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Abstract 

Water scarcity is a global threat due to lifestyle and climate changes, pollution 

of water resources, as well as a rapidly growing population. The UK water 

industry’s regulators demand plans from water companies to sustainably 

manage their water resources, reduce per capita consumption and leakage, and 

create projections for climate change scenarios. This work addresses critical 

problems of water demand by expanding the understanding of water use and 

developing improved forecasting methods.  

As part of this effort, the influence of the weather is thoroughly investigated, 

using a disaggregated, big-data statistical analysis. Results show that the 

weather effect on water consumption is overall limited, non-linear, and variable 

over time and households.  

Next, a short-term demand forecasting model is developed, based on Random 

Forests, that predicts household consumption using several socio-economic, 

customer and temporal characteristics. This model is of significant value due to 

its accuracy as well as accompanying methodology that allows the 

interpretation of results. 

In order to further improve the forecasting accuracy achieved using Random 

Forests, a new modelling technique is developed. The new method that uses 

model stacking and bias correction, outperforms most other forecasting models, 

especially when past consumption data are not available, as well as for peak 

consumption days.  

Finally, a water demand forecasting model based on Gradient Boosting 

Machines is trained at different levels of spatial aggregation, for different input 

configurations. Results show that the spatial scale has a strong influence on the 

best model predictors and the maximum forecasting accuracy that can be 

achieved.  

The methodology developed here can be used as a guide for researchers, 

water utilities and network operators to identify the methods, data and models to 

produce accurate water demand forecasts, based on the characteristics and 

limitations of the problem.  
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Definitions  

 

Property 

Characteristic:  

 

 

Customer 

Characteristic: 

 

 

 

Household 

Characteristic: 

 

Temporal 

Characteristic: 

 

 

Weather 

Characteristics: 

 

 

 

Variable: 

 

 

 

 

Segment: 

 

 

 

 

 

 

An attribute of the properties in the dataset. It can 

refer to the garden size, rateable value, council tax 

band, or metering status of a property. 

 

An attribute of the customers in the dataset. It can 

refer to the acorn group, occupancy rate, or 

consumer behaviour (variations in average 

monthly consumption). 

 

A property or customer characteristic.  

 

 

An attribute that relates to time. It can refer to the 

time of day, the type of day (working day or 

weekend/holiday), the month, or the season.  

 

An attribute that relates to weather. It can refer to 

air temperature, soil temperature, humidity, 

sunshine duration, radiation, rainfall, or number of 

days without rain.  

 

A household, temporal, or weather characteristic 

can be used as a variable in the analysis. The 

terms variable and characteristic are often used 

interchangeably in the text.  

 

A homogenous group of consumption or 

households. All components of a segment share 

the same household and temporal characteristics 

(e.g. the same garden size). 
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Segmentation: 

 

 

Segmentation 

Category: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The process of creating consumption or household 

segments. 

 

A type of consumption or household that has a 

certain temporal or household characteristic. One 

segmentation category includes all consumption or 

household segments that share the same 

characteristic (e.g. the same garden size).  
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1. Introduction 

1.1. Motivation 

Water is essential for the survival of humans, the preservation of the natural 

environment, the function of societies, as well as the operation of industry and 

agriculture. However, water is also a limited resource, threatened by 

environmental changes and societal reforms, urbanisation, population and 

business growth, as well as the pollution of water resources. 

The UK water industry, privatised in 1989, aims to provide clean water to its 

customers for four distinguished uses: urban, power generation, industrial and 

agricultural (Butler and Memon, 2006). Urban water use accounts for the water 

that is provided to residents (residential demand), businesses (commercial 

demand) and other organisations within a community or urban area (Billings 

and Jones, 2008).  

The major droughts of 1975/76, as well as the subsequent droughts in the 

1990s saw the UK imposing water restrictions and highlighted the vulnerability 

of the country’s water security to weather and climate changes (Parker and 

Wilby, 2013). Since then, the water industry’s regulators have consistently 

included requirements for assessing potential climate change impacts on the 

water supply (Beran and Arnell, 1989; Defra, 2003; Downing et al., 2003; 
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Environment Agency, 2003) and later also for adaptation plans (The UK 

Government, 2008).   

Given the risks to the UK water security, the full extent of the benefits, potentials 

and limitations of water management need to be well understood and the 

heterogeneity of water use behaviours taken into account (Parker and Wilby, 

2013). Emerging technologies and increases in computing power provide new 

ways to process large quantities of data in parallel and in reasonable time, 

which allows extracting values, causes or events from historical data that might 

have been overlooked in the past (Garcia et al., 2015). This information can be 

used to develop credible water demand forecasts, as well as pro-active 

strategies that can assist with optimising network operations and building 

network resilience.  

However, understanding and modelling water demand involves the 

consideration of a variety of factors such as lifestyle changes, household 

formation, population growth and weather characteristics, in order to ensure a 

trustworthy projection for the future. This work uses smart demand metering 

data, household characteristics and weather variables to gain a better 

understanding of water demand and its influencing factors, as well as develop 

an improved water demand forecasting methodology.  

The rest of this chapter provides the necessary background information and 

sets the terms and concepts that are going to be discussed in this thesis. It 

starts with describing the main aspects of water use and the concept of water 

demand forecasting, in terms of its characteristics and best-practice approach. 

Next, the key research questions and objectives of this work are introduced, 

followed by an outline of the thesis. Finally, a list of available resources, 

including links to publications and code, are provided at the end of the chapter.  

1.2. Background 

According to Billings and Jones (2008), urban water demand forecasting is ‘the 

process of making predictions about future water use based on knowledge of 

historical water use patterns’.  
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1.2.1. What is water demand?  

As part of this work, the first question that needs to be answered is ‘what is 

water demand?’. Some studies (Bellfield, 2001; Merrett, 2004; Rinaudo, 2015) 

define water demand as the water required by customers for various uses, such 

as domestic, industrial or agricultural. Another interpretation (Billings and Jones, 

2008) defines water demand as ‘the total volume of water necessary or needed 

to supply customers within a certain period of time’, including leakage and all 

other inevitable water losses. In this thesis, the terms water demand, water use 

and water consumption are used interchangeably to refer to the total amount of 

water used by customers. This includes water losses on the customer side but 

excludes the associated water losses within the network (e.g. due to leakage or 

fraudulent abstractions).  

1.2.2. Water demand metering  

Traditionally, residential water demand in the UK is not billed based on meter 

readings. Unmetered customers are charged a fixed amount per year instead, 

dependent on property characteristics such as the number of bedrooms, type of 

property, number of occupants or a company average. This is further adjusted 

according to the property’s rateable value, which reflects the rental value of the 

property and was last updated in the 1970s (Defra, 2008).  

Water metering is part of a new, sustainable, environmentally friendly policy that 

aims to reduce water demand and secure water supply now and in the future. A 

water meter (similar to a gas or electric meter) is a device that measures how 

much water is used. Typically, water meters are read twice per year (Ofwat, 

2013). Water metering is regarded as the fairest way to charge customers, 

since it requires them to pay for the volume of water they have used. 

Historically, most properties in the UK have paid a standard, flat rate for their 

water use, regardless of actual consumption. However, water companies 

forecast that more than half of the homes in the UK will be on a meter by 2020 

(CIWEM, 2015).   

Unlike conventional metering devices, smart meters can record consumption in 

regular, much more frequent time intervals (e.g. every 15/30 minutes or even a 

handful of seconds) and are able to communicate that information wirelessly. 
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Thus, they can provide descriptive statistics (e.g. flow rates) as well as a better 

understanding of consumption (Pericli and Jenkins, 2015). Potential 

applications of smart demand data include leak detection and variable water 

pricing, as well as improved network operations and demand forecasting 

(McKenna et al., 2014). 

1.2.3. Water demand modelling   

Water demand modelling can be used for many purposes, such as demand 

pattern recognition and forecasting, user profiling, as well as identifying the 

determinants of water consumption.  

According to Cominola et al. (2015), the existing literature can be divided into 

two distinct types, descriptive and predictive studies. Descriptive studies are 

useful for the analysis of patterns in the data that can improve the 

understanding of when, where, and why water is used. Predictive studies focus 

on predicting future demands. Machine learning methods have been employed 

in the literature for both descriptive and predictive purposes.  

More details regarding the types of models and methods that are used in each 

case are provided in the following.  

1.2.3.1. Machine learning models 

Machine learning is the process through which machines or computers learn 

how to perform a task, using data. As machine learning becomes increasingly 

popular and algorithms become more sophisticated, machine learning based 

methods have dominated the recent demand forecasting literature. Although 

they have been so far primarily used for predictions, machine learning methods 

can find useful applications in descriptive studies. This is facilitated further by 

the data availability, new techniques, and computing power, which have not 

been available in the past.  

Machine learning techniques can be divided in supervised learning, 

unsupervised learning, and reinforcement learning. Supervised learning 

includes prediction tasks where the outcome is known and the algorithm learns 

to make predictions on new data (Molnar, 2019a). Examples of supervised 

learning algorithms are Artificial Neural Networks, Random Forests, and 

Gradient Boosting Machines. In unsupervised learning, for example clustering, 
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the outcome is unknown (Molnar, 2019a). The task in this case is to identify 

common features and create clusters of data points (Antunes et al., 2018). 

Finally, in reinforcement learning the machine creates the dataset by running 

examples and evaluating the results (Antunes et al., 2018), with the aim to 

maximise a reward.  

Both supervised and unsupervised learning are used within this thesis, although 

all forecasting models are based on supervised learning methods. Detailed 

information about the machine learning techniques used in each chapter are 

provided within the methodology section of the corresponding chapter. A 

detailed review of the studies that have used these methods for water demand 

forecasting tasks is also available within the literature review section of each 

chapter.  

A major disadvantage of machine learning methods is their level of 

interpretability, i.e. understanding how the model makes predictions, as 

machine learning models are often considered ‘black box’. This name implies 

that information comes inside the box and predictions come out of the box but 

there is no understanding or knowledge of what is happening inside it. 

Interpretability should be an important aspect of developing machine learning 

models, as it is a way to enhance the understanding of a process and ensure 

the model performs well by sanity checking the results.  

Although interpretable machine learning is a relatively new field, few studies 

developed methods that enable the modeller to peek inside the black box and 

make conclusions on the role of the input data in making predictions (Goldstein 

et al., 2015; Apley and Zhu, 2016; Zhao and Hastie, 2018; Fisher et al., 2019; 

Molnar, 2019). The idea behind many interpretability techniques is to assess 

how the model predictions change, in terms of accuracy and direction, i.e. 

whether they increase or decrease, for a change in one or more input variables. 

A detailed description of the specific interpretability methods used in this study 

are provided in chapter 3. 

1.2.3.2. Descriptive models 

The purpose of descriptive studies is to analyse consumption in order to make 

conclusions regarding the water use of different types of customers, identify the 

drivers of water demand, as well as explore patterns in the data. The results of 
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this analysis can be used to enhance the understanding of water demand and 

develop improved demand management strategies. 

Typically, descriptive studies (Domene and Sauri, 2005; Babel et al., 2007; 

Schleich and Hillenbrand, 2008; House-Peters et al., 2010; Chang et al., 2010; 

Hussien et al., 2016) use simple statistical techniques in order to assess the 

relationship between consumption and a variety of property, customer, 

temporal, and weather characteristics. In some cases, machine learning or 

visual methods have also been employed to identify patterns in water demand 

or cluster consumption and group households based on their consumption 

behaviour.  

A very common technique used to analyse and gain a better understanding of 

the dataset is to use descriptive statistics (Domene and Sauri, 2006; House-

Peters et al., 2010; Pullinger et al., 2013). These methods are used to provide 

an overview of the dataset by using measures such as the mean or the variance 

of a population and demonstrate the frequency of occurrence of a characteristic.  

Another very common technique uses econometric and statistical models, such 

as multiple linear, piecewise, and polynomial regression (Domene and Sauri, 

2006; House-Peters et al. 2010; Chang et al., 2010; Hussien et al., 2016) or log-

log and semi-log models (Schleich and Hillenbrand, 2008) to investigate the 

influence of several demographic, behavioural, economic, and environmental 

factors on water use. These models are popular due to the fact that they are 

easy to use and interpret.  

Other studies estimate the relationship between a variety of influencing factors 

and water use by assessing the strength of the correlation between them, using 

the value of a correlation coefficient (Babel et al., 2007; Chang et al., 2010; 

Hussien et al., 2016). This is a simple approach, although it does not account 

for the interactions between the variables or the temporal and spatial variation 

of the effect on water consumption. Methods such as data disaggregation can 

be useful in accounting for these interactions.    

Finally, in some cases, methods such as clustering and data visualisations can 

offer additional information that would otherwise be very difficult to identify. 

Clustering methods have been used to find consumption patterns and groups of 

households with similar consumption behaviour (Pullinger et al., 2013), whereas 
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visual methods can be useful in identifying spatial trends (House-Peters et al., 

2010; Chang et al., 2010).  

1.2.3.3. Predictive models 

There are several water demand forecasting approaches and the most 

appropriate one needs to be selected with respect to the specific aim, forecasting 

objective, time horizon, as well as availability and resolution (time and spatial) of 

the available dataset. One way to group water demand forecasting models is 

based on their input data and model structure. According to this, they can be 

classified into micro-component studies, time series analysis, statistical, artificial 

intelligence, and hybrid models.  

In micro-component analysis, ownership level, frequency of use, and volume per 

use of household appliances, as well as peak use hours, are taken into 

consideration (Butler and Memon, 2006). Several studies tried to identify patterns 

and trends using household micro-components (Butler, 1993; Edwards and 

Martin, 1995; Gurung et al., 2014). However, disaggregating water use requires 

large amount of data from different sectors, or very high resolution smart demand 

metering data, that are not typically available. According to the UK Water Industry 

Research (UKWIR) household consumption forecasting guidance manual, 

guidance for previous water resources management plans recommended micro-

component analysis as the favoured method. However, in the most recent one it 

was regarded as too data intensive and complex (UKWIR, 2015). In addition, 

concerns regarding energy spending and carbon emissions (Fidar et al., 2010) 

also contribute to making micro-component modelling an unattractive option.  

Time series models (Froukh, 2001; Kofinas et al., 2014; Brentan et al., 2017; 

Chen and Boccelli, 2018) are based on the assumption that future trends in water 

use can be predicted based on historical water use (Billings and Jones, 2008). 

These models are often used for real-time forecasting and online applications. 

The Auto-Regressive Integrated Moving Average (ARIMA) method is one of the 

most important and widely used linear models in time series forecasting, as it has 

the ability to capture general trends and seasonal variations. The Holt-Winters 

method is a simple, exponential smoothing method applicable when the time 

series contain a seasonal component. It is a standard method used for automatic 

forecasting (Quevedo et al., 2014) and works best when the seasonal variations 
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are roughly constant throughout the series (Kofinas et al., 2014). Although they 

are quick to train, as well as simple and easy to use, time series models do not 

typically account for several other variables such as household and customer 

characteristics that also have an effect on consumption.  

Statistical models (Herrington, 1996; Downing et al., 2003; Firat et al., 2009; 

Haque et al., 2014; Bakker et al., 2014; Fontanazza et al., 2014) consider a 

variety of variables and estimate statistically historical relationships between 

dependent and independent variables. This method is very common in the 

literature, since it integrates the effect of socio-economic and climatic factors, as 

well as public water policies and strategies. Therefore, it provides water operators 

with insights regarding the influence of different variables on water use. This is 

the reason that these models are also frequently used in descriptive studies, 

where forecasting is not the main goal.    

Machine learning algorithms (Froukh, 2001; Cutore et al., 2008; Firat et al., 2009; 

Bai et al., 2014; Bakker et al., 2014; Romano and Kapelan, 2014; Shabani et al., 

2016) have been proven effective to predict short-term, medium-term, and long-

term water demand. Artificial Neural Network (ANN) based models are some of 

the most commonly used machine learning techniques in water demand 

forecasting and are often suggested as the best in the literature. The downside 

of these methods is that they are considered ‘black-box’, hence results obtained 

this way are harder to interpret. This means that although they can achieve high 

accuracy, their results cannot be used directly to shape demand management 

strategies and planning.  

Finally, hybrid models (Bakker et al., 2014; Anele et al., 2017) have the 

advantage of combining different model capabilities, focusing on emphasising 

positive and reducing negative capabilities of individual models (Kofinas et al., 

2014). However, these models can also be hard to interpret as they make 

predictions by combining the results of individual learners, thus they lack any 

model structure.      

Machine learning and hybrid models are used in this study for their accuracy as 

well as ability to capture complicated relationships between several predictors. 

In addition, the use of several interpretability methods allows to use these 

models not only in order to produce accurate demand forecasts but also in 
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order to gain an improved understanding of the factors that influence water 

consumption.  

1.2.3.4. Model assessment  

An essential step of every forecasting methodology is the model assessment, 

i.e. the process of determining how well the model performed. This is a fairly 

abstract definition, as it depends on the objective and characteristics of the 

study. For example, a model might have a very good overall accuracy but 

perform poorly on peak consumption days, which are of high importance to 

water utilities. On the other hand, even if the model has a good accuracy for all 

days, it could be hard to interpret and therefore it might have limited use for 

operators.  

When it comes to water demand forecasting, there is no acceptable level of 

accuracy pre-defined by the UK water regulators. The cost-benefit of improving 

forecasts should be considered and the favoured methodology should be 

determined based on the circumstances. For water scarce areas that are in 

danger of not being able to fulfil the supply-demand balance, achieving a high 

accuracy is essential in order to provide guidance and mitigate risks (UKWIR, 

2015). However, when potential prediction errors do not threaten the system’s 

capacity to supply water to customers, less costly and sophisticated models can 

be considered as good alternatives.  

In many cases, factors such as the model complexity and training time as well 

as data requirements might limit the applicability of a model in real-life 

problems. Thus, the modelling technique needs to be selected based on the 

appropriate metrics that evaluate its performance with respect to the needs of 

the case study, while accounting for the requirements and limitations of its 

application.  

Some metrics that are used frequently in the literature appear in the following, 

where n is the total number of values, Oi and Pi are the ith observed and 

predicted values, and 𝑂̂ and 𝑃̂ are the observed and predicted means, 

respectively: 
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 The Root Mean Square Error – RMSE (Dos Santos and Pereira, 2014; 

Kofinas et al., 2014; Shabani et al., 2016; Tiwari et al., 2016) is the 

square root of the Mean Square Error - MSE and is expressed as 

RMSE = √
1

𝑛
∑ (𝑂𝑖 − 𝑃𝑖)

2𝑛
𝑖=1  = √𝑀𝑆𝐸 

The RMSE is a measure of overall performance although it is sensitive to 

larger errors (Tiwari et al., 2016).  

 The coefficient of determination - R2 (Babel et al., 2007; Bakker et al., 

2014; Dos Santos and Pereira, 2014; Haque et al., 2014; Kofinas et al., 

2014; Shabani et al., 2016; Tiwari et al., 2016) is expressed as 

R2 = [
∑ (𝑂𝑖−𝑂̂
𝑛
𝑖=1 )(𝑃𝑖−𝑃̂)

√∑ (𝑂𝑖−𝑂̂)
2𝑛

𝑖=1 ∑ (𝑃𝑖−𝑃̂)
2𝑛

𝑖=1

]

2

 

The R2 values vary from 0 to 1 and indicate the degree of correlation 

between modelled and observed values (Haque et al., 2014). 

 The Mean Absolute Percentage Error – MAPE (Bai et al., 2014; Kofinas 

et al., 2014; Candelieri et al., 2015; Tiwari et al., 2016) is expressed as 

MAPE = 
100

𝑛
∑ |

𝑂𝑖−𝑃𝑖

𝑂𝑖

𝑛
𝑖=1 | 

The advantage of the MAPE is that it is independent of units and 

therefore system capacity, which means it can be used to compare 

results from different studies and utilities (Candelieri et al., 2015). 

 The Mean Absolute Error – MAE (Herrera et al., 2010; Dos Santos and 

Pereira, 2014; Kofinas et al., 2014; Shabani et al., 2016; Antunes et al., 

2018) is expressed as 

MAE = 
1

𝑛
∑ |𝑂𝑖
𝑛
𝑖=1  - 𝑃𝑖| 

The MAE does not assign a higher importance to larger or smaller errors, 

nor does it take into account the sign of the error. It is merely an 

indication of the overall agreement between predicted and observed 

values (Tiwari et al., 2016).  
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The above performance metrics constitute some commonly cited statistical 

tests, however, another validation method might be fit for purpose, depending 

on the respective forecasting aim. Since the selection of the assessment metric 

could determine the results and conclusions of the study, it is important that this 

is chosen with respect to the individual aspects of the problem and the research 

question. 

1.2.4. Water demand forecasting  

1.2.3.1. Forecast variables  

Household water demand can be explored at different temporal and spatial 

scales, depending on the available data and tools, the selected methodology 

and the purpose of use. Water demand can be linked to individuals or be 

aggregated at the household and area level or even across the whole supply 

zone. It can reflect average annual, monthly, daily or hourly water use, while 

with the advent of smart demand meters, it can even go down to a few seconds.  

Typical end-use studies report per capita consumption (PCC) or per household 

consumption (PHC) (Gurung et al., 2014). Demand that is analysed at ‘per 

capita’ or ‘per household’ level is then multiplied by the total population or 

properties (UKWIR, 2015), in order to determine total demand. PCC can be 

calculated separately for metered and unmetered customers, as well as for 

different groups, based on the selected variables or clustering methods. 

According to Waterwise (2019), the average PCC in England is 150 

litres/person/day, although the target is to reduce it to 130 litres/person/day by 

2030 (Defra, 2008). 

An example of the various types of forecast variables, along with their popularity 

among water utilities, is provided in Table 1.1. The data was obtained from 662 

North American water supply systems, on a volunteering basis, and was 

published in the American Water Works Association (AWWA) water demand 

survey (Billings and Jones, 2008). Overall, predictions of hourly and peak 

demands are useful in managing the network and ensuring sufficient water 

supply, while seasonal and annual predictions are used for planning and 

development of future strategies (Butler and Memon, 2006). According to Table 

1.1, most water utilities are interested in peak-day demands, followed by daily 

demands.  
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Table 1.1. Types of urban water demand forecasts reported in the American Water 

Works Association water demand survey (adapted by Billings and Jones, 2008). 

Percentage of US utilities 

reporting forecast type 
Forecast type 

73.9% Peak-day forecasts 

65.9% Daily water-demand forecasts 

65.6% Monthly system water-demand forecasts 

65.4% Annual per capita water-demand forecasts 

58.0% 
Annual water-demand forecasts by major 

customer class (e.g. residential, industrial) 

57.9% 
Revenue forecasts linked with water-demand 

forecasts 

 

The best forecast variable should be considered when choosing a forecasting 

method. Here, predictions are made for the daily PCC, at different spatial 

scales. In addition, predictions over all days as well as peak consumption days 

are treated separately.  

1.2.3.2. Forecast horizons  

Depending on the forecast horizon, water demand projections are utilised for 

different purposes and can be best described by different types of models. Most 

studies categorise water demand forecasts in short-term, medium-term and 

long-term. The longer the forecast horizon, the larger the potential forecasting 

errors (Billings and Jones, 2008). Although there is no defined time-frame that 

clearly differentiates the forecast types based on their horizon, a general 

guideline is given in the following.    

In most cases, short-term forecasts predict water consumption up to one month 

ahead and are typically used to optimise the operational and financial 

management of the system. Specifically, they can assist with reducing energy 

spending and carbon emissions, as well as avoiding over-abstractions that 

cause stress to the natural environment. In this work, short-term refers to 

predictions one to seven days into the future. 

Medium-term covers the timeframe between one and ten years. Changes in 

consumption within this time period are typically influenced by weather changes 

or changes in the customer base (Billings and Jones, 2008). Medium-term 

forecasts can assist with planning improvements of the supply system or 

adjusting water tariffs. 
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Long-term forecasts look generally ten to thirty years into the future and are 

used to address future supply needs. They can assist with making long-term 

capital investments (e.g. major infrastructure costs) or influencing future 

demand, by promoting or implementing water conservation policies, campaigns 

and technologies. Since both strategies can become very expensive, it is 

important to tailor them to the specific needs of the water provider, by 

considering future needs (Billings and Jones, 2008). 

1.2.3.3. Best practice  

The UK Water Industry Research institute (UKWIR) published in 2015 a 

detailed guideline for water companies that outlines a recommended best 

practice methodology for household water demand forecasting (UKWIR, 2015). 

The first seven steps of this guide are illustrated in Figure 1.1. 

According to this guide, the first step should be reviewing the bigger picture. 

This means setting out the characteristics of the problem and collectively 

considering all steps of the process in order to get a general idea of the tools 

and data that might be used in the study.  

The next step focuses on data collection and evaluation. These data could 

relate to past consumption, weather, occupancy or socio-demographic data, 

depending on the kind of information the water company is collecting. Aspects 

such as the vulnerability of the supply area as well as the cost of collecting and 

processing this data should be taken into account. The choice of the forecasting 

method as well as the model’s accuracy depend on the amount and quality of 

the available data.  

After the data has been collected and processed, their influence on water 

consumption needs to be determined. According to UKWIR (2015), there are six 

factors that influence water consumption, the occupancy rate, property type, 

customer behaviour and socio-demographic characteristics, as well as lifestyle 

habits and technology. Before considering any of these factors in the demand 

forecasting model, their influence on water consumption needs to be well 

understood. 
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Figure 1.1 Household water demand forecasting best practice (adapted by UKWIR, 

2015). 

The above factors can be incorporated in the methodology as model predictors 

or they can be used to segment the households into groups with homogenous 

characteristics. When segmenting households, a separate forecast is produced 

for each group. This is often useful if the rate of change in consumption is 

expected to be different in the future between households with different 

characteristics. According to the same guide (UKWIR, 2015), further 
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segmenting households will result in more accurate forecasts, since additional 

information is provided to the model. However, this does not account for the fact 

that using multiple factors will create smaller household groups, which may also 

impact the forecasting accuracy. 

Based on all of the previous steps, as well as the water availability in the supply 

area, there are different forecasting options. Each one of them has its unique 

advantages and shortcomings, which are described in detail in the UKWIR 

(2015) guideline. Some examples of forecasting approaches are regression 

models, micro-component analysis, per capita methods or micro-simulation. A 

combination of two or more of the above methods can also be applied.  

The next step is producing a forecast for the maximum consumption of a ‘dry 

year’. This step assumes that water consumption is influenced by weather 

conditions and can vary from one year to the next one. Therefore, adjustment 

factors need to be calculated for the consumption of a ‘dry year’ and a ‘normal 

year’. The main aim here is to calculate the base water consumption, which 

covers basic day to day needs, as well as the weather-induced demand, which 

relates to activities that are triggered by environmental changes. 

The last step consists of analysing the data as well as building and assessing 

the forecasting model. The forecasting model is built using the influencing 

factors and model structure that were defined during this process and results 

are assessed by comparing them to real consumption. An uncertainty analysis 

can also be performed at this stage, by adjusting the values of the uncertain 

prediction factors within a reasonable range and assessing how this is going to 

influence results. 

The above process describes the suggested best practice for household water 

demand forecasting in the UKWIR (2015) guide. The methodology developed in 

this thesis attempts to follow these guidelines, from reviewing the bigger picture 

until the model assessment. The next three steps that are suggested in the 

same guide consist of specifically accounting for uncertainty due to model, 

systematic or data errors; translating all of the above into a final, baseline 

consumption forecast; and considering potential water efficiency measures, if 

the supply area is likely to have a negative water supply balance.  
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1.3. Research questions and aims 

The current work explores the topic of residential water demand and specifically 

the methods, data and influencing factors that are necessary in order to 

produce accurate forecasts. This section describes the research questions and 

specific aims of the study. 

1.3.1. Research questions 

The following key research questions are addressed here: 

1. What is the weather influence on water consumption and how does it 

vary for different household types and time-varying factors?  

2. Which are the determinants of water demand and can they be used to 

make predictions?  

3. Can new, sophisticated machine learning techniques and other methods 

improve the accuracy of current water demand forecasting models?  

4. What is the maximum water demand forecasting accuracy that can be 

achieved at different spatial scales? What are the best predictors at each 

scale? 

1.3.2. Aims and objectives 

The overall aim of this work is to develop new methods and knowledge for 

improved short-term water demand forecasting by using advanced machine 

learning techniques applied on smart demand metering, weather and other 

data. More specifically, the objectives of this thesis are as follows: 

1. To better understand the link between weather and residential water 

consumption (addressing research question 1);  

2. To identify and analyse the most significant explanatory factors for short-

term forecasting of water demand and to understand how these can be 

used to improve predictions. The possibility of making demand forecasts 

with limited data (including no past consumption data) will be explored in 

the process (addressing research question 2);  

3. To develop a new demand forecasting methodology that makes use of 

the latest machine learning techniques, in order to improve the accuracy 

of existing demand forecasting models. The best performing machine 
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learning method(s) will be identified in the process (addressing research 

question 3);  

4. To determine the best demand forecasting accuracy that can be 

achieved at different spatial scales (i.e. for different household 

groupings), together with the most important explanatory factors at each 

scale (addressing research question 4).  

The main aims and objectives of this thesis and the way these are linked with 

each other are summarised in Figure 1.2. The first part of this work (Part I, 

Figure 1.2) is dedicated to understanding the drivers of water demand, as well 

as how these can be used to make predictions. The second part of the analysis 

focuses on developing a new, improved methodology that can address several 

of the main issues in water demand forecasting (e.g. lack of data, peak 

consumption days) (Part II, Figure 1.2). Finally, the third part combines the 

knowledge acquired from parts I and II, to explore demand forecasting at 

different levels of spatial aggregation (Part III, Figure 1.2).  

 

Figure 1.2 Overview of the thesis structure and the main topics that are addressed in 

each chapter. 

Part I: Understand what drives  

water demand 

Chapter 2: Assess the influence of 

five weather variables on water 

demand over space and time. 

Chapter 3: Identify and quantify 

the influence of several predictors 

on water demand and use these to 

make predictions with limited data 

for a representative household. 

Part II: Identify the right methods 

Chapter 4: Develop a new, 

improved water demand 

forecasting methodology that 

deals better with outliers and 

limited data. 

Part III: Use the right predictors and 

methods to improve water demand 

forecasting in practice 

Chapter 5: Assess the 

forecasting accuracy as well as 

the best types of predictors at 

different spatial scales.  
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1.4. Thesis overview 

The thesis is divided into four methodological chapters (see chapters 2 - 5) and 

a conclusions chapter (see chapter 6), as well as three appendices (see 

appendices A-B), containing supporting information for chapters 2, 4 and 5, 

respectively. Each one of the four methodological chapters corresponds to a 

research paper (for details see the following section) and addresses one of two 

aspects that are inherently connected to each other, understanding and 

modelling water demand. A literature review as well as a description of the data 

that are used in this study, along with the cleaning and processing of this data 

are available as part of each chapter. A brief summary of the chapters and 

appendices is provided in the following: 

Chapter 2 (addressing objective 1) focuses on identifying the influence of the 

weather over space and time. An extensive, big-data analysis is performed that 

disaggregates consumption into different household types, days and times of 

the day. The effect of five weather variables, air and soil temperature, humidity, 

sunshine duration and rainfall is examined for each segmentation of 

consumption.  

Chapter 3 (addressing objective 2) expands on this work by investigating the 

influence and predictive capability of several household, temporal and weather 

characteristics on water consumption using a machine learning approach. A 

Random Forest model is trained on daily consumption records using a variety of 

explanatory variables, in order to predict daily demand for a representative 

household. Three interpretable machine learning techniques are also used in 

order to investigate the influence of these predictors (household, temporal and 

weather characteristics) on the model’s output.  

Chapter 4 (addressing objective 3) identifies the tools and methods that can 

enhance modelling accuracy, for different forecasting aims. As part of this effort, 

several machine learning models are compared for predictions of daily water 

consumption one day ahead. The model’s performance is assessed for all days 

in the data as well as peak days, i.e. the 10% of days with the highest 

consumption. In addition, four bias correction methods are used in order to 

improve the problem of bias towards the mean, which is a very common, re-

occurring problem in the literature that is often overlooked.  
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Chapter 5 (addressing objective 4) compares the prediction accuracy as well as 

the best types of variables (e.g. weather, temporal or household characteristics) 

at different levels of spatial aggregation. For this purpose, several Gradient 

Boosting Machines are trained on past consumption data, for different 

household group sizes (from 5 to 600 households) and compared for their 

accuracy in making predictions with one day lead time. Next, eight model 

configurations are trained and tested at three levels of spatial aggregation. 

Predictions are compared for one to seven days into the future, for all days in 

the data, as well as peak consumption days.  

Chapter 6 provides an overview of the work performed, the key results and 

contributions of the study, as well as recommendations for further research. 

Appendix A. Provides supporting information for chapter 2.  

Appendix B. Provides supporting information for chapter 5. 

1.5. Published work and other resources 

The data used in this study is not publicly available and can be requested from 

different sources. The water consumption and household characteristic data 

was made available by Wessex Water (www.wessexwater.co.uk) and is 

protected under a non-disclosure agreement. Interested parties can ask for data 

access directly from Wessex Water. The weather data was collected and 

became available by the Meteorological Office of the UK (Met Office) 

(https://www.metoffice.gov.uk). This data was provided to the author for 

research purposes only and is available for purchase or under request by the 

Met Office.  

All code for the analysis was developed by the author in R (unless explicitly 

stated within the thesis) and is available at the following github repository: 

https://github.com/mariaxen/DemandForecasting. 

The work that was carried out during this PhD is summarised in four journal 

papers that have been published or are currently under review (see chapters 2-

5). Part of the work that was carried out during this PhD project is also 

presented in three conference papers that are available online and are not part 

of this thesis. A list of all journal and conference publications that were 

produced as a result of this PhD is available in the following. 

https://www.wessexwater.co.uk/
https://www.metoffice.gov.uk/
https://github.com/mariaxen/DemandForecasting
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Journal Papers 

Xenochristou, M., Kapelan, Z., and Hutton, C. (2019). Using smart demand-

metering data and customer characteristics to investigate the influence of 

weather on water consumption in the UK. J. Water Resources Planning and 

Management, doi: 10.1061/(ASCE)WR.1943-5452.0001148. 

Xenochristou, M., Hutton, C., Hofman, J., and Kapelan, Z. (2019). A new 

approach to forecasting household water consumption. J. Water Resources 

Planning and Management (under review).  

Xenochristou, M., and Kapelan, Z. (2019). An ensemble stacked model with 

bias correction for improved water demand forecasting. Urban Water Journal 

(under review). 

Xenochristou, M., Hutton, C., Hofman, J., and Kapelan, Z. (2019). Water 

demand forecasting accuracy and influencing factors at different spatial scales 

using a Gradient Boosting Machine. Water Resources Research (under review).  

Conference Papers 

Xenochristou, M., Kapelan, Z., Hutton, C., and Hofman, J. (2017): CCWi2017: 

F42 Identifying relationships between weather variables and domestic water 

consumption using smart metering. Available from: 

https://figshare.shef.ac.uk/articles/CCWi2017_F42_Identifying_relationships_be

tween_weather_variables_and_domestic_water_consumption_using_smart_me

tering_/5364565/1. 

Xenochristou, M., Kapelan, Z., and Hutton, C. (2018): HIC2018: Smart water 

demand forecasting: Learning from the data. Available from: 

https://easychair.org/publications/open/qpH8. 

Xenochristou, M., Blokker, M., Vertommen, I., Urbanus, J.F.X., and Kapelan, Z. 

(2018): CCWi2018: 032 Investigating the Influence of Weather on Water 

Consumption: a Dutch Case Study. Available from: 

https://ojs.library.queensu.ca/index.php/wdsa-ccw/article/view/12048/7605. 

https://figshare.shef.ac.uk/articles/CCWi2017_F42_Identifying_relationships_between_weather_variables_and_domestic_water_consumption_using_smart_metering_/5364565/1
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https://figshare.shef.ac.uk/articles/CCWi2017_F42_Identifying_relationships_between_weather_variables_and_domestic_water_consumption_using_smart_metering_/5364565/1
https://easychair.org/publications/open/qpH8
https://ojs.library.queensu.ca/index.php/wdsa-ccw/article/view/12048/7605
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2.1. Introduction 

Water availability is a major concern for water utilities in the UK (Water UK, 

2016), because of a growing risk of severe drought impacts, due to changes in 

the climate and population growth. Accurate projections of demand are an 

essential part of their short-term forecasting, as well as long-term strategic 

planning.  Managing household water use can lead to a reduction in the 

requirement for infrastructure investments, help secure water supply in the 

future, as well as save household energy use and greenhouse emissions (Bello-

Dambatta et al., 2014). However, despite the clear benefits, few studies in the 
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literature have focused on water demand forecasting in the UK (Parker and 

Wilby, 2013). 

The advent of smart meters in the late 1990s made water consumption data 

available at very high temporal (minutes or even seconds) and spatial 

(household) resolution, enabling a better understanding of the patterns of 

domestic water consumption (Agthe and Billings, 2002; Schleich and 

Hillenbrand, 2008; Fox et al., 2009). Such data can be used to model demand 

at the household (or even micro-component) level and thus maintain the 

heterogeneity derived from the users’ unique characteristics and individual 

water uses (Parker and Wilby, 2013; Cominola et al., 2015). In addition to 

household, societal, economic and natural factors, the advance of smart 

metering allows to account for temporal variations in consumption.  

The current chapter proposes a systematic, disaggregated methodology that 

utilises smart demand metering data in order to identify customer and temporal 

segments of consumption that are more sensitive to weather changes. It utilises 

simple statistical methods that could enable the development of improved water 

demand forecasting models and the implementation of effective demand 

management strategies. As it can be seen from the next section, a systematic 

analysis of the weather influence on water consumption by using such data has 

not been conducted before. 

2.2. Water demand influencing variables 

Many variables have been investigated in the water demand literature as drivers 

of water consumption. These can be divided into temporal and household 

characteristics that are or can be known to water utilities, as well as weather 

fluctuations that are unpredictable in nature. Since the former follow a relatively 

stable or periodic behaviour, they are easier to account for and thus it is the 

influence of the weather that is of high interest to network operators. 

2.2.1. Temporal characteristics 

Seasonal changes in water consumption, as well as weekly and daily patterns 

are a widely observed phenomenon (Agthe and Billings, 2002; Cole and 

Stewart, 2013; Gurung et al., 2014; Parker, 2014; Romano and Kapelan, 2014). 

Typically, water demand reaches a peak during the summer months, when the 
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water is used for outdoor activities, such as filling water pools or gardening, as 

well as personal hygiene (Downing et al., 2003; Cole and Stewart, 2013). In a 

study by Parker (2014) with micro-component data from 100 households in the 

southeast of the UK, external use showed the highest difference between 

seasons, followed by shower use. In the same study (Parker, 2014), a weekly 

cycle was observed for certain water uses, suggesting increased water 

consumption for washing machines over the weekend. On the other hand, Cole 

and Stewart (2013) found that water used for irrigation typically occurs between 

2 am and 6 am, while water is used for showering between 7 am and 12 pm, as 

well as 5 pm and 9 pm. 

2.2.2. Household characteristics 

According to several studies (Khatri and Vairavamoothry, 2009; Mamade et al., 

2014; Parker, 2014), socio-demographic variables are the most important for 

daily consumption patterns. Consumers that live in higher-valued areas tend to 

have more water-using appliances and larger gardens, therefore an increased 

water-use (Linaweaver et al., 1967; Chang et al., 2010). This effect of income 

becomes even more relevant when water is used outdoors (Domene and Sauri, 

2006). 

In addition, the presence of garden and the property’s metering status have 

been found to influence the type of end-uses and the share among them, as 

well as the amount of water a household consumes. Among different household 

sizes and income groups, the presence of garden is one of the determining 

factors for increased water use (Domene and Sauri, 2006); households with 

larger lot sizes and no rainwater tanks tend to use more water for garden 

irrigation (Loh and Coghlan, 2003). Water use for sprinkling and peak demands 

is more prominent among metered than unmetered customers (Hanke and 

Flack, 1968), whereas unmetered households’ external water use is also more 

responsive to meteorological variables (Parker, 2014).  

2.2.3. Weather characteristics 

One of the major uncertainties relating to water consumption is the influence of 

the weather. A number of papers investigated the effect of weather on water 

demand (Miaou, 1990; Griffin and Chang, 1991; Agthe and Billings, 2002; Gato 
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et al., 2007; Haque et al., 2014; Bakker et al., 2014; Beal and Stewart, 2014; 

Dos Santos and Pereira, 2014). 

Within a variety of weather variables, temperature and rainfall are the ones that 

are frequently suspected to have an influence on consumption. However, many 

others such as soil moisture, irradiation, sunshine hours and dry days also 

appear in the literature (Downing et al., 2003; Goodchild, 2003; Parker, 2014). 

Most studies found a strong relationship between air temperature and water 

consumption (Downing et al., 2003; Adamowski, 2008; Cole and Stewart, 2013; 

Willis et al., 2013; Beal and Stewart, 2014), whereas a much weaker one was 

identified for rainfall (Downing et al., 2003; Goodchild, 2003; Cole and Stewart, 

2013; Beal and Stewart, 2014). Adamowski (2008) concluded that rainfall 

occurrence rather than amount correlates better with water consumption, 

whereas the occurrence/non-occurrence of rainfall, five days prior, is an even 

better predictor of daily water demand. 

Several authors used linear models to quantify the effect of the weather on 

consumption (Jain et al., 2001; Downing et al., 2003; Goodchild, 2003; Khatri 

and Vairavamoothry, 2009; Browne et al., 2013; Parker, 2014). Parker (2014) 

concluded that all indoor micro-components are linearly related to maximum 

temperature, sunshine hours and amount of rainfall. A non-linear relationship 

was identified between temperature and external water use, creating the need 

to identify thresholds of sensitivity to weather variables and piecewise 

regression techniques (Parker, 2014). Downing et al. (2013) concluded that 

most of the climate change impact on water use will be due to baths and 

showers. Parker (2014) on the other hand found that shower use is less 

sensitive to weather changes compared to external consumption, whereas 

washing machine use can also be weather dependent. More specifically, Parker 

(2014) concluded that an increase in temperature and sunshine hours can 

cause an increase in outdoor and shower use, whereas an increase in sunshine 

hours and decrease in rainfall can cause an increase in washing machine use. 

2.2.4. Summary 

Household water use in the UK reflects a variety of time and space dependent 

variables (Parker and Wilby, 2013). Thus, taking a holistic view of climate 

effects, as well as temporal and behavioural drivers, is essential in order to 
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forecast demand (Parker, 2014). Although different temporal and social patterns 

in water use have been widely investigated, the connection between these and 

the weather has still not been made.  

This study performs an in-depth analysis based on a unique water consumption 

dataset that is based on real and high frequency observations of water use (i.e. 

smart demand metering data), from a rather large number of houses located in 

the southwest of the UK. These consumption data are accompanied by equally 

detailed information on customer and property characteristics, providing a 

unique opportunity to explore how different days and water users are influenced 

by weather changes. Further details about the data used in this study can be 

found in the next section. 

2.3. Data 

The current study is based in the UK, more specifically in the southwest of 

England (Dorset, Somerset, Wiltshire and Hampshire). It utilises an extensive 

dataset that comprises of: 

 Smart demand metering data collected from 1,793 properties for a three 

year period (10/2014 - 09/2017)  at 15-30 minute intervals; 

 Property characteristics, including garden sizes, rateable values and 

metering statuses; 

 Customer characteristics, comprised of acorn groups and types as well as 

occupancy rates. Acorn is a geodemographic segmentation of the UK’s 

population based on social factors and population behaviour and it is used 

to provide an understanding of the different types of customers (CACI, 

2014); 

 Weather data collected at hourly to daily intervals for the analysed time-

period (10/2014 - 09/2017). The weather data was collected from 

hundreds of stations across the Southwest and acquired as part of the 

Met Office Integrated Data Archive System (MIDAS) Land and Marine 

Surface Stations Data (Table 2.1) (Met Office, 2006a; Met Office, 2006b; 

Met Office, 2006c; Met Office, 2006d; Met Office, 2006e). However, only 

56 of them are included in the analysis, based on their proximity to the 

properties in the dataset.  
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Since the properties in the dataset are scattered over a relatively large area, 

daily and hourly information from multiple weather stations is used to calculate 

one daily value for each weather variable. In order to do this, a weight is 

assigned to each station, based on the amount of properties that are the closest 

to it, as opposed to all other weather stations in the area. 

The climate in England is characterised by mild temperatures and rainfall well-

distributed all year round. Specifically, maximum air temperature averaged from 

1981 to 2010 varied from 6.9°C to 20.9°C and sunshine duration from 54.2 to 

193.5 hours in total from January to July, respectively (Met Office, 2012). 

Monthly rainfall varied between 58.4mm and 91.7mm, for May and October, 

respectively, whereas according to Met Office statistics from 1981 to 2010, it 

rains on average 132.8 days in a year (Met Office, 2012). 

The weather over the analysed time period (10/2014 - 09/2017) in the south and 

southwest of England was fairly average, with the exception of some hot spells 

with high temperatures occurring over the summer. The winters were generally 

warmer than average, whereas all summers were wetter than average. Rainfall 

and sunshine hours were close to average values overall, with the exception of 

2015 that was a rather wet year.  

Table 2.1. Summary of the weather variables that are used in this study. 

Weather variables Description Units Duration Dataset 

Sunshine duration total sunshine hours 00.00-24.00 
UK Daily Weather 

Observation Data 

Radiation total radiation  MJ/m2 00.00-24.00 
Global Radiation 

Observations 

Rainfall total rainfall mm 00.00-24.00 UK Daily Rainfall Data 

Humidity mean humidity % 00.00-24.00 
Hourly Weather 

Observation Data 

Soil temperature 
mean soil temperature  

at 10 cm depth 
°C 00.00-24.00 UK Soil Temperature Data 

Air temperature max temperature °C 09.00-21.00 UK Daily Temperature Data 

2.4. Methodology 

Water demand patterns are best explored and understood through a theoretical 

framework of coupled human (e.g. societal, economic) and natural (e.g. 

atmospheric, geological) systems (House-Peters and Chang, 2011; Breyer and 
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Chang, 2014). The same approach that assumes a two-way, dynamic 

interaction between the two is adopted here. 

2.4.1. Data pre-processing 

In order to ensure the credibility of the results, it is necessary to ensure the 

credibility of the data that is used in the analysis. In the following, the available 

data are quality and sanity tested for errors and potential interrelations that 

could influence the results. 

2.4.1.1. Water consumption data 

Water demand recorded by a water meter at the household level includes 

supply pipe leakage and internal plumbing losses in the household, alongside 

genuine domestic consumption. Thus, the water consumption time series are 

quality controlled in the following, through a series of practical rules that were 

developed based on thorough analysis of the data. As a result, the following 

data are removed from the dataset: 

 Recordings that correspond to a consumption higher than 450 litres/hour. 

Considering the average per capita consumption (PCC) in England is 

140 litres/person/day (Waterwise, 2019) and swimming pool ownership in 

the area is very rare, this is considered a safe threshold to exclude 

leakage without excluding real consumption. 

 The days when less than 10% of the total recordings are equal to zero. 

This rule assumes that at any given day, at least 10% of the time, no 

residents are using water. In the case of an ongoing leakage, no zero 

consumption records should be present. This is a generous assumption, 

in order to ensure that only constant leakages and not real consumption 

are excluded from the data. 

 The months when less than 20% of the total recordings are equal to 

zero. This rule assumes that at any given month, at least 20% of the 

time, no residents are using water. Over a month, consumption is 

expected to be less erratic, as the effect of random daily factors is 

averaged over many days, therefore the threshold is higher than when 

looking at the daily scale. 
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The above rules were tested and found to be effective in excluding leaking 

properties. After the pre-processing of data, 1,793 properties are included in the 

final dataset with recordings corresponding to a total duration of 1,019 days. 

2.4.1.2. Weather data 

The relationship between each pair of weather variables is tested in the 

following. Table 2.2 demonstrates the Spearman’s ρ correlation coefficient, 

indicating the strength and direction of association between each pair of ranked 

variables. As it can be seen from this table, by far the strongest correlation is 

observed between air and soil temperature (ρ = +0.9), followed by radiation and 

sunshine hours (ρ = + 0.8). Radiation also correlates well with air and soil 

temperature (ρ = + 0.7), whereas an equally strong but inverse correlation is 

observed between radiation and humidity (ρ = - 0.7). Finally, a moderate 

inverse relationship appears between humidity and sunshine hours (ρ = - 0.6). 

No other significant correlations are identified between the weather variables 

examined in this study (ρ < |±0.5|).  

Based on the above and the quality of the data, some recordings are excluded 

from further analysis. A quality indicator was provided for each weather 

recording, showing if the data had been quality checked by the Met Office. 

Weather records that had not been quality checked were excluded from the 

dataset. In addition, since radiation is strongly correlated with all other weather 

variables except rainfall and a significantly smaller amount of radiation 

measurements is available compared to other weather variables (~25%), 

radiation is removed from further analysis.  

Table 2.2. Spearman’s ρ correlation coefficient for each pair of weather variables. 

Spearman’s ρ 
Sunshine 

Duration 
Radiation Rainfall Humidity 

Soil 

Temperature 

Air 

Temperature 

Sunshine Duration 1 0.8 -0.3 -0.6 0.4 0.4 

Radiation 0.8 1 -0.3 -0.7 0.7 0.7 

Rainfall -0.3 -0.3 1 0.4 -0.1 -0.2 

Humidity -0.6 -0.7 0.4 1 -0.3 -0.3 

Soil Temperature 0.4 0.7 -0.1 -0.3 1 0.9 

Air Temperature 0.4 0.7 -0.2 -0.3 0.9 1 
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2.4.2. Segmentation approach 

In order to evaluate the influence of the weather on consumption for different 

household types and different times, consumption is divided into segments, i.e. 

groups with homogenous characteristics. Six household variables are used to 

segment properties, three property (Garden Size, Rateable Value and Metering 

Status, Table 2.3) and three customer variables (Acorn Group, Occupancy Rate 

and Monthly Variation, Table 2.4). In addition, to account for temporal 

variations, three additional variables are used to segment consumption based 

on the season, the day of the week and the time of day (Table 2.5).  

Table 2.3. Property segmentation of analysed consumption data. 

Garden Size Rateable Value Metering Status 

All All All 

Large (>165 m2) High (>190) Metered 

Medium (61-165 m2) Medium (135-190) Unmetered 

Small (<60 m2) Low (<135)   

Table 2.4. Customer segmentation of analysed consumption data. 

Acorn Group Occupancy Rate Monthly Variation 

All All All 

Affluent (A-E) High (>3 occupants) High (>120 litres/property/day 

mean monthly difference  in 

consumption) 
Comfortable (F-J) Medium (2-3 occupants) 

Financially Stretched (K-Q) Low (<2 occupants) 

Table 2.5. Temporal segmentation of analysed consumption data. 

Season Day of the Week  Time of the Day 

All All All 

Summer Weekends and Bank Holidays Morning (06.00-12.00) 

Spring Working Days Afternoon (12.00-18.00) 

Autumn   Evening (18.00-24.00) 

Winter  Night (24.00-06.00) 

 

Each household and temporal variable divides consumption in two to five 

segmentation categories (Tables 2.3-2.5). Gardens were divided into small, 

medium and large by the water company based on their size (Garden Size, 

Table 2.3). The cutting points for the rateable value (Rateable Value, Table 2.3) 

that divide one category from the next one are chosen in order to acquire 

relatively equal groups and therefore remove bias from the grouping. The 

properties that are classed as unmetered are the ones that are not being 
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charged based on their meter readings but as unmetered properties, as 

metering can alter the behaviour of the customers (Metering Status, Table 2.3). 

According to the acorn guide, consumer groups A, B and C are classified as 

‘Affluent Achievers’ and groups D and E as ‘Rising Prosperity’. All groups A to E 

are classified as ‘Affluent’ in the following. Groups F to J are classified as 

‘Comfortable Communities’ in the same guide, whereas groups K to Q are 

‘Financially Stretched’. The same grouping is adopted here (Acorn Group, Table 

2.4). Occupancy rate groups are created based on the average UK household 

that consists of two to three occupants (Occupancy Rate, Table 2.4). Therefore, 

occupancies higher than three are considered high, whereas lower than two are 

deemed low. Finally, a variation in mean monthly consumption of over 120 

litres/property/day is classified as ‘High’ (Monthly Variation, Table 2.4). The 

threshold of 120 litres/property/day is chosen in order for this category to 

include enough households (~600 properties) to create sufficiently large 

segments but at the same time small enough to distinguish this group from the 

rest of the properties. 

Accounting for all possible combinations of above segmentation categories (34 

in total) results in a large number of homogenous consumption segments 

(115,200) that share the same property, customer and temporal characteristics. 

The number of segments is calculated as  

CS (115,200) = GS (4) * RV (4) * MS (3) * Acorn (4) * OR (4) * MV (2) * 

Season (5) * DoW (3) * ToD (5),  

where CS = Consumption Segments, GS = Garden Size, RV = Rateable Value, 

MS = Metering Status, OR = Occupancy Rate, MV = Monthly Variations in 

consumption, DoW = Day Of the Week, and ToD = Time Of the Day. 

The number in brackets represents the number of segmentation categories in 

which each variable divides consumption. For each segment, consumption is 

averaged across all properties, for each day of available data. Spatial analysis 

of the data showed that when aggregating consumption among less than 60 

properties, the inherent randomness of water use becomes significant and 

affects the quality of results. In addition, a sample size smaller than 35 data 

points is considered insufficient to produce accurate correlation estimates. 
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Therefore, segments with less than 60 properties or 35 days of consumption 

recordings are excluded from the analysis. 

2.4.3. Assessment of weather-consumption relationship 

For each segment (115,200) and weather variable (5), the relationship between 

consumption and weather is evaluated as follows:  

 The Spearman’s rank ρ correlation coefficient is used as an indicator of 

the degree of association between weather and consumption. The 

Spearman’s rank is chosen to assess the degree of monotonic 

relationship between the variables, since it is better suited to identify non-

linear relationships. 

 The p-value of the correlation is used to determine the statistical 

significance of the relationship.  

 The gradient of the linear curve that is fitted on the data is used in order 

to determine the degree of association, i.e. the relative change of 

consumption for the same change in the weather variable. 

In order to filter out segments of consumption for which a weather variable does 

not have an effect on water demand, correlations with a ρ less than |±0.5| or a 

p-value greater than 0.01 are excluded from the data. The relationship between 

the weather variable and the consumption in these cases is considered weak or 

statistically insignificant, respectively.  

The gradient of the linear curve that best fits the data is used to filter out results 

that are statistically significant but not practically significant. This is done by 

retaining the top 1/3 of the segments with the highest gradient among all 

significant segments (ρ > |±0.5| and p < 0.01), for each weather variable. Too 

often, a relationship between two variables is assessed based on the strength 

(correlation coefficient) and statistical significance (p-value) of the relationship, 

without recourse to the effect size, in this case the unit change in consumption 

for a unit change in the weather variable. In this study, the gradient of the linear 

curve is deemed acceptable since it is used in relative terms, as a filtering 

approach, comparing gradients for different segments of consumption. A linear 

curve (i.e. straight line) still has a higher gradient (for a higher effect) for non-
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linear relationships – e.g. in the case when a weather variable only becomes 

significant for demand beyond a certain threshold value.  

2.5. Results 

2.5.1. Qualitative analysis of weather influence on 

consumption  

The total amount of significant segments (ρ > |±0.5| and p < 0.01) that are 

identified for each weather variable is an indication of the influence this variable 

has on water consumption, across different customer types and for different 

times. In this study, 300 significant segments are identified for sunshine hours, 

followed by humidity and air temperature with 234 and 211, respectively. A less 

widespread influence is identified for soil temperature, with 125 significant 

segments, whereas a weak influence is found for rainfall with only 54. 

Figure 2.1 shows an example of the distribution between gradients and 

correlation coefficients for some combinations of weather variables and 

segmentation categories (e.g. affluent customers, evenings or summers). Each 

point in Figure 2.1 represents the relationship between weather and 

consumption for one specific segment, for relationships that are statistically 

significant (p < 0.01). This relationship corresponds to x number of properties 

and y number of days, where x and y depend on how large the corresponding 

segment is. The number of properties (x) depends on the six property and 

customer characteristics (Tables 2.3 and 2.4) and is equal or greater to 60, as 

mentioned earlier. The number of days (y) depends on the three time-varying 

characteristics (Table 2.5) and is equal or greater to 35. The total range of 

correlation coefficient values and gradients for each segmentation category and 

each weather variable can be found in Appendix A (Figures A1 to A9).  

A positive ρ value is usually associated with a positive gradient, whereas a 

negative correlation coefficient is usually paired with a negative gradient, 

indicating a direct and inverse, respectively, relationship between weather and 

consumption (Figure 2.1). However, a few instances in Figure 2.1 have a 

correlation coefficient and gradient with opposite signs. This is due to the fact 

that the Spearman’s correlation coefficient is a measure of the monotonic 

relationship between two variables, which is not always true for the relationship 
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between the weather (especially rainfall) and water consumption, as it becomes 

apparent from the scatterplots in the next section.  

  

Figure 2.1. Distribution of correlation coefficients and gradients for segments that 

correspond to various combinations of weather variables and other characteristics 

(household, customer, temporal). Each point demonstrates the correlation coefficient 

and gradient for the relationship between consumption and a weather variable, for 

one segment of consumption. 

According to Figure 2.1, consumption falling under certain categories correlates 

much stronger with the weather. Evening consumption has a significantly 

stronger negative correlation with humidity, as well as a steeper gradient, 

compared to night consumption (Figure 2.1(e)). In addition, summer 

consumption has a much stronger negative correlation with rainfall and steeper 

gradient, compared to winter consumption (Figure 2.1(f)). The same applies for 

consumption occurring in properties with affluent residents and large gardens, 

which appear more sensitive to weather changes (Figure 2.1, (a) and (d)), 

compared to properties with financially stretched residents and small gardens, 

  
c) Metering Status – 
Soil Temperature  

d) Garden Size – Humidity  e) Time of Day – Humidity 

b) Monthly Variation –  
Rainfall 

a) Acorn –  
Sunshine Duration  

f) Season – Rainfall 
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respectively. However, results are more difficult to interpret for customers with 

high variation in their monthly consumption, as well as different metering 

statuses (Figure 2.1, (b) and (c)). 

In order to determine the influence of each weather variable on consumption for 

each segmentation category, a summary table is created (Table 2.6). This table 

shows the number of occurrences of each segmentation category among the 

significant segments, i.e. the ones that are influenced by weather changes. The 

left column (all gradients - AG) for each weather variable shows the number of 

significant segments in each category of each characteristic, for all gradients. 

The right column (top gradients - TG) shows the number of significant segments 

that also have a gradient among the top 1/3. The category within each 

characteristic, for each weather variable, which has the highest influence on 

water consumption (if there is one), is highlighted in bold in Table 2.6.  

For example, when looking at the sunshine duration (Sunshine, Table 2.6), the 

AG column shows that consumption over mornings and evenings is sensitive to 

changes in sunshine hours. This is because there is a high number of 

statistically significant relationships with a moderate to high correlation 

coefficient (ρ > |±0.5|) identified between sunshine duration and consumption, 

for mornings and evenings. However, the same increase in sunshine hours will 

result in a much higher increase in consumption over evenings (TG column), as 

59 of the segments that show the highest sensitivity to sunshine hours (top 1/3 

of the gradients) correspond to evening consumption, as opposed to ten 

segmentations for mornings.  

When the ‘All’ segmentation category has the highest occurrence (Rateable 

Value, Table 2.6), it means that the corresponding characteristic has a weak 

influence on weather induced demand. Since the ‘All’ segmentation category 

means that all properties or all days are included in the data, it forms a bigger 

sample and therefore a positive bias towards it. This simply means that if there 

is a higher number of segments in this category, it is likely that there are also 

more significant segments in the ‘All’ category. The reason there are more 

segments in the ‘All’ category is that segments with less than 60 properties or 

35 days are excluded from the analysis. Therefore, including only properties 

with e.g. high rateable value in a group (instead of all properties) results in 
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smaller groups, thus increasing the probability some of them will not reach the 

threshold of 60 properties and will be removed from the analysis. The same 

applies to segments with e.g. just weekends, as this is likely to result in 

segments with less than 35 days. This means that unless the consumption that 

belongs in one of the other segmentation categories has a much higher 

correlation to the weather, the ‘All’ category is going to appear with the highest 

frequency. In the case of the time of the day, all categories (e.g. morning, 

afternoon, all) form segments with the same number of days. However, due to 

potentially missing data for a specific time, the ‘All’ segmentation category is 

again likely to form more segments. 

As it can be seen from Table 2.6, temporal characteristics such as the season, 

type and time of the day have the highest influence on weather induced 

demand. The majority of significant segments correspond to summer water use, 

while soil temperature is the only weather variable that correlates better with 

consumption during spring (Table 2.6, Season). When the degree of the effect 

is not taken into account, air temperature has an equally strong effect over 

spring and summer (Table 2.6, Air Temp - AG). However, almost no significant 

segments correspond to autumn and winter. Similar results appear for the day 

of the week and the time of day (Table 2.6, see under corresponding variable 

name), with the vast majority of the strongest correlations identified during 

working days and evenings. 

With regards to property characteristics (Garden Size, Metering Status, 

Rateable Value), the influence varies, but it is less prominent than when looking 

at the temporal ones. Customers with larger garden sizes are overall more 

influenced by weather changes (Table 2.6, Garden Size), especially humidity as 

well as air and soil temperature. Although the weather has an effect on both 

metered and unmetered customers (Table 2.6, Metering Status), the unmetered 

group shows a higher sensitivity to weather changes, i.e. they will increase their 

consumption more than the metered group, for the same change in weather 

conditions (TG column). However, when looking at the results for the rateable 

value (Table 2.6, Rateable Value), the most significant segments include 

properties of all rateable values (‘All’ segmentation category) and not a specific 

type (e.g. ‘High’, ‘Medium’ or ‘Low’). Therefore, no rateable value category 

seems to be particularly influenced by the weather.  
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Table 2.6. Number of significant segments, i.e. the ones that have an absolute 

Spearman’s ρ correlation coefficient higher than |±0.5| at 99% confidence interval, for 

each category and weather variable (Sunshine duration, Rainfall, Humidity, Soil 

Temperature, Air Temperature), for all gradients (AG), as well as a gradient among the 

top 1/3 (TG). 

A clearer distinction appears between different customer characteristics (Acorn 

Group, Monthly Variation, Occupancy Rate). Residents of higher socio-

economic status are more likely to alter their consumption due to weather 

changes (Table 2.6, Acorn Group), as more than half of the strongest 

Characteristic 
Segmentation 

category 

Sunshine Rainfall Humidity Soil Temp Air Temp 

AG TG AG TG AG TG AG TG AG TG 

Season 

All 17 8 0 0 12 6 61 20 65 20 

Summer  214 85 52 16 216 71 4 2 63 33 

Spring  61 6 2 0 6 0 57 19 74 17 

Autumn 8 1 0 0 0 0 2 0 6 0 

Winter 0 0 0 0 0 0 1 0 2 0 

Day of the 

Week 

All 47 17 9 5 42 23 25 11 31 17 

Weekends 34 10 16 3 27 7 20 9 20 10 

Work days 219 73 29 8 165 47 80 21 159 43 

Time of  

the Day 

All  140 31 35 1 106 8 50 4 119 23 

Morning 94 10 3 0 48 4 20 1 24 3 

Afternoon 0 0 3 2 0 0 2 2 1 1 

Evening 66 59 13 13 80 65 51 34 64 43 

Night 0 0 0 0 0 0 2 0 2 0 

Garden Size 

All 213 69 48 15 156 50 81 24 137 44 

Large 39 21 3 0 44 22 38 14 53 19 

Medium 36 10 3 1 20 5 4 3 18 7 

Small 12 0 0 0 14 0 2 0 2 0 

Metering 

Status 

All 162 50 28 6 123 41 73 20 120 43 

Metered 72 15 3 0 53 12 30 7 49 5 

Unmetered 66 35 23 10 58 24 22 14 41 22 

Rateable 

Value 

All  251 79 42 14 199 70 112 37 184 64 

High 17 11 7 2 15 6 9 2 13 2 

Medium 26 6 5 0 17 1 1 0 5 0 

Low 6 4 0 0 3 0 3 2 8 4 

Acorn Group 

All 187 56 29 9 136 40 52 12 104 29 

Affluent 55 35 23 6 60 31 59 27 82 40 

Comfortable 43 8 2 1 28 6 13 2 23 1 

Fin Stretched 15 1 0 0 10 0 1 0 1 0 

Monthly 

Variation 

All 222 44 21 2 147 32 56 8 113 18 

High 78 56 33 14 87 45 69 33 97 52 

Occupancy 

Rate 

All  178 57 21 5 127 36 64 25 100 30 

High 6 3 0 0 9 3 1 0 2 0 

Medium 107 40 33 11 94 38 45 16 94 40 

Low 9 0 0 0 4 0 15 0 14 0 
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correlations between consumption and air/soil temperature are identified for 

segments with affluent residents. Customers with high variation in their monthly 

consumption also dominate the most sensitive segments for air and soil 

temperature, as well as rainfall (Table 2.6, Monthly Variation). Similar results, 

although a bit weaker, appear for properties with medium occupancy rate (Table 

2.6, Occupancy Rate). 

2.5.2. Quantitative analysis of weather influence on 

consumption 

In order to further explore the above results, five figures are created, one for 

each weather variable (Figures 2.2-2.6). Each figure demonstrates how 

consumption correlates to a weather variable, for two different segments, i.e. 

across different properties and days in the data. Each point in Figures 2.2-2.6 

corresponds to a single day for which data is available and shows the mean 

water consumption (averaged across all properties in the corresponding 

segmentation) for that day. The red line represents the linear curve that best fits 

the data and gives a visual representation of the degree of the effect a weather 

variable has on consumption. In order to visualise the simultaneous effect of 

different weather variables, three of them are incorporated in each figure. One 

is represented on the x axis, as the independent variable, while the other two 

are represented using point size and colour ranges. 

Figure 2.2 shows the correlation between total sunshine duration (hours/day) 

and average daily consumption, for summer evenings and affluent residents, 

with high variation in their monthly consumption, in unmetered properties, 

during weekends (Figure 2.2, plot 1), as opposed to working days (Figure 2.2, 

plot 2). According to Figure 2.2, an increase of 1 hour in sunshine duration 

could lead to an increase of up to 6 litres/property/day in water consumption for 

certain customer and temporal characteristics (Figure 2.2, plot 2). For plot 1, 

which corresponds to weekend consumption, for otherwise the same 

characteristics, there is very high variability in consumption and no clear trends. 

On working days on the other hand (Figure 2.2, plot 2), there is remarkably less 

uncertainty and consumption shows a steady increase for an increase in 

sunshine hours, which becomes clearer after sunshine exceeds five hours/day.   
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Figure 2.2. Correlation between total sunshine hours (hours/day) and average daily 

consumption (averaged across all properties), for summer evenings and affluent 

residents with high variation in their monthly consumption, in unmetered properties, 

during (1) weekends and (2) working days. 

Figure 2.3 shows the correlation between rainfall (mm/day) and average daily 

consumption for all properties and days in the data (Figure 2.3, plot 1), as 

opposed to consumption occurring during summer working days, for 

households with affluent residents and high variation in their monthly 

consumption, in unmetered properties (Figure 2.3, plot 2). Although there is not 

a high correlation between amount of rainfall and amount of consumption, high 

values of water consumption always occur when rainfall amount is zero or close 

to zero. No rainfall does not necessarily mean that consumption is high, but 

unusually high consumption always indicates no rainfall (or close to none) 

(Figure 2.3). It is also remarkable that although rainfall values are fairly similar 

between plots 1 and 2, higher soil temperature (light blue points) and higher 

sunshine duration (larger points) correlate with higher values of consumption, 

for the same rainfall amount. 

Figure 2.4 shows the relationship between humidity (%) and average daily 

consumption for working days and customers with high variation in their monthly 

consumption, in unmetered properties with high rateable value during the winter 

(Figure 2.4, plot 1) and summer months (Figure 2.4, plot 2). According to Figure 

2.4, humidity is also inversely related to consumption. An increase of 1% in 

humidity could cause a decrease of 2.5 litres/property/day in consumption for 

certain segmentations over the summer months (Figure 2.4, plot 2), whereas no 
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such effect is observed for the same properties over the winter (Figure 2.4, plot 

1).  

 

Figure 2.3. Correlation between total rainfall (mm/day) and average daily consumption 

(averaged across all properties), for (1) all properties and days, and (2) properties with 

affluent residents with high variation in their monthly consumption, in unmetered 

properties, during summer, working days. 

 

Figure 2.4. Correlation between humidity (%) and average daily consumption (averaged 

across all the properties), for working days and customers with high variation in their 

monthly consumption, in unmetered properties with high rateable value, during (1) 

winter and (2) summer months. 

Figure 2.5 shows the correlation between soil temperature (°C) and average 

daily consumption  for working days and affluent residents with high variation in 

their monthly consumption, in metered (Figure 2.5, plot 1) and unmetered 

(Figure 2.5, plot 2) properties. An increase of 1°C in soil temperature could 
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cause on average an increase of ~7.5 litres/property/day in consumption for 

certain customers and days, in unmetered properties (plot 2), whereas a much 

lower increase (~3 litres/property/day) is observed for metered properties (plot 

1). It is worth noting that the effect of soil temperature on consumption shows a 

clear non-linear trend, as it only starts to become noticeable when soil 

temperature exceeds 15°C for metered, as opposed to 10°C for unmetered 

properties. For temperatures higher than 20°C, consumption rises near-

exponentially for a further increase in soil temperature, in the unmetered group. 

For these higher temperatures (>20°C), higher sunshine hours and lower 

humidity are associated with higher consumption in unmetered properties, as 

the smaller, light blue points can be found at the upper part of plot 2, for the 

same soil temperature. 

 

Figure 2.5. Correlation between soil temperature (°C) and average daily consumption 

(averaged across all properties) for working days and affluent residents with high 

variation in their monthly consumption, in (1) metered and (2) unmetered properties. 

Figure 2.6 shows the correlation between air temperature (°C) and average 

daily consumption for working days and customers with high variation in their 

monthly consumption, in unmetered properties, with financially stretched (Figure 

2.6, plot 1) as opposed to affluent (Figure 2.6, plot 2) residents. The trend for air 

temperature is very similar to the one observed for soil temperature, 

demonstrating a non-linear relationship. Higher consumption is associated with 

higher air temperature and lower humidity, as the darker blue points can be 

found at the upper part of both plots, although the association with rainfall is 

less clear; no rainfall (smallest points) does not necessarily imply high 
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consumption, as the small points are scattered throughout both plots, but high 

rainfall (larger sized points) is always associated with decreased consumption 

(bottom part of both plots). An increase in air temperature of 1°C could lead to 

an increase in consumption of ~7.5 litres/property/day, for segments with 

affluent residents. A much smaller influence is observed for financially stretched 

customers, with an average increase of ~2.5 litres/property/day. Similarly to soil 

temperature, only when air temperature exceeds ~15°C for financially stretched 

or ~10°C for affluent customers, the influence on water consumption becomes 

significant. 

 

Figure 2.6. Correlation between air temperature (°C) and average daily consumption 

(averaged across all properties), for working days and customers with high variation in 

their monthly consumption, in unmetered properties with (1) financially stretched and 

(2) affluent residents. 

The above results confirm what was observed before, that certain types of 

customers during certain times of the year, the week or the day are more 

sensitive to weather fluctuations than others. The results and observations from 

this study are analysed further and compared with findings from the literature in 

the next section. 

2.6. Discussion 

When looking at weather induced demand, it is important to identify the primary 

water uses that drive it, outdoor use as well as baths and showers (Downing et 

al., 2003; Parker, 2014). As previous studies found out, these water uses are 

more likely to occur during certain times, as well as for certain households and 
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customer types. Outdoor use is more likely to occur over the summer (Downing 

et al., 2003; Waterwise, 2009; Cole and Stewart, 2013; Parker, 2014), as well 

as night hours (Cole and Stewart, 2013), for households with larger gardens 

(Loh and Coghlan, 2003; Domene and Sauri, 2006), as well as customers that 

are unmetered (Hanke and Flack, 1968) and have a higher socio-economic 

status (Linaweaver et al., 1967; Domene and Sauri, 2006; Chang et al., 2010;). 

Water use for personal hygiene occurs more frequently over the summer, as 

well as morning and evening hours (Cole and Stewart, 2013). It is therefore 

expected that for these times and households, the effect of weather on water 

consumption is more prominent. The results of this chapter are in general 

agreement with above studies.  

The strongest relationships between weather and demand are identified for 

evenings and working days, primarily over the summer, whereas air and soil 

temperature also have an effect in spring. As pointed out before, the effect of 

temperature on consumption becomes noticeable after it exceeds a certain 

threshold (~10°C-15°C), which in the UK is reached around spring. In addition, 

the summers over the three years in the dataset were wetter than average, 

therefore soil temperature would probably decrease due to the evaporation of 

rainwater from the ground. This could lead to a weaker correlation between soil 

temperature and water consumption over the summer, even among the 

segmentations that show the highest sensitivity to soil temperature (i.e. the 

ones with the highest gradients). Regarding weekends and holidays, this is 

when people tend to have less constrained schedules and/or are frequently 

away from home, therefore their behaviour is less likely to be consistently 

influenced by the weather. Out of the weather variables, rainfall is the only one 

that has an effect on consumption (although weaker) during weekends. Parker 

(2014) identified an inverse correlation between washing machine use and 

rainfall, as well as a weekly pattern indicating that people are more likely to 

wash over the weekend, which could explain this mild effect. 

The customer type also contributes in explaining sensitivity to weather, as 

affluent customers with high seasonal variations in consumption, in medium 

occupancy households, are more prone to change their water use due to 

weather changes. As pointed out by Allon and Sofoulis (2006), understanding 

the social standards, expectations and habits that relate to water use is just as 



58 

 

important as the practical activities that constitute water consumption, if not 

more so. For example, water used for irrigation might be more related to 

expectations and care for garden aesthetics, which relate to higher socio-

economic status, rather than the size of the garden itself.  Furthermore, since 

households with medium occupancy are occupied by two to three residents, 

their behaviour is more consistent and easier to correlate to weather changes. 

Consumption in households with one resident is probably too erratic to form a 

statistically significant correlation with the weather, whereas in households with 

more than three residents, weather induced demand (e.g. garden watering) is 

probably a small percentage of the overall consumption and thus this increase 

is overlooked. Finally, assuming that water demand is made up of base 

consumption, seasonal consumption and weather-dependent consumption 

(Bakker et al., 2014), the high fluctuations in monthly water use observed for 

certain households are likely due to seasonal and weather-related activities. 

Thus, it is reasonable that customers with high variation in their monthly water 

consumption show a higher sensitivity to weather changes. 

A more modest influence is identified for household characteristics. Unmetered 

households with larger gardens are more sensitive to most weather variables, 

although the rateable value makes little to no difference. Garden size has a 

rather weak effect on weather related consumption, which becomes stronger for 

air and soil temperature, as well as humidity. This implies that customers with 

larger gardens likely increase their consumption in warmer and less humid 

weather, in order to satisfy garden watering requirements. The same applies to 

unmetered customers, as prior research concluded that their outdoor use is 

more sensitive to climatic conditions compared to the metered group (Parker, 

2014). Finally, the rateable value of the properties is the factor with the least 

significance. Although this was originally used as a proxy of the housing type 

and thus the water use profile of unmetered customers, changes in housing 

stocks and demographics made the rateable value as an indicator of water 

consumption out-dated and irrelevant (Parker, 2014).  

Out of all weather variables, the sunshine hours, as well as air and soil 

temperature show a direct relationship to consumption, whereas rainfall and 

humidity are inversely related to it, i.e. an increase in either of them will likely 

cause a decrease in consumption. The inverse relationship between humidity 
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and consumption is in agreement with previous studies (Al-Qunaibet and 

Johnston, 1985), likely due to increased evapotranspiration in both humans and 

plants, associated with low humidity. As pointed out by Al-Qunaibet and 

Hohnston (1985), this effect probably outweighs the argument that high 

humidity intensifies the feeling of heat, leading to increased water use. Similarly, 

the occurrence of rainfall eliminates in most cases the need for irrigation and 

can therefore cause a reduction in outdoor use as well as overall consumption. 

Sunshine duration correlates well with consumption for more segmentations 

than any other weather variable, whereas humidity and air temperature also 

influence a large amount of segmentations. A smaller influence is identified for 

soil temperature, whereas the amount of rainfall has a minimal effect. Previous 

studies also identified a high correlation between sunshine hours and 

consumption (Goodchild, 2003), as well as air temperature and consumption 

(Downing et al., 2003; Goodchild, 2003; Adamowski, 2008; Beal and Stewart, 

2013; Cole and Stewart, 2013; Willis et al., 2013;), whereas a much weaker to 

no effect was found for rainfall (Downing et al., 2003; Goodchild, 2003; Beal and 

Stewart, 2013; Cole and Stewart, 2013). However, interactions between rainfall 

and other weather variables demonstrate that the same rainfall amount could 

trigger different reactions for different temperatures or sunshine durations.  

Finally, a non-linear relationship exists between air and soil temperature and 

consumption. The effect of temperature only becomes visible when temperature 

values exceeds a certain threshold, which varies (~10°C-15°C) for different 

customer types, days and seasons. This effect was previously observed by 

Parker (2014), who found that outdoor consumption considerably increased 

after ~15°C and raised the question if this threshold value could change in the 

future. This study found that this threshold can vary due to multiple factors and 

should be identified separately for each individual case study and customer 

group. 

2.7. Summary and conclusions 

Ensuring the water supply-demand balance is a topic of increasing concern, 

especially under the threat of climate, population and other uncertain future 

changes. Understanding the link between weather and water consumption, with 
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demographics, property and socio-economic factors brought into the equation is 

essential for satisfying this balance.  

The current study analyses the correlation between five weather variables 

(sunshine hours, humidity, rainfall, air and soil temperature) and water 

consumption, taking into account household, resident and temporal 

characteristics. This analysis is based on real smart demand metering data, 

collected every 15-30 minutes for 1,793 properties in the UK, over a period of 

two years and eleven months. This data is accompanied by data on weather 

and customers living in the analysed households.  

Unlike previous studies, this work accounts for the varying effect that weather 

changes have across time and space, by aggregating consumption into 

homogenous groups. Each group contains consumption with the same 

temporal, resident and property characteristics, averaged over all properties in 

the group, for each day in the data. The purpose of this is to smooth the erratic 

consumption signal of individual households, without losing information relating 

to the drivers of weather induced demand. The approach adopted here can be 

used in any area where data relating to consumption, weather, as well as 

customer characteristics are available. 

Results lead to the following observations:  

 In moderate UK climate, water consumption is only partially influenced by 

weather changes; 

  Sunshine duration has the most widespread (across properties and days 

in the data) influence on water consumption in the UK, followed by 

humidity and air temperature. Rainfall has the smallest effect; 

 An increase in sunshine duration, as well as air and soil temperature, is 

likely to cause an increase in water consumption, whereas an increase in 

humidity and rainfall will likely have the opposite effect; 

 The influence of air and soil temperature on water demand becomes 

noticeable only after temperature exceeds a certain threshold value. This 

threshold varies for different customer types;  

 Although rainfall amount does not correlate well with consumption, high 

water demand is almost always associated with no rainfall. This is likely 

due to increased watering requirements, associated with dry weather;  
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 Water consumption during working days, summers and evenings is 

affected by weather changes more than during other time periods. This 

clearly demonstrates the significance of the temporal aspect of water 

consumption;  

 Affluent residents with high variation in their monthly consumption, in 

medium occupancy households, show higher sensitivity to weather. This 

could be because they are more likely to use water for showering and 

watering the gardens during hot and sunny weather;  

 Properties with larger gardens and unmetered status are also more 

prone to be affected by weather changes, whereas the rateable value 

seems almost irrelevant. Larger gardens justify increased watering 

requirements, whereas unmetered customers are more likely to use 

water when the weather is warmer, as they are not billed based on their 

water usage.  

The results in this chapter can assist with managing demand by accounting for 

the effect of weather on water consumption. Specifically, they can assist with 

developing improved water demand forecasting models, as well as targeting 

water conservation campaigns and legislation towards the right customer 

groups. However, the present work is not without certain limitations.  

Acquiring more data could provide additional context to these results.  Although 

all of the available weather factors are investigated in this study, variables such 

as soil moisture and wind speed, as well as days without rain could further 

explain water demand fluctuations. In addition, information about indoor and 

outdoor water use as well as data related to consumption micro-components, 

could explicitly link certain weather variables to certain types of water uses. 

Data related to vegetation types and irrigation systems, as well as the 

calculation of daily potential evapotranspiration could also provide further 

insights. However, this data for such a range of properties is difficult to collate 

and maintain. 

Furthermore, it is not clear how the distance between the households and the 

weather stations has influenced results. The properties in this study are 

scattered over a relatively large area, across several towns in the southwest of 

England. Although weighted weather averages from nearby weather stations 
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are used, more nearby weather data might lead to stronger relationships, 

particularly for weather variables that show weaker spatial correlations.  

Finally, more work is needed to identify by how much consumption increases on 

average, for a change in each weather variable. As it is observed here, the 

increase in water consumption occurs after a weather variable exceeds a 

certain threshold, which varies for different temporal, property and customer 

characteristics. Although some examples are provided for certain 

segmentations of consumption, it is important to identify what is the general 

response to weather and how this threshold varies for different segmentation 

categories.     

The next chapter aims to address some of these questions by developing water 

demand forecasting models and assessing how a variety of model predictors 

(temporal, property, resident and weather characteristics) influence the model’s 

response. As part of this work, the next chapter will identify which weather 

variable causes the highest spike in consumption, at which threshold and for 

how many customers and days in the data.
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3.  

3.1. Introduction  

Ensuring water availability for the future is a matter of increasing concern, 

especially in the context of a rapidly changing world. Understanding water 

consumption, as well as the drivers behind it, is the first step towards 

developing accurate demand forecasts and effective water demand 

management strategies. However, this is a difficult task as household water use 

reflects many time and space dependent factors, and research is often limited 

by data availability (Parker and Wilby, 2013). 

This chapter was submitted as a Technical Paper to the Journal of Water Resources, 

Planning and Management (ISSN: 1943-5452). The chapter has been written by 

Maria Xenochristou but has benefited from the comments of the co-authors, Zoran 

Kapelan, Chris Hutton and Jan Hofman.  

Citation: Xenochristou, M., Hutton, C., Hofman, J., and Kapelan, Z. (2019). The 

influence of household, temporal, and weather variables on water demand 

forecasting in the UK. J. Water Resources, Planning and Management (under 

review). 
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In addition, the implementation of smart metering programs is costly, as it 

requires communications infrastructure and data management applications to 

support the volume of data and communication between devices, on top of the 

cost of the metering modules (Hope et al., 2011). Thus, cost-benefit studies in 

the UK (DEFRA, 2011) and the US (Hope et al., 2011) found that there is no 

economic case for the roll out of blanket metering programs. These results need 

to be accounted for by engineers and researchers, who should aim to develop 

alternative approaches towards water demand sustainability that do not require 

these data. 

Finally, as technology advances, data availability increases rapidly and models 

become more sophisticated, time-consuming and data-intense, it is important to 

identify the point where an increase in complexity does not offer any practical 

value, or even causes model overfitting problems. Donkor et al. (2014) 

highlights the importance of creating models that are as parsimonious and 

rudimentary as possible, whilst maintaining high forecasting accuracy. 

The overall aim of this chapter is to determine whether credible, short-term 

forecasting models can be developed for households lacking smart demand 

metering data but where a variety of other information is available (household 

characteristics, temporal and weather data). This will be done by identifying the 

best set of predictors and assessing the level of accuracy that can be achieved, 

with and without smart metering data. Finally, the influence of each predictor on 

the model’s response, i.e. the water consumption, will be explored using 

interpretable machine learning techniques. As it becomes apparent from the 

next section, no previous studies attempted to predict household water demand 

at the daily level, using household, weather and temporal characteristics. 

This chapter is organised as follows. The next section outlines a summary of 

the literature and highlights the key gaps and limitations. Then, the available 

dataset is described, in terms of the water consumption data, household 

characteristics and weather data. The methodology section outlines the model 

input variables, household grouping, modelling technique, as well as model 

assessment and implementation. The results section includes the main 

outcomes of the study, in terms of the model performance and influence of a 

variety of predictors on water consumption. Finally, the chapter concludes with 
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a critical discussion and summary of key results, the limitations of the study and 

recommendations for future research. 

3.1.1. Water demand studies   

According to Cominola et al. (2015), the existing water demand modelling 

literature can be divided into two approaches; one that focuses on pattern 

analysis and understanding (descriptive models) and one that provides 

estimations of water consumption (predictive models). Both approaches have 

their benefits and shortcomings and find typically different applications.  

A few qualitative or descriptive studies (Russac et al., 1991; Edwards and 

Martin, 1995; Parker and Wilby, 2013) have investigated the large spatial and 

temporal variations in water demand that occur among households and 

customers with different characteristics, over different months or days of the 

week. This was further facilitated by the advance of smart metering that made 

data available at high temporal and spatial resolution. However, most of these 

studies used historical data to identify relationships between a set of 

explanatory variables and water demand, not to make predictions. 

Furthermore, a large number of studies have focused on the development of 

demand predictive techniques. From simple linear regression models (Clarke et 

al., 1997; Goodchild, 2003; Wong et al., 2010) to sophisticated machine 

learning algorithms (Herrera et al., 2010; Anele et al., 2017; Chen et al., 2017; 

Zubaidi et al., 2018). However, few studies (Clarke et al., 1997; Fox et al., 2009; 

Matos et al., 2014) provided deeper insights into what drives water consumption 

(Brentan et al., 2017). In addition, models could further improve by treating 

separately different occupancies, property characteristics (Fox et al., 2009) and 

temporal factors, such as the month or the day of the week (Parker and Wilby, 

2013). 

Finally, due to the difficulty of modelling household consumption and the variety 

of factors that can influence it, this topic has been significantly 

underrepresented in the water demand forecasting literature. Two studies 

(Williamson, 2002; Duerr, 2018) attempted to predict single-household water 

demand using a variety of property characteristics, weather and other data. 

However, in both cases predictions were made at the monthly scale.  
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Williamson (2002) used a number of property characteristics (e.g. number of 

residents, appliance ownership and property type) to predict monthly household 

consumption using a regression-based function. This method had the potential 

to distinguish between millions of household types and explained 44% of the 

variance in water demand, while the rest was attributed to factors that were not 

included in the model, such as the garden size.  

Duerr (2018) also developed a water demand forecasting model using property 

(e.g. land and building value, green space), temporal (e.g. month and year) and 

weather (e.g. temperature, precipitation) characteristics. Several methods were 

compared, including machine learning, linear regression and time series 

models, for their ability to forecast household monthly consumption. The one 

that performed best was the time series model, with a minimum Root Mean 

Square Error (RMSE) of 1,246, for predictions 1 month ahead.  

3.1.2. Overview, limitations and scope 

Water demand modelling that reconstructs detailed household characteristics 

would enable planners to predict small area demands, assess the impacts of 

population changes and test new tariffs (Clarke, 1997). However, most UK 

water demand studies rely on water-into-supply data (Parker and Wilby, 2013).  

Even when explanatory variables (e.g. household and climatic variables) are 

employed to produce water demand forecasts, this is done using linear 

regression analysis or geodemographic profiling based on census data (Parker 

and Wilby, 2013). These techniques (Goodchild, 2003; Wong et al., 2010) have 

traditionally been used because they are simple and able to capture the 

relationships between the predictors and water demand in a transparent way. 

However, their ability to model the complicated relationships between a set of 

predictors and water consumption may be limited.  

Machine learning models are able to provide accurate water demand forecasts 

(Herrera et al., 2010; Anele et al., 2017; Chen et al., 2017; Zubaidi et al., 2018) 

but they have been traditionally considered ‘black box’. This means that they 

are not easy to interpret and sometimes even their structure and functionality is 

not well understood. For this reason, their ability to explain water consumption 

and provide guidance to water utilities has been limited. Combining both 
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accuracy and interpretability is essential in order to produce accurate forecasts 

and provide water utilities with the knowledge to improve network operations 

and secure water for the future. 

In addition, surprisingly few studies attempted to estimate and predict water 

consumption at the household level under potential changes in the climate, 

which likely reflects the difficulty of understanding and predicting household 

water use (Parker and Wilby, 2013). At the same time, the non-linear effect of 

weather on water demand, which could be of particular importance on peak 

demand days, needs to be further investigated (Parker and Wilby, 2013; 

Xenochristou et al., 2019a). 

This chapter addresses few of the above key gaps in the literature, by 

developing a novel methodology that combines machine learning models with 

interpretability techniques. 

3.2. Data 

The current study utilises a dataset from the southwest of England. This 

comprises of water demand data and household characteristics that became 

available by Wessex Water, one of the UK water companies, as well as weather 

data that were provided by the Met Office. A detailed description of each data 

type is available in the following. 

3.2.1. Past consumption 

Water demand data were collected at the household level by the water company 

using smart meters, recording consumption every 15-30 minutes over a three 

year period (10/2014 - 09/2017). The above raw data was carefully cleaned and 

processed before used in any further analysis. A process was implemented, 

comprising of logical rules that aimed to exclude inconsistent or false data whilst 

maintaining the natural variability of water demand. This process is outlined in 

detail in chapter 1. After the pre-processing of the data, 1,793 properties are 

included in the dataset with recordings corresponding to a duration of 1,019 days. 
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3.2.2. Household characteristics 

The water company also collected household data relating to property and 

customer characteristics (garden size, rateable value, metering status, council 

tax band, acorn groups and types, and occupancy rates).  

In order to limit the processing time as well as reduce complexity, the properties 

in the dataset are grouped in two to three segmentation categories for each 

household characteristic. Garden sizes were divided into small (<60m2), 

medium (61-165m2) and large (>165m2) by the water company. Properties that 

are classed as unmetered are a representative sample of all unmetered 

customers and are not charged based on their meter readings. The water bill of 

unmetered properties in the UK is adjusted according to the property’s rateable 

value, which is indicative of its rental value and was last updated in the 1970s 

(UKWIR, 2015). The cutting points for the categories of the rateable value are 

chosen in order to acquire relatively equal groups that are at the same time 

distinct enough to identify any differences in their water consumption. The top 

and bottom 30% of the rateable values are classified as high and low, 

respectively, whereas the rest are classified as medium. Acorn is a 

geodemographic segmentation of the UK’s population based on social factors 

and population behaviour (CACI Limited, 2014). According to the acorn guide, 

consumer groups A, B and C are classified as ‘Affluent Achievers’ and groups D 

and E as ‘Rising Prosperity’ (CACI, 2014). All groups A to E are classified as 

‘Affluent’ in the following. Groups F to J are classified as ‘Comfortable 

Communities’, whereas groups K to Q are ‘Financially Stretched’ (similar to the 

same guide). Occupancy rate groups are divided into 1, 2 and 3+, based on the 

corresponding number of occupants living in each household. The council tax 

bands are divided into three classes containing bands A-C, D-E and F-H, with 

class A being the lowest and class H the highest paying council tax band.  

The cutting points of the new categories for the acorn status, occupancy rate and 

council tax band are selected based on a z-statistic, according to the following 

process. Each type of household (e.g. households in tax band C) is associated 

with a certain water consumption distribution among all days in the data. A z-

statistic is used in order to assess the similarity between the consumption 

distributions for different types of households. Similar consumption distributions 

that are also in close proximity in terms of the physical meaning of their 
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characteristic (e.g. similarly paying council tax bands) are grouped together into 

a larger category (e.g. council tax bands A-C).    

Many of the household variables described above are indicative of the socio-

economic status of the household’s residents, thus the correlations between 

them are evaluated using a chi-square (x2) test of independence (Table 3.1). 

The x2 varies between 1 and -1, indicating a perfect positive or negative 

correlation, respectively. According to Table 3.1, the council tax band is the 

most highly interrelated variable. Properties that are under higher paying council 

tax bands have higher rateable values, larger gardens and residents with higher 

socio-economic status. The second most correlated variable is the garden size. 

Properties with larger gardens have a higher rateable value and are occupied 

by residents in higher acorn groups. Finally, the rateable value and the acorn 

group, as well as the metering status and the number of occupants show a 

weaker relationship (Table 3.1). Overall, other than the high correlations 

identified with the council tax band, all other variables show a much lower 

degree of association. 

Table 3.1. Chi-square correlation statistic between each one of the six household 

variables. 

       

Chi-square 

Correlation Table 

Garden 

Size 

Rateable 

Value 

Metering 

Status 

Acorn 

Groups 
Occupants 

Council Tax 

Band 

Garden Size 1 -0.41 0.16 0.33 -0.12 -0.48 

Rateable Value -0.41 1 0.09 -0.30 -0.07 0.57 

Metering Status 0.16 -0.20 1 0.17 0.29 -0.15 

Acorn Groups 0.33 -0.30 0.17 1 -0.04 -0.58 

Occupants -0.12 0.10 0.29 -0.04 1 0.13 

Council Tax Band -0.48 0.57 -0.15 -0.58 0.13 1 

3.2.3. Weather data 

The weather dataset includes Met Office data on air and soil temperature, 

humidity, sunshine duration and rainfall. This data is recorded at the hourly or 

daily scale over the same period (10/2014 – 09/2017), from hundreds of 

weather stations across the study area, as part of the Met Office Integrated 

Data Archive System (MIDAS) Land and Marine Surface Stations Data (Met 

Office, 2006a; Met Office, 2006b; Met Office, 2006c; Met Office, 2006d; Met 

Office, 2006e). The number of consecutive days without rain is also calculated 

based on the rainfall data.  
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Figure 3.1 gives a brief overview of the weather over the study period. Weather 

in England is characterised by mild temperatures and consistent rainfall. 

Maximum air temperatures vary between 5°C and 25°C, with very few 

exceptions, mostly over the winter and summer months (Figure 3.1). Springs 

and summers have generally higher temperatures, increased sunshine hours 

and lower humidity, although seasonality is not as prominent as in continental 

climates. Rainfall is reduced over the spring and summer months (Figure 3.1, 

Rainfall), but the presence of rainfall, which is often more important for water 

demand, is consistent over all seasons (Figure 3.1, Days Without Rain).   

Out of the hundreds of weather stations in the study area, only 56 are included 

in the analysis, based on their proximity to the properties in the dataset. Since 

the properties are scattered over a relatively large area, daily and hourly 

information from multiple weather stations is used to calculate one daily value 

for each weather variable. In order to do this, a weight is assigned to each 

weather station, based on the number of properties that are the closest to it 

geographically (each property is closest to one of the weather stations). 

 

Figure 3.1. Variation of six weather variables within each season over the 

study period. 
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3.3. Methodology 

3.3.1. Input variables 

The first step towards model building is to define the pool of variables that will be 

included in the analysis. In this study, all available variables are investigated for 

their influence on water consumption, grouped into the following four types: 

 Past consumption: a 7-day window of past consumption is used to 

capture the repetitive nature of water use over a calendar week. Past 

consumption consists of seven values, reflecting mean daily 

consumption for each one of the seven days prior to the prediction day; 

 Temporal variables: these refer to the season, month, day of the week 

and type of day (working day or weekend/holiday) that consumption 

relates to. They are used as a proxy for time-varying behavioural and 

weather patterns; 

 Household characteristics: the six variables collected by the water 

company, the garden size, rateable value, metering status, occupancy 

rate, council tax band and acorn group are also used as predictors, as 

these variables have been regularly suspected to influence demand; 

 Weather variables: six variables relating to daily air and soil temperature, 

relative humidity, total sunshine hours and rainfall amount as well as the 

total number of days without rain are used in order to specifically account 

for the weather induced variance in water consumption. 

Each group of variables has unique significance for water utilities. Temporal 

data are easy to access since they relate to a specific day and are always 

known to network operators. Information regarding household characteristics on 

the other hand is sometimes easily accessible (council tax band, metering 

status, rateable value and acorn) whereas in other cases (garden size and 

occupancy rate) it needs to be collected through questionnaires or inspections. 

Finally, weather data that are based on forecasts can be inaccurate as well as 

expensive to acquire, just as information about past consumption, which 

requires extensive metering programs as well as processing and storing. 
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3.3.2. Household grouping 

Since one of the main aims of this study is to maintain the heterogeneity of the 

original dataset, all six household characteristics are used in order to create 

homogenous groups of properties, for each day in the data. For example, one 

group could comprise of properties with large gardens, high rateable value, 

measured consumption, affluent residents, tax bands A-C and occupancy rate 

3+. Since each household characteristic has three to four categories, this 

results in 3,072 groups with homogenous characteristics, as below  

HG (3,072) = GS (4) * RV (4) * MS (3) * Acorn (4) * CT (4) * OR (4),  

where HG = Household Groups, GS = Garden Size, RV = Rateable Value, MS 

= Metering Status, CT = Council Tax Band, OR = Occupancy Rate.  

However, some groups (3,072 in total) do not include any houses for all or part 

of the days in the dataset (1,019 in total). In addition, the minimum amount of 

households in each group is set to two, resulting in a total of 56,020 groups, 

with 2-24 households each, or ~3.8 households on average, for all days in the 

dataset.  

This grouping is adopted in order to reduce the number of data points and 

smooth the consumption signal. Instead of having multiple individual 

households with identical characteristics and high variance in consumption, 

these are replaced by one representative household, with consumption equal to 

the mean among all properties in the group. Due to the small size of the final 

groups and the high variation in their characteristics, daily water consumption 

varies significantly among days and groups, from ~45 litres/capita/day to ~390 

litres/capita/day, with a mean consumption of 127.4 litres/capita/day. 

3.3.3. Random Forests 

A Random Forest (RF) model is an ensemble of decision trees that can be used 

for regression or classification purposes (Breiman, 2001). The RF regression 

used here works by taking a set of input variables, which are then passed onto 

each of the decision trees in the forest. The uniqueness of a RF model lies in 

the fact that it implements randomness in the modelling process, as at each 

node the variable for splitting is chosen among a randomly selected sample of 



73 

 

the independent variables (Herrera et al., 2010). Each tree gives a prediction 

and the mean of these values is the prediction of the RF.  

Hyperparameters in machine learning models are parameters whose values are 

fixed before the learning process begins. RFs’ performance depends on three 

key hyperparameters, the number of eligible features for splitting (mtry), the 

number of trees that comprise the forest (ntrees), as well as the tree depth, 

which can also be specified by the number of end points at each node 

(nodesize). The maximum number of mtry is equal to the total number of input 

variables. Small values of mtry increase the randomness of the trees and 

reduce processing time, while small values of nodesize cause the trees to grow 

deeper, with the danger of overfitting. Although it is commonly believed that 

default values of these hyperparameters (e.g. mtry = number of variables/3 for 

regression) can produce good results, there is no theoretical framework that 

supports this assumption (Scornet, 2017). Therefore, the models are fine-tuned 

for the optimum set of hyperparameters (mtry, nodesize, ntrees), as the ones 

that minimize errors whilst not allowing the model to overfit. 

RFs are chosen as they have been consistently found to outperform most other 

models in the literature (Chen et al., 2017), while at the same time they are 

underrepresented in water demand forecasting (Herrera et al., 2010; Chen et 

al., 2017; Duerr et al., 2019). In addition, these models are quick to train as the 

trees are built in parallel and they have limited number of parameters that 

require tuning.  

3.3.4. Model performance assessment 

The forecasting accuracy of the models is assessed using the following three 

performance metrics: the mean square error (MSE), the mean absolute 

percentage error (MAPE) and the R2 coefficient of determination. These metrics 

provide a range of information; the MSE is more sensitive to outliers, the MAPE 

is biased towards smaller values, whereas the R2 demonstrates the amount of 

variance explained by the model.  

The variable importance is calculated by assessing by how much accuracy 

drops when a variable is permutated (i.e. rearranged). Permutating a variable 

means shuffling its values and thus destroying the link between the predictor 
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and the outcome. For example, shuffling the temperature variable would 

rearrange the temperature values by randomly assigning each one of them to a 

day in the dataset. The MSE of the model is calculated before and after the 

permutation occurs; the higher the increase in MSE, the higher the importance 

of the variable that was permutated. The shuffling is repeated several times in 

order to achieve more accurate results. However, this process is affected by 

variable interactions for two reasons. First, correlated predictors masque each 

other’s effect, since they provide overlapping information to the model. At the 

same time, shuffling a variable which is strongly correlated with another one 

could create unrealistic data points (Molnar, 2019a). For example, assuming 

two correlated predictors, air and soil temperature, shuffling the air temperature 

values could create a day with soil temperature of 4°C and air temperature of 

28°C.  

The model predictors are evaluated for their impact on the dependent variable, 

i.e. the water demand, based on two types of interpretable machine learning 

methods, the Accumulated Local Effects (ALEs) plots (Apley and Zhu, 2016) 

and the Individual Conditional Expectation (ICE) curves (Goldstein et al., 2015). 

In order to explain these methods, it is easier to explain the simpler concept of 

Partial Dependence Plots (PDPs) first. PDPs work simply by forcing a predictor 

to take the whole range of its values for each point in the data (each data 

instance) and calculating the mean response of the model for each value of the 

predictor. The same happens for categorical predictors, except in this case the 

variable is forced to take each one of its potential categories, instead of a range 

of values. PDPs assume non-correlated variables, as in a different scenario this 

process could create unrealistic data instances, as explained above.  

ALE plots also describe how a variable affects the prediction on average by 

calculating the variation in the model’s results within a small window of the 

predictor. ALE plots are centred at zero, so the value at each point is the 

difference to the mean prediction. Apley and Zhu (2016) first introduced ALE 

plots as a faster and non-biased alternative to partial dependence plots (PDP). 

ALE plots are used here to model the influence of the household and temporal 

characteristics. 

ICE plots are the same as PDPs but instead of averaging, ICEs show one curve 

for each data instance (each day and household group). Therefore, they are 
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able to capture the variability in the response, for the same change in the 

predictor. Since there are 56,020 different groups for all days in the data, the 

same amount of curves are represented in one plot, which makes it very difficult 

to distinguish between them. Therefore, these curves are aggregated for each 

plot into three groups, using k-means clustering (Steinley, 2006). Since the 

weather has a different influence on different types of households and days in 

the data (see chapter 1), the ICE plots are used to capture this varying effect of 

the weather variables.  

More details and explanations regarding these three methods can be found in 

Molnar (2019a). All of the above analysis is performed using the R statistical 

software, particularly the RandomForest (Liaw, 2018) and iml (Molnar, 2019b) 

packages. 

3.3.5. Model implementation 

Two groups of RF models are developed and tuned for the optimum set of 

hyperparameters (mtry, nodesize and ntrees), for daily predictions one day into 

the future (Table 3.2). Models 1, 2 and 6 incorporate past consumption data 

whereas models 3, 4, 5 and 7 use a combination of temporal, household and 

weather characteristics. Consumption data are of high interest for two reasons; 

firstly, water utilities do not always have access to this data and therefore it is 

important to account for this scenario and develop an alternative strategy. 

Secondly, past consumption incorporates many qualities that are characteristic 

of the household or the day the consumption corresponds to and therefore can 

masque the effect of other predictors.  

As the methods described earlier (variable permutation and ICE curves) are 

affected by variable interactions, the correlations between the predictors need 

to be assessed. An investigation into variable interactions (not presented here) 

showed that sunshine hours and humidity, rainfall and days without rain, as well 

as air and soil temperature are correlated. On the other hand, temporal 

variables such as the type of day (working day vs weekend/holiday) and the 

weekday, as well as the season and the month are by definition also heavily 

correlated. Past consumption data is also auto-correlated from one day to the 

next one.  
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These interactions are taken into account when choosing the model predictors 

(Table 3.2), thus the input variable configuration for models 1-7 is chosen 

according to the following. Model 1 (with past consumption) and model 3 

(without past consumption) include all temporal, weather and household 

variables. To reveal the influence of each variable without being concealed by 

overlapping information, models 2, 4 and 5 exclude strongly correlated inputs 

(Table 3.2). Finally, results regarding the most important predictors from models 

1-5 are used to build models 6 and 7, based on the simplest model 

configuration that would not compromise the modelling accuracy (Table 3.2). 

Table 3.2. Input variables for Models 1-7. 

Variable Group Model Input Variables 
Model number 

1 2 3 4 5 6 7 

Past 

Consumption 

Consumption 1-7 days ago X          X  

Consumption 1 day ago  X     

 

Temporal 

Type of Day X X X X  X X 

Weekday X  X  X   

Month X  X  X   

Season X X X X    

 

 

Household 

Acorn X X X X X  X 

Garden Size X X X X X  X 

Metering Status X X X X X  X 

Rateable Value X X X X X  X 

Council Tax Band X X X x X  X 

Occupancy Rate X X X X X  X 

 

 

Weather 

Sunshine hours X X X X    

Soil Temperature X  X  X   

Air Temperature X X X X    

Humidity X  X  X   

Days without rain X  X  X   

Rainfall X X X X    

 Total input variables 23 12 16 11 11 8 7 

3.4. Results  

3.4.1. Preliminary Analysis 

The preliminary data analysis is conducted with the aim to investigate how 

consumption varies across different household and temporal categories. 

Modelling results can be strongly influenced by interactions between variables 

as well as the model structure itself. Therefore, it is important to have an initial 

view of which are the variables with the highest effect on water consumption 

and see if these conclusions align with the modelling results. 
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Figure 3.2 shows the distribution of consumption for each household variable 

category and each day in the dataset. The most distinct difference in 

consumption is observed when households are grouped based on their 

occupancy rate, with low occupancy households (1 resident) consuming 

significantly more compared to high occupancy ones (3+ residents) (Figure 

3.2(a)). Differences also appear between households in different council tax 

bands (Figure 3.2(b)), with houses in bands A-C (lower council tax bands) 

consuming less water than houses in bands F-H (higher council tax bands).  

 

Figure 3.2. Distribution of consumption for different categories of six household 

characteristics. Each distribution comprises of mean daily consumption, aggregated 

among all properties with the corresponding characteristic, for each day in the data. 

Distributions of household categories that relate to higher consumption are 

generally more spread out whereas the low consumption curves tend to have a 

higher peak and a much smaller variance (Figure 3.2). This is likely because 

lower consumption constitutes base consumption, i.e. water used in order to 

perform essential day to day activities such as toilet flushing, showering and 

cooking. Higher demand on the other hand is due to consumption activities that 

are conditional to a series of other factors. For example, higher council tax 

bands consume generally more water but they also have a higher spread in 

their daily consumption. This means that the additional water use could be 

associated with activities like gardening that occur on some days but not others. 
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The high variance in the case of the occupancy rate is due to the consumption 

in single-occupancy properties being more erratic, as it only depends on one 

person. In the case of two, three or more residents, the PCC is calculated as 

the mean between the occupants of the property, thus averaging out any 

differences in consumption behaviour from one day to the next one. 

Figure 3.3 shows the distribution of daily PCC for different categories of four 

temporal characteristics (month, day of the week, type of day and season). 

Demand is time-dependent as it increases during certain times of the week or 

the year. Consumption is higher over weekends and holidays as opposed to 

weekdays, with Sundays claiming the highest weekly consumption (Figure 3.3, 

(a) and (d)). A milder influence is observed throughout the year, as water 

demand over the summer months and December is slightly higher than any 

other time of the year (Figure 3.3, (b) and (c)). 

 

Figure 3.3. Distribution of consumption for different categories of temporal 

characteristics. Each distribution comprises of mean daily consumption, aggregated 

among all properties for each day in the data, for different (a) weekdays, (b) months, 

(c) seasons and (d) day types. 

3.4.2. Model tuning  

In order to start the modelling process, the dataset is shuffled and divided 

randomly into a training set (70% of the data) used to train and tune the models 

and a test set (30% of the data) used to assess their performance on unseen 

data, i.e. data that is not used during the model-building phase. 
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Models 1 and 3 are tuned for the optimum set of hyperparameters over a two 

dimensional grid search space that includes multiple values of mtry and 

nodesize. To keep the processing time within reasonable limits, the grid search 

space is built using seven values of mtry for model 1 (5, 8, 11, 14, 17, 20, 23) 

and model 3 (4, 6, 8, 10, 12, 14, 16), and five values of nodesize (50, 100, 150, 

200, 250). The ranges for mtry are selected around the default mtry values 

(number of predictors/3), which are equal to ~8 for model 1 and ~5 for model 2, 

whereas the node size range is selected based on expert judgment. 

Figure 3.4 shows the model error (MSE) for the test dataset, for various 

combinations of these parameters. Plot (a) corresponds to model 1, which 

includes all input variables as explanatory factors (23 variables in total), 

whereas plot (b) corresponds to model 3, which excludes seven days of past 

consumption (16 variables in total). The same combinations of mtry and 

nodesize are tested for multiple numbers of trees but accuracy improvement 

plateaus after ~300 trees. The optimal MSE values correspond to an mtry of 5 

and nodesize of 50 for model 1 (Figure 3.4(a)), as well as an mtry of 8 and 

nodesize of 200 for model 3 (Figure 3.4(b)). However, the above values for 

model 1 result in a relatively large difference (not shown here) between the 

accuracy in the calibration and validation datasets, leading to the conclusion 

that the model is slightly overfitted, therefore a nodesize of 200 is chosen 

instead for both models. 

 

Figure 3.4 Contour plot for the MSE of the validation dataset when (a) all variables 

including past consumption are included in the model and (b) when past consumption 

data is not available. The crosses correspond to the point in the grid with the lowest 

MSE.  

MSE MSE b) Without past consumption a) With past consumption 

nodesize 

m
tr

y 

nodesize 
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The parameter nodesize for the rest of the models is kept at 200 and the 

number of trees at 300, although all models are tuned for the optimum value of 

the mtry parameter. This is deemed an acceptable solution based on the above 

results, since the MSE has a very small range over the search space (Figure 

3.4). This confirms the belief that RFs are fairly robust to changes in their 

hyperparameters, at least when these are varied within reasonable limits. 

3.4.3. Variable permutation  

Permutating a variable breaks the connection between the predictor and the 

model’s response, therefore it destroys its predictive capability. Here, one 

variable is permutated at a time for each model and results appear in Figure 3.5 

(models with past consumption) and Figure 3.6 (models without past 

consumption). The x axis demonstrates the importance factor, i.e. the factor by 

which the MSE increases (denoting decline in model performance), when an 

input variable is permutated. The variables are ranked on the y axis based on 

this importance factor. Since the shuffling is repeated multiple times in order to 

increase the robustness of the outcome, several importance factors are 

calculated for each variable. The error bar corresponds to the importance at 5% 

and 95% of the repetitions, whereas the dot corresponds to the median. A factor 

of one means that excluding the variable from the model does not influence 

accuracy. 

According to Figure 3.5, when seven days of past consumption are included as 

model input, they are by far the most important predictors (Figure 3.5, Model 1). 

Demand one day in the past (d.1) has the highest explanatory value, followed 

by demand on the same day of the week but seven days prior (d.7). The former 

is because of demand autocorrelation while the latter is because of demand 

similarity (same day of the week). The day of the week is the only other 

important variable, whereas the rest has a mild to no influence. However, even 

when the variable with the highest importance (d.1) loses its predictive capacity, 

the MSE increases only by a factor of 1.15. Since model 1 already includes 

seven days of past consumption that carry overlapping information, excluding 

any one of them does not have a major effect on the output. 

However, things are different for model 2 (Figure 3.5), which excludes highly 

correlated predictors. In this case, both consumption 1 day ago (d.1), as well as 
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the occupancy rate are highly important and excluding either from the model 

increases the MSE by a factor of 1.50 - 1.53, a much higher rise compared to 

model 1. In addition, the significance of the rest of the household characteristics 

as well as the type of day also increases (Figure 3.5, Model 2).  

 
 

Figure 3.5. Factor by which the MSE increases when each feature is permutated for 

models 1 and 2. 

Figure 3.6 demonstrates the same results, when past consumption data are not 

used as input (Models 3 - 5). In this case, household characteristics, particularly 

the occupancy rate, are the most important predictors, followed by temporal 

information (type of day or weekday) (Figure 3.6). All other variables, including 

the weather and the rest of the temporal characteristics, are very close to a 

factor of one. This means that excluding them from the model does not 

influence the accuracy. Although there are slight differences among models 3-5 

(Figure 3.6), the importance factors relating to each predictor are very similar. It 

is worth noting that the influence of the type of day and weekday slightly 

increases when these two variables are accounted for separately (Figure 3.5, 

Models 4 and 5), essentially diminishing the overlap of information that goes in 

the model.  

Notably, there is a large difference in the scale of feature importance between 

Figure 3.5 (with past consumption) and 3.6 (without past consumption). When 

the explanatory factors contain overlapping information, excluding one of them 

only marginally reduces accuracy, resulting in low feature importance factors 

(Figure 3.5). When information about past consumption data is not available, 

the occupancy rate is the only variable carrying this information, resulting in an 
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importance factor of up to 2.3 (Figure 3.6, Model 3). This means that excluding 

information about the occupancy rate of a household, when past consumption is 

not available, will increase the MSE ~2.3 times.  

  

Figure 3.6. Factor by which the MSE increases when a feature is permutated for models 

3 - 5. 

The above provides a good overview of variable importance and interactions, 

and can be used as a guide on what variables to include in the model under 

different conditions, i.e. based on what other relevant information is available in 

each case. 

3.4.4. Prediction accuracy  

A summary of the modelling results for the training and test datasets are shown 

in Table 3.3. Model 6 has the best performance (MAPE = 17.9%, R2 = 54.9%), 

although all models have a reasonable accuracy, considering the level of 

temporal and spatial aggregation (daily consumption, ~3.8 households/group). 

Model 7, which does not include data on past consumption, can still explain 

49% of the variance in the model (MAPE = 19.7%, R2 = 49.0%).  

According to Table 3.3, reducing the number of explanatory variables does not 

(in most cases) influence the results, whereas in some cases it even improves 

the model’s accuracy. Removing correlated weather and temporal variables has 

hardly any effect on the result (Table 3.3, Models 3-5), whereas excluding six 

days of past consumption from model 1 leads to increased errors (Table 3.3, 

Model 2). Model 7, which includes only six household characteristics and the 

type of day as input, performs better than model 3, which has additional 
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temporal and weather characteristics. Removing all variables other than past 

consumption and the type of day from model 1 also slightly increases the 

prediction accuracy (Table 3.3, Model 6). In both cases, this is likely due to 

overfitting problems, i.e. the models learning patterns from the variables that do 

not influence consumption. 

Table 3.3: Model configuration and prediction accuracy for models 1-7.  

  Model Parameters Training Testing 

Models 
Cons 

Data 
mtry nodesize ntrees 

MAPE 

(%) 

MSE 

(l/hour) 

R2 

(%) 

MAPE 

(%) 

MSE 

(l/hour) 

R2 

(%) 

1 Yes 5 200 300 16.1 742 64.3 17.9 952 54.7 

2 Yes 4 200 300 18.1 936 54.7 19.0 1055 50.0 

3 No 8 200 300 18.7 983 53.1 19.7 1115 47.6 

4 No 6 200 300 19.3 1027 51.3 20.0 1132 47.3 

5 No 5 200 300 19.1 1014 52.0 19.8 1126 47.5 

6 Yes 3 200 300 16.7 809 61.0 17.9 934 54.9 

7 No 3 200 300 19.6 1069 48.5 19.7 1067 49.0 

3.4.5. Influence of household variables 

Next, the effect that different household characteristics have in the RF model is 

uncovered using ALE plots (Figure 3.7). The y axis shows the different 

categories of each explanatory variable, while the x axis demonstrates the 

deviation from the mean predicted consumption for each household category 

(Figure 3.7). When the ALE value of the x axis is positive, the corresponding 

category is predicted to have a consumption higher than average, whereas the 

opposite is true when the ALE value is negative.  

Results are in agreement with previous analysis that explored the distribution of 

consumption for each household category (Figure 3.2). Occupancy has by far 

the highest influence on predicted consumption, as properties with low 

occupancy rate (1 resident) are predicted to consume ~75 litres/capita/day of 

water more than properties with high occupancy (3 or more residents) (Figure 

3.7(a)). The next most influential variable is the council tax band (Figure 3.7(b)). 

Higher paying bands (F-H) have a predicted consumption of ~26.5 

litres/capita/day more than lower bands (A-C), while unmeasured customers are 

also on the higher end, with ~19.5 litres/capita/day more than measured 

customers (Figure 3.7(c)). A smaller influence is identified for the acorn group, 

garden size and rateable value. Financially stretched customers have the 

highest predicted consumption, which is ~9 litres/capita/day more than 
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customers in the comfortable acorn group (Figure 3.7(f)). Properties with large 

gardens are predicted to consume ~5 litres/capita/day more than the ones with 

small gardens (Figure 3.7(e)), whereas properties with high rateable values are 

predicted to consume ~3.5 litres/capita/day more than the low ones (Figure 

3.7(d)). 

 

Figure 3.7. Influence of six household characteristics on predicted water consumption 

– ALE plots. 

3.4.6. Influence of temporal variables  

The effect of four temporal characteristics on the model’s result is also 

investigated using ALE plots (Figure 3.8). According to Figure 3.8, the type of 

day and the day of the week have the highest impact on the predicted water 

demand, whereas the month and the season have almost no influence. 

Overall, water consumption on weekends and holidays is predicted to be ~11 

litres/capita/day higher than on working days (Figure 3.8(c)). Water demand 

gradually declines from Monday to Friday, to then increase again on Saturday 

and Sunday. Sundays claim almost 8 litres/capita/day more on average 

compared to Fridays, the day with the lowest predicted consumption (Figure 

3.8(a)). 
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Although the month and season have almost no influence on the model’s result, 

summers cause a slight increase (<1 litres/capita/day). An even smaller 

influence is observed for December (<0.5 litres/capita/day), the month 

associated with the highest increase in predicted consumption. This is likely due 

to the holiday season, as people tend to spend more time at home.  

 

Figure 3.8. Influence of four temporal characteristics on predicted water consumption 

– ALE plots. 

3.4.7. Influence of weather variables  

The influence of four weather variables on the model’s response variable, i.e. 

the daily water consumption, is assessed using ICE plots (Figure 3.9). Air and 

soil temperature are strongly correlated, as is the amount of rainfall and days 

without rain. In addition, chapter 1 concluded that the rainfall amount and soil 

temperature have a limited effect on water demand, thus only the ICE curves 

corresponding to air temperature, humidity, sunshine duration and days without 

rain are presented in the following. To avoid even small interactions from 

correlating weather predictors, only one weather variable at a time is considered 

as model input when creating the ICE plots, along with past consumption data 

and the type of day. For each plot in Figure 3.9, the y axis represents the 

(c) 

(b) (a) 

(d) 
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change in PCC compared to the mean, when the variable of interest (in this 

case one of the four weather variables), varies within its whole range of values 

(x axis). In other words, each plot in Figure 3.9 shows the response of the 

dependent variable (the daily water consumption), for a change in the 

independent variable (the weather), for each data instance (one data instance is 

one day and household type). The percentage associated with each curve 

represents the percentage of data points that belong to each cluster.  

 

Figure 3.9. Influence of four weather variables on predicted water consumption – ICE 

plots. 

According to Figure 3.9, the weather variable that causes the biggest spike in 

water consumption is air temperature (Figure 3.9(a)). This effect becomes 

significant when temperature exceeds ~18°C and to a lesser extent for near-

freezing temperatures. Although water consumption starts increasing for 

temperatures over this threshold, the rate of increase varies significantly (Figure 

3.9(a)). As it was pointed out in chapter 1, different days and households have 

different sensitivity to weather changes. Here, only for 11% of data instances 

(one data instance is one day and household type), the model predicts an 

increase in water use of up to 15 litres/capita/day, for an increase in air 

temperature from 18°C to 30°C. For the rest 89% of the days and household 

(d) 

(b) 

(c) 

(a) 
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types, the predicted increase in consumption is between 2.5 - 6.0 

litres/capita/day (Figure 3.9(a)).  

For the rest of the weather variables, the predicted increase in consumption is 

lower than for air temperature, although the effect is more widespread over 

household types and days in the data. The maximum increase in water 

consumption caused by sunshine duration is 9 litres/capita/day, 6 

litres/capita/day lower than for air temperature, but this increase relates to 15% 

of data instances. The relative humidity has an even smaller effect, with a 

maximum change of 4 litres/capita/day. However, this change applies to ~46% 

of all days and household types, whereas for 22% of them there is a near-

steady decline over the whole range of humidity values (Figure 3.9(c)). For the 

rest 24% of data points, water consumption drops by 4 litres/capita/day, for an 

increase in humidity from 60% to 70%, whereas it does not decrease further 

after this point. The number of consecutive days without rain has the smallest 

effect on the prediction. Consumption starts increasing after 12 days without 

rain, reaching a maximum increase of 3 litres/capita/day, for 16% of data points. 

For the rest of the days and households, the number of days without rain has no 

effect on consumption.  

 

3.5. Discussion  

This chapter attempts to deepen the understanding of water consumption and 

produce accurate forecasts of demand, with and without past consumption data. 

However, even for the best model and an abundance of data, the minimum 

MAPE achieved is 17.9%, while the maximum R2 is 54.9%. Although these 

results might seem unimpressive, they need to be put in the right context. In 

order to maintain the heterogeneity between households with different 

characteristics, this study resulted in very small aggregations of properties, with 

~3.8 households/group. In addition, in order to account for the temporal 

variability of water consumption (type of day, day of the week), forecasts are 

made at the daily scale. Thus, taking into account the small temporal and 

spatial scale for which predictions are made, the models can predict a 

significant portion of the variance in household consumption, despite the 

amount of noise and randomness associated with the level of aggregation. As a 

reference, when predicting household consumption at the monthly scale, 
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previous studies achieved a maximum R2 of 44% (Williamson, 2002) and a 

minimum RMSE of 1,246 (Duerr, 2018). 

When predicting household demand, past consumption data inherently captures 

the ‘predictive information’ contained in variables relating to household 

characteristics. Past consumption has a memory and therefore adding 

additional information that is already embedded in it does not offer much further 

benefit. However, in the absence of past consumption data, information about 

household characteristics can explain a significant amount of variance in the 

model and produce predictions that are nearly as good as those with past 

consumption. The implication of this finding is that for the purposes of demand 

prediction, water utilities do not need to rely heavily on extensive smart 

metering programs over the whole network. Smaller scale programs may be 

sufficient to develop useful predictive models that could then be up-scaled with 

data on customer and property characteristics. This finding is particularly 

valuable for water utilities in the UK, where almost half of the properties are 

billed based on the property’s rateable value. It is important to bear in mind that 

there are other potential benefits of smart metering data beyond demand 

forecasting, including leakage detection and deriving a greater understanding of 

household water consumption at the micro-component level. 

In this chapter, different approaches are applied to identify the best model 

predictors. According to Zubaidi et al. (2018), choosing the best set of input 

variables based on the model’s performance is flawed, due to its dependence 

on the model’s structure and calibration approach. However, if the objective is 

solely to maximise the model’s performance, for its current configuration, the 

model-based approach is the only one that can truly optimise the model’s 

output. Based on the above, it becomes clear that there are two very distinct 

aspects when determining the optimum predictors for water demand 

forecasting. One would be to solely determine the variables that have the 

highest influence on water consumption, whereas the other would be to 

determine the ones that can improve forecasting accuracy. Both answers, 

although distinct, are equally important and could find use in different 

applications.  

Another interesting result is the influence of a variety of predictors on water 

demand. Household characteristics and particularly the occupancy rate have 
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the strongest effect on predicted PCC, with single-occupancy properties to 

account for a significantly higher cut of the water supply, followed by customers 

in high tax bands and unmetered properties. In addition, the temporal variations 

of water demand over a calendar week as well as a whole year are explored 

and results show that consumption is predicted to be higher during weekends 

and holidays. However, no strong seasonal or monthly pattern is identified.  

Finally, this study concludes that the weather input cannot increase the 

accuracy of the modelling results. Out of four weather variables, the air 

temperature causes the highest spike in water consumption, although sunshine 

duration and humidity impact more customers and days in the data. In addition, 

the effect of air temperature and sunshine duration only becomes visible after a 

certain threshold (~18°C and 8h, respectively). It is worth noting that slightly 

increased consumption is also associated with temperatures near zero degrees, 

which is likely because water is used to prevent pipes from freezing (Billings 

and Jones, 2008). For the case of humidity, the effect is more linear over the 

whole range of its values, whereas the smallest influence on the predicted 

consumption is identified for the number of consecutive days without rain. 

However, consumption starts rising after 12 days without rain, meaning that this 

could potentially cause problems in the future, if the length of draughts 

increases.  

A reason for the low impact of weather on prediction accuracy could relate to 

the mild UK climate, which lacks seasonal extremes, as well as the relatively 

few number of households that are influenced by weather changes. In this 

region, demand uplifts associated with the weather are typically in the order of 

5% during hot summer periods, thus weather induced demand is overall limited. 

Another reason could be the small size of household groups (~3.8 

properties/group). At this level, the random effect of consumption might be too 

strong to allow for the subtle changes due to weather to show. Overall, this 

chapter confirms what was observed in chapter 1, that the effect of weather 

becomes noticeable only for certain households, days and times. Therefore, 

when looking at the overall influence of the weather over all customer types and 

days, it is averaged and thus diminished.  
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3.6. Summary and conclusions  

This chapter evaluates the ability of a variety of predictors (household, weather 

and temporal characteristics) to produce accurate forecasts of short-term 

demand without information on past consumption. To do this, a number of 

Random Forest (RF) models are developed using different combinations of 

input variables, for two general scenarios, with and without past consumption as 

input. The RF models predict demands one day ahead, for homogenous groups 

of ~3.8 households on average.  In addition, a variety of interpretable machine 

learning techniques are incorporated in the methodology, in order to assess the 

contribution of the predictors on the forecasting accuracy and predicted water 

consumption.  

The results obtained show that:  

 When past consumption data are not available, household and temporal 

characteristics can be used to achieve a similar demand forecasting 

accuracy (MAPE = 19.7%, R2 = 49.0%) as in the case with known past 

consumption (MAPE = 17.9%, R2 = 54.9%). This is of significance to 

water utilities, as it enables them to make reasonably accurate demand 

forecasts even for the households where water consumption is not 

observed. The best performing forecasting model in this case is the 

model that includes all six household variables as well as the type of day 

as inputs. 

 When past consumption data are included in the demand forecasting 

model, no other additional variable can significantly improve the 

prediction results. The reason for this is that the additional information is 

already embedded in past water use. The best performing demand 

forecasting model in this case is the one that uses seven days of past 

consumption and the type of day as input. 

 The property’s occupancy rate is the most influential input variable, 

followed by the council tax band and metering status. The acorn group, 

garden size and rateable value have the smallest effect (Figure 3.7). The 

weekly pattern of consumption also becomes evident as weekends and 

holidays have a higher predicted consumption compared to working days 

(Figure 3.8), although the monthly and seasonal patterns are very weak.  
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 Although weather input does not improve the model’s accuracy, 

relationships are identified between water consumption and air 

temperature, sunshine duration, humidity and to a lesser extent for days 

without rain. This influence however is limited to only certain household 

groups and days in the data, and in most cases it is triggered when the 

weather variable exceeds a certain threshold.  

The above results can assist with the effective targeting of water conservation 

strategies and the development of improved water demand forecasting models. 

However, they are not without certain limitations.  

This study was performed using a certain level of temporal (daily) and spatial 

(~3.8 households/group) aggregation, which might have influenced the results. 

Increasing the level of spatial aggregation decreases the range of demand 

values, as it decreases the randomness of individual household use and thus it 

should reduce forecasting errors. In addition, it is possible that the variable 

importance also changes at different aggregation levels. This is the focus of 

chapter 5, which will explore how the forecasting accuracy and variable 

importance varies over different scales.  

Finally, due to its accuracy, transparency and ease of implementation, a RF 

model was selected for this analysis. However, results may improve if a 

different model is used instead. Chapter 4 focuses on comparing and assessing 

the accuracy of a variety of models, for different forecasting goals. This will help 

identify the best performing model, with respect to the forecasting aim.
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4.  

 

4.1. Introduction 

Satisfying the water supply-demand balance is a major challenge in many 

countries and a topic of increasing concern in the UK. Efforts related to control 

and management of water networks using modelling techniques are not new and 

have been the topic of extensive research (Brdys and Ulanicki, 1994). According 

to the government’s water strategy for England report (Defra, 2008), an essential 

aspect of managing water demand is by ensuring a good forecasting of future 

patterns. However, forecasting demand is a challenging task, due to the nature 

and quality of the available data, the numerous factors that influence consumption 

and the various forecast horizons and spatial scales (Mamade et al., 2014).  

With the advancement in technology and computing power, as well as the 

increasing data availability, machine learning has become a popular approach for 

This chapter was submitted as a Research Article to Urban Water Journal (ISSN: 

1744-9006). This publication has been slightly modified in order to improve 

consistency throughout the thesis. The chapter was written by Maria Xenochristou 

but has benefited from the comments of the co-authors, Zoran Kapelan, Chris 

Hutton and Jan Hofman.  

Citation: Xenochristou, M., Hutton, C., Hofman, J., and Kapelan, Z. (2019). An 

ensemble stacked model with bias correction for improved water demand 
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water demand forecasting (Froukh, 2001; Cutore et al., 2008; Firat et al., 2009; 

Bai et al., 2014; Bakker et al., 2014; Romano and Kapelan, 2014; Shabani et al., 

2016). There is currently an abundance of methods and models available, from 

the more researched Artificial Neural Networks (ANNs) to the relatively newer 

concept of ensemble machine learning.  

ANNs have been proven effective to predict short-term, medium-term and long-

term demand (Bougadis et al., 2005; Adamowski, 2008; Firat et al., 2009; Herrera 

et al., 2010; Dos Santos and Pereira, 2014; Mouatadid and Adamowski, 2017; 

Ghiassi et al., 2017; Altunkaynak and Nigussie, 2018). Adamowski (2008) used 

an ANN to predict peak daily water demand for ~77,500 consumers in the city of 

Ottawa  and found it performed better (R2 = 69%) than multiple linear regression 

and time series analysis. Dos Santos and Pereira (2014) tested eight model 

configurations of an ANN (3-layer, feed forward, back propagation) for short-term 

water demand forecasting using weather and temporal characteristics. The ANN 

was compared with multiple linear regression for hourly predictions at a large 

metropolitan area in Sao Paulo, Brazil. The best performance was obtained for 

the ANN that implemented 12-hour averages of the input variables and past 

consumption data as explanatory factors (R2 = 67.9%). However, the authors 

argued that the model could benefit from additional input variables. 

Ghalehkhondabi et al. (2017) reviewed the water demand forecasting literature 

between 2005 and 2015 and concluded that although soft computing techniques 

have been extensively used, deep neural networks (DNNs) have yet to be tested. 

In recent years, some of the most successful models in machine learning 

competitions have been ensemble methods, which create a strong learner by 

combining multiple, individual, weak learners. There are three ensemble 

techniques, bagging, boosting and stacking. Bagging is a resampling technique 

that randomly chooses a sub-sample of the dataset with replacement for training 

each learner (Mao, 1998). An example of a commonly used bagging algorithm is 

Random Forests (RFs) (Breiman, 2001), which are based on training multiple 

decision trees on different samples of the original training set. Boosting is also a 

resampling technique, but in this case the instances of the training data that got 

misclassified from previous learners gain additional weight, while the ones that 

were classified correctly lose weight. This way, the model gradually becomes 

better, as it focuses on harder areas of the problem. Gradient Boosting Machines 
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(GBMs) are an example of a commonly used machine learning algorithm that 

uses this method. Finally, stacking is the process of feeding the outputs of 

different machine learning models (base models) into one meta-learner (Ngo, 

2018). Stacked models have been found to outperform individual models, since 

they combine the strengths and reduce the negative capabilities of their individual 

counterparts. 

Although proven to perform better than their base models, ensemble techniques 

have been very rarely tested in water demand forecasting studies 

(Ghalehkhondabi et al., 2017). Herrera et al. (2010) used RFs for forecasting 

hourly water demand for a region of ~5,000 consumers and found them to 

perform worse than Support Vector Regression (SVR), Multivariate Adaptive 

Regression Splines (MARS) and Projection Pursuit Regression (PPR). However, 

since not all parameters of the RFs were properly tuned, results could potentially 

improve. Tiwari et al. (2016) assessed the capacity of extreme learning machines 

(ELMs) alone, or combined with Wavelet analysis or bootstrap method and 

compared it with traditional ANN models. The aim was to forecast urban water 

demand for one day lead for the city of Calgary (~1.1 million consumers). The 

combined ELM-Wavelet (ELMw) model performed best for short-term forecasting 

and peak demands, with smaller errors and less computational time. However, in 

this study there was a clear tendency in all models to over-predict the lower 

consumption days and under-predict the days with high consumption. Chen et al. 

(2017) also used RFs as well as a combined Wavelet transform to predict daily 

water consumption for a supply area of 170,000 households and found that 

although the combined model performed better (R = 80%), it was still not capable 

of predicting the daily variations in water demand. Finally, Duerr et al. (2018) 

compared several time series and machine learning models, including RFs and 

GBMs, for monthly predictions at the household level and found that machine 

learning models generally underperformed when predicting monthly averages. 

However, the authors pointed out that improved data collection, high-resolution 

covariates, demographic information, as well as capturing the spatial 

dependence between neighbouring households could improve results. 

As it becomes apparent from the above, although machine learning methods 

have been commonly used for water demand forecasting, the classical methods 

cannot produce the most accurate results (Ghalehkhondabi et al., 2017). Even 
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when consumption is aggregated at high temporal (e.g. monthly or quarterly) or 

spatial (e.g. city level) scale, the models commonly used in the literature 

struggle with accuracy, bias and peak day predictions. Models based on deep 

learning and ensemble techniques, particularly model stacking, have been 

consistently found to produce excellent results in other fields. However, they 

have attracted very little to no attention in the water demand forecasting 

literature. Even when explored, essential aspects of the modelling and 

evaluation process like the tuning of the model’s parameters or the assessment 

of its ability to predict outliers are often overlooked. 

This chapter aims to address this gap by developing a new methodology based 

on model stacking and bias correction. This methodology is compared with a 

selection of ensemble and deep learning models using real data from the UK. A 

detailed description of the data used in this study is provided in the next section. 

Then, the overall structure and characteristics of each model are outlined, 

followed by the bias correction methods. The same section also includes details 

about the technical implementation of the models, such as the software, 

programming language and open-source tools. This is followed by the results of 

the study, in terms of modelling accuracy for all days as well as peak days. 

Finally, the chapter concludes with a discussion of key findings, followed by a 

summary of results, conclusions and recommendations for further research. 

4.2. Data 

An essential aspect of developing machine learning models is getting access to 

sufficient, high quality data. This study uses real data from the southwest of 

England (Figure 4.1) that are available at very high temporal and spatial 

resolutions. Specifically, the dataset comprises of past consumption data and 

partial postcodes that became available by Wessex Water, one of the UK water 

companies. In addition, weather data were provided by the Meteorological 

Office of the United Kingdom (Met Office). 

Water consumption data were collected at the household level using smart 

meters. The smart metering modules recorded consumption every 15-30 

minutes over a period of three years (10/2014 – 9/2017), from 1,793 properties 

scattered around the study area. These data were cleaned and pre-processed 

in order to remove inconsistencies, errors, empty properties and water-supply 
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leakage. A detailed description of this process is available in chapter 2. For 

each household in the dataset, a partial postcode indicates its approximate 

location. The study area includes six postcode areas, with up to 212 

properties/day, depending on data availability on the corresponding day and 

postcode. In order to smooth out the consumption signal, water consumption is 

aggregated at the daily scale (1,019 days in total) among houses with the same 

postcode. A spatial analysis of the dataset concluded that smaller groups of 

properties are associated with increased forecasting errors, thus days and 

postcodes with less than 60 properties were excluded from the data. This 

resulted in 5,063 groups with 120 properties/day on average.  

 

Figure 4.1. Location of property areas (red) and weather stations (blue). 

The weather dataset includes four weather variables, maximum air temperature, 

mean soil temperature at 10cm depth, mean relative humidity and total rainfall. 

This data was recorded at the hourly or daily scale from hundreds of weather 

stations across the study area as part of the MIDAS (Met Office Integrated Data 

Archive System) dataset (Met Office, 2006a; Met Office, 2006b; Met Office, 

2006c; Met Office, 2006d; Met Office, 2006e). In addition, the number of 

consecutive days without rain is calculated based on the daily rainfall. The 

values recorded at multiple weather stations are combined using weights, 
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based on the station’s proximity to the properties in the study area. Weather 

stations that are located closer to the properties are assigned a higher weight 

whereas weather stations with no households in close proximity (closer than 

any other weather station) are removed from the analysis. Weather records that 

were not quality checked by the Met Office are also excluded. 

4.3. Methodology 

4.3.1. Model inputs  

All demand forecasting models have a single output (or response) variable and 

a variety of inputs (or predictors). The predictor variables are a selection of 

explanatory factors that can influence water use and thus explain part of the 

variance in the model. In this case, the response variable is the water 

consumption one day into the future, at a given postcode area. The model 

inputs are past consumption data, area postcodes, temporal and weather 

characteristics (Table 4.1).  

Two model input configurations are tested in the following, one that includes all 

predictors (Group 1, Table 4.1) and one that excludes past consumption data 

(Group 2, Table 4.1). In terms of the practical value of this work, it is important 

to note that many water utilities do not have access to high resolution 

consumption records, at least not for the whole extent of their network. 

Therefore, it is essential when evaluating the best model to also account for its 

ability to deal with the absence of past consumption data. 

Table 4.1. Input variables used to train each group of models. 

Variable Group Model Input Variables Group 1 Group 2 

Past Consumption 1-7 days prior X  

Temporal 
Type of Day X X 

Season X X 

Postcode Area Postcode X X 

Weather 

Sunshine hours X X 

Air Temperature X X 

Humidity X X 

Days without rain X X 

Total Variables  14 7 
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Each input variable describes a different aspect of water demand variability. 

Water consumption is highly autocorrelated from one day to the next one, 

therefore a sliding window of 7 days (one input variable for each day) is chosen 

to capture the weekly repetition of water use. The postcode is also considered a 

valuable predictor, since the location of a property is associated with certain 

socio-economic status and property characteristics that can also influence water 

behaviour (see chapter 3). Finally, previous work (see chapter 3) concluded that 

both time-varying factors and weather changes can influence demand. 

Therefore, the type of day (working day vs weekend/holiday), the season, as 

well as four weather variables (sunshine hours, air temperature, humidity and 

days without rain) are used as explanatory factors in the models. Since rainfall 

and days without rain are highly correlated and previous research (see chapter 

2) concluded that rainfall has little influence on water consumption, only the 

number of days without rain is used as model input. 

4.3.2. Model tuning and assessment  

Initially, the dataset is shuffled and randomly divided into a training (70%) and a 

test (30%) dataset. The training set is used to fit and tune the model whilst the 

test dataset is used to assess the model’s ability to perform predictions on 

unseen data, i.e. data that is not used during the model-building phase. 

4.3.2.1. Model tuning  

The hyperparameter tuning step is a vital part of building an efficient machine 

learning model. It assists with defining a set of input parameters that influence 

the model structure and thus the results. The available parameters for tuning 

depend on the type of model and can determine how closely the model will fit 

on the training data. Fitting too closely could mean that the model learns from 

the noise in the training dataset (overfitting), which will result in a poor 

prediction on the test dataset. On the other hand, fitting too loosely (underfitting) 

means that the model has not learnt to represent the patterns in the data.  

The models here are tuned for the optimum combination of hyperparameters 

using a 5-fold cross validation process (Zhang, 1993). This means that in every 

run, the training data is shuffled and divided into five parts, out of which four are 

used for training and one for testing. This ensures the model’s performance on 
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different sets of data and enhances the robustness of the hyperparameter 

selection.  

Although there are different approaches to select the hyperparameter values 

(e.g. grid search, random search and evolutionary optimisation), a random 

search as well as a simple grid search are used here, depending on the number 

of hyperparameters that need tuning at a time and the tools available. In a grid 

search, a number of values are defined for each parameter, creating a multi-

dimensional grid search space, where each dimension is one variable. In a 

random search, the hyperparameters are sampled from a pre-defined range of 

values. Each candidate model is built on a unique set of hyperparameters and 

the best model is chosen as the one that achieves the lowest error on the test 

dataset.  

The ‘autoML’ module of the ‘h2o’ platform can train a number of machine 

learning models (RF, XRT, GBM, DNN and GLM), as well as tune some of them 

(GLM, GBM and DNN) for the optimum set of hyperparameters. The model 

training stops according to a variety of stopping criteria. In this case, these were 

the stopping tolerance (0), stopping metric (MSE) and stopping rounds (1). This 

means that ‘h2o’ stops running when the MSE does not improve more than 

zero, over two consecutive iterations (for the same or different models). In 

addition, the maximum runtime is set to two hours, which means that the 

program stops running and saves the models developed up to this point, if none 

of the above criteria have been fulfilled.  

During this time, ‘h2o’ trained 335 models without past consumption data and 

147 models including past consumption data. Since additional variables add 

complexity to the model, they consequently increase training time, leading to 

less than half of models being trained within the same time frame.  

Out of the six model types that are presented here, three of them (Random 

Forests, Extreme Gradient Boosting, Artificial Neural Networks) are tuned using 

a pre-defined grid search space, whereas the Generalised Linear Model, 

Gradient Boosting Machine and Deep Neural Network are tuned automatically 

by ‘h2o’ using a random search. 
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4.3.2.2. Model assessment 

Three performance criteria are used to assess the model’s performance: the 

mean absolute percentage error (MAPE), mean square error (MSE) and R2 

coefficient of determination. Each one of these provides slightly different, i.e. 

complementary information about the model’s performance. The MAPE is one 

of the most common metrics, as it is easy to interpret and it scales the error in 

relation to the actual value. The MSE is sensitive to outliers, while the R2 shows 

the variance in the dependent variable (model output) that can be explained by 

changes in the independent variables (model inputs) (Xenochristou et al., 

2019a). 

4.3.3. Modelling techniques 

A number of modelling techniques such as neural networks and linear models, 

as well as representatives from every family of ensemble algorithms (bagging, 

boosting and stacking) are considered in this study. The following is an 

extensive list of all models that are used, either as a prediction tool or as a 

component of the stacked model. 

4.3.3.1. Random Forests 

Random Forests (RFs) were first introduced by Breiman (2001) as an 

ensemble of (hundreds or thousands) of decision trees. The unique value of 

RFs is partly due to the implementation of randomness in the modelling process 

(Herrera et al., 2010). A RF model trains each tree on a slightly different set of 

data, whilst at each split of the tree it chooses among a different subset of input 

variables. The final result of the forest is calculated as the mean prediction 

among all the trees. RFs have been consistently found to perform better than 

other machine learning techniques while being a method that has not been fully 

explored in the water demand forecasting literature (Herrera et al., 2010; Chen 

et al., 2017). 

There are three main parameters that need tuning in RFs, the mtry, ntrees and 

tree depth (Scornet, 2017). The mtry is the number of variables randomly 

selected at each node and considered for splitting. Reducing the mtry increases 

the randomness of the tree-building process and therefore creates trees that 

are less similar to each other. The ntrees parameter is the number of trees used 
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to build the forest. Model accuracy typically plateaus after a number of trees 

that are required to build a credible model. The tree depth is the point at which 

the tree should stop growing, sometimes also denoted by the size of the final 

tree node (nodesize). The higher the tree depth, the closer the model fits on the 

training data, thus increasing the risk of overfitting.  

The optimum (and default) value in regression for the number of random 

variables used for splitting (mtry) at each node is often considered to be the 

total number of input variables divided by three. According to Table 4.1, the total 

number of variables is 14 for the models in Group 1 (with past consumption) 

and 7 for the models in Group 2 (without past consumption). Therefore, the mtry 

range tested for Group 1 is 3-7, while for Group 2 is 2-4. The number of trees is 

varied from 120 to 240, whereas the node size is varied from 20 to 120.  

Extremely Randomized Trees (XRT) are a variation of RFs that introduce 

added randomness in the above process. Similarly to RFs, a random subset of 

variables is selected for splitting at each node, but in this case a number of 

cutting-points (thresholds) are also selected at random. The best of these 

randomly selected thresholds is chosen for splitting at the node. The level of 

randomness implemented in the process can be tuned and is controlled by the 

model parameters. In the extreme case, the trees are built completely at 

random, independent of the training sample (Geurts et al., 2006). 

4.3.3.2. Gradient Boosting  

Gradient Boosting Machines (GBMs) were first introduced by Friedman 

(2001) as an implementation of gradient boosting that explicitly deals with 

regression problems. In the GBM implemented here, the base learner is also a 

decision tree. The boosting algorithm starts with one tree and at each iteration 

step, a new decision tree is fitted on the residuals of the previous tree and 

subsequently added to the model (Touzani et al., 2018). This is an iterative 

process that is built as a simple optimisation problem, where the objective is to 

minimise the loss function, i.e. the model error. Since the new trees are trained 

on the residuals of the old trees, the model focuses on areas of the problem that 

did not perform well (Touzani et al., 2018). A shrinkage rate can also be applied 

on the algorithm, meaning that the new trees that are added to the model are 

gradually assigned lower weights. This increases the steps required for the 
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algorithm to converge to a solution and reduces the risk of overfitting. The final 

result of the GBM is the weighted sum of the individual trees that were trained 

on weighted parts of the dataset (based on the accuracy achieved at the 

previous step).  

There is a variety of hyperparameters available for tuning GBMs that aim to 

assist the algorithm with arriving at the best solution, by implementing 

randomness in the modelling process or avoiding overfitting. In addition to the 

number of trees (ntrees), maximum tree depth (max_depth), and number of 

variables sampled for splitting (col_sample_rate), the number of variables 

sampled for each tree (col_sample_rate_per_tree) is also a hyperparameter. 

The number of variables sampled at each node is then calculated as the 

product of the variables sampled for the tree, multiplied by the variables 

sampled for splitting. The learning rate of the algorithm (learn_rate) is the factor 

by which the contribution of each consecutive tree is reduced compared to the 

previous tree. Another parameter (histogram_type) defines the type of 

histogram used to sample values that are tested for splitting at each node, thus 

speeding up the selection of the best splitting point. The subsample size 

(sample_rate) determines the size of the random sample used to train a new 

tree at each iteration. Smaller samples result in lower testing errors whereas 

higher samples improve the training accuracy. Finally, two hyperparameters 

determine if a further split in a tree will occur, based on the minimum required 

relative improvement in squared error (min_split_improvement) and the 

minimum number of observations in a leaf node to allow further splitting 

(min_rows). More details regarding the implementation of the GBM algorithm 

can be found in Malohlava and Candel (2017). 

A total of nine hyperparameters are tuned for the GBM model, using the ‘h2o 

autoML’ platform. The selected hyperparameter values for the models with and 

without past consumption data appear in Table B2. The ‘auto’ histogram type 

means that the cutting points tested for splitting are chosen by dividing the 

range of values of each variable in equal steps. Here, the values tested for 

splitting are selected by dividing the variable range into twenty equal steps.  

Extreme Gradient Boosting (XGBoost) is another implementation of a 

boosting algorithm. It was introduced by Chen and Guestrin (2016) as ‘an 

efficient and scalable implementation of the Gradient Boosting framework by 
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Friedman (2001)’ (Chen and He, 2015). XGboost aims to prevent overfitting and 

maximise the efficiency of computer resources (Fan et al., 2018). According to 

Chen and Guestrin (2016), 17 out of the 29 winning solutions published by 

Kaggle, an online coding competition platform, used XGBoost, either as a single 

model or as part of a stacked model.  

The number of iterations (nround), the subsample size (subsample), maximum 

tree depth (max_depth) and fraction of explanatory variables sampled at each 

tree (colsample_bytree) are also hyperparameters of the XGBoost algorithm. In 

addition, the shrinkage rate (eta) defines the learning rate of the algorithm in the 

training step, i.e. the amount by which the contribution of each consecutive tree 

is reduced compared to the previous tree. Additional parameters that need 

tuning for this algorithm are the gamma and min_child_weight that determine 

how conservative the algorithm is in terms of further partitioning at a leaf node. 

The larger these parameters, the more conservative the algorithm. More details 

about the implementation of the XGBoost package can be found in Chen and 

Guestrin (2016). 

The XGBoost model is tuned using a user-defined grid search space. However, 

the number of hyperparameters required for the XGB algorithm makes it difficult 

to define an extended search range for each parameter, due to the high 

dimensionality of the problem. Here, the XGBoost algorithm is tuned for six 

input parameters, whereas the search range for each parameter and the 

selection of the subsample size are based on trial and error. 

4.3.3.3. Artificial Neural Networks  

Artificial Neural Networks (ANNs) are a family of machine learning algorithms 

inspired by nature, specifically biological neural networks, and are comprised of 

nodes, organised into layers. Each node receives information with a certain 

weight from another node or external stimuli, transforms it and then passes it to 

the next node, or transfers it as external output (Zhang et al., 1997). Nodes that 

belong in the same layer, work collectively within the same depth of the 

network. The higher the number of layers, the deeper the ANN.  

The ANN implemented here is a feed-forward, single hidden layer network. This 

means that information travels through the network one way, from the input, 
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through the hidden layers and to the output layer, calculating the model weights 

through this learning process.  It is tuned for the number of units (size) in the 

hidden layer, as well as a gradient decay (decay), i.e. a factor less than one by 

which the weights are multiplied at each iteration of the algorithm. 

The ANN implemented here has a single layer. The hyperparameters used for 

tuning the model are the size of the hidden layer, which is varied between 5 and 

20, with a step of 1, and the decay, which is varied between 0.01 and 0.1 with a 

step of 0.001. The above ranges for the grid space are chosen based on trial 

and error. 

Deep Neural Networks (DNNs) are ANNs composed of multiple layers, which 

allow them to transform information and learn from data with multiple 

abstraction levels (LeCun et al., 2015). The DNN implemented here is a multi-

layer, feedforward ANN trained using stochastic gradient descent and back-

propagation (Candel et al., 2014). In back-propagation, the model’s error is fed 

back into the model in order to update the weights and further improve results. 

This process evolves as an optimisation problem, where the objective is to 

minimise the model’s error using stochastic gradient descent (Bottou, 2010).  

Although there are many hyperparameters in a DNN, the following eight are 

tuned using a random search in this study. The number of epochs indicates how 

many times the whole dataset, divided into smaller batches, will go back and 

forth through the neural network during the training process. The higher the 

number of epochs, the higher the risk of overfitting while too few could lead to 

underfitting. The activation functions (activation) transform the input in a node to 

a certain output, while the size of the hidden layers (hidden) determines the 

number of nodes in each one. The dropout ratio of the input 

(input_dropout_ratio), as well as the dropout ratio of the hidden layers 

(hidden_dropout_ratio) aim to prevent model overfitting. At each training 

example, they suppress the activation of the nodes in the input or hidden layers 

by a certain probability (dropout ratio). As a result, each training example 

creates a different model. The combination of these learners resembles an 

ensemble model (Candel et al., 2014). There is also the option to activate an 

adaptive learning rate (adaptive_rate) method for gradient descent that 

determines how quickly the algorithm converges to an optimum solution. The 

momentum of the learning rate is determined by two more hyperparameters, the 
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rho and epsilon (Candel et al., 2014). The DNN model is tuned for eight 

hyperparameters, using a random search implemented by the ‘h2o autoML’ 

platform. 

More information regarding the algorithm implementation and tuning parameters 

of the DNN can be found in Candel et al. (2014). 

4.3.3.4. Generalised Linear Models  

Generalised Linear Models (GLMs) are an extension of simple linear models, 

for errors that do not follow the normal distribution or predictors whose influence 

is not linear (Aiello et al., 2016). GLMs typically create regression models that 

follow an exponential distribution (Aiello et al., 2016).  

There are two parameters tuned for the GLM, one that determines how the 

model deals with missing values and the alpha regularization parameter. The 

value of alpha determines the penalisation function used in order to avoid model 

overfitting, reduce the variance in the error and deal with correlated predictors 

(h2o.ai, 2019a). More information regarding the meaning of these two 

parameters can be found in Nykodym et al. (2019). 

The GLM model is tuned for two hyperparameters using a grid search. The 

alpha hyperparameter is varied between 0-1, with a step size of 0.2. An alpha 

value of zero indicates that a ridge regression (regularised linear regression) 

model is used to introduce penalties to the model building process, while 

‘MeanImputation’ means that the model replaces missing values with the mean. 

4.3.3.5. Model stacking 

Stacking is the process of combining the results of individual learners into one 

super-learner. The way of combining them could be using a simple weighted 

average or a machine learning model such as a RF or ANN to learn the best 

combination based on the residual errors. 

4.3.4. Bias correction methods 

The concept of model bias is well-documented in the machine learning literature 

(Zhang and Lu, 2012; Nguyen et al, 2015; Song, 2015; Ghosal and Hooker, 

2018; Hooker and Mentch, 2018). Especially in methods such as RF, where the 
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final prediction is estimated as the mean among the predictions of the individual 

trees, the range of the prediction values becomes smaller due to averaging, 

compared to the actual range. This leads to overestimating the smaller values 

and underestimating the larger values in the dataset, referred to as bias towards 

the mean in the following. As opposed to the above, which is a fundamental 

statistical concept, the systematic bias in the model’s results refers to a 

consistent overprediction or underprediction of the response variable. A well-

performing model should ideally exhibit a zero or near-zero systematic bias. 

In this chapter, four methods for bias correction (BC) described in Song (2015) 

are tested for their ability to reduce the bias towards the mean. In the first BC 

method (BC1), a RF model is used to predict the residual errors based on a set 

of predictors in the training dataset that include the predicted values of the 

response variable. The final prediction of the model is then adjusted by adding 

the predicted residuals to the predicted outcome. In the second BC method 

(BC2), a simple linear model is fitted on the residuals of the training set but this 

time only the predicted values are used as input. The same linear model is then 

used to predict the residuals in the test dataset. As with the first method, the 

final prediction is calculated by adding the residuals to the model’s output to 

adjust it. BC methods 3 and 4 (BC3 and BC4) use a residual rotation approach. 

They first calculate the prediction and the residuals based on BC1. Then a 

simple linear model is fitted on the residuals against the predicted values. In 

BC3, the residuals are rotated so that y=0, while in BC4 the best rotation angle 

is determined sequentially as the one that achieves the minimum MSE.  

An extensive description of the four methods can be found in Song (2015). The 

code used for the implementation of the four BC methods is adapted by Song 

(2015). 

4.3.5. Technical implementation 

All models, analysis and results produced in this work are created using R (R 

core team, 2013). The RF, XGBoost and ANN models are trained using the 

algorithms implemented in the ‘randomForest’ (Liaw and Wiener, 2018), 

‘xgboost’ (Chen et al., 2019) and ‘nnet’ (Ripley and Venables, 2016) packages, 

respectively. All three models are tuned using ‘caret’ (Kuhn, 2019), which allows 

to perform a grid search for the optimum hyperparameter values. The GBM, 
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DNN, GLM and stacked models are built using an open source machine 

learning platform, ‘h2o’, and specifically its automated machine learning 

capability (autoML). This is accessed through an R interface using package 

‘h2o‘ (LeDell et al., 2019). The ‘autoML’ function of ‘h2o’ can automatically train 

a selection of models and perform hyperparameter tuning within a user-defined 

limit. This method is implemented due to its high performance, speed, 

automation and efficiency.  

The ‘h2o’ platform currently provides support for automated implementation of 

five machine learning methods, RF, XRT, GBM, DNN, GLM and in some cases 

also for the XGBoost algorithm, which is not available here. However, it only 

tunes the GBM, DNN and GLM models over a random grid, whereas it uses 

default versions of the XRT and RF models (h2o.ai, 2019a). In addition to this, 

‘h2o autoML’ trains two stacked ensemble models. The first stacked model 

includes the best combination among a selection of model types, including 

multiple models from the same family (e.g. RF) that are trained as part of the 

hyperparameter tuning process. The second stacked model is based only on 

the best model from each family (h2o.ai, 2019a). The metalearner algorithm that 

is used to combine the models for the automated machine learning capability of 

‘h2o’ is a GLM model with non-negative weights. Only the three properly tuned 

‘h2o’ models (GBM, DNN and GLM) are presented in the results section, 

although both the default XRT and RF are used as components to build the 

stacked ensemble models. 

4.4. Results 

4.4.1. Model parameters 

The following section outlines the hyperparameter values selected for each 

model, as a result of the tuning process. The default DRF and XRT 

implementations (h2o.ai, 2019b) are used to build the stacked model, therefore 

these are not described in the following.  

More details regarding the hyperparameters available for tuning, their meaning, 

as well as the default hyperparameters of the models that are not mentioned 

here can be found in the online ‘h2o’ documentation (h2o.ai, 2019c). 

The best parameter values for each model type appear in Tables 4.2-4.7.  
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Table 4.2. Hyperparameter values selected for the RF model, for Groups 1 and 2. 

Hyperparameters Group 1 Group 2 

mtry 6 7 

nodesize  100 40 

ntrees 160 200 

Table 4.3. Hyperparameter values selected for the GBM model, for Groups 1 and 2. 

Hyperparameters Group 1 Group 2 

ntrees 104 109 

max_depth 13 8 

learn_rate 0.05 0.05 

sample_rate 0.9 0.8 

col_sample_rate 0.4 0.4 

col_saple_rate_per_tree 0.4 1 

histogram_type Auto Auto 

min_split_imrpovement 1e-04 1e-05 

min_rows 10 15 

Table 4.4. Hyperparameters values selected for the XGBoost model, for Groups 1 and 2. 

Hyperparameters Group 1 Group 2 

nrounds 140 120 

max_depth 6 5 

colsample_bytree 0.4 0.7 

eta 0.05 1 

gamma 1 1 

min_child_weight 1.3 1.3 

subsample 0.6 0.6 

Table 4.5. Hyperparameter values selected for the ANN model, for Groups 1 and 2. 

Hyperparameters Group 1 Group 2 

size 11 16 

decay 0.002 0.006 

Table 4.6. Hyperparameter values selected for the GLM model, for Groups 1 and 2. 

Hyperparameters Group 1 Group 2 

alpha  0 0 

missing values MeanImputation MeanImputation 

Table 4.7. Hyperparameter values selected for the DNN model, for Groups 1 and 2. 

Hyperparameters Group 1 Group 2 

epochs 270.4 131.2 

adaptive_rate TRUE TRUE 

activation RectifierWithDropout RectifierWithDropout 

rho 0.9 0.95 

epsilon 1e-08 1e-08 

input_dropout_ratio 0.2 0.1 

hidden 500 200 200 200 

hidden_dropout_ratios 0.4 0.2 0.2 0.2 



109 

 

All of the above hyperparameters are provided for reference only and for 

comparison purposes and do not replace the need to properly tune the above 

models based on the respective dataset. 

4.4.2. Model performance 

In this section, the forecasting performance of seven models (RF, XGB, GBM, 

GLM, ANN, DNN and stacked) is compared based on four evaluation metrics, 

the MAPE for all days as well as peak days, the R2 and the MSE. For 

comparison, the error of the ‘naïve’ model (the model that assumes forecasted 

consumption for each day is equal to the mean consumption among all days in 

the dataset) is 10.1% for all days and 19.8% for peak days, i.e. the 10% of the 

days with the highest consumption. All models are implemented for two different 

configurations, with (Group1) and without (Group 2) past consumption data as 

input. In addition to this, four BC methods are applied on top of the best 

performing model (BC1-BC4). Only the best models acquired from each family 

after tuning are presented in the following. Table 4.2(a) summarises the results 

of the models that include past consumption (Group 1), whereas Table 4.2(b) 

demonstrates the results of the models that include only postcode location, 

temporal and weather characteristics as input (Group 2).  

According to Table 4.2(a), when past consumption is included as input, the 

model with the best performance (R2 = 74.1%, MAPE = 4%) is the stacked 

model created by ‘h2o’ as an ensemble of five individual learners (the best from 

each family). Specifically, the stacked model comprises of a GBM, XRT, GLM, 

DRF and DNN model, with a corresponding contribution to the output of 31%, 

24%, 19%, 14% and 12%, respectively. Out of the rest, the GBM (R2 = 74.1%, 

MAPE = 4.1%) and RF (R2 = 72.8%, MAPE = 4.1%) models have the highest 

forecasting accuracy for all days in the data. The neural network based models 

have the lowest peak day errors, with a MAPE of 4.8% for the ANN and 5.2% 

for the DNN. However, the ANN model does not perform equally well for the 

other two performance metrics (R2 = 70.8%, MSE = 55). This implies that the 

reason that the model performes better for peak days might be that it 

systematically overpredicts consumption, especially due to the high MSE value, 

which is an indicator of bias in the model. Finally, the GLM is the worst 

performing model across most metrics (MAPE = 4.2%, R2 = 70.6%, MSE = 55). 
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Out of the four BC methods tested here, the second method (BC2, Table 4.2), 

which predicts residual errors based on the predicted value of the response 

variable performs best. Although applying the BC2 method on top of the 

stacked model’s results does not improve the overall model performance 

(Models 7 & 9, Table 4.2(a)), it reduces the MAPE on peak days from 5.1% to 

4.6% (Models 7 & 9, Table 4.2(a)). 

Table 4.8. Model comparison (a) with and (b) without past consumption as input, for 

the test dataset, for seven model types and four bias correction methods. 

Model 

Groups  
ID 

Model 

Type 

Bias  

Correction  

Method 

MAPE (%) 

All days 

MAPE (%) 

Peak days 
R2 (%) 

MSE 

(l/postcode/day) 

Train Test Train  Test  Train Test Train Test 

(a) 

Group 1 

1 RF - 1.8 4.1 2.8 5.6 95.5 72.8 10 51 

2 XGBoost - 3.0 4.2 4.5 6.0 86.3 72.5 27 53 

3 ANN - 3.9 4.2 4.8 4.8 74.9 70.8 45 55 

4 GLM  4.1 4.2 5.8 5.8 71.3 70.6 51 55 

5 GBM - 2.0 4.1 2.9 5.4 93.7 74.1 12 49 

6 DNN - 3.5 4.2 4.7 5.2 79.7 72.5 36 51 

7 Stacked - 2.2 4.0 3.2 5.1 91.8 74.1 15 48 

8 Stacked BC1 2.2 4.0 2.8 4.8 91.4 74.1 16 48 

9 Stacked BC2 2.6 4.0 3.3 4.6 88.7 74.1 20 48 

10 Stacked BC3 2.2 4.0 3.0 5.1 91.6 74.1 15 48 

11 Stacked BC4 2.2 4.0 2.9 4.8 91.5 74.1 15 48 

(b) 

Group 2 

1 RF - 2.3 4.6 3.5 6.0 92.2 68.0 16 60 

2 XGBoost - 3.3 4.4 4.9 6.1 82.7 70.7 33 55 

3 ANN - 4.3 4.7 5.9 6.0 68.5 65.1 56 65 

4 GLM  4.6 4.7 6.8 6.8 64.7 63.8 63 67 

5 GBM - 3.1 4.3 4.2 5.6 84.0 70.9 29 54 

6 DNN - 3.7 4.5 5.4 6.2 76.6 68.5 43 59 

7 Stacked - 3.0 4.3 4.0 5.5 85.5 71.1 26 54 

8 Stacked BC1 2.7 4.4 3.3 5.1 87.9 70.2 22 51 

9 Stacked BC2 2.9 4.3 3.6 5.1 85.5 71.1 26 54 

10 Stacked BC3 2.7 4.4 3.7 5.5 88.1 70.0 22 56 

11 Stacked BC4 2.7 4.4 3.6 5.4 88.1 70.0 22 56 

 

When past consumption is not included as input (Table 4.2(b)), the best 

performing model is again the stacked model (MAPE = 4.3% for all days and 

5.5% for peak days, R2 = 71.2%, MSE = 54). This time, it comprises of a GBM, 

DNN, DRF, GLM and XRT model with a percentage contribution to the output of 

53%, 15%, 11%, 11% and 10%, respectively. Adding BC2 further reduces the 

MAPE to 5.1% for peak days. The second best performing model in this case is 

again the GBM (R2 =70.9%, MAPE = 4.3%), which has the same MAPE for all 

days and slightly higher (MAPE = 5.6%) for peak days. It is worth noting that the 
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ANN model, which performed relatively well with past consumption input and is 

the model most commonly used in the literature, underperformed in this case 

(MAPE = 4.7% for all days and 6% for peak days, R2 = 65.1%, MSE = 65). 

Similar results apply for the GLM model, which performed reasonably well with 

past consumption data (MAPE = 4.2% for all days and 5.8% for peak days, R2 = 

70.6%, MSE = 55), but whose error increases significantly without (MAPE = 

4.7% for all days and 6.8% for peak days, R2 = 63.8%, MSE = 67). 

Figure 4.2 demonstrates an example of the actual against the predicted values 

for two model types, the GLM and stacked-BC2 (stacked with Bias Correction 

method 2), without past consumption data. According to Figure 4.2, the days 

with the lowest consumption are most of the times overpredicted, while the days 

with unusually high consumption are underpredicted. Although this effect is 

particularly prominent for the GLM (Figure 4.2(a)), it improves in the case of the 

stacked-BC2 model (Figure 4.2(b)). 

 

Figure 4.2. Metered against predicted values for (a) the GLM and (b) the stacked-BC2 

model, without past consumption as input. 

Overall, predicting demand becomes slightly more challenging when past 

consumption data is not available, as well as for peak days (Table 4.2). 

However, certain models are able to deal significantly better with the lack of 

additional information (e.g. XGB, GBM) compared to others (ANN, GLM). The 

method that seems to be affected the most with forecasting demands without 

past consumption is the method that is frequently suggested as best in the 

literature - the ANN model. The MAPE for this method increases for the peak 

days from 4.8% to 6%, when comparing the models with and without past 

consumption as input. Finally, although slight differences exist, most models 

(a) (b) 
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have very similar results for all days in the data, with a range in MAPE between 

0.2% (with past consumption) and 0.4% (without past consumption) across the 

test dataset (MAPE – All days, Table 4.2). However, the range of errors 

increases significantly for peak days, i.e. the 10% of the days with the highest 

consumption, with a range in MAPE of 1.4% (with past consumption) to 1.7% 

(without past consumption) (MAPE – Peak days, Table 4.2). 

4.5. Discussion 

One of the main observations of this study is the power of stacked models to 

improve the prediction accuracy of their counterparts by adding up their 

individual strengths and overcoming their weaknesses. However, there is a time 

and cost sacrifice to be made in exchange for improving the results’ accuracy. 

No machine learning technique is universally best for all types of data, purposes 

and datasets. Therefore, it is important to account for the computational power, 

effort and expertise that is required to identify and tailor the machine learning 

technique that will produce the best outcome.  

Another important point is the level of transparency and interpretability 

associated with each model. Generally, the fewer the number of model 

parameters, the simpler the model, therefore the easier it is to understand, 

explain and interpret. According to Molnar (2019a), transparency refers to 

understanding how the algorithm learns from the data and is independent of the 

trained model, whereas interpretability is the knowledge of how the model 

makes decisions, based on its features, weights and parameters. A linear 

regression model is transparent as the way the algorithm is built is thoroughly 

explored and understood and at the same time it is interpretable, as the weight 

of each predictor indicates its influence on the response variable. DNNs on the 

other hand are neither transparent nor interpretable due to the complexity and 

number of hyperparameters and hidden layers (Molnar, 2019a). Tree-based 

models are relatively easy to interpret and explain as they are essentially an 

ensemble of decision trees. Stacked models can achieve high accuracy as they 

combine the strengths of different models but at the same time they have 

limited interpretability, as they lack a model structure. In some cases, sacrificing 

some accuracy in order to increase the level of model interpretability is the 

preferred solution.  
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Another interesting concept that has not been highlighted in previous water 

demand forecasting attempts is the concept of bias towards the mean. This is a 

combination of the elementary statistical concept of regression towards the 

mean, which is often exaggerated by certain model structures (e.g. RF), prone 

to create biased results (Zhang and Lu, 2012). Regression towards the mean is 

the term for a statistical phenomenon that can be illustrated by a simple 

example as follows. For an extreme measurement of a variable, e.g. an 

unusually high daily temperature, it is unlikely that a second measurement will 

result in a similar or higher value. The most likely scenario is that the second 

measurement is going to be closer to the mean annual temperature. Another 

example described by Stigler (1997) is a student that scored really high at a 

test. In order for this high score to occur, it is likely that not only skill, but also 

luck was involved, a factor that might diminish if another test was taking place, 

resulting in a lower score. A similar concept can be applied to water demand. In 

order for a very high consumption to occur on a certain day for a population of 

120 households, a number of factors need to contribute. For example, chapter 1 

concluded that an affluent area on a Saturday with high air temperature, is likely 

to result in high consumption. However, there are a number of additional factors 

that will determine how high exactly. This means that although days with the 

same weather characteristics, the same past consumption, in the same 

location, are likely to have a higher than normal demand, for only one of these 

days consumption will be high enough to be an outlier in the data. As the model 

learns from all days that had the same characteristics, but not as an extreme 

consumption, the predictions are likely to gravitate towards mean values. This 

will naturally result in underpredicting and overpredicting the highest and the 

lowest values in the dataset, respectively. This effect is exaggerated by certain 

models such as RFs due to their structure, which is based around averaging 

among hundreds or thousands of individual predictions. Stacked models on the 

other hand, are able to deal with outliers much better. A simple bias correction 

technique could achieve an additional reduction in errors for the days with the 

highest consumption. Therefore, being aware of the problem and choosing 

wisely the model structure and the tools available could significantly improve 

predictions on critical days. 

This research also demonstrates how a simple tool, ‘h2o.ai’, can assist with the 
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water demand forecasting model development process. As machine learning 

becomes the mainstream approach in many sectors, there is an increasing 

need for people that are not trained in the field of computer science to use these 

tools efficiently. The ‘h2o’ platform can be useful not only in order to choose the 

best algorithm, but also in order to efficiently tune the model’s hyperparameters. 

One of the problems in previous studies was the lack of proper tuning of the 

machine learning algorithms that were used for forecasting. In addition, creating 

a grid space for hyperparameter tuning is a brute-force approach that is time-

consuming and not computationally efficient for high-dimensional problems, 

even when it is parallelised, while it requires a thorough understanding of the 

model parameters and how exactly they influence the results. Using the 

‘autoML’ function of ‘h2o’, even when the preferred algorithm is known, could 

significantly reduce complexity, computational time, as well as improve the 

model’s results. 

4.6. Summary and conclusions 

This study explores the potential of a stacked ensemble model with added bias 

correction (BC) to produce improved water demand forecasts. The proposed 

model is compared with several traditional (e.g. GLM, ANN) as well as 

emerging (e.g. DNN, GBM, XGB) methods in the water demand forecasting 

literature. Finally, the potential of automating this process using the machine 

learning platform ‘h2o’ is explored and compared to model development using 

methods that require extensive user engagement and expertise. 

Results show that the new methodology performs best, especially for peak days 

and lack of past consumption data. The MAPE of the stacked-BC2 model 

(stacked model with bias correction method 2) is 4% for all days and 4.6% for 

peak days, when past consumption data is included as input, as opposed to 

4.3% and 5.1%, respectively, when past consumption data is not available. 

The GBM model has a similar prediction accuracy (MAPE = 4.1% for all days 

and 5.4% for peak days), especially when past consumption data is not 

available (MAPE = 4.3% for all days and 5.6% for peak days). At the same time, 

the GBM model turned out to be quicker and easier to build since it requires 

tuning only one set of parameters. The stacked model on the other hand 

requires the development and tuning of multiple individual learners that are 
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combined to create a super-learner. The GBM model also has a higher level of 

transparency and interpretability. This means that in situations where demand 

forecasting accuracy is not of the utmost importance, the GBM model is a viable 

alternative to the stacked model. 

Depending on the scenario, in terms of the data availability and forecasting 

goal, the choice of model could significantly alter results. For easier tasks (e.g. 

when past consumption data is available and when the focus is not on 

predicting outliers) most models perform well. However, in situations where data 

availability is limited and the goal is to predict days with abnormal consumption, 

different models produce a wide range of accuracy. Specifically, when 

predicting demand using past consumption data over all days in the dataset, all 

models perform very similar with a range in MAPE from 4.0% to 4.2%. 

However, when focusing on harder aspects of the same problem, e.g. when 

past consumption data is not available and for peak consumption days, the 

MAPE among different models varies from 5.1% (stacked-BC2) to 6.8% (GLM), 

and increase of 33% of the MAPE.  

Finally, this study concludes that applying simple techniques such as bias 

correction on top of the model’s results can improve predictions for the peak 

days. Although most demand forecasting models reached a good accuracy 

(MAPE lower than 5%), they struggled to predict outliers. This fact could be 

particularly problematic in the context of water demand forecasting, as days 

with unusually high consumption are usually the critical ones for water utilities. 

This technique, although it does not alter the overall accuracy of the model, it 

improves predictions for the 10% of the days with the highest consumption 

(Table 4.2). 

Although the above models were tested under two scenarios, with and without 

past consumption data, as well as for peak consumption days, it is not clear 

how the models would perform with a less rich or more noisy dataset. An 

uncertainty analysis around the amount and quality of data necessary for each 

model type to perform well is needed to assess the model’s robustness and 

suitability to produce accurate forecasts under different data availability 

scenarios. 

This chapter focused on identifying models and techniques that can be used to 
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improve predictions in water demand forecasting. However, this analysis was 

performed at a certain spatial and temporal scale. Chapter 5 uses the above 

results to explore what is the best accuracy that can be achieved at different 

spatial scales, as well as assess the contribution of several types of predictors 

(weather, temporal and household characteristics) at different spatial scales. 
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5.  

 

 

 

 

5.1. Introduction 

The effectiveness of future efforts, technologies and conservation strategies in 

water management depends heavily on accurate predictions of water demand, 

at the appropriate scale. From emerging technologies (e.g. grey water recycling 

at the household level) to conservation campaigns (e.g. changing customer’s 

attitudes) or even future investments (e.g. building of new reservoirs), solutions 

are typically targeted at a certain level of spatial aggregation. Thus, accurately 

predicting demand at the appropriate scale is of the utmost importance for the 

success of these solutions.  

As part of the commitment to sustainably manage their water resources and to 

reduce their environmental impact, water companies are required to reduce per 

This chapter was submitted as a research paper at the Journal of Water Resources 
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improve consistency throughout the thesis. The chapter was written by Maria 
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capita consumption (PCC) and leakage (Ofwat, 2017). According to the Office 

for National Statistics, PCC in the UK is the 5th highest in the EU, amounting to 

a total of 114 litres/capita/day (Bailey, 2019). Leakage also remains at relatively 

high rates, as approximately 23% of the total inflow into the network is lost 

through leaks (Ulanicki et al., 2009). Ofwat, one of the UK water industry’s 

regulators, has challenged water companies to reduce this figure by 15% by 

2025 (Ofwat, 2019). 

Over meetings and discussions with water companies in the UK and the 

Netherlands that took place during this study, leakage was often brought up as 

one of the most prominent problems in the water industry. Operators can 

choose to estimate leakage at different reporting levels, such as district meter 

areas (DMAs), water resource zone levels or even an intermediate zone level 

within the distribution network (Ofwat, 2018). In order to do this, they need to be 

able to accurately forecast water demand at different levels within the network. 

Therefore, the forecasting accuracy that can be achieved at each level, as well 

as the factors that determine it need to be assessed. This will allow water 

companies to make informed decisions and their regulator to accurately assess 

their performance.  

However, predicting water demand is not an easy task as there are many 

uncertainties involved in the process. The main challenges arise due to the tight 

relationship between the human and natural systems in urban environments, 

where more than half of the population currently resides (House-Peters and 

Chang, 2011). Furthermore, the maximum prediction accuracy that can be 

achieved, as well as the most influential explanatory factors, can vary greatly 

depending on the spatial scale. When aggregating large areas, the demand 

signal is fairly smooth, since it averages out over a large number of water users. 

On the other hand, small levels of spatial aggregation are likely to be associated 

with increased variability, due to small-scale water use, leading to a higher 

uncertainty and thus increased errors.  

This study aims to answer two main questions:  

 What is the maximum demand forecasting accuracy that can be 

achieved at different spatial scales? 

 What are the most important influencing factors at each spatial scale? 
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In order to do this, several GBMs are trained here using different sets of 

explanatory factors as input, with the aim to predict consumption 1-7 days into 

the future, for different household group sizes. Chapter 4 compared multiple 

machine learning models and concluded that Gradient Boosting Machines 

(GBMs) combine high prediction accuracy with ease of implementation, thus 

they are the models selected for this analysis.  

The rest of this chapter is organised as follows. The next section discusses the 

results and shortfalls of previous studies that implemented some sort of spatial 

variability in their water demand forecasting models. This is followed by a brief 

description of the dataset and an overview of the model building process. The 

results of the study present the modelling accuracy that is achieved at each 

spatial scale, along with the corresponding variables of interest. Finally, the 

chapter concludes with a discussion of the key messages and a brief summary 

of results, conclusions and recommendations for further research. 

5.2. Background 

Several studies attempted to predict water demand, using a great variety of 

data, models, methods and explanatory variables (Prescott and Ulanicki, 2008; 

Herrera et al., 2010; Adamowski et al., 2012; Tiwari and Adamowski, 2013; 

Matos et al., 2014; Romano and Kapelan, 2014; Hutton and Kapelan, 2015; 

Anele et al., 2017; Brentan et al., 2017; Zubaidi et al., 2018; Xenochristou et al., 

2019b). Some studies in the literature even accounted for the spatial variability 

of water demand (Balling at al., 2008; Lee et al., 2009; House-Peters et al., 

2010; Polebitski and Palmer, 2010; House-Peters and Chang, 2011; Maheepala 

et al., 2011; Rathnayaka et al., 2017a; Chen and Boccelli, 2018).  

Lee et al. (2010) used space-time variation and projections on population 

density to forecast water demand for the city of Phoenix over a time-space 

dependent grid. Although integrating future density estimates in the forecasting 

methodology improved accuracy, Lee et al. (2010) argued that additional input 

factors (other than population density) could further improve results.  

Rathnayaka et al. (2017a) introduced a model that predicts water end-uses for 

different types of households at multiple temporal and spatial scales. Although 

this approach made use of a variety of household, temporal and weather 
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characteristics, it did not deal with consumption at each scale as a separate 

problem. Instead, the total consumption was constructed by adding the 

individual end-uses and households at each aggregation level.  

A study by Balling et al. (2008) investigated water consumption among census 

tracts and how this is influenced by several weather variables. Using a variety of 

explanatory factors, it concluded that census tracts’ sensitivity to drought 

depends heavily on their socio-economic and land-use characteristics, 

particularly the presence of pools. However, results were only tested at the 

census tract scale.  

House-Peters et al. (2010) investigated the drivers of water demand in 

Hillsboro, Oregon and concluded that drought condition was not a good 

predictor of water use at the study area level. However, it was a good predictor 

for certain census blocks containing large, new, affluent and well-educated 

households. 

As it becomes apparent from the above, although some studies implemented 

spatial variability in their forecasting models, there are certain limitations. One of 

the limits for comprehensive spatial analysis of water demand has been data 

availability at high spatial resolutions. On the other hand, the level of spatial 

aggregation of water consumption data often does not match the scale of the 

explanatory variables. In order to overcome this problem, researchers often 

have to rely on interpolating or extrapolating data (Lee at al., 2010; House-

Peters and Chang, 2011), i.e. estimating values for locations within the study 

area or outside the study area, respectively, which can be a  challenging 

process (Lee at al., 2010). Even when data are available at the household level, 

it often lacks spatial coordinates (House-Peters and Chang, 2011), sometimes 

due to privacy concerns. Another main problem is the lack of a systematic 

comparison of predictions and influencing factors at various spatial scales. 

Since the variables that influence water consumption and the range of temporal 

and spatial scales can vary greatly at different settings and case studies, this 

comparison cannot be derived by merely comparing the results of different 

studies in the literature.  

To summarise, data availability, computational power and new technologies 

have substantially increased in recent years. This has contributed in developing 
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spatially explicit demand forecasting models and identifying and quantifying 

relationships among a variety of weather, social and water consumption data 

(House-Peters and Chang, 2011; Rathnayaka et al., 2017b). However, there is 

still the need to develop methodologies that incorporate this information at 

multiple spatial scales (House-Peters and Chang, 2011). 

This study aims to address this gap by making use of a very rich dataset 

comprising of a variety of household characteristics, weather data, temporal 

characteristics and past consumption. The aim is to identify and quantify the 

influence of the drivers of water demand at multiple spatial scales and 

determine how they contribute to the accuracy of demand forecasting models. 

5.3. Data 

This section provides a brief overview of the data that are used in this study. 

Additional details are provided in chapter 3. 

The data comes from a region in the southwest of England and includes 1,793 

properties. These were monitored by the water company at 15-30 minute 

intervals over a period of almost three years (October 2014 to September 

2017), using smart meters. The raw dataset was carefully cleaned in order to 

exclude incorrect and missing data, empty properties and leakage. A detailed 

description of this process is provided in chapter 1.   

The water company also collected data related to household characteristics and 

postcodes. Information regarding the garden size, occupancy rate, metering 

status, rateable value of the property, acorn group (customer socio-economic 

classification) and council tax band became available at the household level. In 

addition, partial postcodes were used to identify the properties’ location in the 

study area. Postcodes in the UK are comprised of four parts, indicating the 

area, district, sector and unit the house belongs to (Royal Mail, 2012).  In this 

study, only the first two parts of the postcode, corresponding to the area and 

district, were available to group the properties. 

Each one of the above six household characteristics (garden size, rateable 

value, occupancy rate, council tax band, rateable value and acorn group) 

divides the dataset into different categories (Table 5.1). For example, 

depending on the characteristic ‘garden size’, the households are divided into 
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three categories, ‘large’, ‘medium’ and ‘small’, reflecting the size of the garden 

of the corresponding household. The categories created for each household 

characteristic are available in Table 5.1. 

Table 5.1. Categories formed for each household characteristic. 

Garden Size Rateable Value Metering Status 

Large (> 165m2) High (top 30%) Metered (billed on meter reading) 

Medium (61-165m2) Medium (mid 40%) 

Unmetered (billed on an estimation) Small (< 60m2) Low (bottom 30%) 

Acorn Group Occupancy Rate Council Tax Band 

Affluent (A - E) High (3+ occupants) High (tax groups A - C) 

Comfortable (F - J) Medium (2-3 occupants) Medium (tax groups D - E) 

Financially Stretched (K - Q) Low (1 occupants) Low (tax groups F - H) 

Finally, weather data were provided by the Met Office. These include 

information about air and soil temperature, sunshine hours, relative humidity 

and rainfall (Met Office, 2006a; Met Office, 2006b; Met Office, 2006c; Met 

Office, 2006d; Met Office, 2006e), collected at hourly to daily intervals for the 

same period (October 2014 to September 2017). These data were recorded at 

hundreds of weather stations within the study area. One additional variable 

representing the number of consecutive days without rain was also calculated 

based on the rainfall data.  

5.4. Methodology 

This section describes the main steps of the model development process, which 

include the selection of the aggregation levels and candidate input variables as 

well as the modelling technique. 

5.4.1. Spatial aggregation 

The households are grouped based on their postcodes into the following three 

levels of spatial aggregation: 

 Network grouping: No grouping criteria are used. Consumption is 

aggregated among all properties for each day in the data (Network, 

Figure 5.1(a)). Due to errors and inconsistencies, consumption is not 
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available for every property over each day. Therefore, this group can 

vary in composition, i.e. include a slightly different collection of properties 

on each day. The network group consists of 1,056 data points (each 

point represents one day), with 64-804 properties in each one, 

depending on data availability on the corresponding day.  

 Area-based grouping: The first part of the postcode (e.g. BA) is used to 

group the properties into one of six areas. This group consists of 6,336 

data points (Areas, Figure 5.1(a)), with 1-212 properties in each one 

(depending on data availability on the corresponding postcode and day). 

Each data point represents the consumption of an area for one day.  

 District-based grouping: The first and second part of the postcode (e.g. 

BA1) is used to group the properties into 63 districts. This group consists 

of 76,032 data points (Districts, Figure 5.1(a)), with 1-56 properties in 

each one (depending on data availability for the corresponding postcode 

and day). Each data point represents the consumption of a district for 

one day.  

The three aggregation levels have a different range in household composition 

(i.e. the types of households they consist of), among the groups. The smaller 

(district) groups are a lot more diverse in terms of the types of households they 

contain, compared to the relatively homogenous network grouping. If there were 

no gaps in the data and information for all households was available for each 

day in the dataset, all days would contain information about the same 

properties. Therefore, no variation would exist when aggregating the whole 

network. More details regarding the household composition of each aggregation 

of properties are available in Appendix B.  

In order to create additional spatial scales, the household group size is set to a 

fixed number (from 5 to 600), for each postcode and level of spatial aggregation 

(Figure 5.1(b)). Each aggregation level has a set number of household groups 

for each day (this might slightly vary due to missing data), which is 63 for the 

district level, six for the area level and one for the network level. The number of 

households in each group depends on data availability for the corresponding 

postcode and day in the dataset and can vary significantly. When the household 

group size is set to a fixed number, the groups that are smaller than the 
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threshold are excluded from the dataset, whereas the groups that are larger are 

reduced to the fixed number of properties. 

 

Figure 5.1. (a) Range of household group sizes for each level of spatial 

aggregation among different days and groups. (b) Spatial scales created using 

the level of spatial aggregation and a fixed group size, varying from 5 

households for the district level to 600 for the network level. Each disc 

illustrates the size and number of groups for one day in the data. 

The result is nine different spatial scales, comprising of different household 

group sizes (Figure 5.1(b)). The group sizes are set to 5, 10 and 20 for the 

district groups, to 40, 80 and 120 for the area groupings and to 200, 400 and 

600 for the whole network. This way, it is easy to ensure that the properties 

grouped together are actually in close geographical proximity. The disks in 

Figure 5.1 illustrate the number and size of household groups that correspond 

to each spatial aggregation, for one day in the data.   
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5.4.2. Variable selection 

Based on their nature, the variables described in the data section are divided 

into four types:  

 Past consumption data: Consumption data are aggregated temporally at 

the daily level and spatially at multiple scales. A sliding, 7-day window of 

past consumption is used as input in order to capture the weekly 

repetition of demand patterns.   

 Household characteristics: These refer to the occupancy rate, acorn 

group, garden size, rateable value, council tax band and metering status. 

Since each household group is composed of a variety of households with 

different characteristics, the percentage of households in each category 

is used as an explanatory variable, rather than the characteristic itself. 

For example, for the characteristic ‘garden size’, there are three possible 

categories, ‘large’, ‘medium’ and ‘small’. Each category is used as a 

continuous explanatory variable in the model, with values varying from 

zero (0% of households) to one (100% of households). In the case of the 

garden size, a possible composition for a household group is 30% large 

gardens, 60% medium gardens and 10% small gardens. Thus, the 

garden size is represented by three values (0.30, 0.60 and 0.10), one for 

each category. The same applies to the rest of the household variables. 

 Temporal characteristics: These relate to the season and type of day 

(working day or weekend/holiday). People tend to have different habits 

over different times of the year as well as the week, thus temporal 

variables can be helpful in capturing the time variability of demand.  

 Weather: Weather information includes four weather variables, air 

temperature, sunshine hours, relative humidity and number of 

consecutive days without rain. These can capture the weather-

dependent variability of demand. 

The above four variable types are treated as separate entities in the demand 

forecasting models, as they have very distinct characteristics that relate to their 

availability, accessibility, reliability and thus importance for network operators. 

Some of the variables are always easily accessible, reliable and ready to use 

(temporal characteristics). Others can be expensive to acquire, store and 
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process, or even inaccurate, especially when they are based on forecasts and 

estimations (weather and past consumption data). Information about household 

characteristics can be anywhere in between; some are relatively easily 

accessible (council tax band, metering status, rateable value, acorn), whereas 

others need to be collected through questionnaires and inspections 

(Xenochristou et al., 2019a).       

Eight models with different configurations of the above input variables are 

tested at each level of spatial aggregation (Table 5.2). Models 1 to 4 include a 

combination of past consumption data and other characteristics as input 

whereas models 5 to 8 are built using only temporal, weather and household 

characteristics. Each model is trained and tuned separately for the optimum set 

of input parameters, at each aggregation level, but on the same training 

dataset. 

Table 5.2. Model configurations tested at each level of spatial aggregation. 

Variable group Model input variables Model number 

  1 2 3 4 5 6 7 8 

Past Consumption 1-7 days prior X X X  X     

Temporal 
Type of Day X X X  X X X X 

Month X X X  X X X X 

Household 

Acorn X    X X   

Garden Size X    X X   

Metering Status X    X X   

Rateable Value X    X X   

Council Tax Band X    X X   

Occupancy Rate X    X X   

Weather 

Sunshine hours X X   X  X  

Air Temperature X X   X  X  

Humidity X X   X  X  

Days without rain X X   X  X  

Chapters 2 and 3 concluded that all of the above variables have an influence on 

water consumption. Although weather input did not improve the forecasting 

accuracy at the small aggregation level (~3.8 households/group) tested in 

chapter 3, this chapter will explore if weather can improve predictions for larger 

household groups. For this reason, the four weather variables (sunshine hours, 

air temperature, humidity, days without rain) that were found to have some sort 

of influence on water consumption (see chapters 2 and 3) are used here to 

capture the effect of weather. Soil temperature and rainfall are strongly 
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correlated with air temperature and days without rain, respectively, and thus 

were excluded from any further analysis. 

5.4.3. Demand forecasting model 

Chapter 4 compared a selection of machine learning models for water demand 

forecasting and concluded that the Gradient Boosting Machine (GBM) method 

combines high prediction accuracy with ease of implementation, hence was 

chosen for this work. A brief description of the characteristics and 

implementation of the GBM is provided in the following. More details regarding 

the type of GBM algorithm implemented here, including the hyperparameters 

and modelling process can be found in Click et al. (2017).  

5.4.3.1. Gradient Boosting Machines 

The idea behind GBMs is to combine a set of weak (base) learners in order to 

create one strong learner. In this study, the base learner is decision trees. The 

way decision trees work is by dividing the dataset at each branch in a way that 

maximises entropy, i.e. the homogeneity within each of the split groups. At each 

branch (node) of the tree, a variable and a threshold value are chosen for 

splitting the dataset. The tree keeps dividing until it reaches a limit, typically 

defined by the user, such as the maximum tree depth or minimum final node 

size. 

The GBM algorithm uses bagging, as well as boosting in order to achieve the 

best results. Each tree is trained on a subset of the original data and at each 

node of the tree, the best variable for splitting is chosen among a random 

sample of the input variables (bagging). In addition, at each step of the 

algorithm one regression tree is built on the residual errors of the previous tree, 

with the aim to improve the final result. In this way, the model gradually learns 

harder parts of the problem, as higher weights are assigned to the areas of the 

training set where the highest errors occurred (boosting). The result is altered at 

each step of the process by adjusting the overall prediction based on the new 

tree that is added to the model. The overall process in regression is set up as a 

simple optimisation problem, where the objective is to minimise the error in the 

objective function (gradient descent).  
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The nine hyperparameters that require tuning for the GBM algorithm are: the 

total number of trees that construct the final model (ntrees); the size of the 

subsample of the training dataset used to train each tree (sample_rate); the 

maximum tree depth (max_depth); the number of variables that are sampled 

and tested for splitting at each node, for the overall model as well as for each 

tree (col_sample_rate, col_sample_rate_per_tree); the learning rate (learn_rate) 

of the algorithm, which is used to reduce the contribution of subsequent trees to 

the final result; the histogram type used to assist with the splitting selection 

process (histogram_type); the minimum requirements for splitting at each node 

(min_split_improvement and min_rows). More information regarding the model 

hyperparameters are provided in chapter 4. 

5.4.3.2. Model implementation and assessment 

In order to build the model, the dataset is randomly shuffled and divided into a 

training (70%) and a test (30%) dataset. The training data is used to train and 

tune the model for the optimum set of hyperparameters, through a 5-fold cross 

validation process (Zhang, 1993). The test dataset does not participate in the 

model-building phase and is used to carry an unbiased evaluation of the 

model’s prediction accuracy based on unseen data, i.e. data that is not used 

during the model-building phase. 

The ‘h2o’ machine learning platform (Aiello et al., 2019) is used here to train 

and tune a range of GBM models for the optimum set of hyperparameters, 

through a random search (Bergstra and Bengio, 2012). The high number of 

hyperparameters that require tuning (nine in total) increases significantly the 

dimensionality of the search space. Thus, any exhaustive grid search, manually 

implemented by the user, would be counter-productive, especially since the aim 

is to train, tune and compare a large number of models. Thus, ‘h2o’ is used 

instead to perform a random search for the best hyperparameter values.  

After the model is properly trained and tuned, it is used on the test dataset to 

make predictions for daily consumption 1-7 days ahead. The model 

performance is assessed by comparing the model predictions with real data, 

based on three criteria, the mean absolute percentage error (MAPE), mean 

square error (MSE), and R2 coefficient of determination. The MAPE is intuitive 

and independent of the scale of the dependent variable, thus it can be used to 
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compare results from different studies and variables of interest (e.g. PCC and 

PHC). The MSE is sensitive to outliers whereas the R2 indicates the variance in 

the dependent variable that can be explained by changes in the independent 

variables.   

5.5. Results 

5.5.1. Demand forecasting accuracy at different spatial scales 

Increasing the level of spatial aggregation decreases the randomness and 

variability of the water demand signal, making it easier to predict. However, it is 

unclear by how much. In the following, the relationship between household 

group size and prediction accuracy is investigated in detail.  

First, nine models are trained, tuned and assessed for their ability to predict 

demand for different household group sizes, one day into the future. For 

comparison purposes, each model is trained using the same input, seven days 

of past consumption. Table 5.3 shows the aggregation level, group size and 

number of data points that are used to train each model, as well as the results 

acquired based on three assessment criteria, the MAPE, MSE and R2, for the 

training and test dataset.  

Table 5.3. Prediction accuracy for nine models, trained on different household 

groups.  

Aggregation  Data Group  MAPE (%) MSE (l/capita/day)2 R2 (%) 

level points size Train Test Train Test Train Test 

District 43,875 5 16.2 17.0 1047 1133 59.3 55.0 

District 26,153 10 12.6 12.9 536 612 59.2 55.2 

District 8,537 20 9.1 10.0 247 308 61.4 56.4 

Area 5,729 40 6.9 7.7 148 186 59.3 51.8 

Area 4,349 80 5.4 5.9 92 105 60.7 55.5 

Area 1,915 120 3.2 5.1 32 83 85.7 61.7 

Network 978 200 2.9 4.5 28 57 80.4 60.6 

Network  922 400 3.1 3.8 34 49 70.0 64.8 

Network 806 600 3.0 3.2 34 39 73.2 65.3 

According to Table 5.3, the prediction error (MAPE and MSE) reduces as the 

group size increases. The minimum MAPE corresponds to the largest 

aggregation, at the network level, with a group size of 600 households, which 

has an error of 3.2% for the test dataset (Group size = 600, Table 5.3). The 

largest MAPE on the other hand relates to the smallest aggregation scale, at 
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the district level, with a group size of 5 households (Group size = 5, Table 5.3). 

The R2 value also increases with the group size, but only within the same 

aggregation level. 

However, it is still not clear which point represents a good balance between 

prediction accuracy and household group size. In other words, at which spatial 

scale, a further increase in group size does not offer a significant reduction in 

prediction errors. This is depicted in Figure 5.2, which represents the balance 

between the MAPE and the spatial scale, for the test dataset.  

According to Figure 5.2, the model error increases exponentially as the 

household group size decreases. When everything else remains the same 

(model structure, input variables), increasing the prediction group size from 40 

to 120 households reduces the MAPE by 2.6% (Figure 5.2). However, for group 

sizes below ~20 households, the MAPE increases significantly, for a rather 

small decrease in group size. For example, the MAPE increases an additional 

7%, from 10% to 17%, for a decrease of 15 households per group (from 20 to 

5). On the other hand, for group sizes above ~200 households, the MAPE 

reduces marginally for a high increase in group size (Figure 5.2). 

 

Figure 5.2. Model accuracy (MAPE) for each household group size, for the test 
dataset. 

5.5.2. Variable importance at different spatial scales 

The three aggregation levels have different household group sizes, different 

ranges in their daily consumption and different amounts of data points (Table 

5.4). In order to avoid increased prediction errors associated with very small 
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groups (<20 households), the minimum group size is set to 20, 60 and 100, for 

the districts, areas and network, respectively. The smaller the aggregation level, 

the smaller the mean group size and the larger the number of data points. In 

addition, as consumption becomes more erratic for smaller household groups, 

the range in daily consumption also increases (Table 5.4).  

Table 5.4. Household group sizes, number of data points and daily water consumption 

range, for each spatial aggregation level. 

Spatial 

aggregation 

Min 

group size 

 

Mean 

group size 

Number of 

data points 

Daily consumption 

range (l/capita/day) 

Network 100 657 992 117-175 

Areas 60 114 5,592 100-195 

Districts 20 29 8,537 80-250 

Results are summarised in Figure 5.3 and Table 5.5. Figure 5.3 shows the 

model accuracy, in terms of MAPE, for predictions 1-7 days ahead, over all 

days in the data (plots a-c, Figure 5.3), as well as peak days, i.e. the 10% of 

days with the highest consumption (plots d-f, Figure 5.3). Each plot represents 

the MAPE for eight models and one aggregation level (network, areas and 

districts). Table 5.5 shows the MAPE for each model and aggregation level, for 

one as well as seven days into the future, for all days and peak days. The final 

hyperparameter values selected for each model are provided in Appendix B. 

The best performing model for the network level is the one that uses all 

explanatory variables to make predictions (model 1). When past consumption 

data is included in the model (models 1-4), temporal characteristics reduce the 

MAPE by 0.5%, for predictions 1 day ahead (model 3), while weather input 

further reduces errors by 0.4% (model 2) and household characteristics by 0.1% 

(model 1). For models 5-8 (no past consumption data), weather input reduces 

the MAPE by 0.4% (Model 7), while household characteristics reduce it by 0.1% 

(Model 6). Adding both household and temporal characteristics (Model 5) 

reduces model errors by 0.9% (Table 5.5). 

Although the MAPE value and variance increase for peak days, results are very 

similar. The best performing model (MAPE = 4.6%), for one day lead time, is the 

one that uses all predictors (model 1). However, for predictions seven days into 

the future, the model with temporal, household and weather characteristics 

(model 5) performs better (MAPE = 6.1%) than the model (model 1) that also 
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incorporates past consumption data (MAPE = 6.4%) (Table 5.5). Temporal 

characteristics, on top of past consumption, improve the MAPE by 2.5% (model 

3), for one day lead time. Weather input further reduces errors by 0.2% (model 

2) and household characteristics by 0.6% (model 1).  

 

Figure 5.3. Mean Absolute Percentage Error (MAPE) for different model configurations 

(Models 1-8) and different spatial aggregations (network, areas, districts), for all days in 

the data (plots a-c), as well as peak days (plots d-f). 

For models 5-8 however (the ones excluding past consumption data), weather 

and household input reduce errors by 0.1% (model 7) and 0.4% (model 6), 

respectively, for predictions 1 day ahead. Both of the above reduce the MAPE 

by 1.3%, a reduction much higher than the simple addition of their individual 

contributions (model 5). In both cases (all days and peak days), the model that 
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includes only temporal and weather variables (model 7) performs better than 

the model that includes only past consumption data (model 4) (Table 5.5). 

As the level of spatial aggregation decreases, the range in errors among the 

models drastically increases. The best performing model for the areas is still the 

one that includes all variables (model 1), for all days and peak days (Figure 5.3, 

(b) and (e)). In this case, temporal, weather and household characteristics, on 

top of past consumption data, reduce errors by 0.7%, 0.3% and 0.1%, 

respectively, for all days and 3.5%, 0.2% and 0%, respectively, for peak days. 

Weather input for the models without past consumption reduces the MAPE by 

0.3% (model 7), for one day lead time, whereas household characteristics 

reduce it by 1.5% (model 6), for all days (Table 5.5). The combined effect of 

both household and weather characteristics outperforms again the mere 

addition of their individual contributions; the model that includes temporal, 

household and weather variables (model 5) has a MAPE of 4.2% for predictions 

1 day ahead (an improvement of 2.1%), an error almost as low as the best 

performing model (model 1) (Table 5.5). The same is true for peak days; 

weather (model 6) and household (model 7) input reduce errors by 1.6% each, 

whereas the combination of the two contributes to an error reduction of 4.1% 

(Table 5.5). Finally, for peak days, the model with temporal and weather input 

(model 7, MAPE = 9.9%) performs better than the model with past consumption 

data (model 4, MAPE = 10.7%), for 1 day lead time.  

Table 5.5. MAPE for eight model configurations, for predictions one and seven days 

into the future, for three spatial aggregations of properties (network, areas, districts). 

 NETWORK – MAPE (%) AREAS – MAPE (%) DISTRICTS – MAPE (%) 

Model All days Peak days All days Peak days All days Peak days 

 1 day 7 days 1 day 7 days 1 day 7 days 1 day 7 days 1 day 7 days 1 day 7 days 

1 2.4 2.5 4.6 6.4 4.1 4.2 7.0 7.2 6.7 6.8 9.6 10.0 

2 2.5 2.7 5.2 6.3 4.2 4.5 7.0 7.7 7.0 7.3 10.0 11.0 

3 2.9 3.3 5.4 7.6 4.5 4.9 7.2 8.5 7.1 7.5 10.5 11.6 

4 3.4 3.6 7.9 9.5 5.2 5.6 10.7 11.5 7.9 8.1 12.6 13.3 

5 2.7 2.8 6.2 6.1 4.2 4.2 7.4 7.4 6.8 6.8 10.3 10.3 

6 3.5 3.6 7.1 8.0 4.8 4.8 8.3 8.9 7.1 7.0 11.0 10.9 

7 3.2 3.2 7.4 7.4 6.0 6.0 9.9 9.7 12.0 11.9 30.2 30.2 

8 3.6 3.7 7.5 8.3 6.3 6.3 11.5 11.4 12.0 11.9 30.1 30.0 

For the district groups, the MAPE range increases further, varying from 6.7% to 

12%, for predictions 1 day ahead, for all days. In this case, past consumption 

data and household characteristics offer significant improvements, whereas 
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weather is rather irrelevant (Figure 5.3(c)). The model that includes all variables 

as input (model 1) has once again the best performance (MAPE = 6.7%, for 1 

day lead), although temporal, household and weather input (model 5) can 

achieve a similar accuracy (MAPE = 6.8%), for all days in the data. For seven 

days ahead, models 1 and 5 perform equally well for all days in the data (MAPE 

= 6.8%), whereas model 5 performs slightly worse (MAPE = 10.3%) compared 

to model 1 (MAPE = 10.0%) for peak days. Past consumption data (model 3) 

and household characteristics (model 6), on top of temporal characteristics, 

reduce errors by 4.9%, from 12.0% to 7.1%, for 1 day lead time (Table 5.5). 

Weather input (models 2 and 7) offers hardly any benefit to the model for 

predictions across all days. However, it does improve the MAPE by a maximum 

of 0.6% on peak days (model 2), for predictions seven days ahead. Finally, the 

model that uses only weather and temporal characteristics (model 7) has almost 

double the MAPE for all days (MAPE = 12.0%) and triple for peak days (MAPE 

= 30.2%), compared to the best performing model (model 1).  

5.6. Discussion  

In this work, water demand forecasting errors improve for larger aggregations of 

properties, since it means that water demand becomes less erratic and 

therefore easier to predict. This is illustrated by the level of water demand 

variability (Table 5.4), which is clearly associated with the level of spatial 

aggregation; smaller groups have a much wider daily water consumption range 

compared to larger ones. Here, a constant prediction accuracy is reached for 

groups larger than ~200 houses, whereas errors start to increase exponentially 

for groups smaller than 20-40 properties.  

As errors reduce for larger group sizes, the R2 value increases, but only within 

the same aggregation level (e.g. areas). As the group size increases, the 

variance in the response variable (i.e. water consumption) decreases, making 

consumption easier to predict. However, increasing the aggregation level (e.g. 

from districts to areas) also means that houses that are further away from each 

other are grouped together, creating less homogenous groups and thus 

reducing the explanatory value of past consumption data. This is likely the 

reason that the R2 decreases when moving to a larger aggregation of 

properties, even though the household group size decreases (Table 5.3). 
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Even though errors increase for smaller household groups, as water demand 

becomes more erratic, the large variance in water use is largely explainable by 

identifying the right predictors. The larger the level of spatial aggregation, the 

closer the models are in terms of their performance, thus the less important the 

input variables. When all household groups have similar characteristics (e.g. at 

the network level), these characteristics cannot explain the variance in 

consumption (Figure 5.3, Network). In order for a variable to be a useful input to 

a forecasting model, it needs to have an influence on the model’s response but 

also a wide range of values among the groups in the dataset (Figure 5.3, 

Districts). When groups are rather homogenous, the potential for error reduction 

is significantly smaller. For this reason, household characteristics and past 

consumption become more important for smaller household groups. Smaller 

groups are associated with higher variations in water demand (Table 5.4) but 

also higher variations in their household composition (Figure C1). The higher 

the variation in household composition and past consumption between the 

groups, the higher the importance of these variables as predictors.  

On the other hand, household characteristics are embedded into past 

consumption, along with other factors that define the consumption behaviour of 

a property or group of properties. Therefore, using past consumption data can 

be particularly valuable for smaller groups, as a proxy of the consumption 

behaviour that relates to their individual characteristics. This is demonstrated by 

examining the influence of the predictors of the district areas (Figure 5.3, 

Districts). When past consumption data are available, household characteristics 

do not further improve predictions. However, when past consumption is not 

used as input, a combination of household, weather and temporal 

characteristics can adequately characterise and thus predict water demand with 

the same accuracy. For example, weather and household input, on top of past 

consumption, reduces the MAPE by a maximum of 1.6% for peak days and 

district areas. When the same variables are used on top of temporal 

characteristics, they reduce the MAPE by 19.7%, from 30% to 10.3%. 

The combined contribution of household and weather characteristics in the 

model is in most cases much higher than their individual contributions. This 

result confirms further what was already concluded in chapters 2 and 3, that the 

influence of weather on water consumption is variable and strongly depends on 
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the type of property and residents. Therefore, providing additional context in 

terms of household characteristics, on top of weather information, can improve 

results. 

Although weather does not improve results for smaller household groups 

(Figure 5.3, Districts), it does improve accuracy for larger groups of properties 

(Figure 5.3, Network and Areas). Chapter 2 showed that the effect of weather 

on water consumption varies between households, days and times in the year. 

Out of all households in the dataset, few of them alter their consumption due to 

weather changes, for few days in the data. Therefore, the model learns based 

on the majority of the data points (household groups and days in the data), for 

which weather does not actually influence consumption. When aggregating all 

properties, the effect of weather, although mild, is visible for many more data 

points (days) used to train the model, therefore weather is found to have a 

(slight) impact on consumption. 

Finally, it is worth noting the upward trend of all models that include past 

consumption data (models 1-4), for predictions further into the future (Figure 

5.3). Since water consumption is highly auto-correlated from one day to the next 

one, predictions one day ahead are more accurate than seven days ahead. 

However, adding weather and household input reduces errors for predictions 

further into the future. On the other hand, for models 5-8 (no past consumption 

input), the forecast horizon does not have an effect on the model’s accuracy 

(Figure 5.3). As a result, the best model sometimes shifts depending on the 

forecast horizon. The models that include past consumption often perform best 

for one day lead time, but worse than the ones that use temporal, household 

and weather input for increased lead times (e.g. 7 days). 

5.7. Summary and conclusions  

This study explores the effect of spatial aggregation on water demand 

forecasting, both in terms of prediction accuracy and influencing factors. In 

order to achieve this, multiple models with different input configurations are 

trained on real-life UK daily consumption records, for different aggregations of 

consumption.  
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Initially, the effect of spatial aggregation on forecasting accuracy is determined 

for nine different group sizes, varrying from 5 to 600 households. A GBM model 

with only past consumption data as input is used to compare the modeling 

accuracy for daily forecasts, one day ahead. Then, the predictive capability of 

several variable types (temporal, household, weather and past consumption) is 

determined at three spatial scales, at the network level (up to 804 

properties/group), area level (up to 262 households/group) and district level (up 

to 56 households/group), for each day in the data.  

Results show that: 

 The level of spatial aggregation has a direct influence on the demand 

forecasting accuracy; the larger the spatial scale, the more accurate the 

demand forecast. For groups smaller than 20-40 households, the MAPE 

increases exponentially for a further decrease in household group size. 

For group sizes above ~200 households, an increase in group size only 

marginally reduces the MAPE. 

 Using the right predictors can significantly reduce forecasting errors, 

especially for smaller household groups. In this study, the most influential 

input variables vary for different levels of spatial aggregation.  Past 

consumption data and household characteristics become more important 

for smaller aggregations, while weather data contribute to the model’s 

accuracy only for larger household groups.  

This work is particularly important in the UK, where water networks are 

decomposed into district metered areas (DMAs). Results show that at the DMA 

level, i.e. for larger aggregations of properties, using past consumption, along 

with temporal and weather variables, results in very low MAPE for predictions 1-

7 days into the future. This can be particularly useful in optimising network 

operations as well as estimating leakage.  

Although the effect of different levels of spatial aggregation is investigated here 

in detail, this is done within a fixed set of environmental conditions. All of the 

above analysis reflects the consumption of houses in the southwest of England. 

In a different setting, with different prominent household and customer 

characteristics and different climate, these results may be different. Although 
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the above methodology can be replicated anywhere where the related data is 

available, results may vary.  

Another interesting aspect that is not explored in this chapter is the effect that 

the temporal aggregation of consumption has on forecasting, particularly in 

conjunction with the spatial aggregation. Further work is needed to develop a 

grid of spatial and temporal aggregations of consumption that will demonstrate 

the limitations and opportunities that arise at each scale.
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6.  

 

This thesis investigates the topic of water demand forecasting in terms of 

models and influencing factors, over a range of scenarios. The ultimate aim is to 

provide solutions to real-world problems and improve the current engineering 

practice. For this reason, the influence of weather on water consumption, which 

is an uncertain factor and cause of concern for the future of water resources, is 

given particular importance. In addition, aspects such as improving predictions 

on peak demand days, which are the critical ones for water utilities, or dealing 

with the lack of past consumption data and producing forecasts for different 

levels of spatial aggregations are addressed here. Ultimately, this study 

developes an improved methodology that can inform decisions regarding the 

models and data needed to produce accurate demand forecasts.  

6.1. Thesis summary  

The following is a summary of each methodological chapter, including the aim, 

approach and key results.  

Chapter 2. Predicting water demand is necessary to ensure a secure water 

supply to homes and businesses.  With great uncertainty around future changes 

in the climate and the UK households, it is essential to accurately determine the 
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effect of weather on water consumption. A systematic approach based on smart 

demand metering data and customer characteristics (e.g. metering status, 

garden ownership) is used to investigate the sensitivity of household water *+ 

consumption to weather, for different consumer types and time-varying 

parameters. The following weather variables are analysed:  air and soil 

temperature, humidity, rainfall and sunshine hours. Results indicate that the 

effect of weather on water consumption is moderate in the UK. This effect 

becomes more significant for affluent customers with high variation in their 

mean monthly consumption and medium occupancy households, as well as 

working days, summers and evenings. Sunshine hours, humidity and air 

temperature are the weather variables with the most widespread influence in 

the UK. Soil temperature has a milder effect, whereas daily rainfall shows 

minimal impact. 

Chapter 3. Smart demand metering data at the household level is becoming 

increasingly available but not all households are currently monitored. This 

chapter compares two modelling approaches, one with and one without past 

consumption data as input, with the aim to predict daily demands for different 

household types, one day ahead. The methodology developed combines 

Random Forests with a variety of interpretable machine learning techniques 

(Variable permutation, Accumulated Local Effects plots and Individual 

Conditional Expectation curves). These techniques are used to quantify the 

influence of several model predictors (household, weather and temporal 

characteristics) on water consumption and forecasting accuracy. Results show 

that when past consumption data are available, it is by far the most important 

explanatory factor. However, when it is not, a combination of household and 

temporal characteristics can be used to produce a credible model, with 

forecasting accuracy similar to the model that includes past consumption data. 

In this case, the household characteristics are the best predictors of 

consumption, whereas the weather has little to no influence on the model’s 

output, under the current UK climate. This methodology is of high value to the 

engineering practice as it combines accuracy with interpretability.  

Chapter 4. Water demand forecasting is an essential task for water utilities, 

with increasing importance due to future societal and environmental changes. 

This chapter suggests a new methodology for water demand forecasting, based 
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on model stacking and bias correction that predicts daily demands for groups of 

~120 properties. This methodology is compared to a number of models 

(Artificial Neural Network, Generalised Linear Model, Random Forest, Gradient 

Boosting Machine, Extreme Gradient Boosting and Deep Neural Network) using 

real consumption data from the UK, collected at 15-30 minute intervals from 

1,793 properties. Results show that the newly proposed method consistently 

outperforms other water demand forecasting techniques, for one day lead time 

(peak R2 = 74.1%), especially for peak consumption days and limited input data. 

Chapter 5. Understanding, comparing and accurately predicting water demand 

at different spatial scales is an important goal that will allow effective targeting 

of the appropriate operational and conservation efforts under an uncertain 

future. This chapter uses data relating to water consumption, available at the 

household level, as well as postcode locations, household characteristics and 

weather data in order to identify relationships between spatial scale, influencing 

factors and forecasting accuracy. For this purpose, a Gradient Boosting 

Machine is used to predict water demand 1-7 days into the future. Results show 

an exponential decay in prediction accuracy from a Mean Absolute Percentage 

Error (MAPE) of 3.2% to 17%, for a reduction in group size from 600 to 5 

households. Adding explanatory variables to the forecasting model achieves a 

reduction in MAPE of up to 20% for the peak consumption days and smaller 

household groups (20-56 households), whereas for larger aggregations of 

properties (100-804 households) the range of improvement is much smaller (up 

to 1.2%). Results also show that certain types of input variables (past 

consumption and household characteristics) become more important for smaller 

aggregations of properties whereas others (weather data) become less 

important. 

6.2. Thesis contributions 

This thesis has the following key contributions: 

1. The first contribution is a new, improved demand forecasting 

methodology, which is tested and demonstrated on real data. This 

model is based on stacking and is built as a combination of five base 

models. A bias correction method, applied on the model’s output, assists 
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with predicting outliers. This method can be used to improve the 

accuracy of water demand forecasting (see chapter 4).  

2. The second contribution is an improved understanding of the link 

between weather and water consumption (in a UK context). This is 

done using both a big-data statistical analysis (see chapter 2) that 

specifically addresses the influence of the weather over space and time, 

as well as a machine learning approach (see chapter 3). These results 

can assist with addressing regulatory requirements that relate to climate 

change planning and mitigation.  

3. The third contribution is an improved understanding of key water 

demand explanatory factors and how these could be used to make 

more accurate demand forecasts, especially when data are limited. 

A Random Forest model and three interpretable machine learning 

techniques are used to produce demand forecasts using a variety of 

property, temporal and weather predictors. These results can assist with 

predicting demand for the unmetered customers, long-term water 

demand projections, leakage estimations and new water billing 

incentives (see chapter 3).  

4. The fourth contribution is an improved understanding of the 

limitations in demand forecasting accuracy at different spatial 

scales (i.e. household groupings), together with the best predictors, 

which tend to change at each scale. A Gradient Boosting Machine 

model is used with different input configurations to make predictions at 

different spatial scales. Results can assist with benchmarking the 

accuracy of forecasting models and as a guidance for water utilities in 

order to select the appropriate predictors at the right scale (see chapter 

5).   

5. New technical guidance for water utilities. The results produced in 

this thesis can be used as guidance for water utilities to help them 

identify the best model and input variables, with respect to the 

characteristics of the problem and the forecasting target.  
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6.3. Thesis conclusions 

This work attempts to provide an improved understanding of water demand, in 

terms of the variables and factors that influence it, as well as the necessary 

data, models, and techniques that can improve demand forecasts. The first 

aspect of this thesis investigates the variables that influence water 

consumption, taking into account their interactions with a variety of other 

household, weather, and temporal characteristics (see chapters 2 and 3). The 

second part focuses on comparing different water demand forecasting models, 

under different scenarios, and developing an improved methodology that 

combines the benefits of individual models. Finally, the best models and types 

of inputs are used in order to improve water demand forecasting in practice, for 

different sizes of network sections.  

One of the main benefits of the methodology adopted here is that it assesses 

the drivers of water demand in a multidimensional context. When examining the 

influence of a variable on water demand, the interactions between this variable 

and a variety of other temporal, household and weather characteristics are 

taken into account. In chapter 2, a disaggregated approach is adopted to 

separately assess the influence of weather on water demand for different 

household (e.g. garden size, occupancy rate) and time-varying (e.g. season, 

month) characteristics. In chapter 3, a machine learning model with several 

inputs as explanatory variables is used to evaluate the influence of these 

variables on water demand. Results show that the variables that have the 

highest influence on consumption are the household characteristics, particularly 

the occupancy rate and council tax band, followed by the type of day (working 

day or weekend/holiday). The weather has a non-linear effect on consumption 

that can vary significantly for different household and time-varying 

characteristics. Using the above temporal and household characteristics as 

model predictors can achieve a similar accuracy to using past consumption 

data. Unlike this work, most studies in the literature assessed the influence of 

several household, weather, and temporal characteristics on water consumption 

using simple statistical techniques that did not account for the interactions 

between them. 

In addition, the modelling accuracy and best types of model variables are 

assessed under multiple forecasting scenarios. Most studies in the literature 
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made conclusions within a specific context. This work takes into account 

several factors, such as the type of available data, the level of spatial 

aggregation, the forecasting aim, as well as the forecast horizon in order to 

make conclusions about the best type of model and variables, with respect to 

the individual problem. Results highlight that the modelling accuracy, as well as 

the best model and types of variables depend on all of the above factors (see 

chapters 4 and 5). The prediction accuracy decreases exponentially together 

with the level of spatial aggregation. In addition, certain models perform better 

for peak consumption days as well as limited input data (stacked and GBM 

models). On the other hand, certain types of variables (household and past 

consumption data) become significant for smaller aggregations of properties 

whereas others (weather variables) improve modelling accuracy only for larger 

aggregations.  

Another benefit of this work is the usage of a variety of new, emerging machine 

learning methods and other techniques that can facilitate and improve the 

accuracy of water demand forecasting. Several ensemble (e.g. model stacking 

and gradient boosting) and other (e.g. deep learning) machine learning models 

are tested for their ability to produce accurate demand forecasts (see chapter 

4). Results show that the new method developed in this thesis using model 

stacking and bias correction performs best, especially for peak days and when 

past consumption data are not available. In addition to this, new interpretable 

machine learning techniques are used to uncover the drivers of water demand 

and enhance the value of ‘black box’ models (see chapter 3). Finally, the ability 

of machine learning platforms that facilitate the modelling process, including the 

model building and selection, is demonstrated in chapter 4. 

However, there is no model or input factors that are universally best, under all 

scenarios. Sophisticated models, new techniques and increasing data 

availability can improve the accuracy of forecasting models, especially under 

certain scenarios. Nevertheless, the level of spatial aggregation (household 

group size), forecasting aim (peak days or all days), forecast horizon (one or 

seven days lead time) and data availability can determine what is the 

appropriate model and predictors required to produce credible forecasts (see 

chapters 2-5). A cost-benefit analysis needs to be performed in order to 

determine the best model structure based on all of the above factors. The 
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methodology developed here can be used as a guide for water utilities in order 

to build the best forecasting model, taking into account the characteristics of the 

individual problem. 

A source of uncertainty that is not considered here relates to the quality of data 

acquired using smart meters. Although every effort is made in order to ensure 

the quality of these data and remove any inconsistencies, leakage, errors, as 

well as empty properties, the extent of errors remaining in the dataset is 

uncertain. These errors could relate to inconsistencies that were not removed 

during the data cleaning process as well as systematic meter recording errors. 

The results presented here are based on the assumption of the water company 

that the smart meters record consumption with an error of 2%. The extent to 

which potential errors could have influenced the results is unclear. 

In addition, results are based on the available dataset, which is derived from 

residential properties in the UK and specifically a particular region in the 

southwest of England. In a different climate with high seasonal variations, 

different culture, different societal structure, or even different household types, 

results could be very different. Although the methodology developed here can 

be transferred, results are topical. Furthermore, since the case study includes 

only residential properties, it is unclear how results would differ for industrial or 

commercial buildings. Since consumption in these buildings has different time 

patterns and end-uses, further analysis is needed to assess the best model 

types and influencing factors in this case.         

Finally, the performance metric used to assess the model can also have a 

strong impact on the results. In this study, three metrics are used in order to 

account for different aspects of modelling accuracy. In addition, the model’s 

ability to predict demand on peak days, which are the critical ones for water 

utilities, is also treated separately. However, in a different scenario that would 

require the models to perform well on certain times or for certain customers, 

results could vary. Even if the forecasting aim is the same, using a different 

metric could potentially lead to different conclusions.   

Overall, above results can find use in short-term operational optimisation and 

forecasting as well as long-term planning. Although the influence of the weather 

is currently limited, it could cause problems under a different climate, with more 



146 

 

hot, sunny and humid days. On the other hand, changes in the customer base 

and societal reforms, such as increases in single-occupancy properties and 

standard of living could also cause water availability concerns in the long-term. 

Above results can help water companies develop targeted water demand 

management strategies, plan infrastructure investments and secure water for 

the future. In the short-term, the methodologies and results within this thesis 

can provide practical guidance to network operators in order to develop 

improved water demand forecasting models, with respect to the characteristics 

of the problem. Specifically, results demonstrate alternative ways to predict 

water consumption using new models and techniques and without utilising past 

consumption data, for different levels of spatial aggregation and peak 

consumption days. Above results can assist water utilities as well as their 

operators with optimising network operations, avoiding over abstractions and 

reducing energy spending and carbon emissions, as well as assessing the 

amount of water that is lost through leakage.    

6.4. Future work recommendations  

This thesis addresses a few important topics in water demand forecasting. 

Through this work, many opportunities for future research projects emerge.  

Water utilities’ operations, strategies and investments are targeted at different 

temporal (e.g. week, month or year) and spatial scales. Therefore, it is 

important to assess the forecasting accuracy and influencing factors that relate 

to each one. This work addresses the topic of water demand forecasting at 

various spatial scales but the temporal one is set to daily. More work is required 

to define a temporal and spatial grid space and assess the limitations and 

opportunities that arise at each aggregation level.  

Another topic of interest is understanding when, where and for whom models 

perform poorly. This will provide a good basis to further improve predictions. In 

this work, the model errors are higher for peak consumption days, but also for 

days with unusually low consumption. Therefore, a bias correction method is 

applied in order to improve results. Identifying the accuracy that can be 

achieved for different customer groups and days in the data is the first step 

towards understanding how to improve water demand forecasting. 
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Although developing models that perform real-time predictions were out of the 

scope of this work, the methodologies developed here can be used for real-time 

forecasts. This would require the model to be calibrated offline using the 

necessary data, before it is implemented online. Future work could focus on 

expanding the methodology developed here and applying it to a different 

context, for real-time demand forecasting.  

Finally, no risk or ‘what if’ analysis is conducted as part of this thesis. Results 

show that water demand is heavily influenced by household characteristics that 

are rapidly changing due to lifestyle, societal and economic restructures. 

However, the effect that this could have on the future of water resources 

remains uncertain. Although the weather has a minor overall influence on 

consumption, partly due to the mild UK climate, water consumption increases 

significantly when air temperature or sunshine hours exceed certain threshold 

values. This means that if weather extremes occur more often in the future, this 

could have a huge impact on the water supply-demand balance. Future projects 

should focus on using these results to create projections of demand, based on 

future societal and climate scenarios. 
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A.1 Distribution of correlation coefficients and gradients 

for each model in the data 

For each segment (115,200) and weather variable (5), the relationship of 

consumption and the weather is evaluated using the Spearman’s ρ correlation 

coefficient, the p-value and the gradient of the linear curve that is fitted on the 

data. This results in 576,000 (115,200*5) relationships. Figures A1 to A9 

demonstrate the range of the correlation coefficient values and gradients that 

correspond to all relationships that have a p-value less than 1%, i.e. for all the 

statistically significant relationships. Each point corresponds to one 

segmentation of consumption and one weather variable. 

Figure A1 shows the distribution of the correlation coefficient and gradient 

values that relate to consumption that occurred each season of the year. 

Results clearly indicate that over the summer months, the gradients for all 

weather variables are significantly steeper, whereas almost no strong 

relationships (ρ > 0.5) are identified between the weather and consumption over 

the winter months. This means that consumption over the summer is much 

more sensitive to weather changes compared to all other seasons, whereas the 

effect of weather becomes rather irrelevant in the winter. Results also clearly 

demonstrate that humidity and rainfall are inversely related to consumption, as 

the vast majority of gradients and correlation coefficients that relate to these two 
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variables are negative. Rainfall is the variable with the smallest amount of 

statistically significant relationships. 

 

Figure A1. Distribution of correlation coefficients and gradients for segmentations that 

correspond to autumn, spring, summer and winter consumption, as well as all of the 

above. Each point in the plot corresponds to the relationship between consumption 

and one weather variable, for one segmentation of consumption.  

Figure A2 shows that more statistically significant relationships, as well as 

higher gradients and ρ values relate to working days, compared to holidays and 

weekends.  

Regarding the time of the day (Figure A3), by far the steepest gradients among 

all weather variables are identified for the evening hours.  

Results indicate that both properties with large and medium gardens fluctuate 

their consumption due to weather changes, although larger gardens are linked 

to higher gradients, i.e. higher increase in water consumption (Figure A4). 
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Figure A2. Distribution of correlation coefficients and gradients for segmentations that 

correspond to working days and weekends/holidays, as well as all of the above. Each 

point in the plot corresponds to the relationship between consumption and one 

weather variable, for one segmentation of consumption. 

 

Figure A3. Distribution of correlation coefficients and gradients for segmentations that 
correspond to afternoons, evenings, mornings and nights, as well as all of the above. 
Each point in the plot corresponds to the relationship between consumption and one 
weather variable, for one segmentation of consumption. 
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Figure A4. Distribution of correlation coefficients and gradients for segmentations that 

correspond to large, medium and small gardens, as well as all of the above. Each point 

in the plot corresponds to the relationship between consumption and one weather 

variable, for one segmentation of consumption. 

The same applies to unmetered customers that also appear more sensitive to 

weather changes (Figure A5).  

 

Figure A5. Distribution of correlation coefficients and gradients achieved for 

segmentations that corresponded to metered and unmetered customers, as well as all 

of the above. Each point in the plot corresponds to the relationship between 

consumption and one weather variable for one segmentation of consumption. 
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However, little change appears among households with varying rateable values 

(Figure A6).  

 

Figure A6. Distribution of correlation coefficients and gradients achieved for 

segmentations that corresponded to high, medium, and low rateable values, as well as 

all of the above. Each point in the plot corresponds to the relationship between 

consumption and one weather variable for one segmentation of consumption. 

Finally, Figures A7 to A9 show that the clouds of points that correspond to 

affluent residents (Figure A7), customers with high variation in their monthly 

consumption (Figure A8), as well as medium occupancy (Figure A9) are also 

shifted towards the higher gradients and ρ values.  

It is worth noting that for most of the plots in Figures A1-A9, the points cover 

only two of the four quarters of the Euclidean space. Positive ρ values 

correspond to positive gradients whereas the same applies for negative ones, 

reflecting the direct or inverse, respectively, relationship between consumption 

and the corresponding weather variable. 
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Figure A7. Distribution of correlation coefficients and gradients for segmentations that 

correspond to comfortable, financially stretched and affluent customers, as well as all 

of the above. Each point in the plot corresponds to the relationship between 

consumption and one weather variable, for one segmentation of consumption. 

 

Figure A8. Distribution of correlation coefficients and gradients for segmentations that 

correspond to customers with high variation in their monthly consumption, as well as 

all customers. Each point in the plot corresponds to the relationship between 

consumption and one weather variable, for one segmentation of consumption. 
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Figure A9. Distribution of correlation coefficients and gradients for segmentations that 

correspond to high, low and medium occupancy households, as well as all of the 

above. Each point in the plot corresponds to the relationship between consumption 

and one weather variable, for one segmentation of consumption. 
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B.1 Model Hyperparameters 

‘H2o’ is used to tune the models for nine hyperparameters using a random grid 

search. The final hyperparameter values for each model are presented in the 

following. Table B1 shows the chosen parameters for each one of the models 

that are trained with only seven days of past consumption as input, for nine 

aggregations of properties.  

Table B1. Hyperparameter values selected for the GBM, for different group sizes. 

Hyperparameters 
Household group sizes 

5 10 20 40 80 120 200 400 600 

Ntrees 44 54 329 3545 45 605 30 34 758 

Max_depth 6 3 5 5 15 8 10 10 16 

Learn_rate 0.1 0.1 0.01 0.001 0.1 0.005 0.1 0.1 0.005 

Sample_rate 0.8 0.8 0.7 0.9 0.8 0.5 0.8 0.8 0.9 

Col_sample_rate 0.8 1 1 0.4 0.8 0.7 0.8 0.8 1 

Col_saple_rate_per_tree 0.8 1 0.7 1 0.8 0.7 0.8 0.8 0.4 

Histogram_type auto auto auto auto auto auto auto auto auto 

Min_split_imrpovement 1e-05 1e-05 1e-05 1e-04 1e-05 1e-05 1e-05 1e-05 1e-04 

Min_rows 1 5 10 100 100 15 10 10 30 

Tables B2 to B4 show the hyperparameter values for models 1-8, for each 

spatial aggregation of properties. Table B2 refers to aggregation at the district 

level, Table B3 at the area level and Table B4 at the network level. The ‘auto’ 

tag under the histogram type means that the cuts that are tested for splitting at 

each node of the decision trees are chosen by dividing the variable range in 
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equal steps, which here are 20. As it can be seen from the following tables, 

when the learning rate of the algorithm decreases, the number of trees 

increases, as the model requires more trees to converge to a solution when the 

trees have smaller contributions to the final result. 

Table B2. Hyperparameter values for models 1-8, for the district level. 

Hyperparameters 1 2 3 4 5 6 7 8 

Ntrees 81 388 342 352 104 81 28 104 

Max_depth 3 5 5 5 3 3 3 3 

Learn_rate 0.1 0.01 0.01 0.01 0.08 0.1 0.1 0.08 

Sample_rate 0.8 0.7 0.7 0.7 1 0.8 0.8 1 

Col_sample_rate 1 1 1 1 0.4 1 1 0.4 

Col_saple_rate_per_tree 1 0.7 0.7 0.7 0.4 1 1 0.4 

Histogram_type auto auto auto auto auto auto auto auto 

Min_split_imrpovement 1e-05 1e-05 1e-05 1e-05 1e-05 1e-05 1e-05 1e-05 

Min_rows 5 10 10 10 5 5 5 5 

Table B3. Hyperparameter values for models 1-8, for the area level. 

Hyperparameters 1 2 3 4 5 6 7 8 

Ntrees 56 446 46 52 59 47 55 36 

Max_depth 10 5 15 15 10 8 3 8 

Learn_rate 0.1 0.01 0.1 0.1 0.1 0.1 0.1 0.1 

Sample_rate 0.8 0.7 0.8 0.8 0.8 0.8 0.8 0.8 

Col_sample_rate 0.8 1 0.8 0.8 0.8 0.8 1 0.8 

Col_saple_rate_per_tree 0.8 0.7 0.8 0.8 0.8 0.8 1 0.8 

Histogram_type auto auto auto auto auto auto auto auto 

Min_split_imrpovement 1e-05 1e-05 1e-05 1e-05 1e-05 1e-05 1e-05 1e-05 

Min_rows 10 10 100 100 10 10 5 10 

Table B4. Hyperparameter values, for models 1-8, for the network level. 

Hyperparameters 1 2 3 4 5 6 7 8 

Ntrees 118 62 5708 98 42 85 42 35 

Max_depth 8 3 12 15 8 15 3 3 

Learn_rate 0.05 0.1 0.001 0.1 0.1 0.1 0.1 0.1 

Sample_rate 1 0.8 0.9 0.8 0.8 0.8 0.8 0.8 

Col_sample_rate 1 1 0.7 0.8 0.8 0.8 1 1 

Col_saple_rate_per_tree 1 1 0.7 0.8 0.8 0.8 1 1 

Histogram_type auto auto auto auto auto auto auto auto 

Min_split_imrpovement 1e-04 1e-05 1e-04 1e-05 1e-05 1e-05 1e-05 1e-05 

Min_rows 5 5 100 100 10 100 5 5 

These values are provided for guidance only and as a good starting point for the 

hyperparameter values but they do not replace the need for tuning the model 

based on the corresponding dataset.  
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B.2 Household composition 

In order to provide additional insight into the above results, Figure B1 

demonstrates the variation in household composition among the groups in each 

one of three aggregation levels (network, area, district). In the boxplots 

presented in Figure B1, the lower and upper hinges correspond to the first and 

third quantiles (the 25th and 75th percentiles). If IQR is the distance between 

them, the lower and upper whiskers are calculated as follows:  

Lower whisker = max (lower hinge – 1.5*IQR, min value) 

Upper whisker = min (upper hinge + 1.5*IQR, max value) 

 

Figure B1. Group composition in terms of household types among the groups, for each 

level of spatial aggregation. 
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All values outside the lower and upper whiskers are considered outliers and are 

plotted individually on each boxplot.  

According to Figure B1, when grouping all households together (Figure B1, 

Network), the household composition among each group does not vary greatly, 

while for the area and district aggregations, the variation gradually increases 

(Figure B1, Area and District).  
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