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Abstract 39 

 40 

Climate extremes have remarkable impacts on ecosystems and are expected to increase with 41 



future global warming. However, only few studies have focused on the extreme ecological 42 

events and their drivers in China. We therefore carried out an analysis of negative extreme 43 

events in gross primary productivity (GPP) in China and the sub-regions during 1982-2015, 44 

using monthly GPP simulated by 12 process-based models (TRENDYv6) and an observation-45 

based model (Yao-GPP). Extremes were defined as the negative 5th percentile of GPP 46 

anomalies, which were further merged into individual extreme events using a three-47 

dimensional contiguous algorithm. Spatio-temporal patterns of negative GPP anomalies were 48 

analyzed by taking the 1000 largest extreme events into consideration. Results showed that the 49 

effects of extreme events decreased annual GPP by 2.8% (i.e. 208 TgC year-1) in TRENDY 50 

models and 2.3% (i.e. 151 TgC year-1) in Yao-GPP. Hotspots of extreme GPP deficits were 51 

mainly observed in North China (-53 gC m−2 year−1) in TRENDY models and Northeast China 52 

(-42 gC m−2 year−1) in Yao-GPP. For China as a whole, attribution analyses suggested that 53 

extreme low precipitation was associated with 40%-50% of extreme negative GPP events. Most 54 

events in northern and western China could be explained by meteorological droughts (i.e. low 55 

precipitation) while GPP extreme events in southern China was more associated with 56 

temperature extremes, such as cold spells in South China. The impacts of heat wave and 57 

drought are noticeable because GPP is much more sensitive to heat/drought than to cold/wet 58 

during extreme events. Combined with projected changes in climate extremes in China, GPP 59 

negative anomalies caused by drought events in northern China and by temperature extremes 60 

in southern China might be more prominent in the future. 61 

 62 
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 65 

1. Introduction 66 

 67 

Gross primary productivity (GPP) is the largest carbon flux, changes of which affect the 68 

whole terrestrial carbon cycle. The CO2 fertilization and growing season extension are 69 

expected to enhance vegetation growth and increase terrestrial net primary productivity (Los, 70 

2013; Piao et al., 2013; Zhu et al., 2016). However, at the same time, it has been suggested that 71 

climate extremes may alter the composition, structure and function of ecosystems and therefore 72 

have potential negative impacts on terrestrial carbon uptake (Du et al., 2018; von Buttlar et al., 73 

2018). For instance, the 2003 extreme heat wave and drought in Europe caused up to 30% 74 

reduction in GPP and resulted in a strong anomalous net source of CO2 (Ciais et al., 2005). 75 

Based on the commonly used definition of climate extremes, IPCC (2012) pointed out that 76 

changing climate has led to changes in the frequency, intensity, spatial extent, duration, and 77 

timing of weather and climate extremes, and can result in unprecedented impacts on terrestrial 78 

carbon cycle. Furthermore, climate change is projected to further increase the frequency, 79 

persistence and intensity of climate extremes in the mid- to late 21st century because of the on-80 

going global warming (IPCC, 2013; Niu et al., 2017; Sui et al., 2018), which makes the impacts 81 

of future climate change on terrestrial ecosystem more uncertain (Samaniego et al., 2018; Yao 82 

et al., 2019). Therefore, characterizing extreme events is an important step for the development 83 



of adaptation strategies and risk reduction in the context of future climate change. 84 

Extreme events are generally defined as statistically extreme or unusual episodes or 85 

occurrences, which are beyond the bounds of typical or normal variability (Reichstein et al., 86 

2013). In scientific literature, extreme events have been defined in several ways—both from 87 

climatic and impact perspectives (Felton and Smith, 2017). Lloyd‐Hughes (2012) firstly 88 

proposed a novel 3-dimensional (longitude, latitude, time) structure-based approach to describe 89 

drought events. Zscheischler et al. (2013) further improved the method and performed the first 90 

global analysis of spatio-temporally contiguous carbon-cycle extremes. This method has 91 

advantages in analyzing the size, shape, temporal evolution and other interesting quantities of 92 

extreme events. By using this technique, Zscheischler et al. (2014a) demonstrated that the 93 

largest 1000 negative GPP extremes accounted for a decrease in global photosynthetic carbon 94 

uptake of approximately 3.5 PgC year−1, with most events being attributable to water scarcity. 95 

Huang et al. (2016) quantified sensitivities of GPP to spatio-temporally contiguous 96 

hydrological extreme events and implied that vegetation in Earth System Models (ESMs) was 97 

on average more sensitive to droughts than observed. Zscheischler et al. (2018) pointed out 98 

that traditional assessment methods which considered only one driver at a time underestimated 99 

risk from extreme events, highlighting a better understanding of compound events. Model 100 

output of the Coupled Model Intercomparison Project Phase 5 (CMIP5) future projections 101 

suggested that negative extremes in GPP would be driven by concurrent dry and hot conditions 102 

during the 21st century (Zscheischler et al., 2014d). 103 

The negative impacts of climate extremes on natural ecosystems and agriculture have been 104 

widely reported in China. Yuan et al. (2016) found that the 100-year return heat wave and 105 

drought in the summer of 2013 in southern China significantly reduced regional GPP, and 106 

produced the largest negative crop yield anomaly since 1960. The anomalous 2008 ice storm 107 

episode resulted in increased vegetation mortality, which exceeded recruitment for evergreen 108 

and deciduous broad-leaved species in central China (Ge et al., 2015). The most severe spring 109 

drought over the last five decades in 2010 in southwestern China reduced regional annual GPP 110 

by 4%, producing the lowest annual GPP over the period 2000–2010 (Zhang et al., 2012). 111 

Dynamic Land Ecosystem Model-based analysis showed that drought stress led to a large 112 

reduction of crop yield in China (Ren et al., 2012), with the maximum reduction in crop yield 113 

(−17.5%) occurred in 2000, a year with extreme drought and relatively high O3 concentrations 114 

(Tian et al., 2016). The temperature and precipitation anomalies were the principal drivers of 115 

Normalized Difference Vegetation Index (NDVI) variation in the Yangtze River Basin (YRB) 116 

in recent years (Cui et al., 2018). These regional studies or case studies improved our 117 

understanding of the vulnerability and response of terrestrial ecosystems to individual extreme 118 

climate events. Nevertheless, most previous studies in China mainly focus on either the impacts 119 

of climate extremes (Chen et al., 2018; Yao et al., 2017; Yuan et al., 2016) or only a few cases 120 

of extreme ecological events (Yuan et al., 2016; Zhang et al., 2012) but did not analyze a large 121 

number of extreme events in GPP in a systematic approach. 122 

The sensitivity and vulnerability of ecosystem productivity to climate variability are 123 

expected to vary widely in different ecosystems and different climate zones, affected also by 124 

biodiversity or management practices (Isbell et al., 2015; Wang et al., 2017; Yao et al., 2018). 125 



China has different climate zones that range from tropic in the south to subarctic zone in the 126 

north, comprising wide ranges of precipitation and temperature gradients. However, there are 127 

a limited number of studies on the effects of multiple climate drivers on GPP in China. Thus, 128 

we intend to provide a statistical analysis of extreme events in GPP and their drivers at the 129 

national scale and the nine sub-regions (Fig. 1a). This study aims to (1) diagnose the spatial 130 

and temporal patterns of extreme events in GPP in China; (2) attribute these extreme events to 131 

climatic drivers; (3) explore size distribution of extreme ecological events for different climate 132 

drivers and different regions. We expect to provide a better understanding of the characteristics 133 

of extreme events and their responses to different drivers. 134 

 135 

2. Materials and methods 136 

 137 

2.1. GPP data sources 138 

 139 

Table 1 140 

Summary of monthly GPP estimates, climate and fire data used in this study. Some of the 141 

datasets extend beyond 1982–2015, but the analysis in this paper is confined to those years. 142 

 143 

Dataset Variable Resolution  Period Citation 

Yao-GPP GPP 0.1°  1982-

2015 

(Yao et al., 

2018) 

Historical climate carbon 

cycle model 

intercomparison project 

(TRENDYv6) 

GPP and soil 

moisture 

0.5°-1°  1982-

2015 

(Le Quéré et 

al., 2018) 

Institute of Tibetan Plateau 

Research, Chinese 

Academy of Sciences 

(ITPCAS) 

Air temperature 

and precipitation 

0.1°  1982-

2015 

(Chen et al., 

2011) 

Climatic Research Unit 

(CRU) 

Air temperature 

and precipitation 

0.5°  1982-

2015 

(Harris et al., 

2014) 

Climatic Research Unit 

(CRU) 

self-calibrating 

Palmer Drought 

Severity Index 

0.5°  1982-

2015 

(van der 

Schrier et al., 

2013) 

Global Fire Emissions 

Database, Version 4 

(GFEDv4) 

Burned area and 

fire emissions 

0.25°  1997-

2015 

(Randerson et 

al., 2017) 

 144 

Results from an observation-based model of GPP (Yao-GPP, hereafter and Table 1), with 145 

0.1° spatial resolution and monthly temporal frequency over China, were obtained from Yao et 146 

al. (2018). This GPP data is developed using a machine learning technique, model tree 147 

ensembles (MTE) (Jung et al., 2011) with eddy flux measurements from 40 sites in China and 148 



the surrounding countries. The high-resolution GPP data can successfully capture the spatio-149 

temporal variations of the GPP observed at the flux sites, including validation flux sites that 150 

were not part of the MTE training set (Yao et al., 2018). 151 

Besides the above observation-based model, we also used monthly GPP from process-152 

based ecosystem models that took part in the historical climate carbon cycle model 153 

intercomparison project (TRENDYv6, Table A.1). The model simulations all followed the 154 

same experimental protocol (Le Quéré et al., 2018; Sitch et al., 2015) and were driven with the 155 

same climate data from the Climatic Research Unit and National Center for Environmental 156 

Prediction (CRU-NCEP) climate forcing reconstruction. The GPP outputs were from the S3 157 

TRENDY simulations which used observed CO2 concentrations, changing climate, and land 158 

cover changes as forcing over the period 1860–2016. Many different process-based models 159 

were used in TRENDY simulations. As coarse spatial resolution makes it not possible to 160 

diagnose enough GPP extreme events, model simulations with coarser resolution than 1° were 161 

excluded. Consequently, 12 models were finally selected: CABLE (Haverd et al., 2017), 162 

CLM4.5 (Oleson et al., 2013), DLEM (Tian et al., 2015), ISAM (Jain et al., 2013), LPJ-GUESS 163 

(Smith et al., 2014), LPJ-wsl (Sitch et al., 2003), LPX-Bern (Keller et al., 2017), ORCHIDEE 164 

(Krinner et al., 2005), ORCHIDEE-MICT (Guimberteau et al., 2018), SDGVM (Woodward et 165 

al., 1995), VEGAS (Zeng et al., 2005) and VISIT (Kato et al., 2013), and see references and 166 

further model details contained in Le Quéré et al. (2018). 167 

 168 

2.2. Climatic data 169 

To attribute negative extreme events in GPP to drivers, we used air temperature (Ta), 170 

precipitation (P), soil moisture (SM), self-calibrating Palmer Drought Severity Index (scPDSI) 171 

(van der Schrier et al., 2013), burned area (BA) and CO2 emissions from fires (FE) (Table 1). 172 

Gridded Ta and P data (0.5° spatial resolution) was taken from the monthly dataset compiled 173 

by the CRU of the University of East Anglia, UK. This CRU datasets span the period 1901-174 

2015 and can be obtained at http://www.cru.uea.ac.uk/data. As Yao-GPP was driven by another 175 

forcing dataset, which was developed by Data Assimilation and Modeling Center for Tibetan 176 

Multi-spheres, Institute of Tibetan Plateau Research, Chinese Academy of Sciences (ITPCAS,  177 

http://westdc.westgis.ac.cn), the corresponding monthly Ta and P (Fig. A.1) were used to 178 

identify the driving factors for Yao-GPP. We used the respective SM data from TRENDY 179 

models to diagnose the contribution of SM to their GPP extremes. As for Yao-GPP, averaged 180 

TRENDY SM was used in attribution analysis. The scPDSI data, which represents an index for 181 

comparing the relative spatio-temporal variability of soil moisture changes over wide regions, 182 

was also collected from CRU. The Global Fire Emissions Database, Version 4 (GFEDv4) 183 

provides global estimates of monthly burned area and carbon emissions from fire 184 

(https://daac.ornl.gov/VEGETATION/guides/fire_emissions_v4.html). This data has a 0.25° 185 

spatial resolution and is available from July 1997 through 2015.  186 

 187 

2.3. Preprocessing method 188 

All of the gridded datasets were first resampled to 0.1° × 0.1° spatial resolution using the 189 

nearest neighbor interpolation. The original GPP and climate variables contain long-term 190 

http://www.cru.uea.ac.uk/data
http://westdc.westgis.ac.cn/
https://daac.ornl.gov/VEGETATION/guides/fire_emissions_v4.html


trends and strong seasonal cycles. For these variables (i.e. Ta, P, scPDSI, SM and all the GPP 191 

data), the temporal linear trend and mean seasonal cycle were removed in each grid cell to get 192 

the anomalies of the time series data. For the variables describing episodic events (BA and FE), 193 

we divided them by the total sum of the respective time series in each grid cell. The 194 

preprocessing produced anomalies in de-trended GPP and climate, which represents deviations 195 

from the mean behavior (Zscheischler et al., 2013). 196 

 197 

2.4. Negative extreme events detection 198 

In scientific literature, extremes are usually defined based on either the probability of 199 

occurrence of given quantities or threshold exceedances (IPCC, 2012). In order to quantify the 200 

extreme ecological events, we defined extremes as the negative 5th percentile of all the GPP 201 

anomalies (derived from the above-mentioned preprocessing). Contiguous extreme negative 202 

GPP anomalies (i.e. voxels) are further merged into individual extreme events following 203 

Zscheischler et al. (2014a). By “contiguous”, we mean any of the 26 neighbors in three-204 

dimensional (latitude × longitude × time) space also experiencing an extreme GPP anomaly. 205 

The size of an extreme event is the summation of GPP anomalies over the spatio-temporal 206 

domain of the event cluster. With this algorithm, each GPP datasets produced 1000~5000 207 

extreme events for the whole China during the study period. As we are more interested in large 208 

events and hope to compare between models, we investigated the 1000 largest negative extreme 209 

events in GPP (GPP1000) for the whole China and the 100 largest extreme events for each of the 210 

nine sub-regions. 211 

 212 

2.5 Power laws identification 213 

Power laws in frequency or size distributions were previously detected in a variety of 214 

natural phenomena (Clauset et al., 2009), such as global fire size distributions (Hantson et al., 215 

2015) as well as intensities of earthquakes. In this study, we want to analyze the size 216 

distribution of extreme ecological events for different climate drivers and different regions in 217 

China. According to Zscheischler et al. (2013), the size distribution of extreme events (se) can 218 

also be well approximated by a power law relationship as follows: 219 

 220 

𝑝(𝑠𝑒) ~ 𝑠𝑒
−𝛼    (1) 221 

 222 

where α is a constant parameter of the distribution known as the exponent or scaling parameter. 223 

The exponent α of the size distribution was diagnosed using the fitting technique of maximum 224 

likelihood presented by Clauset et al. (2009). This algorithm has been widely applied in 225 

diagnosing power law distributions in empirical data (Scannell et al., 2016). The α-value from 226 

the power-law function provides information on asymmetry in the size distribution of extreme 227 

events, indicating the relative number of extreme events of different sizes. An increase in α 228 

suggests an increasing proportion of small extreme events relative to large ones. It can also be 229 

used as an index to investigate the different patterns in extreme events for different drivers and 230 

regions. Clauset’s method provides a goodness-of-fit parameter p-value, where p-value > 0.1 231 

indicates a good fit. 232 



 233 

2.6. Attribution of negative extreme events 234 

In order to identify possible drivers of individual negative extreme events in GPP, we 235 

adopted the attribution method from Zscheischler et al. (2013). For each event, we calculate 236 

the median of driver variable anomalies over the spatio-temporal domain of the event, which 237 

directly represents the anomaly intensity of the corresponding driver during the event. Then, 238 

we let the event shift in each time step and obtain a series of medians (Ms) as a function of time.  239 

As there are possibly lagged responses of ecosystems to all these drivers (Reichstein et al., 240 

2013), we consider time lags of a maximum of three months. Then, if any of the medians within 241 

three months preceding the events is less (higher) than the 10th (90th) percentile of Ms, the 242 

driver (e.g. a cold spell or heat wave) is selected as influential for that event. An GPP extreme 243 

event is attributed to fire if either BA or CO2 emissions from fires during the event is higher 244 

than 90th percentile. A single event is possible to be explained by multiple drivers. The 245 

attribution rate is defined as the proportion of studied events, which are attributed to any of the 246 

nine drivers (i.e. for all drivers) or a typical driver (e.g. for cold spell). 247 

 248 

2.7 GPP sensitivity during the extreme events 249 

We explored GPP sensitivity of different models to precipitation or temperature anomalies 250 

(i.e. heat wave, cold spell, drought and wet). For each model, the single driver induced extreme 251 

GPP events were selected in order to extract the impact of this driver from potential additive 252 

effect. And then, we divided the mean GPP anomalies by mean precipitation or temperature 253 

anomalies over the voxels in selected extreme events. For example, the GPP sensitivity to 254 

drought is expressed as: 255 

𝑆𝑒𝑛𝑠−𝑝 =
|𝐺𝑃𝑃̅̅ ̅̅ ̅̅ 𝑎𝑛,−𝑃|

|�̅�𝑎𝑛,−𝑃|
    (2) 256 

where 𝐺𝑃𝑃̅̅ ̅̅ ̅̅
𝑎𝑛,−𝑃 is averaged GPP anomalies over all voxels from exclusively drought (i.e. 257 

low P) induced extreme events among the studied 1000 events; �̅�𝑎𝑛,−𝑃  is averaged 258 

precipitation anomalies over the same voxels. Thus, 𝑆𝑒𝑛𝑠−𝑝 is the sensitivity of modelled GPP 259 

to the driver, that is GPP deficit for each precipitation anomaly during extreme events. 260 

 261 

3. Results 262 

 263 

3.1. Spatio-temporal patterns of extreme events 264 

Most (95%) of the GPP1000 had a duration of 1-7 months (Fig. A.2). To map spatial 265 

distribution of GPP anomalies, the GPP1000 over China were aggregated in time. In details, for 266 

a specific location, all anomalies in GPP classed as extreme events were summed and then 267 

divided by 34 years. TRENDY multi-model median showed hotspots of extreme events in 268 

North China where the GPP extreme anomalies could reach up to -70 gC m−2 year−1 (Fig. 1a). 269 

In addition, regional medians of North China, Inner Mongolia and Central China had prominent 270 

GPP extreme anomalies of -53, -31 and -30 gC m−2 year−1, respectively. In contrast, both 271 

Northwest China and Qinghai-Tibetan Plateau (QTP) were less impacted by extreme events 272 

with regional median GPP anomalies of approximately -10 gC m−2 year−1.  273 



According to the Yao-GPP data-driven model, the anomalies became larger in magnitude 274 

from southeast to northwest (Fig. 1b). The lowest impacts were diagnosed with GPP deficits 275 

of less than -10 gC m−2 year−1 in Southwest China and Sichuan Basin where there are relatively 276 

lower altitudes. The largest negative GPP extreme events were diagnosed in Inner Mongolia (-277 

46 gC m−2 year−1), Northeast China (-42 gC m−2 year−1) and North China (-28 gC m−2 year−1) 278 

in Yao-GPP. The prominent extreme events were generally diagnosed in mountainous regions 279 

such as Qinling Mountains in North China around Sichuan Basin, and Greater Khingan 280 

Mountains and Changbai Mountains in Northeast China. Although these regions had less GPP 281 

than South China, much more significant GPP deficits were detected. Hot spots of extreme 282 

events were detected in Northeast China for Yao-GPP but in North China for the process-based 283 

ecosystem models. Compared with Yao-GPP, the process-based ecosystem models 284 

overestimate the magnitude of extreme events in Northeast China and underestimate in North 285 

China (Fig. 1d). Disagreement between the process-based ecosystem models was mainly found 286 

in North China and South China (Fig. 1c).  287 

The GPP1000 were aggregated in space to produce the monthly evolution of GPP anomalies 288 

in China, which was further aggregated to show seasonal differences (Fig. 2). The median over 289 

the TRENDY models indicated that extreme events in summer produced the most GPP negative 290 

anomalies by -30.4 TgC mon-1, which accounted for 45% anomalies of the year, followed by 291 

spring, autumn and winter. Boxplot exhibited that LPX-Bern was an outlier in summer and 292 

autumn while VISIT was an outlier in winter over the 12 process-based models because of their 293 

overestimates of GPP deficits. The GPP deficits in Yao-GPP were smaller than the TRENDY 294 

median in spring, autumn and winter but slightly larger in summer, which consequently made 295 

the summer accounting for 68% of the mean annual anomalies in Yao-GPP. Among the 12 296 

TRENDY models, LPX-Bern produced the largest extreme events by -475.2 TgC year-1 while 297 

DLEM produced the smallest extreme events by -98.4 TgC year-1 for the GPP1000 in China (Fig. 298 

A.3). The TRENDY median and Yao-GPP estimated values of -207.6 TgC year-1 and -151.2 299 

TgC year-1 for the sum of the GPP1000, accounting for 2.8% and 2.3% of mean annual GPP, 300 

respectively. 301 

 302 



 303 

Fig. 1. Spatial distributions of (a) the magnitude of the 1000 largest negative extreme events 304 

in GPP (GPP1000) during 1982-2015 from the median of the 12 process-based TRENDY models 305 

and (b) the observation-based GPP model Yao-GPP, (c) standard deviation over TRENDY 306 

models and (d) the TRENDY median minus Yao-GPP (i.e. panel (a) minus panel (b)). The left 307 

insets in panel (a) and (b) denote the median (i.e. bar graph), 25th and 75th percentile (i.e. error 308 

bar) of GPP anomalies for each sub-region. The right inset in panel (a) presents the definition 309 

of the nine sub-regions in China. R1 (red): Northeast China; R2 (orange): Inner Mongolia; R3 310 

(purple): Northwest China; R4 (green): North China; R5 (sky blue): Central China; R6 (dark 311 

red): Qinghai-Tibetan Plateau (QTP); R7 (dark blue): Southeast China; R8 (pink): South China, 312 

and R9 (grey): Southwest China. 313 

 314 



 315 

Fig. 2. (a) Bar graph and (b) boxplot of GPP extremes in four seasons and annual mean. The 316 

legend in panel (a) distinguishes the 13 GPP datasets. The red diamonds and gray dots in panel 317 

(b) represent Yao-GPP and averages over the 12 process-based models, respectively. The lower 318 

and upper edges of the box indicate 25th and 75th percentile of the GPP anomalies over the 12 319 

process-based models. The green line and cross are median and outliers, respectively. Note that 320 

1 TgC = 1012 gC. 321 

 322 

3.2. Attribution of negative GPP extremes in China and the nine sub-regions 323 

The eight climate indices and fire variables were regarded as potential drivers of the 324 

GPP1000 in China. As for single climate drivers, we investigated both positive and negative 325 

anomalies in Ta, P, SM and scPDSI (Fig. 3a). According to the multi-model median, both cold 326 

spell and heat wave were influential for ~26% of the extreme events. Meteorological droughts 327 

(i.e. low P) were associated with ~58% of the extreme events, making it the major driver among 328 

the nine indices. In addition, extreme events were more related to droughts than floods as low 329 

P, low scPDSI and low SM accounted for much more events than the corresponding positive 330 

values of those indices (i.e. high P, high scPDSI and high SM). But in the arguably more 331 

realistic Yao-GPP dataset, cold spell explained 36% of the extreme events, which was much 332 

larger than heat wave (18%). Drought indices were associated less extreme negative events 333 

than wet indices, which was different from the TRENDY model results. The 10% significance 334 

threshold denotes that GPP1000 in Yao-GPP were nearly independent of SM, scPDSI and fire 335 

indices. As GPP extreme events are mainly driven by Ta and P anomalies in China at national 336 

scale, we explored the possible compound T&P effects (Fig. 3b). The GPP1000 from TRENDY 337 

models and Yao-GPP were significantly associated with P anomalies (both wet and drought) 338 

during normal Ta condition. No significant compound T&P effects were observed for 339 

TRENDY models and only significant compound cold and wet conditions were linked to GPP 340 

extreme events in Yao-GPP.  341 

China has different climate zones so that the response of GPP extreme events to driver 342 



indices are expected to be different across those zones. As shown in Fig. 4, the TRENDY 343 

median indicated that extreme events in most sub-regions were mostly associated with low P, 344 

especially for North China (66%) and Inner Mongolia (62%), but not in South China (37%). 345 

In contrast, temperature extremes (i.e. cold spell or heat wave) explained more extreme events 346 

in southern China (60%-70%) than in northern China (30%-50%). For comparison with the 347 

different response to low P, the impacts of soil drought (i.e. low SM and low scPDSI) were 348 

rather stable and explained 35%-40% and 25%-30% among all sub-regions in China. In 349 

particular, low SM was associated with 42% of extreme events, followed by low P (38%) and 350 

cold spell (34%) in Southeast China. This suggested a decoupling between P and SM in 351 

controlling GPP extremes, with P anomalies combined with Ta anomalies enhancing 352 

evapotranspiration and decreasing SM in southern China to cause GPP extremes being more 353 

influenced by SM than by just P. The Yao-GPP also presented the different vulnerability of 354 

extreme events in GPP to temperature extremes between northern and southern China. 355 

Compared with Yao-GPP, the TRENDY models largely underestimated attribution rate for high 356 

P in most sub-regions but overestimated attribution rate for low P in northern China. For the 357 

period of 1997-2015, both Yao-GPP and TRENDY median indicated that fire was linked to 20% 358 

of large events in South China and Southeast China. In terms of compound T&P effects (Fig. 359 

A.5), we found the GPP100 from TRENDY were significantly associated with concurrent heat 360 

and drought events in Northwest China, Inner Mongolia, North China, Central China and 361 

Southeast China. But in Yao-GPP, GPP100 in most sub-regions of China were linked to 362 

compound cold and wet events. 363 

  364 

 365 



Fig. 3. Attribution rate of the GPP1000 for single or compound drivers. Boxplots result from the 366 

TRENDY models and red diamonds are for Yao-GPP. The horizontal dashed lines denote the 367 

significance threshold (10%), below which the driver and GPP variation are expected to be 368 

independent. The nT and nP in panel (b) represent normal Ta (i.e. not extreme Ta condition) 369 

and normal P, respectively. The attribution of the GPP1000 in China for each model is shown in 370 

Fig. A.4.  371 

 372 

 373 

Fig. 4. Attributions rate (%) of GPP extreme events to climate drivers and fire in the nine sub-374 

regions of China. The largest 100 negative extreme events (GPP100) were used for each sub-375 

region.  376 

 377 

3.3. Size distribution of GPP extreme events 378 

In order to understand the characteristic of extreme events, it is crucial to know the size 379 

distribution of extreme events. The sizes of the GPP1000 from the 13 GPP datasets were well 380 

fitted by power law distributions (Fig. 5). The power law exponent (α-value) agreed well 381 

among the 13 datasets, ranging from 1.57 to 1.76, with the highest value in Yao-GPP and the 382 

lowest value in ORCHIDEE-MICT. The median α-value (αm-value) over the TRENDY models 383 

was 1.68, which is slightly smaller than α-value in Yao-GPP (αY-value = 1.76). 384 

It was found that different climate regions and vegetation types resulted in different α-385 

value of fire size distribution (Hantson et al., 2015). Therefore, we supposed that size 386 

distribution of extreme events could have variations for different drivers and in sub-regions. 387 

As for the TRENDY models, the αm had substantial fluctuation between 1.52-2.18 for different 388 

drivers (Fig. 6). The smallest αm-value was observed for low SM (1.53, the range of 1.47-1.76 389 

in TRENDY models) and low scPDSI (1.52, the range of 1.40-1.68 in TRENDY models) 390 

related extreme events and the largest αm-value (2.18, the range of 2.06-3.05 in TRENDY 391 

models) was diagnosed for fire related extreme events (Table A.2). It means that low SM tended 392 

to result in large GPP negative anomalies respective to small events while fire was more 393 



associated to small sized extreme events in China. Furthermore, all αm-values for drought 394 

induced extreme events, including meteorological drought (i.e. low P) and soil drought (i.e. 395 

low SM and low scPDSI), were significantly smaller than wet related events. Similarly, the 396 

Yao-GPP also showed that low SM (2.09) and low scPDSI (2.18) were correspondingly smaller 397 

than high SM (2.18) and high scPDSI (2.22) related events, suggesting more vulnerability of 398 

GPP to drought events than extreme wet events. Compared with αY-values, αm-values were 399 

overall underestimated. Similarly, the α-values for the GPP100 for each sub-region in China 400 

were also diagnosed (Fig. A.6). Clear spatial decreasing gradients in αm-values were found 401 

from the northwest to the southeast, indicating relatively more large-events were diagnosed in 402 

Southeast China (1.65) and North China (1.65).  403 

 404 

 405 

Fig. 5. Fitted power law distributions to sizes of negative GPP anomalies (gC) for the 13 GPP 406 

datasets. The letter α denotes the exponent of the fitted power law. Colored dots are the GPP1000 407 

for each dataset and black dashed lines are fitted power law distribution. A p-value > 0.1 408 

indicates a good fit. 409 

 410 



 411 

Fig. 6. Probability distributions of sizes of extreme events caused by the nine drivers, 412 

respectively. The color legend to distinguish GPP datasets is the same as Fig. 2. The letter αm 413 

and αY are median of the fitted exponents over the TRENDY models and exponent for Yao-414 

GPP, respectively. The sample size, power law fitting and goodness-of-fit parameters are 415 

presented in Table A.2. 416 

 417 

3.4 GPP sensitivity to temperature and precipitation anomalies 418 

The impacts (anomalies) of the extreme events is also determined by models’ sensitivity. 419 

Thus, we explored the GPP sensitivities of the models to evaluate the model performance 420 

during extreme events (Fig. 7). The GPP sensitivities of Yao-GPP to heat, cold, wet and drought 421 

were 118 gC m-2 month-1 °C-1, 29 gC m-2 month-1 °C-1, 1.8 gC m-2 mm-1 and 4.1 gC m-2 mm-1, 422 

respectively. Compared with Yao-GPP, the TRENDY median underestimated the sensitivities 423 

to heat (-18%) and drought (-42%) but overestimated the sensitivities to cold (37%) and wet 424 

(16%). Nevertheless, both TRENDY median and Yao-GPP demonstrated significantly higher 425 

GPP sensitivities to heat and drought than to cold and wet (i.e. heat/cold > 1, drought/wet > 1), 426 

highlighting the negative impacts of heat and drought events. 427 

The GPP sensitivity to temperature or precipitation anomalies (i.e. heat, cold, wet and 428 

drought) vary significantly across the 13 models. For example, ORCHIDEE-MICT showed the 429 

same GPP sensitivities to heat, cold as well as heat/cold ratio as Yao-GPP, but presented less 430 

response to precipitation extremes. In fact, all the process-based models except DLEM showed 431 

less sensitive to drought than Yao-GPP. 12 out of the 13 models was more sensitive to heat than 432 

to cold events and 10 out of the 13 models was more sensitive to drought than to wet events. 433 

TRENDY models had remarkable disagreement in heat/cold sensitivity ratio but showed better 434 

agreement in drought/wet sensitivity ratio. 435 

 436 



 437 

Fig. 7. Sensitivities of GPP anomalies to single driver of heat wave, cold spell, wet and drought 438 

during extreme events among the 13 models. The white bar in each panel shows TRENDT 439 

median, 25th and 75th percentile. The horizontal dashed line denotes Yao-GPP value. 440 

 441 

4. Discussion 442 

The characterization of extreme events in vegetation productivity is critical for 443 

understanding its role in regulating regional carbon cycles and its climatic drivers. As far as we 444 

know, this might be the first attempt to analyze spatio-temporally contiguous extreme GPP 445 

events at the national scale and sub-regions in China. Spatial distribution of negative extreme 446 

events from Yao-GPP exhibited hotspots in Northeast China and Qinling Mountains where 447 

high interannual variability was also diagnosed in Yao et al. (2018). Xu et al. (2012) also found 448 

that the area experiencing negative vegetation growth anomalies increased in northern China 449 

but decreased in southern China during 2000s, although the whole China experienced an 450 

increasing trend in heat waves and drought events. A strong negative NPP trend was diagnosed 451 

in Northeast China (Sitch et al., 2015), further emphasizing more concerns should be given to 452 

northern China. Based on four global GPP datasets, Zscheischler et al. (2014a) demonstrated 453 

that a few extreme events dominated global interannual variability in GPP. It could explain the 454 

similar spatial distribution between GPP negative extremes and interannual variability of GPP 455 

in most regions in China. This result highlights the importance of extreme events in regulating 456 

regional carbon cycles. In general, the effects of extreme events decreased annual GPP by 2.8% 457 

and 2.3% in TRENDY model and Yao-GPP, respectively. TRENDY median and Yao-GPP 458 

showed that extreme events in summer contributed to 45% and 68% of GPP negative anomalies, 459 



respectively, followed by spring, autumn and winter. This may be because summer usually 460 

corresponds to the highest GPP, and thus the highest absolute GPP anomalies are likely to occur 461 

when extreme events happen in summertime. For instance, in the summer of 2013, the strongest 462 

drought and heat wave on record for the past 113 years resulted in a 39–53% reduction of the 463 

annual net carbon sink of China’s terrestrial ecosystems (Yuan et al., 2016). 464 

The attribution analyses implied that low P explained 58% and 38% of the GPP1000 in 465 

TRENDY models and Yao-GPP, respectively. In global drought-affected areas, the reduced 466 

carbon uptake could explain larger than 70% of the interannual variation in GPP (Du et al., 467 

2018), also emphasizing the overall significantly negative impacts of meteorological droughts 468 

on vegetation productivity. Nevertheless, the vulnerability of GPP to these nine drivers showed 469 

marked difference between northern and southern China. A few mechanisms may explain the 470 

phenomenon that droughts were associated with much more extreme events in northern China 471 

(~60%) than in southern China (~40%) in TRENDY models. Firstly, the different climate is 472 

partly responsible for this different response that northern China experiences annual 473 

precipitation with less than 800 mm year-1 while southern China is moister (Fig. A.1). In 474 

addition, consecutive dry days averaged over 1961–2015 for northern China is larger than 50 475 

days year-1, which is much higher than southern China (Shi et al., 2018). Secondly, southern 476 

China has much higher tree density (Crowther et al., 2015), while most regions of northern 477 

China (e.g. Inner Mongolia and Northwest China) are mainly dominated by grasslands (Yao et 478 

al., 2018). Grasslands are more susceptible to droughts in contrast to forests (Reichstein et al., 479 

2013), probably because of shallower root system in grasslands (Teuling et al., 2010). However, 480 

compared with Yao-GPP, TRENDY models seem to overestimate the attribution rate to 481 

droughts (i.e. low P, low SM and low scPDSI) but underestimate the sensitivity to low P. The 482 

over-response of GPP and leaf area index in Earth system models to droughts has previously 483 

been suggested by Huang et al. (2016). Both types of GPP datasets demonstrated that 484 

vegetation in South China is mostly vulnerable to temperature extremes, in particular cold 485 

spells. This result is consistent with results from Xu et al. (2016) and Yao et al. (2018) that the 486 

sensitivity to temperature variability is higher in southern China, especially for forests. 487 

Compared with Yao-GPP, TRENDY models systematically underestimated cold spell-induced 488 

events and overestimated heat wave-induced events in southern China. A better representation 489 

of photosynthetic temperature acclimation in process-based models is critical to reduce the 490 

uncertainty in modeling the carbon cycle-climate feedback (Lombardozzi et al., 2015). 491 

Zscheischler et al. (2014d) highlighted the strong compound hot and dry events during 21st 492 

century based on CMIP5 future projections. We also found the significant impacts of 493 

concurrent hot and dry events in most sub-regions of China but the GPP1000 were mostly 494 

associated with P anomalies during normal Ta for China as a whole. 495 

The power law exponent of size distributions of extreme events in China is 1.68 in 496 

TRENDY median and 1.76 in Yao-GPP, which are consistent with that in Asia (1.61) and 497 

different continental range (1.55–1.75) as extracted by Zscheischler et al. (2014c). However, 498 

the exponent varied significantly for different drivers with the range of 1.49-2.09 for TRENDY 499 

models and 1.69-2.39 in Yao-GPP (Fig. 6). In addition, the power law exponent for drought-500 

induced extreme events were significantly smaller than for wet-related events. It means drought 501 



events are more likely to result in relative large events while wet events provoke less GPP 502 

response. It was also supported by the plot between number of studied largest extreme events 503 

and attribution rate for P, SM and scPDSI indices (Figs. 8 and A.7). When we increased the 504 

number of studied events (i.e. when looking into the smaller events), the attribution rate shows 505 

significant decreases for all drought indices but increase for all wet indices. A case study in 506 

Inner Mongolia grassland ecosystems demonstrated that both aboveground net primary 507 

productivity and CO2 fluxes in the semiarid steppe were very stable in the face of extreme large 508 

precipitation events, regardless of the timing of the events (Hao et al., 2017). In contrast, 509 

multiyear precipitation reduction over northern China significantly decreased water availability, 510 

indicated by the Palmer Drought Severity Index and soil moisture measurements, and further 511 

resulted in strong decreases in carbon uptake (Yuan et al., 2014). Therefore, the lower 512 

sensitivity of vegetation to wet events than to droughts in our results (Fig. 7) could explain the 513 

more decisive role of droughts for negative GPP events. Based on multiple terrestrial models, 514 

Zscheischler et al. (2014b) also suggested higher drought impacts on GPP anomalies, partially 515 

during compound hot and dry conditions. The αm-value for fire-induced extreme events is much 516 

lower than for climate drivers, implying that GPP in China is less vulnerable to fire than to 517 

climate extremes.  518 

The on-going global warming increased extreme climate events are an increasing threat 519 

to vegetation productivity in the future (Frank et al., 2015). It has been suggested that warm 520 

extremes are more frequent and more persistent in a +2 ºC global warming scenario based on 521 

29 climate models, especially in southern China (Sui et al., 2018). Accordingly, we could 522 

predict that southern China has to face more heat wave-induced GPP negative anomalies as it 523 

is highly vulnerable to warm extremes. The effect of cold spells in southern China is more 524 

noticeable but received less attentions than droughts. Liu et al. (2018) found that the extension 525 

of the growing season in the Northern Hemisphere may actually make plant in fact more 526 

vulnerable to frost days, which further highlights the important role of cold spell. In addition, 527 

increases in the total amount and frequency of wet extremes are projected over most regions of 528 

China, particularly in QTP (Niu et al., 2017; Sui et al., 2018), which we expect have less 529 

negative impacts on vegetation productivity of grasslands there. An experimental study showed 530 

that grassland plant diversity increases the resistance of ecosystem productivity to climate 531 

extremes (Isbell et al., 2015), which provides a potential strategy to face future climate 532 

extremes for a large area of grasslands in northern China. Both TRENDY models and Yao-GPP 533 

showed that less GPP deficits were observed in Sichuan basin (Fig. 1), where croplands are the 534 

dominant vegetation type, possibly implying the importance of management for mitigating 535 

damage from climate extremes. Nevertheless, we still could not rule out the damage of climate 536 

extremes on croplands as evidence also showed that droughts and heat wave episodes 537 

significantly reduced global and national crop production with a reduction in both harvested 538 

area and yields (Lesk et al., 2016; Piao et al., 2010). For instance, Lobell et al. (2012) argued 539 

that warming presented an even greater challenge to wheat than implied by previous modeling 540 

studies. 541 

However, there are still some limitations in this study. Firstly, we only consider time lags 542 

of a maximum of three months. There is evidence that extreme events can affect the carbon 543 



cycle concurrently and produce lagged impacts at longer time scales (e.g. through vegetation 544 

mortality) (Arnone et al., 2008; Schwalm et al., 2017). This prolonged response of vegetation 545 

GPP could be discovered in case studies but is rather difficult to be detected by our approach. 546 

Secondly, there are ~10% of the GPP1000 that did not correspond to any of the studied nine 547 

factors. It is possible that compound events of less extreme conditions (e.g. T&P anomalies 548 

within 10th-90th percentile) may also lead to extreme events in GPP. These confounding 549 

factors may have an impact on the attribution analysis, especially for small events. That may 550 

be the reason why there is a slight decrease in overall attribution rate from 95% for 100 events 551 

to 92% for 1000 events in TRENDY and from 93% to 87% in Yao-GPP (Fig. 8). And the 552 

interpolation to 0.1° from 0.5°-1° spatial-resolution datasets may also introduce uncertainty at 553 

pixel scales. Finally, many factors also play important roles in regulating the vulnerability of 554 

vegetation GPP to extreme events, for instance different ecosystems (von Buttlar et al., 2018; 555 

Xu et al., 2016), management practices (He et al., 2016), and soil conditions (Nepstad et al., 556 

2007). Thus, future studies considering more drivers and regional conditions are necessary to 557 

better understand the vulnerability and sensitivity of regional vegetation GPP to extreme events 558 

in China. From this, detailed management practice is possible to be carried out to mitigate the 559 

damage from future extreme events. 560 

 561 

 562 

Fig. 8. Attribution rate for different number of studied largest GPP events and for each driver.  563 

 564 

5. Conclusion 565 

In this study, we investigated GPP extreme events in China and sub-regions based on a 566 

spatio-temporally contiguous approach using the 5th percentile definition with GPP data from 567 

12 process-based ecosystem models and one observation-based model. Both types of models 568 

exhibited that vegetation in Northeast China and North China were most vulnerable to extreme 569 

events, especially in mountainous regions. Over the past three decades, 45% and 68% of GPP 570 

deficits in China occurred in summer in TRENDY models and Yao-GPP, respectively. Low 571 

precipitation was associated with most extreme events among studied nine climatic drivers in 572 

China in TRENDY models. Vegetation in southern China is more vulnerable to temperature 573 

extremes (i.e. cold spell and heat wave) than in northern China. The importance of cold spells 574 

is notable as they have received less attention than droughts in previous studies. Both power 575 



law distribution analyses and sensitivity analysis highlight the impacts of drought on large GPP 576 

negative anomalies. Our results implied that policymakers could pay more attention to GPP 577 

deficits in northern China under drought events and in southern China under temperature 578 

extremes in order to mitigate the potential impacts of future climate extremes.  579 
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Appendices 815 

 816 

Figure Legends 817 

 818 

Fig. A.1 The spatial distributions of (a, b) mean annual temperature and (c, d) mean annual 819 

precipitation for the period of 1982-2015 with (a, c) CRU and (b, d) ITPCAS data. The blue 820 

line in panel (d) denotes the 800-mm annual precipitation line of China, which separates China 821 

into northern and southern China. 822 

 823 

824 



Fig. A.2 The distribution of duration of the 1000 largest negative extreme events for each GPP 825 

data. 826 

 827 

  828 



Fig. A.3 The spatial distributions of negative extreme events in GPP during 1982-2015 for the 829 

12 process-based TRENDY models. The 1000 largest negative extreme events were calculated 830 

using the 5th percentile definition. White areas indicate no data. 831 

 832 

 833 



Fig. A.4 The bar graph to show the attribution of the 1000 largest extreme events in China for 834 

each model.  835 

 836 

 837 

 838 

  839 



Fig. A.5 Attribution rate of GPP extreme events to compound T&P effects for the nine sub-840 

regions of China. The largest 100 negative extreme events were used for each sub-region. 841 

 842 

843 



Fig. A.6 The probability distributions of sizes of extreme events for the nine sub-regions of 844 

China. The color legend to distinguish datasets is the same as Fig. 2. The letter αm and αY are 845 

median of the fitted exponents over the 12 process-based models and exponent for Yao-GPP, 846 

respectively. The power law fitting and goodness-of-fit parameters are presented in Table A.3. 847 

The color legend to distinguish GPP datasets is the same as Fig. A.4. 848 
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850 



Fig. A.7 Attribution rate for different number of studied largest GPP events and for different 851 

drivers.  852 
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Tables 856 

 857 

Table A.1 Information on the 12 process-based TRENDY models used in this study. 858 

 859 

Model Long name Spatial Resolution Reference 

CABLE The CSIRO Atmosphere Biosphere Land Exchange Model 0.5° × 0.5° (Haverd et al., 2017) 

CLM4.5 Community Land Model version 4.5 0.9375°× 1.25° (Oleson et al., 2013) 

DLEM Dynamic Land Ecosystem Model 0.5° × 0.5° (Tian et al., 2015) 

ISAM Integrated Science Assessment Model 0.5° × 0.5° (Jain et al., 2013) 

LPJ-GUESS Lund-Potsdam-Jena Dynamic Global Vegetation Model 0.5° × 0.5° (Smith et al., 2014) 

LPJ-wsl Lund-Potsdam-Jena Dynamic Global Vegetation Model 0.5° × 0.5° (Sitch et al., 2003) 

LPX-Bern Land surface Processes and eXchanges version 1.3 1° × 1° (Keller et al., 2017) 

ORCHIDEE Organizing Carbon and Hydrology in Dynamic Ecosystems Land Surface Model 0.5° × 0.5° (Krinner et al., 2005) 

ORCHIDEE-MICT Organizing Carbon and Hydrology in Dynamic Ecosystems Land Surface Model 1° × 1° (Guimberteau et al., 2018) 

SDGVM Sheffield Dynamic Global Vegetation Model 1° × 1° (Woodward et al., 1995) 

VEGAS Vegetation Global Atmosphere Soils 0.5° × 0.5° (Zeng et al., 2005) 

VISIT Vegetation Integrative Simulator for Trace Gases 0.5° × 0.5° (Kato et al., 2013) 

860 



Table A.2 The power-law fits and the corresponding p-values for extreme events induced by different drivers in Fig. 6. The letters of ‘n’, ‘a’ and 861 

‘p’ denote the sample size, the exponent of the fitted power law and p-value, respectively. The statistically significant values where p-value > 0.1 862 

are denoted in bold. 863 

 864 

 Cold spell Heat wave Low P High P Low SM High SM Low scPDSI High scPDSI Fire 

 n a p n a p n a p n a p n a p n a p n a p n a p n a p 

CABLE 240 1.70 0.86 245 1.67 0.92 382 1.51 0.06 295 2.10 0.39 175 1.47 0.36 127 1.87 0.05 196 1.49 0.79 146 2.17 0.12 56 2.06 0.97 

CLM4.5 283 1.89 0.10 241 1.74 0.06 380 1.67 0.22 217 1.97 0.44 213 1.71 0.15 126 2.16 0.27 256 1.46 0.61 118 2.05 0.69 52 2.16 0.18 

DLEM 264 1.66 0.91 273 1.74 0.48 485 1.73 0.43 345 1.72 0.45 270 1.76 0.86 137 1.67 0.02 297 1.66 0.02 149 1.78 0.40 72 3.05 0.89 

ISAM 248 1.55 0.04 247 1.61 0.17 436 1.53 0.02 324 1.81 0.35 187 1.54 0 143 1.70 0.25 181 1.56 0.01 159 1.74 0.63 44 2.09 0.78 

LPJ-GUESS 300 1.80 0.78 289 1.74 0.77 578 1.61 0.25 237 1.87 0.95 243 1.53 0.49 132 1.89 0.50 257 1.52 0.22 127 1.78 0.99 55 2.19 0.83 

LPJ-wsl 253 1.66 0.04 247 1.57 0.67 471 1.55 0.06 326 1.92 0.59 259 1.52 0.31 142 1.75 0.05 229 1.52 0 165 1.92 0.02 39 2.51 0.81 

LPX-Bern 250 1.72 0.21 265 1.77 0.90 489 1.65 0.36 314 1.87 0.95 216 1.72 0.75 147 1.80 0.86 221 1.48 0.11 146 1.85 0.47 65 2.15 0.71 

ORCHIDEE 253 1.70 0.80 248 1.65 0.47 510 1.63 0.14 273 2.18 0.91 271 1.50 0.06 135 2.15 0.54 277 1.55 0.44 145 2.15 0.16 31 2.63 0.08 

ORCHIDEE-MICT 276 1.65 0.78 256 1.70 0.74 446 1.51 0.03 289 1.80 0.75 243 1.51 0.06 123 1.86 0.92 243 1.40 0.06 117 1.94 0.85 72 2.17 0.10 

SDGVM 266 1.75 0.32 274 1.76 0.03 292 1.70 0.76 299 1.82 0.93 127 1.66 0.20 176 1.70 0.01 168 1.68 0.60 192 1.82 0.80 87 2.59 0.93 

VEGAS 305 1.55 0.24 216 1.56 0 447 1.60 0.04 352 1.65 0.03 207 1.51 0 158 1.68 0.64 220 1.50 0.02 167 1.70 0.45 65 2.10 0.50 

VISIT 278 1.59 0.02 262 1.69 0.75 340 1.60 0.59 263 1.83 0.63 239 1.53 0.51 113 1.75 0.26 237 1.54 0.14 120 1.75 0.60 42 2.23 0.29 

Yao-GPP 356 1.87 0 182 1.75 0.43 381 1.84 0.44 421 1.71 0.01 103 2.09 0.96 128 2.18 0.93 123 2.18 0.28 116 2.22 0.06 46 2.23 0.78 
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 866 



Table A.3 The power-law fits and the corresponding p-values for extreme events in different sub-regions in Fig. A.3. The letters of ‘n’, ‘a’ and ‘p’ 867 

denote the sample size, the exponent of the fitted power law and p-value, respectively. The statistically significant values where p-value > 0.1 are 868 

denoted in bold. 869 

 870 

 Northeast China Inner Mongolia Northwest China North China  Central China QTP Southeast China South China Southwest China 

 n a p n a p n a p n a p n a p n a p n a p n a p n a p 

CABLE 100 2.29 0.58 100 1.54 0.06 100 1.76 1 100 1.63 0.02 100 1.69 0.14 100 1.47 0.06 100 1.66 0.59 100 1.52 0.01 100 1.79 0.02 

CLM4.5 100 1.50 0.01 100 3.12 0.63 100 1.61 0 100 1.70 0.13 100 3.36 0.51 100 1.71 0.19 100 1.68 0.27 100 1.78 0.09 100 1.65 0.07 

DLEM 100 1.82 0.16 100 2.03 0.01 100 2.34 0.17 100 1.69 0.02 100 1.49 0.21 100 1.61 0.01 100 1.57 0.03 100 1.64 0.23 100 1.73 0.22 

ISAM 100 1.86 0.43 100 1.45 0 100 1.54 0 100 1.78 0.10 100 3.04 0.52 100 5.06 0.26 100 1.61 0 100 1.72 0.18 100 2.35 0.20 

LPJ-GUESS 100 1.71 0.05 100 1.63 0.12 100 1.82 0.01 100 1.63 0.06 100 1.59 0 100 2.13 0.92 100 1.59 0 100 1.70 0.04 100 1.67 0.01 

LPJ-wsl 100 1.57 0.01 100 4.83 0.61 100 10.82 0.80 100 1.82 0.17 100 1.57 0 100 2.56 0.24 100 1.70 0.01 100 1.78 0.01 100 1.72 0.04 

LPX-Bern 100 1.66 0.05 100 1.49 0.05 100 4.66 0.80 100 1.64 0.01 100 1.58 0.27 100 3.05 0.82 100 1.59 0.01 100 1.71 0.17 100 2.19 0.44 

ORCHIDEE 100 2.27 0.20 100 6.61 0.89 100 2.76 0.94 100 1.61 0.12 100 2.12 0.08 100 2.48 0.98 100 2.19 0.08 100 2.54 0.40 100 1.54 0.03 

ORCHIDEE-

MICT 100 1.59 0.05 100 1.54 0.01 100 1.74 0.60 100 1.49 0.01 100 2.49 0.04 100 1.92 0.01 100 1.92 0.03 100 1.66 0.02 100 2.04 0.84 

SDGVM 100 1.69 0.10 100 4.77 0.93 100 1.87 0.20 100 1.66 0.02 100 1.87 0.09 100 1.67 0.02 100 1.80 0.02 100 1.79 0.64 100 1.71 0.07 

VEGAS 100 1.50 0.03 100 1.81 0.07 100 2.34 0.83 100 1.59 0 100 1.65 0.01 100 1.80 0.01 100 1.64 0.01 100 1.76 0.09 100 1.81 0.01 

VISIT 100 1.55 0 100 1.64 0.01 100 2.54 0.93 100 2.79 0.81 100 1.61 0.01 100 1.83 0.25 100 1.60 0.03 100 1.68 0.10 100 2.35 0.28 

Yao-GPP 100 1.87 0.38 100 1.54 0 100 1.99 0.01 100 2.13 0.10 100 3.45 0.96 100 3.20 0.72 100 2.22 0.18 100 1.99 0.65 100 2.09 0.18 
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