
 1 

Historical (1700–2012) Global Multi-model Estimates of the Fire Emissions from 1 

the Fire Modeling Intercomparison Project (FireMIP) 2 

Fang Li1*, Maria Val Martin2, Stijn Hantson3,4, Meinrat O. Andreae5,6, Almut Arneth4, 3 

Gitta Lasslop7, Chao Yue8,9, Dominique Bachelet10, Matthew Forrest7, Johannes W. 4 

Kaiser11,6, Erik Kluzek12, Xiaohong Liu13, Stephane Mangeon14,15, Joe R. Melton16, 5 

Daniel S. Ward17, Anton Darmenov18, Thomas Hickler7,19, Charles Ichoku20, Brian I. 6 

Magi21, Stephen Sitch22, Guido R. van der Werf23, Christine Wiedinmyer24  7 

1 International Center for Climate and Environment Sciences, Institute of Atmospheric 8 

Physics, Chinese Academy of Sciences, Beijing, China 9 

2 Leverhulme Center for Climate Change Mitigation, Department of Animal & Plant 10 

Sciences, Sheffield University, Sheffield, UK 11 

3 Geospatial Data Solutions Center, University of California, Irvine, CA, USA 12 

4 Karlsruhe Institute of Technology (KIT), Institute of Meteorology and Climate 13 

research, Atmospheric Environmental Research, Garmisch-Partenkirchen, Germany 14 

5 Max Planck Institute for Chemistry, Mainz, Germany 15 

6 Senckenberg Biodiversity and Climate Research Institute (BiK-F), 16 

Senckenberganlage, Germany 17 

7 Department of Geology and Geophysics, King Saud University, Riyadh, Saudi Arabia 18 

8 State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, 19 

Northwest A&F University, Yangling, Shanxi, China 20 

9 Laboratoire des Sciences du Climat et de l’Environnement, LSCE/IPSL, 21 

CEA-CNRS-UVSQ, Université Paris-Saclay, Gif-sur-Yvette, France 22 



 2 

10 Biological and Ecological Engineering, Oregon State University, Corvallis, OR, 23 

USA 24 

11 Deutscher Wetterdienst, Offenbach, Germany 25 

12 National Center for Atmospheric Research, Boulder, CO, USA 26 

13 Department of Atmospheric Science, University of Wyoming, Laramie, WY, USA 27 

14 Department of Physics, Imperial College London, London, UK 28 

15 Now at CSIRO, Data61, Brisbane, QLD, Australia 29 

16 Climate Research Division, Environment and Climate Change Canada, Victoria, BC, 30 

Canada 31 

17 Karen Clark and Company, Boston, MA, USA 32 

18 Global Modeling and Assimilation Office, NASA Goddard Space Flight Center, 33 

Greenbelt, MD, USA 34 

19 Department of Physical Geography, Goethe University, Frankfurt am Main, 35 

Germany 36 

20 Howard University, NW, Washington, DC, USA 37 

21 Department of Geography and Earth Sciences, University of North Carolina at 38 

Charlotte, Charlotte, NC, USA 39 

22 College of Life and Environmental Sciences, University of Exeter, Exeter, UK 40 

23 Faculty of Science, Vrije Universiteit, Amsterdam, The Netherlands 41 

24 University of Colorado Boulder, Boulder, CO, USA 42 

*Correspondence to: Fang Li (lifang@mail.iap.ac.cn) 43 

 44 

mailto:lifang@mail.iap.ac.cn


 3 

 45 

Abstract 46 

Fire emissions are critical for carbon and nutrient cycles, climate, and air quality. 47 

Dynamic Global Vegetation Models (DGVMs) with interactive fire modeling provide 48 

important estimates for long-term and large-scale changes of fire emissions. Here we 49 

present the first multi-model estimates of global gridded historical fire emissions for 50 

1700–2012, including carbon and 33 species of trace gases and aerosols. The dataset is 51 

based on simulations of nine DGVMs with different state-of-the-art global fire models 52 

that participated in the Fire Modeling Intercomparison Project (FireMIP), using the 53 

same and standardized protocols and forcing data, and the most up-to-date fire 54 

emission factor table from field and laboratory studies over various land cover types. 55 

We evaluate the simulations of present-day fire emissions by comparing them with 56 

satellite-based products. Evaluation results show that most DGVMs simulate 57 

present-day global fire emission totals within the range of satellite-based products. 58 

They can capture the high emissions over the tropical savannas, low emissions over 59 

the arid and sparsely vegetated regions, and the main features of seasonality. However, 60 

most models fail to simulate the interannual variability, partly due to a lack of modeling 61 

peat fires and tropical deforestation fires. Historically, all models show only a weak 62 

trend in global fire emissions before ~1850s, consistent with multi-source merged 63 

historical reconstructions as input data for CMIP5 and CMIP6. The long-term trends 64 

among DGVMs are quite different for the 20th century, with some models showing an 65 

increase and others a decrease in fire emissions, mainly as a result of the discrepancy in 66 
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their simulated responses to human population density change and land-use and 67 

land-cover change (LULCC). Our study provides an important dataset for the 68 

development of regional and global multi-source merged historical reconstructions, 69 

analyses of the historical changes of fire emissions and their uncertainties, and 70 

quantification of their role in the Earth system. It also highlights the importance of 71 

accurately modeling the responses of fire emissions to LULCC and population density 72 

change in reducing uncertainties in historical reconstructions of fire emissions and 73 

providing more reliable future projections. 74 

    75 

1. Introduction 76 

Fire is an intrinsic feature of terrestrial ecosystem ecology globally, and has emerged 77 

soon after the appearance of terrestrial plants over 400 million years ago (Scott and 78 

Glasspool, 2006; Bowman et al., 2009). Fire emissions play an important role in the 79 

Earth system. First, species emitted from fires are a key component of the global and 80 

regional carbon budgets (Bond-Lamberty et al., 2007; Ciais et al., 2013; Kondo et al., 81 

2018), a major source of greenhouse gases (Tian et al., 2016), and the largest 82 

contributor of primary carbonaceous aerosols globally (Andreae and Rosenfeld, 2008; 83 

Jiang et al., 2016). Second, by changing the atmospheric composition, fire emissions 84 

affect the global and regional radiation balance and climate (Ward et al., 2012; Tosca et 85 

al. 2013; Jiang et al., 2016; Grandey et al., 2016; McKendry et al., 2018; Hamilton et 86 

al., 2018; Thornhill et al., 2018). Third, fire emissions change the terrestrial nutrient 87 

and carbon cycles through altering the deposition of nitrogen and phosphorus, surface 88 
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ozone concentration, and meteorological conditions (Mahowald et al., 2008; Chen et 89 

al., 2010; McKendry et al., 2018; Yue and Unger, 2018). In addition, they degrade the 90 

air quality (Val Martin et al., 2015; Knorr et al., 2017), which poses a significant risk to 91 

human health hazard and has been estimated to result in at least ~165,000, and more 92 

likely ~339,000 pre-mature deaths per year globally (Johnston et al., 2012; Marlier et 93 

al., 2013; Lelieveld et al., 2015).    94 

To date, only emissions from individual fires or small-scale fire complexes can be 95 

directly measured from laboratory experiments and field campaigns (Andreae and 96 

Merlet, 2001; Yokelson et al., 2013; Stockwell et al., 2016; Andreae, 2019). 97 

Regionally and globally, fire emissions are often estimated based on satellite 98 

observations, fire proxies, and/or numerical models, even though some attempts have 99 

been made to bridge the gap between local observations and regional estimations 100 

using combinations of aircraft and ground based measurements from observation 101 

campaigns (e.g. SAMBBA, ARCTAS), satellite-based inventories, and chemical 102 

transport models (Fisher et al., 2010; Reddington et al., 2019; Konovalov et al., 2018). 103 

Satellite-based fire emission estimates are primarily derived from satellite observations 104 

of burned area, active fire counts, fire radiative power, and/or constrained by satellite 105 

observations of aerosol optical depth (AOD), CO, or CO2 (Wiedinmyer et al., 2011; 106 

Kaiser et al., 2012; Krol et al., 2013; Konovalov et al., 2014; Ichoku and Ellison, 2014; 107 

Darmenov and da Silva, 2015; van der Werf et al., 2017; Heymann et al., 2017). 108 

Satellite-based fire emission estimates are available globally, but only cover the 109 

present-day period, i.e. since 1997 for GFED and shorter periods for others. Fire 110 
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emission histories have been inferred from a variety of proxies, such as ice-core records 111 

of CH4 (isotope δ13CH4 from pyrogenic or biomass burning source), black carbon, 112 

levoglucosan, vallic acid, ammonium, and CO (Ferretti et al., 2005; McCornnell et al., 113 

2007; Conedera et al., 2009; Wang et al., 2012; Zennaro et al., 2014), site-level 114 

sedimentary charcoal records (Marlon et al., 2008, 2016), visibility records (van Marle 115 

et al., 2017a), and fire-scar records (Falk et al. 2011). The fire proxies can be used to 116 

reconstruct historical fire emissions on a local to global scale and for time periods of 117 

decades to millennia and beyond. However, fire proxies are of limited spatial extent 118 

and cannot be directly converted into emission amount. Moreover, large uncertainties 119 

and discrepancies were shown in their referred regional or global long-term trends due 120 

to limited sample size and often unclear representative area and time period of fire 121 

emissions (Pechony and Shindell, 2010; van der Werf et al., 2013; Legrand et al., 122 

2016).  123 

Dynamic Global Vegetation Models (DGVMs) that include fire modeling are 124 

indispensable for estimating fire carbon emissions at global and regional scales and for 125 

past, present, and future periods (Hantson et al., 2016). These models represent 126 

interactions among fire dynamics, biogeochemistry, biogeophysics, and vegetation 127 

dynamics at the land surface in a physically and chemically consistent modeling 128 

framework. DGVMs also constitute the terrestrial ecosystem component of Earth 129 

System models (ESMs) and have been widely used in global change research (Levis et 130 

al., 2004; Li et al., 2013; Kloster and Lasslop, 2017). Fire emissions of trace gases and 131 

aerosols can be derived from fire carbon emissions simulated by DGVMs and fire 132 
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emission factors which depend on species and land cover type (Li et al., 2012; Knorr et 133 

al., 2016).  134 

Modeling fire and fire emissions within DGVMs started in the early 2000s 135 

(Thonicke et al., 2001), and has rapidly progressed during the past decade (Hantson et 136 

al., 2016). The Fire Model Intercomparison Project (FireMIP) initiated in 2014 was the 137 

first international collaborative effort to better understand the behavior of global fire 138 

models (Hantson et al., 2016), where a set of common fire modeling experiments 139 

driven by the same forcing data were performed (Rabin et al., 2017). Nine DGVMs 140 

with different state-of-the-art global fire models participated in FireMIP. All global fire 141 

models used in the upcoming 6th Coupled Model Intercomparison Project (CMIP6) 142 

and IPCC AR6 were included in FireMIP, except for the fire scheme in GFDL-ESM 143 

(Rabin et al., 2018; Ward et al., 2018) which is similar to that of CLM4.5 (Li et al., 2012) 144 

in FireMIP. Furthermore, GlobFIRM (Thonicke et al., 2001) in FireMIP was the most 145 

commonly-used fire scheme in CMIP5 (Kloster and Lasslop, 2017).  146 

Earlier studies provided a single time series of fire emissions for global grids or 147 

regions (Schultz et al., 2008; Mieville et al., 2010; Lamarque et al., 2010; Marlon et al., 148 

2016; van Marle et al., 2017b; and references therein). This limits their utility for 149 

quantifying the uncertainty in global and regional reconstructions of fire emissions and 150 

its subsequent impacts on estimated historical changes in carbon cycle, climate, and 151 

air pollution. A small number of studies also investigated the drivers of fire carbon 152 

emission trends (Kloster et al., 2010; Yang et al., 2014; Li et al., 2018; Ward et al., 153 

2018). However, because only a single DGVM was used in these studies, they could 154 
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not identify the uncertainty source in recent model-based reconstructions or help 155 

understand the inter-model discrepancy in projections of future fire emissions. 156 

The present study provides a new dataset of global gridded fire emissions, 157 

including carbon and 33 species of trace gases and aerosols, over the 1700–2012 time 158 

period, based on nine DGVMs with different state-of-the-art global fire models that 159 

participated in FireMIP. This dataset provides a basis for developing multi-source 160 

(satellite-based products, model simulations, and/or fire proxies) merged fire emission 161 

reconstructions and methods. It also, for the first time, allows end users to select all or 162 

a subset of model-based reconstructions that best suits their regional or global 163 

research needs. Importantly, it enables the quantification of the uncertainty range of 164 

past fire emissions and their impacts. In addition, the model-based estimates of fire 165 

emissions are comprehensively evaluated through comparison with satellite-based 166 

products, including amounts, spatial distribution, seasonality, and interannual 167 

variability, providing information on the limitations of recent model-based 168 

reconstructions. We also analyze long-term trends of the model-based reconstructions, 169 

and the forcing drivers of these trends for each DGVM and for inter-model 170 

differences.  171 

 172 

2 Methods and datasets 173 

2.1 Models in FireMIP 174 

Nine DGVMs with different fire modules participated in FireMIP: CLM4.5 with CLM5 175 

fire module, CTEM, JSBACH-SPITFIRE, JULES-INFERNO, 176 
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LPJ-GUESS-GlobFIRM, LPJ-GUESS-SIMFIRE-BLAZE, LPJ-GUESS-SPITFIRE, 177 

MC2, and ORCHIDEE-SPITFIRE (Table 1, see Rabin et al., 2017 for detailed 178 

description of each model). JSBACH, ORCHIDEE, and LPJ-GUESS used the variants 179 

of SPITFIRE (Thonicke et al., 2010) with updated representation of human ignitions 180 

and suppression, fuel moisture, combustion completeness, and the relationship 181 

between spread rate and wind speed for JSBACH (Lasslop et al., 2014), combustion 182 

completeness for ORCHIDEE (Yue et al., 2014, 2015), and human ignition, post-fire 183 

mortality factors, and modifications for matching tree age/size structure for 184 

LPJ-GUESS (Lehsten et al., 2009; Rabin et al., 2017). 185 

The global fire models in the nine DGVMs have diverse levels of complexity 186 

(Rabin et al., 2017). SIMFIRE is a statistical model based on present-day 187 

satellite-based fire products (Knorr et al., 2016). In CLM4.5, crop, peat, and tropical 188 

deforestation fires are empirically/statistically modeled (Li et al., 2013). The scheme 189 

for fires outside the tropical closed forests and croplands in CLM4.5 (Li et al., 2012; 190 

Li and Lawrence, 2017) and fire modules in CTEM (Arora and Boer, 2005; Melton 191 

and Arora, 2016), GlobFIRM (Thonicke, 2001), and INFERNO (Mangeon et al., 2016) 192 

are process-based and of intermediate-complexity. That is, area burned is determined 193 

by two processes: fire occurrence and fire spread, but with simple empirical/statistical 194 

equations for each process. Fire modules in MC2 (Bachelet et al., 2015; Sheehan et al., 195 

2015) and SPITFIRE variants are more complex, which use the Rothermel equations 196 

(Rothermel, 1972) to model fire spread and consider the impact of fuel composition on 197 

fire behavior.  198 
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How humans affect fires differs among these global fire models (Table 2), which 199 

influences their estimates of fire emissions. GlobFIRM does not consider any direct 200 

human effect on fires and MC2 fire model only considers human suppression on fire. 201 

CLM4.5 includes modeling of crop fires, human deforestation and degradation fires in 202 

tropical closed forests, and human ignitions and suppression on both occurrence and 203 

spread of fires for regions outside of tropical closed forests and croplands. Burned area 204 

in SIMFIRE and human influence on fire occurrence in other models are a non-linear 205 

function of population density. CTEM and JSBACH-SPITFIRE also consider human 206 

suppression on fire duration. JULES-INFERNO treats cropland and crop fires as 207 

natural grassland and grassland fires. MC2 doesn’t include crop PFTs, and models crop 208 

fires as fires in natural vegetation regions. All models, except for CLM4.5 and 209 

INFERNO, set burned area to zero over cropland. FireMIP models treat pasture fires as 210 

natural grassland fires by using the same parameter values if they have pasture plant 211 

functional types (PFTs) or lumping pastures with natural grasslands otherwise. Note 212 

that biomass harvest is considered in pastures in LPJ-GUESS-GlobFIRM and 213 

LPJ-GUESS-SIMFIRE-BLAZE, which decreases fuel availability for fires, and that 214 

JSBACH-SPITFIRE sets high fuel bulk density for pasture PFTs.  215 

Only CLM4.5 simulates peat fires, although only emissions from burning of 216 

vegetation tissues and litter are included in outputs for FireMIP (i.e. burning of soil 217 

organic matter is not included) (Table 2). 218 

In the FireMIP models, fire carbon emissions are calculated as the product of 219 

burned area, fuel load, and combustion completeness. Combustion completeness is the 220 
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fraction of live plant tissues and ground litter burned (0–100%). It depends on PFT and 221 

plant tissue type in GlobFIRM and in the fire modules of CLM4.5 and CTEM, and also 222 

a function of soil moisture in INFERNO. Combustion completeness depends on plant 223 

tissue type and surface fire intensity in SIMFIRE, fuel type and wetness in the 224 

SPITFIRE family models, and fuel type, load, and moisture in MC2 fire module.  225 

 226 

2.2 FireMIP experimental protocol and input datasets 227 

The nine DGVMs in FireMIP are driven with the same forcing data (Rabin et al., 228 

2017). The atmospheric forcing is from CRU-NCEP v5.3.2 with a spatial resolution of 229 

0.5° and a 6-hourly temporal resolution (Wei et al., 2014). The 1750–2012 annual 230 

global atmospheric CO2 concentration is derived from ice core and NOAA monitoring 231 

station data (Le Quéré et al., 2014). Annual LULCC and population density at a 0.5° 232 

resolution for 1700–2012 are from Hurtt et al. (2011) and Klein Goldewijk et al. (2010, 233 

HYDE v3.1), respectively. Monthly cloud-to-ground lightning frequency for 1901–234 

2012, at 0.5o resolution, is derived from the observed relationship between present-day 235 

lightning and convective available potential energy (CAPE) anomalies (Pfeiffer et al., 236 

2013, J. Kaplan, personal communication, 2015). 237 

    Fire emissions in this study are estimated using the model outputs of PFT-level fire 238 

carbon emissions and vegetation characteristics (PFTs and their fractional area 239 

coverages) from the FireMIP historical transient control run (SF1) (Rabin et al., 2017). 240 

SF1 includes three phases (Fig. 1): the 1700 spin-up phase, the 1701–1900 transient 241 

phase, and the 1901–2012 transient phase. In the 1700 spin-up phase, all models are 242 
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spun up to equilibrium, forced by population density and prescribed land-use and 243 

land-cover change (LULCC) at their 1700 values, 1750 atmospheric CO2 concentration, 244 

and the repeatedly cycled 1901–1920 atmospheric forcing (precipitation, temperature, 245 

specific humidity, surface pressure, wind speed, and solar radiation) and lightning data. 246 

The 1701–1900 transient phase is forced by 1701–1900 time-varying population and 247 

LULCC, with constant CO2 concentration at 1750 level until 1750 and time-varying 248 

CO2 concentration for 1750–1900, and the cycled 1901–1920 atmospheric forcing and 249 

lightning data. In the 1901–2012 transient phase, models are driven by 1901–2012 250 

time-varying population density, LULCC, CO2 concentration, atmospheric forcing, and 251 

lightning data. Unlike all other models, MC2 and CTEM run from 1901 and 1861, 252 

respectively, rather than 1700.   253 

    Six FireMIP models (CLM4.5, JSBACH-SPITFIRE, JULES-INFERNO, 254 

LPJ-GUESS-SPITFIRE, LPJ-GUESS-SIMFIRE-BLAZE, and 255 

ORCHIDEE-SPITFIRE) also provide outputs of five sensitivity simulations: constant 256 

climate, constant atmospheric CO2 concentration, constant land cover, constant 257 

population density, and constant lightning frequency throughout the whole simulation 258 

period. The sensitivity simulations are helpful for understanding the drivers of changes 259 

in reconstructed fire emissions.  260 

 261 

2.3 Estimates of fire trace gas and aerosol emissions 262 
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Based on fire carbon emissions and vegetation characteristics from DGVMs and fire 263 

emission factors, fire emissions of trace gas and aerosol species i and the PFT j, Ei,j (g 264 

species m-2 s-1), are estimated according to Andreae and Merlet (2001):  265 

Ei,j = EFi,j × CEj/[C],                                  (1) 266 

where EFi,j (g species (kg dry matter (DM)) -1) is a PFT-specific emission factor (EF), 267 

CEj denotes the fire carbon emissions of PFT j (g C m-2 s-1), and [C]=0.5×103 g C (kg 268 

DM)-1 is a unit conversion factor from carbon to dry matter.    269 

 The EFs used in this study (Table 3) are based on Andreae and Merlet (2001), with 270 

updates from field and laboratory studies over various land cover types published 271 

during 2001–2018 (Andreae, 2019). All FireMIP model simulations used the same 272 

EFs from Table 3.. 273 

DGVMs generally simulate vegetation as mixture of PFTs in a given grid 274 

location to represent plant function at global scale, instead of land cover types. In 275 

Table 4, we associate the PFTs from each DGVM to the land cover types shown in 276 

Table 3. Grass, shrub, savannas, woodland, pasture, tundra PFTs are classified as 277 

grassland/savannas. Tree PFTs and crop PFTs are classified as forests and cropland, 278 

respectively, similar to Li et al. (2012), Mangeon et al. (2016), and Melton and Arora 279 

(2016). PFTs of other broadleaf deciduous tree in CTEM, extra-tropical evergreen and 280 

deciduous tree in JSBACH, and broadleaf deciduous tree and needleleaf evergreen tree 281 

in JULES are divided into tropical, temperate, and boreal groups following Nemani and 282 

Running (1996).  283 
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We provide two versions of fire emission products with different spatial 284 

resolutions: the original spatial resolution for each FireMIP DGVM outputs (Table 1), 285 

and a 1x1 degree horizontal resolution. For the latter, fire emissions are unified to 1 286 

degree resolution using bilinear interpolation for CLM4.5, CTEM, JSBACH, and 287 

JULES which have coarser resolution, and area-weighted averaging-up for other 288 

models whose original resolution is 0.5 degree. The 1x1 degree product is used for 289 

present-day evaluation and historical trend analyses in Sects. 3 and 4. 290 

 291 

2.4 Benchmarks 292 

Satellite-based products are commonly used as benchmarks to evaluate present-day 293 

fire emission simulations (Rabin et al., 2017, and references therein). In the present 294 

study, six satellite-based products are used (Table 5). Fire emissions in 295 

GFED4/GFED4s (small fires included in GFED4s) (van der Werf et al., 2017), GFAS1 296 

(Kaiser et al., 2012), and FINN1.5 (Wiedinmyer et al., 2011) are based on emission 297 

factor (EF) and fire carbon emissions (CE) (Eq. 1). CE is estimated from MODIS 298 

burned area and VIRS/ATSR active fire products in the GFED family, MODIS active 299 

fire detection in FINN1.5, and MODIS fire radiative power (FRP) in GFAS1. Fire 300 

emissions from FEER1 (Ichoku and Ellison, 2014) and QFEDv2.5 (Darmenov and da 301 

Silva, 2015) are derived using FRP, and constrained with satellite AOD observations. 302 

Satellite-based present-day fire emissions for the same region can differ by a factor of 303 

2–4 on an annual basis (van der Werf et al., 2010) and up to 12 on a monthly basis 304 

(Zhang et al., 2014). The discrepancy among satellite-based estimates of present-day 305 
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fire emissions mainly comes from the satellite observations used, the methods applied 306 

for deriving fire emissions, and emissions factors. 307 

 308 

2.5 Multi-source merged historical reconstructions 309 

We also compared the simulated historical changes with historical reconstructions 310 

merged from multiple sources used as forcing data for CMIPs. Fire emission estimates 311 

for CMIP5 and CMIP6 were merged from different sources (Table 5). For CMIP5 312 

(Lamarque et al., 2010), the decadal fire emissions are available from 1850 to 2000, 313 

estimated using GFED2 fire emissions (van der Werf et al., 2006) for 1997 onwards, 314 

RETRO (Schultz et al., 2008) for 1960–1900, GICC (Mieville et al., 2010) for 315 

1900-1950, and kept constant at the 1900 level for 1850–1900. RETRO combined 316 

literature reviews with satellite-based fire products and the GlobFIRM fire model. 317 

GICC is based on a burned area reconstruction from literature review and sparse tree 318 

ring records (Mouillot et al., 2005), satellite-based fire counts, land cover map, and 319 

representative biomass density and burning efficiency of each land cover type.      320 

For CMIP6, monthly fire emission estimates are available from 1750 to 2015 (van 321 

Marle et al., 2017b). The CMIP6 estimates are merged from GFED4s fire carbon 322 

emissions for 1997 onwards, charcoal records GCDv3 (Marlon et al., 2016) for North 323 

America and Europe, visibility records for Equatorial Asia (Field et al., 2009) and 324 

central Amazon (van Marle et al., 2017b), and the median of simulations of six 325 

FireMIP models (CLM4.5, JSBACH-SPITFIRE, JULES-INFERNO, 326 

LPJ-GUESS-SPITFIRE, LPJ-GUESS-SIMFIRE-BLAZE, and 327 
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ORCHIDEE-SPITFIRE) for all other regions. Then, based on the merged fire carbon 328 

emissions, CMIP6 fire trace gas and aerosols emissions are derived using EF from 329 

Andreae and Merlet (2001) with updates to 2013 and Akagi et al. (2011) with updates 330 

for temperate forests to 2014, and a present-day land cover map.  331 

 332 

3 Evaluation of present-day fire emissions 333 

The spatial pattern and temporal variability of different fire emission species are 334 

similar, with slight differences resulting from the estimated fire carbon emissions from 335 

the land cover types that have different emission factors (Table 3). Therefore, we focus 336 

on several important species as examples to exhibit the performance of FireMIP 337 

models on the simulations of present-day fire emissions.  338 

 339 

3.1 Global amounts and spatial distributions 340 

As shown in Table 6, FireMIP models, except for MC2 and LPJ-GUESS-GlobFIRM, 341 

estimate present-day fire carbon, CO2, CO, CH4, BC, OC, and PM2.5 annual emissions 342 

to be within the range of satellite-based products. For example, the estimated range of 343 

fire carbon emissions is 1.7–3.0 Pg C yr-1, whereas it is 1.5–4.2 Pg C yr-1 for 344 

satellite-based products. Low fire emissions in MC2 result from relatively low 345 

simulated global burned area, only about 1/4 of satellite-based observations (Andela et 346 

al., 2017). In contrast, high emissions in LPJ-GUESS-GlobFIRM are mainly due to the 347 

higher combustion completeness of woody tissues (70–90% of stem and coarse woody 348 

debris burned in post-fire regions) than those used in other FireMIP models (Table 2) 349 
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and the satellite-based GFED family (20–40% for stem and 40–60% for coarse woody 350 

debris) (van der Werf et al., 2017). 351 

   FireMIP DGVMs, except for MC2, represent the general spatial distribution of 352 

fire emissions evident in satellite-based products, with high fire BC emissions over 353 

tropical savannas and low emissions over the arid and sparsely vegetated regions (Fig. 354 

2). Among the nine models, CLM4.5, JULES-INFERNO, and 355 

LPJ-GUESS-SIMFIRE-BLAZE have higher global spatial pattern correlation with 356 

satellite-based products than the other models, indicating higher skill in their 357 

spatial-pattern simulations. It should also be noted that, on a regional scale, CTEM, 358 

JULES-INFERNO, LPJ-GUESS-SPITFIRE, and ORCHIDEE-SPITFIRE 359 

underestimate fire emissions over boreal forests in Asia and North America. 360 

LPJ-GUESS-GlobFIRM and LPJ-GUESS-SIMFIRE-BLAZE overestimate fire 361 

emissions over the Amazon and African rainforests. CLM4.5 and JSBACH-SPITFIRE 362 

overestimate fire emissions over eastern China and North America, respectively. MC2 363 

underestimates fire emissions over most regions, partly because it allows only one 364 

ignition per year per grid cell and thus underestimates the burned area. 365 

We further analyze the spatial distribution of inter-model difference. As shown in 366 

Fig. 3, the main disagreement among FireMIP models occurs in the tropics, especially 367 

over the tropical savannas in Africa, South America, and northern Australia. This is 368 

mainly driven by MC2, CTEM, JSBACH-SPITFIRE, and ORCHIDEE-SPITFIRE 369 

simulations (Fig. 2). Difference among the satellite-based estimates has a similar 370 

spatial pattern, but higher than inter-model spread in savannas over southern Africa 371 
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and lower in the temperate arid and semi-arid regions and at the North of 60ºN over 372 

Eurasia (Fig. S1a). 373 

 374 

3.2 Seasonal cycle 375 

The FireMIP models reproduce similar seasonality features of fire emissions to 376 

satellite-based products, that is, peak month is varied from the dry season in the tropics 377 

to the warm season in the extra-tropics (Fig. 4).  378 

For the tropics in the Southern Hemisphere, fire PM2.5 emissions of 379 

satellite-based products peak in August–September. Most FireMIP models can 380 

reproduce this pattern, except ORCHIDEE-SPITFIRE and LPJ-GUESS-SPITFIRE 381 

peaking two months and one month earlier, respectively, and JSBACH-SPITFIRE with 382 

much lower amplitude of seasonal variability likely caused by parameter setting in its 383 

fuel moisture functions (Table S9 in Rabin et al. 2016).  384 

For the tropics in the Northern Hemisphere, most FireMIP models exhibit larger 385 

fire emissions in the northern winter, consistent with the satellite-based products.      386 

In the northern extra-tropical regions, satellite-based products show two periods 387 

of high values: April–May resulting mainly from fires over croplands and grasslands, 388 

and July mainly due to fires over the boreal evergreen forests. Most FireMIP models 389 

can reproduce the second one, except for LPJ-GUESS-SPITFIRE which peaks in 390 

October. CLM4.5 is the only model that can captures both peak periods partly because 391 

it’s the only one to model the crop fires. 392 

 393 
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3.3 Interannual variability  394 

Global fire PM2.5 emissions from satellite-based products for 1997–2012 show a 395 

substantial interannual variability, which peaks in 1997–1998, followed by a low 396 

around 2000 and a decline starting in 2002/2003 (Fig. 5). The 1997–1998 high 397 

emission values are caused by peat fires in Equatorial Asia in 1997 and widespread 398 

drought-induced fires in 1998 associated with the most powerful El Niño event in 399 

1997–1998 recorded in history (van der Werf et al., 2017; Kondo et al., 2018). Most 400 

FireMIP models cannot reproduce the 1997–1998 peak, except for CLM4.5 as the 401 

only model that simulates the burning of plant-tissue and litter from peat fires 402 

(although burning of soil organic matter is not included) and the drought-linked 403 

tropical deforestation and degradation fires (Li et al., 2013, Kondo et al., 2018). 404 

CLM4.5, CTEM, and LPJ-GUESS-SIMFIRE-BLAZE present the highest temporal 405 

correlation between models and satellite-based products (0.55–0.79 for CLM4.5, 0.51–406 

0.68 for CTEM, and 0.39–0.72 for LPJ-GUESS-SIMFIRE-BLAZE), and thus are 407 

more skillful than other models to reproduce the interannual variability observed from 408 

satellite-based products (Table 7). 409 

We use the coefficient of variation (CV, the standard deviation divided by the 410 

mean, %) to represent the amplitude of interannual variability of fire emissions. As 411 

shown in Fig. 5, for 1997–2012, all FireMIP models underestimate the variation as a 412 

result of (at least) partially missing the 1997–1998 fire emission peak. For 2003–2012 413 

(the common period of all satellite-based products and models), interannual variation 414 

of annual fire PM2.5 emissions in CLM4.5, CTEM, and LPJ-GUESS family models lies 415 
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within the range of satellite-based products (CV=6–12%). Other models present 416 

weaker variation (CV=5%) except for MC2 (CV=24%) that has a much stronger 417 

variation than all satellite-based products and other FireMIP models.  418 

 419 

4 Historical changes and drivers 420 

4.1 Historical changes 421 

Figure 6 shows historical simulations of the FireMIP models and the CMIP 422 

reconstructions for fire carbon, CO2, CO, and PM2.5 emissions. We find similar 423 

historical changes for all the species, with the maximum global fire emissions given by 424 

LPJ-GUESS-GlobFIRM and the minima by LPJ-GUESS-SPITFIRE before 1901 and 425 

MC2 afterwards.  426 

Long-term trends in modeled global fire emissions for all models are weak before 427 

the1850s (relative trend <0.015% yr-1). They are similar to CMIP6 estimates (Fig. 6), 428 

but in disagreement with earlier reconstructions based on charcoal records (Marlon et 429 

al., 2008; Marlon et al., 2016), ice-core CO records (Wang et al., 2010), and ice-core 430 

δ13CH4 records (Ferretti et al., 2005), which exhibit a rapid increase from 1700 to 431 

roughly the 1850s. 432 

After the1850s, disagreement in the trends among FireMIP models begins to 433 

emerge. Fire emissions in LPJ-GUESS-SIMFIRE-BLAZE decline since ~1850, while 434 

fire emissions in LPJ-GUESS-SPITFIRE, MC2, and ORCHIDEE-SPITFIRE show 435 

upward trends from ~1900s. In CLM4.5, CTEM, and JULES-INFERNO, fire 436 

emissions increase slightly before ~1950, similar to the CMIP6 estimates, but CTEM 437 
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and JULES-INFERNO decrease thereafter, contrary to CMIP5 and CMIP6 estimates 438 

and CLM4.5. JSBACH-SPITFIRE simulates a decrease of fire emissions before 1940s 439 

and an increase later, similar to the CMIP5 estimates. All the long-term trends 440 

described above are significant at the 0.05 level using the Mann-Kendall trend test.   441 

Earlier reconstructions based on fire proxies also show a big difference in 442 

long-term changes after the 1850s. The reconstruction based on the Global Charcoal 443 

Database version 3 (GCDv3, Marlon et al., 2016) exhibits a decline from the late 19th 444 

century to the 1920s, and then an upward trend until ~1970, followed by a drop. The 445 

reconstructions based on the GCDv1 (Marlon et al., 2008) and ice-core CO records 446 

(Wang et al., 2010) show a sharp drop since roughly the 1850s, while a steady rise is 447 

exhibited in the reconstruction based on ice-core δ13CH4 records (Ferretti et al., 2005). 448 

The simulated historical changes of the FireMIP models (Fig. 6) fall into this fairly 449 

broad range of long-term trends in these reconstructions. 450 

Spatial patterns of inter-model spread of fire emissions for 1700–1850 and 1900–451 

2000 (Figs. S1b-c) are similar to the present-day pattern as shown in Fig. 3. 452 

 453 

4.2 Drivers 454 

Six FireMIP models also conducted sensitivity experiments, which can be used to 455 

identify the drivers of their long-term trends during the 20th century. The six models 456 

are also used for building CMIP6 fire emission estimates (van Marle et al. 2017b). As 457 

shown in Figs. 6 and 7, the downward trend of global fire emissions in 458 

LPJ-GUESS-SIMFIRE-BLAZE is mainly caused by LULCC and increasing 459 
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population density. Upward trends in LPJ-GUESS-SPITFIRE and 460 

ORCHIDEE-SPITFIRE are dominated by LULCC and rising population density and 461 

CO2 during the 20th century. In CLM4.5 and JULES-INFERNO, upward trends before 462 

~1950 are attributed to rising CO2, climate change, and LULCC, and the subsequent 463 

drop in JULES-INFERNO mainly results from the rising population density and 464 

climate change. Long-term changes of global fire emissions in JSBACH-SPITFIRE are 465 

mainly driven by LULCC and rising CO2.  466 

As shown in Fig. 7, the inter-model spread in long-term trends mainly arises from 467 

the simulated anthropogenic influence (LULCC and population density change) on fire 468 

emissions, as the standard deviation in simulated responses to LULCC (0.27 Pg C yr-1) 469 

and population density (0.11 Pg C yr-1) is much larger than the other drivers. 470 

LULCC decreases global fire emissions sharply in 471 

LPJ-GUESS-SIMFIRE-BLAZE during the 20th century, but increases global fire 472 

emissions for the other models except for JSBACH-SPITFIRE. The response to 473 

LULCC in LPJ-GUESS-SIMFIRE-BLAZE is because it assumes no fire in croplands 474 

and accounts for biomass harvest which decreases fuel availability in pastures (Table 475 

2), the area of which expanded over the 20th century. The LULCC-induced increase in 476 

fire emissions for ORCHIDEE-SPITFIRE, LPJ-GUESS-SPITFIRE, and 477 

JULES-INFERNO are partly caused by increased burned area due to the expansion of 478 

grassland (pastures are lumped in grassland in these models) where fuels are easier to 479 

burn than woody vegetation in the model setups (Rabin et al., 2017). CLM4.5 models 480 

crop fires and tropical deforestation and degradation fires. Crop fire emissions in 481 
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CLM4.5 are estimated to increase during the 20th century due to expansion of 482 

croplands and increased fuel loads over time (Fig. S2). Emissions of tropical 483 

deforestation and degradation fires in CLM4.5 are increased before ~1950, 484 

responding to increased human deforestation rate in tropical closed forests based on 485 

prescribed land use and land cover changes (Li et al. 2018). In JSBACH-SPITFIRE, 486 

as croplands and pastures expand over time, the assumption of no fires over croplands 487 

tends to decrease fire emissions, while the setting of high fuel bulk density for 488 

pastures tends to increase fire emissions due to increased fuel combusted per burned 489 

area, which together partly result in the shifted sign of response to LULCC around the 490 

1940s.  491 

Rising population density throughout the 20th century decreases fire emissions in 492 

CLM4.5 and LPJ-GUESS-SIMFIRE-BLAZE because they include human suppression 493 

on both fire occurrence and fire spread. Fire suppression increases with rising 494 

population density simulated explicitly in CLM4.5 and implicitly in 495 

LPJ-GUESS-SIMFIRE-BLAZE. On the contrary, rising population density increases 496 

fire emissions in LPJ-GUESS-SPITFIRE and ORCHIDEE-SPITFIRE because 497 

observed human suppression on fire spread found in Li et al. (2013), Hantson et al. 498 

(2015), and Andela et al. (2017) is not taken into account in the two models. The 499 

response to population density change for the other models is small, reflecting the 500 

compensating effects of human ignition and human suppression on fire occurrence 501 

(strongest in JULES-INFERNO in FireMIP models), and human suppression on fire 502 

duration (JSBACH-SPITFIRE). 503 
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All models simulate increased fire emissions with increased CO2 since elevated 504 

CO2 increases fuel load through increasing the carbon entering into the land ecosystems 505 

(Mao et al., 2009) and improving the water-use efficiency (Keenan et al., 2013). Such 506 

a CO2-driven increase of fuel load is consistent with a recent analysis of 507 

satellite-derived vegetation indices (Zhu et al., 2016). FireMIP models also agree that 508 

impacts of changes in lightning frequency on long-term trends of fire emissions are 509 

small. Moreover, most FireMIP models agree that climate change tends to increase fire 510 

carbon emissions during the first several decades and then falls, reflecting co-impacts 511 

of climate on both fuel load and fuel moisture. 512 

 513 

4.3 Regional long-term changes  514 

We divided the global map into 14 regions following the definition of the GFED 515 

family (Fig. 8a). As shown in Fig. 8b, inter-model discrepancy in long-term changes 516 

are largest in Southern Hemisphere South America (SHSA), southern and northern 517 

Africa (NHAF and SHAF), and central Asia (CEAS).  518 

Most FireMIP models reproduce the upward trends of fire CO emissions found 519 

also in the CMIP5 or CMIP6 estimates since 1950s in SHSA and till ~1950 in Africa 520 

(Figs. 9e, h, and i). Long-term trends in regional fire emissions in SHSA, Africa, and 521 

central Asia can broadly explain the upward trends in global fire emissions in 522 

LPJ-GUESS-SPITFIRE, MC2, and ORCHIDEE-SPITFIRE, the downward trends in 523 

LPJ-GUESS-SIMFIRE-BLAZE, and the rise followed by a drop in CTEM, whose 524 
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global fire emissions exhibit most obvious long-term trends in FireMIP models (Fig. 525 

6).  526 

In other regions, the difference in long-term changes among models is smaller 527 

(Fig. 9). Emissions of most models and CMIP5 estimates exhibit a significant decline 528 

in temperate North America (TENA) from ~1850 to ~1970, while historical changes 529 

of CMIP6 estimates are comparatively small (Fig. 9b). 530 

LPJ-GUESS-SIMFIRE-BLAZE has a more obvious long-term change than the other 531 

FireMIP models and CMIPs in boreal North America (BONA) and northern South 532 

America (NHSA) (Figs. 9a and d). MC2 and LPJ-GUESS-GlobFIRM emissions 533 

increase since the 1900s in Europe (EURO), while remain overall constant for other 534 

models and CMIPs (Fig. 9f). In boreal Asia (BOAS), emissions of most models and 535 

CMIP6 are relatively constant, while LPJ-GUESS-GlobFIRM and CMIP5 emissions 536 

decline form 1850 to the 1950s and from 1900 to the 1970s, respectively, and then 537 

rise (Fig. 9j). JULES, LPJ-GUESS-SIMFIRE-BLAZE, CLM4.5, CTEM, and CMIP6 538 

emissions significantly decline since the 1950s in Southeast Asia (SEAS), while 539 

CMIP5 emissions increase (Fig. 9l). In equatorial Asia (EQAS), CMIPs emissions 540 

increase after ~1950 , but in FireMIP only CLM4.5 partly reproduces it (Fig. 9m). As 541 

shown in Figs. S3-5, long-term changes of regional fire emissions for other species 542 

are similar to those of fire CO emissions. 543 

The long-term changes and inter-model disagreement of regional fire emissions 544 

are mainly caused by simulated responses to LULCC and/or population density change 545 

for the 20th century (Fig. S6-19). Besides, climate change also plays an important role 546 
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in North America, northern South America, Europe, northern Africa, boreal and central 547 

Asia, and Australia for some FireMIP models. FireMIP models generally simulate 548 

increased regional fire emissions with increased CO2 concentration and negligible 549 

impacts due to changes in lightning frequency, similar to the responses of global fire 550 

emissions. 551 

 552 

5 Summary and outlook 553 

Our study provides new multi-model reconstructions of global historical fire emissions 554 

for 1700–2012, including carbon and 33 species of trace gases and aerosols. Two 555 

versions of the fire emission product are available, at the original spatial resolution for 556 

outputs of each FireMIP model and at a unified 1x1 degree. The dataset is based on 557 

simulations of fire carbon emissions and vegetation distribution from nine DGVMs 558 

with state-of-the-art global fire models that participated in FireMIP and the most 559 

up-to-date emission factors over various land cover types. It will be available to the 560 

public at https://bwfilestorage.lsdf.kit.edu/public/projects/imk-ifu/FireMIP/emissions. 561 

Our study provides an important dataset with wide-ranging applications for Earth 562 

science research communities. First, it is the first multi-model-based reconstruction of 563 

fire emissions, and can serve as the basis for further developing multi-source merged 564 

products of global and regional fire emissions and the merging methodology. van 565 

Marle et al. (2017b) presented an example for using part of the dataset to develop a 566 

multi-source merged fire emission product as forcing dataset for CMIP6. In van Marle 567 

et al. (2017b), the median of fire carbon emissions from six FireMIP models was used 568 

https://bwfilestorage.lsdf.kit.edu/public/projects/imk-ifu/FireMIP/fire
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to determine historical changes over most regions of the world. The merging method 569 

and merged product in van Marle et al. (2017b) are still preliminary, and need to be 570 

improved in the future, e.g. by weighting the different models depending on their 571 

global or regional simulation skills. Secondly, our dataset includes global gridded 572 

reconstructions for 300 years, thus can be used for analyzing global and regional 573 

historical changes in fire emissions on inter-annual to multi-decadal time scales and 574 

their interplay with climate variability and human activities. Third, the fire emission 575 

reconstructions based on multiple models provide, for the first time, a chance to 576 

quantify and understand the uncertainties in historical changes of fire emissions and 577 

their subsequent impacts on carbon cycle, radiative balance, air quality, and climate. 578 

Hamilton et al. (2018), for example, used fire emission simulations from two global 579 

fire models and the CMIP6 estimates to drive an aerosol model. This allowed for 580 

quantification of the impact of uncertainties in pre-industrial fire emissions on 581 

estimated pre-industrial aerosol concentrations and historical radiative forcing.  582 

This study also provides significant information of the recent state of fire model 583 

performance by evaluating the present-day estimates based on FireMIP fire models 584 

(also those used in the upcoming CMIP6). Our results show that most FireMIP models 585 

can overall reproduce the amount, spatial pattern, and seasonality of fire emissions 586 

shown by satellite-based fire products. Yet they fail to simulate the interannual 587 

variability partly due to a lack of modeling peat and tropical deforestation fires. In 588 

addition, Teckentrup et al. (2019) found that climate was the main driver of 589 

interannual variability for the FireMIP models. A good representation of fire duration 590 
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may be important to get the response of fire emissions to climate right. However, all 591 

FireMIP models limit their fire duration of individual fire events within one day over 592 

natural vegetation regions, so they cannot skillfully model the drought-induced large 593 

fires that last multiple days (Le Page et al., 2015; Ward et al., 2018). Recently, Andela 594 

et al. (2018) derived a dataset of fire duration from MODIS satellite observations, 595 

which provides a valuable dataset for developing parameterization of fire duration in 596 

global fire models.        597 

This study also identifies population density and LULCC as the primary 598 

uncertainty sources in fire emission estimates. Therefore, accurately modeling these 599 

responses remains a top priority to reduce uncertainty in historical reconstructions and 600 

future projections of fire emissions, especially given that modeling is the only way for 601 

future projections. For the response to changes in population density, many FireMIP 602 

models have not included the observed relationship between population density and 603 

fire spread (Table 2). Moreover, Bistinas et al. (2014) and Parisien et al. (2016) 604 

reported obvious spatial heterogeneity of the population density–burned area 605 

relationship that is poorly represented in FireMIP models. 606 

For the response to LULCC, improving the modeling of crop fires, pasture fires, 607 

deforestation and degradation fires, and human indirect effect on fires (e.g. 608 

fragmentation of the landscape) and reducing the difference in interpretation of land 609 

use data set in models are critical. Fire has been widely used in agricultural 610 

management during the harvesting, post-harvesting, or pre-planting periods (Korontzi 611 

et al., 2006; Magi et al., 2012), whose emissions are an important source of 612 
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greenhouse gas and air pollutant emissions (Tian et al., 2016; Wu et al., 2017; 613 

Andreae, 2019). GFED4s reported that fires in croplands contributed 5% of burned 614 

area and 6% of fire carbon emissions globally in the present day (Randerson et al., 615 

2012; van der Werf et al., 2017). In FireMIP, only CLM4.5 simulates crop fires, 616 

whereas the other models assume no fire in croplands or treat croplands as natural 617 

grassland. In CLM4.5, crop fires contribute 5% of 2000-2010 global burned area, the 618 

same as the GFED4s estimates, but emit 260 Tg C yr-1 carbon emissions (contribution 619 

rate:13%), higher than GFED4s (138 Tg C yr-1) because CLM4.5 simulates higher 620 

fuel loads in croplands than the CASA model used by GFED4s. Carbon emissions 621 

from crop fires and the contribution of crop fire emissions to the total fire emissions in 622 

CLM4.5 increase over the 20th century (Fig. S2), consistent with earlier estimates 623 

based on different crop fire scheme (Ward et al., 2018). For FireMIP models which 624 

exclude croplands from burning, expansion of croplands leads to a decrease in burned 625 

area and fire carbon emissions. JULES-INFERNO treats croplands as natural 626 

grasslands. Grasses dry out faster than woody vegetation and are easier to burn in 627 

model setups, so increasing cropland area leads to increasing burned area and fire 628 

carbon emissions. Different treatment of crop fires can contribute to the uncertainty in 629 

simulated fire emissions. Because four out of six FireMIP models used for generating 630 

CMIP6 estimates exclude croplands from burning (van Marle et al., 2017b), CMIP6 631 

estimates may underestimate the impact of historical changes of crop fire emissions in 632 

some regions (e.g. China, Russia, India). Given the small extent of crop fires, high 633 

resolution remote sensing may help improve the detection of crop fires (Randerson et 634 
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al., 2012; Zhang et al., 2018), which can benefit the driver analyses and modeling of 635 

historical crop fires and their emissions in DGVMs. 636 

Le Page et al. (2017) and Li et al. (2018) highlighted the importance of 637 

tropical deforestation and degradation fires in the long-term changes of 638 

reconstructed and projected global fire emissions, but only CLM4.5 in FireMIP 639 

models estimate the tropical deforestation and degradation fires. For pasture fires, 640 

all FireMIP models assume that they are as natural grassland fires, which needs to 641 

be verified by, for example, satellite-based products. If fires over pastures and 642 

natural grasslands are significantly different, adding the gridded coverage of 643 

pasture as a new input field in DGVMs without pasture PFTs and developing a 644 

parameterization of pasture fires will be necessary. Furthermore, Archibald (2016) 645 

and Andela et al. (2017) found that expansion of croplands and pastures decreased 646 

fuel continuity and thus reduced burned area and fire emissions. However, no 647 

FireMIP model parameterizes this indirect human effect on fires. In addition, 648 

DGVMs generalize the global vegetation using different PFTs (Table 4) and 649 

represent land use data in different way, which may lead to different response of 650 

fire emissions to LULCC and thus different long-term changes of fire emissions 651 

among model simulations, given that many parameters and functions in global fire 652 

models are PFT-dependent (Rabin et al. 2016). LUH2 used in LUMIP and ongoing 653 

CMIP6 provide information of forest/non-forest coverage changes (Lawrence et al., 654 

2016), which can reduce the misinterpretation of the land use data in models and 655 

thus the inter-model spread of fire emission changes. 656 
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Since most FireMIP models do not consider the human suppression on fire 657 

spread and the decrease in fuel continuity from expanding croplands and pastures, 658 

these models, and hence CMIP6 estimates that are mainly based on them, may 659 

underestimate fire emissions and their downward trend over the Industrial Era. This 660 

underestimation may thus affect the estimation of the radiative forcing of fire 661 

emissions and the historical response of trace gas and aerosol concentrations, 662 

temperature, precipitation, and energy, water, and biogeochemical cycles to fire 663 

emissions in Earth/Climate system models which include these fire models or are 664 

driven by such fire emissions. It may also influence future projections of climate 665 

and Earth system responses to various population density and land use scenarios. 666 
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Table 1. Summary description of the Dynamic Global Vegetation Models (DGVMs) 

participated in FireMIP. 

Acronym: CLM4.5 and CLM5: Community Land Model version 4.5 and 5; CTEM: 

Canadian Terrestrial Ecosystem Model; JSBACH: Jena Scheme for Biosphere- 

Atmosphere Coupling in Hamburg; SPITFIRE: Spread and InTensity fire model; 

JULES: Joint UK Land Environment Simulator; INFERNO: Interactive Fire And 

Emission Algorithm For Natural Environments; GlobFIRM: fire module Global FIRe 

Model; SMIFIRE: SIMple FIRE model; BLAZE: Blaze-Induced Land-Atmosphere 

Flux Estimator; ORCHIDEE: Organizing Carbon Hydrology In Dynamic Ecosystems;  

PFT: plant functional type; P: prescribed; M: modeled  

 

 

 

 

 

 

 

 

 

 

DGVMs tem. res. 

of model 

outputs  

spatial res. 

of model 

outputs  

period natural 

veg. 

distrib. 

fire scheme ref. DGVM ref. 

CLM4.5 but CLM5 fire 

model (CLM4.5) 

monthly ~1.9° (lat) 

×2.5° (lon) 

1700–

2012 

P 

 

Li et al. (2012, 2013) 

Li and Lawrence (2017) 

Oleson et al. (2013) 

CTEM monthly 2.8125°  1861– 

2012 

P 

 

Arora and Boer (2005)  

Melton and Arora 2016 

Melton and Arora  

(2016) 

JSBACH-SPITFIRE  

(JSBACH) 

monthly 1.875° 1700–

2012 

P 

 

Lasslop et al. (2014) 

Thonicke et al. (2010) 

Brovkin et al. (2013) 

JULES-INFERNO 

(JULES) 

monthly ~1.2° (lat) 

×1.9°(lon) 

1700–

2012 

  M Mangeon et al. (2016) Best et al. (2011)  

Clark et al. (2011) 

LPJ-GUESS-GlobFIRM 

(LGG) 

annual 0.5° 1700–

2012 

M Thonicke et al. (2001) Smith et al. (2014) 

Lindeskog et al. (2013) 

LPJ-GUESS-SPITFIRE 

(LGS) 

monthly 0.5° 1700–

2012 

M Lehsten et al. (2009) 

Rabin et al. (2017) 

Smith et al. (2001) 

Ahlstrom et al. (2012) 

LPJ-GUESS-SIMFIRE 

-BLAZE (LGSB) 

monthly 0.5° 1700–

2012 

  M Knorr et al. (2016) Smith et al. (2014) 

Lindeskog et al. (2013) 

Nieradzik et al. (2017) 

MC2 annual 0.5° 1901–

2008 

M Bachelet et al. (2015)  

Sheehan et al. (2015) 

Bachelet et al. (2015) 

Sheehan et al. (2015) 

ORCHIDEE-SPITFIRE 

(ORCHIDEE) 

monthly 0.5° 1700–

2012 

P Yue et al. (2014, 2015) 

Thonicke et al. (2010) 

Krinner et al. (2005) 
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Table 2. Summary description of global fire modules in FireMIP DGVMs 

a PD: population density 
b fire suppression increases with PD and GDP, different between tree PFTs and 

grass/shrub PFTs 
c fire suppression increases with PD 
d Assume no fire in grid cell when pre-calculated rate of spread, fireline intensity, and 

energy release component are lower than thresholds 

e CLM4.5 outputs in FireMIP include biomass and litter burning due to peat fires, but 

don’t include burning of soil organic matter 

f Coarse Woody Debris 
g100-hour fuels and 1000-hour fuel classes 

 

 

 

 

 

 

 

DGVMs nat. 

veg. 

dist. 

pastures crop  

fire 

tropical 

human  

defor. fire 

human 

ignition 

human fire 

suppression 

peat  

fire 

combust. 

complete. range 

of woody tissue 

CLM4.5 P 

 

as natural 

grassland 

yes yes increase 

with PDa 

occurrenc & 

spread areab 

yese 27–35% (stem) 

40% (CWDf) 

CTEM P 

 

as natural 

grassland 

no no increase 

with PD 

occurrence 

& durationc 

no 6% (stem) 

15–18% 

(CWD) 

JSBACH P 

 

high fuel 

bulk dens. 

no no increase 

with PD 

occurrence 

& durationc 

no 0–45%  

JULES M as natural 

grassland 

no no increase 

with PD 

occurrencec no 0–40%  

LGG M harvest no no no no no 70–90%  

LGS M as natural 

grassland 

as grass 

fire 

no increase 

with PD 

occurrencec no 0–98% (100hg) 

0–80% 

(1000hg) 

LGSB M harvest no no increase 

with PD 

burned areac no 0–50% 

MC2 M as natural 

grassland 

no no no occurrenced no 0–87% (100h) 

0–43% (1000h) 

ORCHIDEE P as natural 

grassland 

no no increase 

with PD 

occurrencec no 0–73% (100h) 

0–41% (1000h) 
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Table 3. Emission factors (g species (kg DM)-1) for land cover types (LCTs). 

No. Species grassland 

/savanna 

tropical  

forest 

temperate 

 forest 

boreal  

forest 

cropland  

  

1 CO2 1647 1613 1566 1549 1421 

2 CO 70 108 112 124 78 

3 CH4 2.5 6.3 5.8 5.1 5.9 

4 NMHC 5.5 7.1 14.6 5.3 5.8 

5 H2 0.97 3.11 2.09 1.66 2.65 

6 NOx 2.58 2.55 2.90 1.69 2.67 

7 N2O 0.18 0.20 0.25 0.25 0.09 

8 PM2.5 7.5 8.3 18.1 20.2 8.5 

9 TPM 8.5 10.9 18.1 15.3 11.3 

10 TPC 3.4 6.0 8.4 10.6 5.5 

11 OC 3.1 4.5 8.9 10.1 5.0 

12 BC 0.51 0.49 0.66 0.50 0.43 

13 SO2 0.51 0.78 0.75 0.75 0.81 

14 C2H6 (ethane) 0.42 0.94 0.71 0.90 0.76 

15 CH3OH (methanol) 1.48 3.15 2.13 1.53 2.63 

16 C3H8 (propane) 0.14 0.53 0.29 0.28 0.20 

17 C2H2 (acetylene) 0.34 0.43 0.35 0.27 0.32 

18 C2H4 (ethylene) 1.01 1.11 1.22 1.49 1.14 

19 C3H6 (propylene) 0.49 0.86 0.67 0.66 0.48 

20 C5H8 (isoprene) 0.12 0.22 0.19 0.07 0.18 

21 C10H16 (terpenes) 0.10 0.15 1.07 1.53 0.03 

22 C7H8 (toluene) 0.20 0.23 0.43 0.32 0.18 

23 C6H6 (benzene) 0.34 0.38 0.46 0.52 0.31 

24 C8H10 (xylene) 0.09 0.09 0.17 0.10 0.09 

25 CH2O (formaldehyde) 1.33 2.40 2.22 1.76 1.80 

26 C2H4O (acetaldehyde) 0.86 2.26 1.20 0.78 1.82 

27 C3H6O (acetone) 0.47 0.63 0.70 0.61 0.61 

28 C3H6O2(hydroxyacetone) 0.52 1.13 0.85 1.48 1.74 

29 C6H5OH (Phenol) 0.37 0.23 0.33 2.96 0.50 

30 NH3 (ammonia) 0.91 1.45 1.00 2.82 1.04 

31 HCN (hydrogen cyanide) 0.42 0.38 0.62 0.81 0.43 

32 MEK/2-butanone 0.13 0.50 0.23 0.15 0.60 

33 CH3CN (acetonitrile) 0.17 0.51 0.23 0.30 0.25 
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Table 4. Attribution of plant function types (PFTs) in FireMIP DGVMs to land cover 

types (LCTs) for emission factors described in Table 2.   

     LCT 

Models 

Grassland 

/Savannas 

Tropical 

Forest 

Temperate 

Forest 

Boreal  

Forest 

Cropland 

 

CLM4.5 A C3/C3/C4 G 

Bor BD S 

Tem BE/BD S 

Tro BE T 

Tro BD T 

 

Tem NE T 

Tem BE T 

Tem BD T 

Bor NE T 

Bor ND T 

Bor BD T 

Crop 

CTEM C3/C4 G BE Ta 

Other BD Ta 

NE/BE Ta  

Other BD Ta 

NETa, ND T 

Cold BD T 

C3/C4 Crop 

 

JSBACH C3/C4 G/P Tro E/D T Ex-Tro E/D Ta Ex-Tro E/D Ta Crop 

JULES 

 

C3/C4 G 

E/D S 

Tro BE T 

BD Ta  

Tem BE T 

BD/NE Ta 

BD/NE Ta 

NDT 

 

LGGb C3/C4 G 

C3/C4 G in P 

Tro BE/BR T 

Tro SI BE T 

Tem NSG/BSG/BE T 

Tem SI SG B T 

Bor NE T 

Bor SI NE T 

R/I S/W Wheat 

R/I Maize 

LGS C3/C4 G Tro BE/BR T 

Tro SI BE T 

Tem SI/&SG B T 

Tem B/N E T 

Bor NE T 

Bor SI/&SG NE/N T 

 

LGSBb C3/C4 G 

C3/C4 G in P 

Tro BE/BR T 

Tro SI BE T 

Tem NSG/BSG/ BE T 

Tem SI SG B T 

Bor NE T 

Bor SI NE T 

R/I S/W Wheat 

R/I Maize 

MC2 Tem C3 G/S 

Sub-Tro C4 G/S 

Tro S/G/Sava 

Bor M W 

Tem/Sub-Tro 

NE/B/M W 

Tundra 

Taiga-Tundra 

Tro BE T 

Tro D Wc 

Maritime NE F 

Sub-Tro NE/BD/BE/M F 

Tem NE/BD F 

Tem C/W M F 

 

Bor NE F 

Subalpine F 

Cool N F 

 

ORCHIDEE 

 

C3/C4 G Tro B E/R T Tem N/B E T 

Tem BD T 

Bor N E/D T 

Bor BT T 

C3/C4 Crop 

Acronym: T: tree; S: shrub; W: woodland; F: forest; G: grass; P: pasture; Sava: 

Savanna; N: needleleaf; E: evergreen; B: broadleaf; D: deciduous; R: raingreen; SI: 

shaded-intolerant; SG: summer-green; M: mixed; I: irrigated; RF: rainfed; C/W: cool or 

warm; S/W: spring or winter, Tro: Tropical; Tem: Temperate; Bor: Boreal; Sub-Tro: 

subtropical; Ex-Tro: Extratropical; A: Arctic  
a split  tree PFTs into tropical, temperate, and boreal groups following rules of Nemani 

and Running (1996) that also used to make CLM land surface data by Peter et al. (2007; 

2012) since CLM version 3 
b LGG and LGBS did not outputs PFT-level fire carbon emissions, so land cover 

classified using its dominant vegetation type 
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c MC2 classifies tropical savannas and tropical deciduous woodland regions, and the 

latter mainly represents tropical deciduous forests 

 

Table 5. Summary description of satellite-based products and historical constructions 

merged from multiple sources. 

Name Method Fire data sources Peat  

burning 

Start 

year 

reference 

GFED4 

GFED4s 

GFAS1.2 

FINN1.5 

 

Bottom-up: fuel consumption, 

burned area &active fire counts 

(GFED4&4s), FRP (GFAS1), 

active fire counts (FINN1.5), 

emis. factor 

MODIS,VIRS/ATSR 

 

MODIS 

MODIS 

  Y 

  Y 

  Y 

  N 

1997 

1997 

2001 

2003 

van der Werf et al. (2017) 

 

Kaiser et al. (2012) 

Wiedinmyer et al. (2011) 

FEER1 

QFED2.5 

Top-down: FRP, satellite AOD 

constrained, emis. factor 

MODIS, SEVIRI 

MODIS 

  Y 

  N 

2003 

2001 

Ichoku and Ellison (2014) 

Darmenov and da Silva (2015) 

CMIP5 

 

CMIP6 

Merged decadal fire trace gas 

and aerosol emis. 

Merged monthly fire carbon 

emis., present-day veg. dist., 

emis. factor  

GFED2, GICC, RETRO 

(model GlobFIRM used) 

GFED4s, median of six 

FireMIP model sims., 

GCDv3 charcoal records, 

WMO visibility obs.  

  Y 

 

  Y 

1850 

 

1750 

Lamarque et al. (2010) 

 

van Marle et al. (2017) 

Acronym: GFED4: Global Fire Emissions Dataset version 4; GFED4s: GFED4 with 

small fires; GFAS1.2: Global Fire Assimilation System version 1.2; FINN1.5: Fire 

Inventory from NCAR version 1.5; FRP: fire radiative power; FEER1: Fire emissions 

from the Fire Energetics and Emissions Research version1; QFED2.5: Quick Fire 

Emissions Dataset version 2.5; AOD: aerosol optical depth; GFED2: GFED version 2; 

RETRO: REanalysis of the TROpospheric chemical composition; GICC: Global 

Inventory for Chemistry-Climate studies; GCDv3: Global Charcoal Database version 3 
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Table 6. Global total of fire emissions from 2003 to 2008 for DGVMs in FireMIP and 

benchmarks. Unit: Pg (Pg=1015g)  

Source C CO2 CO CH4 BC  OC  PM2.5 

FireMIP 

CLM4.5 

CTEM 

JSBACH 

JULES 

LGG 

LGS 

LGSB 

MC2 

ORCHIDEE 

 

2.1  

3.0  

2.1 

2.1 

4.9 

1.7  

2.5 

1.0  

2.8  

 

6.5  

8.9 

6.5 

6.9 

15.4 

5.6 

7.7 

3.1 

9.2 

 

0.36 

0.48 

0.32 

0.44 

0.90 

0.26 

0.48 

0.18 

0.44 

 

0.018 

0.025 

0.013 

0.024 

0.047 

0.011 

0.025 

0.008 

0.018 

 

0.0021 

0.0028 

0.0020 

0.0022 

0.0050 

0.0017 

0.0025 

0.0011 

0.0029 

 

0.020 

0.030 

0.016 

0.020 

0.048 

0.012 

0.024 

0.012 

0.020 

 

0.042 

0.060 

0.036 

0.039 

0.097 

0.027 

0.047 

0.025 

0.045 

Benchmarks 

GFED4 

GFED4s 

GFAS1.2 

FINN1.5 

FEER1 

QFED2.5 

 

1.5  

2.2 

2.1 

2.0 

4.2 

---- 

 

5.4 

7.3 

7.0 

7.0 

14.0 

8.2 

 

0.24 

0.35 

0.36 

0.36 

0.65 

0.39 

 

0.011 

0.015 

0.019 

0.017 

0.032 

0.017 

 

0.0013 

0.0019 

0.0021 

0.0021 

0.0042 

0.0060 

 

0.012 

0.016 

0.019 

0.022 

0.032 

0.055 

 

0.025 

0.036 

0.030 

0.039 

0.054 

0.086 
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Table 7. Temporal correlation of annual global fire PM2.5 emissions between FireMIP 

models and satellite-based GFED4 and GFED4s (1997–2012), GFAS1.2 and QFED2.5 

(2001–2012), and FINN1.5 and FEER1 (2003–2012).  

DGVMs GFED4 GFED4s GFAS1.2 FINN1.5 FEER1 QFED2.5 

CLM4.5 

CTEM 

JSBACH 

JULES 

LGG 

LGS 

LGSB 

ORCHIDEE 

   0.73*** 

 0.51** 

‒0.18 

0.33 

0.08 

0.12 

0.51** 

‒0.13 

 0.79*** 

0.54** 

‒0.42 

0.31 

0.03 

0.04 

0.64*** 

‒0.25 

0.63** 

0.63** 

0.10 

0.31 

‒0.15 

‒0.00 

0.39 

‒0.16 

 0.62* 

0.60* 

0.02 

0.56* 

0.01 

0.40 

0.72** 

0.29 

0.55* 

0.52 

‒0.04 

0.29 

‒0.20 

‒0.01 

0.56* 

‒0.10 

0.58** 

    0.68** 

0.32 

0.39 

‒0.03 

0.08 

0.55* 

‒0.10 

*,**,and *** : Pearson correlation passed the Student’s t-test at the 0.1, 0.05, and 0.01  

significance level, respectively. 

 

 

 

 

Figure 1. FireMIP experiment design. Note that CTEM and MC2 start at 1861 and 

1901 and spin-up using 1861 and 1901 CO2, population density, and prescribed / 

modeled vegetation distribution, respectively.  
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Figure 2. Spatial distribution of annual fire black carbon (BC) emissions (g BC m-2 yr-1) 

averaged over 2003–2008. The range of global spatial correlation between DGVMs 

and satellite-based products is also given in brackets. 
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Figure 3. Inter-model standard deviation of 2003–2008 averaged fire BC emissions 

 (g BC m-2 yr-1) in FireMIP models and the zonal average. 
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                    Models                      Satellite-based 

 

Figure 4. Seasonal cycle of fire PM2.5 emissions normalized by the mean from 

FireMIP models and satellite-based products averaged over 2003–2008 in the 

Southern Hemisphere (SH) tropics (0–23.5ºS), Northern Hemisphere (NH) tropics (0–

23.5ºN), and NH extra-tropics (23.5–90ºN). Fire emissions from 

LPJ-GUESS-GlobFIRM and MC2 are updated annually and thus are not included 

here.  
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Figure 5. Temporal change of annual global fire PM2.5 emissions normalized by the 

mean from FireMIP models and satellite-based products. The numbers in the brackets 

are coefficient of variation (CV, the standard deviation divided by the mean, unit: %) 

for 1997–2012 and 2003–2012, respectively. 

 

 

 

Figure 6. Long-term temporal change of fire emissions from DGVMs in FireMIP and 

CMIPs forcing. A 21-year running mean is used.  
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Figure 7. Change in global annual fire carbon emissions (Pg C yr-1) in the 20th 

century due to changes in (a) climate, (b) lightning frequency, (c) atmospheric CO2 

concentration, (d) land use and land cover change (LULCC), and (e) population 

density (control run – sensitivity run). A 21-year running mean is used. The standard 

deviation (Std) of multi-model simulated long-term changes averaged over the 20th 

century is also given in the bracket. 
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Figure 8. a) GFED region definition (http://www.globalfiredata.org/data.html), and b) 

inter-model discrepancy (quantified using inter-model standard deviation) in 

long-term changes (a 21-year running mean is used, relative to present-day) of 

simulated regional fire CO emissions (Tg CO yr-1) averaged over 1700–2012 

(calculate long-term changes relative to present-day for each FireMIP model first, 

then the inter-model standard deviation, and lastly the time-average). Acronyms are 

BONA: Boreal North America; TENA: Temperate North America; CEAM: Central 

America; NHSA: Northern Hem. South America; SHSA: Southern Hem. South 

America; EURO: Europe; MIDE: Middle East; NHAF: Northern Hem. Africa; SHAF: 

Southern Hem. Africa; BOAS: Boreal Asia; CEAS: Central Asia; SEAS: Southeast 

a) 

b) 

http://www.globalfiredata.org/data.html
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Asia; EQAS: Equatorial Asia; AUST: Australia. 

 

Figure 9. Long-term changes of annual regional fire CO emissions (Tg CO yr-1) from 

FireMIP models and CMIPs. A 21-year running mean is used. 

 

 

 


