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ABSTRACT: The stability of perovskite solar cells (PSC) is
often compromised by the organic hole transport materials
(HTMs). We report here the effect of WO3 as an inorganic HTM
for carbon electrodes for improved stability in PSCs, which are
made under ambient conditions. Sequential fabrication of the
PSC was performed under ambient conditions with mesoporous
TiO2/Al2O3/CH3NH3PbI3 layers, and, on the top of these layers,
the WO3 nanoparticle-embedded carbon electrode was used.
Different concentrations of WO3 nanoparticles as HTM
incorporated in carbon counter electrodes were tested, which
varied the stability of the cell under ambient conditions. The
addition of 7.5% WO3 (by volume) led to a maximum power
conversion efficiency of 10.5%, whereas the stability of the cells
under ambient condition was ∼350 h, maintaining ∼80% of the initial efficiency under light illumination. At the same time, the
higher WO3 concentration exhibited an efficiency of 9.5%, which was stable up to ∼500 h with a loss of only ∼15% of the initial
efficiency under normal atmospheric conditions and light illumination. This work demonstrates an effective way to improve the
stability of carbon-based perovskite solar cells without affecting the efficiency for future applications.

■ INTRODUCTION

Technology development with improved levels of sustainability
can create opportunity for today’s state of the art photovoltaic
devices as well as develop existing materials to improve
performance. Organic−inorganic hybrid solar cells with
perovskite-type pigments have been much studied in recent
years. The solar cells incorporating a CH3NH3PbI3 (MAPbI3)
compound with a perovskite structure have shown high
photoconversion efficiencies (PCEs). Perovskite solar cells
(PSCs) have recently become one of such technology and an
area of interest owing to their lower preparation cost and high-
conversion efficiency in the field of solar cell research.1−3 The
investigation in the field of PSCs has increased in recent years,
and a highest recorded efficiency of 25.2% was achieved in
early 2019, which has been independently confirmed by the
international authority and authenticating institution, National
Renewable Energy Laboratory (NREL).4,5 Large-area PSCs
with an active area >1 cm2 exhibited a maximum photo-
conversion efficiency (PCE) of 20.5% and a certified PCE of
19.6%.6 Since the maximum theoretical PCE of the PSCs
employing MAPbI3 is around 31%, there is still great scope for
development.7 In addition to the high PCE achieved with the
halide perovskites, these materials are composed of only earth-
abundant elements and can be prepared by various low-cost
methods. It is, therefore, highly anticipated that implantation
of PSCs could be deployed on an industrial scale. The
perovskite materials now focus on some challenging issues, for

instance, the high PCE solar cells are still based on toxic Pb
contamination and the halide salts tend to dissociate in the
presence of moisture, which causes stability issue for long-term
usage.8 As per the toxicity concern of using Pb, extensive
research effort has been committed to the development of
lead-free perovskites such as CH3NH3SnI3, CH(NH2)2SnI3,
CsSnI3, Cs2SnI6, BaZrS3, CaZrSe3, CaHfSe3, etc. for photo-
voltaic applications.9,10 It has been observed that the oxide
perovskites exhibit more water resistivity compared to the
halide perovskite. Besides, it is facile to tune the band gap of
the oxide perovskite to match the solar spectrum and,
therefore, act as a photoanode candidate for dye-sensitized
solar cells (DSSCs). Extensive research on DSSCs enlarged the
development pathway of planar structured PSCs in the initial
stages.11−13 The planar structure of PSCs became more
prevalent when both the electron and hole transport properties
have been simultaneously observed for the perovskite materi-
al.14−16 Highly efficient PSCs sometimes rapidly lose their
efficiency due to the hygroscopic character of the materials
used.17 Therefore, selection of materials and their fabrication
process has limited the performance of PSCs. To overcome
these issues, the mesoporous PSCs (m-PSCs) have come into
account due to their simple fabrication process, high energy
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conversion, and enhanced resistivity toward environmental
factors.18,19 The mesoporous PSC includes carbon-based back
contact, a suitable solution to substitute noble metals, due to
its low cost, high conductivity, and eventually low-temperature
processing and work function close to that of gold.20 However,
it would be advantageous to do so to increase the flexibility and
the overall transparency of the device.
To develop high-efficiency and stable devices as well as

environmentally benign perovskites is critical, yet challenging
aspects remain in PSC research. Moisture sensitivity of the
organic constituents of the PSC device resulting in long-term
stability issue for its commercialization.17,21 However, further
involvements are required to enhance the commercial viability
of PSC, which may be achieved through careful manipulation
of the nanoscale structure and the implementation of novel
processing techniques. To address the stability challenges,
Al2O3 layer deposition, Li-doping, and Cs-doping inclusion to
perovskite layer have been introduced for their long-term
implementation.22,23 Previously, Graẗzel et al. reported that
employment of solid-state organic hole transport materials
(HTM) boosted the reported efficiency of solid-state m-PSCs
to 9.7%.11 Similarly, Nazeeruddin et al. introduced a sandwich-
type layer of mesoporous TiO2 and MAPbI3 as a light harvester
with polymeric HTMs, which resulted in an efficiency of
12%.24 Seok’s group used CH3NH3Pbl3−xBrx-based mixed
halide perovskites to further improve the efficiency to ∼12.3%
and also to achieve better stability.25 On the other hand, Lee et
al. reported a PSC composed of mesoporous Al2O3 instead of
TiO2, demonstrating that Al2O3 merely acted as a scaffold layer
without injection of photoexcited electrons resulting in faster
electron diffusion through the perovskite layer.26 Gracini et al.
reported 1 year stable PSCs using a two-dimensional/three-
dimensional (2D/3D) combined perovskite layer.27 To get
high efficiency and stability, effort to modify the mesoporous
layer has been also made for a PSC device. Similarly, CuInS2
quantum dot-modified TiO2 nanoarrays were introduced by
Gao et al. for better stability of devices.28 Zhang et al. reported
SnO2-based devices with 17.83% efficiency.29 However, to
develop high-efficiency and stable devices as well as environ-
mentally supported perovskites is still a crucial challenge and
offers new and promising opportunities.30−32

Due to the ease of fabrication and higher efficiency, solar
cells are often chosen as sources of electrical energy harvester,
emerging markets such as self-powering systems and portable/
wearable electronics.33 Recently, Huan et al. reported an
inexpensive photovoltaic-electrochemical cell system contain-
ing a low-cost perovskite photovoltaic minimodule, exhibiting
∼2.3% solar-to-hydrocarbon efficiency.34 Intensive work is
continuing for commercialization of perovskite photovoltaic
technology as well.35−37

In these ways, several attempts have been made to enhance
the performance of PSCs. In spite of encouraging performance,
the drawbacks of organic HTM allow the development of
inorganic HTM-based PSCs using Co3O4,

38 CuSCN,39

NiO,40,41 CuS,42 and others.43 Devices based on inorganic
HTMs demonstrated better stability compared to a spiro-
OMeTAD-based PSC in ambient condition.44,45 Overall, to
address the shortcomings associated with regular PSCs,
carbon-based mesoscopic PSCs with inorganic HTM have
attracted serious attention. Very recently, our group reported
efficient PSC with WO3 nanoparticle as HTM.46 Established
electrochromic property of WO3 has been commercially
inspected in electrochromic applications such as “smart

windows”.47,48 It can lead to an integrated photoelectrochro-
mic device, instead of sequential conjoining of a solar cell
followed by a full electrochromic device. Using WO3-based
perovskite solar cells opens the possibility of further develop-
ment in building-integrated photovoltaic (BIPV) application in
terms of their low-energy, cost-effective, and novel architec-
ture-based futuristic use.49

Here, we report the performance of MAPbI3-based PSCs
with a mesoporous TiO2/Al2O3/carbon architecture where
WO3 nanoparticle-based carbon back contact was employed.
The method is based on a fully wet deposition process, which
takes less time and utilizes a screen-printing method. The
influence of the different amounts of WO3 is observed using 5,
7.5, and 10% WO3 (by volume) in the carbon paste and
compared with a device without WO3 used as a reference,
respectively. The purpose of this experiment was to develop
stable PSC devices without using glovebox conditions and
without any encapsulation. In our earlier reported paper,
stability of the unsealed devices was very poor, ∼23% decay of
initial PCE values within 100 h. The PSC fabrication technique
was adopted from our earlier report with a modification of
different WO3 concentrations consisting of carbon layer
deposition for back contact.46 A schematic description of the
PSC fabrication processes is given (steps a−g) in Figure 1.

■ RESULTS AND DISCUSSION
The stepwise fabrication process with schematic structures is
shown in Figure 1. Step a resembles etching of a FTO glass
substrate. Step b and step c reflect the deposition of a compact
TiO2 layer and mesoporous TiO2 layers, respectively. Lithium
doping and mesoporous Al2O3 layer addition are shown in step
d and step e, respectively. Screen printing of the WO3
nanoparticles incorporated the carbon layer is represented by
step f. Finally, the drop casting and spin coating of the
perovskite were carried out, as shown in step g. The
homogenous mixture for different carbon pastes was prepared
by using the ball-milling technique. The cross-sectional
FESEM image (Figure 2a) of the device shows the appropriate
orientation of the layers in the following sequence FTO/c-
TiO2/ m-TiO2/m-Al2O3/carbon from bottom to top. The

Figure 1. Stepwise fabrication process of the mesoporous perovskite
solar cell. Step a: Etching of fluorine-doped tin oxide (FTO) glass;
step b: compact TiO2 layer deposition; step c: mesoporous TiO2 layer
formation; step d: lithium doping using lithium bis-(trifluorometha-
nesulfonyl) imide (Li-TFSI); step e: spin coating of mesoporous
Al2O3 layer; step f: screen printing of the carbon electrode; step g:
perovskite layer formation.
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average thicknesses of mesoporous TiO2 and mesoporous
Al2O3 layers are ∼700 and ∼500 nm, respectively.
Corresponding energy dispersive X-ray (EDX) mapping

confirms the distribution of elements and successful deposition
of different layers, as shown in Figure 2b. The distribution of
lead and iodine also confirms that the perovskite (MAPbI3)
layer had spread through the carbon layer as well as the
mesoporous layers. To confirm the existence of WO3, the EDX
characterization was carried out and the EDX spectrum is
given in Figure S1, supplementary information (ESI).
The XRD pattern of synthesized CH3NH3PbI3 thin films on

the FTO glass substrate is shown in Figure 3. Except for the

signals of FTO glass and anatase TiO2 shown with black and
green dots, respectively, all remaining signals are responsible
for the MAPbI3 perovskite. The typical peaks at 14.10, 23.47,
28.42, and 30.89° correspond to the (110), (211), (220), and
(213) planes of the tetragonal phase of MAPbI3. XRD study
confirms the phase purity and crystalline features of MAPbI3,
as reported previously.50,51

To evaluate the performance of the prepared m-PSCs made
in ambient condition, the current vs voltage (J−V) character-
istic measurement was performed under simulated AM 1.5
(100 mW/cm2). Figure 4a and Table 1 exhibit the photo-
voltaic parameters such as efficiency, short-circuit current
density (JSC), open-circuit voltage (VOC), and fill factor (FF) of
the cells with an active area of 0.16 cm2. Photovoltaic

performance of the devices was examined, and the maximum
photoconversion efficiency (PCE) was found ∼10.5% having
JSC, VOC, and FF of 21.2 mA/cm2, 854.4 mV, and 0.58,
respectively, for the device with 7.5% WO3, whereas the
highest achieved efficiencies for 5 and 10% WO3 devices were
∼8.3 and ∼9.4%, respectively. The high JSC values may have
occurred due to the Al2O3 layer deposition, which acts as a
spacer layer that retards the recombination between TiO2 and
the carbon electrode.
IPCE resembles the external quantum efficiency of the

DSSC device, which includes the effects of optical losses
caused by transmission and reflection. The IPCE curve for m-
PSCs exhibited a broad peak over the range of 300−800 nm
with a maximum value of ∼89% for the 7.5% WO3-based
device at a wavelength of 550 nm indicating high charge
collection efficiency in cells, as shown in Figure 4b. Due to a
narrow band gap of ∼1.55 eV, the MAPbI3 provides high
extinction coefficient resulting in broad IPCE spectra from the
visible range to a part of the near-infrared. Further, calculation
of the integrated photocurrent density was evaluated from the
overlap integral of the IPCE spectra as recorded in Figure 4b
with the AM 1.5 solar emission for different devices and values
mentioned in Table S1 (ESI). The average integrated
photocurrent densities of PSCs with different amounts of
WO3 additive closely match with photocurrent densities
obtained from the J−V curve.
The nature of forward and reverse scanned J−V plots gives

impression of hysteresis. Significant hysteresis is observed for
all of the different sets of devices, as shown in Figure 5a−c.
Hysteresis is more pronounced for the devices with 7.5% WO3,
as can be seen from Figure 5b. Figure 5d provides the power
output of all of the PSC devices per unit cross-sectional area.
The enhanced power density was observed for WO3-added
devices compared to the device without WO3 treatment.
Similar to the J−V plot, the power density reaches its
maximum values of 5.89 mW/cm2 for 7.5% WO3.
Figure S2 (ESI) provides the variance of VOC, JSC, fill factor,

and PCE values for a batch of 10 devices from each set. The
overall PCE values range from 10.1 to 10.5% in the case of the
7.5% of the WO3-added devices. Interestingly, the fill factor of
devices with a lower amount of WO3 is higher than that of the
others.
Further, the electrochemical impedance spectroscopy (EIS)

measurements were carried out to understand the transport
properties at different interfaces in the m-PSC assembly. The
EIS spectra (Nyquist plot) with equivalent circuit diagram and
corresponding Bode phase diagram of the concerned PSCs
were recorded under dark at 0.7 V bias from 10 to 1 MHz, as
shown in Figure 6a,b, respectively. In the circuit diagram (inset
of Figure 6a), RS represents the series resistance, which include
resistance of FTO and carbon counter electrode. Rrec is the
charge-transfer resistance at the perovskite/carbon interface
and RCT is the charge-transfer resistance at the TiO2/MAPbI3
interface. It can be interpreted from Figure 6a that the large
parabola in the high-frequency region indicates higher
transportation and exchange resistance from the perovskite
to the carbon counter electrode, so it will affect the fill factor as
reflected from J−V characterization. On the other hand, the
smaller parabola reflects the recombination resistance between
TiO2 and the perovskite interface. The large RCT value implies
a slow charge recombination process or low charge
recombination rate. This low recombination rate is responsible
for high values of JSC and VOC, which is reflected in the J−V

Figure 2. (a) Cross-sectional field emission scanning electron
microscope (FESEM) image of the TiO2/Al2O3/carbon device with
MAPbI3 and (b) energy dispersive X-ray (EDX) elemental color
mapping of Ti, O, Al, Pb, I, and C of the device.

Figure 3. X-ray diffraction patterns of the MAPbI3/Al2O3/TiO2/FTO
device (in blue) with major peaks for (110), (211), (220), and (213)
planes are given in comparison to the blank FTO (in black).
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curve. Devices with higher RS value should have lower
efficiency, which can be observed from Table S2 (ESI).
Long-term stability is the most critical challenge for PSCs
under ambient conditions without any encapsulation. The
stability of the PSC is environment dependent, mostly affected
by the humidity, light conditions, and climatic conditions.52

The PSCs were kept at ambient conditions, to understand
the degradation pattern of the solar cell. The prepared PSCs
were characterized under illumination for ∼500 h, as shown in
Figure 7a−c. It was observed that the amount of WO3 controls
the stability of the devices. Figure 7a,b indicates a steady

decrease in JSC and VOC with time, respectively. The devices
with a higher amount of WO3 maintain their efficiency for a
longer time. The device containing 7.5% of WO3 maintained
its stability with a loss of 20% efficiency up to ∼350 h.
Significantly, stability of ∼500 h is observed for the device with
10% of WO3 and it maintains the PCE of ∼85% of the initial
value (Figure 7c). The presence of inorganic HTM may
stabilize the device in these purposes. This result indicates that
higher concentration of WO3 affects the power conversion
efficiency, but at the same time it increases the stability of the
devices. The use of WO3/carbon electrode reduces the

Figure 4. (a) Current−voltage (J−V) curves and (b) incident photon to current efficiency (IPCE) spectra for different m-PSCs containing 5, 7.5,
10% of WO3 compared with and without (w/o) WO3‑based devices, respectively.

Table 1. Photovoltaic Parameters of Ambient Mesoporous Perovskite Solar Cells under 1 SUN AM1.5 G, with an Active Area
of 0.16 cm2

sample VOC (mV) JSC (mA/cm2) fill factor (FF) PCE (%) power output (mW/cm2)

without WO3 788.8 ± 15 15.16 ± 0.1 0.62 ± 0.01 7.40 ± 0.3 4.54
5% WO3 801.3 ± 20 16.4 ± 0.15 0.605 ± 0.01 7.95 ± 0.4 4.86
7.5% WO3 842.3 ± 20 21.1 ± 0.2 0.58 ± 0.01 10.30 ± 0.2 5.89
10% WO3 840.4 ± 15 19.3 ± 0.15 0.56 ± 0.01 9.15 ± 0.3 5.22

Figure 5. J−V characteristic plot showing the forward and reverse scans with an active area of 0.16 cm2 under 1 sun (100 mW/cm2) light
illumination for devices with (a) 10%, (b) 7.5%, and (c) 5% WO3 and (d) corresponding power density vs voltage plot.
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porosity of the layer due to the presence of small sized WO3

nanoparticles. The small porosity of the electrode layer could
help to prevent the permeability of moisture/oxygen through
the counter electrode. This may be the reason behind the
greater stability of devices with a higher amount of WO3

nanoparticle in the electrode material. A simple schematic
energy band diagram of the carbon-based mesoscopic PSCs
with WO3 nanoparticles additive is shown in Figure 7d.
According to the energy-level positions of different compo-
nents, the excited electron is transferred from the conduction
band of the MAPbI3, perovskite layer (−3.9 eV) to that of the
TiO2 layer (−4.0 eV) followed by the hole extraction from the
perovskite layer (−5.4 eV) to the carbon layer (−5.0 eV) via
WO3 (−5.3 eV). Al2O3 layer served as a spacer and retards the
electron−hole recombination in the PSCs. The additive WO3

inside the carbon film can work as HTM to promote the hole-
extraction in the perovskite/carbon interface due to its
appropriate position of the conduction band.46,53,54 This is
further facilitated by energy-level matching, which helps a
notable improvement in the hole extraction, recombination
resistance compared to without WO3-based device.

It is proposed that incorporating WO3 in Pt CE favorably
occupies the gap states near the Fermi level and maintains high
work function, which accelerates the charge transportation and
enhances charge extraction of Pt in PSC. Treatment with WO3
may also take part similarly in modifying the electronic
structure of carbon and can be explored as a hole-transporting
layer for PSC. The electron hopping conduction mechanism is
the most probable reason behind the high electrical
conductivity of the annealed WO3 at 500 °C.55 The presence
of oxygen vacancies in substoichiometric WO3 creates various
defect states of WO3, such as W4+ or W5+ and W6+, located
within the band gap, respectively. These may promote charge
transfer and enhance the electrical conductivity in the mixed
valence states of W4+, W5+, and W6+ accordingly.56,57 Also, the
conductivity measurement data mentioned in Table S3 (ESI)
clarify the performance of different devices. Besides, optimum
amount of WO3 in the hybrid carbon paste plays a vital role in
modifying the carbon counter electrode. Less amount of WO3
incorporation may result in insufficient work function of WO3
well, whereas an excessive amount may decrease the
conductivity of the carbon and also effect transparency of
the device. Further, this experimentation is comparable to

Figure 6. (a) EIS characteristics (Nyquist plots) with the fitted circuit diagram and (b) corresponding Bode phase plot of different PSCs.

Figure 7. Photovoltaic characterization of 5, 7.5, and 10% WO3-contained devices in terms of their (a) current density (JSC), (b) open circuit
voltage (VOC), (c) PCE monitored up to 500 h, respectively and (d) schematic diagram of energy band position of the WO3-added perovskite solar
cell.

ACS Omega Article

DOI: 10.1021/acsomega.9b02934
ACS Omega 2020, 5, 422−429

426

http://pubs.acs.org/doi/suppl/10.1021/acsomega.9b02934/suppl_file/ao9b02934_si_001.pdf
http://dx.doi.org/10.1021/acsomega.9b02934


those of other previous works related to inorganic HTM for
carbon-based perovskite solar cells in the context of stability, as
given in Table 2. Most of these devices have much less stability
under light illumination except for the device with Co3O4. In
our case, under light illumination devices with 10% WO3 are
fairly stable (∼500 h) without any substantial loss of efficiency.

■ CONCLUSIONS
In conclusion, we have demonstrated here the fully printable
mesoporous perovskite solar cells with nanoparticles incorpo-
rated in the carbon back contact top electrode fabricated under
ambient condition. These devices show interesting stability
depending on the amount of WO3 (5, 7.5, and 10% by
volume) in the carbon electrode. The efficiency increase was
observed for the devices with nanoparticles in comparison to
those without. The highest efficiency was obtained with the
7.5% WO3 device, but the stability of devices with 10% WO3 is
more pronounced. The results suggest that depending on the
amount of efficient additives, the device performance can be
influenced remarkably. The obtained maximum efficiency was
lower than the values reported for other PSCs; however, with
all factors taken into account, the proposed option might
emerge as be much more realistic and, thus, more promising.
Further, this work demonstrates that the concentration
variation of WO3 can improve the stability significantly for
uncapped devices in open air conditions under light. This
constitutes an important step toward the efficiency improve-
ment of the devices for futuristic photoelectrochromic or self-
powered switchable glazing for low-energy adaptive faca̧de
integration.

■ EXPERIMENTAL SECTION
Device Fabrication. In details, the first step (step a)

resembles etching of the fluorine-doped tin oxide (FTO) glass
substrate. Next, TiO2 compact layer was spin-coated at 2000
rpm for 30 s on the etched clean FTO transparent glass by
using 0.15 M titanium di-isopropoxide bis-(acetylacetonate)
Ti(acac)2O

iPr2 (75 wt % in isopropanol, Sigma-Aldrich)
(99.9%, Sigma-Aldrich) solution in 2-propanol, followed by
drying at 115 °C for 5 min. This step is repeated for one more
time, and finally the coated samples were then placed on a hot
plate at a temperature of 415 ± 10 °C for 30 min followed by
cooling to room temperature (step b). The mesoporous TiO2
layer was deposited by spin coating at 2500 rpm for 30 s using
diluted TiO2 paste (18NRT from Great Cell Solar Company;
w/w = 1:3.5 in ethanol) and heated at 500 °C for 60 min (step
c). After cooling down to room temperature, lithium doping
was carried out via spin coating (3000 rpm, 15 s) of 0.1 M

lithium bis-(trifluoromethanesulfonyl) imide (Li-TFSI) sol-
ution in acetonitrile followed by annealing at 415 ± 15 °C for
30 min (step d). Then, the Al2O3 mesoporous layer was spin-
coated with diluted Al2O3 paste (Sigma-Aldrich; v/v = 1:2 in
isopropanol) at 2000 rpm for 30 s and heated at 150 °C for 30
min (step e). To prepare the carbon paste for back contact, 1.2
g of graphite powder (Sigma-Aldrich) was mixed with 0.2 g of
carbon black powder (Alfa Aesar) in 4.0 mL of α-terpineol
(Sigma-Aldrich). Then, 0.1 g of ZrO2 powder (Sigma-Aldrich),
1.5 g of ethyl cellulose (15 wt % in ethanol) (Sigma-Aldrich),
and three different amounts (5, 7.5, and 10% by volume) of
WO3−x nanoparticle ink (2.5 wt % in isopropanol, Sigma-
Aldrich) were added to the above paste, followed by ball
milling overnight. Thus, the prepared carbon paste was screen-
printed above the mesoporous Al2O3 layer to obtain a
mesoscopic carbon layer, which was sintered at 450 °C for
30 min (Step f). The MAPbI3 perovskite solution was prepared
via the ion-exchange method. In short, 0.198 g of CH3NH3I
(Sigma-Aldrich) and 0.573 g of PbI2 (Sigma-Aldrich) were
dissolved in 1 mL of γ-butyrolactone (Sigma-Aldrich) and then
stirred at 60 °C overnight.41 After cooling down to room
temperature, the perovskite precursor solution with an
appropriate amount was infiltrated by drop casting via the
top of the carbon counter electrode and further spin coating at
1000 rpm for 15 s. At last, drying was done at 50 °C for 1 h
(Step g). Finally, the PSC was employed for further
characterization and measurements. Note: All of the data
represented here are the average measurement of five
individual fabricated m-PSC devices for each case. Their
corresponding photovoltaic performance was monitored since
last 6 months with negligible hysteresis effect and high
reliability and repeatability at ambient condition. Every
individual m-PCSs were measured in every 24 h up to 500 h
to check their photovoltaic performance and stability. The cells
were fabricated and stored at ambient condition for all of the
cases. Box and whisker plot of efficiency measurements
indicated the error range recorded during the period of device
measurement (Figure S2, ESI).

Characterization. X-ray diffraction (XRD) analyses of the
fabricated PSC films were carried out on a X’pert pro MPD
XRD of PANalytical with Cu Kα radiation (λ = 1.5406 Å). The
cross-sectional thickness measurement and elemental mapping
of the PSC were recorded on a scanning electron microscope
(SEM), (LEO 430i, Carl Zeiss). Further, testing of the PSC
was executed under 1000 W/m2 of light from a Wacom AAA
continuous solar simulator (model: WXS-210S-20, AM 1.5 G).
The I−V characteristic of the devices was recorded using an
EKO MP-160 I−V Tracer. EIS measurements were carried out

Table 2. Stability Comparisons of Carbon-Based Mesoscopic Perovskite Solar Cells from Previous Reports Based on MAPbI3

device structure
average
PCE (%) stability of unsealed device

active area
(cm2) refs

FTO/c-TiO2/m-TiO2/m-ZrO2/Co3O4/carbon/MAPbI3 11.7 ∼2500 h in ambient condition in the presence of light 0.8 38
FTO/m-TiO2/m-ZrO2/NiO/carbon/MAPbI3 13.7 PCE decreased to 80% of initial after ∼150 h in the presence

of light
40

FTO/c-TiO2/m-TiO2/ CH3NH3PbI3/C-CuS 10.22 over 600 h in ambient condition with 30−50% humidity in
dark

42

FTO/c-TiO2/m-TiO2/m-ZrO2/carbon/MAPbI3 6.5 ∼850 h in dry air condition at room temperature in dark 0.125 58
FTO/c-TiO2/m-TiO2/m-Al2O3/carbon/MAPbI3 12.3 PCE decreased to 1% of initial after ∼480 h under light at

room temperature
0.09 59

FTO/c-TiO2/m-TiO2/m-Al2O3/SWCNT-NiO/MAPbI3 12.7 ∼300 h in ambient condition 60
FTO/c-TiO2/m-TiO2/m-Al2O3/carbon-WO3/MAPbI3 10.3 85% of initial PCE retains after ∼500 h in ambient condition in

the presence of light
0.16 this

work
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with an AUTOLAB frequency analyzer setup equipped with an
AUTOLAB PGSTAT 10 and a Frequency Response Analyzer
(FRA) Module. The measurements were performed under the
same solar simulator condition with the frequency range from
0.1 to 100 kHz. All of the devices were measured at the 0.70 V
open-circuit voltage of the devices. The experimental data were
fitted with the Z-view software (version 3.4d, Scribner
Associates, Inc.) using appropriate equivalent circuits. Incident
photon to current efficiency (IPCE) was carried out on a
BENTHAM PVE300 Photovoltaic EQE (IPCE) and IQE
solution under 350−750 nm wavelength using a tungsten
halogen lamp source.46 The conductivity measurements were
performed using the Ossila (UK) Four-Point Probe Instru-
ment. All of the data presented are an average of measurements
taken on three different devices.
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M.; Chen, J.; Yang, Y.; Graẗzel, M.; Han, H. A hole-conductor−free,
fully printable mesoscopic perovskite solar cell with high stability.
Science 2014, 345, 295−298.
(51) Xiong, Y.; Zhu, X.; Mei, A.; Qin, F.; Liu, S.; Zhang, S.; Jiang, Y.;
Zhou, Y.; Han, H. Bifunctional Al2O3 interlayer leads to enhanced
open-circuit voltage for hole-conductor-free carbon-based perovskite
solar cells. Sol. RRL 2018, 2, No. 1800002.
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