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CRITICAL REVIEW   1 

Assessing risks and mitigating impacts of Harmful Algal Blooms on mariculture and 2 

marine fisheries  3 

ABSTRACT 4 

Aquaculture is the fastest growing food sector globally and protein provisioning from 5 

aquaculture now exceeds that from wild capture fisheries. There is clear potential for the further 6 

expansion of marine aquaculture (mariculture), but there are associated risks. Some naturally 7 

occurring algae can proliferate under certain environmental conditions, causing deoxygenation 8 

of seawater, or releasing toxic compounds (phycotoxins), which can harm wild and cultured 9 

finfish and shellfish, and also human consumers. The impacts of these so-called ‘harmful algal 10 

blooms’ (HABs) amount to approximately 8 $billion/yr globally, due to mass mortalities in 11 

finfish, harvesting bans preventing the sale of shellfish that have accumulated unsafe levels of 12 

HAB phycotoxins, and unavoided human health costs. 13 

Here we provide a critical review and analysis of HAB impacts on mariculture (and wild 14 

capture fisheries) and recommend research to identify ways to minimise  their  impacts  to the 15 

industry. We examine causal factors for HAB development in inshore versus offshore locations 16 

and consider how mariculture itself, in its various forms, may exacerbate or mitigate HAB risk. 17 

From a management perspective, there is considerable scope for strategic siting of offshore 18 

mariculture and holistic Environmental Approaches for Aquaculture, such as offsetting nutrient 19 

outputs from finfish farming, via the co-location of extractive shellfish and macroalgae. Such 20 

pre-emptive, ecosystem-based approaches are preferable to reactive physical, chemical or 21 

microbiological control measures aiming to remove or neutralise HABs and their phycotxins. 22 

To facilitate mariculture expansion and long-term sustainability, it is also essential to evaluate 23 

HAB risk in conjunction with climate change. 24 
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1) INTRODUCTION 27 

Managing global food security is one of the greatest challenges of the 21st century. Currently, 28 

around 820 million people (1 in 9 people) suffer from malnutrition (FAO, IFAD, UNICEF, 29 

WFP & WHO, 2018) and this is projected to rise as the human population grows from 7.6 to a 30 

projected 11.2 billion  by 2100 (UN, 2017). While agricultural productivity and yields from 31 

wild capture fisheries have plateaued or are in decline, aquaculture has grown substantially 32 

over the last forty years, particularly in Asia, a region which now supplies ~90% of the global 33 

aquaculture market (FAO, 2018). Future food production in all sectors, however, may be 34 

limited by increasing climate variability, including extremes in rainfall intensity and 35 

temperature. These changes in climate in combination with increasing human population 36 

numbers, pollution events, impaired nutrient cycling, outbreaks of disease and pestilence are 37 

likely to result in future shortfalls in food production (FAO, 2018; FAO, IFAD, UNICEF, WFP 38 

& WHO, 2018). For aquaculture production, one of the most critical threats is the occurrence 39 

of harmful algal blooms (HABs). Increasing frequency of HABs is associated with climate 40 

change, nutrient enrichment and habitat disturbance, and is leading to growing impacts, 41 

including the poisoning or asphyxiation of finfish, shellfish and poisoning of human consumers 42 

(Hallegraeff, 1993; GESAMP, 2001; Smayda, 2004; Anderson, 2012; Berdalet et al., 2016). 43 

HABs can also cause a variety of other impacts affecting water quality, water flow and amenity 44 

value. Therefore estimating the economic costs of HABs is complex and requires consideration 45 

of many different issues (see reviews by Berdalet et al., 2016; Adams et al., 2018). Among the 46 

biggest economic impacts of HABs are precautionary closures of fisheries and aquaculture 47 

farms to prevent human poisoning (see Section 2.2 on human poisoning). Annual costs of 48 

precautionary closures (US$ at first point of sale) are estimated at $3-4 billion: >$0.03 billion 49 

in the UK (ASIMUTH, 2014); $0.9-1.2 billion in the EU (Hoagland & Scatasta, 2006; S-3 50 
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EuroHAB, 2019); $0.1-1.0 billion in Korea, Japan and China (Kim, 2006; Trainer & Yoshida, 51 

2014); >$0.10 billion in the USA (Hoagland et al., 2002).  Furthermore, the worldwide 52 

economic impacts of marine phycotoxins on human health are estimated to be approximately 53 

$4 billion a year (GESAMP, 2001; references in Berdalet et al., 2016). These estimates are 54 

very much “best approximations” rather than detailed economic assessments (as conceded by 55 

some of the authors e.g. Hoagland and Scatasta 2006; Adams et al., 2018). According to 56 

conservative epidemiological assessments, around 2000 cases of HAB-related food poisonings 57 

occur each year globally following human consumption of contaminated finfish or shellfish, 58 

and around 15% of these cases prove fatal (FAO, 2012; CTA, 2013). The proportion of farmed 59 

versus wild-caught finfish and shellfish that contain phycotoxins and subsequently poison 60 

human consumers is not currently known. 61 

Food fish production from aquaculture (80 million tonnes, US$232 billion per year) now 62 

exceeds capture fisheries (Table 1, adapted from FAO, 2018). Growth projections see this 63 

production from aquaculture rising by 37%, from 70 million tonnes to 109 million tonnes, by 64 

2030 (FAO, 2018), with a significant contribution coming from the global expansion of 65 

mariculture (Kapetsky et al., 2013). Food fish production from mariculture currently amounts 66 

to 28.7 million tonnes, of which more than half comes from bivalve shellfish. Bivalves are 67 

among the most sustainable mariculture products, since they derive their food entirely from 68 

naturally occurring food sources, predominantly marine planktonic microalgae. The growth of 69 

these algae is fuelled by natural (and anthropogenic) nutrient supplies from land runoff and 70 

coastal upwelling (Huston & Wolverton, 2009). Farming of aquatic plants and algae, 71 

dominated by seaweeds (macroalgae), has also increased recently to >30 million tonnes (FAO, 72 

2018), worth an estimated  US$11.7 billion. The largest share of seaweed production is for 73 

human food products (polysaccharide carbohydrates and micronutrients), the remainder is for 74 

animal feeds, fertilizers and biopolymers (Nayar & Bott, 2014). 75 
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Around 200 marine species are currently farmed, with the greatest variety in tropical seas 76 

(FAO, 2015; Froehlich et al., 2016). Species can be divided into two broad categories: i) fed 77 

species, including finfish and some crustaceans; ii) ‘extractive’ species, including, a) unfed 78 

filter‐feeding bivalves, algal grazers, detritivores and, b) autotrophic plants, mainly 79 

macroalgae. Each of these categories have different environmental susceptibilities, interactions 80 

and installation planning issues (Gentry et al., 2016), particularly at inshore sites (≤1 km from 81 

the coast). At inshore sites mariculture is directly influenced by anthropogenic activities 82 

(agricultural and urban runoff, municipal and industrial effluent inputs, ships, and mariculture 83 

itself), which potentially increase HAB risk (Anderson et al. 2008; Anderson, 2012). Recent 84 

calculations have suggested that current seafood consumption could be met by extending 85 

mariculture offshore, into less than 1% of Exclusive Economic Zones belonging to coastal 86 

states (Gentry et al. 2017). Some HABs, however, originate in open oceanic waters (Davidson 87 

et al., 2009; Trainer et al., 2012; Shutler et al., 2015; Davidson et al., 2016; Gobler et al., 2017), 88 

indicating that some algal species may present similar or even greater risks as mariculture 89 

moves offshore. 90 

Mariculture represents the nexus of environment–food–health systems; with food productivity 91 

and quality depending on clean coastal waters and healthy intact marine ecosystems (FAO, 92 

IFAD, UNICEF, WFP & WHO, 2018). To ensure long-term sustainable growth of the industry, 93 

a collection of interconnecting issues covering biosecurity, economic, and environmental 94 

aspects (including climate change and HABs) need to be addressed (De Silva & Soto, 2009; 95 

Lovatelli et al., 2013). Here, we critically review national and international HAB monitoring 96 

data records and published literature, to evaluate the occurrences, causes and impacts of HABs 97 

on shellfish and finfish mariculture in inshore and offshore waters. We identify environmental 98 

factors contributing to HAB risk  and establish whether mariculture practices themselves can 99 

influence (increase or reduce) risks of HAB occurrence and impact. Methods for predicting 100 
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and mitigating HAB risk are then reviewed. The risks of HABs to wild capture fisheries, as 101 

well as mariculture, are considered in this review also, since mariculture has the potential to 102 

attract and promote aggregations of wild finfish and shellfish. Building improved 103 

understanding of HAB risk for these related industries is of paramount importance to ensure 104 

future marine food security and safety. 105 

2) IMPACTS OF HABs ON MARINE FISHERIES AND MARICULTURE  106 

2.1) Nature of HABs and their impacts 107 

HABs are proliferations of certain microalgae, macroalgae or blue/green algae (cyanobacteria), 108 

which, under favourable environmental conditions reach certain levels that can have negative 109 

impacts on humans or the aquatic environment (Hallegraeff, 1993; Anderson, 2012; Bresnan 110 

et al., 2013; GlobalHAB, 2017). Some HAB species or strains synthesize phycotoxins that are 111 

ingested by marine plankton grazers and potentially bioaccumulate in higher food chain 112 

organisms, including humans. Ephiphytic HAB species including Prorocentrum lima, 113 

Ostreopsis spp., Gambierdiscus spp., have the potential to contaminate seaweeds, but human 114 

poisonings are generally caused by the consumption of seaweed grazing herbivorous shellfish, 115 

finfish or their predators, rather than from direct consumption of seaweeds. Globally, around 116 

300 HAB species have been identified, of which more than a third, mainly in the dinoflagellate 117 

group, are known to produce toxins that are harmful to aquatic organisms and/or to humans 118 

consuming them (http://www.marinespecies.org/hab/index.php) (Anderson, 2012). Toxin 119 

production can vary between different genetic strains for some HAB species (e.g. Touzet et al., 120 

2010; Cochlan et al., 2012) and/or different environmental conditions (Fehling et al. 2004; 121 

Wells et al. 2005). Poisoning syndromes in humans, responsible HAB genera, phycotoxin 122 

groups, and shellfish, finfish and macro-algal vectors of these phycotoxins are summarized in 123 

Section 2.2 (Table 2). Other metabolites may also be generated from these toxins, many of 124 

http://www.marinespecies.org/hab/index.php
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which have not been characterized in terms of chemical structure, potency or public health 125 

significance (Weise et al. 2010; Anderson, 2012). Other HAB species cause harm to fish 126 

through gill clogging or via the production of fish toxins (ichthyotoxins). Also, when the 127 

blooms decay, the degradation of the accumulated algal biomass by bacteria results in oxygen 128 

depletion affecting aquatic ecosystems as a whole (Smayda, 2004; Svendsen et al. 2018).  129 

2.2) Global distribution and characterisation of HABs affecting human health through 130 

seafood consumption 131 

Information concerning the global occurrence and impact of HAB events is recorded in the 132 

Harmful Algae Event Database (HAEDAT, http://haedat.iode.org). Bivalve molluscs which 133 

filter and feed directly on microalgae, including HAB species, are the principal vectors for 134 

shellfish poisoning in humans. Crustaceans that prey upon intoxicated bivalves, including crabs 135 

and lobsters (Shumway, 1995; James et al., 2010) and also carnivorous finfish (Friedman et 136 

al., 2017) can also bioaccumulate and in turn act as important vectors for phycotoxins. Table 2 137 

summarises the principal poisoning syndromes that result from humans ingesting intoxicated 138 

shellfish or finfish, and the respective geographical areas of highest incidence.  139 

The phycotoxins associated with each poisoning syndrome (column 1 of table 2) are 140 

neurotoxins and they are heat-stable (and thus unaffected by cooking), underlining their risk to 141 

human health. Global maps of reported shellfish poisonings  are illustrated in Manfrin et al. 142 

(2012) and selected references on poisoning syndromes can be found in Berdalet et al. (2016). 143 

Microalgae can produce a broader spectrum of toxic compounds than illustrated in Table 2 and 144 

include yessotoxins (YTXs) and pectenotoxins (PTXs) that mainly cause diarrhea (Reguera et 145 

al., 2014). An increasing number of toxic compounds derived from algae are being detected as 146 

monitoring and analytical tools become more advanced, including brevetoxins (Turner et al. 147 

2015) and cyclic imines (Davidson et al., 2015).  148 
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2.3) Occurrences and impacts of HABs on marine organisms in fisheries and mariculture 149 

Evidence on the occurrence and impacts of HAB on marine fisheries and mariculture is being 150 

gathered by ongoing regional programmes (e.g. Maguire et al., 2016), national programme (e.g. 151 

UK FSA, https://www.food.gov.uk/business-guidance/biotoxin-and-phytoplankton-152 

monitoring), and global (GlobalHAB, 2017) programmes (see section 5.1). However, despite 153 

the increasing coordination and integration of HAB monitoring programmes and research, not 154 

all incidents are captured and records may not always tally between local and global databases 155 

(e.g. HAEDAT). Some HABs are difficult to detect, notably for species which bloom below 156 

the sea surface and evade in situ monitoring and satellite imaging (Shutler et al., 2015). It is 157 

also often difficult to attribute cause(s) to observed impacts on complex marine systems, 158 

particularly when they involve cryptic species and  non-specific mechanisms, such as the 159 

depletion of dissolved oxygen and suffocation of (shell)fish by HABs such as Karenia 160 

mikimotoi (Davidson et al., 2009; Shutler et al., 2015). Since the 1960s, the number of hypoxic 161 

or anoxic ‘dead zones’ in coastal waters has doubled every decade (Diaz & Rosenberg, 2008). 162 

This has occurred in conjunction with  increasing eutrophication caused by nutrient enrichment 163 

and excessive algal growth. In some cases notable asphyxiation impacts on finfish and shellfish 164 

have been attributed to high biomass blooming HAB species such as Phaeocystis spp., Karenia 165 

spp., Aureococcus anophagefferens (Peperzak & Poelman, 2008; Davidson et al., 2009; Gobler 166 

et al., 2011). 167 

2.3.1) Evidence of  acute toxicity from HABs on finfish and shellfish in wild fisheries and 168 

mariculture 169 

HAB species from different taxonomic groups with few commonalities (dinoflagellates, 170 

dictyophytes, haptophytes, prymnesiophytes, raphidophytes) have been implicated in major 171 

finfish kills in marine fisheries and mariculture. In some cases, the toxicity can be transmitted 172 

https://www.food.gov.uk/business-guidance/biotoxin-and-phytoplankton-monitoring
https://www.food.gov.uk/business-guidance/biotoxin-and-phytoplankton-monitoring
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up the food chain to seabirds and marine mammals. Widely cultured finfish species affected 173 

by HABs include Atlantic salmon (Salmo salar), Rainbow trout (Onchorhynchus mykiss) and 174 

Yellowtail amberjack/kingfish (Seriola quinqueradiata) (reviewed by Landsberg 2002; 175 

Clément et al. 2016). Nevertheless, the mechanisms of toxicity for ‘fish killing HABs’ are not 176 

well understood. An example illustrating the complexity associated with HAB toxicity in 177 

finfish is presented for Heterosigma akashiwo. Here effects may be due to the production of 178 

reactive oxygen species, brevetoxin-like compound(s), excessive mucus production that 179 

impedes oxygen exchange, gill tissue damage by mucocysts and/or haemolytic activity. 180 

Uncertainties arise when there are differences in the toxicity of wild HAB populations versus 181 

laboratory cultures, for example reduced toxicity has been shown to result from the long-term 182 

culturing of H. akashiwo (Cochlan et al., 2012). There may also bevariability in mucocyst 183 

production by different strains of microalgae (in the case of Pseudochattonella farcimen, 184 

Andersen et al., 2015).  185 

 186 

Marine fisheries (and other wildlife) 187 

Some of the largest and most regular finfish (and other wildlife) kills occur annually along 188 

Florida’s Gulf coast. Here epidemiological assessments have attributed these to brevetoxin 189 

poisonings from blooms of the dinoflagellate Karenia brevis (Landsberg et al., 2009; Flaherty 190 

& Landsberg, 2011). A recent bloom of  K. brevis lasted over a year, beginning in November 191 

2017, extending for a distance of 150-200 miles along Florida’s Gulf coast and  killed hundreds 192 

of tonnes of marine life, including thousands of small fish, numerous large  fish (including 193 

groupers and a 21-ft whale shark) and marine mammals, including dolphins (Pickett, 2018). 194 

The 2017-2018 bloom is one of the longest and most severe outbreaks recorded over the last 195 

70 years and illustrates the scale of impacts possible from a single HAB outbreak (Krimsky et 196 
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al., 2018). Elsewhere, for example in the UK (1978, 1980) and Ireland (1976, 1978, 1979 and 197 

2005), major finfish and shellfish kills have been attributed to Karenia mikimotoi (a.k.a. 198 

Gyrodinium (or Gymnodinium) aureolum) (e.g. Silke et al. 2005, Mitchell & Rodgers 2007). 199 

These blooms have caused widespread death of wild and cultured fish, through either acute 200 

toxicity attributed to phycotoxins with neurotoxic, haemolytic or cytotoxic effects, or via 201 

oxygen depletion caused by decaying blooms (e.g. Boalch 1979, Jenkinson & Connors 1980, 202 

Jones et al. 1982).  203 

Saxitoxin produced by Alexandrium spp. may also be lethal to larvae and juveniles of 204 

commercially important finfish and shellfish species, such as Atlantic mackerel (Scomber 205 

scombrus) and American lobster (Homarus americanus) (Robineau et al. 1991). 206 

Biomagnification of saxitoxin in the marine food chain has also been linked to significant fish 207 

kills, and both seabird and marine mammal deaths (Pitcher & Calder 2000; Sephton et al. 208 

2007). 209 

Mariculture 210 

HABs often leads to finfish kills in caged environments, where the fish cannot escape 211 

phycotoxins or oxygen depletion from the decaying algal biomass. Risks from HABs are 212 

particularly high for finfish confined in sheltered inshore embayments, where the HABs may 213 

be concentrated by onshore winds and currents.  As an example of this,  between 1972 and 214 

1982 in the Seto Inland Sea, Japan, at least 21.8 million cultured yellowtail amberjack (Seriola 215 

quinqueradiata) were killed by the raphidophyte Chatonella antiqua (Okaichi, 1989). In 1972 216 

the economic loss for the summer outbreak  amounted to US$70 million. Since then, annual 217 

losses have been lower, but recurring severe impacts have continued (Fukuyo et al., 2002). 218 

Recurring threats have been reported also from another toxic raphidophyte, H. akashiwo, 219 

causing finfish kills in Iceland, Spain, British Columbia and Chile (Landsberg, 2002). The 220 
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losses caused by outbreaks of H. akashiwo  to  wild and net-penned finfish off Puget Sound, 221 

Washington have been estimated to cost in the region of  US$2-6 million per episode. The 222 

outbreaks of H. akashiwo are believed to have been increasing generally in scope and 223 

magnitude in various global regions over the past two decades (Landsberg, 2002).  224 

Originating offshore around the UK (Davidson et al., 2009; Shutler et al., 2015), high biomass 225 

blooms (>1000 cells/mL) of Karenia mikimotoi have been increasingly frequent and have been 226 

associated with significant finfish kills, including for caged fish in inshore waters (Jenkinson 227 

& Connors 1980; Silke et al., 2005; Davidson et al., 2009). Farmed shellfish including mussels, 228 

oysters and clams (Tapes semidecussatta) in the UK and Ireland, and hatchery raised juvenile 229 

bivalve spat have also periodically suffered significant mortalities, along with crustaceans and 230 

other benthic invertebrates, in conjunction with K. mikimotoi blooms (Raine et al. 2001; Silke 231 

et al., 2005). 232 

2.3.2) Evidence of chronic toxicity from HABs in wild fisheries and mariculture 233 

Symptoms of chronic toxicity in finfish are wide ranging for different HABs. These symptoms 234 

include liver pathologies caused by ciguatoxins released from Gambierdiscus spp. and 235 

microcystins produced by Microcystis spp., gill pathologies caused by cytotoxins from e.g. 236 

Prymnesium spp. and Heterosigma spp., narcosis (loss of balance and swimming ability) 237 

caused by neurotoxins from Karenia spp. and paralysing saxitoxin from Alexandrium spp., and 238 

excess gill mucus production e.g. caused by Chaetoceros spp. (review by Burkholder, 1998; 239 

Svendsen et al., 2018).  240 

Chronic sub-lethal effects of HAB toxins in bivalve molluscs include reduction in feeding rates 241 

in scallops and oysters (e.g. caused by  exposure to Prorocentrum minimum),  reduction in 242 

growth and byssus production in blue mussels (Mytilus edulis),  growth reduction in Eastern 243 

oysters (Crassostrea virginica), e.g. caused by Gymnodinium aurelium/ Karenia mikimotoi 244 
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(Burkholder, 1998) and by Alexandrium tamarense (Li et al., 2002), reproductive impairment 245 

in blue mussels and Bay scallops (Argopecten irradians), e.g. caused by Chrysochromulina 246 

polylepis, reduction in the recruitment of juvenile Bay scallops e.g. casued by Karenia brevis 247 

(reviewed by Burkholder, 1998; Basti et al., 2018). Thus, in addition to toxin accumulation 248 

rendering shellfish unsafe for harvesting for human consumption, toxin presence can have a 249 

longer term effect, impacting on shellfish abundance and time taken to grow to marketable size. 250 

Slower pumping and filtering rates are also likely to increase the time taken to evacuate toxic 251 

material from shellfish tissues. Most shellfish species can eliminate phycotoxins within a few 252 

weeks, but retention of some toxins (e.g. saxitoxins) in some species, such as sea scallops 253 

(Placopecten magellanicus) and Atlantic surfclams (Spisula solidissima), can last up to 5 years 254 

(Shumway et al. 1990, Landsberg, 2002). HABs also have the potential to impact adversely  on  255 

the supply of larval ‘seed’ or ‘spat’ for aquaculture. Examples of this include  Karenia brevis  256 

impacting on larval recruitment in Bay scallops (Burkholder, 1998), Pacific oysters 257 

(Crassostrea gigas) and Northern quahog (Mercenaria mercenaria) (Rolton et al., 2018). For 258 

these shellfisheries the estimated annual economic losses due to K. brevis along Florida’s Gulf 259 

coast alone are estimated to be up to US$6 million (NOAA 2004; Adams, 2017). Karenia 260 

brevisulcata has also been shown to be toxic to larvae of Greenshell mussel (Perna 261 

canaliculus), Pacific oyster and New Zealand abalone (Haliotis iris) (Shi et al 2012).  262 

Consumption of intoxicated finfish and shellfish can also lead to chronic toxicity in organisms 263 

higher in marine  food chains. For example, domoic acid derived from Pseudo-nitzschia sp. 264 

can cause neuropathic injury in both finfish and shellfish eating mammals and birds (Lefebvre 265 

et al., 2007; Ramsdell & Zabka, 2008; Soliño et al., 2019).  266 

3) ENVIRONMENTAL FACTORS CONTRIBUTING TO HAB RISK 267 

3.1) Environmental factors promoting HABs 268 
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HABs are natural phenomena within the seasonal cycles of planktonic micro-organisms in 269 

aquatic ecosystems (Glibert et al., 2005; Shumway et al., 2018). In recent decades harmful 270 

events appear to be increasing in frequency, duration and impact globally. Verifying them is a 271 

research priority (GlobalHAB, 2017; e.g. Wells et al., 2015; Wells et al., 2019). Apparent 272 

increased frequencies of HABs may be due to a combination of factors (see Figure 1) including: 273 

i) Warming sea surface temperatures, and associated water column stratification and range 274 

extensions of tropical organisms, including toxic species; ii) Increased frequency and intensity 275 

of storm events and flooding and associated increasing nutrient inputs, upwelling intensities 276 

and wider HAB dispersal; iii) Increasing anthropogenic pressures on the marine environment, 277 

notably land- and sea- based nutrient enrichment, and  disturbance of coastal habitats; iv) 278 

Increased awareness and improvements in HAB monitoring systems (Hallegraeff, 1993; Raine 279 

et al., 2008; Anderson, 2012; Bresnan et al., 2013; Wells et al., 2015; Gobler et al., 2017; 280 

Anderson et al., 2019).   281 

Evaluating HAB risk in any ‘system’ is highly challenging, since environmental drivers include 282 

a range of physical, chemical and biological factors, which can combine to influence i) the 283 

initiation/ development of a HAB; ii) its impact/toxicity and iii) the  termination of a HAB 284 

(Roelke & Buyukates 2001; Anderson et al., 2012a). These factors operate from micro- (mm) 285 

to meso- (10-100 km) to macro (>100 km) spatial scales and over a range of temporal scales 286 

(from seconds to minutes and from days to months) (Dickey, 2001). For example, an abundant 287 

supply of dissolved nutrients, calm sea state increasing stratification) and increased sunlight 288 

over a period of weeks may allow the algae to grow in high concentrations, and then dramatic 289 

and significantly increased turbulent sea state (causing increased vertical mixing) over several 290 

hours can result in bloom termination (e.g. Shutler et al., 2015). The challenge of understanding 291 

HAB occurrence and toxity is further complicated by ecological interactions between HAB 292 

species and other members of plankton communities, which vary both spatially and temporally 293 
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in species composition, genetic diversity and physiological status (Anderson et al., 2012a; 294 

Davidson, 2014). Despite these complexities, some of the key factors driving HAB dynamics 295 

are well characterised and are outlined in sections 3.2 – 3.4 below. 296 

3.2) Environmental factors contributing to HAB initiation and toxicity 297 

The pre-requisites for any HAB event are: the presence of algal cells, spores or cysts; suitable 298 

conditions of light and nutrients for their growth and reproduction; and physical conditions that 299 

facilitate their accumulation in favourable growing conditions. Cells can accumulate either by 300 

horizontal transport (advection) in water bodies by wind and/or tide, or by resuspension from 301 

sediments by wave action, or upwelling of bottom water (e.g., Farrell et al., 2012; Pitcher et 302 

al., 2017). The source of propagules that initiate blooms may be local, or distant, though the 303 

origin of propagules for any particular harmful bloom is typically difficult to determine. There 304 

is evidence that HABs in some areas originate in the ocean, rather than in coastal embayments 305 

(Hinder et al., 2011; Whyte et al. 2014; Pitcher et al., 2017; Berdalet et al. 2017). The majority 306 

of HABs, including dinoflagellates and diatoms, are holoplanktonic, relying on vegetative cells 307 

to survive inhospitable conditions and to seed blooms. In some cases, when growth conditions 308 

are suboptimal, highly toxic HABs such as Alexandrium spp. reproduce sexually and form 309 

resting cysts. These cysts  settle on sediments (Smayda & Trainer, 2010) and then undergo 310 

resuspension during storms or coastal upwelling, enabling (re)colonization of existing and new 311 

areas (e.g. Anderson et al. 1994, Pitcher et al., 2017).   312 

Nutrient availability is another key requirement for HAB initiation and maintenance. Most 313 

HAB species are primarily photoautotrophs, and their requirments for autotrophic growth 314 

include inorganic nitrogen (N), phosphorus (P) and silicate (Si, in the case of diatoms). High-315 

biomass HABs in estuaries and coastal zones have been linked to elevated inorganic nutrient 316 

inputs (eutrophication; Paerl et al., 2014; Rabalais et al., 2010) and organic nutrients (e.g. urea 317 
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from fertilizers, following heavy precipitation and land runoff , Heisler et al., 2008). However, 318 

the effects of nutrient inputs may be confounded by many other factors, including natural 319 

occurrence of HABs, transport of HAB species via mariculture and other marine activities, 320 

variable meteorological forcing, and longer-term climate change (Callaway et al., 2012; Gowen 321 

et al. 2012). There is increasing evidence that many HAB species can use dissolved and 322 

particulate organic forms of N and P (through prey ingestion), in addition to autotrophy; this 323 

combination of trophic modes is termed mixotrophy (Burkholder, 1998; Anderson et al., 2002; 324 

Lin et al., 2018). Mixotrophic HAB species are therefore able to proliferate both under high 325 

organic N concentrations and  by engulfing prey under nutrient limited conditions. Examples 326 

of mixotrophic HAB species include low biomass (100-1000 cells/L) blooming dinoflagellates, 327 

such as Alexandrium spp. (Anderson et al., 2012b; Lee et al., 2016) and Dinophysis spp. 328 

(Jacobson & Andersen, 1994), and also high biomass (>10,000 cells/L) blooming species such 329 

as Pseudo-nitzschia spp. (Loureiro et al., 2008) and A. anophagefferens (Gobler et al., 2011). 330 

Furthermore, changes in nutrient ratios (far from the classic stoichiometric Redfield N:P ratio 331 

of 16:1) may be important in stimulating the growth of some HABs and influencing their toxin 332 

content (Anderson et al., 2002; Kudela et al., 2010; Glibert et al., 2014a) and responses may 333 

be highly species-specific (Wells et al., 2015).  334 

Reduced turbulent mixing and increased thermal stratification are key factors promoting 335 

HABs, especially those comprised of dinoflagellates. Water column stratification and nutrient 336 

enrichment caused by  river plumes, jets, upwelling areas and tidal fronts are also particularly 337 

conducive for HAB development (Pitcher et al., 2017). Phytoplankton and other planktonic 338 

organisms tend to collect passively in boundary layers in stratified water bodies - motile 339 

dinoflagellate HAB species have the added advantage of being able to visit both nutrient-rich 340 

deeper water and irradiance-saturated shallower water either side of these boundary layers (e.g. 341 

Smayda 1997). HABs are also more likely to occur in sheltered zones of lagoons, estuaries and 342 
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coasts, as a result of increased water residence times, warmer temperatures and increased 343 

penetration of photosynthetically active radiation (PAR) (e.g. Smayda, 1989). Although strong 344 

turbulent mixing may be disadvantageous to bloom development by causing the break up of 345 

chains of individuals and by inhibiting cell division (Estrada & Berdalet, 1997), low level 346 

turbulence can enhance nutrient availability by facilitating increased transfer of molecules in 347 

or out of plankton cells, especially in passively floating diatoms (Peters et al., 2006). Other 348 

biological processes, including inter-cell quorum sensing and encounter rates with competitors 349 

and grazers (Gowen et al. 2012), are also modulated by fine scale turbulence and this can also 350 

favour HABs (e.g. Berdalet et al. 2017).  351 

3.3) Environmental factors contributing to HAB termination 352 

Advection and dispersion of HABs, increasing turbulent shear forces breaking up cells, and/or 353 

nutrient limitation are all understood to contribute to the termination of HABs (Gentien et al. 354 

2007; Lenes et al., 2013) and consequently HAB prediction models are often driven by these 355 

physical processes and biogeochemical fluxes. However, models that only include these 356 

processes often ‘over-predict’ HAB duration, indicating that inter-species biotic interactions 357 

play important roles in in terminating harmful blooms (Roelke & Buyukates, 2001; Lenes et 358 

al., 2013; Davidson et al., 2016). 359 

Plankton grazers or predators play an important role in regulating the abundance of marine 360 

planktonic micro-algae, including HAB species. In nutrient limited (oligotrophic) offshore 361 

marine environments meso-zooplankton (e.g. copepods 0.2-20 mm) consume 10-40% of 362 

marine phytoplankton, while micro-zooplankton (20–200 µm) consume around 60-70% 363 

(Calbet, 2008). In temperate nutrient rich (eutrophic) upwelling and estuarine ecosystems 364 

micro-sized heterotrophic and mixotrophic dinoflagellates (including HAB species) can 365 

dominate phytoplankton grazing (Calbet, 2008). More detailed, mechanistic understanding 366 
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concerning how and to what extent grazers regulate or terminate HABs is lacking. Plankton 367 

community interactions can vary markedly in temperate waters displaying a seasonal 368 

succession of different blooming species, and also in (sub)tropical waters with relative constant 369 

standing stocks of microplankton. In both cases food web dynamics can alternate between 370 

resource (bottom-up) and predatory (top-down) control (Calbet, 2008) and outcomes for HABs 371 

are highly situation-specific (Turner & Tester, 1997).  372 

Marine parasitic microbes (micro and nano-sized protists 10-100 µm, pico-sized bacteria 0.2-373 

10 µm and femto-sized viruses ≤0.1 µm) target all of the main phytoplankton groups (Gachon 374 

et al., 2010). They have been shown to play a significant role in terminating some major algal 375 

blooms (Wilson et al., 2002), and have also been linked to the decline of HABs (Chambouvet 376 

et al., 2008; Roth et al., 2008; Jones et al., 2011).  In turn  this has prompted research into the 377 

microbial control and bioremediation of HABs (Brussaard, 2004; Sun et al., 2018) (See section 378 

6.1). Larger micro-sized parasites such as the dinoflagellate Amoebophyra spp. may also be 379 

responsible for the termination (Rosetta & McManus 2003; Montagnes et al., 2008) or 380 

regulation (Nishitani et al. 1985) of dinoflagellate HABs such as Alexandrium spp.  381 

Adaptive responses in HAB species to avoid or combat grazers and parasites include: sensing 382 

and moving away from grazers (Wolrhab, 2013); adapting/optimising colony size (chain 383 

length) versus swimming speed (Selander et al. 2012); synthesising and releasing phycotoxins 384 

and/or other allelochemicals (Stüken et al., 2011; Anderson, 2012); undergoing/prolonging 385 

encystment (Rengefors et al., 1998; Toth et al. 2004); undergoing auto-lysis (i.e. programmed 386 

cell death) (Franklin et al., 2006; Lenes et al., 2013). Combinations of mechanisms underlying 387 

predator-prey and host-parasite interactions can vary greatly since algal prey/hosts and 388 

predator/parasite niches are highly species-specific (Amin et al., 2015; Ramanan et al., 2016).  389 

3.4) Regulation of HABs by filter feeding shellfish 390 



 17 

Filter-feeding shellfish can exert considerable (top-down) grazing pressure, limiting 391 

phytoplankton (and zooplankton) biomass, particularly in shallow, well mixed estuaries and 392 

coastal waters, where bottom-living bivalves can come into contact with and filter the majority 393 

of the water column (Newell, 2004; Lucas et al., 2016). Bivalves, such as mussels, suspended 394 

on ropes hanging vertically in the water column can also be effective at filtering plankton at 395 

deeper water sites (Stadmark & Conley, 2011; Hedberg et al., 2018). Physical factors such as 396 

water column exchange, turbulent mixing, temperature and stratification, and the influence of 397 

mariculture infrastructures on each of these (see Section 4.4), can be important in modulating 398 

shellfish grazing, sinking, and phytoplankton community composition – e.g. reduced vertical 399 

mixing favours motile dinoflagellates, while non-motile phytoplankton such as diatoms sink 400 

below the euphotic zone and are more easily intercepted by grazers (Lucas et al., 2016). The 401 

influence of selective filter feeding by shellfish on plankton community structure, including  402 

HABs species, is relatively poorly understood (Newell, 2004; Petersen et al., 2008; Lucas et 403 

al., 2016). Simple size selection for nano-sized plankton and above (>4 μm) and higher 404 

filtration rates in the warmer summer months may serve to reinforce seasonal succession from 405 

nano- to pico- plankton dominated communities (Newell, 2004). Sensing of food particles and 406 

their surface chemistry have been suggested to play a role in selective filtering of nutritious 407 

plankton in preference to detrital and mineral particles (Ward & Shumway 2004; Espinosa et 408 

al. 2009; Yahel et al. 2009). Phycotoxins, particularly paralytic shellfish toxins (PSTs) as well 409 

as  other toxin classes (e.g. NSTs and ASTs) are capable of inducing valve closure and/or 410 

reducing filtration rate in bivalves, as well as impairing growth and reproduction and inhibiting 411 

byssus production (Burkholder, 1998; Landsberg, 2002; Manfrin et al., 2012). Nevertheless, 412 

some bivalves show preferential uptake of harmful algal cells. This has been shown in the 413 

laboratory in five bivalve species (Bay scallop, Eastern oyster, Northern quahog, softshell clam 414 

(Mya arenaria), and the blue mussel. All bivalves, with the exception of softshell clam, ejected 415 
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intact cells of three HAB species (Prorocentrum minimum (PST and DST), Alexandrium 416 

fundyense (PST), and Heterosigma akashiwo (NST)) in their faeces or pseudo-faeces. Only 417 

oysters exposed to H. akashiwo, showed partial or complete valve closure and reduction in 418 

filtration rate. These results confirm that feeding responses of bivalves in the presence of HABs 419 

can be highly species-specific. Furthermore,  clearance of HABs from the water by bivalves 420 

may simply result in the transfer of  intact/live cells to the sediment, from which they could be 421 

resuspended (Hégaret et al., 2007). 422 

 423 

4) ENVIRONMENTAL IMPACTS OF MARICULTURE AND CONTRIBUTION TO 424 

HAB RISK 425 

Long-term time-series data are required to demonstrate the influence of finfish, shellfish and/or 426 

macro-algal mariculture on HAB risk as recognized in the Science Plan of the international 427 

programme on HABs (GlobalHAB, 2017). Accumulating evidence from China, which has the 428 

longest running, largest and highest concentration of mariculture in the world, indicates that 429 

the frequency and extent of HABs has been increasing concurrently with the industry growth 430 

since 1960 (Wang et al. 2008; Lu et al. 2014; Wartenberg et al., 2017).  The occurrence of 431 

HAB events in China increased sharply in 2009 with ~80 episodes , covering >15,000 km2 of 432 

China’s coastline in just one year. The increasing trend however, also follows increasing 433 

urbanisation of coastal fringes (Liu & Su, 2015). Potential environmental effects of mariculture 434 

are listed in Table 3 and the tendencies for these effects to promote HAB formation and impact 435 

(either directly or indirectly) are discussed in Sections 4.1 - 4.5. 436 

 437 

4.1) Nutrient emission versus assimilation   438 



 19 

Nutrient emissions from mariculture operations are predicted to increase substantially due to 439 

industry expansion (up to six-fold by 2050). The majority of these emissions comprise nutrient 440 

waste, primarily from finfish (fed mariculture) and also from shellfish, released in a dissolved 441 

form directly to the water column (Bouman et al., 2013). These nutrient emissions may promote 442 

the growth of harmful algal species in the vicinity of mariculture farms (Anderson et al., 2002; 443 

Hallegraeff et al., 2003). However, causal linkages between fish farming and eutrophication 444 

(Pitta et al., 2005; Modica et al., 2006) and HABs (Anderson et al., 2008) are often not clear 445 

(Smayda, 2004; Gowen et al. 2012). In some cases (e.g. farming of extractive shellfish) 446 

mariculture can cause net assimilation of nutrients leading to deficits (Ferreira et al., 2014), 447 

while elsewhere nutrient emissions may exceed local environmental assimilation capacities 448 

(Bouwman et al., 2013). Problems are likely to be more acute for farms with higher stocking 449 

densities (Sellner et al., 2003; Bouwman et al. 2013). Intensive bivalve cultivation can alter the 450 

nitrogen:phosphorus (N:P) nutrient stoichiometry and change the major N species to reduced 451 

forms, especially ammonia, as well as particulate organic nitrogen, and these N forms are 452 

preferred by various harmful algae – predominated by dinoflagellates (e.g. Arzul et al. 2001; 453 

Glibert et al. 2014a, but see Davidson et al., 2012). Conversely, diatoms have also been shown 454 

to decline as a result of nutrient excretion by bivalves (Lucas et al., 2016). A further concern 455 

arises because of low assimilation efficiencies (typically 30-40% for N, or less under bloom 456 

conditions), such that shellfish can become point sources of regenerated nutrients. Benthic 457 

regeneration of the accumulated faeces and decomposing feed can be significant in shallow 458 

well mixed coastal waters. (Bouwman et al., 2013).  459 

4.2 Chemical treatments used to control pathogens and parasites - Infections by pathogens 460 

and infestations of parasites, exacerbated by aggregations of wild fish around mariculture 461 

installations (Dempster et al., 2004), present a risk to human and (shell)fish health and have 462 

similar financial impacts to those for HABs (e.g. impacts of white spot virus on shrimp farming 463 
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in South East Asia ~6 US$ billion/yr) (Lafferty et al., 2015). Consequently a range of 464 

antimicrobial chemicals and pesticides are licenced for use in mariculture, specifically for 465 

finfish culture (Johnstone & Santillo, 2002; Read & Fernandes, 2003). Cumulative 466 

environmental exposures to these chemicals can be signficant in some coastal waters (Baker-467 

Austin et al., 2008; Uyaguari et al., 2013) and may exceed environmental quality standards 468 

(EQSs), which can be as low as 1 part in 1 trillion for some highly potent compounds (Gilliom, 469 

2007; Watts et al., 2017). Impacts of antimicrobial chemicals on beneficial microbes and 470 

associated ecosystem services (e.g. nutrient cycling, water quality and HAB regulation) could 471 

be significant (Woolhouse & Ward, 2013; Watts et al., 2017). Research on the impacts of 472 

chemicals on HAB regulation has been extremely limited to date and has generally focused on 473 

the effects of pesticides on HABs in freshwater systems (Relyea, 2009; Beketov et al., 2013; 474 

Harris & Smith, 2015; Stayley et al., 2015). 475 

4.3 Escapees and introduction of invasive and/or harmful species - Macro-algal blooms 476 

(seaweed blooms) leading to oxygen depletion, alteration of ecosystem biodiversity and 477 

production of certain toxins (Anderson, 2009) have been shown to originate from open water 478 

suspended culture systems.  For example, significant escapes may occur from Porphyra 479 

culturing spanning more than 40,000 km2 in some instances in the South China Sea. Bloom-480 

forming species including sea lettuce (Ulva spp.) and gutweed (Enteromorpha spp.) can cause 481 

major economic loss by inundating waterways and beaches, leading to widespread 482 

asphyxiation of organisms when the blooms biodegrade (Liu et al. 2017). 483 

4.4 Physical alteration of habitats and hydrodynamic regimes - Reduced hydrodynamic 484 

flows are known to lead to reduced turbulence, which in turn tends to promote the blooming of 485 

dinoflagellate species, including HAB species (Smayda & Reynolds, 2001).  Mariculture 486 

structures, including longlines for shellfish and kelp and net pens for finfish can significantly 487 

change surface current speed and direction, induce down-welling, increase stratification and 488 



 21 

reduce water exchange in sheltered and enclosed bays (Zeng et al. 2015; Lin et al., 2016; 489 

Wartenberg et al., 2017). Expansion of suspended mariculture in Sanggou Bay reduced the 490 

average speed of currents by 40% and the average half-life of water exchange was prolonged 491 

by ~70% (Shi & Wei, 2009). It is also possible that disturbance of sediments by aquaculture 492 

and fishing operations may promote the resuspension of HAB cysts. 493 

4.5 Transmission of HAB species and alteration in the abundance and composition of 494 

plankton communities - Risks of HAB impacts may increase directly with the future 495 

expansion of mariculture, via the movement (relaying) of ‘contaminated’ shellfish stocks and 496 

equipment between sites (Hégaret et al., 2008), including from the coast to offshore and vice 497 

versa, or via regular aquaculture operations and ballast water transfers (Hallegraeff and Bolch, 498 

1991; 1992). Indirect impacts include alteration of the abundance and composition of plankton 499 

communities, including HAB competitors, parasites and grazers (Roth et al., 2008; Eckford-500 

Soper et al., 2016).  Over intensification of mariculture can also lead to depletion of planktonic 501 

larvae (including finfish, shellfish and other invertebrates) and reduced food availability for 502 

wild shellfish populations (Gibbs, 2004; Ferreira et al., 2014; Pastres et al., 2018), especially 503 

in regions with low primary productivity (Gibbs, 2004; Grant et al., 2007). This may have 504 

consequences for negative feedback control of the abundance and composition of plankton 505 

communities by native filter feeders.  506 

 507 

5) DETECTING AND FORECASTING HAB EVENTS 508 

Maximising the profitability and environmental sustainability of mariculture requires 509 

surveillance monitoring and early warning systems, forecast-based financing, and strong risk 510 

governance structures (FAO, IFAD, UNICEF, WFP & WHO, 2018). The following systems 511 

are outlined in sections 5.1-5.3 below: i) in situ monitoring of HAB species abundance and 512 
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phycotoxins in (shell)fish; ii) remote sensing of HABs via satellite imaging of ocean colour; 513 

iii) predictive modelling of HABs based on meteorological/oceanogrpahical and 514 

biogeochemical factors. 515 

5.1) In situ monitoring 516 

In situ monitoring for HAB species abundance and phycotoxin concentrations in (shell)fish is 517 

the principal method for ‘official control’ monitoring and safeguarding of food fish safety for 518 

human consumption in Europe, North America, Asia and Australasia. In situ monitoring is 519 

generally conducted via the collection and analysis of representative field samples; using 520 

microscopic analysis for phytoplankton identification and enumeration, and using mass 521 

spectrometric analysis for phycotoxin identification and quantitation. The use of autonomous 522 

in situ molecular (qPCR) and flow cytometry methods have also proved capable of real-time 523 

sensing of algal blooms (e.g. Campbell et al. 2013). These in situ devices can be located on 524 

smart buoys or underwater gliders (Davidson et al., 2014). Integrative solid-phase adsorption 525 

toxin tracking (SPATT) deployed in the field for the passive sampling of algal toxins has also 526 

been validated recently, and improved Enzyme Linked Immuno-Sorbent Assay (ELISA)-based 527 

methods with lower detection limits for more toxins have become commercially available for 528 

both screening and routine monitoring purposes (Zhang & Zhang, 2015). 529 

In Europe routine HAB monitoring (EU Directives 2006/113/EC and 2000/60/EC) quantifies 530 

HAB species abundance and phytotoxin levels (Higman et al. 2014). Shellfish toxin 531 

concentrations are evaluated against EU action levels triggering harvesting bans (ASP >20 mg 532 

Domoic/epi-Domoic acid; PSP >800 µg STX equivalents (eq.); Lipophilic toxins (DSP) 533 

OA/DTXs/PTXs together >160 µg OA eq.; AZAs >160 µg AZA eq.; YTXs >3.75 mg YTX 534 

eq. – see Table 2 and underlying text for expansion of abbreviations), allowing for cross-border 535 

trade of aquaculture products. While individual HABs and their toxins vary in concentration 536 
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on a seasonal basis, HAB events can occur year-round, as can aquaculture harvesting. 537 

Responsibility for ‘official control’ resides with respective statutory authorities within EU 538 

member countries and results are published online for each designated site.  In-situ HAB 539 

monitoring data can be combined with satellite imagery (Section 5.2) and numerical models 540 

(Section 5.3) to give a better indication of HAB risk, as implemented in Ireland (Leadbetter et 541 

al., 2018). In some cases more proactive monitoring can occur, such as in Scotland where a 542 

group of finfish farmers collectively pay for weekly satellite remote sensing observations of 543 

Karenia mikimotoi surface distributions (Davidson et al., 2016). 544 

 545 

In the USA, both the National Oceanic and Atmospheric Administration (NOAA) and the 546 

Environmental Protection Agency (EPA) monitor for, and provide some indication of, 547 

impending HABs. In the Gulf of Mexico a twice-weekly risk assessment is provided during 548 

the summer-autumn HAB season, based a regular in situ monitoring programme (and using 549 

meteorological models, particularly to provide warning of toxic aerosol events e.g. caused by 550 

Karenia brevis). The rest of the USA coastline is monitored routinely for HAB events by a 551 

volunteer network; the ‘National Phytoplankton Monitoring Network’, sampling twice 552 

monthly. In some locations in the US more intensive programmes are in place, such as the 553 

SoundToxins programme which is funded by NOAA and Washington Sea Grant and monitors 554 

31 sites on a weekly basis in Puget Sound in Washington State, or the California Harmful Algal 555 

Bloom Monitoring and Alert Program (CalHABMAP) funded by US Congress and the 556 

National Aeronautics and Space Administration (NASA) (Kudela et al. 2015).  557 

Across South East Asia, some countries operate a regular programme of shellfish monitoring 558 

(e.g. Japan, Indonesia, Vietnam, Korea), while other countries lack the resources to have a 559 

robust programme or initiate sampling when blooms are detected (e.g. Laos, Myanmar) (Eong 560 
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& Sulit, 2015). In Australasia monitoring effort varies, with frequent sampling of high risk 561 

locations in western Australia (Dias et al. 2015), but overall being less well sampled and 562 

leading to high instances of human poisonings (Hallegraeff et al. 2017). In Chile and wider 563 

Latin America, after many intoxication events, a standardised sampling programme was 564 

developed across the region in 2009, although maintaining the network and regular sampling 565 

is dependent on continued resource availability (Cuellar-Martinez et al. 2018). 566 

In scaling up from regional monitoring to a Global Ocean Observing System (GOOS) for 567 

HABs, it is recognised that there is no universal “one-size-fits-all” solution, but that 568 

communication is key and stakeholders require affordable, easy to understand, real-time 569 

information, for example, in the form of spatial and temporal risk mapping (Anderson et al., 570 

2019). 571 

 572 

5.2) Satellite remote sensing (Earth observation) 573 

The use of satellite remote sensing, alongside in situ sensing or ground truthing, has wide-scale 574 

potential for detecting increases in potential surface dwelling HAB species or high 575 

concentrations of all surface algae (reviewed by IOCCG, 2014; Davidson et al. 2016) in 576 

relation to fisheries and aquaculture/mariculture (IOCCG, 2009). Images of ocean colour from 577 

visible and infrared spectrum wavelengths can be correlated statistically with HABs events or 578 

in some cases the HAB species can be observed if they are spectrally distinct 579 

(https://www.shelleye.org/index; https://www.s3eurohab.eu/en/). For example,  correlations 580 

have been found between ocean colour, chlorophyll and algal biomass (Sourisseau et al. 2016), 581 

with some correlations incorporating the use of artificial neural networks (El-Habashi et al., 582 

2017) and K. mikimotoi and K. brevis are both species that have spectral signatures that allow 583 

successful identification when in large concentrations (Kurekin et al., 2014; Shutler et al., 2015; 584 

https://www.shelleye.org/index
https://www.s3eurohab.eu/en/
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El-Habashi et al., 2017). In general HAB species that are detectable by remote sensing are those 585 

that form significant blooms of >1000 cells/mL at the sea surface or near-surface (e.g. Karenia 586 

mikimotoi - Kurekin et al., 2014; Karenia brevis - El-Habashi et al., 2017). Satellite imaging 587 

however cannot detect species that form harmful blooms at low densities of ~100 cells/L (e.g. 588 

Dinophysis spp.) (Reguera et al., 2014). Remote sensing techniques are also unable to detect 589 

HABs when observation of ocean colour is obscured by cloud cover (Maguire et al. 2016).   590 

 591 

5.3) Predictive modelling 592 

Early warning of the onset of HAB events over time scales of several days, and their likely 593 

movement and changing magnitude (i.e. relative to safe limits), would be highly beneficial to 594 

the mariculture industry, allowing proactive, rather than reactive, responses to minimise 595 

impacts on businesses, customer confidence, human health (Davidson et al., 2016). Immediate 596 

responses may include: advanced (or delayed) harvesting of stock (limited by storage capacity 597 

and by supply chain logistics) or deployment of mitigation measures (Section 6). Longer-term, 598 

more strategic business planning is dependent on knowing when harvesting bans imposed by 599 

HAB outbreaks are likely to be lifted, in order to better manage business operations, staffing 600 

and supply chains. HAB predictions based on readily available physical (hydrographical and 601 

meteorological) data offer a simple, tractable solution for forewarning mariculture operators in 602 

locations where these physical ‘forcing factors’ are principle drivers of HAB initiation. These 603 

physical models are generally better at predicting HAB initiation than HAB termination, but in 604 

any event forecasting is generally limited to 1 week in advance (Davidson et al., 2009; Cusack 605 

et al., 2016; Schmidt et al., 2018), which corresponds with general extent and accuracy of 606 

meteorological forecasting (Davidson et al. 2016). Furthermore, the majority of models, which 607 

are driven predominantly by meteorological and hydrographical processes, often ‘over-predict’ 608 
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HAB duration (Davidson et al., 2016). This is reassuring for human safety, but not so appealing 609 

for businesses desperate for harvesting bans to be lifted, as soon as it is safe to do so. 610 

Hydrophysical models coupled with HAB population models, which also incorporate 611 

biological and geochemical processes, can improve HAB predictions, by taking into account 612 

life-history data and environmental and physiological optima for HAB species (Roelke & 613 

Buyukates, 2001, McGillicuddy et al. 2005; Glibert et al., 2014b; Aleynik et al. 2016; 614 

Gillibrand et al., 2016). Modelling changes in trophic mode (autotrophy versus mixotrophy) 615 

(Lee et al., 2016) and interactions with other plankters, including HAB parasites and grazers 616 

(Lenes et al., 2013) can also help to improve predictions of bloom duration. However, 617 

increasing trophic complexity in community and ecosystem models can lead to reduced 618 

resolution of species-specific dynamics, including HAB population dynamics (Flynn & 619 

McGillicuddy, 2018). Other trade-offs in implementing more elaborate ecosystem models 620 

include greater specificity (spatial limitation) of model predictions and increasing requirements 621 

for input data for model parameterisation, computational processing power and expert 622 

operators (Butenschön et al., 2016).  623 

 624 

Combining bio-physical modelling of HABs with satellite remote sensing data has been used 625 

successfully in short-term national forecasting systems for public health and aquaculture 626 

protection in the US and EU for example (Kudela et al., 2015; Shutler et al., 2015; Davidson 627 

et al., 2016; Ruiz-Villarreal et al., 2016) with the potential for wider detection of HABs 628 

(Anderson et al., 2019). There is also the potential to extend forecasting of HAB events from 629 

days to several weeks or even months in advance, by tracking successional changes in plankton 630 

community composition over time, in conjunction with traditional in situ monitoring and real-631 

time sensing of impending blooms (Campbell et al. 2013). Inter-annual predictions of HAB 632 

trends and the identification of hotspots prone to recurring HAB events are also highly 633 
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beneficial for strategic marine spatial planning, including for new or expanding mariculture 634 

infrastructure. These longer-term predictions are more circumspect, as the bio-geographical 635 

niches of different HAB genera or species are likely to shift with a changing climate and/or 636 

become more variable (Callaway et al., 2102; Wells et al., 2015; GlobalHABs, 2017).  637 

 638 

6) ANALYSIS OF OPTIONS FOR MITIGATING HAB RISK TO MARICULTURE  639 

Options for mitigating HAB impacts to mariculture fall into three basic categories: 1) spatial 640 

and temporal planning of mariculture operations to avoid or minimise the risk of HABs; 2) 641 

holistic environmental management options to minimise local HAB risk around mariculture 642 

farms (e.g. multi-species, multi-trophic, ecosystem-based options favouring nutrient 643 

assimilation and recycling and/or cultivation of species which are more resistant to, or less 644 

prone to accumulate, HAB toxins); 3) direct interventions for controlling the presence or 645 

abundance of HAB species (physical, chemical, biological control options). The advantages of 646 

various options in each of these categories and their state of readiness for application in 647 

commercial mariculture are discussed below (Sections 6.1-6.3). 648 

 649 

6.1) Spatial and temporal planning to minimise HAB risk 650 

Spatial planning for new mariculture infrastructure can be targeted to avoid HAB hotspots, 651 

while planning harvesting outside peak HAB risk periods can be implemented at already 652 

established/ licenced mariculture farms, with both options being informed by existing HAB 653 

detection and forecasting systems (outlined in Section 5). Development of offshore sites with 654 

significant exposure to tides, wind and wave action (Drumm, 2010; Froehlich et al., 2017; Buck 655 

et al., 2018) can potentially mitigate HAB risks linked to mariculture itself e.g. elevation of 656 

nutrient levels, physical alteration of habitats and hydrodynamics and modification of local 657 
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planktonic (and benthic) communities (Section 4). However, HABs often originate naturally 658 

offshore (independently from anthropogenic activities) (Whyte et al. 2014; Diaz et al. 2016; 659 

Davidson et al., 2016; Gobler et al., 2017) and there is some evidence that some HAB species 660 

may present even greater risk here compared to inshore areas (Trainer et al., 2012). Regulatory 661 

policy for sustainable offshore aquaculture has only recently been developed in the USA 662 

(NOAA, 2016), and is not yet formulated and published in other countries or continents, such 663 

as New Zealand, Australia and Europe (Froehlich et al., 2017). Emerging guidelines for 664 

assuring minimal impacts from offshore mariculture on water quality and pelagic and benthic 665 

communities relate to: minimum water depths (twice the depth of mariculture infrastructure) 666 

and minimum water flow rates (>0.05 m/s) (Belle and Nash, 2008; Froehlich et al., 2017). In 667 

such localities the probability of ecological effects on neighbouring natural habitats diminishes 668 

significantly beyond a distance of 90 m (Froehlich et al., 2017). This distance also provides a 669 

nominal guideline for the proximity/density of neighbouring offshore mariculture 670 

infrastructure. However, some ecosystem models predict significant trophic interactions 671 

between large offshore installations and more distant coastal mariculture sites, indicating wide-672 

ranging implications for nutrient budgets and biosecurity (spread of microbial pathogens). 673 

These ecological interactions have been modelled and verified for the large (15 km2) Ria 674 

Formosa Mariculture Park located >3 nm offshore from coastal sites in the Algarve region  of 675 

Portugal (Ferreira et al., 2014). Ecological linkages between extensive mariculture installations 676 

and the periodic occurrence of HABs along the Algarve coast have yet to be established. 677 

6.2 Holistic environmental management options for minimising HAB impacts 678 

Holistic environmental management of HABs addressing causative factors (e.g. minimising 679 

nutrient inputs from land-based sources and from mariculture itself) or preserving habitats and 680 

ecosystem services that help regulate HABs, may be simpler, more effective and more 681 

environmentally friendly (WHO, 2003; Wells et al., 2019) than attempting to control HAB 682 
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outbreaks directly (Section 6.3). For example, nutrient enrichment can be managed through the 683 

use of ‘extractive’ shellfish and macro-algal species. Furthermore, restoration of coastal 684 

habitats, for example with seagrass that harbor algicidal bacteria (Inaba et al., 2019), or 685 

cultivation of seaweeds that secrete algicidal chemicals (Zerrifi et al., 2018), can also help 686 

mitigate against HABs. This follows Ecosystem Approaches to Fisheries and Aquaculture 687 

(EAF/EAA) (Soto & Aguilar‐Manjárrez, 2009; FAO, 2018), which covers 3 main aspects: (i) 688 

minimising environmental impacts and waste; (ii) sustaining wider ecosystem functions and 689 

services; (iii) promoting human well‐being and equity among marine stakeholders. 690 

(i) Minimising environmental impacts and waste - Shellfish and macro-algal culturing can have 691 

a positive influence on the regulation of HABs, either by reduction of high biomass blooms 692 

through filter feeding or via nutrient removal (Stadmark & Conley 2011; Petersen et al., 2014). 693 

Nutrient removal by mariculture curbing eutrophication in EU coastal waters alone is valued 694 

at US$20 to 30 billion per year (Ferreira et al., 2009). Furthermore, mariculture reduces the 695 

exploitation of natural shellfish stocks, which can also help regulate HABs. For example, 696 

overfishing of shellfish around Long Island, USA, has coincided with the increased occurrence 697 

of Aerococcus anophagefferens brown tides (Glibert et al., 2005).  698 

(ii) Sustaining wider ecosystem functions and services – Mariculture farms can provide 699 

sheltered nursery habitats for marine/estuarine organisms, with the potential to enhance local 700 

fisheries and to support biodiversity in neighbouring marine protected areas (Le Gouvello et 701 

al., 2017). Maintaining biodiversity is important, since impoverishment of planktonic species 702 

and reduced species succession have been correlated with increased HAB risk. In some cases 703 

such community changes can forewarn HAB outbreaks several months before the detection of 704 

the HAB species (e.g. Microsystis sp.) (Roelke & Buyukates, 2001). 705 
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(iii) Promoting human well‐being and equity among marine stakeholders - Marine spatial 706 

planning is required to effectively locate mariculture and fisheries conservation areas, and 707 

avoid conflicts with other uses of the marine environment. To facilitate planning, 708 

environmental models can be used to assess nutrient budgets, productivity versus 709 

eutrophication risk, the risk of transmission of pathogens, pests associated with mariculture 710 

(Ferreira et al., 2014; Pastres et al., 2018) and the risk of advection of HABs to mariculture 711 

sites (Dabrowski et al., 2016; Paterson et al., 2017). 712 

A promising approach for delivering on each of these EAA/EAF aspects, including the 713 

potential to minimise HAB risk, is Integrated multi-trophic aquaculture (IMTA) (Wartenburg 714 

et al., 2017). IMTA employs cultureable ‘extractive’ species (e.g. suspended bivalve shellfish 715 

and macroalgae, and benthic deposit feeders) to remove/reuse waste nutrient material discarded 716 

from the culturing of ‘fed’ species (finfish and crustaceans) thereby providing a self-sustaining 717 

and more productive food web (Figure 2) (Soto, 2009; Troell et al., 2009; Chopin et al., 2012). 718 

Macroalgae can also play a direct role in inhibiting the growth of microalgae, including HAB 719 

species, through competition for nutrients (Soto 2009; Holdt et al. 2014), inhibitory allelopathy 720 

(Tang & Gobler, 2011; Ben Gharbia et al., 2017; Zerrifi et al., 2018), and/or by reducing light 721 

penetration (Zhou et al., 2006; Wang et al., 2007; Yang et al., 2015). 722 

Further developments in IMTA, including deploying aquaculture species that are less sensitive 723 

to, or less likely to accumulate, toxins from locally re-occurring HAB species, are likely to be 724 

required to maximise benefits in terms of mitigating against HAB impacts. The long-term 725 

sustainability of IMTA for mitigating HAB risk with climate change, also requires further 726 

research (Wells et al., 2019). For example, China has some of the world’s largest and longest 727 

established IMTA systems, including a multi-trophic system established in 1996 in Sanggou 728 

Bay, Yellow Sea (Fang et al., 2016). Since 2010 however, Sangou Bay has regularly 729 

experienced brown tides of A. anophagefferens (Kong et al., 2010). Coincidentally, large-scale 730 



 31 

A. anophagefferens brown tides extending over 3000 km2 have occurred in the north western 731 

Bohai Sea each year in early summer since 2009 and have caused significant negative impacts 732 

on scallop (Argopecten irradians) culture (Zhang et al. 2012). Other HAB species including 733 

Karenia mikimotoi and Prorocentrum donghaiense also continue to form annual blooms in 734 

nearshore waters of the Yellow Sea and neighbouring East China Sea (Li et al. 2009), with K. 735 

mikimotoi causing substantial losses to mariculture from 2005–2015 (Liu & Su, 2017).  736 

6.3) Direct interventions for controlling HAB impacts  737 

Physical and chemical control methods can remove HABs efficiently and are used 738 

operationally as a last resort in mariculture, but they can be costly, lack specificity to HABs, 739 

and are generally less effective in coastal situations in comparison to enclosed or semi-enclosed 740 

aquatic systems. Alternatively, biological control methods can be potentially more specific for 741 

individual HAB species, minimising impact on other non-target species, but they are more 742 

difficult to constrain in non-enclosed systems and have not progressed beyond laboratory or 743 

field trials for mariculture applications (Reviewed in NOAA, 2015; Sellner & Rensel, 2018; 744 

Sun et al., 2018; Gallardo-Rodríguez et al., 2019). 745 

Physical control methods include the use of barriers or skirts e.g. around fish net pens and/or 746 

the removal of HAB cells by water column mixing, filtering, flocculation, settlement, sediment 747 

burial and dredging, or HAB cell lysis using ultrasound (Sellner & Rensel, 2018). Water 748 

column mixing using water or air pumping systems, leads to disruption of thermal stratification 749 

and impairment of algal buoyancy or alteration of their daily migration patterns, removing them 750 

from the photic zone and preventing photosynthesis. Direct cell removal from the water column 751 

can be achieved by hydrodynamic separation, centrifugation, pump filtration, plankton net 752 

trawling or membrane filtration. A measure which has proven effective for HAB control in the 753 

open sea has been the use of clays to induce bloom flocculation. As considerable quantities of 754 
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clay are needed, from 100 to 400 g/m2 (Park et al., 2013), physical resuspension of local 755 

sediments or importation on ships are a practical solutions. Subsequent flocculation, sinking 756 

and burial of HAB cells and/or cysts can be followed by dredging and physical or chemical 757 

treatment before discharging the sediments back to the removal site (NOAA, 2015; Sellner & 758 

Rensel, 2018). Potential drawbacks include the removal of non-harmful algae. More efficient 759 

flocculation can be achieved by spraying the sea surface with modified clays containing 760 

inorganic- (e.g. aluminium sulphate or polyaluminum chloride) or organic- (e.g. 761 

polyacrylamide or chitosan) modifiers, which can be up to 100 times more efficient in 762 

adsorbing HAB cells (and other plankters) than natural clay sediments. This enables a reduction 763 

in application levels time windows – reducing the risk of clay build-up and helping to reduce 764 

impacts on non-blooming (non-HAB) species (reviewed in Gallardo-Rodríguez et al., 2019). 765 

Furthermore, modified clays have been shown to kill HAB cells (Beaulieu et al., 2003), adsorb 766 

and remove extracellular HAB toxins (Pierce et al., 2004; Seger et al., 2015; 2017) and 767 

particulate nutrients (Yu et al., 2017), and to also reduce HAB toxin accumulation in benthic 768 

filter-feeding bivalves (Yu et al., 2017). Consequently they have been used in Japan (Shirota, 769 

1989) and employed as a standard method for controlling HABs in China, since 2014 (Yu et 770 

al., 2017). A remaining concern, preventing uptake of these physical control methods in other 771 

countries, is their lack of specificity for controlling harmful species and possible unknown 772 

impacts on other phytoplankton and the ecosystem as a whole. 773 

More direct chemical treatments for controlling HABs include the use of natural biosurfactants, 774 

biocides or allelochemicals (e.g. biochemical extracts from macroalgae), or the use of synthetic 775 

chemicals, including hydrogen peroxide and isolated algicidal compounds, or metallic 776 

compounds such as copper sulphate. These various chemicals (metals and organic compounds) 777 

can interfere with HAB cell survival (algicidal chemicals), growth and reproduction (algi-static 778 

chemicals) through a variety of mechanisms (NOAA, 2015; Gallardo-Rodríguez et al., 2019). 779 
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Biochemicals are advantageous in terms of their higher diversity, biodegradability and, in some 780 

cases, specificity - and potentially lower toxicity to the wider environment (Ahn et al., 2003). 781 

Although many effective aqueous algicidal treatments exist, few are approved for use in open 782 

marine systems, due to environmental concerns, although some have restricted use in anti-783 

fouling paints and surface treatments (NOAA, 2015; Gallardo-Rodríguez et al., 2019). Several 784 

biocidal chemicals have been tested and approved for use in mariculture, for controlling 785 

shellfish and finfish pathogens or parasites (Johnstone & Santillo, 2002; Read & Fernandes, 786 

2003) and some of these may be effective in killing some HAB species. 787 

Biological control measures include the application of microbial (viral, bacterial, fungal and/or 788 

protistan) parasites that infect HABs and play a significant role in the natural termination of 789 

major blooms (Brussard, 2004; Chambouvet et al., 2008; Roth et al., 2008; Jones et al., 2011; 790 

Demuez et al., 2015; Pokrzywinski et al., 2017). Algicidal and growth inhibitory bacteria and 791 

viruses have potential for controlling HABs, due to their ability to replicate rapidly and target 792 

specific hosts (Bibak & Hosseini, 2013; Sun et al,. 2018). However, it is possible for these 793 

parasites to be too specific, rendering them unable to infect different genetic strains of HAB 794 

species, or adapt to changing environmental conditions (Sun et al., 2018; Gallardo-Rodríguez 795 

et al., 2019). Therefore, rather than using single cultured microbial species, employing a range 796 

of microbes may be more effective. Aggregates (biofilms) immobilized on substrates may be 797 

more effective in reducing HAB cell density (bioflocculation) by inhibiting HAB cell growth 798 

via nutrient uptake and allelochemical secretion, and causing cell lysis (Alex et al., 2014; Sun 799 

et al., 2018). Research is needed to quantify the release of toxins following HAB cell lysis and 800 

the potential for microbes to degrade them. Further research is also needed to isolate, purify 801 

and identify microbial allelochemicals/exudates and to demonstrate their efficacy for 802 

controlling different HAB species and genetic strains, while incurring minimal effects on non-803 

harmful algae and other marine organisms, including cultured shellfish and finfish species 804 
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(NOAA, 2015, Sun et al., 2018). Other potential biological interventions include selective 805 

breeding of shellfish with resistance to HAB toxins and using them as HAB biofilters and 806 

bioremediators (NOAA, 2015). Unquantified biosecurity risks for biological control measures 807 

currently prevent their operational use in controlling HABs at mariculture sites. 808 

 809 

7) CONCLUSIONS AND RECOMMENDATIONS 810 

Marine aquaculture (mariculture) is playing an increasingly important role in global food 811 

security. One of the most significant risks to mariculture expansion, both inshore and offshore, 812 

is the occurrence of Harmful Algal Blooms (HABs).  813 

Global impacts from HABs on mariculture (due to finfish or shellfish mortality, poisoning of 814 

human consumers and preventative harvesting bans) currently amount to something in the 815 

region of 8 US$ billion/yr, however, HAB risk assessment is not a standard requirement in the 816 

planning and classification of mariculture sites. This is, in part, because HABs are natural 817 

phenomena, and because risk factors are diverse, varying greatly both spatially and temporally. 818 

For example, HABs may originate offshore, far from anthropogenic activities, and can be 819 

advected over large distances to other areas conducive for HAB development. Further research 820 

is required to guide and enable pre-emptive measures for mitigating HAB risks, including the 821 

strategic siting of mariculture infrastructure and scheduling of harvests.  822 

Adaptive management of HAB risk, involving the prediction of HAB events and the tactical 823 

use of appropriate and approved physical, chemical and/or biological control measures, is 824 

needed as part of the sustainable development of mariculture. However, successful application 825 

requires improved understanding on the efficacy and biosafety/specificity of the available 826 

options. There is a need also for improved understanding on the interactions among physical 827 

forcing factors (meteorological and oceanographical), and chemical (nutrient) and biological 828 
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(community) factors, in order to predict where and when blooms are most likely to occur. In 829 

support of this, research should exploit the widespread occurrence of HABs, which provides 830 

opportunities for comparative assessments of HAB drivers around the world, including the 831 

extent to which HAB species, their population dynamics, and community interactions show 832 

similarities in responses within comparable ecosystem types. There is considerable scope to 833 

capitalise on advances in automation and (bio)sensor (DNA, RNA, protein and metabolite) -834 

based technologies, with applications in: real-time, in situ monitoring of HAB population 835 

dynamics; defining physiological processes and underlying regulatory gene networks linked to 836 

growth and/or toxin production in HAB species; building robust, mechanistic models for 837 

predicting HAB events. 838 

HAB risks are generally perceived to be higher at coastal sites, which experience nutrient 839 

enrichment from agricultural runoff and municipal effluent discharges. Winds and tides can 840 

also transport and accumulate HABs into coastal areas, including sheltered embayments, where 841 

less turbulent and warmer waters are conducive for the growth of various HAB species. In 842 

these and other areas with low water exchange rates, mariculture itself can have a significant 843 

influence on HAB risk by affecting local water quality (e.g. nutrient -eutrophication- levels), 844 

hydrodynamics (artificial structures reducing water circulation) and plankton communities 845 

(e.g. through selective filter feeding by shellfish). More studies are required to quantify HAB 846 

risks against each of the above factors and their interactions, and the degree to which they are 847 

influenced by different types of mariculture. 848 

HAB risks associated with nutrient enrichment and eutrophication (from terrestrial sources and 849 

mariculture itself) may be mitigated by establishing mariculture sites offshore, away from the 850 

coast and/or in areas with high horizontal water exchange rates and vertical mixing. Greater 851 

understanding is required on how hydrodynamic conditions (e.g. influenced by wind, waves, 852 
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tides) and bathymetry (water depth) influence dispersal versus local deposition and 853 

resuspension of nutrients and HAB propagules/cysts. 854 

Further capacity for HAB mitigation is offered by multi-trophic aquaculture (IMTA), which 855 

employs extractive bivalve shellfish and macroalgae alongside fed finfish and crustaceans, in 856 

order to recycle nutrients, thus maximising productivity and water quality simultaneously. 857 

Macroalgae (in addition to filter-feeding shellfish) can also have a direct influence on local 858 

plankton community composition and abundance - via nutrient competition, light shading and 859 

allelochemical mechanisms. Further research is required to understand how IMTAs could be 860 

further optimised for the additional purpose of HAB attenuation, through selection of suitable, 861 

resilient bivalve shellfish and macroalgal species, and appropriate spatial deployment and 862 

stocking densities.  863 

A key remaining question for mariculture, both inshore and offshore, is how will HAB risk 864 

transpire in a future warmer climate, typified by increased sea surface temperatures and water 865 

column stratification, or alternatively in a future characterised by increased atmospheric energy 866 

and more turbulent waters. Climate change is also likely to be accompanied by HAB range 867 

extensions towards the poles. To address these issues, collaborative effort is needed that seeks 868 

to unify  research themes on ‘HABs, climate change and aquaculture/mariculture’, as 869 

exemplified by GlobalHAB, an international programme sponsored jointly by the Scientific 870 

Committee on Oceanic Research (SCOR) and the Intergovernmental Oceanographic 871 

Commission (IOC) of UNESCO.  872 
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Table 1: Gloal food fish production from aquaculture in 2016  1638 

*Mariculture currently provides 36% (28.7 million tonnes) of food fish production from 1639 

aquaculture and is dominated by molluscs (17.1 million tonnes) (FAO, 2018). 1640 

Aquaculture 

production 

Finfish Molluscs Crustacea Other Total for 

Aquaculture 

Total as % of 

total food 

fish 

By weight 

 (million 

tonnes) 

54.1 17.1 7.9 1.0 

 

80* 53% 

By value  

(billion US$) 

138.5 29.2 57.1 6.8 232 64% 

 1641 
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Table 2:  1642 

Most common food-borne poisoning syndromes in humans caused by HABs and details concerning their occurrence and impacts 1643 

 1644 

Poisoning 

syndrome 

Symptoms Causal 

phycotoxins 

Mechanism 

of toxicity  

Responsible 

HAB species 

Principal 

vectors  

Impacts (examples)  Global  

hot spotsd 

Amnesic 

shellfish 

poisoning 

(ASP) 

Memory loss, 

brain 

damagea  

Domoic acid 

(DO)  

Agonism of 

neuro-

transmitter 

glutamate 

Pseudo-

nitzschia spp. 

Scallops e.g. 

Pecten 

maximus 

Crabs e.g. 

Metacarcinus 

magister 

Scallop harvesting 

bans (months)b  

 

Collapse of 

Californian Dungeness 

crab fishery 2015-

2016c  

Pacific, Atlantic 

coasts of N & 

Central America, 

Atlantic Europe 

Paralytic 

shellfish 

poisoning 

(PSP) 

Confused 

speech, 

tingling  

burning 

sensations, 

nausea, 

diarrhoeae  

Saxitoxins 

(STXs) 

Inhibition of  

voltage-

dependent 

sodium 

channelse 

Alexandrium 

catenella, A. 

minutum, 

Gymnodinium 

catenatum, 

Pyrodinium 

bahamense var. 

compressum 

Mussels,  

clams, oysters,  

crabs, lobsters 

Some 2000 PSP cases 

are reported per year 

globally (for all 

principal vectors), 

with occasional fatal 

consequences in 

humanse 

N & S America 

and Canada, 

Africa, Europe 

(North Sea 

Mediterranean), 

and Australasia 

Diarrhetic 

shellfish 

poisoning 

(DSP) 

Diarrhoea, 

nausea, 

vomiting and 

abdominal 

crampsf 

Okadaic acid 

(OA), 

Dinophysis 

toxins 

(DTXs) 

Inhibition of  

protein 

phosphatases 

in intestine & 

neuronsf   

Dinophysis spp. 

 

Prorocentrum 

spp. 

Mussels, 

clams, oysters 

 

Edible crabs 

(Cancer 

pagurus) 

Harvesting bans for 

bivalves in Europe 

(weeks-months)g 

Closure of edible crab 

fishery in 

Norway(weeks-

months)h  

Reported 

globally and 

particularly in 

NW Europe 

Azaspiracid 

poisoning 

(AZP) 

Diarrhoea, 

nausea, 

vomiting and 

Azaspiracids 

(AZAs) 

Modulation 

of gamma 

Amphidomatace

ae: Amphidoma, 

Azadinium  

Mussels, king 

scallops and 

edible crabsj 

Harvesting bans 

(months) for 

shellfisheries 

Norway coast, 

UK and Atlantic 
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abdominal 

crampsi 

amino butyric 

acid (GABA)i  

(principal vectors) and 

mariculture in Atlantic 

Europej 

coast of France 

and Spain 

Neurotoxic 

shellfish 

poisoning 

(NSP) 

Loss of motor 

control, 

nausea 

muscular 

ache, 

including 

abdominalk 

Brevetoxins 

(BTXs) 

Inhibition of  

voltage-

dependent 

sodium 

channelsk 

Karenia spp. Clams, oysters 

and musselsl 

Seafood poisoning. 

The formation of toxic 

aerosols by wave 

action also produces 

respiratory irritation 

and asthma-like 

symptoms 

East and West 

coasts of North 

America, Florida 

and the Gulf of 

Mexico 

Ciguatera 

fish 

poisoning 

(CFP) 

Gastrointesti

nal, 

neurologic 

and cardiac 

distressm 

Ciguatoxin 

(CTX), 

maitotoxin 

(MTX) 

Agonism of 

voltage-gated 

sodium 

channels 

Gambierdiscus 

spp.  

Herbivorous 

fish (grazing 

HABs on 

macrophytes 

macroalgae) 

and their 

predators 

CFP is one of the most 

common poisoning 

syndromes resulting 

from the consumption 

of contaminated 

finfishm 

Caribbean, 

Florida, East 

Africa, 

Madagascar, 

Northern 

Australia, Pacific 

Islands 

 1645 

Table 2 references: a Lundholm et al. (1994); b Campbell et al., 2003); c California Ocean Science Trust (2016); d Manfrin et al. (2012); e Anderson 1646 

(2012); f Munday (2013); g Reguera et al. (2014); h Castberg et al. (2004); i Furey et al. (2010); j Twiner et al. (2008); k Kirkpatrick et al. (2004); l 1647 

Watkins et al. (2008); m Friedman et al. (2017). 1648 
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Table 3: Environmental effects of mariculture that can promote HAB risk 1649 

(i) Organic and inorganic nutrient emission versus assimilation  1650 

(ii) Disease and use of preventative chemical agents;  1651 

(iii) Escapees and genetic interactions with wild populations;  1652 

(iv) Physical alteration of habitats and hydrodynamic regimes  1653 

(v) Increase in HAB transmission (between relay sites) or indirectly promote HAB risk by 1654 

altering the abundance and composition of plankton communities  1655 

 1656 

References for (i-iv): Lovatelli et al., 2013; Kapetsky et al., 2013; Wartenberg et al., 2017.  1657 

References for (v): Gibbs, 2004; Grant et al., 2007. 1658 

 1659 

  1660 
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Figure 1: Environmental factors promoting HABs  1661 

Complex interactions among environmental factors (solar radiation, wind, waves, tides, 1662 

rainfall, nutrients), ecological and trophic interactions and biological processes (e.g. cyst 1663 

formation) can facilitate the proliferation of phytoplankton in general and harmful algal species 1664 

as well. Excess and unbalanced nutrient supply and habitat alteration can increase the risk of 1665 

HAB occurrence. HABs negatively impact mariculture production and product quality.  1666 

(However, some mariculture practices can mitigate the occurrence and impact of HABs e.g. 1667 

through the use of integrated multi-trophic aquaculture approaches - see Figure 2). 1668 

  1669 
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Figure 2: Integrated Multi-Trophic Aquaculture  1670 

POM – Particulate Organic Matter; DIN – Dissolved Inorganic Nitrogen; F/P-F – 1671 

Faeces/Pseudo-Faeces 1672 

IMTA incorporating suspended filterfeeding shellfish, and benthic deposit feeding shellfish 1673 

can reduce the proliferation of HABs and recycle POM (capable of fueling HAB growth) 1674 

associated with ‘fed’ species (finfish and crustaceans). Suspended macroalgae can also reduce 1675 

the growth of microalgae, including HAB species, through shading, competition for nutrients 1676 

(e.g. fine POM and DIN), and inhibitory allelopathy. 1677 

 1678 


