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rive’ alleles are transmitted to greater than 50% of offspring,
rapidly invade populations even if they reduce the fitness of
ing them. Theory predicts that drivers should either fix or go
e drivers defy these predictions by persisting at low, stable
decades. One possible explanation for this discrepancy is
a are rare and equivocal. Here, we measure the fitness of
la pseudoobscura carrying zero, one or two copies of the
sex ratio (SR). SR had strong negative effects on female
ction and the probability of reproductive failure, and these
rgely similar across four genetic backgrounds. SR was
when homozygous. We used our fitness measurements to
opulation genetic model, and found that the female fitness
ere can explain the puzzlingly low allele frequency of SR in
use the model to show how spatial variation in female
r, fitness costs of SR and the reduced siring success of SR

ly explain the North–South cline in SR frequencies across

ments (SGEs) are ubiquitous in living organisms and have
the evolution of sex and genetic systems [1,2]. SGEs increase
by subverting the usual patterns of Mendelian inheritance,
are inherited by up to 100% of the progeny of heterozygous
d of the expected 50% [2,3]. Sex chromosome meiotic drivers
ansmission of either the X or Y chromosome from individuals
etic sex, by inducing developmental failure in sperm that do
ving chromosome resulting in sex-ratio distortion [4]. This
antage means that drive-bearing chromosomes should
fixation, potentially causing population extinction due to

ex [5,6]. However, meiotic drivers are often found at stable
ural populations [7,8].
t maintain stable coexistence between driving and non-driving
e long been unclear [9]. Anymechanism that imposes negative
ent selection on the driver will reduce the relative fitness of the
preads through the population. Eventually, selection against
come strong enough to counteract its transmission advantage,
utionarily stable polymorphism in which drive and non-drive
]. One common source of frequency-dependent selection is
rienced by individuals carrying two copies of the drive allele
rive homozygotes suffer higher fitness costs than drive hetero-
age fitness of drive-carrying individuals will decline as the
frequency, due to the increasing frequency of homozygotes.
Published by the Royal Society. All rights reserved.
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To avoid the risk that our measure of fitness of SR is influenced
by the fitness of the ST X chromosomes it is compared against,
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There is some evidence that drive alleles are indeed more
costly to fitness in homozygous form. Many meiotic drivers
are found in regions of the genomewith little or no recombina-
tion [4] and these regions are thought to accumulate
deleteriousmutations, many of which are likely to be recessive
[14]. For example, the ‘t-haplotype’, a large, non-recombining
meiotic drive element found in mice, is homozygous-lethal
[15], and some Drosophila drivers result in reduced
homozygote fitness [16,17].

Various aspects of the mating system have also been
hypothesized to act as sources of negative frequency-dependent
selection. Males carrying meiotic drive produce fewer sperm,
and sometimes become sperm-limited more quickly than
non-drive males [18]. Many meiotic drivers cause the sex
ratio to become female-biased as they invade (due to being
X-linked; see below), meaning that male fitness becomes
increasingly dependent on being able to fertilize multiple part-
ners. This produces negative frequency-dependent selection on
drive, potentially halting its invasion [11]. A subtly different
hypothesis involves sperm competition and polyandry. Drive
males are often disadvantaged in sperm competition relative
to non-drive males, due to producing fewer sperm, and
possibly also to other fitness costs of the drive allele [18–22].
As a consequence, the average fitness of drive males declines
as the average number of mates per female increases.

Theoretical models have found that polyandry can stabilize
allele frequencies and preserve polymorphism for drive,
but only if there are high fitness costs to females homozygous
for drive [10]. This model was based on the biology of sex
ratio (abbreviated SR), a meiotic driving X chromosome in the
fruit fly Drosophila pseudoobscura. SR kills the Y chromosome-
bearing sperm of male carriers during spermatogenesis [4,23],
resulting in all female broods. Flies that carry non-driving X
chromosomes are referred to as ‘standard’ (ST) flies. All else
being equal, SR is predicted to outcompete ST due to its
large transmission advantage, yet in reality, SR has persisted
at stable, intermediate frequencies in natural populations for
many decades [24,25].

SR reduces the number of sperm male carriers produce,
causing SR carriers to have reduced sperm competitive ability
[20]. Thus, the relative fitness of SRwill be lower in populations
in which most females mate multiply [26], and polyandry may
be regarded as an adaptation that reduces the number of eggs
fertilized by SR-carrying sperm,which incidentally reduces the
risk of extinction due to a shortage of males [5]. Accordingly,
SR exhibits a latitudinal cline in frequency across the USA,
which correlates negatively with another cline in the frequency
of polyandry [25]. Specifically, in northern populations,
females have high re-mating frequencies and SR frequency is
low, whereas in southern populations, the reverse is true [25].

In contrast with males, the relative fitness of females
carrying the SR distorter is relatively little-studied. The SR
chromosome carries three inversions that greatly reduce
recombination [27], and therefore, SR may have accumulated
more deleterious mutations than standard ST X chromo-
somes [14]. Additionally, SR is found at low frequencies
(approx. 1–30%; [7,12,24,25]), and hence has a low effective
population size [28]. This reduces the efficacy of selection
on competing driving X haplotypes, allowing more
mutations to accumulate. SR may therefore impose fitness
costs on female carriers, particularly those homozygous for
SR. However, Beckenbach [12] only detected minor differ-
ences fitness costs in SR females in one of two examined
RSPB20192038—13/11/19—10:45–Copy Edited by: Not Mentioned
D. psedoobscura populations, but concluded that this differ-
ence was insufficient to prevent SR from fixing. In general,
while this hypothesis has previously been examined, no
consistent substantial differences in fitness between SR and
ST females were found [29]; however, the study had a low
statistical power.

Here, we quantify the fitness cost to females carrying SR,
by comparing the number of offspring produced of females
carrying 0, 1 or 2 copies of SR. The fitness of the three
female genotypes are a crucial determinant of the evolution-
ary dynamics of the SR allele. In particular, if the costs of SR
to females are at least partly recessive, such that SR homozy-
gotes are less fit than heterozygotes, then SR is predicted to
be maintained in a balanced polymorphism by frequency-
dependent selection (e.g. [10,12,14,27,30,31]). With this in
mind, we also analysed a simple population genetic model
of SR parametrized with our genotypic fitness values, and
show that clinal variation in the frequency of polyandry can
explain some but perhaps not all of the observed clinal
variation in the frequency of SR.

2. Material and methods
(a) Origin and maintenance of the isofemale lines
or by epistatic interactions with the genetic background, we
backcrossed SR into four distinct genotypes derived from two
populations. Two isolines came from the Northern USA, where
SR is absent (Lewiston, Montana, 35°0500000 N, 111°4401000 W).
The other two isolines are from the Southern USA (Show Low,
Arizona, 34°150 N, 110°00 W), where SR naturally occurs at
high frequency (approx. 20%), and where we obtained the SR
chromosome examined in this study. The isofemale lines were
established from individual wild-caught female D. pseudoobscura
caught between May and June 2008 (see [25]). We propagated
each isoline by inbreeding sibs for approximately 80 generations
prior to beginning the present study. All stocks in this study were
maintained in an incubator at 23°C, with a 14 : 10 light : dark
photocycle, in 25 × 75 mm plastic Drosophila vials on a medium
of rolled oats, brown sugar, dried yeast, agar, nipagin, proprionic
acid and water [32]. Due to repeated inbreeding, each isofemale
line is expected to be homozygous at almost all loci, preserving a
‘snapshot’ of naturally occurring genetic variation, since homo-
zygosity prevents adaptation to the laboratory environment
[33]. Using introgressed isolines, and comparing inbred ST/ST,
ST/SR and SR/SR females makes this experiment a very conser-
vative test of the putative costs of SR, as in nature ST/ST
females are unlikely to have two near-identical X chromosomes,
as they do in the present experiment.

(b) Introgression of SR into the four isofemale lines
All the SR chromosomes used in this study are derived from a
single male caught in Show Low at the same time as the isofemale
lines were collected. We introgressed the SR X chromosome into
each of our four isofemale lines for nine generations. Standard
introgression techniques, crossing an XY male from one line to
anXX female fromanother, produces heterozygote females. Unfor-
tunately, heterozygous females in this case would be SR/ST, and
which would risk us losing SR from the introgressed line. Hence,
we used a two-stage introgression procedure (see electronic
supplementary material, figure S1) to prevent ST X chromosomes
entering the SR line. First, we crossed SR/SR females to an ST/Y
male from the target isoline. This produced heterozygote females



offspring count components to vary between genotypes (a fixed
factor with 3 levels: ST/ST, SR/ST and SR/SR), isolines (fixed
factor, 4 levels), female ages (a covariate); the model also included
the genotype-by-isoline interaction, as well as experimental
block as a random factor. In our main analyses, we did not fit
body size as a covariate, because we regard body size as a
mediator variable rather than something to be controlled for.
That is we hypothesize that genotype affects body size, and
body size affects fecundity, and so ‘controlling for body size’
masks part of the effect of genotype on offspring production.
Also, we have no body size data for 102/440 females in the
study, and so we would need to discard a quarter of the data to
include body size in our models. However, for completeness, we
also consider a model that includes body size as a covariate
(see Results). We compared competing models using posterior
model probability (i.e. the probability that the focal model is the
best one in the set, given the data and the prior), computed via
bridge sampling. The hurdle model was implemented in the R
package brms [41], and we used conservative, ‘regularizing’
priors to help prevent overfitting [42]. Using the posterior model
parameters, we calculated the posterior estimates for each geno-
type and isoline mean for a female of average age, adjusting for
block effects. We also calculated pairwise differences between
the means for each genotype in order to calculate effect sizes
and assess statistical significance (using a ‘Bayesian p-value’,
defined as the probability that the true effect size is actually of
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that were discarded, and SR/Y sons that carried a mix of SR stock 
and target isoline autosomes. These sons were then crossed to SR/
SR females to produce the next generation of partially introgressed 
SR/SR females. Over nine generations of introgression, this is 
expected to result in 93% of autosomal DNA being derived from 
the isoline. Homozygous SR/SR females were confirmed by geno-
typing using PCR (methods and primers reported in [34]). Our 
introgression technique also has the advantage that, as offspring 
from heterozygous females were never used, recombination 
between SR and ST chromosomes could not occur.

(c) Mating assays and offspring counts
After introgression, we generated experimental females with 0, 1 
or 2 SR X chromosomes from each of the four isolines, to 
measure their offspring production. We collected experimental 
flies within 18 h of eclosion, to ensure they were virgin. All 
flies were transferred without anaesthesia to ensure normal 
copulation behaviour [35]. A minimum of 30 females were 
mated for each of the three female genotypes, for each of the 
four introgressed lines, giving 12 treatment combinations in total.

We placed each virgin female in a new food vial with an ST/ST 
male from the same isoline. All males and females were 3–5 days  
old at the time of mating, at which age they are fully sexually 
mature [36], and the males were aged in individual vials, because 
male–male interactions prior to mating have been shown to affect 

mating behaviour and success in male Drosophila [37]. We 
observed the pairs of flies for 2 h, and pairs that failed to mate 
were discarded. After the 2 h mating period, we removed the 
male from each vial, and transferred all successfully mated females 
to a fresh vial. We allowed females to oviposit for 12 days in total, 
moving them onto fresh food every 3 days. This minimizes the 
potential effect of larval crowing on offspring viability.
To measure female offspring production, we counted all 
offspring from each vial; offspring production in the first 

 
 

12 days of life correlates strongly with the lifetime number of 
offspring produced [38]. We allowed 7 days between the first 
adult eclosion and offspring count, to ensure that all offspring 
had eclosed. We counted the number of sons and daughters pro-
duced. It is worth noting that since we did not measure fecundity 
(number of eggs laid by females) or hatching success (fertility), 
but the number of emerging offspring, we are not able to quantify 
separate female fitness components (i.e. fecundity, fertility and 
viability). However, offspring production is the most suitable 
measure of the combined fitness cost to females carrying SR as 
it captures the genetic contribution to subsequent generations 
and therefore the frequency of SR. To obtain a measure of body 
size, we removed the focal females’ wings and photographed 
them at 20 × magnification under a Leica L2 microscope, then 
measured the posterior cross vein to the distal extreme of the 
fourth longitudinal vein from the resulting digital photograph 
using ImageJ [39]. All focal females were genotyped. DNA was 
extracted from each focal female, amplified using PCR and then
screened for both SR and ST chromosomes. This procedure
ensured that the SR chromosome had been successfully intro-
gressed. All females whose SR genotype was not as expected 
(n = 23 out of 463) were excluded from the data analysis.

(d) Statistical analysis
All analyses were conducted using R v. 3.5.1 [40]. Thirteen per 
cent of females (58/440) failed to produce any offspring, so we 
elected to analyse the progeny count data with a Bayesian 
hurdle model. Hurdle models assume the data are generated by 
a two-step process: in our case, the model assumes that females 
reproduce with some probability (which is estimated from the 
data), and if they do reproduce, they produce a variable number 
of offspring which follows a negative binomial distribution. In 
the most complex model, we allowed both the hurdle and
RSPB20192038—13/11/19—10:45–Copy Edited by: Not Mentioned
the opposite sign to the reported effect size). All R code can be
viewed at https://lukeholman.github.io/cost_of_SR_Dpseudo/.

(e) Population genetic model
The effect of SR on female relative fitness is likely to be important
to the evolutionary dynamics of SR in natural populations, and
so we wrote a population genetic model that incorporated the
estimates of relative fitness from our experiment. The model
considers an infinite, panmictic population with non-overlapping
generations. Meiosis proceeds normally in females and ST males,
but SRmales were assumed to pass on the SR chromosome to 96%
of their offspring (as in [12]). Females matewith either one male or
two, with probabilities (1 – p) and p, respectively. We assume that
ST/ST females and ST males both have a fitness of 1, while the
fitness of the other three genotypes (SR/ST, SR/SR and SR) are
potentially less than 1, where ‘fitness’ describes a genotype’s abil-
ity to survive to adulthood and produce offspring relative to the
other genotypes. In each generation, we first implement selection
bymultiplying each genotype frequency by its relative fitness and
renormalizing the genotype frequencies to sum to 1. Next, we
determine the frequencies of each possible mating type among
single-mated females, by taking the product of each possible com-
bination of male and female genotypes multiplied by (1 – p); that
is, we assume that mating occurs at random (with respect to SR
genotype) among the individuals that survive and successfully
breed. We similarly found the frequencies of each mating type
for twice-mated females by multiplying the genotype frequencies
of the female, her firstmate, and her secondmate, andmultiplying
by p. With the frequencies of eachmating type defined, we can cal-
culate the expected offspring genotype frequencies for the whole
population: the offspring genotype frequencies replace the par-
ental ones, bringing us back to the start of the life cycle. For
doubly mated females that mated with one SR male and one ST
male, we assumed that the SRmale potentially sired a percentage
C of the offspring where C≤ 50%. In nature, C is approximately
21% (i.e. the average of P1 and P2 in [20,43]), and we used this
value when fitting the model to our fitness data. Offspring sired
by an SR male inherited the SR allele with probability k; k is
approximately 0.96 in nature [12]. We also compared our data
with polyandry and SR frequency estimates from Price et al.
[25], who measured these two variables in seven populations in
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than ST/ST females, meaning that their productivity was
only 41% as high as the ST/ST genotype ( p < 0.0001; electronic
supplementary material, table S1). The fitness of SR/SR
females was also only 45% as high as the fitness of heterozy-
gotes (SR/ST), illustrating that the fitness costs imposed by
SR are at least partly recessive ( p < 0.0001). There was no stat-
istically significant difference in offspring number between the
ST/ST and SR/ST genotypes ( p = 0.11).

Much of the reduction in the progeny number of SR/SR
females was due to their significantly greater rate of reproduc-
tive failure. Twenty-three per cent of SR/SR females failed to
produce any offspring (33/142), compared to 13.7% of SR/ST
females (20/146) and 3.3% of ST/ST females (5/152)
(figure 1c). These three failure rates were all statistically signifi-
cantly different from one another (electronic supplementary
material, table S2), indicating that inheriting a single copy of
SR is sufficient to increase the rate of reproductive failure,
while inheriting two copies increases the failure rate further
still. However, SR/SR females produced significantly fewer
offspring than the other genotypes even within the subset of
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Figure 1. The black points and error bars show the posterior estimates of the genotype means for (a) offspring production (N = 440), (b) offspring production
among the set of females that produced at least one offspring (N = 382) and (c) the percentage of females that produced offspring. The estimates are all derived
from a single hurdle model which adjusts for variation due to female age and experimental block, and each estimate is the average across the four isolines (see
electronic supplementary material, figure S1 for estimates split by isoline). The points show the raw values of offspring production for individual females, and are

the 95% credible intervals on each estimate. (Online version in colour.)
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a North–South cline across North America. We found the equili-
brium frequency of SR numerically by iterating the model
until SR fixed, went extinct or until 10 000 generations had
elapsed, since the analytical solution to the model would be
unwieldy. The simulation was written in R, and the code used
to run it can be viewed at https://lukeholman.github.io/cost_
of_SR_Dpseudo/.

3. Result
(a) Effect of SR on offspring production
To test whether the genetic background affects fitness and/or
the fitness costs of carrying SR, we first compared the fit of
three models. The full model contained the genotype × isoline
interaction and both main effects, the secondmodel lacked the
two-way interaction and the third model additionally lacked
the main effect of isoline (all three models additionally
contained female age as a covariate and block as a random
effect, total sample size N = 440; electronic supplementary
material, table S1). The simplest model had by far the highest
posterior model probability (greater than 99%); this means
that we found no evidence that females from different isolines
vary in fitness more than expected by chance, or that the costs
of SR vary between the four genetic backgrounds examined.
Electronic supplementary material, figure S1 presents the
same information as figure 1, split by isoline, illustrating this
null result. Electronic supplementary material, tables S2 and
S3 summarize the posterior parameter estimates for the top
model and the full model, respectively. Electronic supplemen-
tary material, figure S1 and table S3 highlight a trend for the
Slo B3 isoline to be more sensitive to the costs of carrying SR
than the others, but since the genotype × isoline effect did
not improve model fit, this result is provisional.

Females carrying two driving X chromosomes (genotype:
SR/SR) had substantially lower expected offspring production,
and were more likely to fail to produce any offspring, relative
to the other genotypes (figure 1 and table 1). Specifically,
SR/SR females produced an estimated 38 fewer progeny

coloured purple for females that produced no offspring. The error bars show
RSPB20192038—13/11/19—10:45–Copy Edited by: Not Mentioned
females that did produce offspring ( p < 0.0001; figure 1b).
Interestingly, there was a significant difference in the rate of
reproductive failure, but not in the number of progeny pro-
duced when fertile, between the SR/ST and ST/ST genotypes
(figure 1; electronic supplementary material, table S2).

Fitting body size as a covariate (n = 338 females; electronic
supplementary material, table S4) had no qualitative effect on
the results: as before, we found that SR/SR females had lower
offspring production and failed to reproduce more often,
while SR/ST females had more frequent reproductive failure,
but were equally productive if they did reproduce (electronic
supplementary material, table S4). As expected, there was a
positive relationship between body size and productivity
( p = 0.025).

(b) Effect of SR on female body size
Body size (as measured by wing vein length) differed between
genotypes. Surprisingly, the ST/ST females were smallest

https://lukeholman.github.io/cost_of_SR_Dpseudo/
https://lukeholman.github.io/cost_of_SR_Dpseudo/
https://lukeholman.github.io/cost_of_SR_Dpseudo/


(1.53 ± 0.009 mm,N= 110), followed by SR/SR (1.57 ± 0.008 mm,
N= 113), and then SR/ST (1.63 ± 0.005, N = 115); all pairwise
differences were statistically significant (mixed model contain-
ing genotype, isoline and block: p< 0.0001). These body size
differences were large in magnitude: relative to ST/ST females,
females carrying a single SR chromosome had wings that were
1.10 standard deviations longer (s.e. = 0.11), while females carry-
ing two SR chromosomes had wings that were 0.46 standard
deviations longer (s.e. = 0.11). There were also differences in

Table 1. Pairwise comparisons of genotypes for the three measures of female fitne
estimate of the difference between the genotype means, in the original units (i.e. o
the genotype with more copies of SR has lower female fitness, the parentheses sh
‘relative difference’ column expresses each difference in relative terms; e.g. the first
was 92% as much as the number produced by ST/ST females, with 95% confiden
difference in means is zero or of the opposite sign to the estimate shown here (sim

fitness trait comparison difference

mean offspring production STST→ SRST −5.53 (6.23
STST→ SRSR −38.37 (5.9
SRST→ SRSR −32.84 (5.6

Mean offspring production

(excluding infertile females)

STST→ SRST 2.04 (6.12; −
STST→ SRSR −32.88 (5.7
SRST→ SRSR −34.93 (5.8

% fertile females STST→ SRST 0.11 (0.04; 0

STST→ SRSR 0.20 (0.05; 0

SRST→ SRSR 0.09 (0.05; 0
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body size between the isolines (p< 0.0001).

(c) Effect of maternal genotype on sex ratio of offspring
that reached adulthood

Among the subset of offspring that survived to adulthood,
there was a significant excess of daughters for all three
female genotypes, and this excess was especially strong
when the mother carried at least one copy of SR (figure 2).
To test for effects of isoline and genotype, we compared the
fit of three models: genotype only, genotype and isoline, and
genotype, isoline and their two-way interaction. The model
containing genotype and isoline without their interaction
was the best-fitting of the three (posterior probability greater
than 99%), indicating that although the isolines differed, the
effect of ST on the sex ratio did not differ significantly between
isolines (see electronic supplementary material, figure S3). ST/
ST females produced fewer daughters than either of the SR
genotypes (posterior difference in % daughters compared to
SR/SR: 7.7%, 95% CIs: 5.9–9.5%, p < 0.0001; versus SR/ST:
6.11%, 95% CIs: 4.7–7.5%, p < 0.0001), and there was also
weak evidence that for a more female-biased sex ratio for
SR/SR females compared to SR/ST (1.6%, 95% CIs: −0.25 to
3.5, p = 0.046).
(d) Population genetic model
Themodel reaffirmed earlier findings (e.g. [10,44]) that recessive
fitness costs of SR to females can maintain a balanced poly-
morphism of SR and ST chromosomes (figure 3). The reason
for this result is that recessive fitness costs impose negative fre-
quency-dependent selection on SR. When SR is rare, it is rarely
RSPB20192038—13/11/19—10:45–Copy Edited by: Not Mentioned
found in homozygotes, and thus, SR carriers rarely experience
the full fitness cost, but when SR is common, so too are SR
homozygotes. Furthermore, we found that SR is predicted to
reach a lower equilibrium frequency in populations in which
most females mate multiply, particularly when SR males
perform poorly in sperm competition (figure 3).

Next, we parametrized the model with female relative
fitness values that equal the relative offspring production esti-
mated here (i.e. ST/ST = 1, SR/ST = 0.92, SR/SR = 0.41; table 1).
We also incorporated estimates of the frequency of polyandry
( p) in seven North American populations of D. pseudoobscura,
and the sperm competitiveness of SR males under laboratory
conditions, and calculated the expected equilibrium allele
frequency of the SR allele for three values of the only remain-
ing unmeasured parameter in the model (i.e. the fitness of SR
males; figure 3). The allele frequencies predicted by the
model were a fairly close match to the real-world observed
allele frequencies, suggesting that the model captures most

ss shown in figure 1. The ‘difference in means’ column shows the posterior
ffspring number, or percentage points). A negative difference indicates that
ow the error and 95% quantiles of the posterior difference in means. The
row shows that the mean number of offspring produced by SR/ST females
ce limits of 70–110%. Finally, p is the posterior probability that the true
ilar to a conventional p-value).

in means relative difference p

; −18.0 to 6.5) 0.92 (0.09; 0.7–1.1) 0.1842

1; −50.5 to −27.6) 0.41 (0.05; 0.3–0.5) 0.0000

7; −44.6 to −22.6) 0.45 (0.05; 0.4–0.6) 0.0000

9.9 to 14.2) 1.03 (0.09; 0.9–1.2) 0.3693

0; −44.5 to −22.3) 0.51 (0.05; 0.4–0.6) 0.0000

1; −47.0 to −24.6) 0.50 (0.05; 0.4–0.6) 0.0000

.0 to 0.2) 4.42 (2.45; 1.6–10.6) 0.0007

.1 to 0.3) 7.17 (3.87; 2.8–16.9) 0.0000

.0 to 0.2) 1.69 (0.46; 1.0–2.8) 0.0278
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Figure 2. Distribution of proportion of daughters in offspring for each
genotype. (Online version in colour.)



We also found that the number of driving X chromosomes a
female carried predicted whether she would fail to produce
any offspring following a single mating. This finding is unli-
kely to be affected by sperm limitation. While we did not
quantify the possible impact of differential sperm allocation
by (ST) males to females with respect to the number of SR
chromosomes they carry, female fertility is not limited by
the number of sperm received even when mating to an SR
male that transfer half as many sperm as an ST males [20].
Twenty-three per cent of SR/SR and 14% of SR/ST females
failed to produce offspring following an apparently normal
copulation, compared to a 3% failure rate in ST/ST females.
Additionally, we found that females carrying one or two
copies of SRwere substantially larger than the ST/ST females,
with SR/ST females being the largest genotype. However,
this difference in body size did not predict differences in
the number of offspring produced between genotypes,
indicating that this difference is due to carrying SR.

We also found there was a significant difference in the sex
ratio of emerging adults between females, with SR/SR and
SR/ST females producing significantly more female-biased
offspring that survived to adulthood compared to ST/ST
females. This suggests that male larvae carrying an SR
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Figure 3. Predicted equilibrium frequency of the SR allele, calculated from
the population genetic model. The model shows that SR is predicted to
reach a lower equilibrium frequency when a high proportion of females
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of the salient biological variables, and that our offspring
production estimates are a reasonable approximation of the
genotypic fitnesses in the wild. The model also implies that
the relative survival and mating success of SR males is in
the range 90–100% as for ST males, since the SR allele was
predicted to be unrealistically rare when we assumed that
SR males have a relative fitness lower than this.

Assuming that the three possible female genotypes have
fitness equal to the relative progeny production values
observed in our experiment (table 1), in combination with
estimates of meiotic drive strength and SR male sperm com-
petitiveness from earlier research (see Methods), we find that
SR is expected to reach an equilibrium frequency of 0% to
almost 30%, for a range of natural polyandry frequencies
(red points in figure 3). Figure 3 assumes that SR and ST
males are equally likely to survive and mate; relaxing this
assumption by adding male-specific costs of SR reduces the
expected frequencies of SR considerably (figure 4). The popu-
lation frequencies of SR that best matched the real-world data
when the fitness of SR males was assumed to be 90–100% as
much as an ST male, though the match to the data was
not especially strong, suggesting that this simple model is
missing one or more predictors of SR evolutionary dynamics.

4. Discussion
Here, we show that female D. pseudoobscura homozygous for
SR produce fewer than half as many offspring as heterozy-
gous SR/ST or standard ST/ST females. This reduction in
fitness was similarly large across all four isoline backgrounds.

mate multiply (x-axis), and when SR males are inferior sperm competitors
to ST males ( y-axis). These two predictors interact, because sperm compe-
tition becomes more selectively important as polyandry becomes more
common. The seven red points illustrate the range of female mating frequen-
cies observed across seven North American populations, and their position on
the y-axis is based on [25]. The figure further assumes that SR males pass on
the SR chromosome to 96% of their offspring [12], and that ST and SR males
have equal survival and mating success. (Online version in colour.)
RSPB20192038—13/11/19—10:45–Copy Edited by: Not Mentioned
chromosome were suffering increased mortality. However,
differential mortality of SR male offspring is unlikely to be
the main driver of the reduced offspring production by
SR/SR females, as the change in sex ratio was too small to
explain the 45% fecundity difference between SR/SR and
SR/ST females. Moreover, SR/ST females showed the same
female-biased sex ratio as SR/SR females (60% versus 61%),
but produced similar numbers of offspring as ST/ST females.
The absence of a substantial difference in the sex ratio of sur-
viving offspring of SR/ST and SR/SR females suggests that
viability differences of SR/Y sons cannot solely explain the
reduced offspring production observed in SR/SR females.
As we only measured total offspring production and not
egg production, hatching success and viability of individual
females, we cannot infer the main cause of the reduced
productivity of SR/SR females.

The results from previous studies of fitness costs to
D. pseudoobscura females carrying SR are inconsistent. Wallace
[27] evaluated the lifetime fecundity of groups of five females,
and found that heterozygote females laid more eggs than
homozygous females, and that SR/SR and ST/ST females
laid similar numbers of eggs at 25°C, but that SR/SR females
were disadvantaged at 16.5°C. However, Wallace pooled the
fecundity of several females making his estimate less reliable.
Wallace [27] also looked at hatching success of eggs finding no
difference between females, but showed there was strong via-
bility selection against SR homozygous females. Curtsinger &
Feldman [14] set up cages of SR/ST and ST/ST, or SR/SR and
SR/ST at randomized genotype proportions. They assayed
the resulting eggs, then estimated the frequency of parental
genotypes, to calculate eggs laid by each genotype. Similar
to Wallace’s results, they also argue that SR/ST females
were more fecund than both SR/SR and ST/ST females,
with SR/SR females being most disadvantaged. However,
these experiments were at high density, and present only
total offspring numbers summed across all vials, not means
and deviations, making them hard to interpret. Nonetheless,
Curtsinger & Feldman [14] also found that SR/SR females
had lower viability than heterozygote SR/ST females. By con-
trast, Beckenbach [12] found no difference in egg production
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Our finding that females carrying SR
ST/ST females is surprising, given that 
and presumably carries a number of del
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male-detrimental and so our results a
what one might predict, or indicate that 
be subject to sexually antagonistic selectio
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