ﬁ) < Am(t> < Amax» Vm,t (1

Obviously, for any IoT device, the amount of admission data
must be less than or equal to the amount of generated sensory
data at each time slot.

B. Communication Model

There are N number of subchannels in the system, each
with a bandwidth of F. Let D(t) = {d;n,(t)} be the binary
subchannel allocation indicator matrix, where d,,,(t) = 1
denotes that the nth subchannel is assigned to the IoT device
m at time slot ¢, and d,,,,,(t) = 0 otherwise. Each subchannel
n can be allocated to at most one IoT device in each time slot.
Thus, we have the following constraint

M
> dn(t) <1, Vn,t )
m=1

To obtain the channel transmission rate, we need to know
the perfect CSI at the BS, i.e., the exact value of channel gain.
Nevertheless, it is subject to channel uncertainty in practice.
With the aid of pilot signals transmitted from its corresponding
IoT devices, BS can estimate the CSI, e.g., background noise
and channel gains [20]. To acquire the CSI, we employ



IEEE INTERNET OF THINGS JOURNAL, VOL. X, NO. X, JUNE 2019

Qm(t)
® Con(t)

Fig. 2. The arrival and departure processes

the minimum mean squared error (MMSE) estimator as the
channel estimation method. Let h,,,(t) denote the channel
gain from the transmitter IoT device m to the receiver BS on
a subchannel n at time slot ¢. With the assumption of MMSE
channel estimator, the estimation and estimation error of CSI,
denoted by A (t) and Ay (t), are uncorrelated Gaussian

random Variables with zero means and variance 62 = lf;"t
and 62 = T ¢ , respectively. ¢y, denotes the signal-to-noise-

ratio (SNR) of p1lot transmission [21]. The relationship among
them is described as follows [18] [22]

hmn(t) = hmn (t) + hmn (t) 3

Assuming that the [oT system adopts a continuous rate pol-

icy, then we employ the Shannon capacity formula to describe

the transmission rate. Specifically, the uplink transmission rate

of the IoT device m on the subchannel n at time slot ¢, denoted
by Cpn(t), can be computed as

“4)

Crnn(t) = Flog, (1 + ¢mn(t)9mn<t)>

Pmn(t)o? +1

where ¢un(t) = Pmn(t)/w. Pmn(t) denotes the transmit
power allocated to the device m on the subchannel n at time
slot t. w is the power of additive white Gaussian noise per
subchannel, and gy (£) = |An (£)]2.

C. Queueing Model and System Dynamics

Let Q(t) = {Qn(t)} denote the data queue backlog of all
IoT devices at time slot ¢, where @Q,,(t) denotes the queue
backlog of the device m at time slot ¢, and it is updated along
the time, as given by

Qm(t+ 1) = max[Qm,(t) —

0+ Rm(t) (5
where C,, (t) = 22;1 i (8)Cn (t) 1 the total transmission
capacity of the device m at time slot ¢. It also denotes the
serving rate of data queue on the device m. R,,(t) implies
the arrival rate for the data queue on the device m at time
slot ¢. Finally, both the serving rate Cy,(¢) and the arrival rate
R, (t) have major implications for the future queue backlog
Qm (t + 1), which is shown in Fig. 2.

A discrete time queue Z(t) is defined as strongly stable if
the following condition holds

Cin (1),

. 1 T-1
Tlgnmng{lZ(tﬂ}mo 6)

In real systems, we call the queue is strongly stable if the
long term time-averaged arrival rate injected into the queue is
smaller than or equal to the long term time-averaged departure
rate from the queue. Then, network congestion can be avoided

TABLE I
THE IMPORTANT PARAMETERS AND NOTATIONS

Symbol Meaning
M Number of IoT devices
N Number of subchannels
F Bandwidth of each subchannel
Channel gains on subchannel n from device m to BS
homn(t) )
at time slot ¢
Channel estimation on subchannel n from device m to BS
hmn (1) .
at time slot ¢
- Channel estimation error on subchannel n from BS
hmn(t) . .
to device m at time slot ¢
dmn(t) | Binary subchannel allocation indicator
Transmission rate for device m on subchannel n at time
Crmn(t)
slot ¢
Transmit power allocated on subchannel n to device m at
Pmn (t) .
time slot ¢
Ry (t) | Admission rate of device m at time slot ¢
Qm(t) | Queue backlog at device m at time slot ¢
Am(t) | Amount of arrived data at device m at time slot ¢
Xm(t) | Virtual admission rate for device m at time slot ¢
B Lyapunov control parameter
w Power spectral density of noise
O(t) System state at time slot ¢

that all data placed into the queue will be transmitted at last
if the queue is strongly stable.

III. PROBLEM FORMULATION

To improve system throughput, we aim at maximizing
the long term time-averaged admission rate while satisfying
network stability constraint. Then, the resource scheduling is
formulated as the following stochastic optimization problem

Pl: max lim —Zunm

T—oo T

s.t. Cl: Rm( ) >~ Am( ) S Amaxa Vm,t
C2: pmn( ) >0, Ym,n,t

C3: Z Z pmn < Pmd)U vt

C4: dmn( ) E{O l} Vm,n,t

C5: Z ) <1, Vn,t
Cé6: Queues Q(t) are strongly stable. @)
where Ry (t) = Z%Zl R,,(t) denotes the overall system

throughput achieved by all IoT devices. C1 is the admission
control constraint to ensure the account of admitted data
cannot exceed the amount of newly arrived data at each time
slot. C2 is a nonnegative power allocation constraint. C3 is the
peak transmit power constraint. C4 and CS5 indicate that each
subchannel is exclusively allocated among devices. C6 is the
network stability constraint.
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IV. ONLINE RESOURCE SCHEDULING ALGORITHM

In this section, we propose an online resource scheduling
algorithm TORS to solve the problem P1. Considering that
there is a finite buffer size of each device, we introduce the
virtual admission queue to assist in designing our algorithm.

A. The Virtual Admission Queue

In practical IoT systems, the buffer size, denoted by by, is
finite. Similar with the previous work [7], we employ virtual
admission rate queues X (¢t) = {X,,(¢)} to avoid buffer
overflow. It is updated along the time as

X (t+1) = max[ X, (t) — R (t),0] + Vin(t) (8)

where V (t) = {V,,(¢)} is the virtual admission rate of data

queues Q(t).
By introducing virtual admission rate, the original stochastic
optimization problem P1 can be reformulated as

;T2
P2: max %31)0? ;Rsum(t)

s.t. C1, C2, C3, C4, C5, and C6
C7: Queues X (t) are strongly stable. )

B. Online Algorithm for Optimal Resource Scheduling

Let ©(t) = [Q(t), X (t)] be the vector of all real and virtual
queue backlogs employed in the IoT system. We introduce
L, which is widely used to guarantee queue stability in the
Lyapunov function [23][24], for the constraints C6 and C7.
The perturbed Lyapunov function can be constructed as

M
§ m
m=
M
1 Z de - de
2 —1 max

Without loss of generality, we assume L(©(0)) = 0 that all
queues length are zero when ¢ = (0. The one-slot conditional
Lyapunov drift is defined as the conditional expectation of the
difference of the Lyapunov function between two consecutive
slots, and it is defined as

A(©(1))

Qm(t)®

l\D\H

X (t)? (10)

=E{L(O(t+1)) — L(O(t))|O©(t)}

In addition, the Lyapunov drift-minus-reward term is defined

(1)

as

A(t) = A(B(t)) — BE{Vam(1)|O(2)} (12)
where Vo (t) = Zn]\le Vin(t) and $ is a nonnegative tunable
parameter. Lyapunov optimization theory [25][26] guides us to
minimize (12), such that the time-averaged system throughput
approaches to the optimal value, whereas network queue
backlogs are pushed towards a lower congestion state. Based
on the Lyapunov optimization theory, the upper bound of (12)

is given in the following theorem.

Theorem 1(Upper Bound): For any queue backlogs and
actions, A(t) is upper bounded by

(t)) — BE{Vaum (t)|©(¢)}
<B+ZE{ m(t)° + B (1)”

2bmax
R
+ Z]E{ 12201000~ s~ A0}
e (gt

where B is a positive constant, which satisfies the following
constraint for all ¢.

A(©

Xm<t>|®<t>}

Ot cm<t>®<t>}

Xol)-5) 00} (13

bmax - Amax M 2 2
=N (R (1)? V(1))

max

B> B(t) =

+ MAmaxbmax (14)
2
Proof: See Appendix A.

Based on the stochastic optimization theory in [25], we need
to minimize the upper bound of the drift-minus-reward term
with the same constraints except for the network stability.
Back to our case, it is required to minimize the right-hand
side (RHS) of (13) at each time slot ¢ to solve the problem
P1 subject to C1-C5, and C6 and C7 are the network stability
constraints. Then, we have transformed the original stochastic
optimization problem P1 into a series of successive instanta-
neous static optimization problems.

C. Algorithm Design

The complexity of the problem P2 comes from the joint op-
timization of admission control and resource scheduling opera-
tion. One method to reduce the complexity is to decompose the
joint problem into admission control subproblem and resource
scheduling subproblem, and then the two subproblems can be
solved separately. By analyzing the structure of the problem,
we divide it into two separate parts. First, an admission sub-
problem determines how much data to admit to the data queue
based on a threshold criterion. Then, a resource scheduling
subproblem finds the optimal transmit power allocation and
subchannel assignment scheme based on current system state
by using the Lagrangian dual decomposition method. The
details of the procedure to solve the problem P2 is summarized
in Algorithm 1, referred to as the TORS in the paper.

1) Admission Control Decision: By observing that the
fourth term on the RHS of (13) involves the admission control
decision R,,(t), we divide it into M subproblems as

. Xom (t)
Ay (07, 7@ (0 s = )
s.t. CL. (15)
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Algorithm 1 Toward Optimal Resource Scheduling Algorithm
under Imperfect CSI (TORS).

1: Input: M, N, F, T, A(t), 5, bmax, W

2: Initialization: ¢ «+ 0, Q(0) + 0, X(0) «+ 0

3: while ¢t < T do

4 Compute R(t) and V(t) according to (16) and (18),
respectively.

5. Compute P(t) and D(¢) according to Algorithm 2.

6:  Update queues Q(¢) and X (¢) according to (5) and (8).

7. t«t+1.

8: end while

The corresponding solution to (15) is

_ Am(t)a 1f Qm(t) S bmax -
R (t) = { 0, otherwise.

Equation (16) denotes that the IoT device m will accept
all arrival data to data queue if its queue backlog @,,(t) is
smaller than the threshold (byax — Amax) at time ¢t. Otherwise,
it would reject all new arrival data.

We observe that the fifth term on the RHS of (13) involves
the virtual admission decision V,,,(¢). Similarly, we divide it
into M subproblems as

Amax ( 16)

. bmax - Amax
m(t) | ————Xm(t) — 17
min V() (A, - 6)an
The corresponding solution to (17) is
V (t) — Am(t)a if (bmax - Amax)X7rL(t)/bmax S /8
m 0, otherwise.

(18)

2) Resource Scheduling Decision: Observe that the third
term on the RHS of (13) involves the transmit power and
subchannel indicator variables. We reformulate these terms as

ZZ

=1n=1

s.t. C2, C3, C4, and C5.

where P(t) = {pmn(t)} and D(t) = {dmn(t)}.

This optimization problem formulation is a typical mixed-
integer non-convex programming problem. The optimal so-
lution of (19) can be acquired through branch and bound
methods, but the optimality of solutions at each time slot has a
high computational complexity. To overcome the complexity
limitation of integer variables, we extend the constraint C4
with the relaxation. This relaxation is indicated by replacing
discrete variable d,,, (t) with continuous real variable d,,,,, (%),

max

P dmn(t)Cmn(t)

max

19)

n during time slot ¢. With the help of relaxation and auxiliary
variable, the problem (19) can be reformulated into

FX(t)Qum(t) -
P(1).D() Zlnzl bmax T )
v (8) G (¢
x log, <1 + ppnm((t))g _|_(Ui>
s.t. C8: Z Z P (t) < Prnax, ¥t
C9: Pt ) >0, Vm,n,t
Cl10: dpn(t) € [ ] Vm,n,t
Cl1: Z )< 1, Vn,t (20)

where P(t) = {Pmn(t)} and D(t) = {d,n(t)}. Considering
that the constraints C8, C9, C10, and C11 are linear and the
objective function is jointly concave with respective to Py, (t)
and d,,,, (t). Thus, the problem in (20) is convex optimization
problem [27], which can be solved by the Lagrangian dual
decomposition method. The Lagrangian function is formulated
as

_ Z Z FXm(t)Qm(t) Jmn(t)

bmax

(1 Eltne)

M N
— K <Z Zﬁmn(t) - Pmax)

m=1n=1

2n

where p is the Lagrange multipliers for the constraint C8. The
Lagrangian dual function of the problem is defined as

= L (P(t),D(t), 22
W= pmax L (), D)) (22)
The dual problem can be given as
min ()
w
st.u>0 (23)

The Lagrangian dual function in (22) can be decomposed
into M x N subproblems. Accordingly, the Lagrangian func-
tion is rewritten as

where 0 S_Jmn (t) < 1. We introduce the auxiliary variable u) + pBmax (24)
Dmn(t) = dmn (8)Dmn(t) for the device m on the subchannel m=1n=1
FXm(t)Qm(t) _ w 5'2 - 0
Prn® = w(eiigm) [ ©5)

where Sy (1) = Qo ()

w(26%+gmn (t) 152 (524 gmn (1)) .
W <\/1 + m[smn(t)]+ - 1) , otherwise.

—w?, [z]* = max[z, 0].
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where

Lunn (P(t), D(t), )
= FXn®Qult) 7 1)10g, (1 + W)

D (£)62 + w

bmax

= 1Pmn(t) (26)

Then, taking the partial derivative of L, (t) with respect
t0 Prmn(t) yields

OL i (t)
apmn (t)

_ WEXn (8)Qun () dimn (t) g (¢)10gse
bmax [(U + g'rrm( ))pmn (t) + w]

1
X —————— — 27

According to the Karush-Kuhn-Tucker conditions [27], the
optimal power allocation which denoted by p,, (¢) must
satisfy the following constraints

aLmn(t) _o
OPmn (t) (28)
Pmn(t) >0

Then, by solving (28), we derive the optimal p}, (t) =
PEon (D) dmn (1), where p¥. (1) can be given by (25).

Substituting the optimal 77, (¢) into (23), the Lagrangian
dual function can be also rewritten as

max Z Z Tmn ) + ,LLPmax (29)
m=1n=1
where
_FX0(0)Qm(1) Pran (t)gmn (t)
T8 = e (1 e T

For any subchannel n, it should be allocated to the device
with the largest T',,,(t), and then the optimal subchannel
assignment can be given by

a (1) 1, m =arg max Y,,(¢t) and T,,(t) >0
mn 0, otherwise.
(€20

To address the minimization problem in (23), the subgradi-
ent method is employed to update the Lagrangian multiplier

u, and it is updated as
+

MHl = |f’éi -1 < max

where ¢ denotes the iteration index, and 7 is the step size.
Inax 1s the maximum number of iterations. When the subgra-
dient method converges, the power allocation and subchannel
assignment are finished. The details of the procedure to solve
power allocation and subchannel assignment are summarized
in Algorithm 2.

S 3p oMt

m=1n=1

Algorithm 2 Optimal Power and Subchannel Allocation Al-
gorithm (OPSA)

1: Input: g, I

2: Initialization: ¢ < 1

3: while i < I, and |pit! — pf| < e do

4. forn=1to N do

5: for m =1 to M do

6 Compute pZ, . (t) according to (25).

7: Assign each subchannel according to (31).
8 end for

9 end for

10:  Update p with step size 7 according to (32).
1: i< i+ 1L
12: end while

D. Computation Complexity Analysis

The computation complexity in each time slot is dominated
by the iterative procedure from Step 4 to 11 in Algorithm 2.
The computation complexity for each iteration is O(MN).
The Lagrangian multiplier x takes O(1/¢?) iterations to the
desired state. Thus, the total complexity of the OPSA algo-
rithm at each time slot is O(M N/e?). The OPSA algorithm
with a polynomial computation complexity facilitates the
practical implementation.

V. ALGORITHM PERFORMANCE

Theorem 2: The performance of the TORS is given as
follows.

(a) All queues Q(t) and X (t) are strongly stable, and
Qm(t) < bmax.

(b) Given € > 0, if byay — Amax > (C2, + A2..)/2¢, then
the long term time-averaged queue backlog is bounded
by

. 1 B + BMAmax
lim tz D E{Xn(t)} S— = (33)

)

(c) The long term time-averaged overall system throughput
achieved by all IoT devices is bounded by

T—-1 M
AR DID DECA R Z e 09
t=0 m=1

Proof: See Appendix B.

VI. SIMULATION RESULTS AND ANALYSIS

In this section, we present simulation results to evaluate
the performance of our proposed online resource scheduling
algorithm. We consider an example of the uplink IoT network
consisting of a BS and M = 5 IoT devices. Particularly,
the arrival rate of sensory data A,,(t) ~ P[\;,]Mbps and
Am ~ UI[5,8], where P[\,,] denotes a Poisson distribution
with average arrival rate A, and Ula, b] denotes a random
uniform distribution within [a, b]. We assume that the number
of available subchannels NV = 8, the bandwidth /' = 1MHz,
the buffer size bp,x = 5\, Mbits, and the power spectral
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Fig. 4. The system throughput versus 5.

density of noise is 10 8W. The simulation is carried out for
T = 4000 consecutive time slots.

Fig. 3 demonstrates the queue stability over different time
slots with 3 = 250 whose value does not have the impact on
the queue stability from the extensive simulations. We take
the queues of the device m = 1 as an example since the data
queues Q(t) and virtual admission queues X (t) follow similar
trends. This figure shows the dynamics of device’s data queue
backlog @)1 and virtual admission queue X7. The arrival data
rate of the device 1 is A\; = 6Mbps and the buffer size is
bmax = 30Mbits. It can be seen that these queues are strictly
bounded and actual data queue () is strictly lower than the
buffer size byax, Which validates the conclusion of Theorem
2(a).

Fig. 4 plots the time-averaged system throughput of the
proposed approach by varying the control parameter 3. Here,
B € [0,250] provides a reasonable dynamic range to display
the impact of 5 on the queue backlog. First, we observe that
the system throughput keeps increasing at the beginning when
B < 10, and finally stabilizes around the optimal system
throughput level. This is due to the fact that the Lyapunov
drift-minus-reward function in the proposed algorithm is min-
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Fig. 5. Time-averaged virtual admission queue versus 3.
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Fig. 6. Time-averaged data queue length against 3.

imized at each time slot, and this validates the conclusion
of Theorem 2(c). From the curves, with a large value of the
CSI estimation error &2, the stabilized time-averaged system
throughput becomes bad. This is because the transmission rate
is a decreasing function with the estimation error variance &>
Thus, a large value of &2 leads to a small transmission rate,
and then a low system throughput.

Fig. 5 illustrates the time-averaged virtual queue backlog
X (t) with respect to different values of 3. It can be seen
that the time-averaged virtual queue length increases as (3
increases, and this validates the conclusion of Theorem 2(b).
This is because a larger value of 5 means a higher priority to
maximize the system throughput, and thus leads to a higher
admission rate.

Fig. 6 shows the time-averaged data queue backlog of
Q. (t) by varying control parameter 5. We can see that the
average queue backlog decreases when 5 < 10, and then slows
down the decrease trend and starts to stabilize when g > 10.
We observe that a large value of the estimation error &2 leads
to a large data queue backlog. This is because a large value
of a2 leads to a small transmission rate, and thus a large data
queue length.
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Fig. 7 plots the performance of TORS with the variation
of byax With 5 = 100. We observe that a large buffer size
can improve the network performance of IoT systems. With a
larger value of by, the system allows more sensory data into
the data queue at IoT devices for transmission and thus the
time-averaged queue length is increased.

VII. CONCLUSION

In this paper, we have studied the resource scheduling to
maximize the time-averaged system throughput for OFDMA-
based uplink IoT systems. A stochastic optimization problem
has been formulated and solved through the exploitation of
Lyapunov optimization theory and Lagrangian dual decompo-
sition technique. An algorithm, referred to TORS, has been
designed, which can push the system throughput arbitrarily
close to the optimal without any prior knowledge of CSI and
task arrival information.
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APPENDIX A
PROOF OF THEOREM 1
Lemma 1: For any nonnegative real numbers z, y and z,

there holds [max(z — y,0) + 2]° < 22 + 2 4 22 + 22(z — )
[8].

According to Lemma 1, we obtain

Qbil‘-nax [(Xm (t+1)Qum(t + 1)2 — Xm(t)Qm(t)z]
< 2bma [(Xon(t) + Vin (1) Qu (t + 1)2 Xm(t)Qm(t)Q]
1 2
< o [Vm(®)Qm(t +1)7]
+ )égni) [Con ()2 + R ()2 + 2Qum (£) (R (t) — Cp (1))]
+ MQ’”( )X (1) 35)

By squaring both sides of (8), and employing (35), we
obtain

AO(t) =E{L(© ( 1)) — L(6(1)[®(t)}
<B+ ZE{ ;R m(®)° Xm(t)|(-)(t)}
ZE{ 22, wle)
X (t)

+ZE{Rm

m=1

bmax - max
+ Z E { Xn(H)Vin (t)l@(t)} (36)
where
Dmax — Amax
> _ max ~— <1max 2 2
B > B(t) T W;(Rm(t) + Vi (1)%)
MAmaxbmax
+ — 37
2

Subtracting SE{Vyum(t)|©(t)} on both sides of (36), we can

prove the Theorem 1.

APPENDIX B
PROOF OF THEOREM 2

Lemma 2: For any feasible rate vector m € €2 which denotes
the capacity region, there exists a randomized stationary policy
that chooses the admission control decision and resource
scheduling decision in each time slot ¢ independent of queue
backlog, and there exists the following steady-state equations

E{Cm(t)} = E{Rm(t)} = E{Vm(t)} = Tm (38)

The proof of Lemma 2 can be found in [28], and we omit
the detail here for brevity.

Let E{R;,(t)} = r},. Note that 7,,, can take values as 7}, .
or ry, 9., Where € is a positive, arbitrarily small number. The
admission rate can be controlled ranging from 77, to ry, . or
to 77, .- Both of them are within 2.
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According to the Theorem 1, we have

A(O(t)) — BE{Vaum()|©(2)}

M 2 2
<B+Y E { Cm(t); B (1) Xm(t)|®(t)}

bmax

M
3w {2020, 100}
M
3 20220100 0) - (b~ Am0(0

M
—A
+ j :E{Vm(t) (bmaxb max
m=1

max

Xl - 8) 00} (9

The third, fourth, and fifth terms on the RHS of (39)
are minimized by the resource scheduling, admission control,
admitted admission control, respectively. Substituting admis-
sion rate vector 7y, 5. into the third and fourth terms, and

substituting admitted admission rate vector 7, . into the fifth
term, and employing (38), we have

A(O(t) — FE{Vam(t)|©(t)}

X (t) [Con(H) + R (1)°
<B+ mz::l T [ 5 — (Bmax — Amax )€
M
B> T (40)
m=1
For ¥ > 0, such that ¥ < (2€(bmax — Amax) — (Crn (t)? +
R, (t)?))/2bmax. We obtain
A(O(t)) — BE{Vam(1)|O(t)}
M M
<SB-9Y Xpt) =B 1h. (41)
m=1 m=1

Taking expectations on both sides of (41) and summing up
all the telescoping over {0,1,...,7 — 1}, we can obtain

T-1
E{L(©(T))} ~ E{L(©(0)} = 8 Y E{Vium(t)}
t=0

T-1 M -1 M
STB=0) Y B{Xa®)}=BY D> rhme (2
t=0 m=1 t=0 m=1

Applying the definition of L(©(t)) and using the fact
L(®(T)) > 0 and L(©®(0)) = 0, and rearranging terms, we
can simply have the inequality below

T-1 M T-1
I3 ST E{Xn(t)} STB+ 8> E{Vaum(t)}
t=0 m=1 Tilt—]v(;
- B Z Z T:;'L,e
t=0 m=1
<TB + BTM A (43)

Dividing by 7% and taking a limit as 7' — oo, we can
prove Theorem 2(b). Thus, virtual queues X (t) is strongly
stable. For @Q,,(t) < bmux of Theorem 2(a), we can find the
similar proof in [7] and omit the detail here for brevity.

Similarly, we can prove Theorem 2(c).
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